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Abstract

We have developed a proof of concept for allowing a PCI Express device attached to
one computer to be used by another computer without any software intermediate on the data
path. The device driver runs on a physically separate machine from the device, but our
implementation allows the device driver and device to communicate as if the device and driver
were in the same machine, without modifying either the driver or the device. The kernel and
higher level software can utilize the device as if it were a local device.

A device will not be used by two separate machines at the same time, but a machine can
transfer the control of a local device to a remote machine. We have named this concept "device
lending". We envision that machines will have, in addition to local PCIe devices, access to a
pool of remote PCIe devices. When a machine needs more device resources, additional devices
can be dynamically borrowed from other machines with devices to spare. These devices can
be located in a dedicated external cabinet, or be devices inserted into internal slots in a normal
computer.

The device lending is implemented using a Non-Transparent Bridge (NTB), a native PCIe
interconnect that should offer performance close to that of a locally connected device. Devices
that are not currently being lent to another host will not be affected in any way. NTBs are
available as add-ons for any PCIe based computer and are included in newer Intel Xeon CPUs.

The proof of concept we created was implemented for Linux, on top of the APIs provided
by our NTB vendor, Dolphin. The host borrowing a device has a kernel module to provide
the necessary software support and the other host has a user space daemon. No additional
software modifications or hardware is required, nor special support from the devices. The
current implementation works with some devices, but has some problems with others. We
believe however, that we have identified the problems and how to improve the situation. In a
later implementation, we believe that all devices we have tested can be made to work correctly
and with very high performance.
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Chapter 1

Introduction

1.1 Background

The current trend in Internet services is "cloud computing", where the applications are running
in "the cloud" and users have access to their data from their smartphone, tablet or a computer
anywhere in the world. Most of the time, the cloud is not just used as a data storage for user
applications, but instead, the applications themselves run in the cloud, and only a thin client
application runs on the users device.

Cloud computing has gained popularity not only from being convenient for users, but also
for its flexibility for the developers and service owners. The burden of maintaining the physical
infrastructure is placed on the cloud provider instead of the application developer which allows
the developer to focus on developing the application. This is also often cheaper for the
developers compared to running their own servers. As the developer creates new applications or
the use of their existing application changes, they can rent additional computers and change the
specification of their computers to meet the new demands. The machines can also be located
around the world to be geographically near their customers.

Cloud providers are able to rent out cheap machines thanks to one important technology:
Virtualization. This technology allows multiple virtual machines (VM) to run on a single
physical machine. Combined with the ever-increasing advances in computing power, storage
and hardware in general, virtualization enables cloud providers to rent out virtual machines at
a very low cost. The cloud providers saves physical space, power consumption, hardware cost
and maintinance cost by having a smaller number of powerful machines with multiple VMs.

Since multiple virtual machines run on a single physical machine, they share the resources

Figure 1.1: Download rates over 48 hours from the game platform Steam [4] North America is
coloured blue, Europe is green.

(a) A normal 48 hour snapshot of Steam
downloads.

(b) The sudden spike on the right is GTA V
getting released for downloads (preload)
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4 CHAPTER 1. INTRODUCTION

of the host. Some of the resources allocated to each VM are more static than others, for example,
when a VM is created, the amount of RAM, number of CPU cores and network interfaces are
given. The allocated resources can however in many cases be changed without powering down
the VM. Some of the resources are however more naturally shared between the VMs including
CPU time (time each virtual core executes on a physical core), disk access (bandwidth) and
network bandwidth. These resources are time-shared between the VMs and each VMs time-
slice can be dynamically changed and scale to meet the demands of the VM at any given time.
If all of the virtual machines use all their resources all the time, this sharing will be close to
static. In a lot of situations, however, the demands will change over time and can be "bursty".
An example of this can be seen in the day-night cycle in the download rates on the Steam
gaming platform in figure 1.1. Other services might have short term spikes in their resource
usage such as content generation, simulations, nightly code compilations or a cute cat video
gone viral. This can also be seen in the Steam download rates when GTA V is released for
download. A VM provider can take advantage of the bursty nature of most computation and
overprovision the combined resources of the VMs on a single host. If the cloud provider is able
to quickly react to changes in resource usage, the cloud provider can rent out more computing
power than they physically have. When the sum of resources used by the VMs on a host gets
close to the limit, one or more of the VMs can be migrated, live, to another host without the
users noticing it and when the combined VM usage is low, some hosts can be completely freed
of VMs. These temporarily idle hosts can now be powered down to conserve power or for
upgrades and maintenance.

In addition to the more traditional machine resources, newer VM software has support for
allowing VMs to directly access some types of hardware devices. This is useful when the extra
performance cost of emulating or otherwise intercepting the hardware affects the performance
too much or emulation is infeasible. This direct device assignment is enabled by hardware
virtualization support called IO Memory Management Units (IOMMU). In the same way that
a normal Memory Management Unit (MMU) allows processes to have their own address space
and isolate each process from each other and the kernel, an IOMMU isolates each VM and the
VM’s assigned devices from the host and other VMs.

With an IOMMU, a VM can be given direct control of a hardware device without the VM
being able to break out of its isolation. For example, a dedicated network card can be given
exclusively to a VM which gives the VM control of all packets to and from this network card.
The host OS or other VMs will not be able to use a device that has been assigned to a VM. While
directly assigning hardware devices to a VM improves performance by lowering overhead, it
conflicts with the main benefit of virtualization, sharing powerful hardware dynamically.

Some network cards have multiple Ethernet connectors, each one seen as a separate device
from the software perspective. In PCI terms this is called a multi-function device. Other devices
can also be multi-function, for instance most Graphical Processing Units (GPU) with HDMI
connectors have a dedicated audio function in addition to the GPU itself. Each function will
have it’s own driver instance in an OS and the driver does not need to be aware of the fact
that the device is part of a multi-function device. Each of these functions can be separately
assigned to a VM, for instance, assigning a single Ethernet port on a multi-port Ethernet card
saves physical space in the host machine compared to each VM having it’s own dedicated card.

The ideal would be to allow VMs direct control of the hardware to have low overhead, but
still share the devices with multiple other VMs. The PCI standard Single Root IO Virtualization
(SR-IOV) is a solution to this problem. A device that supports SR-IOV can appear as if it
has multiple virtual functions (VF) and from the software perspective, this is similar to multi-
function devices. Each VF is isolated from each other and can be safely assigned to a VM, but
unlike with ordinary multi-function devices, VFs will share the same physical device resources.
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Figure 1.2: Various device pools

For instance, a network card with SR-IOV can allow multiple VMs to share a single Ethernet
connector and the device itself will take care of sharing its resources with the VMs accessing it.
This is done without affecting the performance benefits of direct hardware control.

Virtualization is beneficial when the application requirements are below the resource limits
of the physical hardware, but just as easily, the resources required by an application can be
greater than the resources in a single physical machine. To cope with this, the machine resources
will need to be increased, but unlike with VMs, a physical machine cannot be dynamically
upgraded with the touch of a button. If a host needs more storage space, a new hard drive must
be added. The resources provided by hard drives, GPUs, network cards and other hardware
devices typically come in chunks unlike like the fluid resources that can be assigned to VMs. If
this is more than what is needed, the extra resources will either go unused, or create additional
complexity in assigning VMs to physical machines. Additionally, adding more hardware to a
host is a lot less dynamic than assigning hardware resources to VMs. There are also practical
limits to how far a single host can be upgraded in terms of number of devices. Avoiding this
problem can mean distributing the application to run on multiple servers. This is not only
substantial work, but depending on the resources that are insufficient, can be impractical or
difficult to do efficiently. If only one resource is lacking, for instance hard drive space or GPU
power, distributing the work is not ideal.

If the hardware resources can be shared between multiple physical machines in the same way
as resources can be shared between VMs, flexibility and resource utilization can be increased.
This also no longer applies to only virtualization, but non-virtualized server settings can also
benefit from sharing resources with other servers and dynamically assigning the resources to
servers that need them. Allowing the resources used by a server to go beyond it’s physical
confines and be shared by multiple servers will make using optimal price-performance hardware
instead of more expensive, powerful hardware possible. Such a setting can be seen as servers
having access to a pool of resources as seen in figure 1.2.

A Network Attached Storage (NAS) can be seen as a pool of storage space that can be
dynamically assigned and shared by multiple hosts and it is perhaps the most widely used form
of inter-host resource sharing. A NAS can give a host access to greater storage space and
potentially higher performance, often for a lower price than a locally attached disk in each
machine with the same performance and capacity. For a VM provider, having a storage pool
makes the assignment of VMs to hosts easier because the storage space required by the VM is
no longer a factor in assigning VMs to physical hosts. Also, without the storage pool, if the
assignment was not perfect, some of the hosts would have unused storage space, but with a
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storage pool, the free space is not fragmented and is available for all hosts to consume. Taking
bandwidth into consideration as well, some hosts might have VMs with high disk activity and
others where the disk is used for cold storage, but in a NAS the total bandwidth can can also be
combined using RAID and shared with all users. The result is that a host potentially has access
to more disk space with higher bandwidth while the total number of disks is lower. The added
flexibility of a storage pool applies to other resources as well, although not all of them are as
easy to share efficiently while retaining the same level of performance.

In some ways, having a "top of the rack" network switch can be seen as a network pool.
The servers in the rack are connected to a switch, which in turn is connected by a high speed
link to the rest of the network. Compared to having a link from each server to the rest of the
network, the cost and complexity should be greatly reduced and depending on the hardware,
performance can be as good or better. Indeed, the switch can come at substantially lower cost
than a dedicated fiber link in each server.

So far, each of the device pool types have been specific to a single type of device. A more
flexible alternative would be a generic device pool that can share any device type and be used
to share network, storage and GPUs. Allowing the hosts to share a single high speed network
interface eliminates the "top of the rack" switch, the intra rack network cables, and the network
cards in every server. This can reduce costs but also increase performance as all servers have
the ability to achieve the peak bandwidth of the shared network card. In addition, increasing the
network bandwidth of all the servers can be achieved by adding a single new card. This card
can be used by all servers in combination with the other or the two card can be split among the
servers. The same IO sharing pool can be used to share storage devices and GPUs.

1.2 Problem statement

The IO pool technologies available today are often vendor-dependent and part of a rack
architecture. This can make the price too high for some use cases and locks a user to a specific
hardware vendor. In this thesis, we investigate the generic IO device pool idea and we examine
and evaluate existing solutions, standards and ideas before designing and implementing our
own. We aim for our design to be relatively low cost, and require little user effort, so the
devices need to be usable without modified drivers. We also want keep the needed additional
hardware to a minimum and aim at designing a solution allowing an existing server cluster to
be upgraded.

To acheive our goals, we develop a mechanism that allows PCIe devices to be dynamically
reassigned from one machine to another. Specifically, the devices inside one server can be
used by another machine either locally attached to a host or in an external cabinet. Our
implementation is implemented for the Linux kernel and the PCIe based interconnect available
from Dolphin Interconnect Solutions (Dolphin).

1.3 Main contributions

PCIe Multi-Root IO Virtualization (MR-IOV) is a standard for sharing multiple devices between
multiple hosts. This vendor neutral PCIe standard can be used to create a pool of IO devices
including disks, network cards and GPUs. Unfortunately, compliant hardware is virtually non-
existent. Various vendors have created alternative PCIe device pool solutions, but most have
significant limitations. Perhaps the most common way to get a device pool is as part of a
complete rack solution, which creates a vendor lock-in. Possibly, the devices themselves are
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part of a fixed package, and thus the flexibility is greatly reduced.
Our proof of concept design is unique because it lacks these limitations. First of all, the

hardware required is easily available from multiple vendors and the rest of the solution is
software based and can be converted to work with the different hardware available. Unlike most
set-ups where all devices are placed in a pool outside the machines, often with a proprietary
interconnect, our proposal is based on a standard PCIe interconnect. While the devices can be
placed in an external enclosure, locally attached devices can also be used by remote machines.
This is possible because our solution works at the software layer and the devices are, as in
traditional PCIe, owned by only one computer. Instead of reassigning the device from one
computer to another, the device can be controlled by the other computer with no change to the
PCIe layer, instead, software arbitrates which computer controls a device. Since each device is
controlled by a single computer at a time, we have named this "device lending". Because our
implementation only deals with the remote access of a device connected to another computer,
access to devices directly attached will not be affected in any way.

1.4 Limitations

In this thesis, we have discussed multiple other solutions for multi-host PCIe sharing, but
because of the lack of availability for most of the solutions, we were unable to compare real
world benchmarks of our solution to the others.

For our proof of concept, we describe multiple design alternatives , but to limit the scope
of this thesis, not all were implemented. Also, some functionalities which we believe to be
critical for optimal performance where not implemented since they were not necessary for a
simple working prototype. We prioritized the implementation of the functionalities required for
a few selected devices to work. In particular, functionalities considered legacy and not used in
modern devices, such as port IO, was not implemented.

1.5 Research method

In this thesis, we have followed the design paradigm as defined by Association for Computing
Machinery [9]. Following this, our goal was to specify, design and implement a proof of
concept. The implementation is tested in order to validate the design. Because of our incomplete
understanding of the background material when starting this thesis, the design and requirements
changed multiple times before we settled on a final design. The various designs that we
discussed, tested and abandoned are documented in the thesis as well as what we learned under
way.

1.6 Overview

This thesis will begin with chapter 2, on PCIe, in which we will detail the workings of PCIe,
focusing on what we were required to know before creating our proof of concept and what we
learned. In the next chapter, chapter 3, we will cover the background material needed for our
implementation related to the Linux kernel, focusing on the interface between a device driver
and a device. After this, all background information needed to explain the implementation is
covered. Chapter 4 explains the implementation and our design choices. While chapter 4 details
the final implementation, the next chapter, chapter 5 tells more of how we gradually developed
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the solution by testing different devices and and debugging the interaction between device driver
and device.



Chapter 2

PCI Express

Peripheral Component Interconnect (PCI) is a standardized bus used in different computer
architectures. Any computer architecture that has a PCI bus can use the same type of devices.
Introduced in 1992, its an old standard and has been superseded by PCI Express (PCIe).
Currently the newest version of the PCIe specification [20] is 3.1. Both PCI and PCIe are
standards developed by PCI-SIG.

Software-wise, PCIe is fully backwards-compatible with its predecessor. This allows
operating systems and drivers written for PCI to work with PCIe. The identical software
architecture made the transition easier for developers and software as drivers and operating
systems designed for conventional PCI would support PCIe out of the box. This also means
that the legacy PCI specification (PCI Local Bus Specification [19]) is still relevant for PCIe.
From the hardware side on the other hand, PCIe and PCI are quite different. One of the more
important differences are that in PCI, most devices are on the same bus and thus, they share
bandwidth. This meant that two devices could not use the maximum bandwidth provided by
PCI at the same time, PCIe, on the other hand, has no shared bus and is, in fact, packet based.

PCIe is layered in a similar way to TCP/IP. The top layer is the transaction layer containing
Transaction Layer Packets (TLP) which are mostly memory read or write requests. In addition,
there is also port IO requests, legacy interrupts and some internal events. Below is the Data
Link Layer which guarantees the delivery of TLPs and is responsible for retransmissions and
error corrections. At the bottom is the physical layer, dealing with circuitry and such and is
specific to the physical medium.

2.1 PCI device

Each PCI device can be identified by its location in the PCI tree. Its location is given by the
bus it’s connected to and a unique device number on this bus and each device can have multiple
functions. Each function is identified by the combination of <bus number, device number,
function number>, the "bus-device-function" (BDF).

When the machine boots up, the platform firmware will scan for PCI devices on all buses, the
device <X,0,0> is always present. The firmware discovers a device by reading its configuration
space. The contents of the configuration space is standardized and is either a type 1 which is
used for bridges, and type 0 which is used for all other devices, including endpoint devices and
it can seen in figure 2.1. The contents of a device’s configuration space allows the firmware to
determine the type of device and other vital information about it.

If there is no device for a given BDF, all configuration reads will yield 0xff. This allows
the system to discover the valid BDFs and the types of devices present. The devices’ most basic

9
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Figure 2.1: The configuration space of a PCI device
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configurations will also be set by writing to the configuration space.
The "next capability" register in the configuration space of a device, is a pointer into another

place in a device’s configuration space, to a linked list of capability structures. Each capability
structure has a next pointer and an ID defining its type. Capability structures are used to define
additional properties of the device. New capability structures can be defined in the future. One
example of a capability is the Message Signalled Interrupt capability seen in figure 2.6. In
PCI-X 2.0 ("PCI extended", not PCIe), the configuration space was extended from 256 bytes
to 4KB. The extended configuration space is also present in PCIe devices and it is used for an
additional linked list of capabilities. A PCIe device will show the system that it is a PCIe device
by implementing the PCIe capability structure [20].

The configuration space is not the main interface for a device, but rather, it allows the device
to define its interface and its requirements. The BAR registers inform the system of the memory-
mapped (MMIO) registers and IO port ranges of the device. Port mapped IO is however
deprecated in the PCIe standard so we will not spend much time discussing it. The system uses
the MMIO BAR registers to discover the size and number of device-defined memory-mapped
areas containing device registers. These areas are used by a device driver to communicate with
the device. Unlike the configuration space, the contents of the BAR areas are device-specific
and not part of the PCI or PCIe standard. Once the BAR registers are programmed, the system
can read and write to their memory addresses to interact with the device.

Each MMIO BAR can be either prefetchable or non-prefetchable. The prefetchable areas
behave a lot like normal memory because they are guaranteed to have no side effects on read
operations. This allows the system to do preemptive reads and merge operations to increase
performance. The MMIO range defined by a non-prefetchable BAR cannot be prefetched by
the system. Also non-prefetchable memory can only be placed in the lower 4GB of memory
since the addresses are 32-bit only. Non-prefetchable memory is only intended to be used for
control registers and such, and not for large storage spaces. Since non-prefetchable BARs are
not used for large memory areas, the 32 bit limitation is not significant.

The BARs and the configuration space allow the CPU to interact with the device, but the
device can also interact with the host machine. First of all, it can raise interrupts to tell the CPU
that it has completed a task or some event has occurred. Also, devices can, like the CPU, access
memory by using Direct Memory Access (DMA), to reach the RAM and MMIO registers.
Without DMA, the CPU would have to write to MMIO registers of the device to transfer data,
but this would occupy the CPU while the transfer was in progress. Devices with DMA engines
can instead be instructed to read buffers directly from main memory.

2.2 Transparent bridges and PCIe switches
In traditional PCI, most devices shared a single bus. On this bus, only one device could
communicate at a time which caused the total bandwidth on this bus to be shared. Some
PCI systems however, had two or more buses that were connected to each other by a PCI-
PCI bridge. Each bridge has two distinct ends: primary and secondary. The bus connected to
the primary side is closer to the chipset of the system and the secondary is closer to the endpoint
devices. The bridges forwards traffic according to a set of rules. The bridge will forward traffic
it receives on the primary bus to the secondary bus, downstream, if the destination of the traffic
is within the address ranges configured for the bus. In the same way, traffic on the secondary
bus is forwarded upstream (secondary to primary) if the destination is not within the range of
the bridge. The bridges forward all PCI traffic including interrupts, MMIO and configuration
space accesses. In PCIe buses and bridges are reused to model the PCIe switches, see figure
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Figure 2.2: A PCIe switch is composed of multiple PCI-PCI bridges and a bus.

2.2. All switches have an internal PCI bus. A single bridge, also referred to as the upstream
port, connects the internal bus to another bus closer to the chipset / root complex. All the other
bridges are downstream and are called downstream ports. At the top level of a PCIe fabric are
the root ports. These ports are directly connected to the root complex of the machine. PCIe
switches and PCI bridges route memory accesses directly to its destination. A transaction from
a device to another device’s MMIO registers does not go through the chipset or the CPU, but
takes the shortest path through the PCIe fabric. This is sometimes referred to as Peer To Peer
transactions (P2P) and can be very efficient, for instance data can be transferred from one GPU
to another without involving the RAM or the CPU.

2.2.1 Hotplug capable PCIe slots
The PCIe capability structure declares various PCIe specific properties of a device or bridge
including the PCIe capabilities register which can be seen in figure 2.3(a). For bridges, this
includes whether the bridge is the upstream or downstream bridge in the switch and downstream
bridges can have an additional bit set to indicate that it is a "slot". Slots are physical connectors
that other devices can be connected to. Each slot has a dedicated slot capability register that can
be seen in figure 2.3(b) and for the most part declares hotplug related capabilities. During the
scan of the PCIe fabric, the OS will read these registers and learn the features and capabilities
of the slot.

A slot indicates to the system software that is capable of hotplugging by setting the hotplug
bit in the slot capability register. This signals that the tree beyond the bridge can be removed
and replaced while the system is running. Section 6.4 of the PCIe specification specifies three
parts of hotplug and specifies how both the software and the bridge should behave to implement
hotplug.

