ON- ACTIONS OF AMENABLE GROUPS ON II]- FACTORS.

by Erik Bédos. j

Abstract: Given a II]—factor M with separable predual and a a

free action of a countable amenable discrete group G on M, we

show that the crossed product M X, G has property T (resp. is

McDuff) when M itself has property T (resp. is McDuff).




1. Introduction

Let M denote a II]—factor with separable predual and normalized

trace T. As usual, the Hilbert norm n-n2 on M given by 1t is
defined by nxﬂ2=t(x*x)%, xEM. Recall that M is said to have
property I (of Murray and von Neumann [14]) when for any
x],...,anM, €>0, there exists a unitary u€M such that <t(u)=0

and ﬂ[xi,u]ﬂ2<a, i=1,...,n. Property I plays an important role

in the theory of II,-factors and has been characterized in many ways.

1
As a sample we refer to [4], [6] and [8]. Now, let «a:G->Aut(M)

dendte an action of a countable discrete group G on M which is
free, i.e. each ag is outer, g#l1. Then consider the resﬁlting
crossed product M X, G, which is well known to be a II]-factor. The

main purpose of this note is to etablish the following result,

believed to be true by Popa (c£.[19;p.32] or [20:3.3.2]).

Theorem A: If G 1is amenable and M has property T, then M X e

has also property T.

Theorem A has previously beeh obtained for G finite [3:th.1]

and for G=Z [19;p.32]. On the other hand, it is elementary to
produce examples of free actions of nonamenable groups on II]-factors
- with property T such that the resulting crossed products also have
property'vr. For an éxample of a ffee actionbof Z on a II]-factor
‘without property T éuch that the crossed product has property T
we refer to [17:prop. 4.3]. For other connected results, see [12]
and [13]. | | |

Another ipteresting properﬁy for‘II]—factors, which is stronger'than
property T, is that of being McDuff (see for example [5], [6] and

[9]). Recall that M is called McDuff if M is *-isomorphic to

M ® R, where R denotes the hyperfinite II]-factor. In order to




prove theorem A, we first present a proof of the following theorem,

which in essence may be attributed to Ocneanu:

Theorem B: If G 1is amenable and M is McDuff, then M xa G 1is

McDuff too.

When G is finite, theorem B 1is a consequence of []8;prop. 1.11
ii)]. Examples of free actions of nonamenable groups on McDuff II]-
factors such that the resulting crossed products are McDuff are easy
to construct. For an example of a free action of 2 on a non McDuff
II]—facth (with property T) such that the crossed product is
McDuff, we refer to [11]. Further, we show that the remaining part of

theorem A, modulo theorem B, is true:

Theorem C: If G is amenable and M has property T without being

McDuff, then M x, G has property T. : -

We begin this paper with a section (§2) devoted to a review of some
facts about cocycle crossed actions and regular extensions ([21,

[16], [23] and [24]). Our main interest lies in a folklore fesult
:about decomposition of crossed ?roducts, which we need explicitely in
§3 where theorem B and C are proved. Our proof of theorem B relies
heavily on two deeé results of Ocneanu [16;th. 1.1 and th. ].2],
which’themselves rely on techniques and results developed by Ornstein
and Weiss, McDuff, Jones and Connes'among others. We note that theo-
rem B may also be deduced from an assertion stated without proof by
Ocneanu (see [16;p.6, the assertion following th. 1.2]). However, we
- propose a slichtly different approach, whichowe hope is of indepen—
‘dent interest. On the other hand, the main idea in the proof of theo-
rem C is to invoke inla suitable way a result of Schmidt [22;th.2.4],

which itself is an outgrowth of the Connes-Feldman-Weiss theorem.




We follow standard notation and terminology, as may be found for
example in [13]. Otherwise, the reader may consult [7] and [16]. wWe

quote here som notation. » :

- Suppose we are given a von Neumann algebra N acting on a Hilbert

space W and a discrete group H. Then

Aut(N) = the group of *-automorphisms of N,
U(N) = the group of unitaries in N,
“B(W) = the bounded linear operators acting on w,

xz(HfﬂJ= the Hilbert space of all W -valued functions

£ on H such that g llg(h)ll2 < + o,
h&H

o,

the group of automorphisms of H.

