
Lifetime learning in
evolutionary robotics
Robot control system evolution using memetic algorithms

Else-Line Malene Ruud
Master’s Thesis Spring 2015

Lifetime learning in evolutionary robotics

Else-Line Malene Ruud

4th May 2015

ii

Abstract

Inspired by animals’ ability to learn and adapt to changes in their environ-
ment during life, hybrid evolutionary algorithms which include local optim-
ization between generations have been developed and successfully applied
in a number of research areas. Despite the possible benefits this kind of al-
gorithm could have in the field of evolutionary robotics, very little research
has been done on this topic.

This thesis explores the effects of learning used in cooperation with
a genetic algorithm to evolve control system parameters for a fixed-
morphology robot, where learning corresponds to the application of a local
search algorithm on individuals during evolution. Two types of lifetime
learning were implemented and tested, i.e. Baldwinian and Lamarckian
learning. On the direct results from evolution, Lamarckian learning showed
promising results, with a significant increase in final fitness compared with
the results from evolution without learning.

Machine learning is sometimes used to reduce the reality gap between
performance in simulation and the real world. Based on the possibility
that individuals evolved with Baldwinian learning can develop a potential
to learn, this thesis also examines if learning could be advantageous when
such a method is used. On this topic, the results obtained in this thesis
showed promise in some sample sets, but were inconclusive in others. In
order to conclude in this matter, a larger quantity of samples would be
necessary.

iii

iv

Acknowledgements

I would like to sincerely thank my two supervisors, associate professor
Kyrre Harald Glette for the continued support during the work on this
thesis, and PhD candidate Eivind Samuelsen for the helpful, interesting
discussions and for the great help with the simulator.

I would also like to thank my fellow students for all the academic and not-
so-academic conversations, and for making the thesis work in the lab feel
less like work.

Lastly, I want to thank my family and friends for love and support.

v

vi

Contents

1 Introduction 1
1.1 Research goals . 2
1.2 Outline of the thesis . 3

2 Background 5
2.1 Memetic Algorithms . 5

2.1.1 Cultural evolution . 6
2.1.2 Genetic Algorithms . 6
2.1.3 Lifetime learning . 6
2.1.4 Overview of the process 8
2.1.5 Local search and fitness landscapes 8
2.1.6 Adaptive MAs . 10

2.2 Variants of evolutionary computing 10
2.2.1 Evolution strategies . 10
2.2.2 Multi-objective optimization 11
2.2.3 Simulated annealing . 13

2.3 Evaluating performance of EAs 14
2.3.1 Statistical analysis . 14
2.3.2 Data visualisation . 16

2.4 Evolutionary Robotics . 16
2.4.1 Evolving robots . 17
2.4.2 Variants . 18
2.4.3 Challenges . 19
2.4.4 Recent work in ER . 20
2.4.5 Learning with neural networks 21

2.5 Combining Memetic Algorithms and Evolutionary Robotics . 21

3 Software and tools 23
3.1 Simulation system . 23

3.1.1 PhysX . 23
3.1.2 ParadisEO . 24
3.1.3 Simulation framework . 24

3.2 The robot . 24
3.2.1 Control systems . 27

3.3 Motion capture system . 29

vii

4 Implementation and experimental setup 31
4.1 Incorporation of local search in the evolutionary framework . 31

4.1.1 Learning scenario . 31
4.1.2 Choice of local search . 32

4.2 Genetic algorithm and robot genes 34
4.2.1 Robot genome . 35
4.2.2 Genetic algorithm variation operators 35
4.2.3 Measuring fitness . 36

4.3 Experimental setup . 36
4.3.1 Evolutionary setup in simulation 36
4.3.2 Changing environments 38
4.3.3 Physical robot setup . 39
4.3.4 Evaluation of performance 40

4.4 Aspects of learning and evaluation 41
4.4.1 Baldwinian and Lamarckian learning 41
4.4.2 Testing on the physical robot 42
4.4.3 Learning and the reality gap 43

5 Experiments and results 45
5.1 Evolving control system parameters 45

5.1.1 Investigatory experiments - AmpPhaseSym 46
5.1.2 Investigatory experiments - AmpOffPhase 50
5.1.3 Investigatory experiments - simulated annealing 54
5.1.4 Investigatory experiments - linear crossover 56
5.1.5 Varying the number of iterations 58
5.1.6 Experiment with changing environment 63

5.2 Evaluating control system performance 67
5.2.1 Results . 67
5.2.2 Analysis . 68

5.3 Running local search on the evolved control systems 72
5.3.1 In simulation . 72
5.3.2 On physical robot . 76

6 Discussion 79
6.1 General discussion . 79
6.2 Conclusion . 80
6.3 Future work . 81

viii

List of Figures

2.1 Illustration of Baldwin effect . 7
2.2 Overview of MA process . 9
2.3 Illustration of a pareto front. 12
2.4 Outline of NSGA-II procedure 13
2.5 Example of a box plot . 17
2.6 Example of a modular robot . 18

3.1 Overview of simulation framework 25
3.2 The robot . 26
3.3 Robot schematic . 27
3.4 Back leg of the robot . 28
3.5 Plot representation of joint motion. 29
3.6 OptiTrack Flex 3 cameras . 30

4.1 Overview of the incorporation of local search. 33
4.2 One plus lambda . 34
4.3 Direction in which movement is measured. 37
4.4 Illustration of robot evaluation 38
4.5 Environment with sphere shaped obstacles. 40
4.6 Pulley system . 40
4.7 Passive markers . 41

5.1 Fitness plot, investigatory test. AmpPhaseSym 47
5.2 Plot of standard deviation, investigatory test. AmpPhaseSym 48
5.3 Confidence intervals, investigatory test. AmpPhaseSym 49
5.4 Fitness plot, investigatory test. AmpOffPhase 51
5.5 Plot of standard deviation, investigatory test. AmpOffPhase . 52
5.6 Confidence intervals, investigatory test. AmpOffPhase 53
5.7 Locked robot joint . 53
5.8 Fitness plot, simulated annealing 55
5.9 Fitness plot, linear crossover . 57
5.10 Fitness plot, varying number of iterations 60
5.11 Plot of standard deviation, varying number of iterations 61
5.12 Confidence intervals, varying number of iterations 62
5.13 Fitness plot, changing environment 64
5.14 Plot of standard deviation, changing environment 65
5.15 Confidence intervals, changing environment 66
5.16 Box plot evaluation of best individuals 69

ix

5.17 Box plot evaluation of median individuals 70
5.18 Box plot evaluation of best individuals in simulation, after

local search . 74
5.19 Box plot evaluation of median individuals in simulation,

after local search . 75
5.20 Box plot evaluation of best individuals on physical robot,

after local search . 78
5.21 Box plot evaluation of median individuals on physical robot,

after local search . 78

x

List of Tables

3.1 List of software . 23

4.1 Possible configurations for evolution. 39
4.2 Friction parameters . 39

5.1 Experiment details for first investigatory experiment 46
5.2 Results, investigatory test. AmpPhaseSym 46
5.3 Experiment details for second investigatory experiment 50
5.4 Results, investigatory test. AmpOffPhase 50
5.5 Experiment details, with simulated annealing as local search . 54
5.6 Results, simulated annealing . 54
5.7 Experiment details, linear crossover 56
5.8 Results, linear crossover . 56
5.9 Experiment details, varying number of iterations 58
5.10 Results, varying number of iterations 59
5.11 Experiment details, changing environment 63
5.12 Gait evaluation, best . 68
5.13 Gait evaluation, median . 68
5.14 Local search on evolved system, simulation, best 73
5.15 Local search on evolved system, simulation, median 74
5.16 Local search on evolved system, harware, best 76
5.17 Local search on evolved system, harware, median 77

xi

xii

Chapter 1

Introduction

In robotic system design and development, a large number of components
must be considered simultaneously, such as the motor system, morphology,
control policy, sensory apparatus, etc. [10]. All of these components are
closely interdependent and together determine the behaviour of the robot,
making optimization of each component a challenge, since changing of one
component is likely to influence the functioning of the others. One way
of dealing with this challenge is to examine the entire robotic system as a
whole, involving the interaction between body, brain and environment, also
called embodied cognition [3].

Nature has mastered this procedure perfectly through the use of
evolution, which has produced a vast number of examples of embodied
intelligence. Evolutionary robotics (ER) attempts to recreate evolution as a
mechanism instead of its biological results, while the latter is often what has
been used as inspiration in mainstream robotics. The use of metaheuristics,
that is, evolutionary algorithms (EAs) in this case, is the main difference
between ER and mainstream robotics. Thus, ER and mainstream robotics
also have differing goals, the latter is mainly concerned with optimization
of behaviour for a given robot, while the former aims at creating general
algorithms for generation of robots, where morphology, control and
sensory apparatus can be designed simultaneously [6, 26, 41, 44].

A well-known disadvantage of evolutionary algorithms is that they do
not guarantee when or even if the global optimum will be found. Recent
studies on hybrid EAs show that including additional methods during
evolution can lead to higher robustness and possibly better solutions [24,
30, 33], e.g. by using local optimization of an individual’s behaviour
between generations. In nature, a similar process is evident. Living
organisms have an a priori ability to learn during their lifetime, and are
thereby able to adapt to changes that may occur in their environment, hence
improving their own fitness during life.

In evolutionary robotics, much research has been done on evolution and
learning separately, but the effects of a combination of the two have been
less explored. Some work has been done on evolution of plastic agents with
neural network control systems, were the robot is allowed to explore and
learn from its environment in periods during evolution [14]. For parametric

1

1.1. RESEARCH GOALS

control systems or robot morphology, a different form of learning must
be used, e.g. local optimization using a local search algorithm. Even less
research has been done on this field, with only a few contributions [32].

Evolutionary robotics has yet to make its way into mainstream robotics.
One of the reasons for this is that traditional robot engineering still pro-
duces significantly better performing robots, which are more relevant for
solving real world problems. In order for ER to catch up with mainstream
robotics, a number of different approaches need to be explored. Using a
hybrid EA to evolve control systems or robot morphology could lead to en-
hanced performance of the final solutions. Since traditional evolutionary
algorithms are of a largely stochastic nature, and learning offers local op-
timization of a less stochastic manner, it is possible that learning can also
lead to more robustness in the results from evolution.

1.1 Research goals

The main goal of this thesis is to investigate how well a hybrid evolutionary
algorithm works for evolution of control systems for a given robot, in
comparison with a standard genetic algorithm. The hybrid EA in question
is a memetic algorithm, which basically consists of a combination of a
genetic algorithm and a local search algorithm. Investigation involves
testing the performance of evolution with and without learning under
equal conditions, followed by comparison of the results obtained with
each configuration. The idea is that learning can aid evolution by moving
individuals towards local optima during evolution, thereby increasing the
probability of finding the optimal solution, which is not guaranteed using a
standard genetic algorithm. In summary, the main goal is to:

• Set up a memetic algorithm which can be used to evolve parametric
control systems for a given robot, and then test its ability to
successfully evolve solutions in different settings in simulation.

Since evolution of the control system parameters is done in simulation,
another topic of interest is how learning affects differences in performance
of the evolved solutions in simulation and in the real world. In most
cases, the performance of solutions evolved in simulation has considerably
worse performance when transferred to the physical robot, mainly because
of inaccuracies in the simulator [17, 40]. Whether this decrease in
performance is larger or smaller when a memetic algorithm is used should
therefore also be examined. Thus, a second goal of the thesis can be
summarized as follows:

• Investigate the difference between simulated and real world per-
formance of control system parameters evolved using a memetic al-
gorithm, in comparison with a standard genetic algorithm.

2

CHAPTER 1. INTRODUCTION

1.2 Outline of the thesis

The thesis consists of six chapters: introduction, background, software and
tools, implementation and experimental setup, experiments and results,
and discussion.

Chapter 2 contains general background information about the theory
which this work is based on, including an overview of memetic algorithms
and evolutionary robotics, as well as previous research done on these topics.
Chapter 3 presents the tools and software used to prepare and conduct the
experiments, such as the robot on which the experiments where performed.

Chapter 4 describes the implementation of the memetic algorithm
additions, and gives an overview of how the experiments are organized.
Chapter 5 then outlines the experiments, and presents the results as well as
subsequent short analyses for each experiment. Finally, chapter 6 contains
a general discussion of the overall results from the previous chapter, along
with a conclusion and suggestions for future work on the topic.

3

1.2. OUTLINE OF THE THESIS

4

Chapter 2

Background

Nature has always been a source of inspiration in the field of robot
design. Evolution has produced organisms that are perfectly adapted to
their environments. Consider for example the emperor penguin: living
in Antarctica, it faces one of the harshest environments on the planet,
with temperatures down to -40◦C and intense wind speeds. However,
with its specifically adapted morphological features, like its layers of fat
and feathers, the emperor penguin has no problem handling this rough
environment. Its oily coat and streamlined body also makes it an expert
swimmer, and the characteristic dark back and white belly provides good
camouflage when hunting [48]. These traits were formed through millions
of years of evolution, and leave the penguin well adapted to solve the
problems in its environment. Since the results of evolution in nature
are this specialized, simply copying them into a specific problem solving
robot will probably lead to a design that includes traits unnecessary or
even obstructive for solving the problem at hand. Evolutionary Robotics
(ER) attempts to mimic the process of evolution instead of its biological
results, to create robots that are evolved to handle the environment of a
certain problem. Often, the control parameters of an existing robot are
improved using this method, but one of the final goals of ER is the evolution
of both control parameters and morphology [3, 44]. Although this task
is extremely difficult due to the vast number of iterations and the many
parameters that are often needed to describe solutions and environments,
one advantage of ER is that it is not restrained by biological processes, and
can therefore include problem-specific algorithms such as lifetime learning
in the evolutionary search. This is what constitutes the essential ideas
behind Memetic Algorithms.

2.1 Memetic Algorithms

Evolutionary Algorithms (EAs) are population based optimization al-
gorithms inspired by the basic concepts of biological evolution and genetics,
such as natural selection and inheritance. Memetic Algorithms (MAs) use
this as a basis, and in addition includes ideas about lifetime learning, such
as Lamarck’s theory of evolution and the Baldwin effect [1].

5

2.1. MEMETIC ALGORITHMS

2.1.1 Cultural evolution

The word “meme” was introduced by Richard Dawkins in [7], and is used
to describe a unit of human cultural evolution, equivalent to “gene” in
biological evolution. A meme can be described as a small building block in
some kind of knowledge or skill that an individual can acquire by learning.
This means that the meme can be modified during the lifetime of the
individual, and then, if it is good or interesting enough, be passed on to
the next generation. This separates memes from genes, as the latter will be
transmitted to the next generation unaltered, if the individual’s fitness is
good enough. With this concept of memes in mind, Moscato [29] defined
the term Memetic Algorithms. MAs combine the analogies of genes and
memes by including local search as a sort of lifetime learning in a Genetic
Algorithm (GA).

2.1.2 Genetic Algorithms

GAs are a subset of Evolutionary Algorithms, which again is a subset of
Evolutionary computation (EC).

In general, EAs/GAs perform iterative search or optimization of a
problem by evolving a population of candidate solutions, or individuals,
towards an optimum, by modifying these using mutation and/or crossover
operations. The new individuals go through a selection process, where
individuals with higher fitness values have a higher chance of being selected
to the new generation. The same process is then repeated on the new
generation, until a termination criterion is reached, i.e. a certain number
of iterations have been performed. For a more detailed description of EAs
and its variants, see [12].

Evolutionary computing, as part of the field of artificial intelligence, is
becoming an established research area in computer science, and includes a
large set of techniques, including EAs and GAs. It has reached popularity
due to its ability to perform fast global search on high complexity problems
that require satisfactory, but not necessarily optimal, performance, and
because it can be applied to a large number of problems without much
altering. This can be done because of the fact that it makes few assumptions
about the final solution, which also makes it relatively straight forward to
implement on different systems.

2.1.3 Lifetime learning

A well-known disadvantage of GAs, and EAs in general, is that there
is no guarantee that the global optimum will be found, as the whole
process is characterized by stochasticity and lacks the ability to exploit local
information. They do, however, guarantee a near optimal solution, as EAs
perform well on global search due to their ability to explore large areas of
the fitness landscape. The idea behind memetic algorithms is to combine
the explorative qualities of GA with the exploitative qualities of heuristic
local search, so a global optimum should have a higher probability of being

6

CHAPTER 2. BACKGROUND

discovered with this hybrid global-local search approach. The application
of local search is sometimes referred to as lifetime learning, see [30]. There
are two main models of lifetime learning, Lamarckian and Baldwinian
[24, 46]. Lamarckian learning transmits the improvement caused by local
search back to the population by encoding the improved phenotype back to
a genotype, which is then used in selection and reproduction in the normal
GA way. Although Lamarck’s theory of evolution has been more or less
discarded as a correct description of biological evolution, computational
evolution is not bound by biological constraints, and with an applicable
phenotype to genotype encoding there is no reason why this could not
be implemented. Baldwinian learning is based on the more biologically
accepted mechanism of the Baldwin effect [1]. In this method, the fitness
of the individual is altered after the local search and thereby affects the
selection process, but the results of the local search are not inherited by the
new generation. An early simulation of Baldwinian learning can be found in
[19], where it was stated that learning alters the search space, and that the
shape of the search space indicates if learning will be a positive influence or
not. Figure 2.1 shows an example of how a fitness landscape can be altered
using Baldwinian learning.

Fi
tn

es
s

With Baldwinian
learning

Figure 2.1: Illustration of how the Baldwin effect can affect a fitness
landscape. Without learning, the fitness landscape consists of a single
spike, so using a GA to optimize the problem would basically reduce it
to a completely random search, since each individual would get a fitness
of either zero or the maximum fitness. With Baldwinian learning, the
fitness landscape is smoothened, since each individual can move towards
the optimum at some cost of learning, thereby allowing a wider range of
fitness values.

Most successful MAs to date implement Lamarckian learning [24].
Although it poses the additional challenge of encoding the phenotype into a
corresponding genotype, the fact that the results of the local improvements
are placed back in the population seems to give better results in general.

7

2.1. MEMETIC ALGORITHMS

2.1.4 Overview of the process

Figure 2.2 shows an outline of a standard run of a memetic algorithm. The
first step is to initialize a population. This is often done randomly to avoid
bias, but can also be done using known information about the problem.
Local search is then performed on the initial population, before the main
loop is entered, starting with parent selection based on the current fitness
values of each individual. In some configurations, not only fitness affects
the parent selection, but also other parameters, like age. Mutation and/or
recombination of the parents is then performed, generating new individuals
which form the new generation, on which local search then can be done.
All individuals now represent local optima, or near local optima depending
on the configurations of the local search algorithm. If the implementation
uses Lamarckian learning, the new individuals receives a new genotype
encoded from their improved phenotype before continuing, otherwise only
the fitness stays improved. A new population is then made through survivor
selection of the old and the new individuals, which can be done using either
an elitist or a generational approach. With an elitist algorithm, which is the
more common, individuals of high fitness are kept in the new population,
as opposed to a generational algorithm, where all individuals of the last
population are replaced by the new. This is repeated until a specified
termination criterion is reached, often after a certain number of iterations.
For a more detailed explanation, see [12] or [31].