1. The operating system needs to detect and react to the hotplug events.

2. The physical connector needs to allow a device to be removed or added without damaging
any components.

3. The PCI-bridge associated with this port needs to communicate the status of the slot to
the OS.

The various hotplug related features of a slot can be enabled and controlled by the system
software with the control register seen in figure 2.3(c). Finally, the status register, in figure
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(a) PCIe capabilities

(b) Slot capabilities

(c) Slot control

(d) Slot status

The figures are borrowed from the PCIe specification [20].

Figure 2.3: Registers related to hot-plug in the PCIe Capability Structure of a downstream port
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2.3(d), is used by the OS for reading the state of a slot.
For the OS to detect when the slot is disconnected or connected on a hotplug-capable slot

the OS first needs to set a bit in the control register: "hot plug interrupt enable". When this bit
is set, the slot will generate an interrupt when a hotplug event occurs. When such an interrupt
arrives, the OS can read the status register of the slot to detect if anything is plugged into or
removed from the slot. When a hot-add event is detected, the OS will perform a scan of the
devices behind the bridge, the same scan as when the system boots, by reading the new device’s
configuration space.

For a slot with the surprise hotplug bit set, a hotplug event can happen at any time. In both,
slots that are capable of surprise hotplug and those that are not, there are multiple mechanisms
for negotiating between the OS and user before the slot is disconnected. For instance, to assist
in human interaction, two indicator lights may be present on the slot: the attention light and
the power light which are controlled by the operating system. The OS can enable the power
indicator to indicate that the device is powered and may not be removed and the attention light
is used to allow the OS to indicate to the user the identity of a slot or call attention to it. For
instance, when the OS has prepared a device for removal, the OS may blink the attention light
to indicate that the device is ready for unplugging. On the other hand, the attention button may
be pressed by a user, for instance to request removal of the device and the system can indicate
a response with the attention light. Additionally, the specification says that a "software user
interface" can be implemented. To help the user in knowing which physical slot corresponds
to a slot in the OS user interface, the slots may be numbered and the slot manufacturer will
have user-visible number on the slot and the same number will be programmed into the slot
capability register. This makes it easier for the user to see, for example, the slot that contains a
malfunctioning card, in much the same way as the indicators.

The manually-operated retention latch (MRL) is a mechanical mechanism that holds a
device securely in place and a sensor may be implemented to alert the system of an imminent
disconnect or of a new connection. If the power controller is also implemented, the MRL
sensor will automatically cut power to the device when a disconnection is sensed. An
electromechanical interlock can also be present and used by the OS to physically lock the device
in place when the device is not ready to be disconnected.

2.2.2 Hotplug from a software perspective
When a device is hot-added, its position in the PCIe fabric is always behind the bridge of the
associated hotplug slot. Adding a new device introduces new bridges, buses and end point
devices with associated MMIO areas and port IO ranges, depending on the kind of device that
is added. Because of how bridges work in the tree-structured PCIe, all of the new device’s
resources must fit within the resources of the slot. Adding a new device becomes a problem
when the bridge associated with the slot does not have sufficient space for the new device. The
windows allocated to the slot must be within the windows of the bridge upstream of the slot.
This applies to bus number, IO space, prefetchable and non-prefetchable memory which each
have separate windows that all need to fit. Fixing this is hard, as the additional space must come
from the upstream bridge and this applies recursively. Depending on the configuration of the
tree upstream, the resource windows of the slot can be expanded by expanding the windows of
all upstream bridges. Often however, this conflicts with the ranges of an entirely different part
of the tree. Figure 2.4 shows a device behind a slot and the resource windows allocated to the
slot as well as what is needed by the device behind the slot. In the figure, removing the NIC
and replacing it with a device that consumes more memory resources poses a problem. For the
connecting bridge to expand to accommodate this, there needs to be free space on either side of
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Figure 2.4: Devices behind a bridge must have their BARs within the resource windows of the
upstream bridge

its range. In the figure however, both sides are occupied. One of the devices’ resource windows
must be moved for the system to be able to allocate the required resources to the new device.
Moving the resource windows of a part of the PCIe fabric is however, not trivial as it would
disrupt traffic for all downstream devices and associated drivers. If hotplugging is allowed, you
can end up in situations where the total available capacity of the system allows the device to be
added, but the resources available for the hotplug slot is insufficient and the new device cannot
be used. To avoid the lack of resources in a hotplug slot, the system can allocate more space at
boot time than what is required for any device connected at boot time.

2.3 Thunderbolt
Thunderbolt is a consumer centric, high speed, external interconnect developed by Intel
and Apple. The technology repurposes the Mini DisplayPort formfactor and are backwards
compatible, falling back to normal Mini DisplayPort if a DisplayPort device is detected. Native
Thunderbolt communication is a custom protocol that can tunnel both Mini DisplayPort traffic
and PCIe traffic at the same time (it can also tunnel SATA, Ethernet and others). The traffic
is routed by a Thunderbolt switch at each end of the connection as can be seen in figure 2.5.
This switch multiplexes and demultiplexes the traffic into PCIe and Mini DisplayPort. It also
enables the devices to be daisy-chained (Device A is connected to device B which is connected
to device C and so on). A typical scenario would be a Thunderbolt display (not pure Mini
DisplayPort) with multiple Thunderbolt ports which allows a computer with only a single port
to attach multiple devices. Since Thunderbolt is an interconnect which can tunnel PCIe and
allows hotplugging and complex structures (daisy chaining etc.) and is easily available, it is an
interesting research topic for us.

2.4 Virtualization support in PCIe
Virtualization is a technology that allows multiple OSs to run on a single machine by separating
them into virtual machines. This is achieved by tricking the OSs into believing that they are
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Borrowed from Apple’s Thunderbolt Device Driver Guide [5]

Figure 2.5: Thunderbolt architecture

running on bare metal and trapping privileged instructions and emulating them. A virtual
machine will then be unable to access the other virtual machines or the host OS or any
applications running outside its own virtualized environment. To increase the performance
of virtualization, newer CPUs have hardware support for virtualization which greatly increases
performance by handling more of the isolation in dedicated hardware on CPU instead of in
software.

Still, there are some things whose behaviour the host must emulate in software. This carries
significant overhead and decreases performance for the guests. This applies for instance to IO,
where a VM cannot be allowed direct access to a device because software running on the VM
may use this access to break out of isolation. This is because devices typically have direct
access to the main memory of the host. Software running in a guest can order a device to read
and write to physical addresses owned by the host or other VMs. Malware that has infected a
guest OS can use this to break out of the VM and infect other VMs and the host. In addition,
the memory layout of the host will be different from the hosts due to each VM having its own
address space separate from the host’s. Since the devices work with the host’s physical address
space and not the VMs this would make device access impossible without significant support in
the guest OS.

To have both isolation and more direct hardware access, newer computers have an IO
Memory Management Unit (IOMMU). IOMMUs are explained in detail in the next section
(2.4.1). This hardware has the ability to give the virtual machine more direct access to IO
devices such as PCIe devices. The IOMMU assists in doing this while still keeping the
necessary isolation between the virtual machine and its connected devices and the rest of the
system. To do this, the IOMMU needs to translate the memory accesses from a device to
the guest’s actual physical memory location. The guest OS might also configure the devices’
address spaces that conflicts with the address space of the host. To solve this, the IOMMU
translates all memory accesses between the guest OS and the device. In addition, the device
may also perform DMA to other devices, which also requires address translation. Furthermore,
interrupt from the devices must also be redirected to the VM. All of this must be implemented
in such a way that isolation between the guests and the host is not compromised.
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Figure 2.6: Left: normal peer to peer transaction through a PCIe switch. Right: transaction is
routed through the root complex and to the IOMMU

2.4.1 IOMMU

In modern operating systems, processes have their own linear and isolated address spaces. This
is enabled by the Memory Management Unit (MMU) of modern CPUs. It has the ability to
create a virtual address space by translating the addresses used by the CPU before passing them
on to the chipset and memory controller. The addresses are translated following the software
defined page table. The translation works on a page size granularity (4KB by default on x86).
Since the table would be very large if every single page must be present, the table is organized
in multiple levels. Each entry in the top-level table points to another table. Also, each entry can
be marked as invalid.

The I/O Memory Management Unit (IOMMU) is similar to the MMU, but is located
between the chipset and the PCIe fabric (or other external buses). The most important feature of
the IOMMU is the DMA remapper (DMAR). It translates the addresses of memory operations
from the CPU to the PCIe fabric and from the PCIe fabric to RAM. Like with an MMU, access
to unmapped addresses is denied. This provides isolation between the PCIe bus and the rest
of the machine. An IOMMU can group PCIe devices into domains. Each domain has separate
mappings and it’s own address space similar to processes with MMUs. When an IOMMU is
combined with normal CPU virtualization support, IOMMU domains can be overlapped with
a virtual machines address space, which allows a VM to interact directly with a device and the
device with the VM’s virtual RAM. The access control features and domains of the IOMMU
maintain isolation between the VMs and the host. When dealing with an IOMMU domain,
there are multiple address spaces that need to be considered. The virtual memory address
space, CPU physical address space, bus physical address space and the domain address space.
An illustration of the address spaces can be seen in figure 4.3. In addition to isolating virtual
machines, an IOMMU can be used to isolate device-driver pairs from the rest of the OS and
other devices and drivers. This limits the potential damage an error (or malicious activity) that
a device can do to the system. Not all CPUs have an IOMMU, but it is supported by more and
more CPUs from Intel, AMD, ARM and IBM. Intel documents the features and workings of
their IOMMU technology, VT-d, in their "Intel Virtualization Technology for Directed I/O" [6].
Since Intel CPUs are very common, we used the Intel IOMMU as a sample of what an IOMMU
is capable of in the rest of the thesis.

As with most abstractions, DMA remapping brings a performance overhead. The memory
translation tables are located in system memory in the same way as with an MMU. When a
memory access passes the IOMMU, it must look up in the IOMMU’s page table to translate the
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access. This can be a performance issue since this can mean going through multiple levels of
indirections in the page table. Although cache is present on the remapping engine to mitigate
this. However, the cache depends on a good heuristic that predicts future accesses to lower
the latency of checking the table in main memory. Peer to peer transactions are also heavily
inhibited when remapped, since all transactions will be routed through the root complex instead
of taking the shortest path. In external devices, this could involve a much lower bandwidth link
which is unnecessary.

In an effort to increase performance of DMA remapping, PCI-SIG has developed the ATS
specification [20] . It allows endpoint devices to translate the addresses themselves by having
their own cache of their own most used remappings. This is implemented as an extension to the
PCIe transaction level protocol. Each memory access will have a bit set if the address is already
translated. This is done on a packet basis so the device may send one read that’s pre translated
and one that is not immediately after. This can be beneficial if the device knows what addresses
will be accessed often. To learn the mapping of a page the ATC in the endpoint device can send
a translation request to the translation agent in the root complex. The result of this request can
be stored in the the devices own ATC and is valid until it receives an invalidate request from the
root complex translation agent. The device is encouraged to locally cache addresses that will be
accessed in the near future, especially if the access will be repeated. This allows for much more
intelligent cache behaviour as the device itself often knows more about its own access pattern
that the IOMMU in the root complex will. This could also greatly increase performance of peer
to peer access since the traffic no longer needs to be routed through the root complex, see figure
2.6.

An IOMMU might be used to fulfil other purposes than to assist in virtualization. One
example is to isolate a device and its driver from the rest of the system to prevent a malfunction
or bug from affecting the rest of the system. Another example is to use an IOMMU to assist in
scatter-gather operations to devices not capable of scatter-gather operations. This can be useful
because a buffer in a virtual memory address space is seldom linear in the physical address
space.

2.4.2 Single-Root IO Virtualization
An IOMMU allows a virtual machine to directly control a physical IO device in a safe and
isolated manner. This VM will have full control over the device. This leads to increased
performance compared to emulated hardware typically used in virtual machines. For instance,
a VM typically has an emulated network card. When the VM OS sends a packet using this
emulated hardware, the hypervisor will pass this packet through to the network stack in the host
OS. Here the packet will get routed as any other packet, typically to a NIC and out of the host.
If the VM is instead given a physical NIC, all packets will be sent out to the cable attached to
the NIC. This removes a lot of the software overhead, and lowers the amount of times the data is
copied before it is sent out on the cable. IBM has shown that a 10Gb SR-IOV capable Ethernet
NIC can be almost saturated by a VM [15].

In addition, the VM will have full access to the bandwidth of this device since no other VM
or the host can use it at the same time. It will not have to share it with other users. This is also
the weak point of direct hardware assignment.

Much of the advantage of running virtual machines is the increased efficiency of having
a few powerful machines instead of a lot of weak or under-utilized ones. Giving each guest
direct access to its own IO device conflicts with this since each the host hardware now needs
multiple IO devices. In addition, these IO device might no longer be fully utilized all the time.
The additional number of devices will also use more power, need more room and have a higher
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up-front cost.

To get both the performance of direct hardware control and the efficiency of device sharing,
a new standard was created, Single Root IO Virtualization [18] (SR-IOV). SR-IOV solves this
by allowing a single physical function (PF) to act as multiple virtual functions (VF). The device
itself emulates the multiple VFs. The virtual devices are isolated from each other and the device
itself shares its own physical resources across the VFs in a way that makes sense for the device
type. For instance a network card can act as if an Ethernet switch connects the VFs and the
outbound connection. A storage device can be partitioned or provide concurrent access to the
same storage space, but with some synchronization features. The VFs can be directly assigned
to a virtual machine in the same way as any other function. The virtual devices can have some
features disabled to prevent them from being able to negatively affect the operations of other
VFs or the physical device. Features of the device that can affect all VFs and the physical funtion
are typically only available for the PF. For some devices, potentially unsafe functionalities are
needed by the VFs for correct operation, or desired by users. For instance, a NIC might want to
set its own MAC address, but it would be unfortunate if one VF, intentionally or unintentionally,
set to the same MAC address as another VF or the PF. Potentially, the device could deny this,
but this might not be practical for all purposes and it’s not very flexible. In Intel’s NICs with
SR-IOV, there is a communication channel between the drivers for the VFs on the VMs and
the driver for the PF on the host. This allows the PF driver to control the requests by the VF
drivers in a safe manner that can be defined by software. Since the VMs are isolated from each
other and the host, there is no guaranteed way for them to communicate. A hypervisor could
implement support for a communication channel between the driver, but to avoid having to
support various hypervisors, the drivers will communicate with the help of the device itself. A
mailbox and doorbell mechanism on the NIC itself is used by the VF drivers and the PF drivers
to communicate [13] and allow a VM to perform potentially unsafe operations under the control
of the host.

A device that implements SR-IOV has the SR-IOV capability structure in it’s configuration
space. The host can control the SR-IOV related features of the device by setting the desired
values in the SR-IOV capability. Before the enable bit is set in this structure, no virtual functions
will be present. Before enabling this, the host can set the number of desired virtual functions.
There is a limit to the number of VF a given device support which it reports through a register
in its SR-IOV capability structure. Various other parameters dealing with the BARs for the VFs
are also present.

Since the number of function numbers for a given device is fairly limited, Alternative
Routing Interpretation (ARI) was created which allows for more functions for a single device.
It raises the number of functions to 255, but if the number of VFs exceed this, an additional bus
number can be used.

In the same way as hot add, increasing the number of VFs, or enabling it can require more
resources than available in the upstream bridge. This will require the OS to expand these
resources. This includes memory resources and bus numbers. IO space is not needed as VF
cannot have IO BARs. To avoid the difficulties with this, the platform firmware should also
be SR-IOV aware. If the firmware is SR-IOV aware, it can reserve space for the additional
devices at boot time, for instance by using the maximum number of VFs for a given device.
Such preallocation is much simpler as it can be performed before any use of other PCI devices
starts.
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2.4.3 Multi-Root IO Virtualization

PCI and PCIe are strictly for use by a single host machine. Multi-Root IO virtualization (MR-
IOV) [17] is a PCI-SIG developed standard for allowing multiple hosts to be connected to the
same PCIe fabric. MR-IOV allows the connected hosts to have devices dynamically assigned
to them and to concurrently share devices like VMs can with SR-IOV. Each host connected to
the MR-IOV fabric has their own own virtual hierarchy (VH). The VH is consistent with the
traditional PCI model as there will be only one root complex in each VH. Each host only sees
its own VH and it does not need to know that it’s part of a MR-IOV fabric as the VH operates
identically to standard PCIe. For MR-IOV to be utilized, new PCIe switches must be used
which are called Multi Root Aware (MRA) switches. Normal PCIe switches can be present in
a MR-IOV fabric, but a VH cannot span such switches, only MRA switches. A figure showing
a MRA switch with two VHs can be seen on the right side of figure 2.7.

While the MRA switch can assign any single device to a VH, normal devices cannot be used
concurrently by more than one host, even if it’s SR-IOV capable. However, specially designed
MRA capable endpoint devices can be concurrently used by multiple hosts in the same way as
SR-IOV devices can be used concurrently by multiple VMs. The device will present individual
configuration spaces to the different hosts similar to SR-IOV. A device can implement both SR-
IOV and MR-IOV to allow it be used by VMs in different hosts at the same time. If it does,
each host has control over the SR-IOV capability of its own virtual device.

In the MR-IOV hierarchy a host is assigned the Multi-Root PCI Manager (MR PCIM) role.
It is responsible for setting up the MRA switch and the other hosts VH’s. This host will be the
only host aware / need to be aware of the fact that this is a MR-IOV switch. The MR PCIM will
scan the switch and all connected devices. When its done it will assign the devices to a VH.
The final step is connecting a host to its VH. The other host will then discover their own VH
and scan it for devices, set the devices and operate as normal.

MRA switches have two distinct forms of hotplug: the normal physical hotplug and the
virtual hotplug. The virtual hotplug is the one seen by the non-PCIM hosts. When such a host
interacts with this capability, the MR PCIM is notified. The MR PCIM acts as a layer between
the hotplugging controlled by the other hosts and the physical hotplug control. When a device
is removed, the event is propagated by the MR PCIM to the virtual hotplug interface of all VHs
with the affected devices. The same applies to other events and statuses such as button presses.
The MR PCIM also has the ability to reassign devices from one VH to another. This is presented
to the other hosts as a hotplug event in the virtual host.

MR-IOV is can be very useful in solving the problems we introduced in this thesis as it
allows great flexibility by allowing for dynamic reassignment as well as concurrent use of
devices. With the exception of the MR PCIM, no modification is required to the hosts hardware
or software which is useful for easy adoption. Unfortunatly, the MRA switches require new
chips to be designed. The same applies to the MRA devices which are the only devices than
can be shared by multiple VH at the same time. At the moment however, we have not found
any MR-IOV capable switch available for sale and the same also applies to MRA devices. As
it stands MR-IOV cannot be used for this reason. Considering that the MR-IOV standard was
finished in 2008, its lack availability is not a good sign for its future adoption either.

NextIO

NextIO was a start-up developing IO virtualization products. Their product was a competitor
to the traditional top-of-the-rack network switch. Their main product was an external cabinet
with room for PCIe devices. This cabinet was connected to multiple hosts with a 10Gb/s PCIe
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Figure 2.7: Left: A PCIe switch with two partitions. Each host sees its own fabric and switch.
Right: An MRA switch. More finely grained device assignments.

cables. The cabinet was fitted with a 10 or 40 Gb/s Ethernet card or a Fiber Channel card. Their
product allowed all of the hosts to access the single NIC at the same time, sharing its bandwidth.
In addition, the cabinet supported other PCIe devices, but as far as we know, they could not be
shared, but only be assigned to a single host. Although the details are a little vague, we believe
that the cabinet was an implementation of a PCIe MRA switch. This fits well with the Ethernet
and Fiber Channel cards that could be shared by the hosts, but not other cards. We believe
these cards, delivered by NextIO themselves, where MRA cards, capable of being controlled by
multiple hosts. If so, NextIO was one of the few vendors that produced MR-IOV products, but
in 2013, NextIO went bankrupt.