22(x)

‘Aut(H)
When u€ U(B(®)) is such ﬁhat uNu*=N, ad(u) denotes the
*-automorpﬁism of NV implemenfed by u. Finally{ when Aa:H*Aut(H)
denOtes’an’action‘of H on N with resulting crossed product

N X, H, we sometimes identify N with its canonical copy in N X, H.

2. Cocycle crossed actions and reqular extensions.

Let N denote a von Neumann algebra acting on a Hilbert Space .

A cocycle crossed action of a discrete group K on N is a pair

(B,u), where B:K>Aut(N) and u:KxK+U(N) satisfy for k,4&,m € K
,9'33,1 = aé(u(k.X))ﬁklf .
u(k,2) u(kt,m) = B (u(£,m) ulk, m),"

:q(1,1) = u(k,1) = 1..




The regular extension of N Dby K, say N x K, 1is then

(B,u)

defined as the von Neumann algebra acting on lz(K;xJ generated by

nB(N) and xu(K), where ﬂB is the faithful normal representation
of N on lz(K,K) defined by

(ﬁB(X) g)(r) =8 _,(x) g(2),
X

while, for each k € K, Au(k) is the unitary operator on RZ(KJC)
defined by
(R8N (1) = u(a™ ek 2), (x€N, g€L®(KR), 2€EK).

Accordingly, when u=]l, i.e. when f 1is an action of K on N, the

regular extension amounts to the ordinary crossed product N xB K.

One checks easily that the covariance formula
ﬂﬁ(Bk(X)) = ad(r (k) (us(x))

holds for all k€K, xEN, and also that
xu(k)xu(x) = nﬁ(u(k,l)) xu(kx)

holds for all k, 2€K.

Further, one may proceed as in [25;prop. 3.4] (c£.[2:Th.5]) to verify
the following proposition, which assures that the algebraic structure

of N x(B ) K is independent of the Hilbert space ®.

Proposition 1: Suppose 6:N+*P is a *-isoqﬁorphism between two von

Neumann algébras N and P, and that (B,u) is a cocycle crossed
action of a discrete group K on N. Define Bk = 0 Bx 6_] €Aut(P)
and u(k,&) = 8(u(k,2)) € U(P) for all k,2€K. Then (E,G) is a
cocycle crossed action of K on P, and there exists a

*-isomorphism FE: N x(B u) K-~»>P x(B a) K such that
’ 14

T (0(x)) =8 (ng(x)) (x€N),
B .

A_ (k)

) (Ag(k))  (kEK).
u




Now, given a map v: K»>U(N) with v]=1, the perturbation of (B8,u}

by v is by definition the pair (E,G) obtained by setting
By = ad(vy) By,
~ * ’
u(k,) = VkBk(vl) u(k, L) Vieg o (k,* € K).

One readily verifies that (E,G) is a cocycle crossed action of K

on N. We say that (B,u) is a coboundary (of v) when u=l.

The next proposition is well known; indeed it is merely a restatement

of a part of [24;prop. 5.1.2.].

Proposition 2: If (E,G) is a perturbation (by v) of a cocycle

crossed action (B,u) of a discrete group K on a von Neumann algebra
N, then |
(5.3 K is'insomorphic to ﬁ X (8 ,4) K.
Our main interest in this section is to show how cocycle crossed
actions and regular extensions naturally appear when decomposing
‘croésed érodﬁcts. For group von Neumann algebras; this has been
treated in [24;prop. 3.17] (and in [2:th. 11]). When the acting
group in a given crossed product may be -decomposed as a semi-direct
product, the expected decomposition of the crossed product as a
"double" crossed product haé been pointed out in [1:th. 4.3] and
[21:th. 2.4]. BAs we haQe noﬁ beén able to find a suitable referencé
in the literature for the geﬁefal situation, and we need an exﬁlicit
version in thé ne#ﬁ éectién, wé now sketch a éroof of such a result.