2.1.5 Local search and fitness landscapes

The success of the MA largely depends on the choice of local search. This
is rarely a non-trivial choice to make, as the effectiveness of different local
search algorithms varies over the local structures of the search space, in
correspondence with the No Free Lunch Theorem [49]. Much research
has been done on the topic of fitness landscapes and MAs, including [5,
24, 28, 36]. [28] emphasizes the importance of fitness landscape analysis
when considering MAs, and suggests a few methods for determining both
global and local structures. To find the best performing local search,
random walk correlation analysis is used to analyse the local structure. A
high correlation between neighbouring points indicates a smooth fitness
landscape, whereas a low correlation suggests a rugged fitness landscape
with many local optima. Correlations between local and global optimums
are also examined, to determine the effectiveness of mutation versus
recombination based MAs, and to denote the performance of MAs over
certain types of landscapes compared to other heuristics. [5] uses the term
phenotypic plasticity to describe the change in an individual’s fitness due
to lifetime learning, and demonstrates how this can have a smoothing effect
on the fitness landscape. Their findings suggest that this effect is beneficial
in rugged multi-peaked landscapes, but that it may slow evolution down if
the landscape is shaped by a simple function without multiple local optima.
Random walk provides a baseline for their experiments, and is used as
a way of measuring evolution rate on different fitness landscapes. [24]

8

CHAPTER 2. BACKGROUND

Initialize
population

Local
search

Parent
selection

Mutation/
recombination

Local
search

Phenotype to
genotype

Terminate?
Yes

No

If Lamarckian

Figure 2.2: Overview of MA process

proposes benchmark analyses for connectivity structures for Lamarckian
memetic algorithms, and attempts by this to introduce generality in
this field, as most earlier research has been concerned with specific
problems and proof-of-concepts. Their results are similar to those in [28],
confirming that connectivity/correlation and local optimum structure in
general influences the performance of MAs notably. More specifically, local
structures of the fitness landscape influence the effectiveness of the local
search, while global structures affect the evolutionary meta-search. They
suggest using a statistical analysis method, like random walk correlation
analysis, to create an idea of the fitness landscape and thereby find the
best local search algorithm. In [36], the effects of shifting the balance
between individual and population adaptation on changing environments
are explored, as a possible solution to limited computational power. This
is done by introducing a “lifetime parameter” which sets the degree of
individual level versus population level adaptation, or exploitation versus
exploration, respectively.

9

2.2. VARIANTS OF EVOLUTIONARY COMPUTING

2.1.6 Adaptive MAs

As the choice of local search is of real importance, finding good methods
for this has been some of the main topics in recent studies on MAs.
[35] proposes a classification of adaptive MAs, and shows how adaptive
MAs are capable performing more robustly than traditional MAs. This
classification is revisited in [30], and an updated version is proposed.
Four main categories are described; Adaptive Hyper-heuristic, where local
search algorithms are coordinated using fixed rules; Meta-Lamarckian
learning, where the success of the different local searches affects how
often they are applied; Self-Adaptive and Co-Evolutionary, where local
searches are evolved alongside the candidate solutions; Fitness Diversity-
Adaptive, where fitness diversity is used to select the most appropriate
local search algorithm. In [34], the term Meta-Lamarckian learning
is used to describe methods that use multiple local search algorithms
during a run of a Lamarckian MA. Their proposed approach uses a pool
of local searches which compete and cooperate during the evolutionary
meta-search, thereby avoiding having to manually select the best local
search algorithm beforehand. On problems with a priori unknown fitness
landscapes, this approach could be useful.

2.2 Variants of evolutionary computing

GAs and MAs are only a small subset of a wide range of techniques that
constitute the field of evolutionary computing. Although this thesis mainly
makes use of memetic algorithms, there are a few other variants which are
relevant.

2.2.1 Evolution strategies

Evolution strategies (ES) focus on the use of mutation for the creation of
offspring, although recombination is also sometimes used [12]. ESs are
mainly used for optimization of continuous parameters, making the typical
mutation method addition of random noise extracted from a Gaussian
distribution. In addition to the continuous parameters, the genotype
also often contains the mutation variables, such as the standard deviation
parameter σ representing the mutation step sizes. This means that ESs are
typically self-adaptive, as the mutation parameters are evolved alongside
the optimization parameters. The assumption here is that different σ’s
perform differently under different circumstances, i.e. space or time. Self-
adaptation can be present on different levels, from standard mutation on
an individual level with one σ for all parameters, to correlated mutation
on a coordinate level with one σ for each of the parameters, accounting for
different degrees of change along different axes of the search landscape.
ESs also differ from standard EAs on parent selection, as parents will be
drawn from the population when needed by the recombination operator.
In general, selection involves a parent individual and λ mutants generated
from that parent, which compete with each other for becoming the parent in

10

CHAPTER 2. BACKGROUND

the next generation. Three main selection methods exist, (1+λ)-ES, where
the mutants and the parent compete for survival, (1,λ)-ES, where only the
mutants compete while the parent is discarded, and (µ/ρ,λ)-ES, where µ

parents are used in combination with a recombination operator to generate
λ mutants.

2.2.2 Multi-objective optimization

One of the main challenges of multi-objective optimization is that problems
which have more than one objective will produce a set of optimal solutions,
rather than one single optimal solution as is the case with single-objective
optimization, due to trade-off between the objectives. This set of optimal
solutions is known as the Pareto front, the calculation of which often
requires repetitive application of methods, depending on the algorithm.
The population based evolutionary algorithms provide an efficient way
of computing multiple solutions in one run, making them ideal for
optimization of multi-objective problems. Evolutionary multi-objective
optimization (EMO) has for that reason been a popular field of research
over the last few years, leading to a number of interesting methods and
research papers on the subject [8]. Most of these include the concepts of
domination and explicit diversity maintenance.

Domination

The concept of domination provides a means to compare multi-objective
solutions, and is therefore used in most multi-objective optimization
methods. In short, it works as follows: A solution a is said to dominate
another solution b if a is no worse than b on all objectives, and if a is better
than b on one or more objectives. Both of these conditions must be true for
domination to be present. A set of solutions will after this definition have a
subset of non-dominated solutions, all of which dominate all the solutions
outside this set. This non-dominated set constitutes the Pareto-optimal set
or Pareto front, see Figure 2.3.

Diversity maintenance

In EMO and for EAs in general, diversity or spread of solutions is another
important concept. For EMOs in specific, diversity is often forced upon
the population in order to preserve different niches. Two main methods
exist, fitness sharing and crowding. Fitness sharing attempts to place a
number of individuals in a niche in accordance with the shared fitness
of that niche, before survivor selection is performed. This is done by
adjusting the fitnesses according to distances between each individual and
the surrounding individuals within a certain distance, defined by a sharing
parameter σshar e . This method works well for distributing solutions to
different niches, but it also has several drawbacks, such as the need to
specify the sharing parameter, as well as high computational complexity.
If crowding distance is used instead of fitness sharing, the need for a

11

2.2. VARIANTS OF EVOLUTIONARY COMPUTING

f1

f2

Figure 2.3: Illustration of a Pareto front. Fitness functions f1 and f2 are
minimized.

sharing parameter is avoided, and the computational complexity can also
be reduced. Crowding distance is calculated as the average distance
between an individual and the two closest individuals on either side, in
fitness space. Using crowding distance as a diversity measure should lead to
an even spread of solutions, by providing an advantage to individuals with
large crowding distance when ties are encountered during selection [8].

NSGA-II

One of today’s most widely used EMO methods is the non-dominated
sorting genetic algorithm II or NSGA-II [8]. NSGA-II is an improvement
of NSGA, one of the first and best performing evolutionary multi-objective
optimization methods of its time [9]. NSGA-II made changes to some
of the main issues of NSGA, by introducing elitism, crowding distance
as a parameterless measure for diversity, and a non-dominated sorting
approach of less computational complexity than its predecessor (from
O(MN3) to O(MN2)). With these changes, it is able to find solutions near the
true Pareto-optimal front, through survivor selection based on both fitness
and diversity. Through extensive use, NSGA-II has been shown to have
limitations when solving problems with four or more objectives, which has
lead to the recent second extension of the algorithm, the NSGA-III [20].

The main loop of NSGA-II starts by combining the current parent and
offspring populations, Pi and Qi , from which the next parent population
Pi+1 will be formed, see Figure 2.4. The solutions in this combined
population are then classified using a non-dominated sorting algorithm,
resulting in the population being sorted into a set of non-dominated fronts,
where F1 is the best. Thereafter, the new empty parent population is filled
with the solutions from the non-dominated fronts, starting with the best
front and continuing until the population is of the correct size. Since the

12

CHAPTER 2. BACKGROUND

{

Pi + Qi

F1

F2

F3

Fn

Pi+1

Non-dominated
sorting

Crowding distance
sorting

Rejected

Figure 2.4: Outline of NSGA-II procedure

combined population is twice the size as the new parent population, not all
fronts will be included. Solutions from the last front that can be added may
not all fit, so solutions are selected according to diversity using crowding
distance. A new offspring population Qi+1 is then created from Pi+1 using
crowded tournament selection, in which a solution wins if it has a higher
rank, or, when the ranks are equal, it has a better crowding distance.

2.2.3 Simulated annealing

Simulated annealing (SA) is a probabilistic search mainly used for global
optimization for its ability to escape local optima, but can also be an
alternative as a local search algorithm on problems with a rugged search
space. Although SA is strictly not part of the EA family because it is
not population based, it is related in the sense that it is also a generic
metaheuristic. The algorithm is inspired by annealing in metallurgy, and
uses a simulated temperature to achieve convergence towards the end of
the search. At the beginning of the search the temperature is high, causing
large changes with large probability, thereby exploring large areas of the
search space without concentrating on local optima. During search the
temperature decreases, and along with it the probability of large changes.
In other words, the standard deviation of the Gaussian distribution used for
creating new solutions decreases, and so does the probability of selecting
worse solutions. This probability is called the acceptance probability, and
is calculated as

P (e ′,e,T) = exp(
e ′−e

0.5T
) (2.1)

where e ′ and e are the new and best solutions, respectively, and T is
the temperature. e ′ is here a worse solution than the best so far, if it was
better it would have been selected with a probability of one. The standard
deviation of the Gaussian distribution is proportional to the square root of

13

2.3. EVALUATING PERFORMANCE OF EAS

the temperature, σ= a
p

T , where a is a scaling factor. The large probability
of choosing worse solutions at the beginning of the search prevents getting
stuck in local optima before a larger area of the search space has been
evaluated. At the end of the search, the temperature is low, and the search
converges towards the best local optimum discovered.

2.3 Evaluating performance of EAs

Because of the stochastic nature of evolutionary algorithms, evaluation of
their performance usually involves running a number of experiments in
order to obtain enough data to provide valid performance measures. In
[12], three such measures are listed, mean best fitness (MBF), success
rate (SR) and average number of evaluations to a solution (AES). After a
satisfactory number of experiments have been run, MBF can be calculated
as the average of the best fitnesses over all runs. The best fitness can
be defined as the best fitness at termination of the EA run. This gives a
good indication of how well the algorithm performs on average. For some
problems, best-ever or worst-ever fitness might be more interesting than
the average performance, depending on the goal of the algorithm. Success
rate is a measure of how often the algorithm succeeds in finding an optimal
solution, and is calculated as the percentage of successful runs out of the
total number of runs. A successful run must be defined beforehand, this
often being that the best fitness at termination is over a certain threshold.
On some problems, however, such a threshold cannot be defined since the
optimal solution is unknown, and SR is not applicable.

MBF and SR are both measures of effectiveness, but in some situations
it is also important to have a measure of efficiency of the EA. AES is defined
as a general way of measuring efficiency, independent of processing speed.
It is calculated as the average number of evaluations performed before
a solution is found. Because it relies on the definition of a solution, it
suffers from the same limitation as SR, and is therefore not applicable to
all problems. In some situations, it can also be a misleading measure of
efficiency, e.g. if there in an imbalance in the duration of the evaluations or
there are other parts of the EA cycle that are computationally demanding
compared to the evaluations.

Although average performance measures are a good way of evaluating
EAs, it is sometimes more interesting to look at peak performance,
depending on the type of problem being solved. For design problems,
where only one excellent solution is required, peak performance is normally
more interesting than average, while for repetitive problems, where results
are needed repeatedly and often, average performance is more important.

2.3.1 Statistical analysis

When comparing the performance of two algorithms, or just different
configurations of the same algorithm, making a claim of superiority of
one over the other should not be done without using a statistical test

14

CHAPTER 2. BACKGROUND

that supports this claim, by showing that there is a significant difference
between the two. The amount of evolutionary computation methods for
optimization done in recent years has demonstrated the importance of
statistical analysis for comparison between these methods. Statistical
studies usually make use of parametric tests based on average and variance,
but recent studies have also considered non-parametric tests for analysis of
results [16]. A parametric test is more robust if there is enough knowledge
about the problem to make accurate assumptions since the test will be
better adapted to the problem, however, this also makes it more restrictive.
Non-parametric tests can be used for comparison between algorithms
without requiring specific conditions, making them applicable to a wider
range of problems in general.

One of the main methods in statistical inference is hypothesis testing,
where a set of sample data is employed to test a hypothesis. There are
two hypotheses involved in this, the null hypothesis H0 and the alternative
hypothesis H1, where the latter is the one which is expected to be correct.
H0 is the hypothesis that the sample data are drawn from the same
population, meaning that there is no significant difference between the sets
of sample data. Similarly, H1 is the hypothesis that there is a difference,
that the data is drawn from different populations. To show statistical
significance, it is desirable to be able to reject H0, by concluding that this
hypothesis is very unlikely. One way of doing this is to calculate a p-
value, which can be obtained as a function of the resulting test statistic
of a statistical test. The p-value shows if a test is significant or not. If
it is lower than a certain chosen threshold, usually 1% or 5%, H0 can be
rejected and the test is significant. It is also an indication of how significant
the test is, if it is much lower than the threshold, the null hypothesis can
be rejected with much confidence. When testing statistical significance, a
large sample size is preferred, as this increases the probability of rejecting
the null hypothesis, and makes the test more powerful.

In [16], Garcia et. al. state that non-parametric tests are preferable
when analysing results from continuous optimization using evolutionary
algorithms, because the initial conditions necessary for parametric tests
are not satisfied, this being that the data distribution is of a known form.
Garcia et. al. used the Wilcoxon matched-pairs signed-ranks test in their
study, but in these experiments the similar Wilcoxon rank-sum test will be
used, due to the fact that the latter assumes unpaired data, while the former
assumes paired.

Wilcoxon rank-sum test

The Wilcoxon rank-sum test, also called the Mann-Whitney U test, is a non-
parametric test first proposed by Wilcoxon in [47] and further developed
by Mann and Whitney in [27]. The test investigates the null hypothesis
that two populations are equal, using a sum of ranks procedure. This
involves calculating a U statistic, which indicates if the null hypothesis
can be rejected or not. The U statistic is calculated by first sorting and
assigning ranks to all observations in the data samples, then adding the

15

2.4. EVOLUTIONARY ROBOTICS

ranks together within each sample, and finally calculating U using the
function

U = mn + m(m +1)

2
−T (2.2)

where m and n are the sample sizes, and T is the sum of ranks for the
sample with size m. The U statistic can then be used to calculate a p-value.
Because of the ranking procedure, the Wilcoxon rank-sum test can only
be used on ordinal data. For the same reason, it is a good method for
comparing the equality of two samples’ median, but this also means that it
is not easily adapted to comparison of other parameters, such as the mean
difference [42].

2.3.2 Data visualisation

Often, the best way to extract information from a large data set is to
visualize it. When evaluating evolutionary algorithms, it is often interesting
to see how the population developed through the evolution, e.g. how fast it
converges. One way of achieving this is to plot progress curves, showing
the mean of the best fitness in every generation in a set of equivalent
evolutionary runs, to get an idea of how well the algorithm performs on
average, and how efficient it is. To get an idea of how robust the algorithm
is, a plot of fitness variance can be used instead. A low variance indicates
high robustness, since this means that there is little spread in the results.

It can also be interesting to plot all fitness values in a population for each
generation in a single evolutionary run, since this would should how much
spread there is within the population. In evolutionary algorithms, a large
diversity is usually desired, making this kind of plot helpful. Another way
of doing this could be to plot a set of percentiles, showing where most of the
solutions lie on the fitness scale. This kind of grouping can also be depicted
using a box plot, see Figure 2.5. A box plot shows the groupings of data in
the form of quartiles, where the first, second (median) and third quartiles
are represented as lines in the box. In addition, limits are shown in the
whiskers, and outliers are indicated as dots or crosses outside the whiskers.
Such a plot contains a lot of information, and is useful when comparing
different algorithms or configurations.

2.4 Evolutionary Robotics

Evolutionary robotics (ER) has yet to become an established part of
mainstream robotics. To this day, robot design in general involves manual
design of the robot’s shape, and the use of machine learning for control
policy optimization on the hand-designed robot. This process is extremely
time consuming and demands a lot of resources, however, the results still
outperform the current results obtained through ER [3]. Still, ER keeps
gaining popularity for a number of reasons, one being that improving
control policies and morphology can be done automatically while making
few assumptions about the final system. This is mainly based on the

16

CHAPTER 2. BACKGROUND

Sample set

Outliers

Maximum

Minimum

1st quartile
Median
3rd quartile

Figure 2.5: Example of a box plot, with descriptions of the different parts.

formulation of a fitness function or a novelty search. Another advantage
is that evolutionary algorithms can find solutions that are non-intuitive
for human designers. This makes robotic design in ER more efficient,
automatic design of robot control and/or morphology can and has created
vast numbers of robots, obviously of varying quality. ER has also been
shown to exploit rather than fight against morphological or environmental
features, e.g. in [15], evolution of locomotion patterns on a monkey-like
robot produced a pattern which exploited the momentum of the robots
body, similar to what primates do when swinging from one tree to the next.

Another benefit of ER is that it can be interesting not only to roboticists,
but also to biologists, as robots might evolve traits that are also seen in
nature, and through this possibly help explain why these traits exist.

One disadvantage of ER, and EAs in general, is that the optimal solution
is rarely found, and the number of iterations performed before a near
optimal solution is found is often vast. Incorporating MAs in ER could lead
to an improvement in this area, when looking at some of the promising
research done on MAs.

See [3] for a more detailed overview of the field.