2.5 PCIe switches with support for partitioning
Some PCIe switches have support for so-called partitioning. Partitioning is not part of the PCIe
specification and is vendor dependent. It is a feature that allows multiple hosts to be connected
to a single physical switch somewhat like MRA switches. The switch will partition the traffic
in such a way that the each host sees its own virtual switch and PCIe fabric. An illustration of
a partitioned switch compared MRA switches can be seen in figure 2.7. Each partition have a
single root complex and zero or more devices, and each port of the physical switch is assigned
to a partition. Unlike a MRA (MR-IOV) switch, the different root complexes cannot share
devices or overlap in any way. The different partitions can be connected to one another with
NTBs, however, which can provide communication between the partitions, (see section 2.7).
These switches are inferior to true MRA switches, but are readily available. Our findings so
far indicate that the partitioning is limited to a single switch, and cannot span multiple switches
like VHs in MRA switches. This limits the granularity of the assignments to the entire sub tree
of downstream port of the switch. In the case of an external switch and an external expansion
chassis, a single host would be in control of the entire chassis. If an expansion chassis has an
internal switch that supports partitioning, it is possible to assign individual devices to the hosts,
but each host must then be connected to the chassis by a separate link. It is perhaps possible
for two switches to be connected and have the virtual switch span the physical switches or have
something like the VH in a MRA switch. Combining multiple such switches, one "main" switch
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as well as one in each expansion chassis, could allow each host to be assigned individual devices
for separate chassis.

Possibly, a switch port could be reassigned from one partition to another on the fly, without
interfering with the traffic in unchanged ports. If so, it would be possible to use such a switch
to allow PCIe devices to be dynamically assigned to different hosts in a cluster. In theory,
this should look like and behave as a physical hotplug event. If the switch also reports these
events as hotplug events, there would not necessarily be any need for modification to drivers
or the OS to support it. A master’s thesis from MIT titled "PCI Express Multi-Root Switch
Reconfiguration During System Operation" [24] tested the repartitioning of a PLX switch while
the hosts where live. In their test setup, two hosts and two NICs were connected to the switch.
In one experiment, one of the NICs was moved from one partition to the other. They reported
no ill effects from this migration. Unfortunately, measurements of the possible effects of this
seem to be lacking. Possibly the operation of the non-moved device could be affected. It
would also have been interesting to see a running bandwidth benchmark from one NIC while
the switch was being repartitioned. This should show if the repartitioning had any negative
negative effects on performance. There is also little discussion on the time it takes to migrate a
device, but presumably it is fast.

2.6 Message Signalled Interrupts

In traditional PCI, a device signalled an interrupt by driving a dedicated interrupt pin. When
the CPU received the interrupt, it polled all devices on the same interrupt line to find the sender.
There was no way to know what device asserted the interrupt without this because multiple
devices shared the same interrupt line. This same mechanism still exists in PCIe, but while
it is supported, it is considered legacy. The preferred way to raise interrupts in PCIe is with
Message Signalled Interrupts (MSI). Support for this is required for all PCIe devices that can
generate interrupts [20]. The MSI is specified in the legacy PCI specification [19] with some
modification for PCIe in the PCIe specification [20]. When a device issues an MSI interrupt,
it will do a normal write to a given address. This is received by the chipset which generates a
interrupt to the CPU. On x86 a write to 0xfeeXXXXX will trigger an interrupt.

A device that can generate MSI interrupts will have the MSI capability that can be seen
in figure 2.6, in its configuration space. The address that the device writes to, to generate the
interrupt is set by configuring the MSI capability structure. In addition a data field specifies what
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the device will write. The combination of address and data makes up the interrupt vector. The
device has control over the lowest bits in the data so that it can generate 32 unique interrupts.
Some devices also have another capability called MSI-X or MSI extended, which gives the
device up to 2048 different interrupt vectors. In addition, drivers can mask our individual
interrupts with MSI-X. This requires a much larger amount of configuration than a single
capability structure. Some of the MSI-X configuration is therefore mapped into a BAR area
instead, which BAR, and the offset inside that bar is stored in the MSI-X capability structure.

2.7 Non-Transparent Bridges
PCIe was designed as a single host fabric with a single root complex. It was however discovered
that it would be useful to use the strengths of PCIe to create an interconnect solution. One such
solution is a Non Transparent Bridge (NTB) that allows multiple PCIe devices to communicate
with the help of PCIe technology, because this gives the hosts a link with very high bandwidth
as well as extremely low latency. This is done by allowing the hosts to read and write to parts
of each others’ memory, creating a shared memory architecture. Since the NTB can let any
memory operation through it can perform operations not only to RAM, but to other devices as
well. NTB devices are not standardized, but all have similar capabilities.

Despite its name, the non-transparent bridge is not a PCI bridge, but an endpoint device with
BAR areas like any other device. However, memory operations to the BAR areas are forwarded
across the NTB link to the other side where it’s emitted by the local NTB. Since the hosts do
not share address spaces, the NTB provided a simple address translation. The translation is
done by a simple single-level page-table-like mechanism: The BAR area is divided into around
20 equally sized pages and each page can be directed into any part of the other hosts memory.
This is done by replacing part of the incoming address with a per-page offset into the other
host’s address space. This will typically allow an NTB equipped host to access about 20, 32MB
memory segments in the other host. Each page can be translated to any part of the other host’s
address range, but cannot be fragmented.

New Intel Xeon CPUs has built-in support for NTBs [11] which makes NTBs very
widespread.

2.7.1 Dolphin NTB Software
Dolphin Interconnect Solutions (Dolphin) sells NTB PCIe devices that are bundled with a
software suite that allows user applications to use the shared memory and Remote DMA
(RDMA) capabilities provided by the NTB. Included in the software suite are the low-level
drivers, an application layer API called SISCI and a TCP/IP implementation. The SISCI API [3]
is the best way to utilize the benefits of the NTB and is the only way for an application to
use the shared memory capability of the NTB device. Using SISCI however, can require a
program to be redesigned with SISCI in mind. The network implementation as well as a MPI
implementation allows existing programs to take advantage of the performance benefits of the
NTB without modifications. In addition to the application level APIs, there is also a kernel level
API on which SISCI is built called GENIF.

Supersockets and TCP/IP implementation

Dolphin has implemented two separate network implementations for unmodified programs to
take advantage of the performance benefits of an NTB that are not designed to use shared
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memory or RDMA. The first is a virtual network device that the OS uses as any other
network interface, but instead of sending the traffic with Ethernet, it is transferred using
RDMA to the destination host. This increases performance over normal Ethernet, however,
since the OS handles it like a network interface, it will still split the data into packages, use
TCP and other mechanisms which are not needed for RDMA. This, including various other
mechanisms that are needed or are beneficial on a packet based network can be detrimental
to the performance of RDMA. The second implementation, called Supersockets, allows the
packet overhead to be bypassed and performance to get closer to the performance of a native
RDMA API. Supersockets replaces the standard Berkley interface provided by the OS with an
implementation that uses RDMA and allows the data to bypass the OS and be passed directly
to the other host using the NTB hardware. To use Supersockets, the dynamic library is linked
in with the application at runtime and no modification is needed to the source code of the
application.

SISCI API

The SISCI API is built upon the concept of memory segments that the user can allocate by
interacting with the SISCI API. A memory segment can be set as shared memory or data can
be transferred from a segment on one host to a segment on another host using RDMA. Shared
memory segments are accessed by creating and connecting a remote segment by the other host.
Memory accesses to a remote segment are passed across the NTB and directly into the RAM
of the remote host without the need for the application to treat it in any other way than local
memory buffers.

An advanced feature of the SISCI API is its ability to create mappings not just to SISCI
allocated memory buffers, but to arbitrary physical addresses. This is done by creating an empty
SISCI segment and binding it to a physical address using the attachPhysicalSegment

function. If this segment is made available for remote hosts, any access to this segment will
access the attached physical address. Since a segment can be bound to arbitrary addresses,
SISCI can be used not only to access a process’ memory, but kernel memory and most
importantly, MMIO address ranges.

Kernel level API

SISCI itself is implemented on top of a kernel level API called GENIF which is again
implemented on top of the lower level device drivers for the various devices supported by
Dolphin. GENIF is similar to to SISCI and many API functions in SISCI have a one-to-one
correspondence to a function in GENIF, the primary difference being that SISCI adds support
for user level processes and in some cases provides additional error handling. GENIF API users
can interact with a SISCI application, but must be aware of the additional functionalities and
any abstractions provided by the SISCI API and copy them.

2.8 Page Attribute Table
Page Attribute Table or PAT is a feature of the virtual memory page table in the x86 architecture
[12] that allows attributes to be set on each page enabling or disabling certain features. One
such feature is caching which is very desirable to enable for virtual memory mapped to RAM.
Caching however, should normally be disabled for memory-mapped IO as MMIO can have side
effects and the order of the operations can be important. MMIO is also not cache-coherent, so
any changes to MMIO registers by a device will not be reflected in the cache.
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Another attribute that can be set is write combining (WC) which is a lighter form of caching.
When it is enabled, the CPU can merge smaller reads or writes to this area into larger memory
operations. This allows for great speed increases when more than a trivial amount of data is
written to a MMIO mapped area. It works by having a small cache that buffer up writes or reads
so that multiple small operations are merged into one large before the CPU issues the memory
operations to the bus. This can cause memory write operations to be delayed while the CPU
waits for additional writes to the same area.

It is possible to map the same physical address to multiple virtual addresses which the
Intel Software Developers manual [12] refers to this as "aliasing". When a physical address is
aliased, it is possible for it to have multiple conflicting attributes which is why Intel recommends
avoiding aliasing:

The PAT allows any memory type to be specified in the page tables, and therefore
it is possible to have a single physical page mapped to two or more different linear
addresses, each with different memory types. Intel does not support this practice
because it may lead to undefined operations that can result in a system failure. In
particular, a WC page must never be aliased to a cacheable page because WC writes
may not check the processor caches.

2.9 Application level distribution
Most computers have support for at least two GPUs, so a GPU-bound application can gain
performance by adding additional GPUs to the computer. However, only expensive high-end
computers have room for more than a handful of GPUs so scaling an application’s performance
beyond this point can be difficult. Computer vendors like Dell and HP deliver rack servers
with room for additional GPUs or external cabinets dedicated to GPUs that can be attached to
computers and work as local GPUs. This can however be expensive and in addition, all the
GPUs might not always be needed in a single computer. A more flexible and less expensive
solution is to distribute the program across multiple servers, but this requires large changes to
the application if its not designed with distribution in mind. Unless the problem is trivially
paralyzable, the key to achieving high performance in a distributed application is efficient
communication between the nodes, especially as more and more nodes are added. This can
require expensive hardware and careful design of the program. Often a high performance
communication protocol like MPI is used, frequently in combination with dedicated high
bandwidth links like Infiniband.

2.10 Related work
MR-IOV requires new hardware switches and MRA devices for sharing of devices, but since the
availability of MRA switches and endpoint devices is low, multiple vendors have tried to create
MR-IOV like solutions that can be used without MRA devices. Most of the other solutions
attempt to provide similar functionality to MR-IOV, but focuses on using existing devices and
computers.

Xsigio was an early contender, developing a network virtualization solution that used
Infiniband or Ethernet and virtualized network cards. Xsigio was bought by Oracle in 2012
and integrated into their virtualization product. A more relevant technology was developed by
Aprius. They developed a hardware device that tunneled PCIe traffic over Ethernet that made for
a very flexible solution that could utilize existing technologies and Ethernet gear. Unfortunatly,
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Figure 2.9: Nvidia GRID promotion material showing virtual GPUs

Aprius has seemingly gone bankrupt or been bought out, with their website now owned by an
unrelated company.

2.10.1 Nvidia GRID
Nvidia has developed their own solution for virtualizing Nvidia GPUs, "NVIDIA GRID™
vGPU™" [2]. Their solutions allows a single GPU to be shared by multiple VMs with full
3D acceleration and CUDA. They support multiple hypervisors including VMWare, Citrix,
Nice and Microsoft RemoteFX. While its sounds like something that could be acheived with
SR-IOV, this is not mentioned anywhere in their materials. In addition, there is no mention of
support for Nvidia GRID vGPU in any Open Source hypervisors. This would suggest that it’s a
propritary solution specific to Nvidia.

2.10.2 Micron IO virtualization
Micron’s IO virtualization comes from the startup Virtensys, which Micron bought after
Virtensys got into financial troubles. Their IO virtualization solution supposedly requires no
custom software or devices and is fully transparent to the server OS. The closest we got to
technical details about Microns IO virtualization product is the following quote comparing their
solution to MR-IOV which confirms that their product does not implement MR-IOV, but is an
alternative.

With Micron’s IOV (and PCI MR-IOV), the PCI switch (IOVE) has been enhanced
to allow multiple servers to connect to the switch and for the I/O devices to be
shared across many servers. The sharing in MR-IOV requires the I/O devices to be
modified. However, the sharing functionality in Micron’s IOV has been built into
the switch fabric in the form of a virtualization proxy controller (VPC), which is a
Micron hardware device that works with the switch to virtualize multiple standard
PCIe cards.

Our best guess is that their "VPC" emulates a physical network card and multiplexes the
traffic in hardware to the real network card. This probably limits their product to a few supported
devices, altough this is not clear. They claim to at least support Ethernet, fiber channel, some
harddrive controller and SSDs.
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2.10.3 Sharing SR-IOV devices with multiple hosts

SR-IOV is designed to allow VMs on a single computer to share a single hardware device
and MR-IOV expands this feature to multiple computers. Since MR-IOV is not really
available, there has been some effort to use SR-IOV devices as MR-IOV devices. The paper
"Multi-root Share of Single-Root I/O Virtualization (SR-IOV) Compliant PCI Express Device"
demonstrates that a SR-IOV device can be shared across multiple physical hosts not just VMs
[21]. To connect multiple hosts to the same device, they developed a custom FPGA device that
translated MMIO address spaces similar to an NTB. When sharing a SR-IOV NIC, performance
reached 99% of that of the same device attached locally.

2.10.4 Ladon

Ladon [22] is a system developed by researchers at Stony Brook University aimed at data centre
settings. The goal is to decouple the devices from the host and put them into a pool shared by
multiple hosts. Tu et al claim that this offers greater flexibility in assigning devices to the VMs.
This shared device infrastructure can be enabled by the PCIe technology MR-IOV, however,
as the paper recognizes, this hardware is not readily available and so, attempt to implement
a software alternative. Ladon builds on virtualization technologies, specifically, it extends the
ability of hypervisors to assign a physical IO device to a virtual machine and uses SR-IOV
devices to enable sharing. The devices, including SR-IOV devices are placed in a device pool
accesible to VMs on multiple physical hosts.

The authors makes multiple claims for how this can increase performance per dollar and
reduce power usage. One example given is a traditional VM setup where multiple hosts each
have a 10Gb NIC. This NIC is shared by the VMs in on each host and the NICs are connected
through an Ethernet switch. The paper makes the claim that all of the NICs and the switch can
be replaced by a single shared NIC and a PCIe network between the hosts. The device itself
will be able to ensure fair sharing of the bandwidth between the VMs. When multiple NICs
are replaces with a single shared NIC, the total bandwidth available is lower than the total with
multiple NICs. However, if the switch is connected to the rest of the network with a single
10Gb link, the total outbound bandwidth is unaffected. Tu et al also make the claim that this
has a lower power usage than having multiple NICs. It is also easy to see that when the NICs
are shared and a single NIC is added, the additional bandwidth benefits all VMs instead of only
the VMs on a single host. Finally, the paper shows that the performance overhead of accessing
the devices in the pool versus local devices for a VM is low ( 5%).

Ladon uses a PCIe interconnect with Non-Transparent Bridges to allow multiple hosts to
be interconnected. All devices are placed in a central host called the Management Host (MH).
Each host that should have the ability to access the devices in the pool must be connected to the
MH with an NTB.

The paper recognizes that others have experimented with MR-IOV and NTB as a substitute
for the lack of MR-IOV hardware. They however claim that their interrupt delivery mechanism
is novel: While others have used sideband communication to deliver interrupts to the VM,
Ladon allows the MSI interrupts to pass directly through the NTB to the active VM. The paper
also claims that the VMs are securely isolated from the hosts and other VMs. Since Ladon
allows direct control of hardware devices, a VM can use an assigned device as an attack vector
by ordering it to read and write to memory accesible by the device but not the VM that controls
it. For instance the device can be told to write a network packet to an address located in the
RAM of the physical host. To isolate the devices assigned to a VM from the other VMs and
their devices as well as the physical hosts, Ladon uses a combination of the IOMMUs in the
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VM host and in the MH as well as the control over memory mapping provided by the NTBs.

Ladon provides a modified Linux kernel on both the physical host as well as on the VMs.
The physical host kernel is modified to intercept the VMs’ accesses to the virtual device. This
is used to set up the virtual device and assign a device from the pool. In the VM, part of the
kernel is modified so that the DMA addresses the driver gives to the device are correct. This is
needed because the address of a buffer in the VM’s RAM is not the same from the driver side
as from the device side both because the driver is running in a VM with its own address space
and because the device is in a physically different host which also has its own address space.
Because it’s the software in the VM that gives the address to the device, the software is required
to know about the address space of the MH and how the MH’s address space maps to it’s own
address space. According to the paper, the kernel modification allows the devices in the pool to
be accessed by the VMs without modifying the device drivers.

For the device to be able to access the VM’s RAM, the VM’s virtual memory needs to be
mapped into the address space of the device and translated. In Ladon, 3-4 GB or the entire VM
RAM is mapped and available for the device. Due to the way NTBs work, this requires the
BARs on the NTB to be at least the size of all VMs’ RAM combined. The developers report
problems with the BIOS of the MH with such a large BAR and their solution was to manually
assign this BAR after boot.

We have identified multiple limitations with Ladon. First of all, we believe that having all
devices in a central machine is a weakness as this is a single point of failure for all hosts. This
is, however, improved in later versions (Merlin) by having a failover scheme for the MH [23].
We are, however, not convinced by the effectiveness of this mechanism because we believe that
a failure of the MH would still interrupt the operation of all VMs using a device in the pool.
For instance, if the MH were to reboot, all of its devices would be reset and all communications
between drivers and the devices would be interrupted. The central pool also means that all
device IO from a host must cross a single PCIe link, which has 8 lanes in Ladon, which means
that the IO device bandwidth available for all VMs on a single host is shared. In addition to
being shared, the bandwidth provided by a single 8 lane link is lower than what some devices
use, a single GPU for instance can have 16 lanes alone. The use of a single x8 link will give
lower performance than local devices that have dedicated links and with heavy IO traffic and
multiple VMs this can be significant. If higher combined bandwidth was available multiple
10Gb NICs could be shared by the VMs, but with only a single 8-lane link per host, the total
network bandwidth for all VMs on a host is limited.

While Tu et al’s performance benchmarks show good speeds for device-initiated DMA,
their performance for CPU-initiated DMA is disappointing. It is at least 30 times slower than
device initiated DMA, which is probably due to the lack of caching and write-combining. The
paper gives no reason for the lack of these features. The lack of other devices in their tests and
benchmarks is also disconcerting. We fear that this is due to a technical limitation of Ladon and
that this may indicate that the modifications to the kernels are device-specific. It is also possible
that Ladon is limited to SR-IOV devices. If so, it is unfortunate, because there is only a limited
number of SR-IOV devices and non-SR-IOV devices are far more common. Ladon supposedly
supports using the devices directly from the host machine and not only in VMs, this is however
quickly glanced over and it is not stated if this is possible without driver modification. Finally,
we believe that the various software modifications are a limitation. The modifications are not
limited to a single location, but both the VM OS as well as the hypervisor and host kernel need
to be modified. With guest VMs with closed source kernels, Ladon cannot be implemented. In
addition, a complex central manager is implemented to set up the shared devices.
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2.11 Chapter summary
We know of no easily available solution for Multi-Root PCIe: No vendor produces MR-IOV
products and other proprietary solutions seems to be limited or unavailable. Ladon seems to
be a promising alternative to MR-IOV, but it is heavily focused on virtualization, has multiple
flaws and its not, to our knowledge, available as a product or open source.

Since NTB devices forwards memory operations, it can forward most of the traffic to a
device including MMIO, DMA and MSI interrupts. The memory accesses through an NTB
is directly transferred to the target on the other side and does not need to involve the CPU
which should offer very high performance. Unlike MR-IOV, NTB devices are easily available.
Combined with the correct software and SR-IOV, an MR-IOV-like solution can be created with
existing hardware.
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Chapter 3

Linux Kernel

When working on this thesis, we wanted to be able to see the source code of the OS we
developed for. This combined with the ability to modify the OS itself is very useful when
working at the low level required for implementing remote PCIe device access. Linux is
by far the most widely used Open Source kernel and it has good support for PCIe including
hotplugging and SR-IOV, so it was a natural choice

3.1 Device and driver subsystem

The Linux kernel supports all kinds of different devices including USB, Firewire, and PCI,
all of which are part of the device subsystem. The central parts of the device subsystem are the
devices, which are internally represented by a device structure as seen in code snippet 3.1, and
the device drivers. Each device has a parent device, which in bus based devices such as PCI is
a bus device, or it is a top level device with no parent.

