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DEFORMATIONS OF REFLEXIVE
SHEAVES OF RANK 2 ON IPE{

In this paper we study deformations of reflexive sheaves of rank 2

g where k 1is an algebraically closed field of any cha-

racteristic. Tet F be a reflexive sheaf with a section S€EHO(£>=

on IP =1P

H°(P,F) whose corresponding scheme of zeros is a curve C in TP,
Moreover let M = M(cq,cg,ca) be the (coarse) moduli space of stable
reflexive sheaves with Chern classes c,,c, and C3e The study of
how the deformations of CCIP correspond to the deformations of

the reflexive sheaf I leadSto a nice relationship between the

local ring OH,C of the Hilbert scheme H = H(d,g) of curves of
degree d and arithmetic genus g at CcCIP and the corresponding
local ring OMsE of M at F. In this paper we consider some
examples where we use this relationship. In particular we prove

that the moduli spaces M(0,13,74) and M(-1,14,88) contain gene-

rically non-reduced components.

T would like to thank Olav Arnfinn Laudal and Stein Arild Stremme

for discussions and comments.

1. Deformations of a reflexive sheaf with a section.

It DefF

-

the category 1 of local artinian k-algebras with residue field k ,

1
°p

is the . local deformation functor of F  defined on

then it is well known that Ext

and that Exti (F,F) contains the obstructions of deforma-
P

(F,F) is the tangent space of

DefF

tion. See DEBJO To deform the pair (g,s) we consider the functor

Deﬁgﬁsz.;-+> Sets



defined by

S
R o _oal e
Def (R) = {0y =—— ER)ERGEDefEKR) and sq @ N = s}/

F,s Py R R

where IPp =P % Spec(R) and where 1. tk~k is the identity. Two

deformations (ERSSR) and (E',sé) are equivalent if there exist
; ; ot o Pl i i
isomorphisms Oﬂﬁguy Oﬂﬁf ER /"ER and a commutative diagram
S
R
0 > B
Eﬁ{ =R
|
N\ ° | o~
.‘_al ‘,‘
\ s \
0 ——z Bl
B%R =R
SC i S} \8 :S’@ 3 hd .
uch that R I{qk R I{1k° In fact we also identify the given

1
pair (F,s) with any (F',s') where s'€H (P,F ) if they fit

together into such a commutative diagram.

Proposition 1.71. (i) The tangent space of Defy is
i}
1 7 = _ —_— A
EXtOE,<£C(Cﬂ>’£/ where _;C = ker(OI, OC), and
Extg (gc(cq),F) contains the obstructions of deformations.
. 4

(ii) The nabtural

¢ : Def, _ —> Def

F.s B

- ——ve
is a smooth morphism of functors on 1 provided
1'(F) = 0
By the correspondence [H3%, 4.1 there is a curve C = (SL)EJP
and an exaclt sequence

s - .
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associated to (¥,s). The condition Hq(g) = 0 1is therefore

equivalent to

H'(Ig(eq)) = 0

Proof of (i). Using (L2, §2] or [K1,1.2] we know that there is

a spectral sequence

- | Ext4(E,F) Ext(0p, 0p) ]
p,q f ' d R
EP2% = 1im'P q NN e

S | RPN |

° 1T L
converging to some group A< ) where A is the tangent space

9}
of Def and A“ contains the obstructions of deformation.

F.s
Since Epéq =0 for p>2, we have an exact sequence

0 —> Eﬂéq”q - 29 = Eoéq ~> 0
Moreover

Ext4(0p ,0p) = 0 for >0 and E}C’Uq(O]P,_F_) -H4(@) for any g,

and this gives

Eoéq = kercﬁl and Eq5q = cokera® for q>0 .
Observe also that
~
1,0 (1)} Hom(Ejg) Hom(OE” -P> 1 0
E 2" = lim W 0 TS V = cokera
< L ° ﬂHom(O )

because Hom(OE” OI§)5 Hom(F,F). We therefore have an exact
sequence

O - coker@q“q—c>Aq — karaq—a~o

for any q>0., Combining with the long exact sequence



o AL
—> Hon(F,B) F> HO(F) —> Ext (L (c,),B) &> Ext

*)
oA 2 2 .2 62 2
—>H (F) => Ext™(I5(c,),B) &= Ext™(F,F) => H (B) -

(E,5)

deduced from the short exact sequence

0 => Opy —=> F —> Io(ep) -> 0,

P
we find isomorphisms

AqiExtq(_I_C(c,])g_}ﬂ:) for q>0.

