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1 Introduction 

Let G denote a discrete group and let us say that G is C* -simple if the 

reduced group C* -algebra associated with G is simple. We notice im­

mediately that there is no interest in considering here the full group C*­

algebra associated with G, because it is simple if and only if G is trivial. 

Since Powers in 1975 ([26]) proved that all non-abelian free groups are C*­

simple, the class of C* -simple groups has been considerably enlarged (see 

[1,2,6,7,12,13,14,16,24] as a sample!), and two important subclasses are the 

so-called weak Powers groups ([6,13]; see section 4 for definition and ex­

amples) and the groups of Akemann-Lee type ([1,2]), which are groups 

possessing a normal non-abelian free subgroup with trivial centralizer. 

The problem of giving an intrisic characterization of C* -simple groups 

is still open. It is known that a C* -simple group has no normal amenable 

subgroup other than the trivial one ([24; proposition 1.6]) and is ICC (since 

the center of the associated reduced group C* -algebra must be the scalars). 

One may of course wonder if the converse is true. On the other hand, 

most C* -simple groups are known to have a unique trace, i.e. the canonical 

trace on the reduced group C* -algebra· is unique, which naturally raises the 

problem whether this is always true or not ([13; §2, question (2)]). These 

questions seem to be quite hard to answer, and more modestly, we will deal 

in this paper with the following three problems 

(I) Let G denote a group possessing a normal C* -simple subgroup 

with trivial centralizer. Is G C* -simple? ( cf. [13; §2, ques­

tion 3], where normality is not assumed, but is necessary as 

remarked in [7; page 9]). 
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(II) Let G denote a group obtained as the extension of a C* -simple 

group by a C* -simple group. Is G C* -simple? ( cf. [6; §2, 

question 2]). 

(III) Let G denote a C* -simple group and a an action of G on a sim­

ple C* -algebra A with identity. Is the reduced crossed product 

c;(A, G, a) simple? ( cf. [15; Problem in the introduction]) 

We will show that the answer to (I) is always positive. An amusing conse­

quence is that the automorphism group and the holomorph of a C* -simple 

group are C* -simple. Very recently, Nitica and Todok have shown that the 

automorphism group of a non-amenable free product of groups is C* -simple 

and has a unique trace (INCREST Preprint 1990). Now, let us say that 

a group is an ultraweak Powers group if it contains a normal weak Powers 

group with trivial centralizer. It is then true that an ultraweak Powers 

group is C* -simple. On the other hand, all the known C* -simple groups, 

with the possible exception of some of the matrix groups considered in [16], 

. may be build up from ultraweak Powers groups. 

In connection with this last remark and with (II), we will show that 

the extension of a C* -simple group by an ultra weak Powers group is C*­

simple, thus generalizing a result of Boca and Nitica ([7]); note that they 

also consider unicity of the trace). 

Extending some work of de la Harpe and Skandalis ([15]), the same 

Boca and Nitica have shown that the answer to (III) is positive whenever 

G is a weak Powers group ([6; Corollary 2. 7]). We will show that this is 

also true for extensions of weak Powers groups by weak Powers groups, and 

moreover for extensions of ultraweak Powers groups by ultraweak Powers 

groups if we also assume the existence of a G-invariant faithful state on A. 
A more complete answer to (II) and (III) feels to be out of reach with the 

tools used in this paper. 

Our main idea to obtain all the above cited results is to consider reduced 

twisted crossed products of C* -algebras by discrete groups ([22,27]). We 

will first repeat the necessary definitions and main properties in the next 

section. Then we extend the results of Kishimoto ([18; Theorem 3.1]) and 

of Boca and Nitica ([6; proposition 2.6]) to this setting and combine them 

with a decomposition theorem for such twisted products analogous to [22; 

Theorem 4.1] and [4; Theorem 1]. As a by-product of this approach, the 

·simplicity of all reduced twisted group C* -algebras associated to ultraweak 
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Powers groups (or extension of these) is determined. The same problem for 

nilpotent discrete groups has recently been studied in [21,23]. 

For general background information, we refer to (25,30]. A standing 

assumption throughout this paper will be that all groups are considered as 

di.'3crete, and all C* -algebras are supposed to have an identity. Or course. 

this does not yield for ideals in C* -algebras, which, unless otherwise speci­

fied, are always two-sided closed ideals. 

Our notation will be quite standard. For example, if A denotes a C*­

algebra, 1i a Hilbert space and G a group, then 

Aut(A) 

U(A) 

B(1i) 

the group of *-automorphisms of A, 

the group of unitaries in A, 

the bounded linear operators acting on 1i, 

12 ( G, 1i) the Hilbert space of 'H-valued functions e on 1i such 

that l.:9 ea lie(g) 11 2 < +oo, 

Aut( G) 

I 

e 

the group of automorphisms of G, 

the identity operator on 1i, 

the identity in G. 

If u EU(A), or if A acts on 1i and u E (B('H)) is such that ·uAu* =A, then 

ad(u) denotes the *-automorphism of A implemented by u. 