Each device can be controlled by a single device driver which is bound to the device. The
currently bound driver is stored in the member driver in the device structure. Device drivers
in Linux have a filter list that match devices they support that the Linux kernel uses to bind
the device drivers to the individual devices as they are discovered. Before the the driver is
successfully bound, the driver’s probe function is called. In this function, the driver can further
examine the device for support and set up the necessary structures, mappings and interrupts
necessary for the correct operation. If a driver return success for the probe function, the driver
is bound to the device and now has control over the device. The various device subsystems have
their own more specific device structures, device drivers and API functions. An inheritance-like
model allows these specialized device types to be handled by the generic device subsystem.

3.2 PCI subsystem

3.2.1 PCI device structure

The PCI subsystem in the Linux kernel scans for PCI devices when the kernel boots or every
time a hotplug event is signalled. It performs the scan using configuration requests and when
a valid configuration is found, the corresponding device is added. When a endpoint device
is discovered a struct pci_dev, which can be seen in code snippet 3.2, is created. This
structure represents a single PCI device and contains all relevant information about it. After
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struct device {
struct device *parent;
struct kobject kobj;
const struct device_type *type;
struct bus_type *bus; /* type of bus device is on */
struct device_driver *driver; /* which driver has allocated this device

*/
void *driver_data; /* Driver data, set and get with

* dev_set/get_drvdata */
int numa_node; /* NUMA node this device is close

to */
u64 *dma_mask; /* dma mask (if dma’able device) */
struct acpi_dev_node acpi_node; /* associated ACPI device node */
struct class *class;
void (*release)(struct device *dev);
struct iommu_group *iommu_group;

};

Code snippet 3.1: Cut down version of the device structure [1]

the device initialization is done, the configuration space of the device is mostly left alone.
Drivers and kernel code is not supposed to read values from the configuration space itself if
it is stored in the pci_dev structure, because the values might not be identical if a "quirk" has
been applied to the device due to some device defect. After the device has been discovered and
initialized, it is given to the generic device subsystem where a matching driver will be found.
All pci_dev structures are connected to the pci_bus structure of the upstream bridge the
device is connected to unless they are connected to the root of the PCIe fabric.

The PCI device structure contains the generic device structure which allows the generic
device subsystem to handle the PCI device structure by passing a pointer to the contained
device instead of a pci_dev pointer. In the same way, when a device pointer is a pointer
to the device contained in a pci_dev, a pointer to the pci_dev can be acquired by using the
container_of macro. This is analogous to casting in object oriented programming.

3.2.2 Configuration space access

Different platforms have different ways to access the PCI configuration space. In older
PCI based x86 systems, access is done using the port IO addresses 0xCF8 and 0xCFC,
but on PCIe systems, the extended configuration space must be accessed with MMIO.
The address of the MMIO area of configuration space is implementation defined and the
firmware informs the OS of the location using ACPI. The Linux kernel also support other
platforms with various other configuration space access methods. To abstract away the
differences, all accesses to configuration space are done using a family of functions including
pci_bus_read_config_dword and pci_bus_write_config_byte. Since the method for
performing configuration space accesses can be different from one PCI bus to another on the
same computer, the correct way to access the configuration space behind a given bus is stored in
the bus device structure. This is implemented as a structure with a set of function pointers which
the configuration space access functions calls to perform the required low-level functionalities.
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/*
* The pci_dev structure is used to describe PCI devices.

*/
struct pci_dev {

struct list_head bus_list; /* node in per-bus list */
struct pci_bus *bus; /* bus this device is on */
struct pci_bus *subordinate; /* bus this device bridges to */

void *sysdata; /* hook for sys-specific extension */
struct pci_slot *slot; /* Physical slot this device is in */

unsigned int devfn; /* encoded device & function index */
unsigned short vendor;
unsigned short device;
unsigned short subsystem_vendor;
unsigned short subsystem_device;
struct pci_driver *driver; /* which driver has allocated this device */
u64 dma_mask; /* Mask of the bits of bus address this

device implements. Normally this is
0xffffffff. You only need to change
this if your device has broken DMA
or supports 64-bit transfers. */

struct device dev; /* Generic device interface */

int cfg_size; /* Size of configuration space */

/*
* Instead of touching interrupt line and base address registers

* directly, use the values stored here. They might be different!

*/
unsigned int irq;
struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O and memory regions + expansion ROMs */
/* keep track of device state */
unsigned int is_added:1;
unsigned int is_busmaster:1; /* device is busmaster */
unsigned int no_msi:1; /* device may not use msi */
unsigned int msi_enabled:1;
unsigned int msix_enabled:1;
unsigned int is_physfn:1;
unsigned int is_virtfn:1;
unsigned int reset_fn:1;
unsigned int is_hotplug_bridge:1;
union {

struct pci_sriov *sriov; /* SR-IOV capability related */
struct pci_dev *physfn; /* the PF this VF is associated with */

};
struct pci_ats *ats; /* Address Translation Service */
phys_addr_t rom; /* Physical address of ROM if it’s not from the BAR */
size_t romlen; /* Length of ROM if it’s not from the BAR */
char *driver_override; /* Driver name to force a match */

};

Code snippet 3.2: Greatly cut down version of pci_dev structure in the Linux kernel [1]
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3.2.3 Driver interface

Drivers in the Linux kernel communicate with the devices they control using an interface that
is different depending on the bus and device type. For PCIe devices, the main interfaces are
MMIO, interrupts and DMA.

Interrupts

A device driver receives the interrupts from a device it controls by setting up an interrupt handler
which is a function that is called when the OS receives a given interrupt. For the OS to know
what interrupt it should send to which driver, the driver needs to tell the OS. The driver registers
an interrupt handler by calling the request_irq function with the device’s interrupt number
as well as a function pointer to the handler and multiple other arguments.

Depending on the device type, the interrupt number may be fixed or assignable and may
or may not be known. In PCI, the interrupt number for a device is stored in the pci_dev

structure and is assigned by the PCI subsystem. Since there are a limited number of interrupt
numbers, some devices may have to share an interrupt number, but with the introduction of MSI,
shared interrupts are no longer an issue. When using legacy interrupts and a shared interrupt
is received, the kernel will need to figure our which device fired the interrupt by probing the
devices. This will allow the correct interrupt handler to be called.

An interrupt hander will often have to communicate with the device, for instance the driver
can use MMIO to read the cause of the interrupt from the device. This is especially true for
more complex devices where there can be multiple causes for the interrupt. MSI allows the
device to generate different interrupts for different events which allows a driver to have multiple
different interrupt handlers, one for each possible interrupt. One example is a device with two
ring buffers, one for sending and one for receiving and the device sends two different interrupts
indicating if a command was received or sent. This saves the driver the need for probing the
device to discover why the interrupt was generated.

The driver enables MSI by calling pci_enable_msi_range and in addition to the device,
a minimum and maximum number of interrupts the driver requests is given. The function will
return the number of interrupts it was able to allocate and the driver then calls request_irq
on all of them, presumably with different handlers.

Most devices that support MSI also support legacy interrupts and since MSI is supperior
to legacy interrupts, device drivers for devices with MSI support use MSI instead of legacy
interrupts [14]. However, some platforms may not support MSI so drivers sometimes support
both in order to provide greater compatibility. The same applies to MSI-X as a device can
be capable of MSI-X, regular MSI as well as legacy interrupts. All of them have different
capabilities and features and a device that supports all will probably work best with the most
capable, MSI-X, and have simpler interrupt modes as a fallback. Depending on the device
driver, it might not support the less advanced interrupts mechanisms.

MMIO - ioremap

Memory Mapped IO (MMIO) is a way to interact with devices by issuing memory accesses.
Instead of reading and writing to RAM, the accesses are passed to the device which can respond
to the reads and writes as it wants. This can be used to expose device registers, memory chips
(like RAM on a device) or trigger actions on the device. In PCI devices, the MMIO ranges of a
device are determined by the BAR registers of the device which the device uses to specify how
much MMIO it needs and the system to assign this amount.
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When a driver wants to use a device’s MMIO areas the first thing it needs to do is to reserve
the memory range. This ensures that this memory range is not concurrently used by different
parts of the kernel. Reserving a memory range is done by calling request_mem_region or
one of the other memory request variants. Non-concurrent access is not enforced in any way,
but a call to the reserve function will fail if the area is already reserved. When done, the driver
must also free this region.

After reserving the region and before the region can be used, the driver needs to call one
of the ioremap functions. These functions take a physical address and a size and return a
__iomem type. According to the comments on the function [1] ioremap_nocache, this is
required in order for the device to access it:

ioremap_nocache performs a platform specific sequence of operations to make
bus memory CPU accessible via the readb/ readw/ readl/ writeb/ writew/
writel functions and the other MMIO helpers. The returned address is not
guaranteed to be usable directly as a virtual address.

The last sentence refers to the fact that on some platforms, including x86, the physical addresses
given to ioremap are mapped into the virtual address space by the ioremap functions. On
these platforms it would be possible to use the returned value from ioremap as a normal pointer.
For the driver to be platform agnostic however, it needs to use the MMIO helper functions.

3.2.4 DMA API
Some devices, including PCI devices have direct access to the address space of the host. In
PCIe, a device can issue a read or write transaction level packet (TLP) with any address. While
a device could theoretically access any part of the host RAM it wants to, it has no good way to
know where it should read or write and this information is usually given to it by the driver. This
is communicated in a device specific way, usually with MMIO to a devices BAR. In proprietary
devices such as GPUs we cannot know the protocol used.

There are however multiple platforms where the device does not have access to the full
address space of the host. For instance, a platform can have a 32 bit bus but the host address
space is 64 bit. Also, in platforms with an IOMMU, the device and host will have separate
address spaces and the host is required to do some set-up to enable access to parts of its address
space even if the address spaces are mapped in such a way as to be identical. There are also
devices that are only capable of 32-bit addressing, and can only access the lower 32 bits of the
host.

The Linux kernel supports both platforms with IOMMUs and devices only capable of 32-bit
addressing. Since the Linux kernel runs on both platforms with and without IOMMUs with the
same drivers, the drivers need to support this. This is done with the DMA API which provides a
unified interface that works on all platforms where DMA is supported. For devices not capable
of 64-bit addressing, it can do so called bounce-buffering where the buffer is copied to a buffer
in the lower 32 bits before the device starts the transfer.

The DMA API introduces a new data type, dma_addr_t, which stores pointers in the
devices address space. This makes it clear to the driver developers that the addresses are not
interchangeable and cannot be converted to and from the other without the help of the DMA
API. When the driver gives an address to the device it will be a dma_addr_t address.

The DMA API provides the driver with the ability to:

• Allocate coherent DMA buffers

• Set up streaming DMA mappings
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– Make a single page available for the device

– Make scatter-gather list available for the device.

Coherent buffers can be accessed by both the device and the host at the same time. Any
caching systems are set up so that the writes by one side will be reflected by a read on the other
side immediately.

When a file is read or written to a disk, you want to minimize the amount of times the
buffer is copied from one RAM location to another before written to the disk. If the only
way to do DMA was to allocate DMA-able buffers, there would need to be at least one copy
operation from the original buffer to the DMA buffer. To avoid the copy operation, the DMA
API provides the ability to create a mapping of existing memory buffers - streaming DMA. The
function dma_map_single takes a virtual address and size and return a bus address. However,
contiguous virtual memory is often not contiguous in physical address space and to overcome
this, the DMA API also provides scatter-gather capability. Unlike the allocation, the streaming
mappings are not coherent which means that the driver needs to explicity synchronize the
devices view with the CPUs view. These buffers also have an explicit direction given to the
kernel, either from device to CPU, from CPU to device or bidirectional. This can be useful
for the kernel in order to set up caching and synchronization. The DMA API documentation
specifies when the buffer may be modified by either side depending on the direction given.

Devices that are unable to address memory above 32-bit can present problems with
streaming mappings as a memory buffer will not be accessible if it is located above the 32-
bit limit. For allocations the allocator can take this into account and allocate the buffer below
32-bit. This however places restrictions on the size and number of buffers as the space below
32-bit is limited and can be crowded. This also presents a greater challenge for streaming
DMA mappings. If the buffer to be mapped is above 32 bit, the device will not be able to
access it. With the help of an IOMMU, the buffer can be mapped into the lower 32 bit of
the devices address space. However, there are many machines without an IOMMU, especially
older machines. For a 32 bit device to use streaming DMA on such machines, a technique called
bounce buffers is used. This technique is provided by the Linux kernel and is automatically used
when necessary. It works by copying the mapped buffer to another memory buffer in the lower
32 bit of memory before the transmission is started. This requires the driver to collaborate with
the kernel for the kernel to know when to perform the copy operations. This applies in both
directions, from RAM to device and from device to RAM. This is part of the DMA API and is
performed by the driver by using the synchronization functions that can be seen in code snippet
3.3. They provide the driver with the ability to synchronize the original buffer with the bounce
buffer. The two "sync for cpu" functions must be called to update the view the CPU have of the
memory buffer. When the device modifies a buffer, this must be called to allow the CPU to see
the changes. When the CPU modifies the buffer the corresponding "sync for device" must be
called before the device accesses the memory. [7] The same functions can also be used by the
kernel in platforms where caches must be flushed and so on.

On a single host, different PCI devices can have different requirements. For instance, an
IOMMU may not be present in all parts of the fabric, and an IOMMU has the ability to
dynamically separate the devices into domains with their own address space. Since the different
PCI devices may have different ways to set up DMA, the DMA API’s core functionalities is
implemented on a per device level. This also has to be dynamic since in platforms such as a PC,
the PCI fabric is not known before runtime. The per device core implementation is controlled
by the struct dma_map_ops. It contains function pointers to the implementation for a given
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void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,

size_t size, enum dma_data_direction direction)
void
dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,

size_t size, enum dma_data_direction direction)
void
dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,

enum dma_data_direction direction)
void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,

int nelems, enum dma_data_direction direction)

Code snippet 3.3: Functions in the DMA API to synchronize buffer between CPU and device

device.

3.3 BIOS, firmware and ACPI
When a computer boots up, platform specific software is responsible for initializing the
hardware and getting everything ready for the OS to boot. On older PCs this was done
by the machine’s BIOS and other platforms had other forms of platform specific firmware.
Modern PCs have Unified Extensible Firmware Interface (UEFI) instead of a BIOS. UEFI is a
specification that defines a standard set of interfaces that are compatible accross platforms, for
instance, UEFI has drivers for some devices and file systems that can be used to boot the OS.
One of the tasks of the firmware is to scan the PCI fabric and configure the devices which is
needed for instance when the boot disk is attached to a PCI based disk controller.

In addition to bootstraping the OS and setting up hardware, modern platform firmware
provides various services to the OS. One such service is control of power on the system,
allowing the system to for instance go to sleep. This requires support from the platform to
set everything up correctly when waking up. The interface between the platform firmware and
the OS is defined by the Advanced Configuration & Power Interface (ACPI). Originally ACPI
was its own standard, but it has been absorbed by the UEFI standard. ACPI provides the OS
with a set of tables which contain various useful information for the OS including devices the
firmware has found and so on. These tables can contain objects, and these objects can, like
object oriented languages, include methods. These methods are made using executable ACPI
bytecode called AML that the OS runs these using its own AML interpreter. AML code has
ring 0 access and can access any part of RAM or perform IO operations. ACPI methods allow
the OS to query the firmware for information or perform platform specific operations such as
power controls.

In addition to the ACPI bytecode, in most x86 systems, the firmware keeps running after the
OS has booted. The firmware runs in a super privileged mode of the x86 CPU called System
Management Mode (SMM). The kernel, which runs in ring 0 is not able to control SMM as
SMM is completely isolated from the OS. The platform firmware can use this to intercept certain
actions performed by the OS, for instance, this is used to emulate PS/2 mouse and keyboards
and allow legacy OSes without USB support to be used with USB mouse and keyboards. Some
AML code can trap into SMM to perform super privileged operations.

Since the firmware keeps running after the OS has booted, parts of the computer might be
in the control of the firmware and not the OS, for instance, a USB controller when legacy PS/2
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emulation is enabled. ACPI most therefore be used to negotiate control over hardware.

3.3.1 Hotplugging

In the Linux kernel, the pcieport driver handles all PCIe PCI-PCI bridges. Various optional
extensions a bridge can have, including hotplug and AER (Advanced Error Reporting), are
separated out into “service drivers” which attach to bridges that have the associated capability
which includes both ACPI and native hotplug. All hotplug drivers have a common core that that
handles the kernels reaction to hotplug events and covers everything from rescanning a bridge
to controlling the various indicator lights.

3.4 IOMMU support

The Linux kernel provides a common interface for all the different IOMMU variants in different
platforms (Intel VT-d, AMD-Vi or ARMs SMMU). This API, which is defined in the iommu.h
header, allows devices to be added to domains and the domains to be controlled in various ways,
including setting up address translation.

3.4.1 VFIO

Virtual machines has had the ability to directly control PCIe devices thorugh the use of
IOMMUs for some time. However, there was not a unified interface used by the different
virtual machine monitors, and it only supported x86. Virtual Function IO (VFIO), is an interface
designed to fill this hole. The goal is to have a common interface for all platforms with IOMMUs
capable of providing pass-through of devices. In addition, the interface is entirely user space,
so no kernel modules or modifications are needed for a VMM to support device pass-through.
VFIO will also allow device drivers to exist in user space as the IOMMU will provide the
isolation between the kernel and user space. Since hardware virtualization can have very high
performance, it is feasible to create user-space driver for high performance devices.

VFIO accepts configuration space accesses, while guaranteeing that this will not break the
isolation. To do this safely, it needs to intercept some of the accesses and handle them in a safe
manner. To do this, it will fully emulate parts of the configuration space, for instance BARs
so that the guest OS believes it has control of the device BARs, but in reality it will change
the IOMMU mapping and leave the BARs unchanged. In addition, the configuration space it
exposes can have some capabilities entirely hidden.

A VFIO device is presented to user space as a file device. Various IOCTL operations can
be performed on this device to interact with the hardware device. This includes configuration
space accesses, setting up interrupts handlers and mapping MMIO areas using mmap.

3.4.2 Sysfs interface

Sysfs is a special filesystem used to control system parameters in the Linux kernel from user
space. By mounting this filesystem (typically at /sys), user can perform various kernel related
operations and see various parameters. Sysfs is populated by kobjects and attributes present in
the kernel, including devices, PCI devices, drivers, modules and so on. By interacting with the
sysfs filesystem, a user can for instance inspect the devices the kernel is aware of and perform
actions on them.



3.5. CHAPTER SUMMARY 39

irq
subsystem_vendor
class
power
sound
resource
consistent_dma_mask_bits
modalias
dma_mask_bits
local_cpus
config
device
driver
enable
subsystem
msi_bus
local_cpulist
remove
rescan
uevent
vendor
resource0
subsystem_device
numa_node
d3cold_allowed

Code snippet 3.4: Output from running ls on a PCI device in sysfs

The path /sys/bus/pci/ contains attributes related to the PCI subsystem including the
connected devices which are contained in the sub folder devices. Each device has a folder
within the devices folder, named by its BDF. Inside the device folder are various properties
of the device as seen in code snippet 3.4. This includes a link to the driver’s folder, the interrupt
number and so on. There are also writeable files that can be used to perform actions on the
device, for instance, the file remove can be used to remove the device from the kernel as if the
device was hot-removed and a full rescan of the PCI fabric can be initiated by writing 1 to the
rescan file.

3.5 Chapter summary
The PCI subsystem in the Linux kernel abstracts away the hardware details from the structures
and APIs used by the drivers. This provides us with a platform for allowing an unmodified driver
to interact with a remote device. Multiple of the APIs provided to the drivers are hook-able at
runtime which is useful for us in order to make the driver interact with a remote device.
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Chapter 4

Design and Implementation

When we were starting out, we has little knowledge of how PCI and IO virtualization worked.
We decided that in an effort to gain more knowledge of the subject, would start by reading
about and testing related technologies, MR-IOV in particular. We also looked into the support
for these in the Linux kernel and material on how they work.

We speculated that hot plugging of PCIe devices was a central part to being able to share
or reassign devices. Assuming that the two would be similar from the software perspective, we
decided to start with hot plugging. From what we had seen so far, hotpluging was not something
that was normally used in PCI systems, we however discovered various mentions of it while
researching. One of the technologies we read about was Thunderbolt which is a relatively new
interconnect for consumer products. The key to our interest was discovering that Thunderbolt’s
main mode of operation was tunnelling of PCIe traffic, for instance, a Thunderbolt Ethernet
adapter, is a PCIe based NIC. Thunderbolt provides us with the opportunity to test PCIe hotplug
in easily available systems and to experiment with this functionality. Our first step in the
practical part of the thesis work was to experiment with Thunderbolt. The hope was that this
would allow us to learn about PCIe and how hotplug works in PCIe.

