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FRACTIONAL BROWNIAN FIELDS AS INTEGRALS OF WHITE NOISE 

by 

I. Introduction 

Tom Lindstr~m * 
Department of Mathematics 
University of Oslo, Norway 

A Fractional Brownian Field (FBF) of index pis a random field LP : n x Rd -+ R such 
that 

(i) Lp(O) = 0 a.s. 
(ii) For all x1, x2, ... , Xn E Rd, the random vector (Lp(x1), Lp(x2), ... , Lp(xn)) is gaus­

sian with mean zero 
(iii) For all x,y E Rd,E((Lp(x)- Lp(Y))2) = llx- YIIP 
(iv) x-+ Lp(x,w) is continuous for almost all w. 

Lp exists for 0 < p < 2 (and even for p = 2 when the dimension dis one). 

Note that the covariance of Lp can be calculated from (i)-(iii): 

Since LP is gaussian, this tells us that its law is uniquely determined by (i)-(iv). When 
p = 1, LP is Levy-Brownian motion - one of several natural generalizations of Brownian 
motion to the multiparmeter case (the Brownian sheet is another one). 
FBFs are statistically self-similar in the following sense. IT x 0 E IRd and a E R+, then the 
random field iP defined by 

is also an FBF of index p. In the last twenty years, this fact has been used extensively to 
generate pictures of "fractal landscapes" and also to model fractal phenomena in natural 
and social sciences (see, e.g., [2], [5], [6], [7] and (10]). My own interest in FBFs grew 
out of a wish to understand some recent applications of these techniques to oil reservoir 
modeling [3], [4], [8]. 

The purpose of the present note is to point out that FBFs can be conveniently represented 
as integrals of white noise. As a matter of fact, all that is required is a slight extension of 
Andreas Stoll's representation theorem for Levy-Brownian motion (see [1] and [9]). One 
way of phrasing Stoll's result is to say that ford> 1, 
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where W is white noise on ~d and cd is a constant depending only on the dimension d. In 
this paper I shall show that 

J 1 1 
Lp(x) = kp,d ( llx- Yll(d-1)/2 - IIYII(d-p)/2 )dW(y), 

IJid 

where the constant kp,d depends only on the index p and the dimension d. 

Before I begin, I should perhaps point out that in one respect my notation is a little 
unconventional- most other authors use H=p/2 to indicate the index of an FBF. 

II. The main theorem. 

For the convenience of the reader, I'll start by recalling briefly how one integrates with 
respect to white noise. 

Let m be Lebesque measure on ~d, and let MF be the Lebesque measurable sets with 
finite measure. A white noise on ~dis a function W: n x Mp --+ ~ satisfying: 

(i) For each A EMF the random variable W(·,A) is gaussian with mean zero and 
variance m( A). 

(ii) If A, BE Mp are disjoint, then W(·, A) and W(·, B) are independent, and W(·, AU 
B)= W(-,A) + W(·,B) almost surely. 

n 

Assume that f = L: aiXA; is a simple function where A1 , A2 , ···,An are disjoint elements 
i=l 

of Mp. Then the integral off with respect toW is defined to be the random variable 

J jdW = :t aiW(Ai)· 
z=l 

A trivial calculation gives the ItO--isometry 

(1) 

Using (1) and the fact that simple functions are dense in L 2 (m), we can define J fdW for 
an arbitrary f E L 2 (m) by 

j fdW = n1~j fndW (in L2 (!1)), 

where {f n} is any sequence of simple functions converging to f in L 2 ( m )-norm. Note that 
the ItO--isometry (1) extends to arbitrary f E L 2(m). 
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The following lemma shows that the integrands we are going to work with really belong 
to L2 (m). 

Lemma 1. 
Assume that 0 < p < 2. Then for each x E Rd, the function 

1 1 
y ---t llx- Yll(d-p)/2 - IIYII(d-p)/2 

belongs to L 2 (m). 

Proof: 
Since the measurability is obvious, we only have to show that 

(2) 

Hence we have to check the singularities at y = x andy= 0, and the behavior at infinity. 

Beginning with the singularity at y = x, we note that close to this point, the integrand is 
of order of magnitude 

1 

Introducing polar coordinates centered at x, we see that our integral converges at y = x if 
and only the integral 

a 

J 1 
--dr 
rl-p 

0 

(a> 0) 

converges at the origin, i.e. if and only if p > 0. The singularity at y = 0 is of the same 
type, and again we get convergence for p > 0. 

It remains to check the behaviour at infinity. Note that the integrand in (2) equals 

...:..:( 1.:......1 Y..:.:..ll (.....,d-,.,....p_) 1_2 .....,-.,..:.:ll_x.....,.,-__,Y,.,:.:;II_< d--p-) 1_2"--? < 
llx- Ylld-piiYIId-p -

CIIYII(d-p)/2 - Cllxll + IIYII)(d-p)/2 ? 
llx- Ylld-piiYIId-p 

By the Intermediate Value Theorem, the numerator in the last expression is of order of 
magnitude 

and hence the expression itself is of order of magnitude 
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when y is large. Changing to polar coordinates again, we see that our integral converges 
at infinity if the one dimensional integral 

CXl 

J r~:P (a> 0) 
a 

converges, i.e. if p < 2. 

D 

To prove that our processes are continuous we shall use the following fact (see, e.g., [1, 
theorem 4.8.4) or [9]). 