2.4.1 Evolving robots

So far, ER researchers have mainly been evolving control policies, often in
the form of neural networks. However, full automation of robot design is
desirable, and some research has also been done on the evolution of mor-
phology, or more ideally, morphology and control policy simultaneously,
starting with [43, 44]. Sims used genetic algorithms to evolve both morpho-
logy and control of virtual creatures, which in the end were capable of swim-
ming, walking, jumping or following a light. Similar simulated creatures
were brought into the physical world through the GOLEM Project [37].

17

2.4. EVOLUTIONARY ROBOTICS

Although these early attempts at full automation were fairly simple, they
show the potential to automatically create natural robots. A more recent
experiment conducted by Cheney et al. [6] addresses the issue of lacking
improvement since Sims [44], and present a new approach which includes
multiple material types, like soft muscles and tissue. They use a CPPN-
NEAT encoding [6] which is shown to produce more advanced creatures
in simulation, and the multiple materials make evolution of more natural
looking creatures possible.

2.4.2 Variants

In addition to classic legged or wheeled locomotive robots, there exists a
wide array of variants suitable for artificial evolution, such as modular,
swarm, and soft robotics.

Modular robotics

Modular robotics makes repetition or reuse of evolved sections or modules
possible, which is also often seen in biological organisms, see [2, 26, 41].
Modularity seems a great advantage when evolving complex morphology,
and could potentially increase the evolvability of robotic systems [2].

1

φ
:

-10
�

ψ
:

-3
�

2
72.7
3

φ
:

81
�

ψ
:

-36
�

4
81.7
5

6

φ
:

-14
�

ψ
:

-4
�

7
93.1

8

φ
:

76
�

ψ
:

-34
�

9
111.8

10

11

φ
:

-15
�

ψ
:

-3
�

12
141.7

13

φ
:

81
�

ψ
:

-29
�

14
168.4

15

126.4

60.3

162.6

85.0

187.4

92.5

Figure 2.6: Example of a modular robot [40].

Swarm robotics

Swarm robotics takes its inspiration from social insects like ants, in
other words, simple individuals that work collectively in a group. Early
work includes [38], which focuses on evolving controllers for cooperative
behaviour in small, homogeneous robots. The results showed that the
robots developed distinct roles in the team, and worked together to
complete a coordinated movement task.

Soft robotics

Soft robots are, as the term suggests, built using soft materials in addition
to rigid parts. Such robots could potentially handle environments that

18

CHAPTER 2. BACKGROUND

standard discrete robots struggle with, i.e. by climbing walls or squeezing
through holes. However, this flexibility also makes controller design
difficult due to the fact that deformation of one part of the robot will
consequently cause deformation of another part. Artificial evolution would
then be ideal for controller or morphological design for robots of this
kind. This is attempted in [39], where NVidia’s PhysX is used to simulate
evolution of soft robot gaits, as well as for soft-body modelling.

2.4.3 Challenges

There are still a number of unresolved challenges within ER which can
explain why it has yet to produce a robot which is superior to one of manual
design. Current research mainly focuses on these challenges.

To achieve evolution of adequate controllers/robots in simulation
the task environment must be well described, often demanding a large
number of parameters. An increasing expressiveness rapidly increases
the evaluation time of each robot, creating a complexity problem, and
demanding extensive computational power. [3] mentions co-evolution of
robots and task environments and evolvability of algorithms as possible
solutions to this problem.

Another key element in EAs is the fitness function, which describes the
quality of a solution. It is near impossible to design an unbiased fitness
function, resulting in biased solutions, even though one of the goals of EAs
is to do as few assumptions as possible about the final result. One possible
adaptation of this can be to omit the fitness function and instead do novelty
search [25]. Novelty search does not evaluate each individual on a certain
performance like the fitness function, it rather compares the difference
in functionality between new individuals and what has been discovered
before. Significant difference is rewarded, leading to higher complexity,
similar to natural evolution.

Reality gap

The large number of iterations needed for artificial evolution to produce
good results is the reason why simulation is such an important part of the
process. Ideally, evolution would be performed on the physical robotic
system, but for most applications this process is too time consuming, and
also involves a lot of wear and tear on the physical robot. The continuous
and noise filled properties of the real world make creating a realistic physics
based simulator a difficult task, and an inaccurate simulator would lead
to badly transferable solutions due to the fact that evolution exploits all
aspects of the environment. Solutions may become overly adapted to a
simulated environment that does not accurately match the real world. This
difference in performance between a simulated solution/controller and
the transferred real world solution/robot is called “the reality gap”. [21]
found that adding noise to the simulation can create better correspondence
between real world applications and simulations if the level of noise is

19

2.4. EVOLUTIONARY ROBOTICS

appropriate, as noise blurs the fitness landscape in simulation. The more
accurate a simulator is, the more time the optimization process will take.

In [50], a different approach is used, namely a back-to-reality al-
gorithm, which does co-evolution of simulator and robot/controller. This
involves regular validations of the simulation model in the real world,
followed by updates in fitness. [23] also uses a robot-in-the-loop ap-
proach, namely the transferability approach, but here a Pareto-based multi-
objective evolutionary algorithm is used, where the objectives to be op-
timized are fitness and transferability. Transferability is measured using a
simulation-to-reality disparity measure, which for most potential solutions
is approximated using interpolation of a few real world measures. This ap-
proach ensures that the optimal solutions found in simulation are transfer-
able, but it does not necessarily find the best real world solutions, which is
yet to be done.

2.4.4 Recent work in ER

In addition to some of the work already mentioned, extensive research has
been performed on the subject of ER. [11] lists two methods in ER as current
trends, evolutionary aided design and online evolutionary adaptation.

Evolutionary aided design

Evolutionary aided design aims at using EAs to find promising strategies,
and then using more traditional design techniques based on the results.
In this way an evolutionary algorithm is used more as an analysis tool
than for optimization, which can be useful for systems where possible
optimization parameters are not obvious, possibly because of stochasticity
or non-linearity. In [18], this technique is used to find controllers for
a homogeneous swarm of micro air vehicles (MAVs). They first applied
an evolutionary algorithm to automatically evolve neural controllers, then
analysed the resulting behaviours and reverse-engineered these using
hand-design to provide simple controllers that were easy to parameterize
for different scenarios.

Online evolutionary adaptation

Online evolutionary adaptation involves continuously running an al-
gorithm on the robot, in order to online deal with possible changes on the
robot or in the environment. This means that human intervention is un-
necessary, which is obviously advantageous where such is unavailable, like
in hazardous environments. [45] applied a form of online evolution to a
population of robots, called embodied evolution, in which an evolution-
ary algorithm was distributed among a group of robots which then evolved
through mutation and recombination between robots. An advantage of this
approach is that evolution could be done outside simulation, thus avoid-
ing transferability issues. Another is that evolution could be done “in the
field” without human intervention. [4] also uses an online approach, by

20

CHAPTER 2. BACKGROUND

letting a legged robot detect changes in its own morphology, and then ad-
apting the controller by synthesizing new models. In any case, the idea is
that optimization is done without interfering with the robot performing its
task. Since online evolution is a real-time operation, including MA could
be advantageous as it has been shown that MAs can provide solutions more
efficiently than plain genetic algorithms in some cases.

2.4.5 Learning with neural networks

Memetic algorithms are not the only area of interest when it comes
to combining evolution and learning, much of the recent research has
revolved around evolution and learning in the shape of neural networks.
In this case, learning corresponds to the training of the neural network
during evolution, which is often done in intervals [33]. In [14], a population
of plastic individuals were evolved on a small mobile robot using a
simple genetic algorithm where the genotype contains a set of parameters
describing learning rules and properties of the synapses, but where the
weights of the synapses are set to a random low value at each learning
stage. The resulting weights after learning are not encoded back into the
genotype, as the phenotype and genotype are in different search spaces.
In this way, evolution can provide better conditions for learning, and
thereby is not only evolution aided by learning, but evolution additionally
guides learning. Although this experiment was performed in a stationary
environment, it also posed as a step towards a similar experiment with
changing environment, as it was expected that this kind of learning would
be advantageous in such a setting.

In [33], one such experiment is described, in which the changing
environment consisted of the walls changing between being dark or light,
causing an impact on the sensor activation levels. The results of this
experiment indicated that when learning was activated, individuals were
selected partly for their ability to learn successfully, in other words, they
evolved a "predisposition to learn" rather than to behave. This was
concluded from the individuals’ ability to solve the problem before and after
learning. Since the non-learning individuals outperformed the learning
individuals before learning, while the opposite was the fact after learning,
it can be assumed that evolution selects individuals after their success in
setting up good conditions for learning. This supports the Baldwin effect
hypothesis.

2.5 Combining Memetic Algorithms and Evolu-
tionary Robotics

The fields of Memetic Algorithms and Evolutionary Robotics both lack
maturity, so it is not surprising that very little research has been done on
combining the two. Still, some work has been done on the field, including
[32] and [22]. [32] applies a compact memetic algorithm to a cartesian
robot for optimization of the control system, with good results. Their

21

2.5. COMBINING MEMETIC ALGORITHMS AND EVOLUTIONARY ROBOTICS

Memetic compact Differential Evolution (McDE) algorithm is designed for
problems where high power computational components are unavailable,
i.e. due to space/cost requirements or limited hardware, making it ideal for
robotics. In [22], a hybrid genetic algorithm including bacterial foraging
was used to optimize the parameters of the PID controller of an automatic
voltage regulator. This algorithm showed promising results, and could
potentially be used for other similar optimization problems, such as the
development of robot controllers.

Another reason for why this is a little explored field, could be that
finding a good local search algorithm for ER is not trivial. The performance
of MAs is as mentioned highly dependent on fitness landscape, which is
usually unknown in ER. However, the stochastic local search used in [32]
produced good results, which seems promising for other ER applications.
Moreover, although the exact shape of the fitness landscape is mostly
unknown, it will in most situations in ER be multi-peaked. MAs have
demonstrated good performance on such landscapes, so further research
on this is of interest. A possible solution to the problem of choice of local
search could be to use an adaptive memetic algorithm, as recent research on
this topic indicates that this could lead to good results on unknown fitness
landscapes.

22

Chapter 3

Software and tools

This chapter presents the different tools and software used in the imple-
mentation and experiment parts of this thesis. This includes the evolution-
ary simulation system, the robot, as well as the motion capture system used
in the real world experiments. Table 3.1 shows an overview of the software
used.

Area of use Name Version
Development environment Microsoft Visual Studio 12.0.30501.00
Figures Adobe Illustrator 16.0.0
Image editing Adobe Photoshop 13.0.1
Statistics and graphs Matlab 2013b and 2014a
Motion capture Arena 1.7.3

Table 3.1: Table showing the software used during the work on this thesis.

3.1 Simulation system

The evolutionary simulation system developed at the ROBIN research
group consists of a framework which uses PhysX and ParadisEO for physics
simulation and evolutionary computing, respectively.

3.1.1 PhysX

PhysX 1 is a multi-threaded physics engine SDK managed by NVidia, one
of today’s main GPU manufacturers, and is widely used in games and
by developers. As a middleware physics engine, it provides real-time
physics simulations for developers to use without the need to implement
complicated calculations for physical mechanics. In other words, PhysX
allows developers to simulate physics using high level coding without
specific knowledge about physics or simulations. The SDK is free for

1http://www.nvidia.com/object/physx_faq.html,
http://www.geforce.com/hardware/technology/physx

23

3.2. THE ROBOT

commercial and non-commercial use on Windows, and is also available on
a series of other platforms 2.

3.1.2 ParadisEO

ParadisEO is a white-box, C++ based, object-oriented framework for
implementation and analysis of metaheuristics focused on design and
code reuse, which is portable across Windows and Unix systems and
licensed under the CeCill license3. It provides a range of features,
including evolutionary algorithms. The module ParadisEO-MOEO focuses
on multi-objective optimization, and its features include multi-objective
metaheuristics for evolutionary algorithms, like NSGA-II.

3.1.3 Simulation framework

The ROBIN simulation system, implemented in C++, uses the ParadisEO
framework for the evolution of robots, where the ParadisEO-MOEO
features are used to run NSGA-II. Figure 3.1 shows a rough overview of
the system. PhysX version 3.3 beta-2 is used to simulate the robot and
its movements, and thereby evaluate each individual’s fitness value. For
efficiency, the framework consists of a server-client system, where the
server manages the evolutionary part while the client handles the simulator
and evaluations. This enables the user to set up a number of clients to
perform simulations in parallel, only limited by population size and the
availability of computational power.

The main components of the evolutionary part can be said to be the
EvolutionManager and the RobotEvolver, in addition to the RobotGenes.
Before evolution starts, the EvolutionManager sets up the evolution
parameters from a configuration file and then initiates the RobotEvolver,
which generates the initial population using the specified RobotGenes and
handles the evolution. During evolution, the RobotEvolver sends out jobs
to the simulation part through a WorkManager, so each individual can get
its objective vector assigned.

On the simulation side, the SimWorker receives a blueprint describing
the corresponding individual which is to be simulated, from the server. It
handles this using an instance of EvorobEvaluation, which, among other
things, sets up the simulator, the simulation environment and the evalu-
ators. The simulation environment is again managed by EvorobScenario,
which has access to the blueprint, simulator and simulated robot, making
it ideal for specifying custom environments or behaviour.

3.2 The robot

A simple four-legged modular robot was used, one which had previously
been developed at the Robotics and Intelligent Systems research group

2http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide
3http://paradiseo.gforge.inria.fr

24

CHAPTER 3. SOFTWARE AND TOOLS

EvolutionManager

RobotEvolver

RobotGenes

Server:
Evolution
(ParadisEO)

Client:
Simulator (PhysX)

SimWorker

Simulator

EvorobEvaluation

EvorobScenario

Bl
ue

pr
in

t

Results/�tness

Figure 3.1: Overview of simulation framework

(ROBIN) at the Department of Informatics, University of Oslo. A simulated
model was evolved in simulation through evolution of both morphology
and control, which was then used to create a physical version to be tested
in reality. The full procedure is described in [40], where the robot used
in these experiments is listed as number three in the set of five robots
which were used there. The control system parameters that were originally
coevolved with the morphology of the robot result in a bounding gait, where
the front legs are in phase and the rear legs are in phase, but out of phase
with respect to each other. After evaluation of this gait in simulation and
in the real-world, it was found that the performance decreased somewhat
when tested on the physical robot, mainly due to the difference in friction
between the simulated environment and the carpet floor in the lab.

The robot has nine degrees of freedom, made up of nine revolute joints,
where one is a body joint, four are hip joints and four are knee joints. See
Figure 3.2 for images of the robot.

In the simulator, each part of the robot, excluding the joints, is modelled
by a white capsule of a specific length and radius, with hinges where they
are connected. See Figure 3.3 for an overview of some of the specifications
for the robot. If the morphology was evolved further, these specifications
would change during evolution, but for the experiments conducted here,

25

3.2. THE ROBOT

(a) In simulation

(b) The physical robot

Figure 3.2: The robot

only the control system was evolved, so the specifications supplied here
are fixed. Each joint is modelled as a revolute joint with an accompanying
motor which powers it. These motors are modelled as linear servos with the
specifications of a Dynamixel AX-18A servo, and have the shape of black
boxes with the dimensions of the same servo.

The physical version of the robot has been build using 3D-printed parts
based on the specifications of the simulated model, where each bodily part
has been printed in the form of a hollow plastic capsule with sockets for
attaching motors in the joints. They were printed on an Object Connex
500 multi-material 3D printer, using a material consisting of a mixture of
VeroWhitePlus and DurusWhite, called DurusIvory [40].

As for the simulated model, the joints of the physical robot are powered
by Dynamixel AX-18A servos. Each printed part has a slot where the servo
fits, see Figure 3.4. There are certain limitations to the physical robot
compared to the simulated robot which are worth mentioning, one of which
is that the servos are for obvious reasons unable to apply infinite force,
which could happen in simulation if robot limbs get locked in impossible

26

CHAPTER 3. SOFTWARE AND TOOLS

1

φ
:

5°
ψ

:
-2°

2
107.8

3

φ
:

88°
ψ

:
-27°

4
108.2

5

6

φ
:

1°
ψ

:
5°

7
136.1

8

φ
:

89°
ψ

:
-30°

9
140.1

10

146.5

74.6

230.0

131.4

1

3 524

6

8 10
79

Figure 3.3: Above: Schematic view of the robot, borrowed from [40].
Lengths are in millimeters. Below: Equivalent view of the robot in
simulation. Parts are numbered according to the above schematic.

positions. The simulation framework should, however, recognize these
situations and filter out the corresponding individual.

3.2.1 Control systems

There are several possible control systems which are applicable, two of
which are used in the experiments. In [23], a periodic controller was used
to govern the movement of each DOF of a hexapod robot, described by the
following function

γ(t ,α,φ) =α · t anh(4 · si n(2π · (t +φ))) (3.1)

where α and φ represent amplitude and phase shift, respectively, and t
is time. In other words, the movement of each joint is determined by two
parameters, making the total number of parameters for the robot 18. A low
number of parameters is advantageous for evolution, as it makes the search

27

3.2. THE ROBOT

Figure 3.4: Back leg of the robot, with and without servos mounted

space reasonably small, thereby increasing the chance of finding the global
optimum as opposed to a larger number of parameters. The tanh function
is used to keep the signal constant in parts of the cycle, thereby allowing the
robot to stabilize itself in these periods.

The search space can be decreased further by introducing symmetry to
the system, by managing the movement of each pair of joints, instead of
each joint separately. Such a simplification is supported by observations
from nature, where this kind of symmetry is prevalent. The way this is done
is by letting each joint pair share the amplitude parameter, but keeping
separate phase parameters to enable the two joints to move out of phase
with respect to each other. For the first joint, the first phase parameter
represents the phase, while for the second joint, phase is calculated by
addition of the two phase parameters.

One limitation of this controller is that movement will always be
centered around the same point, defined by the zero position of the servo.
To enable movement around an arbitrary centre, the controller can be
generalized by adding an offset parameter, thus allowing for a larger range
of gait patterns, and possibly also the range of robots on which it can be
used. The periodic function describing this controller can then be written
as

γ(t ,α,φ,δ) =α · t anh(4 · si n(2π · (t +φ)))+δ (3.2)

where δ represents the offset. However, this generalization increases
the number of dimensions and thereby the search space, making it com-
putationally more demanding to find optimal solutions with optimization
methods for robots with many DOF. For this robot, the number of paramet-
ers is 27 with this control system. Again, dimensionality can be reduced by
introducing symmetry, by letting each joint in a joint pair share the amp-
litude and offset parameters, reducing the number of parameters for each
joint pair from six to four. Figure 3.5 shows a plot of the joint motions of
two instances of these controllers.

In the remainder of this thesis, the first control system with only phase
and amplitude parameters will be referred to as AmpPhase, while the

28

CHAPTER 3. SOFTWARE AND TOOLS

second control system which also includes offset will be referred to as
AmpOffPhase.