(ii) Let 8 —> R Dbe a morphism in 1 whose kernel (T is a

ke-module via R -—>> k., let 8,5 :0 - F be a deformation of
! R ]ﬁa =R

8:0p—>E to R, and let Fg be a deformation of Iy to S.

P

To prove the smoothness of ¢, we must find a morphism Sg,

: 0 - F

n

S

such that sqéq 1, = 8ps 1.e. we must prove that SRGEHOQER) is
contained in the image of HO(ES) - HO(E‘_R)° Since

0> F8 Gl—>Fg —> Py —=> 0

k S 7 =R

is exact and since H4(§> = O by assumption, we see that

HO(ES> — HO(ER) is surjective and we are done.

Remark 1.2. 1In the exact sequence (*) of this proof, @1 is the

tangent map of ¢ : Defy , —> Def, and @2 maps "obstruc-

iy

tions to obstructions". In fact « 1s a morphism of

principal homogeneous spaces via @qo Using this it is in
general rather easy to prove the smoothness of ¢ directly
from the surjectivity of mq and the injectivity of @29

This gives another proof of (1.1.ii) .
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2. The relationship between the deformations of a reflexive sheaf

with a section and The deformations of the corresponding curve.

o c1° — — - ) i -
Let F, s€H (F) and I = EC = ker(O]P > OC) be as in the pre
ceding section, and let DefI ¢ L - Sets be the deformation functor

of the OE,mModule I. Then there is a natural map

] :DefE?S —>—Def£

defined by

\!]('E-“R’SR> = ‘Iﬁ'Rx (O}P(“‘C/‘) @I’{ R)

where [Hp = cokersp. If Hilby: 1l —> Sets is the local Hilbert

functor at Cc P, we have also a natural map

HilbC - DefI

of functors on 1. Recell that C is locally Cohen Macaulay and

equidimensional [H3, 4.17.

Proposition 2.1. (i) The natural morphism

Hilb, —> Def

c L
is an isomorphism of functors.

(ii) If H'(E(-%)) = 0, then

W :Def:E S

9

— Defl

is a smooth morphism of functors on 1.

Observe also that

H (B(-4)) = H'(Ly(cq-4))

and moreover by duality that
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2 1 v
ExLO]P (L5(eq).0p) = H (Ty(e, ~4))

Proof of (i) If EC = Hom::IP

in TP, we proved in [K1,2.2] that

(,0+) 1is the normal bundle of C

E (W) = Exts (1, D) for i = 0,1
Op

as a consequence of the fact that the projective dimension of

the OE,—Module I is 1, from which the conclusion of (i) is

easy to understand. We will, however, give a direct proof.

To construct the inverse of Hile(R) —_ DefI(R), let Mp be a

—

deformation of I to PR. Observe that there is an exact se-

quence
‘ r+7
) O@Eeﬂﬂ@wm fo10
/‘

T
where E 1is a vector bundle on P of rank r. AE is therefore

18 R
1

invertible, and we can identify it with OE><d1) where d,

If P = @(ﬁP(uni), then there is a complex

() E—>2Z (R VA = (B, = 0p

and it is well known that the maps P Y L1cO0p and P = Op
deduced from (*) and (**) respectively are equal up to a unit
of k. We can assume equality. Now since I, 1is a 1lifting of

L to R, there is a map

rij
fpilp = & Op (my) =1l
1:’! R
such that fR quk =f:P-—=>1I. By Nakayama's lemma, fR is

surjective. Moreover if E, = kerfp , we easily see that Ep®pk=E
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and Bp is R~flat. It follows that Ep