After a while testing Thunderbolt systems, a native PCIe hotplug set up became available
to us. The set up was provided by Dolphin. Unlike with Thunderbolt, there was no layer
beneath PCIe. In addition, the set up could be used with any normal PC. This allowed us to
learn more about the differences between PCIe and Thunderbolt tunneled PCIe. Dolphin also
have an external PCIe switch they use in their products. This switch was not MR-IOV capable,
but had the ability to create partitions. This was however not something Dolphin had used
much. Still, this provided us with an opportunity to create a setup where PCIe devices could be
dynamically reassigned from one host to another as described in section 2.5. Without access to
MRA switches, this was as close as we would come. At this point we had however discovered
problems with the native hotpluging used in such a set up in Linux and we looked into this and
various ways to improve it. While working on getting this set up to work we had to read and
learn the inner workings of the PCIe switch in both Dolphin’s NTB device as well as their PCIe
switch.

While we were able to make hot plugging work partially, it was not enough. During this
work an alternative came up. Dolphin’s main product is their NTB hardware and related
software. They believed that this hardware and software could be used to remotely access a
PCIe device. After the problems we had with hotplug, we decided to look into this. This lead
to the implementation of what we call "device lending". It allows one host to borrow a device
from another host in a way that allows the native device drivers to be used without modification.

41
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4.1 Experimenting with Thunderbolt

Thunderbolt is an interesting platform for us because it allows the hot plugging of PCIe devices
in easily accessible hardware. We looked into it to learn how PCIe hot plugging worked and the
current support for in the the Linux kernel. We had access to a Thunderbolt ethernet adapter,
multiple Apple Macbooks and later a Intel NUC, a small form factor PC with Thunderbolt. We
started by testing Thunderbolt on Apple computers. Hotplugging worked, as expected in OS X,
and also as we expected, things were not so simple in Linux. Testing revealed that Thunderbolt
devices that were inserted from boot worked correctly. The device showed up as a normal
PCIe device behind a PCIe switch. The Linux kernel did apparently not detect that the device
was removed when the cable was unplugged. The devices in lspci were now corrupted and
displayed as all 0xff as expected from a non-existing device. When the device was re-plugged,
unsurprisingly the kernel did not detect it. However, a manual rescan of the devices did not yield
any result either. This was surprising to us as our understanding of PCIe at the time suggested
that this should not happen.

We also read articles, forum posts and comment sections to learn about other people’s
experience with Thunderbolt. The reports seemed to agree with our findings: Devices present
at boot worked, but hot plugging did not. We suspected that since Thunderbolt exists at a
lower layer than PCIe that some additional work was required to make hot plugging work. We
attempted to look into the XNU kernel which is the open source kernel powering OS X. To our
disappointment, the PCI and Thunderbolt code was not part of the open source version.

After a while we noticed that a patchset for enabling Thunderbolt support on Macs had been
created and submitted to the Linux kernel. The patch was eventually included in the mainline
kernel. The patch aimed at supporting hot plug events on Apple computers, but apparently
it was currently simplified and did not support daisy-chaining. We tried out the patchset and
as promised it enabled hot plug of Thunderbolt devices on the Macs we tested. This driver
revealed a lot of information about Thunderbolt which we had previously been unable to gather.
One thing we noticed were that when Thunderbolt devices was connected, the driver explicitly
sat up the PCIe tunnel to the new device. This explained why rescanning did not work without
the driver, a path to the new device was not set up. Thunderbolt was not in itself our main target
and once it was working, we began looking at the Linux PCI subsystem involved and how it
handled hot plugged devices.

Later, we got access to a PC with Thunderbolt. Unlike the Apple computers which needed
the patchset, it worked flawlessly without any Thunderbolt specific patches to the Linux kernel.
Our first thought was that this was due to the PC Thunderbolt variant being strictly PCIe hotplug.
We however recalled the routing needed to be set up for new Thunderbolt devices. This is
especially obvious since Thunderbolt does not only support PCIe, but also legacy DisplayPort
using the same connector and no Thunderbolt support on the monitor. A closer look at the
various outputs from the kernel revealed that the hotplug events for the Thunderbolt slot was
handled by the acpihp driver. This driver delivers hotplug events it gets from the platform
firmware via ACPI to the PCI subsystem in the kernel. We believe that the firmware implements
the same as the functionality as Thunderbolt driver in the Linux kernel. The acpihp driver
is not Thunderbolt specific but applies to any firmware controlled hotplug scenario and the
firmware on a platform can handle other PCI hotplug setups in the same way. We followed the
function calls in events from the Thunderbolt driver and the ACPI hotplug driver. This helped
us identify the common code in both setups to learn how the kernel sets up new devices.

One thing that both the PC and the Macs had in common was that they reserved space for
additional devices on the hotplug slot as well as all upstream bridges as described in 2.2.2. This
is in contrast to what most firmwares do, and what the Thunderbolt systems did for all non-
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Thunderbolt bridges. In these other cases, only the exact amount necessary is allocated. The
extra resources for the Thunderbolt bridges allows the kernel to find room for the new devices.

4.2 Experimenting with Native PCIe hotplug
After a while, Dolphin approached us with a hotplug setup they had. They had access to PCIe
expansion boxes, an external PCIe interconnect and a slot for the external cable. The slot was
their NTB device configured to operate in a transparent mode. In this mode it works as a normal
PCIe switch that shows up as bridges in lspci. They had a problem that sounded familiar to
us, the devices worked fine when present under boot, but problems arose when hot plugging
occurred. First of all, the hotplug event was not registered by the kernel. This caused the devices
removed to not be cleaned up, but stay in the system in a broken state. This was similar to what
we saw with Thunderbolt on Apple computers before the Thunderbolt patch was applied. In
addition, hot add events was not detected. They worked around this by removing the devices
manually with the Linux sysfs interface before physically unplugging the cable. Similarly,
when the cable was re-plugged, a rescan was triggered with the same interface. Unlike with
our testing with Thunderbolt, this worked and the devices were correctly discovered. However,
the devices did not work as they should. While every device behind the slot was correctly
discovered and identified, the kernel had trouble reinitializing them. We discovered that the
problem was in allocating room for the device BARs. While this should not be a problem in
theory, obviously there is room, everything was set up correctly before the removal, it turned
out to be a significant issue. We believe this to be caused by the allocation algorithm used by
the kernel not being able to fit the memory areas in the same windows as the firmware or that
it has more strict requirements. The two problems with this setup was then the missing events
and the resource allocation.

Examining the lspci output of the Hotplug slot, we discovered that it did not report itself
as being hotplug capable. With this hotplug slot however, we had access to both the specification
for the internal PCIe switch as well as it’s EEPROM. We looked into the specification and
the current EEPROM in an attempt to make hotplug detection work. We also hoped that by
declaring itself as hotplug, the slot would be allocated extra resources by the firmware or the
kernel.

4.2.1 NTB EEPROM modification
The EEPROM in the PCIe switch on the NTB device we got from Dolphin can be modified. By
modifying this, we can control the configuration space of all bridges in the switch. In an attempt
to make hot plug events work, we attempted to mark the slot as hotpluggable as specified in the
PCIe specification. The first we needed to do was to mark the downstream bridge where the
hotplugged devices appeared behind as a slot. This is because only slots have the slot capability
register where the hotplug capable bit resides. In the same manner, only downstream bridges
can be slots. The upstream bridge was marked as upstream. The other was marked as both
downstream and a slot. The slot capabilities register was now valid. In this register, the slot
was marked as hotplug capable in addition to hot plug surprise capable. After applying this
EEPROM modification and rebooting the machine, we examined the output from lspci. We
could now clearly see that our modifications allowed the slot to be identified as such and that
the status register changed when the cable was unplugged. Still, hotplugging did not work.
Looking at the lspci output more closely we saw that the OS had not enabled any features
in the control register such as interrupt on hot plug events. We also noticed that pcieport’s
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service driver for native hotplug was not loaded for the slot.

4.2.2 Hotplug - ACPI
Burrowing ourselves deep into the Linux kernel we discovered a suspect for the hotplug service
driver not loading and placed some debug prints there to confirm. The kernel will for every
bridge create a service bitmask of what the bridge is capable, this is the basis of what service
drivers are used. In addition to this, a permissions bitmask also exists. It is the logical and of
these bitmasks that decide what service drivers are used for a given bridge. These permissions
bits signify if the kernel was allowed control over the associated device and feature for a given
bridge by the platform firmware. Each PCI device is represented by a ACPI object that is
available to the kernel and each of these objects have a _OSC member object. According to the
PCI Firmware Specification, the _OSC object is:

A Mechanism for Exposing PCI Express Capabilities Supported by an Operating
System

Looking at this specification we were able to confirm that the pcieport driver in the Linux
kernel correctly requested native hotplug control from the firmware. For some reason however,
the firmware on our test machine denies the request for native hotplug. At this point, the kernel
has no choice but to not use native PCIe hotplug. Since hotplug does not work, and no hotplug
event is delivered via ACPI, we can assume that the firmware does not support hotplug. Possibly
there is a known hardware compatibility issue that prevents hotplug. We also assume that on
ACPI hotplug platforms like Thunderbolt, native hotplug would be denied in the same way.

Feeling brave, we enabled an option in pcieport to ignore any denied requests to the
firmware. After this, the kernel detected hotplug events correctly. In addition, the slot control
register was now changed: Presence detect change enable and hot plug interrupt enable had
been set. We have tested this on our machine without any adverse effects. This would suggest
that the refusal to hand over control for hotplug is a firmware bug. After all, it seemed to work
just fine. It might be that the firmware developer simply did not bother to test hotpluging and
deny it to be on the safe side.

When a device was hot-removed this was correctly detected by the Linux kernel. It cleaned
up the devices and associated drivers correctly. While this seemed to work, we noticed that
some drivers were unable to handle an actual hot remove as opposed to the software only remove
when using the remove operation in sysfs. The difference is that when using the sysfs remove,
communications with the device will continue to work even after the event, but when the link
is abruptly severed, any transaction to the device will fail. For instance reads will result in
0xffffffff. This can also happen before the driver is notified by the kernel that the device is
no longer present.

While working with the PCIe switches we discovered their ability for partitioning. As
described in section 2.5, this feature allows the PCIe fabric to be split into multiple separate
fabrics. When this is active, multiple root complexes can be connected to a single switch and
and have their own PCIe fabric. If this could be changed dynamically, we could possibly use this
to allow for device sharing. This however still required us to fix the device resource allocation
problems.

4.2.3 Resource issues
In short, the problem with allocating resources to hot-added devices is that the resources
allocated to the bridge may be insufficient. There are two ways to solve this: Make sure the
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bridge has enough resources from the start or grow the resources of the bridge. The first is the
approach taken by the Thunderbolt implementation on the NUC and the Apple computers we
tested with. We also suspect that this is done in most platforms with support for native PCIe
hotplug due to the lacking support for any other technique in the Linux kernel. This solution
is very simple and has few issues, the main one being not allocating enough resources. This
can happen if the machine has multiple hotplugable slots, in such a case, the fairly limited
bus numbers can be a problem (255). Unfortunately, this technique requires support from the
platform firmware, something which the platforms we tested on did not have.

Since the Linux kernel has to follow the setup done by the platform firmware, hot-add will
probably not work without the support from the firmware. Our PC with thunderbolt suggests
that a platform with hotplug friendly firmware will work with Linux. If this is the case,
hotplugging, including hot-add should work without any modifications required to the Linux
kernel. If hotplug works, PCIe switches with partitioning and MR-IOV switches should work
as well.

When a bridge does not have the necessary resources either because no extra space was
pre-allocated, or because the pre-allocated resources were insufficient, the only solution is to
grow the resources of the bridge. However, growing the resources of a bridge is significantly
harder than pre-allocation and comes with a number of issues. While in theory the bridges can
be reconfigured dynamically while the system is running, the reconfiguration will have an effect
on the devices behind it. Also, for the bridge widows to expand, other bridge windows may need
to be moved, further affecting other devices. Drivers currently bound to a device that is moved
will cause issues, the main issue being that the addresses it uses will be incorrect after the move.
We have explored the idea of using an IOMMU to abstract away the fabric windows from the
addresses used by the drivers. This would make it possible for a device to change it’s BARs
without the driver knowing. This still does not solve the problem of the device losing traffic
or being reset. Timing would be extremely critical if communication could not be suspended
somehow.

In theory, the entire PCIe fabric can be reconfigured by removing all devices from the PCI
subsystem, rearranging the fabric and then rescanning it. This is however made very complex
by the fact that the disk and other critical systems can depend on these PCI devices. This would
probably also affect user space programs currently interacting with a device, including file IO,
network traffic and GPU computations.

Apple’s "Thunderbolt Device Driver Programming Guide" [5] introduces driver writers to
the special considerations that needs to be taken when the device is a Thunderbolt device
rather than simply a PCIe device. This sheds some light on how Thunderbolt hotplugging is
implemented in OSX. In addition to the perhaps obvious, that the driver needs to be prepared
to lose all connections to the device at any point in time, drivers are also encouraged to support
"PCIe pause". It is optional for a driver to support this, but it is highly encouraged. This
functionality appears to allow the kernel to pause the driver, change the address spaces of
devices and notify the driver of the new address spaces. At this point the driver must check
all of its address spaces as they may have changed. We believe however that this may be hard
for some drivers to implement. In the section on "PCIe pause", the guide suggests that the
developer disable another feature called "spread" to increase the likelihood / frequency of the
need for "pause" to be used. We speculate that this spread feature increases the address spaces
of the bridges upstream of the thunderbolt ports to make room for new devices. The output
from lspci in OSX appears to support this theory. Possibly the Linux kernel can implement
something similar to OSX’s PCIe pause. For instance we have theorized that existing suspend
functionality can be used by suspending the device, moving it and then resuming it. Hopefully,
when the device is suspended, the driver saves the device’s state in order to restore it when
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power is returned. When the state is saved and the driver has prepared for device power down,
there should be no traffic to and from the device and moving it should be safe. If the new
values can be communicated to the driver when the device is resumed, the driver should be
able to continue normal operations. Suspend will probably affect user space programs currently
interacting with the device or it’s driver however.

4.3 Experimenting with NTB

While working on hotplugging and resource allocation, the idea of accessing a PCIe device on
the other side of an NTB link occurred to us. Dolphin thought this was possible, and had done
some preliminary testing but had not actually tried to interact with a device beyond probing the
bar areas. This was done using their API function AttachPhysicalMemory which allowed
us to map arbitrary physical memory addresses. We tried mapping the BAR areas of a PCIe
device with this function and it allowed us to read and write to the a device’s BAR areas in
one host from another host. We believed that this could be used to essentially remote control
a PCIe device from another host. The memory operations that are forwarded from the NTB to
the device will be directly sent to the device, and not through the other host’s CPU or chipset.
This will not only ensure high performance, but also not affect the performance of the other
host by incurring a overhead on the CPU or chipset. Instead, the only affect to the other host
is the traffic between the NTB and the device as well as the traffic on the NTB itself which it
might be using.

Using an NTB was a promising idea because it side-stepped the problems we had met so
far. First of all, resource allocation should not be a problem as the remote device would not be
part of the users PCIe fabric. Instead the resources would be consumed from the NTB itself.
Secondly, it should allow for greater flexibility than both MR-IOV and PCIe switch partitioning
since it’s entirely controlled by software. This is because it’s built on top of PCIe instead of into
PCIe itself and can co-exist with existing hardware and software.

The NTB idea showed lots of promise, and Ladon showed that it was possible (see section
2.10.4). We however, had not discovered this at the moment. We feared that we would not be
able to complete such an implementation in time or that it would be impossible due to some
technical detail we had not thought of. When we later discovered Ladon and Merlin, we were
convinced that this would be possible. Still, there was much to do as implementation specific
details are scarce in Ladon and Merlin.

For this idea to offer a good alternative to normal PCIe switches and MR-IOV, existing
drivers would need to be supported. We also wanted the needed requirements and modifications
to the kernel to be minimal. We decided to attempt to implement a proof of concept with the
goal of using an unmodified device driver to use a PCIe device behind an NTB on another host.
The proof of concept was developed for Linux and uses Dolphin’s NTBs and software.

4.3.1 Device lending

We invented the term "device lending" to describe our NTB remote access solution. Compared
to MR-IOV, device lending offer many of the same capabilities and advantages. Unlike MR-
IOV with the Virtual Hierarchies (VH) however, there is no change in the hierarchy of the PCIe
fabric with our device lending. Instead, everything stays standard PCIe, but with the added
ability of a device to be accesses remotely. A remotely accessed device will stay in the owner
host’s PCIe fabric, and will not be part of the other hosts PCIe fabric.
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Figure 4.1: Left MR-IOV. Right: A host borrowing a device from another host using an NTB.

Additionally, the NTB based device lending is more flexible in the devices that can be
borrowed or shared than MR-IOV. A comparison can be seen in figure 4.1. MR-IOV requires
all devices to be assigned to the VH to be downstream of the MRA switch the host is connected
to. This makes MR-IOV incapable of sharing a device locally connected to a host since a
local device will probably be upstream of the MRA switch. While sharing local devices is not
possible in either MR-IOV or with a partition-able switch, it has some distinct advantages.
A locally connected device can have a 16 PCIe lanes directly to the CPU. The bandwidth
and latency between this device and the CPU will be at the absolute maximum the machine
can provide. A device that is externally connected will often have limited bandwidth to the
CPU. For instance the cable used by Dolphin is only 8 lanes, half of what an internal slot can
provide. While 16 lane external cables exist, the bandwidth of this external link is still shared
by all devices connected behind it. In addition, externally connected devices will have higher
latency, if still very low. We believe this provides a compelling argument for having as much
as possible of devices with high bandwidth requirements connected locally. Our NTB based
device lending scheme allows such devices to be utilized remotely, but still gives the devices
the optimal bandwidth when used locally.

A significant advantage MR-IOV has over PCIe switches with partitioning is the MRA
capable devices. These devices can be controlled by multiple hosts at the same time, like SR-
IOV for multiple hosts, as described in the section about MR-IOV, 2.4.3. This advantage is
however limited by the fact that currently few or no available devices are MRA capable. Further,
we hope that the device lending can apply to the virtual devices created by an SR-IOV device. If
so, such device could be shared among the hosts. This has also been demonstrated to work, see
section 2.10.3. This would make our solution one of the very few that can share PCIe devices
between multiple hosts. We believe it also has the potential to be one of the cheapest.

For our NTB based device lending to work with unmodified drivers we would need to fool
the drivers into thinking they were interacting with a local device. Since the drivers directly
interacted with the PCI subsystem we needed a way to get the PCI subsystem to play along.
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/* Low-level architecture-dependent routines */

struct pci_ops {
int (*read) (struct pci_bus *bus, unsigned int devfn, int where,

int size, u32 *val);
int (*write)(struct pci_bus *bus, unsigned int devfn, int where,

int size, u32 val);
};

Code snippet 4.1: pci_ops structure in the Linux kernel (include/linux/pci.h)

4.4 Injecting remote device into Linux PCI subsystem

We aim to inject a non-existing device into the kernel. This leaves us with two alternatives. The
first is to duplicate the device creation in the kernel and create our own pci_dev. Since most
information about the device comes from this structure, we should have full control over all
parameters of the device. The device scanning and management code in the kernel is however
not trivial. It would be a substantial amount of work to duplicate and understand all parts of the
code involved. In addition, the device would, after creation, need to be handed off to the kernel.
Because of this, the device would still need to be set up so that the kernel can handle it in the
same way as the physical PCI devices. Also the memory management of this device would
be difficult as the PCI subsystem might decide to modify or free memory associated with the
device. Since the PCI subsystem did not allocate it itself it could possibly be confused. We also
fear that future changes to the kernel would render this code unusable without modifications,
possibly creating subtle bugs.

The alternative would be to allow the PCI subsystem to think that it sees a new device
that it will initialize itself. The Linux kernel acquires its information about the devices using
configuration reads and writes. If we could emulate or intercept these we could make the kernel
see a virtual device and have it initialize its structures.

4.4.1 Intercepting configuration space accesses

As explained in 3.2.2, each PCI bus in the kernel has its own set of configuration space access
operations. They are stored in the pci_ops structure which can be seen in code snippet 4.1.
To intercept the configuration accesses performed by the kernel, we can change the function
pointers in the pci_ops structure on a PCI bus we want control over.

When the functions are hooked we have full control over all accesses. This allows us to trick
the kernel into thinking there is a device on a bus that is not physically there. To do this, the read
function will need to return the same values as a physical device. The configuration space of a
device is specific to each device type as each can implement different capabilities and so on. In
order for the configuration space accesses to be correct, we need to recreate the same behaviour
as the physical device we want to access remotely. Sending the configuration space accesses to
the physical device across the NTB link is the obvious solution. However, configuration space
accesses cannot be forwarded by an NTB.