0 10 20 30 40 50 60 70 80 90 100

−0.5

0

0.5

1

1.5

O�set

Phase

Amp

No offset, phi = 0
Offset = 1.2, phi = 0.25

Figure 3.5: Plot representation of joint motion. The blue line represents a
controller where offset δ = 1.2, phase φ = 0.25 and amplitude α = 0.5, while
the red line represents a controller with no offset, and where φ = 0 and α =
0.5.

3.3 Motion capture system

There exists a wide range of motion capture techniques commonly used in
robotics, such as inertial measures using accelerometers and gyroscopes,
magnetic methods with measurements of electromagnetic fields, mechan-
ical measurements of joint orientation displacement using potentiometers,
or acoustic techniques involving ultrasonic transmitters and microphones
[13]. In addition, there is optical motion capture, which is probably the
most widely used technique. Optical motion capture systems consist of one
or more cameras which detect the movement of specific markers which are
placed on the robot. These markers can be either active or passive, depend-
ing on the requirements of the system. Passive markers reflect infrared
light generated from the cameras to a larger extent than most other ma-
terials, thereby enabling tracking of these markers through thresholding of
recorded light. Active markers emit light themselves, permitting longer dis-
tances between camera and marker. Another advantage is that each marker
can be easily identified by sequentially switching on each marker, while
passive markers are sometimes swapped due to disturbances. However,
active markers require power sources to either be wired or attached to the
robot, which can be avoided with passive markers.

29

3.3. MOTION CAPTURE SYSTEM

Figure 3.6: OptiTrack Flex 3 cameras in the Motion Capture lab.

The motion capture equipment at ROBIN consists of a set of 12
OptiTrack Flex 3 cameras4 which track passive markers, see Figure 3.6 for
pictures of the cameras. The cameras emit infrared light, and record video
of up to 100 frames per second, with a 640 x 480 resolution. Through a
USB 2.0 interface, the cameras send data to the Arena software (version
1.7.3 in the lab) for recording and analysis of rigid body tracking.

4http://www.optitrack.com/products/flex-3/

30

Chapter 4

Implementation and
experimental setup

In order to have the option of lifetime learning in the evolutionary search, a
number of additions have been made to the evolutionary simulation system
developed at ROBIN, which was used in the project. The first part of this
chapter focuses on the implementation of these additions as well as the
genome of the robot, while the second part gives a general description of
how the experiments are set up.

It should be mentioned that the terms learning and local search are
used somewhat interchangeably here, and that lifetime learning is only
used about learning during evolution, while learning means that local
search is applied to a solution, which can also happen after evolution.

4.1 Incorporation of local search in the evolu-
tionary framework

In a memetic algorithm, local search is applied to all offspring individuals
before they undergo survival selection with the parents. Since the fitness
landscape is unknown in these experiments, and each phenotype must be
tested in simulation in order to find the fitness, each control system found
in each iteration of the local search must be evaluated in simulation. This
means that local search must be included on the client side of the simulation
system, since phenotypes must be systematically evaluated throughout the
search. At the start of every evaluation in the simulator, a scenario is used
to include custom environments and behaviours. The scenario has access
to both the simulator and the simulated realization of the robot, making it
ideal for incorporating a local search procedure.

4.1.1 Learning scenario

Figure 4.1 shows an overview of how local search was incorporated in
the evolutionary framework. A scenario called LearningScenario was
implemented, which was used to set up the necessary parts for local search.

31

4.1. INCORPORATION OF LOCAL SEARCH IN THE EVOLUTIONARY FRAMEWORK

The LearningScenario has access to all relevant information about the
robot, such as the control system parameters and the simulated model, as
well as to the simulator itself, allowing it to make changes to the simulator
directly.

LearningScenario includes local search by creating an instance of
SimAdapter, which is added to the simulator. The SimAdapter manages the
local search, by handling the robot score during simulation and by updating
the local search evaluations at regular intervals. It also has access to a list
of chosen local search algorithms, where only the first one will be used
during evolution, as well as a set of parameters controlling the evaluation
details. The robot is evaluated in the simulator over a set of evaluation
periods, resulting in a mean score which can then be used in the local search
algorithm.

The local search algorithm is implemented as a ControlLocalSearch,
where the main loop of the algorithm is in the evaluate function. Control-
LocalSearch contains a controllable subject and its control parameters, and
can only be used for local search in control systems. During search, the
best score and accompanying control parameters found so far are stored
continuously, so they can be easily fetched after the search is finished. This
happens when a set number of iterations are completed. Every time the
evaluate function is called, one iteration of local search is performed.

4.1.2 Choice of local search

The performance of the local search in a memetic algorithm largely depends
on the choice of local search and the shape of the fitness landscape [34].
In this case, the fitness landscape is unknown, making it difficult to know
which local search algorithm best suits the problem. However, since each
iteration of local search requires an evaluation of the solution in the current
state, there is a trade-off between the number of generations in evolution
and the number of iterations of local search, which limits the duration of
learning. Thus, a hill climbing procedure might be a good choice, since they
are able to find improvements fast. In these experiments, two local search
algorithms were tested, one plus lambda (OPL or (1+λ)) and simulated
annealing (SA), where the former was used in the majority of the tests,
while the latter was mainly used for comparison. SA is described in the
background chapter, being a well-known optimization algorithm, while
OPL is presented in the following section.

One plus lambda

One plus lambda is a generation based hill climbing local search algorithm,
based on the evolution strategy (1+λ)-ES. In the first generation, the start
solution is used to generate lambda new solutions by adding small random
values drawn from a Gaussian distribution to the control parameters.
After the new solutions have been evaluated, the best one is chosen,
and the procedure is repeated from this solution. There are two search
parameters that must be set in advance, lambda and a reevaluation

32

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL SETUP

LearningScenario

Manager

ControlLocalSearch

OnePlusLambda SimulatedAnnealing

SimAdapter

Simulator::Callback

learn_type : string
clsearch : cls:SimAdapter

_machine : Machine
_original : control::Control

onInclusion(caller : Simulator*)
onSimulationStep(caller : Simulator*, next_t : �oat)

_outputs : Output[]
_cls_rotation : list<ControlLocalSearch>

evaluate(score : �oat)
addSearcher(s : ControlLocalSearch)
searcher(): ControlLocalSearch
addOutput(o : Output)

_subject : control::Controllable
_pctrl : control::Parameterized
_best_param : param_vector
_best_score : �oat

best() : control:Control
best_score() : �oat
evaluate()

machine(m : Machine)
machine() : Machine
onEvalDone()
onRunDone()

_learning_setup(con�g_�le : string)

EvorobScenario

_blueprint : Blueprint
_envmat : Material

_build_environment(con�g_�le : string)

Figure 4.1: Overview of the incorporation of local search. Only the main
variables and functions are included. The illustration borrows concepts
loosely from UML, arrows with unfilled arrowheads indicate inheritance,
while the other arrows show associations. Variables are listed before
functions. Underscore before variable names indicate private or protected
variables.

parameter. This reevaluation parameter is the main difference from (1+λ)-
ES. If no improvement has been detected for a certain number of iterations,
determined by the reevaluation parameter, reevaluation takes place. A
reevaluation results in the individual’s score being assigned to the mean
score of the new evaluation and all previous reevaluation means, thereby
reducing the possible problem of noisy measurements. For the evolution
experiments here, the reevaluation parameter is set to something larger
than the number of iterations of local search, so there are in practice no
reevaluations during evolution.

A low value of lambda would lead to a greedier search than with a large
lambda, since less new solutions are generated around the current best
solution in each generation. In these experiments, a small lambda could
be advantageous, since this would result in a deep search from the start

33

4.2. GENETIC ALGORITHM AND ROBOT GENES

λ = 4

be
st

best

1st generation

2nd generation

3rd generationbest

Figure 4.2: Basic illustration of OPL search algorithm, over three genera-
tions with lambda set to four. One iteration corresponds to one evaluation
in simulation, meaning that this illustration includes 12 iterations of search.

solution. However, less of the fitness landscape will be evaluated in close
proximity of the best solutions, so a possible local optimum might not be
discovered. With a larger lambda, the search becomes wider and more
refined, as more of the area around the current solution will be evaluated,
leading to a larger possibility of approaching the true gradient, but at the
cost of a less deep search.

Because simulated annealing is more stochastic than OPL, it does not
exploit local structures as well as OPL, but it has a better chance of escaping
local optima. In a memetic algorithm, OPL is probably a better choice of
local search than simulated annealing, since the genetic algorithm already
provides global exploration of the search space, which will hopefully be
enough to discover areas of high fitness.

4.2 Genetic algorithm and robot genes

The simulator framework developed at ROBIN uses NSGA-II for the evol-
utionary computations, for efficient evolution on multi-objective optimiza-
tion problems. Since these experiments only consisted of single-objective
optimization, NSGA-II would not have been necessary, but was still used
since it was already part of the system. However, a traditional elitist genetic
algorithm would probably have performed adequately, and would possibly
have had a lower complexity. When NSGA-II is used with a single ob-
jective, crowding distance essentially becomes redundant, since every front
will only consist of one individual, unless there are fitness values that are
identical. In practice, all individuals will simply be ranked after fitness

34

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL SETUP

value in one-dimensional space, and the N best will be selected for survival,
N being the population size.

4.2.1 Robot genome

As the robot is of a fixed morphology, only the control system needs to be
represented in the robot genes. The control system consists of a set of
parameters which are stored in a vector in a parameterized control class.
The number of parameters depends on the choice of control system, 15
with the symmetric version of the AmpPhase system described in [23],
and 27 with the asymmetric version including offset. All joints are paired
with the corresponding joint on the opposite side of the body to allow
symmetry, except for the waist joint. When robot genes are generated
for new individuals, the control parameters are initialized to zero, and
then mutation is run ten times on the genes to create a wide spread of
individuals.

Distance between genes is calculated as Euclidean distance divided by
the square root of the number of parameters

d(x,y) =
√∑n

i=1(xi − yi)2

N
(4.1)

4.2.2 Genetic algorithm variation operators

In order to create diversity in the population, two variation operators were
implemented: mutation and recombination.

Mutation

Since the control parameters are represented by floating-point numbers,
a continuous distribution is used for mutation, in this case a Gaussian
distribution. Mutation is performed by adding an amount randomly drawn
from the Gaussian distribution to each parameter, with probability one. A
Gaussian distribution with mean µ = 0 and standard deviation σ = 0.1 is
used, as this will cause most of the mutations to be small, two thirds will
be within one standard deviation, while the less likely possibility of large
mutations is still present. Mutation can then be described as

chi l di = par enti +N (0,σ2) (4.2)

where i indicates the ith allele in the gene.

Recombination

An arithmetic linear crossover was implemented, in which two parent
individuals create two offspring. This is achieved in the following way: For
each parameter in both parents, the distance between the two parents is
calculated, simply by subtraction of the first parent from the second. This
distance is then weighted, with a different weight for each parent drawn

35

4.3. EXPERIMENTAL SETUP

randomly from a uniform distribution, and either added to or subtracted
from the original value of the corresponding parameter, for parent one and
parent two respectively. After recombination, the resulting children will lie
somewhere along the geometric line between the two parents in genotype
space, where the distance from the parents is dependent on the weights.

di = par ent2,i −par ent1,i (4.3)

chi l d1,i = par ent1,i +αadi (4.4)

chi l d2,i = par ent2,i −αbdi (4.5)

αa and αb represent the weights for the first and second parent
respectively, drawn from the uniform distribution U (0,1).

4.2.3 Measuring fitness

The robots are evolved with a single objective, to maximize forward
movement. This is measured as the displacement of the robot over a set of
time periods, where one period is equivalent to one second, corresponding
to one cycle in the control system [40]. More specifically, each control
system is evaluated over eight time periods in simulation, after which the
mean displacement per period is assigned as the final evaluation value.
Distance is measured in the direction the robot was headed at the start of
the period. In the start position for the first evaluation, the robot is headed
along the negative z-axis, since the ground plane is on the x-z plane, as
shown in Figure 4.3.

When local search is included, the simulator runs evaluations for every
iteration of the search before assigning the score to the individual. The
score is set to the best result that was obtained in the local search. During
search, the simulator goes through all the iterations of the search without
resetting the robot in the start position. After evaluation, the fitness of the
individual is set to the evaluation score. Figure 4.4 shows an illustration of
how the evaluation procedure works.

4.3 Experimental setup

The main goal of this thesis is to investigate how a memetic algorithm
performs when used to evolve robotic control systems. A large part of
the experiments therefore involves simulated evolution of robots, to obtain
data containing results with different learning configurations, including the
baseline evolution without learning. In brief, the simulator was used for
the evolutionary experiments, evaluation of evolved gaits and for running
local search on the evolved solutions, while only the two latter of these
experiments were done on the physical robot.

4.3.1 Evolutionary setup in simulation

A number of different configurations were used when running evolution,
in order to investigate how the memetic algorithm performs in different

36

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL SETUP

z

x

Figure 4.3: Start position of robot, showing the direction in which
movement is measured.

scenarios. Table 4.1 shows the possible choices for each setting in a
configuration, which are specified before the start of an evolutionary run. If
OPL is chosen as local search, the parameters involved in this search must
be specified as well.

In every generation of an evolutionary run, local search is performed
over a chosen number of iterations for every individual in the population.
Because an iteration of local search involves one evaluation of a control
system in the simulator, as can be seen in Figure 4.4, the number of
generations and iterations must be balanced. Without learning, each
individual is evaluated once in each generation, but with learning, each
individual is evaluated as many times as there are iterations of local search
in each generation. The number of iterations of local search must therefore
be inversely proportional to the number of generations, and is chosen so
the total number of evaluations, basically iterations times generations, is
the same for comparable runs. This is calculated as

g ener ati onsl s =
g ener ati onsb

i ter ati onsl s
(4.6)

where generationsb is the number of generations for the baseline
configuration, typically evolution without local search, and generationsl s

and iterationsl s are the number of generations and iterations of the
configuration with local search, respectively. To make sure the number of
evaluations is the same for comparable runs, the number of iterations are

37

4.3. EXPERIMENTAL SETUP

1st iteration/evaluation 2nd iteration/evaluation 3rd iteration/evaluation

One period

Total displacement a Total displacement b Total displacement c

Score = max(mean(a),mean(b),mean(c))

(a) Total displacement in each evaluation equals the sum of the displacement over
each period, as illustrated in (b).

1st iteration
2nd iteration
3rd iteration

(b) Example path of robot in motion.

Figure 4.4: Illustration of how a robot is evaluated in simulation, over three
iterations of local search.

chosen so that the remainder is zero. This is assuming the population size
is the same for the comparable runs, if it differs, this must also be taken
into account. In these experiments, the population size is the same in all
experiments, making this easy to handle. The value of λ in OPL will not
affect this relationship, as it only determines how wide the search is, and
not the number of evaluations.

For each configuration, a set of 30 evolutionary runs were done, to be
able to compare performances.

4.3.2 Changing environments

In addition to testing different configurations of the memetic algorithm,
some evolutionary experiments were done with a changing environment
in the simulator. Because learning individuals exploit local structures of
the fitness landscape, it is possible that they will be better able to adapt
to sudden changes in the environment. Two kinds of environments were
implemented in addition to the default, one with sphere obstacles, as shown

38

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL SETUP

Learning
Baldwinian
Lamarckian

Local search
One plus lambda
Simulated annealing

Crossover
None
Linear

Iterations Positive integer

Generations Positive integer

Control system
AmpOffPhase
AmpPhase symmetric

Table 4.1: Possible configurations for evolution.

in Figure 4.5, and one with low friction. In the obstacle environment,
sphere obstacles with a radius of 0.025m were spread over the ground
plane, with a spacing of 0.2m with an offset of 0.05m in the x-direction
for every other row. The obstacles are fixed in place, and cannot be moved
around by the robot. The offset was added to prevent the robot from
walking between and along the obstacles. The low friction environment
was implemented simply by changing the friction parameters of the ground
plane, see Table 4.2 for the specific parameters.

Friction parameters Static Dynamic Restitution
Original env. 0.2 0.15 0.4
Low friction env. 0.01 0.005 0.3
Robot body 0.3 0.3 0.3

Table 4.2: Friction parameters in the simulator.

4.3.3 Physical robot setup

The same setup as in [40] was used for the physical robot, and the
experiments performed in the motion capture lab at the ROBIN area. The
experiments are automated, so the robot can move about over a longer
period of time without needing to be reset in the starting position. If the
robot is about to move out of bounds, the control system is replaced by one
that turns the robot left or right, and the robot turns until it faces the centre
of the work area. The turning control systems were already developed
through evolution. If this happens in the middle of an evaluation, the
results of that evaluation are discarded, and a new one is attempted when
the robot is ready to continue.

The robot is wired for power and control signals. To avoid the robot
getting tangled in the wire and possibly unplugging itself, the amount of
loose wire is controlled by a motorized pulley system, see figure 4.6. The
motion capture equipment was used to track the robot displacement, and

39

4.3. EXPERIMENTAL SETUP

Figure 4.5: Environment with sphere shaped obstacles.

to detect the position of the robot, which is used in cooperation with the
motorized pulley system and the turning mechanism. Because the motion
capture system uses passive markers, three reflex balls where placed on
central parts of the robot, as shown in Figure 4.7.

Figure 4.6: Pulley system mounted near the ceiling.

4.3.4 Evaluation of performance

Although the fitness value is based on the movement of the robot, and thus
indicates the quality of the robot gait, it may not be an adequate description
of the gait performance over time. The fitness value represents the mean
movement over a limited set of periods, so to get a better evaluation of
how the control systems perform over a longer time, a final evaluation of
the evolutionary solutions can be done. Because this is a time consuming
process, only the most interesting solutions were evaluated in this manner.

40

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL SETUP

Figure 4.7: The passive markers attached to the robot.

Evaluation is done in the same way as fitness measuring during
evolution, but with fewer periods per evaluation, more specifically, 4
instead of 8. This reduction in evaluation length is partly because a control
system is tested over a large number of evaluations, making long evaluation
time unnecessary, and partly because of the limited work space of the
physical robot. When a control system is evaluated on the physical robot,
an evaluation is stored if it is completed before the robot reaches the edge
of the work area, so the robot should for efficiency be able to complete at
least one evaluation when starting at an edge.

This evaluation setup is used both in simulation and on the physical
robot, to make evaluation results comparable across the two platforms.

4.4 Aspects of learning and evaluation

When implementing and using a memetic algorithm for evolution of robot
control systems, a few topics should be addressed, such as the possibility of
implementing Lamarckian learning and the effects of lifetime learning on
the reality gap.