It generalizes slightly [15:;th. 3].




Proposition 3: Let 1 + H » G 2K » 1 denote an exact sequence of

discrete groups and a: G > Aut(M) an action of G on a von Neumann

algebra M acting on a Hilbert spaoe\(. Identify H with its copy

in G and set N =M X where «a | H denotes the restriction

a|H H,
of ¢ to H on M. Then there exists a cocycle crossed action

(B,u) of K on N such that
M X, G 1s *-isomorphic to N x(B,u) K.

Proof: For each k € K, k#1, choose nk € G such that n(nk)=k,.

and set n]=1. Then define o¢: K » Aut(H) by ck(h) = n, h n£1(h€H),
and v: Kx K> H by v(k,2) =nmn, n;; (k, LEK) . One verifies that
{o,v) saﬁisfies for k,4,m € K .
| 0p 0y = ad(v(k,i))ckl.

vik,)v(ki,m) = ck(v(l,m)) v(k, m),

v(k,1) = v(1,2) = 1.
Writé y for aIH( so that N =‘M X H. Then denote by
{x (x), A(n); x€M, hem} (resp. {=,(x), K(g): x€M, g€c})

the éénerators of N on XZ(HJL) (resp. M Xa G on 12(GJ&)). )

 Claim }: For each k€K, there exists BkEAut(N) such that

i) ?k(wY(X)) = nY(ank(X)) (x€M),

ii) 8, (A(h)) Mo, (h)) (h€H) .

Assume first that o is implemented by a unitary representation
g+ alg) of G onXR.

Then define € Aut(B(Kmlz(H))) by -

ﬁk
By =-ad(§(nk)ﬂdk) (kEK),
. where dk is the'unitary operator on lz(H). defined by

(6,8)(n) = 2(o7' () (g€2’(m), nem).




‘ ' 2 2
Identifying canonically ¥.@&° (H) with 27 (H,¥®), one checks,

essentially as in [21;lem. 2.3], that each B, satisfies i) and ii)

k
above. Hence the desired Bk's are obtained by restriction to N.

If a is not implemented on ML, then E:G+Aut(na(M)) defined by

;g=“a ag n;1 (g€G) is implemented by g*i(g) on lz(GD&).

Accordingly, there exists BkE Aut(ﬂa(M) x; H) satisfying the

analogues of i) and ii) for each k€K, where Y denotes the

restriction of a to H. Now, a straightforward application of

proposition 1 (with P=na(M), e=n&, B=y and u=1) gives the
~=1

- existence of the desired Bk’s on N (by setting Bk= ) Ek 8)

and claim 1 is etablished.

Define u(k,1) € U(N) by

u(k, ) = rA(v(k,2)) (k.2 € K).
With the help of claim 1 and the cocycle equations for (o,v), it is
elemehtary to check that the induced pair (B,u) is a cocycle crossed
action of K on N.

K, which acts on 12(K,22(fo)) is

-~

The regular extension N X(B u)
R N . ?
then clearly generated by

{mg(m (x)), mg(A(h)), A (k); x€M, hE€H, kEK}. | |

Define W: xz(K,xz(H,)(,)) > 22(G,)L) by

we)(g) = [a(xtaN)] (1) 9) (2 € 27k 2%(EW), g€o).

Plainly, W  is a uhitary operator and W*:lz(GA&J+ lz(K,i\;: 120331))
is given by " '

W] m = f(n:_] n)  (£€2%(G ), k€K, hem).

Since G is geperaﬁed by {h, n, i h€H, k€K}, the proof of the
proposition is clearly achieved as soon as one etablishes the

following:




Claim 2: i) W ns(nY(x))W* = 7 (x) (x€M) .
ii) Wnﬁ(h(h))w* = %(h) (h€H)
iii) W xu(k)w* = Rn)) (KEK)

We leave the proof of ii) to the reader and prove i) and iii).