One way to implement the configuration space is to emulate it, similar to the way VFIO
does. This means that we attempt to return the same as the device would in the same situation,
but in software. A good first step is to read the configuration space of the target device into
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a memory buffer. When we intercept a read operation, we can redirect it to the buffer. For
much of the configuration space, this is sufficient as it is read- only. Writes are however, more
challenging. Even if the writes are not important to the operation of the device, such writes
cannot be simply ignored as there are places in the kernel where the kernel will read back the
result of a write to confirm its success. This requires us to allow write operations to modify the
in-memory buffer.

However, some writes are part of a more complex protocol, such as the BAR registers to
which the OS writes all 0xFF and reads back another value. In addition, some registers can be
changed by the device, for instance to report errors. In these cases the in-memory buffer will be
insufficient. VFIO has good support for this. It sometimes ignores writes, reflects them to the
emulated configuration space or passes it through to the physical device. This is however quite
complex. Also, since some writes are passed through to the device, we still need access to the
physical device.

In an attempt to avoid the complexities of configuration space emulation, we first redirected
configuration space accesses to an identical local device. If the local device is identical, the
kernel will correctly identify the device. In addition, the local device will correctly respond to
the configuration space accesses. This was however never more than a stopgap solution. First
of all, having an identical local device can be a problem and this will decrease the flexibility
of the system. Furthermore, if some of the accesses change the behaviour of the device in any
way, we will affect the local device, and the remote device will not be configured as expected
by the local kernel. One example of this is the enable bit in the MSI capability register. If we
don’t update this on the physical device when the write occurs, the driver or the kernel can be
confused when a interrupt comes when it doesn’t expect it or doesn’t come at all. This implies
that we need a way to do configuration space access across the NTB link to the target device.
While these accesses cannot be transparently bridged across the NTB link, we identified three
alternatives:

Some of the NTBs we have access to has the ability to generate configuration requests. This
can be controlled from a connected host. In theory we could use this to send requests to the
physical device. This will however not work in our set-up where the device is in a host machine.
This is because configuration requests can only be sent downstream. In a host, the path from the
NTB device to the target device will always include at least one upstream bridge. If however
the target device was located in an expansion box, the NTB would be placed upstream of all
devices as if it were the root complex.

In a similar vain, there are two other ways for us to inject configurations space requests
into the target machine. The first is to take advantage of the fact that in modern machines
configuration space accesses are done using MMIO to a platform dependant memory location
reported via ACPI. We could possibly access this register from the other side of an NTB. We
dismissed this as a poor solution for two reasons. First, we would likely run into concurrency
issues with the local CPU. Secondly we believe the chipset or other hardware might block
the access to these registers from anything but the CPU. The other way to inject configuration
requests is to utilize the packet generator present in some PCIe switches. This is a vendor
specific feature not available to the public. It is unclear to us how we would be able to receive
the responses.

The final method, which we ended up using, is to have the other host generate the
configuration requests. With the help of a communication channel, we proxyed the reads and
writes through to a user space daemon on the other host. The daemon perform the accesses by
utilizing a sysfs file provided by the kernel (/sys/bus/pci/devices/*/config). This
daemon also implements a basic emulation to allow us to ignore some writes but still reflect
them in subsequent reads. This is done by having a copy of the configuration space in a memory
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buffer. Depending on the write it might be written only to the buffer or both the buffer and the
device. All reads will go through the buffer.

4.5 Access to device BARs
A devices registers exist in the range specified by the BAR registers. In Linux however, drivers
will not read the devices configuration space themselves, but use the values stored in the devices
pci_dev structure. This is described in detail in 3.2.1. This means that we have control over
the addresses seen by the driver as the device is injected by us.

Examination of the MMIO functions on x86 revealed that they are all small functions or
macros and are very likely to be inlined. Since our goal is to avoid driver modifications, any
tricks needed to make sure that the driver interacts with the device on the other host needs to be
at the level of these MMIO helpers or lower. Since the functions are inlined, there is now way
for us to hook them at runtime. We could however modify the source and recompile the kernel.
The helper could then be made hookable. This would likely decrease performance of MMIO
heavy code.

Another alternative would be to set up the virtual memory mappings in such a way that
the memory accesses could be intercepted in hardware. A page fault handler could possibly
perform the necessary steps to communicate with the device. This would also negatively affect
the performance of MMIO, but could be limited to only the remote devices. The drivers would
also not need to be recompiled. We are however unsure exactly how the page fault handler
would work. This would possibly work better as a virtual machine extension.

The solution we went with however, was at PCIe level. Before the device was injected
into the PCI subsystem, we mapped the device BARs on the owner host to physical addresses
on the loaning host using an NTB shown in code snippet 4.2. These addresses lay within the
BARs of the NTB on the loaner host. While the device is injected into the PCI subsystem, we
make sure that the BAR addresses stored in the pci_dev structure of the virtual device is our
mapped addresses into the actual BARs on the other side as shown in code snippet 4.3. When
the driver loads, it will use these addresses to access the device. This should ensure that the
driver communicates with the remote device. When the driver probes the device, it will reserve
the BAR regions and perform an ioremap call. This required us to make some changes to
the NTB driver, see chapter 4.10.2. Other than this, the driver was now able to use the MMIO
registers of the device as if the device was local.

4.6 Device interrupts
In traditional PCI a device signalled an interrupt by driving a dedicated interrupt pin. The pin
was shared by multiple devices so the host had to query the devices to see which device currently
requested service. While this is supported in PCIe, it is considered legacy. The preferred way
to do interrupts in PCIe is with message signalled interrupts (MSI). Support for this is required
for all PCIe devices that can generate interrupts. There is also MSI-X, which is an extension
to MSI. When a device issues an MSI interrupt, it will do a normal write transaction to a given
address. This is received by the chipset which generates a interrupt to the CPU. On x86 a write
to 0xfeeXXXXX will trigger an interrupt.
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/* The segment ids we export in this function are used by the other side to

* connect and map our BARs. When the other side connects, it will get a

* local IO address that is valid from it’s own side of the NTB that point

* to the relevant BAR. This will be the new "BAR" values to be used by the

* machine borrowing the device

*/

for(int i = 0; i < number_of_bars; ++i) {
/* Map the BARs local IO address using NTB software. */
if(bar[i].ismmio)

export_area(SEGMENT_ID_START + i, bar[i].start, bar[i].size);
}

Code snippet 4.2: Exporting the BARs of a device

int map_bars(segmentid_t start, size_t number_of_bars, bar_t* bar) {
for(int i = 0; i < number_of_bars; ++i) {

/* Connect to the remote BARs and get the local io address for this
host using NTB software. */

bar[i].start = map_area(start + i);
}
return 0

}

Code snippet 4.3: Mapping the BARs of a remote device

NTB NTB 0x80000xFEEE

Host A Host B

ChipsetCPU INT PCIe device

Figure 4.2: An MSI interrupt delivered from a device on one host, through an NTB and to the
CPU on the remote host.
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When a driver sets up the interrupts for a device, it is the kernel itself which sets up the
interrupts, decides parameters and configures the device. When the kernel that loans the device
configures the interrupts on the device, it will not be aware of the fact that the device is not local.
The addresses set up by it will reach the CPU of the machine in which the device is physically
located. We need to somehow redirect this interrupt to the driver on the correct host. This also
needs to be done as fast as possible as interrupts can be performance critical.

One solution would be to hook one of the functions that the driver calls to set up interrupts.
We could then do the setup on the host with the device physically present. On this host the
interrupt handler would simply pass the interrupt on to the host where the driver is running. The
interrupt could be send via an interrupt feature provided by the SISCI API. The kernel module
on the other side would then call the interrupt handler of the driver when it received the SISCI
interrupt.

Another way to support MSI is to allow the interrupt to go directly through the NTB and
into the chipset of the host with the driver. With this solution the interrupt is handled entirely in
hardware and should give better performance. This works because MSI are signalled in the same
way as memory writes in PCIe. These memory writes can go across the NTB and to the chipset
of the host where it will generate an interrupt for the CPU as illustrated in figure 4.2. MSI is
configured in the configuration space of the device. This includes the address to which the write
is performed. Since we have already hooked the accesses to the configuration space, we can
intercept this easily. By mapping the address required to generate interrupts on the loaner host
and using the mapped address as the interrupt address, the interrupts will be delivered across
the NTB. This technique will not work for either MSI-X or legacy interrupts. Legacy interrupts
because they are not memory accesses and cannot be transferred across the NTB and MSI-X
because we are unable to intercept the addresses used. This is because the addresses used by
MSI-X are placed in a BAR and are direct MMIO operations. Support for legacy interrupts
would need to be implemented using our first technique. MSI-X could however be supported
by a hybrid approach where the interrupt setup was hooked so that we could change the address,
but still directly delivered across the NTB.

4.7 Device initiated DMA

In the same way that the host can access a device’s mapped memory, by issuing TLP
memory read and write, devices can also access the host’s memory. The target address can
be anything within the address space of the device, the bus physical address space. The RAM is
normally located within this address space. In addition, all other devices are normally within the
same address space. This means that the device should be able to access the BAR areas of other
devices as well. When the device is located in another host as in our case, it will have access
to a different machine’s address space. This includes this machines RAM and other devices
MMIO areas.

Take a look at figure 4.3. On the left side, the device is local. When the driver use the
DMA API, the dma address it gets will be the address that hits the correct buffer in RAM in the
devices address space. On the right side however, the device is in another hosts address space.
The driver is on Host A. Consider a buffer the driver has allocated in RAM. It’s bus physical
address on host A is 0x1000. The driver gives this address to device: "Read address 0x1000 -
0x1100." When the device reads this address, it will be within the address space of host B, not
host A. Obviously this pointer will point to something else here. For correct device operation,
the device and driver needs to know of the difference in address space or we need to translate
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Figure 4.3: A device accesses a buffer in RAM. On the left the device is attached locally. On
the right, the device is in another host and the device is in another address space.
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/*
* A dma_addr_t can hold any valid DMA or bus address for the platform.

* It can be given to a device to use as a DMA source or target. A CPU cannot

* reference a dma_addr_t directly because there may be translation between

* its physical address space and the bus address space.

*/
struct dma_map_ops {

void* (*alloc)(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs);

void (*free)(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs);

int (*mmap)(struct device *, struct vm_area_struct *,
void *, dma_addr_t, size_t, struct dma_attrs *attrs);

int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
dma_addr_t, size_t, struct dma_attrs *attrs);

dma_addr_t (*map_page)(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs);

void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
struct dma_attrs *attrs);

int (*map_sg)(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
struct dma_attrs *attrs);

void (*unmap_sg)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir,
struct dma_attrs *attrs);

void (*sync_single_for_cpu)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir);

void (*sync_single_for_device)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir);

void (*sync_sg_for_cpu)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);

void (*sync_sg_for_device)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);

int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);

int (*dma_supported)(struct device *dev, u64 mask);

int (*set_dma_mask)(struct device *dev, u64 mask);

#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
u64 (*get_required_mask)(struct device *dev);

#endif

int is_phys;
};

Code snippet 4.4: The dma_ops structure
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the addresses somehow. For the memory operations from the device to reach the driver-side
host, they will need to cross the NTB. For this to work correctly, NTB mapping must be set up
in the same manner as when mapping the BAR areas, only in the reverse direction.

The DMA API will call the function get_dma_ops(dev) to get the core DMA im-
plementation for a given device. The function returns a struct dma_map_ops which
we have included in code snippet 4.4. This function is platform specific and on some
platforms it may return the same for all devices. The kernel includes a default imple-
mentation of the dma_map_ops called nommu_ops. It will use other platform depend-
ant functions to convert to and from virtual address space, but will assume there is no
IOMMU. On x86 get_dma_ops can return a per-device dma_map_ops if the kernel com-
pilation time configuration CONFIG_X86_DEV_DMA_OPS is set. If so, the function returns
dev->archdata.dma_ops. dev->archdata is a platform dependant structure stored in all
devices. On x86 we can provide our own implementation of the DMA API on our virtual devices
by changing this member. When the device is injected, this is changed to our own version of
the struct that implements the functionality required for correct operation across the NTB link.
We will now go through the various operations in this struct that we implemented.

4.7.1 Allocation of coherent DMA buffers
The alloc funtion in the DMA API allows a driver to allocate memory that the device can DMA
to and from by returning both a virtual address for the CPU, and a dma_addr_t address for
the device. The trivial solution to allocating DMA-able buffers would be to wrap the original
dma_ops implementation and map the resulting buffer with the NTB so that it is usable by the
device. However, this is very inefficient as drivers often allocates multiple small buffers (around
4KB), but the NTB is not well suited for this. This is because he original allocator spreads out
the allocations over a large area. The result is that when we map this, the Dolphin driver has
to use one NTB page per allocation. Depending of the configuration of the BAR size on the
NTB, each page will take multiple mega bytes. If the BAR size is configured to be 1024MB,
each page will map 32 consecutive MB. This is clearly wasteful. In addition, the NTB is only
capable of mapping around 20 pages so we will quickly run out and be unable to map any more
memory.

To better utilize the mapping resources, we should allocate the DMA buffers inside a single
page. We do this by implementing a memory pool allocator that find an available space within
an already mapped pool. As long as the drivers do not allocate a lot of DMA buffers, we can fit
all of it within a single NTB page. Ideally this pool should be an integer multiple of the NTB’s
page size. When the mapping is connected, we get the address to the pool from the device-side.
Any address inside the pool can be calculated from both sides by adding the same offset to both
addresses.

Our initial pool implementation is extremely simple allowing for only the minimal amount
of recycling of memory. Space for a new allocation was always placed after the last allocation
and counter is incremented. When a buffer is deallocated, the counter is decremented. When
the counter reaches zero, all allocations had been freed and the next buffer to be next buffer
pointer was reset to the start of the pool. Obviously this algorithm had a lot of weaknesses.
First of all, it was unable to free any memory at all unless all was freed. This saved us much
complex book keeping and made the allocator very simple. Depending on the allocation patters
of the driver, however, it could easily be unable to allocate more even with lots of free space.
A simple enhancement that still kept the book keeping to a minimum was a stack-like model.
A check was added in the free operation. If the buffer to be freed was the same as the last
allocated, the next pointer could be moved back to the same pointer given to the free operation.
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/* We get the local io address of the area to be mapped by calling the
original DMA implementation. */

dma_addr_t local_bus_addr = orig_impl(size);

/* We map this area using the NTB software. */
handle = map_area(local_bus_addr, size);

/* The other side also needs to connect to this map and sends us its local
io address which will be our remote io address. */

dma_addr_t remote_bus_addr = request_remote_to_map(handle);

/* This address is the one the device driver orders the device to use. It
is only valid from the device-side */

return remote_bus_addr;

Code snippet 4.5: Hooking the DMA API

For drivers that always free their allocations in the reverse allocation order this is sufficient.
A more intelligent allocation algorithm was not developed as it was not necessary at the time.
Most drivers only allocate a small number of static buffers at device initialization and free them
at de-initialization. A driver that dynamically allocates and deallocates and not in the order
required by our stupid algorithm to reclaim it will quickly run out of space. To tackle this a
better algorithm is required. There are many requirements to such an algorithm. Among the
important ones are the fact that it should avoid fragmenting the pool. The memory allocator in
Linux is very capable and could serve as a reference implementation. We believe however that
fragmentation would not be a huge problem as the drivers we have seen often only allocate only
a few equally sized buffers.

4.7.2 Streaming mappings

Streaming mappings allow an already allocated memory buffer to be directly accessed by a
device. The alternative would be to copy the contents of the buffer to a dedicated DMA buffer.

Streaming DMA is implemented by the map_ / unmap_ functions in the dma_map_ops

structure. The map page variant maps a single physically contigous memory range. Since
virtual memory ranges may not be physically contigous, there is also a scatter-gather (SG)
variant. Both variants return a dma_addr_t type address, or a list of such addresses in the case
of the SG variant. These addresses are in the address space of the device.

When we hook these mapping functions, we will wrap the original implementation and
return an NTB mapped address as shown in snippet 4.5. The dma_addr_t we get as result
from the original DMA core call is the addresses we need to map. This is very similar to
mapping the device’s BARs, only the other direction. The Dolphin driver’s genif interface will
be used to create this mapping. After the mapping is created, the device-host must connect to it.
The device side host will also be able to fetch the bus address of the mapping after connecting
to it. This address is the one the driver must tell the device to use. This address cannot be known
on the driver-side. Because of this, we must communicate with the device-host when setting up
streaming mappings. In addition to acquiring the bus address, we must also wait for the other
host to connect before returning. This is to ensure that the mapping window is set up before the
device starts any transfer.
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Figure 4.4: Bounce buffer mapped with NTB

The other host may take some time in responding to the mapping request. This can be a
performance issue depending on the time this takes and how often new mappings are set up.
Since the other side is a user space process, we can expect some additional delays from context
switches, scheduling and so on. Not only can this be bad for performance reasons for the
device interaction, but it can affect system wide response time since we might be in an interrupt
context, this is covered in more detail in section 4.7.4.

Each single mapping will need its own entry in the NTB mapping table and since the number
of mappings are fairly limited, this can become a problem. Multiple mappings which are near
in physical memory can be mapped by a single NTB mapping entry. When a new mapping is
requested by a driver, we check if the area is already mapped. If so, the mapping can be reused.
To ensure that this mapping is not tore down before all users have freed their buffers, each
mapping has a reference count. This also has the added benefit of not needing to communicate
with the other host to set up a new mapping all the time and can improve performance as well
as conserve mapping resources. Still, in the worst case scenario, where each mapped area is far
apart in physical memory, one mapping entry is needed per mapped area.

The scatter-gather variant in particular will spend a lot of pages to map. It is possible that
we will be unable to meet the demands of a driver or for there to be very high contention on
the mapping resources. When we are unable to perform a map we can return 0x0 to indicate an
error. The DMA API encourages drivers to retry later in case of failure as this is likely due to a
temporary problem. In our case however, when a mapping request can never be completed due
to the demands being above the capabilities of the NTB, we have no way to report this. A driver
might keep retrying forever, hanging the system. The swiotlb DMA implementation described
in the next section also faces this problem in addition to drivers that simply ignore the error
code. It circumvents this by returning a pointer to an emergency pool or simply issuing a kernel
panic [1]:

Ran out of IOMMU space for this operation. This is very bad. Unfortu-
nately the drivers cannot handle this operation properly unless they check for
dma_mapping_error (most don’t). When the mapping is small enough return
a static buffer to limit the damage, or panic when the transfer is too big.

Bounce buffer

Since we had limited mapping resources we looked for alternative solutions. We considered
the bounce buffers used for 32-bit devices. The same bounce buffer technique can be used
to place all streaming mapped memory areas within the bounds of a single NTB mapping as
illustrated in figure 4.4. The bounce buffer in the Linux kernel is implemented in swiotlb.c
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Figure 4.5: Streaming DMA with a bounce-buffer on the other machine.

as a DMA API implementation. Looking at this code, we determined that it keeps a pool
that all mappings are placed in that is 64MB by default. We can map this entire area within
two mappings. This can greatly reduce the number of mapping entries required. To utilize
swiotlb, we need to make sure that it handles all mappings and allocations. We first thought
that simply using it’s DMA core implementation would be sufficient. However, upon closer
inspection, we discovered that it does not use the bounce buffer unless it needs to because the
device is unable to address the original mapping. Because of this, we need a way to force it
to use bounce buffers for our device always. A bootflag, swiotlb=force, causes bounce
buffers to be used for all DMA operations on the host, always. This is obviously not ideal since
bounce buffers have a performance penalty. Another way is to mark our remote device as not
64-bit capable (although the NTB is 64-bit capable and allows a 32-bit device to access memory
above 32-bit). This will force bounce buffers to be used when a memory map is requested above
the 32-bit limit, but not if the buffer is already below this limit. Still, the later is probably the
best choice. The final alternative is to modify swiotlb or copy it’s functionality into our kernel
module.

By default on x86 systems with no IOMMU, swiotlb is used. Our implementation so far,
that wraps the default DMA core implementation will use swiotbl in this case. Combined
with the merging of overlapping mappings and reference counting no additional modifications
to the implementation is needed. To guarantee that the mappings cover the entire bounce buffer,
we map the memory area used by swiotbl in the initialization of our kernel module. Using
bounce buffers also eliminates the need for communication with the remote host each time a
new streaming mapping is needed, at least as long as the bounce buffer is used.

Unfortunately, the performance reductions for bounce buffers can be a problem. Since
each buffer now has to be copied at least once. Possibly since this implementation would
not have to communicate with the other host when setting up new mappings, the performance
penalty of copying can be outweighed by the performance loss of the required communication.
This especially applies to driver that create new mappings all the time, for instance when
performing DMA directly from a device to a user space buffer. Possibly, a mix can be used.
For instance when mapping resources have run out, our DMA implementation can switch from
direct mappings to using bounce buffers.