Lemma 2. 
Let F : Rd x Rd --+ R be a measurable function such that y --+ F(x, y) is in L 2(m) for all 
x E Rd. Assume also that there are positive constants C and a such that 

J IF(x, y)- F(z, y)i 2dy ~ Cllx- zw~ 

for all x, y E Rd. Then the stochastic integral 

x--+ j F(x, y)dW(y) 

has a continuous version. 

To exploit this lemma in our present setting, we need the following observation: 

Lemma 3. 
Assume that 0 < p < 2. Then 

where 

J 1 1 2 

Cp,d = ( llw- ell(d-p)/2 - llwll(d-p)/2) dw 
IJid 

and e is any unit vector in Rd. 

(3) 
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Proof: 
The convergence of the integrals follows from Lemma 1. Let us introduce a new variable 
why 

Note that 

and 

y-z 
w- -=----llx-zll' 

liz- Yll = llx- zllllwll 

llx- Yll = llx- z -llx- zllwll = llx- zllllw- ell, 
where e is the unit vector ~~~=: 11 . Substituting all this into the left hand side of (3), we get 

J 1 1 2 

( llx- Yll(d-p)/2 - liz- Yll(d-p)/2) dy 
IJid 

= f ( (llx- zllllw ~ ell)(d-p)/2 
IJid 

1 2 d 
(llx- zllllwll)(d-p)/2) llx- zll dw 

= llx- ziiP J ( llw- e~(d-p)/2 - llwll(~-p)/2 ?dw, 
IJid 

where the value of the last integral is clearly independent of which unit vector e we are 
usmg. 

0 

If p and d are not both equal to one, Cp,d is positive, and we can define 

(if p = d = 1, Cp,d = 0 and the whole construction breaks down- see, however, the remark 
at the end of this section). Combining the three lemmas above, we can now prove the 
main result. 

Theorem. 
Assume that 0 < p < 2 and that not both p and d are equal to one. Then the continuous 
version of the integral 

J 1 1 
Lp(x) = kp,d ( llx- Yll(d-p)/2 - IIYII(d-p)/2 )dW(y) 
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is an FBF of index p. 

Proof: 

By Lemma 1 the integral exists when 0 < p < 2, and by Lemma 2 and Lemma 3 it has a 
continuous version. It remains to check the conditions (i)-(iv) in the definition of an FBF. 

Condition (i) is obviously satisfied, and condition (ii) follows easily from the definition of 
a white noise integral. By the ItO-isometry (1) 

where we have also used Lemma 3 and the definition of kp,d· This proves (iii), and since 
we have already checked (iv), the proof is complete. 

0 

Remark: 
In the excluded case p = d = 1, the FBF is (essentially) a one-dimensional Brownian 
motion. If we are willing to make our formulas a little more complicated, it is possible to 
find a representation which works even when p = d = 1, namely 

J x-y y __. 
Lp(x) = Kp,d ( llx- Yll(d-p-2)/2 - IIYII(d-p-2)/2 )dW(y), 

__. 

where W is an 1Rd-valued white noise and Kp,d is a normalizing constant. When p = 1, 
this representation was used by Stoll [9]. 

III. An invariance principle 

Most applications of FBFs are of a numerical nature, and in practice one often finds 
oneself working not in all of Rd but on an approximating lattice. It may therefore be of 
some interest to have an invariance principle for FBFs which tells us how they can be 
approximated by discrete objects. The invariance principle I shall describe in this section 
is very close to the one in Stoll's paper [9] (see also [1]), and for that reason I shall only 
give a brief sketch of the proof. 

For each n EN, let 

kl k2 kd r = {(- - · · · -) : k1 k2 · · · kd E Z} 
n 2n ' 2n ' ' 2n ' ' ' 

be a lattice in Rd, and define 
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To approximate white noise in Rd, introduce a family{ wy }yer of i.i.d. random variables 
with mean zero and variance one. Note that when n is large, 

W • 2-nd/2 
y 

is a good approximation to white noise. Our goal is to show that the random field z~n) 
n X r n --+ R defined by 

z<n)( ) - k ~ ( 1 1 ) 2-nd/2 
P x - p,d ~ llx- Ylld-p)/2 - IIYII<d- P )/2 wy, 

yErn 

converges to Lp as n goes to infinity. 

To make this precise, we first decide on an interpolation method which turns functions 
f : r n --+ R into continuous functions 1: Rd --+ R. It dosen't matter much which one we 
choose, but let us agree that on each hypercube 

1 should achieve its minimum and maximum at corners. Let C(Rd, R) be the space of all 
continuous functions from Rd to R with the topology of uniform convergence on compacts. 

Invariance Principle. 
For all continuous functions tP : C(Rd, R) --+ R, 

as n--+ oo, 

-(n) 
1.e. the law of lP converges weakly to the law of Lp. 

Proof: 
Since this argument is almost identical to the ones given in [1] and [9] for the case where 
p = 1, I'll only sketch the main idea and leave the details to the reader. 

Let { Wy }yer be the nonstandard version of the family { Wy }yer, and fix an infinitely large, 

nonstandard integer N. As in [1] and [9] one easily checks that the standard part of z; N) is 
an FBF of index p, and hence 
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for all¢> E C(IRd, IR). By the nonstandard characterization of convergence, this immediately 
implies the theorem. 

D 
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