O]P ~Module of rank 1r satisfying
R

is a locally free

Furthermore there is a complex
~ T Vi r v
Ep => Py = (ABp) (4)) = (AEp) (4,) = O]PR

which proves the existence of an OIP ~linear map
R

which reduces to the nabural inclusion _ILEO]P via (-)®_ k., It
is easy to see that o s injective, that cokera is R-flat

and that cokera“&Rk = OCO We therefore have a deformation

CR < IPR of Cc&P . Finally to see that the inverse
of Hile(R} —> DefI(R) is well-defined, let 8 :M = My end
e ML == -11 ‘ is t]

o' s My Op_ De O]P linear maps such that B®R /]k is the

R R

identity on I and a'®p 1, is the natural inclusion ISR,

(We do not assume a'B = a). We claim that Ima' = Ima . In fact
since

EX’GéIP (0g,0p) = O for i = 0,1,
we have

k = HomOIP (O]P "OIP) = HomO]P(_];,O]P) .

We deduce that the map

R = Hom (0

_ \
Op ? O]PR) > Homy, @‘R’O]P /
R

P :
]PR R

R
induced by «, is surjective. Hence

a'8 = ro
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for some r€R, and since a'Bigﬂk = aiéﬂk is the natural inclu-

sion ‘LEEOID’ r 1is a unit and we are done.

(ii) Let S —> R, ¢ and sp:Op =>Fp De as in the proof of

(1.1 ii). Moreover let M, = cokersp, and let My be a defor-
mation of ER to S. To prove smoothness we must find a deforma-

tion

with cokernel Mg such that Ssé%qu = Sp. By theory of exten-

sions it is sufficient to prove that the map

.
0. U, C]PS> —> EXto]P (M-R’OIPR)
s R

induced by (—)®SIR is surjective. DModulo isomorphisms we refind

this map in the long exact sequence

- Bxt (Mg, 0 ) - Ext2 (11,05, © OL).

1 1
% 00) » Ext (Mg,0p )~ Bxt (Mg,0
Pg sihe N =8 Pp Py

2

Since Extg (Mg, Op g OU) = Ext
Op

p. =81 Py (I5(c)),0p)® OC=0 by
S

assumption, we are done,

Remark 2.2. The short exact sequence

= S — —_
£:0 => Op=>F = I(c,) = 0

induces a long exact sequence

1
Bty (Loloq)s0p) = Bty (Ig(eq),B) = By (I, L)

5 2

2 N = - 2 -
(Zp(cq),0p) Extolp(_lc(c/,)a_li)i—> Exty (Zs,1g)

Ext
Op



-9 -

el

where ¢ ' is the tangent map of ¢ or more generally, ¢ is
a map of principal homogeneous spaces via 11;/] and 11;2 maps
"obstructions to obstructions'. As remarked in (1.2), the
smoothness of ¢ follows therefore from the surjectivity

of 11;/‘ and the injeotivity of wgo

Remark 2.5%5. Let &be the extension
< S — -
0 > 0p-2> F > I(c)) = 0

and let Def : 1 —> Sets Dbe the functor defined by

C,E
r - ;
| “CRS IPR) € Hlle(R) and &y E{ /
X =< “ | A
Defy ¢(R) ‘“3<CR,'§R) . |
1Ext(;[_c (c/]),olP ) satisfies
SR%RK = 5

Two deformations (CR,X’,R) and (Cé,ié) are equivalent if

Cp = CR&Pp and if there is a commutative diagram

S+ 0> 0p —>Fp = ISR(C,l) — 0
|
] o ' ]
i_/ N2 I L
gl e 0 ->0, —F, —=1I, (c,)=>0
R ]PR =R -CR 1 ’

both reducing to the extension £ via (-) ®Rk . 1In tThe
same way we identify the given (C,&) with any (C',E')
provided C = C' and &' = uf for some unit u€Ekx” ., Note
that we may in this definition of equivalence replace the
identity 1 on -];CR(C’I> by any O]PR linear map. See
Ma2, 6.17 and recall Hom(_I_C.,_Z[;C) = k., Now there is a for-

getful map
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and usiog (2.11i) we immediately have an inverse of «.
Hence o is an isomorphism. Observe that we might construct
the inverse of a(R) for R€obl by considering the in--

vertible sheaf detF, on Pp. See [Ma1, 4,27 or [G,4.1].