4.4.1 Baldwinian and Lamarckian learning

Implementing Lamarckianism is not always trivial, since it involves
encoding the improved phenotype back into the genotype, which can
be a difficult or impossible task if the phenotype and genotype search
spaces are separate. However, in these experiments, only the control
systems are evolved, so local search is only applied to the control system
parameters. These are the same in both genotype and phenotype space,
so improved control parameters that have been discovered during local

41

4.4. ASPECTS OF LEARNING AND EVALUATION

search can simply be assigned as the individual’s new control parameters.
Where Lamarckian learning is possible, it has been shown to find better
results than Baldwinian learning in most problems, since the results of
local search are stored directly. Since Lamarckian learning easily can be
implemented for this problem, both types of learning are interesting. It
is to be expected that Lamarckian learning will lead to better results than
Baldwinian learning, however, since Baldwinian learning in theory should
store a potential to learn, it is possible that the results of running local
search after evolution is finished have a larger improvement than without
lifetime learning or with Lamarckian learning. This can be interesting in a
reality gap point of view.

4.4.2 Testing on the physical robot

For various reasons, the physical robot was only used for a few tests, as
opposed to the simulated version which was tested on extensively. Firstly,
the physical robot is subjected to wear and tear, making it unsuitable
for running evolution on, as this involves running a vast number of
evaluations on the robot. This would eventually cause damage to the
physical robot, leading to a halt in the experiments where damaged or worn
parts must be reprinted and replaced. The simulated model will obviously
not have this problem, and can be used to run an unlimited number of
evaluations without reduction in accuracy or deviation from the original
model. Secondly, running evolution on the physical robot is extremely time
consuming, and requires constant supervision as it can get tangled in its
wires for power and signals. The latter can be avoided if the robot was
running on batteries and it had its own attached controller, but this is not
the case with the robot used in these experiments. In addition, the robot
may need to be repositioned in a starting position. In simulation, none
of these problems exist. Although simulated evolution can still be time
consuming, it will not be near as demanding as in the physical world, since
evaluations can be sped up considerably in comparison. The simulated
robot will never be obstructed by wiring, and it is automatically placed in
the start position at the beginning of evaluations.

These are some of the reasons why a simulated environment is con-
sidered a much better suited platform for running evolutionary experi-
ments than a physical robot, however, the ultimate goal is not to find a
robot that can perform optimally in simulation, but one that will also per-
form well when transferred to the physical robot. This is all but trivial, as
modelling a simulator which perfectly portraits the physical world is im-
possible. A good solution in simulation might thus not correspond to a
good solution in reality, the simulated solution may become overly adapted
to the simulator by exploiting features that don’t exist in reality, or there
may be aspects of the real world setting which are hard or impossible to
simulate accurately. This difference between simulation and reality forms
the basis of the notorious reality gap problem.

42

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTAL SETUP

4.4.3 Learning and the reality gap

An interesting question now is whether learning will affect transferability
or not. Since local search exploits local structures of the fitness landscape,
one could expect that overfitting with respect to the simulator may be
more frequent with this kind of learning, seeing as the fitness landscape
in simulation will probably differ from the real world fitness landscape.
However, if the shapes of the fitness landscapes are approximately the
same, transferability should not be much affected. Making a prediction on
this is difficult, since the shape of the fitness landscape is unknown.

If learning is applied on the resulting solution after evolution, that is,
the robot is allowed to learn while running, solutions which were evolved
using Baldwinian learning might have an advantage over non-learning
solutions when it comes to transferability, since they might have a better
potential to learn. This can only be the case if the fitness landscapes are of
about the same shape.

In the setup used for these experiments, the main difference between
the real word and the simulator is friction. In [40] it was found that most
materials used for body parts had significantly lower friction against the
floor carpet than the material modelled in the simulator.

43

4.4. ASPECTS OF LEARNING AND EVALUATION

44

Chapter 5

Experiments and results

The experiments were conducted focusing on comparison between differ-
ent settings of a memetic algorithm and a normal genetic algorithm. In
addition, the different configurations of the memetic algorithm were com-
pared. The first part of the experiments consisted of evolving control sys-
tem parameters under different conditions in simulation, the results of
which were used in the later experiments. The second part includes eval-
uation of selected evolved gaits in both the simulator and on the physical
robot, and finally running local search on the same gaits to examine their
learning abilities.

Each experiment is presented in the same way. First, the experiment
details are explained, including a table with the specific settings. Then the
results are presented and analysed. It should be noted that the symmetric
control system which uses amplitude and phase parameters only is referred
to as AmpPhaseSym, while the asymmetric control system with amplitude,
phase and offset parameters is called AmpOffPhase.

5.1 Evolving control system parameters

A few investigatory experiments were done initially, involving testing the
two chosen control systems to get an idea of their relative performance.
They were done with both Baldwinian and Lamarckian learning, as an
initial comparison between the two and the baseline evolution without
lifetime learning. Following this, a series of different configurations were
tested. Since one plus lambda (OPL) was expected to outperform simulated
annealing (SA), most of the experiments used the former as the local search
algorithm, while the latter was only tested in the investigatory experiments.
In the experiments that use OPL as local search, a λ of 2 was used. This
was because a low λ gives a deep search, possibly resulting in individuals
moving closer to local optima, which should be advantageous in these
experiments. In order to keep the number of parameters low, further
tuning of λ was not performed here.

Unless otherwise specified, each data set in the experiment consists
of 30 evolutionary runs, and the total number of evaluations over one
evolutionary run is 1600, corresponding to 1600 generations in normal

45

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

evolution without lifetime learning. All of the experiments use a population
size of 40 individuals.

5.1.1 Investigatory experiments - AmpPhaseSym

Local search Parameters
OPL λ: 2, reevaluation: 100

Control system Crossover
AmpPhaseSym None

Iterations Learning
1, 10, 20 Baldwinian/Lamarckian

Table 5.1: Experiment details for first investigatory experiment

The first experiments conducted involved comparing the performance
of Baldwinian and Lamarckian learning, both against each other and
against evolution without learning. It was expected that Lamarckian
learning would outperform Baldwinian learning, at least in the immediate
results retrieved after evolution. Lamarckian learning was also expected to
be able to perform slightly better than evolution without learning, because
of its ability to exploit local structures. This obviously depends on the
choice of local search algorithm. However, no assumptions were made
on how well Baldwinian learning would perform next to evolution without
learning, since it was unknown how much of an advantage its learning
potential would provide.

A investigatory experiment was set up to test this, where evolution with
Baldwinian and Lamarckian learning was tested with 10 and 20 iterations,
as well as two baseline evolution sets without learning. See Table 5.1 for
details. When the number of iterations of local search is one, corresponding
to no learning, Lamarckian and Baldwinian learning are obviously the
same. Their results could therefore be merged, but were kept separate here
to make sure that they actually are approximately equal.

Learning Iterations Mean fitness Median fitness Best fitness

Baldwin
1 0.4177 0.426 0.5113
10 0.393 0.4105 0.4923
20 0.3651 0.3729 0.4515

Lamarck
1 0.413 0.4299 0.5432
10 0.4332 0.451 0.5323
20 0.4771 0.4711 0.5849

Table 5.2: Results from the final generations in all runs, with Amp-
PhaseSym as the control system. The mean and median is calculated over
the best fitness in the final generation of each run. The best result in each
column is marked with a grey background.

46

CHAPTER 5. EXPERIMENTS AND RESULTS

Results

As Table 5.2 and Figure 5.1 shows, the assumption that Lamarckian
learning should outperform Baldwinian learning holds true with this setup,
with a significant difference between the sets of fitnesses after the final
generation. What is more interesting, Lamarckian learning seems to
yield better final results than without learning. The difference between
Lamarckian learning with 20 iterations and no learning in the final
generation is significant, based on a two-tailed Wilcoxon rank-sum test
with a significance level of 0.01. When the two sets without learning
were merged, the resulting p-value from the Wilcoxon rank-sum test was
0.0011. The results from the configuration with 10 iterations of Lamarckian
learning are not significantly larger than the results without learning, but
there is a certain tendency towards slightly better performance. Figure
5.2 shows that the standard deviation decreases with increasing number
of iterations of local search in this experiment, and especially so for the
configurations with Lamarckian learning.

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluations

Fi
tn

es
s

(d
is

ta
nc

e)

Mean best 1 it, Baldwin
Mean best 10 it, Baldwin
Mean best 20 it, Baldwin
Mean best 1 it, Lamarck
Mean best 10 it, Lamarck
Mean best 20 it, Lamarck

Figure 5.1: Fitness plot showing the mean of the best fitness in each
generation, with both Baldwinian and Lamarckian learning.

Analysis

The results from the Lamarckian learning configurations indicate that a
certain minimum number of iterations of OPL are necessary before the
effects of the local search is beneficial over the baseline genetic algorithm.
With 20 iterations, the search can reach further than with 10 iterations, and
thus does more local exploration which increases the chances of finding the
local optimum. This seems to be an advantage over evolutionary selection

47

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

0 200 400 600 800 1000 1200 1400 1600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Evaluations

D
ev

ia
tio

n
in

 fi
tn

es
s

be
tw

ee
n

ru
ns

Std best 1 it, Baldwin
Std best 10 it, Baldwin
Std best 20 it, Baldwin
Std best 1 it, Lamarck
Std best 10 it, Lamarck
Std best 20 it, Lamarck

Figure 5.2: Plot of standard deviation of the best fitnesses in each
generation.

over more generations. Whether there is a ceiling number of iterations
where this ceases to be the case is the topic of Subsection 5.1.5 in this
chapter.

Figure 5.1 shows that the lifetime learning configurations take longer to
converge than the baseline. The reason for this is probably that there is less
global exploration when local search is included, so it will normally take
longer to find an area of high fitness. When a new generation is generated,
more global exploration is achieved due to the variation operators of the
genetic algorithm. With a memetic algorithm, generating a new generation
requires more evaluations than with a normal GA because of the local
search, resulting in it taking longer to achieve the same level of global
exploration.

The difference between Lamarckian learning and Baldwinian learning
is as expected. Baldwinian learning obviously performs local exploration as
well, but since it only stores the new fitness value and not the discovered
results in the control parameters, the fitness value only says if it is close
to a good solution or not. This seems not to be enough to outperform
evolution with no learning, probably because a possible good solution
that was discovered during local search will only be used if it is found
by chance during evolution, because of the randomness in the variation
operators. Comparing the two configurations of Baldwinian learning with
10 and 20 iterations, it can be concluded that increasing the number of
iterations leads to less global exploration because it reduces the number of
generations in evolution, and thereby reduces the chance of finding high
fitness areas. An individual that has a high fitness value because it is close
to a local optimum will probably still affect the evolution positively, but

48

CHAPTER 5. EXPERIMENTS AND RESULTS

Evaluations
0 200 400 600 800 1000 1200 1400 1600

Fi
tn

es
s

(d
is

ta
nc

e)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 it Baldwin
20 it Baldwin
20 it Lamarck

Figure 5.3: Plot with confidence intervals and median, with a 99%
confidence level. Only three configurations are plotted to avoid too much
overlap.

how much of an effect it has will largely depend on the fitness landscape.
In this case, it is not enough to perform better than the baseline, at least
on the immediate evolutionary results. There could still be a learning
potential stored in each individual at the end of evolution which may be
advantageous, a topic which will be addressed further in section 5.3.

When examining the plots in Figures 5.2 and 5.3, it seems that including
local search leads to more robustness in the final results. Both Baldwinian
and Lamarckian learning lead to lower standard deviations between runs,
and it seems that the standard deviation decreases when the number
of iterations is increased. This is probably up to some limit which is
impossible to see out of these results only, but will be discussed in
Subsection 5.1.5. The reason why this is the case could be that evolution
with learning more often finds an area of high fitness, possibly the same
area over most runs.

49

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

5.1.2 Investigatory experiments - AmpOffPhase

Local search Parameters
OPL λ: 2, reevaluation: 100

Control system Crossover
AmpOffPhase None

Iterations Learning
1, 10, 20 Baldwinian/Lamarckian

Table 5.3: Experiment details for second investigatory experiment

The second investigatory experiment is almost identical to the first, ex-
cept that it utilizes the AmpOffPhase control system instead of AmpPhase
symmetric. This was done to examine how the memetic algorithm per-
formed on two different systems, to test if the results would be similar and
whether the method is robust.

In order to be able to directly compare the results of this investigatory
experiment and the previous, the same setup was used in both experiments.
See Table 5.3 for the specific details.

Results

Overall, the final fitness values with AmpOffPhase were slightly better than
with AmpPhaseSym, with an increase in mean final fitness of around 0.1
for all configurations, as can be seen in Table 5.4.

Learning Iterations Mean fitness Median fitness Best fitness

Baldwin
1 0.5211 0.5472 0.6402
10 0.4241 0.4185 0.6393
20 0.4256 0.4274 0.5155

Lamarck
1 0.4976 0.5371 0.5915
10 0.5497 0.558 0.6293
20 0.5564 0.5581 0.7094

Table 5.4: Results from the final generations in all runs, with AmpOffPhase
as the control system. The best result in each column is marked with a grey
background.

Apart from this, the same tendencies discovered in the previous
experiment are also apparent here, though not as strongly. Both with 10
and 20 iterations, Lamarckian learning outperforms no learning, but the
Wilcoxon rank-sum test with a significance level of 0.01 shows that the
difference is not significant. This can also be seen in the plot in Figure
5.6, where there is significant overlap between the 20 iterations Lamarckian
and the no learning confidence intervals. However, the plot in Figure 5.4
shows that there is a definite tendency towards higher performance with
Lamarckian learning. As in the previous experiment, the solutions found

50

CHAPTER 5. EXPERIMENTS AND RESULTS

with Baldwinian learning are significantly worse than without learning, for
the same reasons.

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Evaluations

Fi
tn

es
s

(d
is

ta
nc

e)

Mean best 1 it, baldwin
Mean best 10 it, baldwin
Mean best 20 it, baldwin
Mean best 1 it, lamarck
Mean best 10 it, lamarck
Mean best 20 it, lamarck

Figure 5.4: Fitness plot showing the mean of the best fitness in each
generation, with both Baldwinian and Lamarckian learning.

Analysis

Since this control system is asymmetrical, and also includes an offset
parameter, it has a larger total number of evolvable parameters and
therefore a larger search space. This allows for a wider range of
solutions, some of which will be better than the ones found in the previous
experiment, which explains the increase in overall best fitness. However,
this also means that the solution deviations will be larger, as is evident in
the plot in Figure 5.5, which shows that the standard deviation between
runs is larger in all configurations as compared with Figure 5.2. In
other words, using AmpPhaseSym leads to a more robust system when it
comes to final solution deviations, although AmpOffPhase opens for better
solutions overall in the immediate results after evolution.

Another effect of an increased search space is that the many dimensions
make finding the true gradient more difficult for the local search. This
could explain why the effects of Lamarckian learning are less clear in this
experiment as compared with the previous. It is possible that a different
local search algorithm or a change in the OPL parameters would have
been better for this configuration. If the lambda parameter was increased,
more of the surrounding search space would have been explored in each
generation of the OPL algorithm, increasing the chances of finding the
true gradient, as explained in Subsection 4.1.2. Whether this would be
advantageous on this control system or not is not known, and would require

51

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

0 200 400 600 800 1000 1200 1400 1600
0

0.02

0.04

0.06

0.08

0.1

0.12

Evaluations

D
ev

ia
tio

n
in

 fi
tn

es
s

be
tw

ee
n

ru
ns

Std best 1 it, baldwin
Std best 10 it, baldwin
Std best 20 it, baldwin
Std best 1 it, lamarck
Std best 10 it, lamarck
Std best 20 it, lamarck

Figure 5.5: Plot of standard deviation of the best fitnesses in each
generation.

additional testing.
Because of the increase in dimensions, there is a possibility that the

probability of overfitting solutions to the simulator is larger. In addition,
it was found that one or more joints often became locked in a fixed position
when the offset parameter was close to or exceeded its maximum servo
value, see Figure 5.7. This indicates that the AmpOffPhase solutions might
be less transferable to reality, depending on how the physical servos handle
a maximum value offset. This could probably have been avoided if this
parameter was constrained, disabling it from exceeding this maximum
value. However, because the AmpPhaseSym solutions seem to be more
transferable to reality, this was not pursued further in these experiments.
AmpPhaseSym is for this reason used in the remainder of the experiments.

52

CHAPTER 5. EXPERIMENTS AND RESULTS

Evaluations
0 200 400 600 800 1000 1200 1400 1600

Fi
tn

es
s

(d
is

ta
nc

e)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 it Baldwin
20 it Baldwin
20 it Lamarck

Figure 5.6: Plot with confidence intervals and median, with a 99%
confidence level. Only three configurations are plotted to avoid too much
overlap.

Figure 5.7: Screenshot of the robot with the best fitness from the last
generation of the runs with 20 iterations of Lamarckian learning. Because
the offset value for joint four, indicated by the red ellipse, is close to or
exceeds the maximum value, the joint gets locked in this position.

53

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

5.1.3 Investigatory experiments - simulated annealing

Local search Parameters
SA

Control system Crossover
AmpPhaseSym None

Iterations Learning
1, 10, 20 Baldwinian/Lamarckian

Table 5.5: Experiment details, with simulated annealing as local search

In order to test the performance of the memetic algorithm with a
second local search algorithm, an experiment was set up with simulated
annealing (SA) as the choice of local search. The hypothesis was that SA is
a less appropriate local search algorithm for the problem, as described in
Subsection 4.1.2, so it was expected that the performance would decrease
compared with the results from when OPL was used. Only 20 runs were
done on each configuration because of this, and only one set of evolution
without learning was done. See Table 5.5 for the remaining experiment
details.

Results

Table 5.6 shows that evolution without learning outperforms evolution with
both Baldwinian and Lamarckian learning, with a significant difference
with a significance level of 0.05. The configurations with Lamarckian
learning achieves slightly better results than the ones with Baldwinian
learning, but when looking at the fitness plot in Figure 5.8 it becomes
evident that this difference is not present during the whole evolution.
The configuration of evolution with 10 iterations of Baldwinian learning is
slightly better than the one with 20 iterations of Lamarckian learning over
the first part of the evolution, which is never the case in the experiments
with OPL.

Learning Iterations Mean fitness Median fitness Best fitness
None 1 0.4282 0.4248 0.5548

Baldwin
10 0.3522 0.3496 0.4794
20 0.3283 0.3401 0.4114

Lamarck
10 0.3856 0.3888 0.4857
20 0.374 0.3734 0.4905

Table 5.6: Final results with SA as local search algorithm. The best result
in each column is marked with a grey background.

54

CHAPTER 5. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Evaluations

Fi
tn

es
s

(d
is

ta
nc

e)

Mean best no learning
Mean best 10 it Baldwin
Mean best 20 it Baldwin
Mean best 10 it Lamarck
Mean best 20 it Lamarck

Figure 5.8: Fitness plot showing the mean of the best fitness in each
generation, with both Baldwinian and Lamarckian learning.