'Let xEM, KkEK, gEG and 5622(GA£), and set 2=n(g)€K. Then

(Wnﬁ(fy(i))w*a)(g)

which proves 1i).
Further

WA WE) (g)

which proves iii).

[(n.(n (x))WEN(L)] (n _, @)
By 2 ]

)

[ _j(x (x) We()] (n
2

L

[nY(an

(x)) We()] (n _; 9)
Il L

-1

y
(n _
2
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g 2 L
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[ W EN(WD] (a9
. L

a2, x) wek ') (a 9

T[x(v(&'].k)) W*i(k-]l)]»(nx_] g)

1[W*£(k—]£)] ((n _y m n;llk)~1 n_y 9

E(n”! ny g)

n n
STty

l-]

k

(X(n)E) (g),

QED.




We note that crossed products by locally compact (separable) groups
may be handled in the same way, with some minor modifications

following [24], but we leave this to the reader.

3. Proofs of theorem B and C.

' In this section, we suppose that we are given a II]—factor M with
separable predual and normalized trace =, and a free action a« of &

countable discrete group G on M.

We recall that 6€ Aut(M) is called centrally trivial, 6€ Ct(M),
if for any centralizing sequence (xn) in M, i.e. which is norm
bounded and,saﬁisfies that n[xn,y]ﬂ2 + 0 (n*+=) for any y€M, one

has that 18(x ) - x >0 (n»*+=), (cf. [5]) and [16]). Further,

n“2
@« is called centrally trivial (resp. centrally free) on M when

age Ct(M) (resp. ag¢ Ct(M)) for each g€G, g#*l.

Lemma 4: Suppose that « is centrally trivial on M. Then
a) each central sequence in M identifies with a central

sequence in M X, G.

b)) M X G is McDuff when M is McDuff.

Proof: a) follows immediately from the covariance formula in M X, G
and the assumption on a, while
"b) is a direct consequence of a) and McDuff's theorem [9;th. 3].

QED.

Lemma 5: If G 1is amenable, a is centally free on M and M is

.McDuff, then M xa G is McDuff.

Proof: By combining [16:;th. 1.2] and [25:Cor. 3.6], we have M x G

is *-isomorphic to (M®R) X, @igr G’ the latter being clearly McDuff.

PrE———

e AT
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Theorem B: If G is amenable and M is McDuff, then M xd G 1is

McDuff.

Proof: Define H = {h€G | ah€ ct(M)}. Since Ct(M) 4is normal in
Aut(M), H is a normal subgroup of G and we may define K = G/H.
Since G is amenable, K is itself amenable (cf. [10:th. 1.2.4]).
Lét Y denote the restriction of a« to H on M. Trivially, ¥
is a free action of H on M and by lemma 4b), N =M xY G 1is
McDuff. Further, proposition 3 says that there exists a cocycle
crossed action (B,u) of K on N such that M X, G is
*-isomorphic to N x(B,u) K. We now claim that (B,u) is centrally
free on N, i.e. Bk € Ct(N) for each k€K, k#1.

Indeed, let k€K, k#1. From the proof of proposition 3, there exists

-nk-e G, n, ¢ H, such that Bk(ny(x)) = ny(ank(x)) for all xE&M.

By definition of H, « is centrally free on M, i.e. there exists

a central sequence (x,) in M such that fa (x,) - x | 74 0
i nk i i2

(i*+=<). Then (nY(xi)) is a central sequence in N (cf. lemma 4a))

such that ‘uBk(ny(xi))'- nY(xi)n2 = ““y(ank(xi) - nY(xi) I,

= ﬂank(xi) - xi“27£ 0 (i»+=).

Hence B is centrally free on N.

k
Now, by appealing to [16:;th. 1.1], we have that (B,u) is a
cdbouﬁdarf; hence we may perturb (8,u) to a centrally free action E
of K: on‘ N, and, by proposition 2, we‘have that N x(ﬁ,u) K 1is
*-isomorphic to N xE‘K. By lemma 5, N x K. is McDuff.
Altogether, this show that M X G‘ris McDuff.