Cross machine bounce buffer

The bounce buffer technique will still require at least one mapping. We have however, also
considered a streaming DMA that requires no NTB mapping resources. The idea was to create
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a bounce buffer, but creating the bounce buffer on the remote host instead as seen in figure 4.5.
When the buffers are synchronized, the data is transmitted to the buffer on the other host. This
synchronization can be done using the DMA engine on the NTB, or even network access.

When a driver allocates or maps a memory buffer, an identically sized buffer will need to
be created on the device side host. The pointer to the device-side buffer will be given to the
driver as the DMA address. This will cause the device to read the buffer in the RAM of the host
its connected to. This buffer needs to be kept synchronized with the buffer on the driver side
host. The DMA API features synchronization functions used with streaming DMA mappings
as explain in section 3.2.4. Like the rest of the DMA API functions, the sync functions are
implemented in the dma_map_ops, see code snippet 4.4. These functions allow a driver to tell
the kernel when to synchronize the bounce buffer.

In the sync_x_for_device functions, the buffer on the driver side must be copied to the
device-side buffer and in the sync_x_for_cpu functions, the buffer must be copied from the
device-side buffer to the driver-side buffer. In the synchronization hooks, a copy from one
to the other buffer will need to be started and completed before the function returns. This
synchronization can be problematic as it can take some time. To transfer the buffer, the DMA
engine on the NTB device can be used, but we can just as well use PIO from the CPU since we
need to wait for the transfer anyway. Using PIO also has the advantage of not having to call any
Dolphin functions that might not be interrupt safe (more in section 4.7.4).

4.7.3 Utilizing an IOMMU for increased mapping granularity
A typical IOMMU has a much higher granularity than an NTB and it’s capable of a much larger
number of pages. A way to simplify the mapping is to utilize an IOMMU on the lender side
and use it to improve upon the mapping capabilities of the NTB. Combined, the two can allow
us to get rid of the pool allocator as well as greatly improve the streaming mappings. We have
identified two ways for us to utilize an IOMMU to increase the granularity and total number of
mappings. The first is to use the DMA core implementation for the IOMMU present. The other
is to do our own mapping.

In much the same way as swiotbl can be used to decrease the amount of mappings
required, an IOMMU DMA implementation can fit more memory in the same amount of NTB
mapping area. Since we wrap the current DMA core already, using our implementation on a
system with IOMMU enabled can possibly improve the mapping issues without any further
changes. The reason for this is that the IOMMU core can make the bus addresses closer to each
other and merge SG mappings into a single, large, contiguous memory segment. It would also
be beneficial to us if the bus addresses from the IOMMU mappings are placed close to each
other since we also allow an NTB mapping to be reused if an overlap is detected. We have
investigated the behaviour of the Intel IOMMU DMA core implementation to see if any of our
hopes holds true. First of all, we discovered that like swiotlb, the IOMMU core will only
remap if a device is not 64-bit capable. This can however be overridden using the boot option
iommu=force. Also, unlike with bounce buffer, an IOMMU should have substantially lower
overhead, so this might be a viable option. Depending on how the IOMMU core places the
remapped memory , all mappings can now end up very close to each other and save us multiple
mappings. If this holds true, our solution can be substantially improved simply by enabling the
required features. An optimization to this would be to pre-map the area the IOMMU used for
remapping to get a full coverage in the least possible NTB mappings. If we don’t do this, the
first mapping inside this area can be reused later, but it would probably not start at the start of
the remap area but some offset into it.

A different alternative is to use the IOMMU API to set up our own mappings. Compared
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dma_addr_t map_area(dma_addr_t local_cpu_addr, size_t size) {
dma_addr_t remote_io_addr;
dma_addr_t local_io_addr;
uint64_t pool_offset;

/* IOMMU is programmed to translate memory requests between

* local_cpu_addr and local_io_addr

*/
pool_offset = pool_map_chunk(local_cpu_addr, size);

/* This is the address used by the device on the other side

* of the NTB link. It is calculated from the address of the

* previously set up NTB mapping.

*/
remote_io_addr = pool_remote_io_start + pool_offset;

/* This address is the one emited from the NTB on the local

* side. We don’t really need this.

*/
local_io_addr = pool_local_io_start + pool_offset;

return remote_io_addr;
}

Code snippet 4.6: Create mapping using IOMMU

to the previous idea, this is far more work. The idea is to directly improve the Dolphin driver
ability to map arbitrary memory areas over the NTB using an IOMMU if available. This can
also be built on top of the Dolphin driver. First, a single NTB map is set up and the address
it translates to is mapped with the IOMMU and set to unavailable or denied. This area serves
as our mapping pool. When a new mapping is created, it is consumed from this pool. The
offset into the pool can be used to calculate the correct remote bus address and the IOMMU is
used to map this chunk of the pool to the desired address. The permissions also need to be set
at this point. To find an available chunk in our pool, we can either use something extremely
simplistic as our coherent DMA buffer allocator, or something more involved like the Linux
kernel memory management (buddy allocator).

The allocator should be aware of the remaining space, preferably taking fragmentation and
such into account. When it’s running low on space, a new pool can be allocated by creating
a new NTB mapping. In the same way, an entire pool should be freed when there are no
allocations in it and another pool has sufficient space. Since we cannot move allocations, we
need to be smart about where the allocations are placed if we want to be able to free a pool
while the system is running or we risk there always being an allocation in every pool.

Our wrapper function need to use the nommu DMA core so that we don’t end up mapping the
area with the IOMMU twice. Similar to our previous implementation, we map the result address
using our new IOMMU based mapper instead. The return value from this can be return from the
wrapper. This applies to map_page, map_sg as well as alloc. Mapping an already existing
memory area should be as simple as seen in code snippet 4.6. There are clear advantages to this
approach. If it’s implemented in the Dolphin driver, other applications can also benefit from it.
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4.7.4 Interrupt context considerations
While developing we discovered that some of the functions we hooked could be called from
interrupt contexts. This happens when the function is called either directly or indirectly from an
interrupt handler. We first noticed this with the dma_unmap_sg function. A device driver we
tested with mapped a memory area and started a DMA transfer. When the transfer was done,
the device fired an interrupt. The drivers interrupt handler in turn called the unmap function to
clean up the mapping for the completed transfer. We assume that the other wrapped functions
in addition to the pci_ops functions also can be called from a interrupt context.

A function that is called in an interrupt context has quite a few limitations on what it can do
according to "Linux Device Drivers" [8]:

• Cannot interact with user space

• Must return quickly

• Cannot invoke the scheduler

Interacting with user space is not something we are interested it, so this should not be a problem.
The two other requirements however, are.

There are multiple ways to enter the scheduler in addition to simply calling schedule and
all of them need to be avoided in an interrupt context. This of course includes any external
function called inside the interrupt context. Sometimes, which functions end up scheduling
can be surprising. Among them are any function that uses locks as the lock will call schedule
if the lock is taken. This does not apply to spinlocks. One perhaps unexpected place to find
a reschedule is the memory allocation functions. Unless the flag GFP_ATOMIC is specified,
kernel allocator such as kmalloc might schedule to acquire the memory. Unfortunately, most
functions do not have an atomic flag. This includes all networking and disk IO. Because of this,
any function call we make needs to be examined so that we can be sure they do not schedule.

The wrappers in our implementation can be accessed concurrently. To protect our data
structures from concurrent access some form of mutual exclusion or atomic access is required.
Since we cannot schedule, normal locks cannot be used. Because of this, we need to use
spinlocks. Since we do not know, for any given call, if we are in an interrupt context or not, we
need to use the spinlock functions spin_lock_irqsave and spin_unlock_irqrestore

instead of the plain spin_lock and spin_unlock. These functions will save the current state
of interrupts so that the release function only re-enables interrupts if it was enabled when the
spinlock was locked.

While a spinlock is taken, we need to make sure that we don’t re-enable interrupts, attempt
to re-enter the lock or otherwise cause the spinlock to fail. In the same way as we need to look
for schedule in functions we call, we also need to avoid functions that re-enable interrupts, for
instance by calling spin_unlock on it’s own spinlock. Since the spinlock disables interrupts
we want to avoid holding it for a long period of time. This is also an argument for minimizing
the area protected by the spinlock.

We need to communicate in multiple of our wrapper functions. We started off doing the
communication using TCP, but the socket API is however, not atomic and we cannot use it when
we are in an atomic context. Theoretically, if we could detect that we were in an atomic context,
we could attempt to queue operations or similar, but there is no way to know this for sure. In
addition, there are some of our wrappers that need to wait for the response from the other side
before it can return. In some of them, we have found no other way out either. Because of this,
we needed to create a communication channel that was atomic. Still, the problem remains that
the interrupt handler should be quick. This can be a problem, depending on how long the other
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machine takes to answer. We should attempt to minimize this by ensuring that the messages
themselves are delivered quickly. We should also do our best to ensure that the daemon on
the other side answers quickly. Finally, in the event that no answer comes due to for instance
communication error or that the program crashed, we need to time out and fail gracefully. This
is very important as these functions can be called deep in the kernel.

4.8 Shared memory based communication channel
Since network now was out of the question, we either needed a communication channel that
can be used in atomic contexts, or we needed to avoid communicating. We however realized
that in some cases communication was absolutely necessary. One example of this is when MSI
configuration registers are written to. When this happens, the write needs to be directed to
the physical device for correct operation. We also believe that queueing such a write can be
problematic as we suspect this to cause race conditions when the caller expects the device to
behave as if the the write is complete when the function returns.

Using the NTB to get the message itself across we could either use DMA or mapped
memory. Since the messages are very small (< 100 bytes), we decided to use mapped memory.
To save mapping resources, the message buffer is placed in the same pool as the coherent DMA
buffers.

The communication channel follows a request-response pattern. When the host wants to
send a request it will write the message contents to a buffer located in its own memory. A
request-id is also part of this message. This request-id is incremented each time a new request
is made. The other host will respond by writing to another buffer in the first hosts memory.
When done, it will copy a request-id from the request into the response buffer. This allows the
requester to spin on the id in the response and immediately react when the response is written.
A simplified version of this can be seen in code listing 4.7. The communication channel cannot
be used concurrently and must be protected by a lock. To keep the channel interrupt safe, a
spinlock must be used. The communication channel also have a simple timeout mechanism. If
the timer runs out, we will treat it as an error and report it as such. This timeout is very short to
avoid potentially blocking an interrupt handler for too long.

The SISCI API has the ability to send interrupts across hosts to another SISCI application.
This allowed us to quickly alert the other host that we need to communicate. This is
implemented by a function in the Dolphin driver. For us to use the interrupt capability, this
function would need to be atomic. We should probably look through the function and the
function it calls to verify this. However, a simple test seems to indicate that the function is
atomic. If for whatever reason the function behaves in a non-atomic way, we could do without
it by having the client spinning for ever. When the host receives the interrupt, the user space
program needs to be notified. This can involve a context switch to the process and can take
some time compared to the interrupt itself. If the time from the interrupt is fired to the interrupt
handler is run is long, the spinning variant can be faster. However, the spinning variant will
occupy one CPU core of the device-host. A hybrid approach, which we implemented, might
be a good compromise: Each time an interrupt is received, the client runs in a loop waiting for
additional messages for a while before returning.

When the client detects a new request, it will read the other hosts shared memory to find the
request type and its parameters. When the response is ready, the client writes the response to the
response buffer in the server’s memory. To signal the completion of the request, the request-id
is copied from the request to the response. This is the final step and indicates that the server can
now read the response. A simplified version of the interrupt handler in the client can be seen in
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//Prepare message
request->msg = 42;
request->id = global_id++;

send_interrupt();

//Wait for the other host to respond
while(response->id != request->id) {

/* Send once in a while, in case an interrupt is lost.

* Not so often as to storm the other machine and

* cause slowdown

*/
send_interrupt();

}

//We have the result
result = response->msg;

Code snippet 4.7: Our simple shared memory based communcation channel algorithm

void handle_interrupt() {
if(request->id != response->id) {

do_stuff();
response->id = request->id;

}
return;

}

Code snippet 4.8: The client of the shared memory based communcation channel

code snippet 4.8.

4.9 Device owner daemon
The host that wants to share one of its devices need to provide a few services to the loaner. In
our implementation these services are implemented by a user space daemon.

We want to give the loaner kernel access to the devices configuration space. This it vital
for a lot of reasons, including identifying the device type and other vital information. It is also
vital in setting up the device. On the other hand, there are parts of the configuration space that
can disrupt or even adversely affect the owner host. Some of these registers the Linux kernel
will write to under normal circumstances to configure the device. One example are the BAR
registers. When the kernel on the loaner host discovers our virtual device, it can attempt to
write to the BAR registers to configure it to be within its own windows. However, any such
address would not be valid within the other host and even if they where, it would disrupt the
mappings. We need to prevent this from happening. In some cases we can bypass parts of the
kernel to prevent it, but at other parts of the kernel we have no choice. In addition, the kernel
will frequently read back the previously written registers to confirm that it succeeded. We need
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to allow the kernel to believe it has access to these registers and to emulate it in such a way that
the kernel will not detect it.

Our first take on this problem was to have an in-RAM copy of the configuration space and
have the configuration space accesses redirected to this. The accesses we needed the user to
be able to physically modify on the device we passed on to the device in addition. Access
to the configuration space is exposed as a file to user space programs in Linux. It was fairly
easy to implement a first version of this solution. After a while however, we saw that correctly
implementing this can be hard. To do this we need to understand all the different PCIe capability
registers and emulate anything we can’t allow. Fortunately for us, we discovered that the VFIO
interface does this. The capabilities of VFIO is described in more details in 3.4.1.

Since VFIO is designed for use in virtual machines, user space drivers and not "bare metal"
use, it has some short comings that we need to circumvent. The first we discovered was that
VFIO virtualizes parts of the MSI capability and completely circumvents it as interrupts are still
delivered through the Linux kernel. There is a separate interface for controlling interrupts. This
means that for some of our accesses, we need to use another access method than VFIO.

While VFIO has the capability to provide us with increased isolation and better handling
of configuration space accesses in general, the need for special handling would have increased
the complexity of our proof of concept implementation. Because of this we decided to not
implement VFIO support.

Drivers and devices will not be expecting multiple hosts to access the same device at the
same time. As we have already stated, this is outside our mission statement. The exception to
this, SR-IOV devices, are regarded as separate devices and will get no special treatment. To
enforce this, the daemon must always know which other host, if any, is currently using a device.
Before loaning the device to another host, it needs to disconnect the device from the current
user. The current user can also be the local host. The best way for it to prevent the local kernel
from interfering with the device is to unbind any currently bound driver from the device and
bind a shim driver. The shim driver will prevent another driver from binding to the device. This
is the same method used by VFIO and is required before the VFIO interface can be used on a
device.

One of our user space daemons will be spawned per device that is exported over the NTB
link. When started, it should unbind the driver that has currently bounded to the device and
bind a shim driver instead. This ensures that the local host will not use the device concurrently
with a remote host. To ensure that only one remote accesses the device a the same time, the
daemon will only accept a single connection. The current implementation does not unbind the
host driver or attempt to prevent the host from concurrently using the device. This should be
implemented, when the solution gets closer to being finished.

Providing the other host with access to the device’s BARs is done using the SISCI API.
The API allows us to expose the BAR areas over the NTB. The daemon also provides a reverse
mapping service to the loaner. This will allow the loaner to map parts of its own memory and
make it available for the device. This is used to allow device-to-host DMA and MSI interrupts.
Upon a request, the daemon will connect to the memory mapped by the other host. It will return
the local bus address to this mapping. This is important as this is the address is the one the
device must use to reach the mapped memory. This is used when the driver orders the device to
perform DMA.
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4.10 Modifications to the Dolphin driver

During our work, we encountered some issues with the Dolphin software stack. The first was the
we were unable to create more than 4 mappings. This became an issue with devices with more
than 4 MMIO BARs. Multiple DMA buffers and SG-lists were also a problem. This limitation
was due to a feature of the Dolphin stack conflicting with our arbitrary mappings. The other
issue was that the device drivers and the Dolphin driver both reserved the same memory region.
This is because we map the remote devices’ BARs through the BARs of the NTB. We also
encountered issues with the ioremap attributes due to the double mappings of the BARs.

4.10.1 Lacking mapping resources

As explained in chapter 2, an NTB has a limited number of possible simultaneous mappings.
To account for this, the Dolphin software will place multiple segments in a single mapping. To
do this, a pre allocated buffer in memory will be mapped. This means that some of the mapping
resources are already consumed before any user mappings are created. The remaining mappings
are called "on demand" mappings. This number can be edited in a compile time constant.
This was necessary to have enough mappings for our purposes. In addition, the largest single
mapping as well as the total mappable size is governed by the BAR size configured for the NTB.
For some of the devices with large bar areas we need to increase the BAR size of the NTB to
fit all mappings within it. This can be configured up to 1024 MB with a Dolphin supplied tool.
The NTB hardware itself has the ability to go above this, but this also requires modifications to
the dolphin driver. We were able to make this minor modification. Unfortunately the platform
firmware for the machines we tested this on where unable to allocate BARs larger than 1024MB.
We speculated that this was because the BAR was 32 bit, and that the space below the 4GB 32-
bit limit was too crowded. We made some attempt to mark the BAR as 64 bit by modifying he
EEPROM of the NTB device. Unfortunately, we could not get this to work either. At this point
we gave up increasing the BAR size at it was not critical for all but a few devices. The reason
for the 64-bit change not working can possibly be that the machine we tested always allocated
all BARs bellow 4GB for some reason or simply could not handle such large BARs (it’s fairly
uncommon for BARs to exceed 256MB for compatibility reasons ). One way to circumvent
this for mapping large areas is to use multiple mapping entries. However, because of how the
Dolphin driver works, we have no control over if the segments are mapped as contiguous as we
need them to be. If they are not, we cannot use it.

4.10.2 Reserved memory regions and ioremap attributes

Before using ioremap to get access to an MMIO area, drivers and the kernel itself will call one
of the request_mem_region functions. This function is a service provided by the kernel to
ensure that there is no concurrent access to the same area. The call will return a value indicating
if access was granted or if this area has already been reserved. If it fails, access to the area is
forbidden, but there is nothing preventing the driver from accessing the area anyway.

Areas mapped with the NTB are inside the BAR of the NTB. The Dolphin driver will map
it’s own BAR when the driver is loaded and it calls ioremap. After we have created our own
mappings, the driver for the remote device will also call request_mem_region. Since this
area is overlapping, the call will fail.

To avoid this, either the device driver or the NTB driver will need to avoid reserving the
region. Since we aim to use unmodified device drivers, we will modify the Dolphin driver to
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avoid reserving the region. A more clean solution would be to have the Dolphin driver reserve
the regions it actually accesses or uses, not the regions which are only mapped.

In addition to reserving the memory region of the BAR, the Dolphin driver will ioremap
the entire BAR. There are multiple flags that can be used for an ioremap-ed area. They control
caching, write combining and other attributes that affect the data flow from the CPU to the
area. See 2.8 and 3.2.3 for more details. The Dolphin driver enables write combining for the
entire BAR meaning that all mapped memory will have this enabled. This causes issues when
used with MMIO to non-prefetchable BARs as writes and reads can be merged and re-ordered.
Our experiences with this is detailed in section 5.1. To work around this problem, we modified
the Dolphin driver to not enable write combining. This is far from the ideal solution as this
negatively affects performance. It also does not change the fact that the same area is mapped
in both the Dolphin driver and the device driver, leading to aliasing. Intel strongly discourages
this [12]. Ideally, the Dolphin driver should only ioremap the areas it needs access to, or that’s
mapped to user space. In addition, at this point, the attributes needed might be more known. For
instance write combining might not always be desired. This would however mean significant
modifications to the Dolphin driver, something which is definitely outside the scope of this
thesis.

4.11 Usage
The Linux kernel provides a sysfs interface for controlling PCIe devices. It can be used to
remove a device in the same way as a hotplug event. Our implementation should support the
same remove command, but should in addition respond to hotplug events from the NTB link
as well as other errors. Error handling from the NTB is not yet implemented, but most of
the drivers we tested with noticed the error itself due to the communications with the device
stopping.

To make a device available to a remote, a user will start the device sharing daemon,
specifying the device in an argument. On the remote host, the IP and port of the daemon must
be specified. This is done by writing to a sysfs file made available when the kernel module is
loaded. After this, the device will be available on the remote host. The daemon must be kept
running while the device is in use. When the daemon exits, connection to the device is severed.
When the control of the device should return to the owner, either the daemon is exited or the
sysfs remove is used on the loaner host.

4.12 Chapter summary
This chapter first described what we researched and learned before we arrived at the NTB based
solution. Later, our device lending design was described as multiple functionalities, some of
which we have implemented. Our current implementation, based on this design , provides the
necessary functionalities to allow for our device lending. However, some problems still remain
including non-atomic Dolphin functions and lacking mapping resources. We believe, that both
can be solved by using an IOMMU as explained in section 4.7.3. The next chapter goes into the
details of the problems we faced with both earlier implementation as well as the final one.