In fact if (ER’SR> is given, there is an IPp a morphism
2 ~~
i:ABp~> detFp = OIPR(C/])
and a complex
s il(~) A sy
: N R
0> 0p —= Py > OJPR<°1)

which after the tensorization («)@%{k is exact. Hence

S
Bep

0 ~> 0 Fp

J, 1 e
]PR > coker SR > 0

is exact, cokersp is R-flat and coker sp &> QPR(cq),

and putting this together, we can find an inverse of «(R).
One should compare the isomorphism of o with [H3, 4.1]
which implies that there is a bijection between the set of
pairs (F,s) and the set of (C,E&) moduls equivalence under
certain conditions on the pairs. Thinking of these families
of pairs as moduli spaces, [H3, 4.1] establishes a bijectirn
on the k-points of these spaces while the isomorphism of «

takes care of the scheme structure as well.

To be more precise we claim that there is a quasiprojective
scheme D parametrizing equivalent pairs (C,§) where

1) C 1is an equidimensional Cohen Macaulay curve and where

2) the extension £:0 ~>0,—>F —> lc(cq> >0 is

P
such that F is a stable reflexive sheaf.
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Moreover there are projection morphisms

D - H(d,g)

(*) P
M(01?C29C5>

g 5% = %k

K-point <CK’§K) corresponding to (EK,SK>, such that the fibers

defined by p(EK,sK) = Py and a(c for a geometric

of p and q are smooth connected schemes., Furthermore, p 1is
smooth at (EK,SK) provided HW(EK) = 0, and ¢ is smooth at

. 1
(C provided H (;C (01—4)) = 0,

Ex)
9
K’ °K -

1)
To indicate why let Sch/k be the category of locally

noetherian k-schemes and let D: Sch/k => Sets Dbe the functor
defined by
Cséigggig)(S), LS is invertible on S and?

1 - f
E« €Ext (I~ (c¢,), O ® Lo ) such that a
CS>%SSpec(K) satisfies (1) and €S®9K £ 0

| for any geometric K-point of S

N e

§

Two deformations (CS,QS,%S) and (CS,Lé,Eé) are equivalent if

Cq = Cé and if there is an isomorphism T : Lo —>vgé whose in-
duced morphism Extq(gc (Cq),T) maps &g onto €éo Now if

S
UcH(d,g) is the open set of equidimensional Cohen Macaulay

curves and if CycPx U —>TU is the restricting of the uni-

/]
versal curve to U, one may prove that E = Ext (I, (c,),0 )
— “CU 1497 PxU

1s a coherent Op . -Module, flat over U. By [EGA,III,7.7.6]

there is a unique coherent O,-Module Q such that

U

1) For good ideas of this construction, see the appendix [E,87,
some of which appears in [S,M,S].
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“};{'QEOU(‘@‘?B') = T (E_@) B_)

for any quasicoherent Op-lModule R. If P(Q) = Proj(Sym(Q))
is the projective fiber over U defined by Q, we can use

[EGA II,%+.2.%] to prove that
D(-) = MOI‘]K(-",]P(_@_D .

Now let DcP(Q) Dbe the open set whose k-points
are (C,&), §:0 ~> p> E—=> lc(c,]) —> 0 , where F is a
stable reflexive sheaf. Then we have a diagram (*) where the
existence of the morphism p follows from the definition [Ma1, 5.5]
of the moduli space M = M(o,lscg,ca),, Moreover since IP(§) re-
presents the functor D, the fiber of q:D — H(d,g) at a

. o 1 v
K-point Cpc P, of H(d,g) is just DN P(Ext (_:LCK(C,\),OIPK))

K
where (-—)V = HomK(ﬂ,K)o Moreover if we think of the fiber of p
at a geometric K-point Fp of M as those sections s EHO(EK)
where (s)o is a curve, we understand that the fiber is an open

subscheme of the linear space IP(HO(E_K)V)O In particular the

geometric fibers of p and g are smooth and connected.