Analysis

Comparing the results from this experiment with the previous ones where
OPL was chosen as the local search algorithm, shows that the choice of
local search algorithm in a memetic algorithm is important, and that the
local search algorithm must be chosen to fit the problem at hand. In
this experiment, the benefits of the local search were not large enough to
increase the performance of the genetic algorithm, and instead decreased
performance by slowing down the evolutionary search. This is especially
clear when studying the plot in Figure 5.8, where not only evolution without
learning outperforms evolution with learning in all cases, but where also
the configuration with 10 iterations of Baldwinian learning is slightly better
than the configuration with 20 iterations of Lamarckian learning in the first
part of evolution. More generations of evolution is clearly advantageous
to more iterations of local search. SA is a more stochastic search than
OPL, and does not exploit the local structures in the fitness landscape to
the same extent. Although it has one possible advantage in the fact that
it is better at escaping local optima, thus increasing the chance of finding
the global optimum, this is already handled by the genetic algorithm. It
would therefore be more advantageous to match the genetic algorithm with
a greedier local search algorithm, which moves each individual efficiently
towards the nearest local optimum. For this reason, OPL is a better choice
of local search algorithm than SA for the memetic algorithm used on this
problem, which is also evident in the results.

55

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

5.1.4 Investigatory experiments - linear crossover

Local search Parameters
OPL λ: 2, reevaluation: 100

Control system Crossover
AmpPhaseSym Linear

Iterations Learning
1, 10, 20 Baldwinian/Lamarckian

Table 5.7: Experiment details, linear crossover

In a genetic algorithm, the recombination operator ensures efficient
exploration of the search space and creates diversity, by combining the
genomes of two or more parents and thereby creating a new genome which
is somewhere in between the parents. This results in a fairly large change
of the genome, compared with the result of the mutation operator. An
experiment was set up in order to examine the performance of the memetic
algorithm with an active recombination operator. Linear crossover was
used as the recombination operator, as explained in Subsection 4.2.2.
Other than this, the same setup as in the first investigatory experiment was
used, see Table 5.7 for details.

Results

As Table 5.8 shows, there is no significant difference between the final
results of evolution without learning and evolution with Lamarckian
learning in this experiment. The relationship between Lamarckian and
Baldwinian learning seems to be the same as in the previous experiments,
what has changed is the relationship with the baseline evolution without
learning. The fitness plot in Figure 5.9 shows that there is overlap between
the results from the configurations with Lamarckian learning and the
baseline in the last part of the evolution, after about 600 evaluations.
As in the investigatory experiment, there is a faster increase in fitness
in evolution without learning than in the configurations with Lamarckian
learning, however, they seem to converge to about the same fitness values.

Learning Iterations Mean fitness Median fitness Best fitness

Baldwin
1 0.4132 0.414 0.5338
10 0.3681 0.3833 0.4826
20 0.3521 0.3451 0.4826

Lamarck
1 0.3908 0.4044 0.5013
10 0.4075 0.427 0.5288
20 0.417 0.4298 0.5023

Table 5.8: Results with linear crossover activated. The best result in each
column is marked with a grey background.

56

CHAPTER 5. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Evaluations

Fi
tn

es
s

(d
is

ta
nc

e)

Mean best 1 it Baldwin
Mean best 10 it Baldwin
Mean best 20 it Baldwin
Mean best 1 it Lamarck
Mean best 10 it Lamarck
Mean best 20 it Lamarck

Figure 5.9: Fitness plot showing the mean of the best fitness in each
generation, with both Baldwinian and Lamarckian learning.

Analysis

Although an important part of the genetic algorithm, it was not expected
that the memetic algorithm would benefit much from including the
recombination operator. The results show that this expectation holds up in
this case, seeing as the results from the learning configurations are poorer
than the ones in the investigatory experiment where crossover was omitted.
Performance of evolution without learning seems to be approximately equal
in both experiments. Where Lamarckian learning with 20 iterations of
local search leads to significantly better final results than the baseline
evolution without learning in the investigatory experiment, performance
of this configuration has decreased to the same level as the baseline in this
experiment. The reason for this can be that the crossover operator causes
relatively large changes to the genome of the parents, thereby moving away
from the possible local optimum discovered during local search. In other
words, the information found during local search is not taken advantage of
to the same extent, and the benefits from the local search are blurred out.
Since the mutation operator only makes small changes to the genome, it
cooperates better with the local search algorithm.

57

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

5.1.5 Varying the number of iterations

Local search Parameters
OPL λ: 2, reevaluation: 100

Control system Crossover
AmpPhaseSym None

Iterations Learning
1, 20, 50, 100, 200, 400, 1600 Lamarckian

Table 5.9: Experiment details, varying number of iterations

In the first investigatory experiment it was found that Lamarckian
learning with 20 iterations of OPL produced significantly better results in
the final generation best fitness compared to evolution without learning.
With 10 iterations, there was only a tendency towards better performance
with the same number of evolutionary runs. It could therefore be inter-
esting to investigate how the number of iterations affects the performance
over a larger range of iterations, from the minimum 1 iteration which cor-
responds to no learning, to the maximum number of iterations, in this case
1600, which corresponds to local search without evolution.

In order to test this, an experiment was set up where Lamarckian
learning was tested with seven configurations of different numbers of
iterations of local search. Only Lamarckian learning was used, since
it performed better than Baldwinian learning, and Baldwinian learning
performance also seemed to decrease with increasing number of iterations.
Apart from this, the same setup as in the first investigatory experiment was
used. See table 5.9 for details. In fact, the results from two of the first sets
of evolutionary runs are used in the comparisons, specifically the 1 and 20
iterations configurations, and are restated here in the results table and plots
for ease of comparison. The results from local search without evolution are
not part of the plots, because they consist of only one set of final fitnesses.
This is due to the fact that the evaluations during local search is not stored,
so with only one generation, only one final set of fitnesses are obtained. The
results from this are given in the results table.

Results

From Table 5.10 and Figure 5.10, it seems that increasing the number of
iterations past 20 leads to little change in performance up to a certain
limit. The 20, 50 and 100 iteration configurations all converge to about the
same average best fitness of just under 0.48, all significantly better than the
baseline evolution without learning, using the Wilcoxon rank-sum test with
a significance level of 0.01. When the number of iterations is increased to
200, performance decreases slightly, but still seems better than evolution
without learning. A Wilcoxon rank-sum test gives a p-value of 0.056 on the
final best fitnesses of this set and the baseline, indicating that the difference
is not significant with a significance level of 0.01. It is still reasonably

58

CHAPTER 5. EXPERIMENTS AND RESULTS

low, so an increased number of runs would probably lead to statistical
significance. However, when the number of iterations is increased to 400,
the performance decreases considerably, and the final average best fitness
between runs is actually significantly closer to the baseline evolution than
to the other learning configurations. Table 5.10 also includes the results
from the configuration with only local search, that is, 1600 iterations, and
shows that this setting has a lower overall performance than all the other
configurations. This means that there must be some maximum limit of
iterations of local search after which performance will decrease, somewhere
between 100 and 400 iterations in this experiment.

Learning It. Mean fitness Median fitness Best fitness Final StD

Lamarck

1 0.413 0.4299 0.5432 0.0834
20 0.4771 0.4711 0.5849 0.0312
50 0.4767 0.4783 0.5131 0.0206
100 0.4783 0.4711 0.5583 0.0300
200 0.4659 0.4671 0.5386 0.0253
400 0.4382 0.4341 0.4838 0.0293
1600 0.3564 0.3641 0.4378 0.0540

Table 5.10: Results over a range of different numbers of iterations, from no
learning with 1 iteration to only local search with 1600 iterations. Standard
deviation between the best fitness from each run in the last generation is
included here, since this could not be plotted for the configuration with
only local search. The best result in each column is marked with a grey
background.

The robustness of learning configurations seems to be about the
same when studying the plot over standard deviation in Figure 5.11 and
the confidence intervals in Figure 5.12. Standard deviations decrease
considerably with these compared to the baseline configuration, which
increases more or less steadily. The standard deviation of the configuration
with only local search is not plotted, but can be found in Table 5.10.

Analysis

The relatively poor results achieved when only local search was used
indicate that OPL alone does not provide enough global exploration to
be able to find high fitness areas. With Lamarckian learning of 20
up to 100-200 iterations of OPL, the genetic algorithm provides good
exploration, while still benefiting from the local search exploitation of the
local structures in the fitness landscape. It seems that at least 20 iterations
of OPL with lambda set to two is necessary for the local search to be
beneficial, possibly in order to get close to the gradient and move closer to
the local optimum. On the other hand, no more than 200 iterations of OPL
should be used, since this reduces the global exploration enough to decrease
the chance of finding high fitness areas, as can be seen in the results from
the configuration with 400 iterations. In other words, there is a balance

59

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluations

Fi
tn

es
s

(d
is

ta
nc

e)

Mean best 1 it
Mean best 20 it
Mean best 50 it
Mean best 100 it
Mean best 200 it
Mean best 400 it

Figure 5.10: Fitness plot showing the mean of the best fitness in each
generation. There are 30 runs in each set. Only Lamarckian learning is
included. The reason why the initial fitness differs between the different
configurations is that when the initial population is evaluated, local search
is used as normal, so the initial individuals will all have undergone a local
search of the given number of iterations.

between the role of the local search algorithm and the genetic algorithm,
that is, a balance between local exploitation and global exploration.

One possible explanation for the decreasing standard deviation in
the configurations with 20, 50, 100 and 200 iterations could be that
they are all able to find the global optimum or some high quality local
optimum. Without learning, there is more randomness involved, and the
best solutions found will probably be scattered around high fitness areas,
without the ability to move towards an optimum unless a variation operator
takes it there by chance. This means that there will be a lot of variation
between the best solutions found over different runs, a notorious problem
with genetic algorithms. Although the final results of the configuration
with 400 iterations of local search were poorer than the other learning
configurations, the standard deviation is about the same. This can again be
because there is less randomness involved, resulting in individuals moving
towards the same local optimum, if not the global optimum.

What was discovered during the experiment process, but not docu-
mented here, was that evolution management operators turned out to be
more time demanding than the local search management. This meant that
the total computation time of evolution decreased with an increasing num-
ber of iterations, because of the equivalent decrease in generations. Be-
cause the exact time would depend on the hardware and hardware utiliz-
ation, the numbers are omitted here. Still, it showed that it could be ad-

60

CHAPTER 5. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000 1200 1400 1600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Evaluations

D
ev

ia
tio

n
in

 fi
tn

es
s

be
tw

ee
n

ru
ns

Std best 1 it
Std best 20 it
Std best 50 it
Std best 100 it
Std best 200 it
Std best 400 it

Figure 5.11: Plot of standard deviation of the best fitnesses in each
generation.

vantageous to use an as high number of iterations as possible before per-
formance is reduced, in order to keep the total computation time relatively
low.

61

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

Evaluations
0 200 400 600 800 1000 1200 1400 1600

Fi
tn

es
s

(d
is

ta
nc

e)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 it
20 it Lamarck
200 it Lamarck

Figure 5.12: Plot with confidence intervals and median, with a 99%
confidence level.

62

CHAPTER 5. EXPERIMENTS AND RESULTS

5.1.6 Experiment with changing environment

Local search Parameters
OPL λ: 2, reevaluation: 100

Control system Crossover
AmpPhaseSym None

Iterations Learning
1, 10, 20 Baldwinian/Lamarckian

Table 5.11: Experiment details, changing environment

This experiment was set up in order to test the robustness to sudden
changes in the environment of the memetic algorithm, since there is
a possibility that lifetime learning will cause faster adaptation in these
situations. See Subsection 4.3.2 for further details on why and how this
was implemented. Three different environments were used, the normal one
used in the other experiments, one which includes obstacles, and one with
a low friction ground. These were introduced during evolution in the order
listed here, and at times so that each environment gets the same amount of
generations over which it is used. Apart from the changing environment,
the same setup as in the first investigatory experiment was used, see Table
5.11.

Results

Since each environment only gets a third of the total evolution time, which
is kept the same as the previous experiments, the final fitness values with
each environment is not as interesting here. Instead, adaptability to the
newly introduced environment is examined. The fitness plot in Figure
5.13 shows that the introduction of obstacles results in a significant drop
in fitness, which was to be expected since the obstacles will obstruct the
gait of the robots. When the low friction environment then is introduced,
the fitness increases again, mainly because there are no obstacles in
this environment. It is also evident that Lamarckian learning with 20
iterations of local search immediately adapts better overall to the obstacle
environment than the other configurations, with a significantly better
performance over the first generations.

After the second switch of environment, that is, when low friction is
introduced, there is no significant difference between the baseline and
Lamarckian learning, while the Baldwinian learning configurations have
relatively low performance compared to the rest. However, there is a tend-
ency towards the baseline performing better than the Lamarckian learning
configurations, and also that Lamarckian learning with 10 iterations per-
forms slightly better than the 20 iterations configuration. These differences
are not certain to be the same over a larger set of evolutionary runs, as can
be seen in Figure 5.15. The confidence intervals in this plot are largely over-
lapping in the third section where the low friction environment is used.

63

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

0 200 400 600 800 1000 1200 1400 1600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Evaluations

Fi
tn

es
s

(d
is

ta
nc

e)

Normal Obstacles Low friction

Mean best 1 it, Baldwin
Mean best 10 it, Baldwin
Mean best 20 it, Baldwin
Mean best 1 it, Lamarck
Mean best 10 it, Lamarck
Mean best 20 it, Lamarck

Figure 5.13: Fitness plot showing the mean of the best fitness in each
generation. The dashed line shows where a new environment is introduced.
Because there are less generations with learning, switching is done at
slightly different times with different number of iterations of local search.
This is because switching must be done at the end of a generation. The
results should not be affected much by this.

Analysis

Although most of the differences in the plot in Figure 5.13 are not signi-
ficant, there are certain tendencies that are worth commenting. It seems
that learning individuals more easily adapt to the sudden change in envir-
onment when obstacles are added, however, the baseline evolution without
lifetime learning has a faster increase in fitness after this has happened. A
possible explanation to this could be that learning individuals quickly dis-
cover relatively good solutions in the fitness landscape around each indi-
vidual, thereby keeping the overall fitness relatively high compared to the
baseline, excluding the Baldwinian learning configurations. However, be-
cause the entire search space will have changed when the obstacles were
added, these local optima may not be optima any more, which means that
more global exploration is needed to be able to move towards better solu-
tions. Since evolution without learning is able to do more global explora-
tion over fewer evaluations than with learning, it will move the individu-
als towards better solutions faster. This explains why the baseline almost
catches up with Lamarckian learning with 20 iterations in the obstacle sec-
tion in Figure 5.13, and that Lamarckian learning with 10 iterations per-
forms at about the same level as the baseline. If the obstacle environment
was used over a longer period of time, it is possible that the baseline would
have converged before the Lamarckian learning configurations, but this is

64

CHAPTER 5. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000 1200 1400 1600
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Evaluations

D
ev

ia
tio

n
in

 fi
tn

es
s

be
tw

ee
n

ru
ns

Normal Obstacles Low friction

Std best 1 it, Baldwin
Std best 10 it, Baldwin
Std best 20 it, Baldwin
Std best 1 it, Lamarck
Std best 10 it, Lamarck
Std best 20 it, Lamarck

Figure 5.14: Plot of standard deviation of the best fitnesses in each
generation.

impossible to say looking at this plot only.
When the low friction environment is introduced, a different situation

arises. Firstly, the overall fitness increases suddenly, because the obstacles
are removed. Secondly, the baseline configurations both have an almost
logarithmic increasing fitness in the low friction period, similar to the two
previous periods, and they seem to outperform the learning configurations.
The differences here are not significant, as Figure 5.15 indicates, but
the tendencies are there. The reason why Lamarckian learning with
20 iterations of OPL suddenly performs worse than the baseline is not
clear, but a possible explanation could be that good solutions with an
environment filled with obstacles are badly transferred to a low friction
environment. In order to avoid the obstacles, it is possible that the
individuals develop a more jumping sort of gait, which will exhibit a lot of
force towards the ground. When the obstacles are removed and the friction
of the ground is reduced, this kind of gait would probably cause a lot more
slipping than one which does not jump to the same extent. In other words,
good solutions in the obstacle environment might correspond to especially
bad solutions in the low friction environment, making global exploration
important in order to move away from local optima. This means that this
particular change in environment is unfortunate for learning individuals,
as individuals might start in low fitness areas which the local search is
not powerful enough to get out of. If the evolution was continued for
a longer time in the low friction environment, it is possible that there
would be a similar trend as in the first investigatory experiment, were
the configurations with Lamarckian learning eventually catch up with and
surpass the baseline.

65

5.1. EVOLVING CONTROL SYSTEM PARAMETERS

Evaluations
0 200 400 600 800 1000 1200 1400 1600

Fi
tn

es
s

(d
is

ta
nc

e)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Normal Obstacles Low friction

1 it
10 it Lamarck
20 it Lamarck

Figure 5.15: Plot with confidence intervals and median, with a 99%
confidence level.

How successful the local search is when the environment changes ap-
pears to vary a lot between runs, as Figures 5.14 and 5.15 illustrates. The
standard deviation between runs in the Lamarckian learning configurations
increases significantly when obstacles are introduced. A possible explana-
tion to this could be that when the fitness landscape changes, there is a
difference in how close good solutions in the previous environment are to
good solutions in the new one. Some individuals will be closer to new local
optima than others, creating a large span between the runs and how suc-
cessful the local search is.

66

CHAPTER 5. EXPERIMENTS AND RESULTS

5.2 Evaluating control system performance

Although the results retrieved from evolution in the simulator are interest-
ing in themselves, the final stage of development is the transferral of the
evolved control systems to the physical robot. In order to test the perform-
ance of a control system on the physical robot, a set of evaluations were
done, both in hardware and in simulation for comparison. To get an idea
of how a control system performs over time, 30 evaluations were done with
each control system, where one evaluation corresponds to the mean dis-
placement over 4 time periods.

Evaluations on the physical robot was done using the motion capture
equipment described in section 3.3, while the same simulator as was used in
the evolutionary experiments was used for evaluation in simulation. Only
the results from the first investigatory experiments were used, see Subsec-
tion 5.1.1, since these included both Baldwinian and Lamarckian learning,
and the control system used there seemed better transferable to the phys-
ical robot than the AmpOffPhase system. The baseline configurations of
evolution without learning, corresponding to one iteration of Baldwinian or
Lamarckian learning, are the same, and are therefore merged here. Since
evolution of control systems most often is a design problem, the individuals
with the best final results in each configuration from this experiment were
evaluated. To get a better overview of the overall performance, the median
individuals in each set were also evaluated.

5.2.1 Results

Tables 5.12 and 5.13 show that there is a difference between the mean
evaluations and the original fitness value, both in simulation and in
hardware. On the physical robot, the mean evaluation is considerably lower
in all cases, while the evaluations in simulation are either lower or about the
same.