Chapter 5

Evaluation and Discussion

To debug our implementation while developing we used a number of test devices and these
devices also allowed us to validate the correctness of our implementation and evaluate its
performance. While debugging, we mainly wanted devices where it would be relatively simple
to understand the interaction between the driver and the device. Because of this, we also
favoured devices with open source drivers in the Linux kernel. These devices were used to both
trigger any bugs and shortages in our implementation as well as allowing us to clearly verify
correct operation. For benchmarking the performance of remote device access, we needed
devices where we could design an easily reproducible procedure that we could use to quantify
the performance.

The table 5.1 show the devices we used and how well suited we believe they are for
debugging, validation and benchmarking as well as the complexity of the driver and the
interaction with the device. We have also created a table 5.2 that show the features used by
each device/driver in our implementation.

5.1 Intel HDA audio codec
The Intel HDA audio codec is well suited for testing and validation. It has an open source
driver in the Linux kernel and the device specification is available [10]. This enables us to
better understand the driver as well as the actions performed by the device. Finally, a standard
user space program can be used to play audio and we can verify the audio output from the
device.

5.1.1 Device-driver interface

The device has a single non-prefetchable BAR that contains various device registers. The device
has support for both legacy interrupt and MSI, but only MSI will be used by the driver. Finally,

Device driver complexity debugging validation performance
HDA audio codec ALSA low 3 3

Intel Ethernet card Linux kernel medium 3 3 3

NVME SSD Linux kernel medium 3 3 3

Nvidia GPU noveau high 3 3 3

Nvidia GPU CUDA closed very high 3 3

Table 5.1: The various devices we tested and our assessment of them
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Device non-prefetch BAR DMA alloc DMA map DMA SG map MSI
HDA audio codec 3 3 3

Intel Ethernet card 3 3 3 3

NVME SSD 3 3 3

Nvidia GPU 3 ? ? ? 3

Nvidia GPU CUDA 3 ? ? ? 3

Table 5.2: The features used by the various devices

the device has a DMA engine so that it can access the RAM of the host. The MMIO registers
in the BAR are specified in the Intel HDA codec specification [10]. In addition to the MMIO
device registers, commands are sent to the device in a set of ring buffers, CORB and RIRB. The
command ring buffers are present in host RAM and their addresses are programmed into device
registers. The device will directly access the ringbuffers using DMA. The driver and device will
communicate their progress in the ringbuffers by reading and writing to a device register. There
is also simpler command scheme referred to as "single command mode" in the Linux kernel
driver. It is intended for use by BIOS and not for normal operations.

5.1.2 Audio playback
When the device is handed to the driver by the device subsystem, the driver will start initializing
the device and set up communications. To do this, it will allocate DMA-buffers from the
Linux kernel using the DMA-API [7]. When this device is remotely accessed using our
implementation, this DMA allocation will end up in our DMA pool allocator described in
section 4.7.1. Our allocator will return a virtual address used by the driver and a bus address
used by the device. The bus address, when used from the device on the other host, will go
through the NTB and end up in the same CPU physical address as the virtual address. When
probing the driver will discover the device’s audio input and output streams. Each stream will
have a single Buffer Descriptor List (BDL) and multiple data buffers. These allocations will be
handled by our allocation in the same way as the ring buffers.

To initiate audio playback the driver will program a BDL to point to one or more of the
allocated data buffers. The audio data will be written into these buffers by the PCM library of
ALSA. In at least some cases, a user space program will be given direct access to these buffers.
This is the case with the tool speaker-test The driver will write the address and length of
the BDL into the device registers and start the playback by writing to another register.

At this point the device will read the BDL using the BDL address in its own registers. The
address of the first audio clip is stored in the BDL. Both of these addresses need to be bus
addresses that hit the same buffer as the virtual address used by the driver. In the remote case,
both should be bus addresses that go through the NTB and hit the other hosts buffers in RAM
from the devices perspective. When the device has completed playback of an entry in the BDL,
the device will issue an interrupt if the interrupt bit is set in the entry. To generate an interrupt,
the device will perform a write transaction to the address stored in the MSI capability’s address
field in the devices configuration space. In the remote case, this address should go through the
NTB and hit address 0xfeeXXXXX of the host using the device. The chipset, CPU and kernel
will deliver this interrupt to the device driver. The driver can use the interrupts to assess the
progress of the device. The device will also write its progress into a host allocated buffer called
the DMA position buffer. Alternatively, the driver can read the position from a set of device
registers. When the device reaches the end of the BDL it will loop back to index 0. While
the device progresses through the BDL, ALSA and/or the user space application will need to
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change the already played buffers to new audio data to create a continuous stream of audio.

5.1.3 Testing remote device access

Debuging the Intel HDA audio card lead to the correct implementation of multiple of the
functionalities described in chapter 4. Specifically, the device depended on device initiated
DMA for correct operation in addition to MSI interrupts. Before we started testing with this
device, we had no working implementation of device initiated DMA and testing this device
directly lead to the implementation of DMA buffer allocation feature described in 4.7.1 and
lead us to realize the need to disable WC as described in section 4.10.2.

When we started testing the implementation using this device, we saw that the driver was
unsuccessful in probing the device. To debug this, we enabled single command mode in the
driver. This was enough to get the driver to successfully probe the device. At this point, the
audio card showed up in user space programs such as alsamixer and we could change the
volume and see the various capabilities of the card. Since the ringbuffers depended on DMA
working, we suspected that our DMA allocator or mapping was broken.

When we attempted to run speaker-test, which should produce pink noise, we instead
heard mostly silence with short beeping noises. The output was repeating. We speculated that
what we were hearing was mostly zero bytes, with a few bytes here and there. This again caused
us to suspect our DMA code.

To debug this we dumped the BAR0 of the device, while speaker-test was running, to
examine the device registers. We did this both when using the device locally and remotely to
compare. We expected that the BDL address might be wrong, or that the device was somehow
unable to access the buffers. We examined the BDL address and the buffer it pointed to, and
both appeared to be correct. We also attempted to manually write the stream descriptor from
our dump from when the device was be used locally to the device while the remote host was
running speaker-test. This produced the correct sound. Careful comparison of the two
dumps revealed that, the BDL Last Valid Index (LVI) was set to zero when we used the device
remotely, but some non-zero value when used locally. We attempted to write the same value to
the register while the device was playing remotely, and correct sound was produced.

We found the function in the driver responsible for writing this register, see code snippet 5.1.
The driver was clearly writing a value to this register, so we inserted a print to see what value it
was writing. This caused the problem to go away, both audio playback and recording was now
working flawlessly. A sleep instead of the print also produced the same result. This suggested
some form of a race-condition. Our first theory was that this was because the registers were
in a non-prefetchable BAR, but the Dolphin driver had mapped this area through one of the
NTBs prefetchable BARs. We feared that this somehow cached some reads or writes, caused a
memory race or merged them into larger reads/writes. If this was the case, it would be hard to
fix as it would mean substantial changes to the Dolphin driver. To test our theory we modified
the driver and inserted a memory write barrier before the write to the register we had problems
with, see code snippet 5.1.

This fixed the issue and seemingly confirmed our fears. During a discussion with Dolphin
about this, it became clear that the Dolphin driver enables Write Combining for the entire BAR
region of the NTB. This could also cause similar issues. In particular the function in question
wrote two different values to the same register. Presumably this means that writing to this
register has some side effect, possibly enabling the writing of the other registers. With WC
enabled, the CPU might merge these writes into one. The order that the registers are written in
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static int azx_setup_controller(struct azx *chip, struct azx_dev *azx_dev)
{

azx_sd_writel(chip, azx_dev, SD_CTL, val);

wmb(); //Adding this fixed the issue

/* program the stream LVI (last valid index) of the BDL */
azx_sd_writew(chip, azx_dev, SD_LVI, azx_dev->frags - 1);

/* set the interrupt enable bits in the descriptor control register */
azx_sd_writel(chip, azx_dev, SD_CTL,

azx_sd_readl(chip, azx_dev, SD_CTL) | SD_INT_MASK);

return 0;
}

Code snippet 5.1: This method produced incorrect results for us with WC enabled. Most of
the function has been removed to reduce the noise. Notice that the SDL_CTL register is written
twice.

might also be important. When WC is enabled, the CPU provides very few guarantees about
the order the memory accesses occur in. For more information see section 2.8. To make matters
worse, the Intel X86 manual states that mapping the same physical area to more than one virtual
mapping is not recommended ("aliasing"). If the two mappings have different attributes, the
CPU behaviour was undefined. In our case, the Dolphin driver mapped the area with WC,
but the driver mapped the area without WC. A quick hack in the Dolphin driver allowed us to
disable WC for the entire BAR. This would decrease performance for various other users of the
NTB, but sufficed as a test. This not only fixed the audio playing issue, but also the problem we
had with the verb ring buffers.

5.1.4 Missing features
With the HDA audio card, both playback and recording works without any errors disernable to
us. This suggests that our implementation works and allows the driver and device to work as
though the device was local.

5.2 Non Volatile Memory Express SSD
NVME is a specification for PCIe based Solid State Disks. The specification [16] is open and
there is a driver implementation in the Linux kernel. It was clear to us from testing the HDA
audio codec that having access to both the driver and the specification was a huge benefit. This
was large part of the reason we chose to test and develop with a NVME SSD. If we could get
it to work, we would also be able to do some performance benchmarks. It would also be more
suited for validation than the sound card as a test that reads and writes to a disk and validates
the data is easy to create.

5.2.1 Device-driver interface
NVME SSDs have a single prefetchable BAR, supports both MSI-X and MSI and relies heavily
on DMA operations. We have not spent time with the details of the NVME specification, but we
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suspect that the driver programs requests into the device registers exposed by the BAR which
the device performs using DMA.

5.2.2 Testing device

The streaming DMA feature described in section 4.7.2 was implemented using the SSD as
it was the first to use this feature and it proved to be invaluable in the development of the
mapping code as it helped us uncover multiple oversights and bugs. Unlike the HDA audio
codec, which created static, long lived, DMA buffers, the NVME device driver rapidly mapped
and unmapped memory during operation. The rapid mapping and unmapping pushed our DMA
code to it’s limits and it was clear that our code presented a performance bottleneck. Not only
were the mappings frequent, but the driver unmapped memory in its interrupt handlers which
we were not prepared for at the time. This lead to the implementation of our shared memory
based communication channel described in section 4.8 as well as other interrupts context issues
we discovered described in section 4.7.4. Finally, the driver also created more mappings than
both we anticipated and the Dolphin driver supported. To solve this we had to modify the driver
as described in 4.10.1.

5.2.3 Missing features

Our DMA implementation is still not completely interrupt safe as we need to call Dolphin
software functions that are not interrupt safe. The Dolphin driver functions uses a non-atomic
lock which is a problem when the lock is taken and it attempts to sleep and schedule the system
in an interrupt context. We have not been able to avoid using all calls to these functions so this
problem still exists.

The results is that the NVME SSD works with our implementation, sometimes, but most of
the time, the kernel deadlocks or crashes before the disk can be used for anything useful. We
have however been able to mount a partition on the disk and successfully run ls at least once,
most of the time however, everything crashes before we are able to get this far. To solve this we
either need to make the Dolphin driver interrupt safe, or implement the IOMMU based mapping
described in section 4.7.3 which should be interrupt safe and also not require communication
with the other host which we expect greatly decreases performance.

5.3 Intel Ethernet NIC

Intel network cards are widely available and have an open source driver in the Linux kernel.
Compared to the audio codec it is however very complex, requires support for more features as
well as high performance.

5.3.1 Device-driver interface

The Intel Ethernet cards we experimented with had multiple BARs, some prefetchable and
others not. In addition, the cards supports both MSI-X and MSI, but the device driver for some
of the cards only supported MSI-X while others supported MSI as a fall back. The contents of
packets are transferred using DMA.
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5.3.2 Testing remote device access

The first network cards we tested with was at the very beginnings of our implementation when
we only supported configuration space accesses and MMIO register mappings. We were able
to validate that the MMIO mappings worked, but at this point we had neither DMA support
nor interrupts which is needed for correct operation. Only after both of these functions were
implemented did we go back to testing network cards. Before they were implemented however,
we debugged using the network card as it was the first device for which the driver loaded
successfully, even though the implementation was not complete. So although network traffic
did not work, the device showed up in user space interfaces such as ifconfig and it was
correctly identified by the driver. At this point we discovered the program ethtool which
has the ability to make a light on a NIC blink for easy identification. This feature worked
for a remotely accessed network card and since the only features we had implemented was
configuration space access and MMIO, it confirmed that the MMIO mappings were correct.

Later in the implementation, after implementing DMA, we discovered that the drivers for
network cards we had tested for only used MSI-X, which we do not yet support, but we later
found a network card where the driver used plain MSI. This was after testing the NVME SSD
as well as the audio card, so most features were implemented. The driver for this network card
however, required hundreds of small DMA mappings, far more than we had previously seen.
The need for this amount of mappings lead to the development of the merging feature described
in section 4.7.2 and the discussion on ways to increase the amount of mappings in section 4.7.3
and 4.7.2.

Even though we supported DMA, running ifconfig ethX up did not work as the
driver were unable to allocate enough buffers. We however noticed that the amount of mappings
required could be decreased by lowering the size of the ringbuffers for the device using
ethtool. We were however unable to lower the lengths enough for our mapping limit to
suffice, until we modified the driver to allow shorter queues. By lowering the queues to a length
of 8, instead of the default of 256, ifconfig ethX up completed successfully. There was
however a problem either sending or receiving frames (or both) as we were unable to ping any
machine and we suspected that the queues were to short. At this point we believed that we
needed to implement IOMMU based mapping to progress any further, but we were running
out of time. When we looked at the addresses that we mapped or attempted to map but failed,
we discovered that some of them are very close in memory. Since each NTB mapping always
maps a full NTB page, 32MB in our case, we realized that some of them could be covered by a
single mapping and that some of our current maps overlapped. We implemented functionality
for detecting and utilizing this and were able to increase the size of the queues and progress
without using an IOMMU.

5.3.3 Performance and validation

Our final implementation still had issues with the mappings and sometimes we were unable
to map enough buffers if the buffers were to far away from each other. We also experienced
very high packet loss which we suspect is due to failed mappings. We were however able to
perform some simple benchmarks. First, we used a ping test to measure the latency of packets
and compared it to the same device but used locally. Secondly, the tool iperf was used
to measure bandwidth and packet loss. This device, was like the NVME disk prone to crashes,
although a lot less. This, in addition to the issues we had with mappings caused the performance
benchmarks to be hard to consistently perform.

We were able to perform a ping to another machine directly connected by cable. With
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the device used locally, latency was around 0.25. When the device was accessed using our
implementation however, it increased to about 0.45. We expect that this is not due to the
latency incurred by the NTB, but the fact that the driver sets up new mappings for each packet
sent. Since our mapping functionality is far from optimized and might need to communicate
with the other host, we consider it a likely candidate for the increased latency. We also attempted
to use iperf to measure bandwidth, but this seemed to cause more issues than ping. The packet
loss varied from 0% to 100% and the bandwidth was at least sometimes in the order of tens of
KB/s. We expect this to be caused by the inefficient mapping as well as the dropped packets.

5.3.4 Missing features
The most pressing issue with the network cards tested were the lacking mappings that like
with the NVME SSD can be solved using an IOMMU. Hopefully, this can increase the
performance to same same level as when the device is used locally. In addition, a working
MSI-X implementation is needed for the more advanced network cards to function and we
suspect that support for MSI-X can also be implemented with the help of an IOMMU although
this is more uncertain.
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Chapter 6

Conclusion

6.1 Summary

Our goal with this thesis was to look at PCIe multi-root solutions and to create our own using
existing hardware. We started by looking at how PCIe works and existing multi-root solutions
to provide the necessary background information for us to argue the need for our software based
multi-root solution. After this we presented PCIe in the Linux kernel focusing on what is needed
as background for our implementation.

The design chapter started by summarizing the technologies we tested while learning about
the subject material. The design is described as a series of functionalities that is implemented as
well as ideas that did not end up in our final implementation. The design that is described solved
the main problem statement of this thesis by providing us with a working proof of concept.

6.2 Main Contributions

About half of the time spent on this thesis was used to familiarize ourselves with PCIe, Linux
and NTBs. Through this we have gained not only the knowledge required for solving our
problem statement but also general understanding of the Linux kernel and the PCIe architecture
as a whole. More directly related to the design, we learned a great deal about how PCIe devices
and their device-drivers communicate including MMIO, DMA and interrupts. Specifically we
have learned about the low-level details of the memory operations involved including address
spaces, caching systems and IOMMUs.

We believe that our device lending design provides a viable alternative to vendor multi-
root systems and MR-IOV. We have shown this by providing a working proof of concept that
provides the same functionalities as MR-IOV on most points and is superior in other areas. The
table 6.1, compares our solutions to the alternatives. Most importantly, our solution has modest
hardware requirements, especially if implemented using an Intel Xeon CPU with an NTB. The
theoretical performance of our design is very close to other native multi-root solutions such
as MR-IOV and locally attached devices. Our current implementation does not achieve such
performance, but we believe that some of the alternate designs, especially IOMMU, can close
this gap.
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MR-IOV NTB design NTB implementation
performance native native low
device sharing With MRA devices With SR-IOV devices 7

share upstream devices 7 3 3

unmodified drivers 3 3 3

unmodified applications 3 3 3

software required only for management 3 3

hardware required MRA Switch NTB / Xeon CPU Dolphin NTB

Table 6.1: Comparison of PCIe device pool schemes

6.3 Future work
We believe that the most important work remaining for our design is performance enhancements
as achieving near native performance is critical to the viability of our implementation. We also
need to test more devices to verify the correctness of our implementation. In addition to this,
there are some areas that require more research.

6.3.1 Multiple devices
One desired functionality that we did not implement or test is to have multiple devices remotely
accessed at the same time, either from one machine or multiple in a cluster. We believe that an
improved memory mapper is required for this to be feasible for most devices. The design itself
should have no problem with multiple devices and this should be fairly easy to implement once
the memory mapping has been improved.

6.3.2 SR-IOV device sharing
Sharing an SR-IOV device with multiple hosts has been shown to work [21] [22]. For us, the
issues with multiple devices apply for SR-IOV as well, at least if more than one virtual device
is desired. In addition, the only SR-IOV capable device we had access to was an Intel network
card. The driver for this card, however, only supported MSI-X so we could not use it. Once
MSI-X support is implemented, or the driver is modified to support MSI, SR-IOV should work
without significant changes to our current implementation.

6.3.3 Improvements to the Dolphin driver
We consider increasing the mapping granularity using an IOMMU to be a feature that should
be implemented into the Dolphin driver. If this functionality is implemented, our current
implementation should be able to take advantage of it with minimal modifications. We have
already described how we believe this should be designed in section 4.7.3. In addition, the
current modification to the Dolphin driver that disables WC needs to be removed and replaced
with an alternative.

6.3.4 Device control negotiation
To arbitrate the allocation of devices, some sort of software should be designed. By spawning
our daemon and interacting with the sysfs interface of our kernel module, it should be able to
assign a device to a host without needing to know the inner workings of our implementation.
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We think that such software should provide user programs with the ability to query the available
devices and reserve devices for a given time period or until returned. Research will be needed
into how different drivers handle the frequent hotplug of devices this would cause. Especially
interesting is if a user space CUDA program would be able to request or release CUDA devices
while running.

6.3.5 Use in virtual machines
We have not attempted to assign one of our fake devices to a VM, but in theory it could work
"out of the box". If so, the Linux kernel should be able to create a VFIO device for our remote
device that the hypervisor can use to enable pass-through of the device. Another, more direct
approach, is for our implementation to mimic the VFIO interface and create a VFIO device file
which can be given to a VM, bypassing the Linux kernel and any difficulties it may present.

6.3.6 Isolating borrowed device
To increase security for the host lending away a device, an IOMMU should be used to isolate
the affected devices from the rest of the system. This should prevent the other host from using
the device as an attack vector or crashing the system if the device is misused.
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Appendix A

Accessing the source code

The source code of our implementation can be accessed at https://bitbucket.
org/larsbk/ntb_test. To gain access to the repository, contact the author at
larsbk [at] ifi.uio.no.

The program map_res is used for mapping the BARs of a device by pointing it to the
device’s /sys/bus/pci/devices/X/resource file and mapping the same resources on
the other machine. configd is the user space daemon that the kernel module connects to.
fake.c is the kernel module that injects the remote device and implement the driver-side
functionality. It communicates with the user space daemon. New devices are added by writing
to /sys/module/fake/control/create.
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