Finally the smoothness of p and gq at (C,&) follows from
(1.14i) and (2.1ii) provided we know that the morphism

* 20 —= 0 induced b ¢+ D M makes a commutative
P Msg ~ D?<£ﬁs> y P ->

diagram
i B R
DefE’S - MOI‘(OD,(E_,S)VI")
@, o |, Mor(p*,-~)
o ~ A
Deig = Mor(OM9£,~)

of horisontal isomorphisms on 1. In fact the commutativity from
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the definition of a moduli space [Ma1, 5.5 while the construction
of M dimplies the lower horizontal isomorphism. See [Ma?2, 6.4]1
A
from which we immediately have that the morphism DefF — Mor(OM F,—)
— 9=

is smooth, and since the morphism induces an isomorphism of tangent

spaces, both isomorphic to Ext/l(_E_‘_,g), it must be an isomorphism.

A
Remark 2.%4. In particular the smoothness of Defy —> I’[or(OM me=)
I

e

which is & consequence of the smoothness of the morphism
treated in [Ma2, 6.4, implies that Oy p 18 & regular

Ve
local ring if and only if Defy 1is a smooth functor on 1.

e

5. Non-reduced components of the moduli scheme MQQ,‘ 2_922_95%

One knows that the Hilbeirt scheme H(d,g) is not always reduced.

2.1
In fact if g 1is the largest number satisfying g < 68" L, we

proved in lK1,%.2.10] that H(d,g) is non-reduced for every d>"14,
and we explicitely described a non-reduced component in Tterms of

the Picard group of a smooth general cubic surface.

Fxample 3.1. (Mumford [M1]) . For a = 14, we have

g = =g = 24, and there is an open irreducible subscheme
UEH(’]’+,24—) of smooth connected curves whose closure U = W

makes a non-reduced component, such that for any (CcP) € U,

0 for \)_<__2

00 (I, (v)) = {

=C ‘1 for v=373
1 N
h (I(v)) =0 for v £ {3,4,5},
/ O for v>4
h'(0a(v)) = |

L’l for v=3%,
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See [K1,(3.2.4) and (3.1.3)]. 1In fact with CcP in U,
there is a global complete intersection of two surfaces of
degree % and © whose corresponding linked curve is a dis-

joint union of two coniques.
Now let Cc P be a smooth connected curve satisfying
() H'(Z.(cy)) =0, H(I.(c.=4)) =0 and H'(0,(c,~4)) £ O
=C "1 - =1 - Ccr71

for some integer c,, let %GHO(wC(i%e-c,l)) = Ext/‘(_I_C(c,l),O]P) be
non-trivial, and let (®,s), séEHo(g), correspond to (C,E) via
the usual correspondence. Then F is reflexive, and it is stable
(resp. semistable) if and only if c,>0 (resp. CqEZO) and C
is not contained in any surface of degree <zc, (resp. <ﬁ%cq) .
See [H3, 4.,2]. Combining (1.1) and (2.1) with (2.4) in case F

is stable, we find that O is non-reduced iff OH C is non-

M,F ;

reduced.,

Example 3.2. Let (C<P) € H(14,24) belong to the set U of

(%3.1) and let c, be an integer satisfying (*), i.e. cq =2

(i) TLet = 6. By virtue of (1.1) and (2.1) the hull of

€1

Def is non-reduced. Moreover F 1is semistable with Chern

)

classes (01902935> = (6,14,18), and the normalized sheaf

F(-3) has Chern classes (ca,cé,cé) = (0,5,18).

(ii) Let ¢, = 2. The corresponding reflexive sheaf is stable

/'|
and must belong to at least one non-reduced component of

M(2,14,74), i.e. of M(0,13,74).

(iii) With Cq = 1 we find at least one non-reduced

component of M(1,14,88) = M(-1,14,88).
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Combining the discussion after (2.3) and in particular the
irreducibility of the morphism q with the irreducibility
of the set U of (3.1), we see that we obtain precisely one
non-reduced component of M(0,1%,74) and M(-1,14,88) in

this way.