QED.
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We now turn to the proof of theorem.C. We pick a free ultrafilter w
on N and denote by Mw the ultraproduct algebra of M (which is a
II]—factor) and by ¥ its canonical trace. Set Mw = M'ﬂ~Mw (the
relative commutant of the canonical copy of M in Mw) and let

%: G »> Aut(Mw) denote the induced action defined Eg((xn)) = (ég(xn)),
g€G. For more information on this, we refer to [4], [5], [9], [16]

-

and [19].

Lemma 6: If G 1is finitely generated and amenable, and M has

property T without being McDuff, then M X, G has property T.

gzggf: Denote by = PEEENT- ﬁhe generators of G (ret+e). Since M
has propertyv I without being McDuff, we have that - Mw' is non-trivial
completely non-atomic abelian von Neumann algebra (cf. [4] and [9]).
If « is not eréodic on Mé, then let g be a E;fixgd non—scaiar
element in Mw'- From the covariance formula in M X, G, oné obtaine
easily that qE(M X, G)' ﬂ(M X, G)w. Since q¢a;, this implies that
Mx G has prdperty- F‘(by 4]). :

¥

Suppose next (for the sake of obtaining a contradiction) that a /is
ergodic on M . ﬁy [22;th. 2.4],’ o« is theﬁ not stfongly ergodic on
Mm, i.e. there exists a'sequence ofbprojections (pi) in Mm such that
 (p;) =% (i.EN,) and Il&'g, (pj) = pjly » 0 (i»+=) for all g€G.
it shouldvbe noted that we here, in fact, apply [22:th. 2.4]) on a

’ countéblj thefatéa ;-invariaqt completely non atomic von Neumann
~subalgebra of M , such as the one generated'by {Zg(a), géG} for an
a€M  with infinite spectrum. )

By taking a subsequence'of (pi) and renaming, thére exists a sequence

(qn) in M = such that, given nEN, then

'?uagj.(qn) - qh ﬂ2 < o’ J—I,f..,r.
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Now we may represent each 9, by a sequence of projections in M,

q, = (qn,m)m' with t(qn,m) =% for all n,m € N (c£. [5] or [9]).

For each n€ N , we may then choose mn €N such that -

le . {q ) - r J=1,...,r, and

q
gj n,m n,m_

, k=1,...,n, where ‘(yk) is a

]
n[qn'mn, yk] I, < =

n-ﬂz-dense sequence in the unit ball of M fixed from the beginning.

w . L .
Let so gq = (qn,m )n € M . From the above inequalities, one obtains
n ,

easily that g € M, and ;g (q) = q, 3J=1,...,r. Futher, q is a
]

projection with tw(q) = %. Hence q is a non-scalar element in
M, which is a-fixed since gyr-+-+9, generates G. This
contradicts the assumption of ergodicity on a.

QED.

Theorem C: If G is amenable and M ‘has property T without being

McDuff, then M X, G has property T.

Proof: Since G is countable, we ményrite G=U G,, where (G.)
‘ ~ R JEN J
is an increasing sequence of finitelngenerated'subgroups of G; by

amenability of G, each Gj is amenable (cf. [10:;th. 1.2.5]). Set

Nj =Mx Gj (identified as a subfactor of M X, G) - for each

alG.
]

53 €EN. By lemma 6, each Nj’ has propefty I'. Since (Nj) is an
'increasing sequencé bf subféctors'offuN‘ such that
hol & :
Mx G= UN.
* jEN ]
has property T.

2, it follows from [19:th. 1.4.1i)] that M x_ G

" QED.
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Our proof of lemma 6 is inspired by the proof of-[]9;th. 1.4.1 iii)],

where Popa shows that theorem A is valid when G =7Z. His idea is to

~

apply the Rokhlin-type theorem of Connes to a in Mw. This
argument requires a to be centrally free on M, but one reduces

easily to this case.

Also, a more direct proof of theorem A in the same spirit would
clearly be available if the analogue of Schmidt's result could be

shown in the non-abelian case.
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