A reality gap is apparent in all configurations, and is especially clear
with the median individuals. This can be seen in Figures 5.16 and
5.17 as well as in the mentioned tables. The configuration with 20
iterations of Baldwinian learning from the best individuals is a special
case where the mean evaluations are actually better on the physical robot,
but this is probably because of special features in the gait, which will be
discussed in the analysis. The size of the reality gap differs between the
same configurations in the best and median individuals, so concluding
on which configuration gives the largest reality gap is not easy. In the
best individuals, the largest difference lies with the baseline configuration
without learning, with a 38% performance loss. In the median individuals,
the configuration with 20 iterations of Baldwinian learning has the largest
performance loss, with 84%.

The box plots in Figures 5.16 and 5.17 show that some individuals have
a large spread in the evaluations, such as the baseline configuration in
Figure 5.16. The reason for this is that these particular robots tend to
get obstructed by their own body, typically by getting one leg stuck under

67

5.2. EVALUATING CONTROL SYSTEM PERFORMANCE

another. During evaluation, the robot alternates between moving freely
and being more or less obstructed by itself, resulting in a wide range of
evaluation results. Ideally, all evaluations should be about the same, as
this means that the gait is robust. When the spread of evaluations differ
between the evaluations done in simulation and hardware, this is part of
the reality gap for that robot.

Learning It. Fitness Mean simulation Mean hardware Ratio
None 1 0.5432 0.3553 0.2206 0.6209

Baldwin
10 0.4923 0.3531 0.3034 0.8592
20 0.4515 0.2336 0.2885 1.2350

Lamarck
10 0.5323 0.4981 0.3101 0.6226
20 0.5849 0.2497 0.2047 0.8198

Table 5.12: Best individuals. Table showing results of evaluation both
in simulation and on the physical robot of the best individuals from the
investigatory experiment with the AmpPhaseSym control system. All
values are in m/s, except the ratio. The original fitness value that resulted
from evolution is given in the fitness column. The ratio column shows
the ratio between the mean evaluations in hardware and simulation (mean
hardware/mean simulation). The best result in each column is marked with
a grey background.

Learning It. Fitness Mean simulation Mean hardware Ratio
None 1 0.4299 0.3993 0.1576 0.3947

Baldwin
10 0.3729 0.1004 0.0329 0.3277
20 0.4105 0.1580 0.0257 0.1627

Lamarck
10 0.451 0.4653 0.1565 0.3363
20 0.4711 0.1396 0.0893 0.6397

Table 5.13: Median individuals. Table showing results of evaluation both
in simulation and on the physical robot of the median individuals from
the investigatory experiment with the AmpPhaseSym control system. The
column descriptors are the same as in Table 5.12.

5.2.2 Analysis

The differing size of the gap between the final fitness value after evolution
and the mean evaluation in simulation can be the result of many factors.
One such factor could be that there is a certain level of noise in the local
search, which can affect the fitness value. A clear indication that this is
the case is that the configurations with 20 iterations of local search all
have relatively low mean performance after evaluation in simulation, as
compared with the original fitness. Still, most of the configurations with
10 iterations of local search have a fairly high performance after evaluation,
indicating that noise is more apparent with a larger number of iterations.

68

CHAPTER 5. EXPERIMENTS AND RESULTS

Baseline 10 it. B 20 it. B 10 it. L 20 it. L

0.1

0.2

0.3

0.4

0.5

0.6

Fo
rw

ar
d

m
ov

em
en

t

Figure 5.16: Box plot showing the results from evaluation of the best
individuals in simulation and on the physical robot. B and L stand for
Baldwinian and Lamarckian learning, respectively. The red boxes represent
the evaluations done in the simulator, while the black boxes represent the
evaluations done on the physical robot.

Because of the low number of samples used here, this situation is not
necessarily the case with the rest of the distribution.

The noise in the local search can be the result of inaccuracies in the
evaluation function. Measuring forward movement is not trivial; the
robot is allowed to turn while moving, and will therefore be changing
the direction of what is considered as forwards during evaluation. The
evaluation function used in these experiments decides the direction in
which displacement is measured as the direction the robot is headed at
the start of the period. A problem with this method is that if the robot
is swaying back and forth while moving, the direction it is headed at
sample time is not necessarily the direction of its forward movement. This
will lead to inaccuracies in the measurements, the severity of which will
vary depending on the particular gait of the robot. When local search is
applied during evolution, a large number of evaluations are done during
search, possibly increasing the chance of obtaining inaccurate results.
This can explain why the evaluation of the individuals evolved with 20
iterations of Lamarckian learning is considerably poorer than the fitness
value obtained during evolution in both the median and best individuals.
The low evaluated performance of the individuals from this configuration
does not necessarily mean that Lamarckian learning fails to find the true
good solutions, but that the fitness values stored in the final individuals
are inaccurate and do not always correctly represent the performance of
the control systems. Thus, in order to reduce noise in the local search and

69

5.2. EVALUATING CONTROL SYSTEM PERFORMANCE

Baseline 10 it. B 20 it. B 10 it. L 20 it. L

0

0.1

0.2

0.3

0.4

0.5

Fo
rw

ar
d

m
ov

em
en

t

Figure 5.17: Box plot showing the results from evaluation of the median
individuals in simulation and on the physical robot. The same layout as in
Figure 5.16 is used.

thereby decrease the chance of this happening, a more robust evaluation
function should be used.

Another factor could be that evaluation in evolution is only done over
8 time periods, while evaluation of the final solution is done over 120 time
periods. Since the performance of a solution will sometimes alter over time,
e.g. the robot may for some reason get obstructed by itself after a while, one
evaluation of 8 time periods is probably not enough to describe the overall
performance of the control system.

When studying the evaluations done in simulation and on the physical
robot, it is clear that there is a reality gap of varying size present in
most configurations. However, for the configuration with 20 iterations
of Baldwinian learning from the best individuals, the mean evaluation in
hardware is actually slightly better than in simulation, which is a rare
situation in evolutionary robotics. Still, this positive difference is part of
the reality gap for this particular robot, because of a specific feature in its
gait, this being that the robot moves along a circular path. In hardware, it
seems that the robot moves in larger circles than in simulation, and because
robot displacement is measured in the direction the robot was headed at
the beginning of the evaluation, a larger circular path will lead to a larger
measured displacement. The reason why the physical robot moves along
a larger circle is probably because there is a difference in friction between
the ground in the simulator and the lab floor. When the robot turns, it
will therefore slip more in the real world than in the simulator, resulting
in a less sharp turn in the real world. The absolute speed of the robot is
probably about the same in simulation and hardware. Difference in friction

70

CHAPTER 5. EXPERIMENTS AND RESULTS

is the main contributor to the reality gap in these experiments. While
leading to larger measured speed for the robot evolved with 20 iterations
of Baldwinian learning, it generally leads to poorer performance in reality
for the rest of the robots, because they do not get the same benefit in the real
world from applying a lot of force on the ground to create large movements.
If the floor friction parameter is reduced in the simulator, it is possible that
the reality gap is reduced.

As of the difference in reality gap between Baldwinian and Lamarckian
learning, the numbers in Tables 5.12 and 5.13 are inconclusive. Within
the best individuals, Baldwinian learning has the least loss of performance
of the two, while the opposite is the case with the median individuals.
However, looking at the box plots in Figures 5.16 and 5.17, there seems
to be a tendency towards a larger reality gap in the configuration with
10 iterations of Lamarckian learning, and that these individuals have
become overly adapted to the simulator. In order to confirm or reject
this hypothesis, a larger amount of gaits from each configuration should
be evaluated, thereby increasing the robustness of the results.

71

5.3. RUNNING LOCAL SEARCH ON THE EVOLVED CONTROL SYSTEMS

5.3 Running local search on the evolved control
systems

An interesting method of decreasing the reality gap is to apply learning
to the evolved solutions on the physical robot, thereby allowing them
to adapt to the real world. Since there is a possibility that solutions
evolved with Baldwinian learning has a larger potential to learn, these may
have an advantage when this method is used. To test this hypothesis,
two experiments were set up to examine the learning abilities of a small
selection of solutions from the evolutionary experiments in section 5.1. The
same individuals as in the previous section were used, that is, the best and
median results from the first investigatory evolutionary experiment, see
Subsection 5.1.1. The first experiment focuses on testing learning abilities in
simulation, while the second examines learning on the physical robot, and
to what degree this reduces the reality gap in each configuration. In both
cases, OPL was used as local search algorithm, with lambda set to 2 and no
reevaluations. In each learning run, 20 iterations of OPL were performed,
followed by 30 evaluations of the best gait obtained during the local search.

It should be noted that the terms local search and learning are used
interchangeably in this section, and that learning in this context has the
meaning of applying local search to an individual after evolution. If learn-
ing during evolution is mentioned, this is referred to as lifetime learning or
either Baldwinian or Lamarckian learning. Furthermore, the baseline evol-
ution without learning is again represented by the configurations with one
iteration of Baldwinian or Lamarckian learning, which were left separate to
keep more of the data.

5.3.1 In simulation

Since the local search algorithm is to some extent stochastic, learning was
applied to each individual from every configuration 10 times, in order to
reduce noise in differing final results and to test the robustness of the
local search. In addition, evaluation time was increased to 8 periods per
evaluation, from 4 in the previous section. This was done to reduce the
noise in the local search, seeing as taking the mean over more samples
reduces the contributions from outliers, which is what is done at the end of
an evaluation. Because of this, each initial individual was reevaluated with
the same number of evaluation periods, to make sure comparison between
lifetime learning and post-learning was fair.

Results

Tables 5.14 and 5.15 contain statistical results from learning on the best and
median individuals, respectively. The tables are organized as follows: The
start fitness row contains the starting fitness of the individual before local
search, i.e. the first evaluation in the local search. Mean final f. shows the
mean of the final fitnesses over all runs of local search, while improvement
is the difference between the two previous rows. These three rows only use

72

CHAPTER 5. EXPERIMENTS AND RESULTS

the direct results obtained during learning, involving only one evaluation,
while the next three use the results from after the final gaits have been
evaluated over 30 evaluations. Median impr. contains the improvement
between the mean evaluation of the initial gait, and the median of the mean
evaluations of the final gait after local search. The median was chosen
because it indicates the average performance of the local search. Median
ratio shows the improvement ratio instead of the raw improvement value,
where a low number indicates that learning has been successful, and a value
larger than 1 means that the solution before learning is still better. The std.
dev. ls row lists the standard deviation between the mean evaluations of
the final results after local search.

The results in the two tables deviate from each other with respect
to which configuration has the largest improvement. However, on the
immediate results from the local search, the configurations with 10 and 20
iterations of Baldwinian learning both have relatively large improvement.
Then again, so has the 20 iterations Lamarckian configuration. Only the
configurations with 20 iterations of Baldwinian and Lamarckian learning
have a positive median improvement on both the best and median
individuals.

Figures 5.18 and 5.19 show box plots of the evaluations of the perform-
ance of each individual before and after local search was applied. The red
boxes are the evaluations of the initial solution, while the black boxes rep-
resent the evaluations of the median results after local search. It should
be noted that some of the gaits tend to tangle the robot slightly at times,
resulting in a range of varying evaluations, which explains why there is a
difference in spread.

Learning Baldwin Lamarck
Iterations 1 10 20 1 10 20
Start fitness 0.5113 0.3083 0.1876 0.5432 0.4678 0.2987
Mean final f. 0.5130 0.3873 0.3285 0.5435 0.4777 0.3681
Improvement 0.0018 0.0790 0.1409 0.0002 0.0099 0.0694
Median impr. -0.0257 -0.0227 0.0397 0.0044 -0.0025 0.0792
Median ratio 1.1216 1.0681 0.8542 0.9868 1.0049 0.7578
Std. dev. ls 0.1572 0.0706 0.1515 0.2264 0.0730 0.2385

Table 5.14: Table showing the results from the local search on the best
individuals. The row descriptors are described in the beginning of the
current section. The best result in each row is marked with a grey
background.

Analysis

When comparing the two Tables 5.14 and 5.15, it becomes clear that the
results of learning differ quite a lot between the two individuals within
each configuration. Thus, without more samples from each configuration,

73

5.3. RUNNING LOCAL SEARCH ON THE EVOLVED CONTROL SYSTEMS

Learning Baldwin Lamarck
Iterations 1 10 20 1 10 20
Start fitness 0.3936 0.1218 0.1573 0.4124 0.3862 0.1857
Mean final f. 0.3949 0.3323 0.2986 0.4218 0.4354 0.3452
Improvement 0.0013 0.2105 0.1412 0.0094 0.0492 0.1595
Median impr. 0.0008 0.1961 0.1271 -0.0153 -0.1808 0.1095
Median ratio 0.9979 0.3323 0.5580 1.0398 1.6294 0.5553
Std. dev. ls 0.0018 0.0834 0.1345 0.1272 0.1474 0.1834

Table 5.15: Table showing the results from the local search on the median
individuals. The row descriptors are the same as in Table 5.14

1 it. B 10 it. B 20 it. B 1 it. L 10 it. L 20 it. L

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fo
rw

ar
d

m
ov

em
en

t

Figure 5.18: Box plot showing the results from evaluation of the best
individuals before and after local search, in simulation.

that is, more final solutions from each set of evolutionary runs, it is not
easy to conclude on which configuration is best suited for this kind of
learning. Every gait has its own properties, which can affect the effects
of learning on each particular gait. However, there are a few tendencies
that are interesting, and that should be looked further into in future
work. The box plot in Figure 5.19 and Table 5.15 show that the largest
increase in performance after learning happens with the individuals that
were evolved with Baldwinian learning. Since these had a relatively low
initial performance, it is possible that they had the largest potential for
improvement because of this, which is supported by the results from the
configuration with 20 iterations of Lamarckian lifetime learning, which also
has a relatively large improvement. This should be investigated further,
especially since it is not backed up by the results from the best individuals,
were such a tendency is not at all clear.

74

CHAPTER 5. EXPERIMENTS AND RESULTS

1 it. B 10 it. B 20 it. B 1 it. L 10 it. L 20 it. L
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Fo

rw
ar

d
m

ov
em

en
t

Figure 5.19: Box plot showing the results from evaluation of the median
individuals before and after local search, in simulation.

One thing that is consistent in all the results, is that the solutions from
the baseline evolution without learning, represented as one iteration of
either Baldwinian or Lamarckian learning, all have very little improvement
after local search. This is clear both in the direct results obtained during
local search, and in the subsequent evaluations. When studying the box
plots, and particularly the plot with the median individuals in Figure 5.19,
it is clear that both baselines have relatively good performance with the
initial solution, so there is a possibility that they are already at or close to a
local optimum from which it is difficult to move away.

The standard deviations listed in the tables show no trend towards any
configurations being more robust than others, which is probably because
of the stochastic properties of OPL. It is possible that this is also affected
by instabilities in the sampling of forward movement in the evaluations,
which can also explain why the best solution after local search sometimes
evaluates to worse performance than before local search. The results of the
evaluations of the best solutions found during learning further indicates
that there is noise in the local search, since some of the assumed improved
solutions have a poorer mean evaluation than the starting solution. Thus,
the same problem with the evaluations during local search as was discussed
in the analysis in the previous section is present.

75

5.3. RUNNING LOCAL SEARCH ON THE EVOLVED CONTROL SYSTEMS

5.3.2 On physical robot

In order to test the effects of learning on the physical robot, and then
examine the extent to which the reality gap is reduced, the same type
of learning experiment as was done in simulation was performed on the
physical robot, with a few changes. Firstly, since testing on the physical
robot is very time demanding, only one local search was performed on
each individual. This is clearly not enough to test the learning abilities of
each configuration, but should at least give some indication of the effects.
Secondly, the evaluation time was reduced to 4 periods per evaluation. This
is safer to do in hardware than in simulation, because the overflow problem
is handled to some extent here by the first sample in an evaluation being
discarded in hardware.

Results

The box plots in Figures 5.20 and 5.21 show the evaluations of the initial
solutions and of the best solution found after local search, pictured in red
and black boxes, respectively. In addition, the evaluation in simulation
from section 5.2 is included in blue, to better visualize the possible recovery
from a reality gap. As in the previous experiment in simulation, there
are inconsistencies between the results from the best and the median
experiments. Apart from a few exceptions, the same learning tendencies
are present in hardware. In the median individuals, the individuals evolved
with Baldwinian learning have the larger degree of improvement, while this
is not the case in the best individuals, apart from the direct improvement
during learning, as can be seen in Table 5.16. Table 5.17 clearly shows
that the individual evolved with 20 iterations of Baldwinian learning has
the largest improvement, followed by the 10 iterations Baldwinian learning
individual.

Learning Baldwin Lamarck
Iterations 1 10 20 1 10 20
Start fitness 0.3394 0.2989 0.2744 0.3075 0.3193 0.1853
Mean final f. 0.4204 0.3012 0.3749 0.3324 0.3741 0.2335
Improvement 0.0810 0.0023 0.1004 0.0250 0.0547 0.0482
Mean impr. 0.1141 -0.0668 -0.0142 0.0191 0.0301 0.0480
Mean ratio 0.7235 1.2824 1.0518 0.9201 0.9115 0.8099

Table 5.16: Table showing the results from the local search on the best
individuals. The row descriptors are the same as in Table 5.14, except the
last two rows which lists the mean improvement directly, since there is only
one instance of learning for each individual. The best result in each row is
marked with a grey background.

76

CHAPTER 5. EXPERIMENTS AND RESULTS

Learning Baldwin Lamarck
Iterations 1 10 20 1 10 20
Start fitness 0.1987 0.0187 0.0503 0.1556 0.2055 0.1712
Mean final f. 0.2558 0.1668 0.2128 0.2204 0.2263 0.2415
Improvement 0.0572 0.1480 0.1625 0.0649 0.0208 0.0702
Mean impr. 0.0374 0.1235 0.2014 0.0516 0.0150 0.1229
Mean ratio 0.8439 0.2103 0.1131 0.7533 0.9127 0.4207

Table 5.17: Table showing the results from the local search on the median
individuals. The row descriptors are the same as in Table 5.16.

Analysis

Although the low amount of data makes it difficult to come to a clear
conclusion, there are a few tendencies in the results that are interesting
and should be pursued further. The box plot of the evaluations of the
median individuals in Figure 5.21 shows that the individuals evolved with
Baldwinian learning both eliminate the reality gap after local search is
applied, in fact, the evaluations of the new solutions are even better
than the evaluations in simulation. This seems very promising for the
initial hypothesis that solutions evolved with Baldwinian learning store
a potential to learn. In this particular case, also the individual evolved
with 20 iterations of Lamarckian learning benefits largely from learning,
but it seems this individual is affected by local search noise during
evolution, which makes the validity of these results questionable. This can
obviously also be a problem with the individuals evolved with Baldwinian
learning, and should be investigated further with a more robust local search
evaluation function.