We will give one more example of a non-~reduced component and in-

clude a discussion to better understand (1.1) and (2.1). In fact
recall [K1,2.3.6] that if an equidimensional Cohen Macaulay curve
(Cc) € H(d,g) 1is contained in a complete intersection V(E,,E5)

of two surfaces of degree f, = degﬁq and f2 = degFE2 with

Hq(%(fi)) -0 and H“(;C(fiaur)) -0

for i = 1,2, and if (C'c€P)€ H' = H(d',g') is the linked curve,
then O is reduced iff 0O, ' 1s reduced. Since any curve

I, C a',c ,
(CcP) € U of (%3.1) is contained in a complete intersection
V(E,,F,) of two surfaces of degree f, = f, = 6, the linked curves
(J'EIP must belong to at least one (and one may prove to exactly

one) non-reduced componentq)WEEH(22,56) of dimension 88. BSee

[K1,2.%.9]. One may sec that W contains smooth connected curves.
Moreover using the fact that @ (4—f4~f2) and woa(4wf1~f2) are
the sheaves of ideals which define the closed subschemes

c' cV(E,,F,) and CcV(E,,F,) respectively, one proves easily

that

HO(Z,, (4)) = 0, B'(I5,(v)) =0 for vg{3,4,5} and H'(0y (5)) £0.

See [S,P]| and [K1,2.3.3].

1) The condition Hq(gc(fi—4)) = 0 implies also that the linked

curves C'c P form an open subset of H'.
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Example 3.3. Let (C cP)€ WCH(22,56) be as above with C

smooth and connected., If ¢, is chosen among 1<c,;=9,
then C CTP defines a stable reflexive sheaf E, and in
fact a vector bundle if Cq = 9 by the usual correspondence,
Using (1.1) and (2.1) we find that F' Dbelongs to a non-
reduced component of M<an02705> for the choices 1Xc, =2
or ¢, = 6. In particular there exists a non-reduced com-
ponent of M(6,22,66) = M(0,1%,66). DMoreover we obtain pre-
cisely one non-reduced component in this way 1f we make use
of the discussion after (2.3)., If cq =9, we find a re-
flexive sheaf F' €M(9,22,0), and the normalized one is
?'(-5) €M(-1,2,0), but we can not conclude that M(-1,2,0)
is non-reduced, even though H(22,56) 1is, because the con-
dition H (Iy(c,4)) = 0 of (2.1,ii) is not satisfied. In
fact one knows that M(-1,2,0) is a smooth scheme., See

[H,8] or [S,M,S].

As a starting point of these final considerations, we will suppose
as known that there i1s an open smooth connected subscheme
UMEEM(uﬂ,E,O) of stable reflexive sheaves F for which there
exists a global section SGEHO(EKE)) whose corresponding scheme
of zero's C' = (s)o is a disjoint union of two coniques. More-~
over (ilimUlVI = 1. 1In fact [H,8] proves even more., We then have

an exact sequence

0 —> OE>“> F(2) —>-£Ca(5) —= 0

for FeU,, and since the dimension of the cohomology groups

Hl(gcv(v)) is easily found in case C  consists of two disjoint
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coniques, we get

n®(B(1)) = 1 (L5 (2)) = 1

fﬂ for v = -1,1

h1(B(v) = B (I, (v+1)) = < 2 for v =0

|
|0 for v ¢ {-1,0,1],

: 2
By dimUy = M1, :&&OE

with the Hilbert scheme may prove our assumptions on UM by first

(F,F) = 0. (The reader who is more familier

proving that there is an open smooth connected subscheme UCH(4,-1)
of disjoint coniques C' and that dim U = 16. This is in fact

a very special case of [K1,(3.1.10i) . See also [K1,(3.1.4) and
(2.3.18)7, With ¢, = 3, we have H (Ly (cq)) = H (I (eq=4)) = O,
and by the discussion after (2.3), there exists an open smooth
connected subscheme of M(3,4,0) {%>M(—192,O} defined by

UlVI = i(p(qmq(U)))a Moreover dim[%{:=14 because dim[%y+ho(£(2)) =
dim U + ho(wcg(chq)) e

Fix an integer v>1, and let U(v) Dbe the subset of H(d,g)
obtained by varying EﬁEUMEEM(‘192eO> and by varying the sections
SGEHO(EKV)) so that C = (s)o is a curve, i.e. let U(v) =

q(p'ﬂ(UM)) and regard UM as a subscheme of M(cq,cg,o) with

N

¢y = 2v-1, ¢y = 2ev+v©, d = ¢, and g = 1+~%02 (04-4)a
Recall that p and g are projection morphisms

D > H(4,g)

r

M(cq,cg,o)
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For (C<P) € U(v), there is an exact sequence

0 => O0p=> F(v) = _I_C(E\)«/l) -—> 0

P

some F(v) € Uy. Now (1.1.4ii) and (2.1ii) apply for v =2 and
all v>6, and it follows that H(d,g) is smooth at any (C<IP)
in the open subset U(v)cH(d,g). Moreover by the irreducibility
of p, U(v) is an open smooth connected subscheme of H(4,g).
Furthermore

dimU(y) = ud+—;-v (v=5)(2v~5) for v>6

(resp = 44 for v = 2) which asymptotically is ~ L!—d+ji-d3/2 for
/

v>>0. To find the dimension of U(v), we use the fact that p

and g are smooth morphisms of relative dimension ho(g(v)) -

and ho(wc(il-—c,l))—/l respectively. This gives

dim Uy +h7(E(W)) = aimU(v) + b (wy(4=c )

for v =2 and v>6, and since hO(WC</~[~—-C/l>:) = hq(OC(Cqu-iF)) =1

for v>6 (resp. =2 for v = 2), we get
dim U(v) = ’!O+ho(_F_(v)) for v>6

(resp. = 9+ho(£‘(\))) for v = 2). The reader may verify that
n%(B(v)) = x(E(v)) = %—(v«’l)(2v+5)(v+4) = 44 +%—(v=~5)(2v«5)\)— 10

for any v>2, and the conclusion follows.

We will now discuss the cases 3 <v<5 where we can not guarantee
the smoothness of g since (2.1.1ii) does not apply. If v = 5,
then the closure of U(5) in H(22,56) makes a non-reduced com-
ponent by (3.3)., For v = 3 or 4, we claim that H(d,z) is smooth

along U(v) and the codimension
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ain W - ainU(v) = b (Iy(c=4)) = b (E(-4))

where W is the irreducible component of H(d,g) which contains
U(v). To see this it suffices to prove Hq(gc) = 0 and
Extg(lc(cq)sg(v)) = 0 for any (CcP) € U(v) Dbecause these con-
ditions imply that the scheme D and H(d,g) are non-singular

at any (C,§&) with %’EHO(wC(LL—c,l)) and (CcP) € H(d,g) respec-
tively. See (1.11i) . Moreover if these "obstruction groups"

vanish, we find

dimW - dim U(v) = dimW - dim g~ (U(v) = n%(N,) - aimExt | (Iy(e,), E(V))

- 0 (Z,(cq-4))

where dimU(v) = dhmqfq(U(v)) because of ho(wc(4—cq)) =1,

and where the equality to the right follows from the long exact
sequence of (2.2). Now to prove Extg(zc(cq),g(v)) = 0 we use

the long exact sequence (*) in the proof of (1.1. 1) combined with
Hq(g(v)) = 0 and Extg(gﬂg) = 0, and to prove Hq(gc) = 0 we use
the long exact sequence of (2.2) combined with Extz(lc(cq)ag(v))==o
and  Ext”(I,(c,),0p) = HO(Ly(c,-40)" = EO@E(v-2))" = 0 for

v =5% or v =4, and we are done.

Computing numbers, we find for v = 3% that U(3) 4is a locally
closed subset of H(8,5) of codimension 1, and any smooth con-
nected curve (CCP) €U(%3) is a canonical curve, i.e. we = Oo(ﬂ)o
For v = 4, U(4) is of codimension 2 din H(14,22) and

we = 00(2) for any (CS ) € U4),
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