The results from the best individuals are inconsistent with the results
from the median individuals, and show no indication of a learning
potential in the Baldwinian learning individuals. There is a possibility that
individuals that fail to achieve a relatively high fitness during evolution
benefit more from learning being applied to the final solutions after
evolution than the best individuals. Still, this is just a hypothesis, which
can only be confirmed or rejected with evaluation of more samples. More
gaits from each configuration should be tested, and a larger set of learning
runs performed on each of these, thereby increasing the robustness of
the results. In addition, a larger number of iterations of local search
after evolution should also be tested, as this will probably result in a
better recovery and reduction of the reality gap. This is a very time
demanding challenge to solve, which is why this has not been done in these
experiments.

77

5.3. RUNNING LOCAL SEARCH ON THE EVOLVED CONTROL SYSTEMS

1 it. B 10 it. B 20 it. B 1 it. L 10 it. L 20 it. L

0

0.1

0.2

0.3

0.4

0.5

0.6

Fo
rw

ar
d

m
ov

em
en

t

Figure 5.20: Box plot showing the results from evaluation of the best
individuals before and after local search, on the physical robot. The red
boxes are evaluations in hardware of the gait before learning, while the
black boxes are evaluations in hardware of the final gait after learning has
been applied. For comparison, the simulated evaluations are included in
blue.

1 it. B 10 it. B 20 it. B 1 it. L 10 it. L 20 it. L

0

0.1

0.2

0.3

0.4

0.5

Fo
rw

ar
d

m
ov

em
en

t

Figure 5.21: Box plot showing the results from evaluation of the median
individuals before and after local search, on the physical robot. The box
colours are the same as in Figure 5.20

78

Chapter 6

Discussion

6.1 General discussion

The results from Section 5.1 show that the memetic algorithm with
Lamarckian learning with OPL can outperform the standard genetic
algorithm (NSGA-II) on the final fitness values obtained from evolution.
This is the case when the number of iterations of local search is between
20 and 200, where the increase in final fitness is statistically significant, at
least for the control system used in the first investigatory experiment. For
the second control system, more testing must be done in order to show
significant improvement, but there is a definite trend towards the same
situation. From the results of evolution with Baldwinian learning, it seems
that the cost of learning is larger than the benefit of a learning potential, at
least in the direct results after and during evolution.

All the fitness plots from the evolutionary experiments show that the
baseline evolution without learning has a faster increase in fitness at the
start of the evolution, as well as a faster convergence. This can be explained
by the fact that evolution without learning in these experiments does
considerably more global exploration than with learning, thus locating
an area of high fitness relatively fast. Learning reduces the number
of generations because of the cost of local search, that is, evaluations
done over all iterations in the search, thereby slowing down the global
exploration. This also explains why evolution with learning has a slower
convergence rate with respect to the number of evaluations performed.

When the final solutions were evaluated in Section 5.2, one of the
things that became apparent was that the final fitness value was not
always consistent with the evaluations of the final solutions in simulation,
and especially so for the results from the evolution with 20 iterations of
Lamarckian learning. This indicates that there is a certain level of noise in
the local search setup, which is possibly increased with increasing number
of iterations of local search. One source of noise was known beforehand,
i.e. that there is a slight overflow from one iteration of local search to
the next, because the robot is not reset between iterations. In other
words, the robot will be moving in a certain speed at the beginning of an
iteration, excluding the first, depending on the performance of the previous

79

6.2. CONCLUSION

iteration. However, since the final evaluation of a control system in each
iteration is set to the mean displacement over eight time periods, this
should not influence the results to a great extent. Another possible source
of noise is instabilities in the evaluation function. Measuring forward
movement is not a trivial task when the robot is allowed to move freely,
since the direction of movement will change continuously with the position
of the robot. The evaluation function used in these experiments measured
forward movement in the direction the robot is headed at the beginning of
the evaluation period, which may not be consistent with the true direction
of movement, depending on the specific properties of the gait.

The results from Section 5.2 also show that there is a considerable
reality gap in all the configurations tested. Two sets of individuals were
tested in each configuration, but because the results were conflicting on
which configuration had the largest reality gap, no conclusion can be drawn
on whether Lamarckian or Baldwinian learning leads to the smallest gap.
The reality gap is mainly the result of difference in friction in the simulator
and the real world, both between the robot and the ground and between
one robot part and another. It seems that friction between the robot and
the ground is larger in the simulator than in the real world, causing the
physical robot to slip more than the simulated one. Since the robot is of
a morphology which is prone to collide in itself while walking, mainly by
a front and hind leg bumping into each other, friction between body parts
is also a factor. The robot tends to obstruct itself more in the real world,
indicating that the friction between body parts is larger in the real world.
This could probably be improved by tuning of the friction parameter in the
simulator, by lowering the ground friction and possibly increasing the robot
body friction.

In Section 5.3, local search was applied to a small set of solutions from
the evolutionary experiments. Although the results were too inconsistent
to be able to conclude on which configurations had the greatest learning
potential, there was a certain trend towards Baldwinian learning giving
the largest potential in some of the evolved individuals. Since the results
from evolution were to some extent affected by noise in the local search,
and the number of samples from each configuration was relatively low,
the hypothesis that individuals that have been evolved with Baldwinian
learning can store a learning potential cannot be confirmed or rejected for
the memetic algorithm used in these experiments.

6.2 Conclusion

A memetic algorithm for evolution of parametric control system paramet-
ers for robots of a fixed morphology was presented in this thesis. The al-
gorithm consists of a merger between the multi-objective genetic algorithm
NSGA-II and a local search algorithm, and was implemented with two op-
tions of lifetime learning, Lamarckian and Baldwinian. The algorithm was
then tested in simulation over a series of different configurations, e.g. with
different numbers of iterations of local search, with the two different local

80

CHAPTER 6. DISCUSSION

search algorithms SA and OPL, and with two different control systems.
The results show that using a Lamarckian memetic algorithm for evol-

ution of robot control system parameters can be advantageous compared
with a normal genetic algorithm. When an adequate number of iterations
was used, Lamarckian learning had a positive effect on two different con-
trol systems. Because there is a balance between the weight of the local
search and the number of generations, a more powerful local search will
have less global exploration, which means that there is a limit of how many
iterations of local search can be performed before overall fitness quality is
reduced. Since only the fitness value and not the parameters are stored in
the individual after local search in evolution with Baldwinian learning, this
performed significantly worse than both evolution with Lamarckian learn-
ing and evolution without learning.

After the base evolutionary experiments were performed, a few control
systems were evaluated more thoroughly in the simulator and on the
physical robot. Because of inconclusive results, partly due to a low number
of samples being evaluated from each generation, no conclusion can be
made on whether Lamarckian and Baldwinian learning leads to larger or
smaller reality gap compared to standard evolution without learning. To
be able to do this, the robustness of the results should be increased by
evaluation of a larger selection of solutions from each configuration.

One of the major challenges in this thesis was the presence of noise in
the evaluations of the local search, both during evolution in the simulator
and when running local search on the physical robot. Noise is a common
problem in learning and evaluations of real life robotics, creating a need for
further research on methods that take this into account specifically. One
way of dealing with noise is to run a large set of equivalent evaluations
followed by filtering of the results, but on a real world situated robot this
process is in most cases very time demanding, resulting in there being a
trade-off between time and the number of evaluations.

6.3 Future work

A few problems were discovered during the thesis work which should be
addressed in future work. Firstly, since the local search evaluations seemed
to be affected by inaccuracies in the measurements, it might be beneficial
to generate more data using a local search setup with less noise, as this
would provide more security in the results. Secondly, more testing should
be done on learning as a recovery mechanism for reality gap issues, by more
rigorous testing on a larger quantity of evolved individuals.

This thesis was only concerned with evolving control systems for a
robot with fixed morphology. The logical next step is to extend the
algorithm to include coevolution of morphology and control. This is a
far more demanding challenge, since this includes encoding the phenotype
morphology back into the genotype if Lamarckian learning is to be used, a
procedure that is not trivial. When morphology is included in the evolution,
the results of lifetime learning may differ from what was found in this

81

6.3. FUTURE WORK

thesis, in the sense of which configuration is most successful.
Another interesting addition could be to introduce local search at a

later point in evolution, thus benefiting from fast global exploration in the
first part of evolution, followed by exploitation of local structures in the
fitness landscape when lifetime learning is included. The fitness plots from
the evolutionary experiments show that evolution without learning has a
faster increase in fitness at the beginning of evolution, while evolution with
Lamarckian learning converges to a higher final fitness. A combination
of this could possibly lead to a reduction in the number of evaluations
necessary for reaching a good solution. This would be a very artificial
evolutionary method, but could possibly lead to faster discovery of high
fitness areas.

82

Bibliography

[1] J Mark Baldwin. ‘A new factor in evolution’. In: American naturalist
(1896), pp. 536–553.

[2] Josh Bongard. ‘Evolving modular genetic regulatory networks’. In:
Computational Intelligence, Proceedings of the World on Congress
on. Vol. 2. IEEE. 2002, pp. 1872–1877.

[3] Josh C Bongard. ‘Evolutionary robotics’. In: Communications of the
ACM 56.8 (2013), pp. 74–83.

[4] Josh Bongard, Victor Zykov and Hod Lipson. ‘Resilient machines
through continuous self-modeling’. In: Science 314.5802 (2006),
pp. 1118–1121.

[5] E Borenstein, I Meilijson and E Ruppin. ‘The effect of pheno-
typic plasticity on evolution in multipeaked fitness landscapes’. In:
Journal of evolutionary biology 19.5 (2006), pp. 1555–1570.

[6] Nick Cheney et al. ‘Unshackling evolution: evolving soft robots
with multiple materials and a powerful generative encoding’. In:
Proceeding of the fifteenth annual conference on Genetic and
evolutionary computation conference. ACM. 2013, pp. 167–174.

[7] Richard Dawkins. The selfish gene. Oxford University Press, 1976.

[8] Kalyanmoy Deb. ‘Multi-objective optimization’. In: Search method-
ologies. Springer, 2014, pp. 403–449.

[9] Kalyanmoy Deb et al. ‘A fast and elitist multiobjective genetic al-
gorithm: NSGA-II’. In: Evolutionary Computation, IEEE Transac-
tions on 6.2 (2002), pp. 182–197.

[10] Stephane Doncieux et al. ‘Evolutionary robotics: what, why, and
where to’. In: Frontiers in Robotics and AI 2 (2015), p. 4.

[11] Stéphane Doncieux et al. ‘Evolutionary robotics: Exploring new
horizons’. In: New Horizons in Evolutionary Robotics. Springer,
2011, pp. 3–25.

[12] Agoston E Eiben and James E Smith. Introduction to evolutionary
computing. Springer, 2003.

[13] Matthew Field et al. ‘Motion capture in robotics review’. In: Control
and Automation, 2009. ICCA 2009. IEEE International Conference
on. IEEE. 2009, pp. 1697–1702.

83

BIBLIOGRAPHY

[14] Dario Floreano and Francesco Mondada. ‘Evolution of plastic neuro-
controllers for situated agents’. In: From Animals to Animats 4, Pro-
ceedings of the 4th International Conference on Simulation of Ad-
aptive Behavior (SAB" 1996). LIS-CONF-1996-001. MA: MIT Press.
1996, pp. 402–410.

[15] Dominic R Frutiger, Josh C Bongard and Fumiya Iida. ‘Iterative
product engineering: Evolutionary robot design’. In: Proceedings of
the fifth international conference on climbing and walking robots.
Professional Engineering Publishing. 2002, pp. 619–629.

[16] Salvador García et al. ‘A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: a case study on
the CEC’2005 special session on real parameter optimization’. In:
Journal of Heuristics 15.6 (2009), pp. 617–644.

[17] Kyrre Glette et al. ‘Evolution of locomotion in a simulated quadruped
robot and transferral to reality’. In: Proceedings of the Seventeenth
International Symposium on Artificial Life and Robotics. 2012.

[18] Sabine Hauert, J-C Zufferey and Dario Floreano. ‘Reverse-engineering
of artificially evolved controllers for swarms of robots’. In: Evol-
utionary Computation, 2009. CEC’09. IEEE Congress on. IEEE.
2009, pp. 55–61.

[19] Geoffrey E Hinton and Steven J Nowlan. ‘How learning can guide
evolution’. In: Complex systems 1.3 (1987), pp. 495–502.

[20] Himanshu Jain and Kalyanmoy Deb. ‘An improved adaptive ap-
proach for elitist nondominated sorting genetic algorithm for many-
objective optimization’. In: Evolutionary Multi-Criterion Optimiza-
tion. Springer. 2013, pp. 307–321.

[21] Nick Jakobi, Phil Husbands and Inman Harvey. ‘Noise and the
reality gap: The use of simulation in evolutionary robotics’. In:
Advances in artificial life. Springer, 1995, pp. 704–720.

[22] Dong-Hwa Kim and Ajith Abraham. ‘A hybrid genetic algorithm
and bacterial foraging approach for global optimization and robust
tuning of PID controller with disturbance rejection’. In: Hybrid
Evolutionary Algorithms. Springer, 2007, pp. 171–199.

[23] Sylvain Koos, J-B Mouret and Stéphane Doncieux. ‘The transfer-
ability approach: Crossing the reality gap in evolutionary robotics’.
In: Evolutionary Computation, IEEE Transactions on 17.1 (2013),
pp. 122–145.

[24] Minh Nghia Le et al. ‘Lamarckian memetic algorithms: local op-
timum and connectivity structure analysis’. In: Memetic Computing
1.3 (2009), pp. 175–190.

[25] Joel Lehman and Kenneth O Stanley. ‘Abandoning objectives:
Evolution through the search for novelty alone’. In: Evolutionary
computation 19.2 (2011), pp. 189–223.

84

BIBLIOGRAPHY

[26] Hod Lipson and Jordan B Pollack. ‘Automatic design and manufac-
ture of robotic lifeforms’. In: Nature 406.6799 (2000), pp. 974–978.

[27] Henry B Mann and Donald R Whitney. ‘On a test of whether one of
two random variables is stochastically larger than the other’. In: The
annals of mathematical statistics (1947), pp. 50–60.

[28] Peter Merz. ‘Advanced fitness landscape analysis and the perform-
ance of memetic algorithms’. In: Evolutionary Computation 12.3
(2004), pp. 303–325.

[29] Pablo Moscato. ‘On evolution, search, optimization, genetic al-
gorithms and martial arts: Towards memetic algorithms’. In: Caltech
concurrent computation program, C3P Report 826 (1989).

[30] Ferrante Neri and Carlos Cotta. ‘Memetic algorithms and memetic
computing optimization: A literature review’. In: Swarm and Evol-
utionary Computation 2 (2012), pp. 1–14.

[31] Ferrante Neri and Carlos Cotta. ‘Memetic algorithms and memetic
computing optimization: A literature review’. In: Swarm and Evol-
utionary Computation 2 (2012), pp. 1–14.

[32] Ferrante Neri and Ernesto Mininno. ‘Memetic compact differen-
tial evolution for cartesian robot control’. In: Computational Intel-
ligence Magazine, IEEE 5.2 (2010), pp. 54–65.

[33] Stefano Nolfi and Dario Floreano. ‘Learning and evolution’. In:
Autonomous robots 7.1 (1999), pp. 89–113.

[34] Yew Soon Ong and Andy J Keane. ‘Meta-Lamarckian learning in
memetic algorithms’. In: Evolutionary Computation, IEEE Trans-
actions on 8.2 (2004), pp. 99–110.

[35] Yew-Soon Ong et al. ‘Classification of adaptive memetic algorithms:
a comparative study’. In: Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on 36.1 (2006), pp. 141–152.

[36] Ingo Paenke, Yaochu Jin and Jürgen Branke. ‘Balancing population-
and individual-level adaptation in changing environments’. In:
Adaptive Behavior 17.2 (2009), pp. 153–174.

[37] Jordan B Pollack and Hod Lipson. ‘The GOLEM project: Evolving
hardware bodies and brains’. In: Evolvable Hardware, 2000.
Proceedings. The Second NASA/DoD Workshop on. IEEE. 2000,
pp. 37–42.

[38] Matt Quinn et al. ‘Evolving controllers for a homogeneous system of
physical robots: Structured cooperation with minimal sensors’. In:
Philosophical Transactions of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 361.1811
(2003), pp. 2321–2343.

[39] John Rieffel et al. ‘Evolving soft robotic locomotion in PhysX’. In:
Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers.
ACM. 2009, pp. 2499–2504.

85

BIBLIOGRAPHY

[40] Eivind Samuelsen and Kyrre Glette. ‘Real-World Reproduction
of Evolved Robot Morphologies: Automated Categorization and
Evaluation’. In: Applications of Evolutionary Computation - 18th
European Conference, EvoApplications 2015. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2015.

[41] Eivind Samuelsen, Kyrre Glette and Jim Torresen. ‘A hox gene
inspired generative approach to evolving robot morphology’. In:
Proceeding of the fifteenth annual conference on Genetic and
evolutionary computation conference. ACM. 2013, pp. 751–758.

[42] David Shilane et al. ‘A general framework for statistical performance
comparison of evolutionary computation algorithms’. In: Informa-
tion Sciences 178.14 (2008), pp. 2870–2879.

[43] Karl Sims. ‘Evolving 3D morphology and behavior by competition’.
In: Artificial life 1.4 (1994), pp. 353–372.

[44] Karl Sims. ‘Evolving virtual creatures’. In: Proceedings of the
21st annual conference on Computer graphics and interactive
techniques. ACM. 1994, pp. 15–22.

[45] Richard A Watson, SG Ficiei and Jordan B Pollack. ‘Embodied
evolution: Embodying an evolutionary algorithm in a population of
robots’. In: Evolutionary Computation, 1999. CEC 99. Proceedings
of the 1999 Congress on. Vol. 1. IEEE. 1999.

[46] Darrell Whitley, V Scott Gordon and Keith Mathias. ‘Lamarckian
evolution, the Baldwin effect and function optimization’. In: Parallel
Problem Solving from Nature-PPSN III. Springer, 1994, pp. 5–15.

[47] Frank Wilcoxon. ‘Individual comparisons by ranking methods’. In:
Biometrics bulletin (1945), pp. 80–83.

[48] Tony D. Williams. The Penguins. Oxford University Press, 1995.

[49] David H Wolpert and William G Macready. ‘No free lunch theor-
ems for optimization’. In: Evolutionary Computation, IEEE Trans-
actions on 1.1 (1997), pp. 67–82.

[50] Juan Cristóbal Zagal and Javier Ruiz-Del-Solar. ‘Combining simula-
tion and reality in evolutionary robotics’. In: Journal of Intelligent
and Robotic Systems 50.1 (2007), pp. 19–39.

86