2 Reduced twisted crossed products 

Let A be a C* -algebra with identity I and G a discrete group with identity 

e, and suppose we are given a cocycle crossed action (a, u) of G on A, 

by which we mean that (a, u) is a pair of maps a : G -+ Aut( A) and 

u: GxG-+U(A) satisfying 

aras = ad( u( r, s) )ars 

u(r, s )u(rs, t) = ar( u(s, t))u(r, st) 

u(s,e) = u(e,t) =I 

for all r,s,tEG. 

(1) 

(2) 

(3) 

From an axiomatic point of view, condition (3) may be replaced in the 

above setting by: u( e, e)= I and ae = the identity automorphism. 

We notice for later use that (2) may be equivalently formulated as 
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o:r(u(s,t))*u(r,s) = u(r,st)u(rs,t)*, (4) 

or 

u(r,s)*ar(u(s,t)) = u(rs,t)u(r,st)*. (5) 

Let now A be faithfully and non-degenerately represented as a C* -algebra 

of operators on a Hilbert space 'H. The reduced twisted crossed prod­

uct ([22,27]) c;(A, G,a,u) may then be defined as the C*-subalgebra of 

B(l2(G, 'H)) generated by 11'a(A) and Au( G), where 11'a is the faithful repre­

sentation of A on 12 ( G, 'H) defined by 

while, for each gEG, Au(g) is the unitary operator on l2(G, 'H) defined by 

(A.u(g)e)(h) = u(h-1 ,g)e(g-1 h) 

(a E A, e E 12 ( G, 'H), hE G). 

the pair (7ra,A.u) is then a covariant representation of (A,G,a,u), which 

means that 

11'a(ag{a)) = ad(A.u(g))(7ra(a)) 

Au(g )A.u(h) = 11'a( u(g, h ))A.u(gh) 

(aEA,g,hEG). 

(6) 

(7) 

As remarked in [27; p. 552] (see also [~2; remark 3.12]), a;( A, G, a, u) is 

independent, up to isomorphism, of the choice of 'H. Hence, we may assume 

without loss of generality that each O:g is implemented by a unitary operator 

in B('H). 

Remarks 

1. Zeller-Meier considered in [32] reduced twisted crossed products under 

the extra assumption that the cocycle map u takes unitary values only 

in the center of A. 

2. If u is trivial, we obtain the ordinary reduced crossed product of A 
by a, denoted by c;(A, G, a). 
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3. H A reduces to the scalars, then a is the identity map and U(A) 
the circle group T, and we now obtain the C* -algebra generated by 

the (left) u-regular (projective) representation of G on 12 (G), denoted 

by c;(G, u). The cocycle map u : G X G-+ T is sometimes called 

a multiplier in the literature. IT it is trivial, we obtain c;( G), the 

reduced (left) group C*-algebra of G. 

For further use, we note first that it is easy to check that 

for all gE G. 

Au(g-1 )7ra( u(g, g-1 ))* 

7ra( u(g-1 , g))* Au(g-1 ) 

Secondly, we define a map u : G X G-+ U (A) by 

u(g,h) = u(g,h)u(ghg-I,g)* (g,hEG). 

Then we have 

Indeed, using (3), ( 4), (6), (7) and (8), we obtain: 

Au(g )>.u( h ),\~(g)* = 7r a( u(g, h) )>.u(g, h )Au(g )* 

=7ra(u(g,h))Au(gh)7ra(u(g-1 ,g))*).u(g-1 ) 

= 7ra( u(g, h ))7ra( a9h( u(g- 1 , g ))*),\u(gh )Au(g-1 ) 

= 7ra( u(g, h ))7ra( a9h( u(g-\ g ))*)7ra( u(gh, g-1 ))Au(ghg-1 ) 

= 7ra( u(g, h))7ra( u(gh, g-1g )u(ghg-I, g )*),\u(ghg-1 ) 

= 7ra( u(g, h)( u(ghg-1 , g)*),\u(ghg-1 ) 

= 7ra( u(g, h )),\u(ghg-1 ). 

(8) 

(9) 

The following decomposition theorem is analogous to the one proved in [22; 

Theorem 4.1] for full twisted crossed products of C* -algebras and the one 

proved in [4; Theorem 1] for regular extensions of von Neumann algebras. 
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Theorem 2.1: Suppose H is a normal subgroup of G and 1r denotes 

the canonical homomorphism from G onto the factor group K = G /H. Let 

(a', u') denote the restriction of (a, u) to H (we will just write (a, u) instead 

of (a', u') later). For each g E G, there exists 19 E Aut( c;(A, H, a', u') such 

that 

/g ( 1r a' (a)) = 1r a' ( a9 (a)) (a E A) 

/g(,\u'(h)) = 1ra1(u(g, h))Au1(ghg- 1 ) (hE H). 

Further, let n .: K--+ G be a section for 1r with n( e) = e and define 

f3 : K --+ Aut( C;( A, H, a', u') by f3 =1 on, 

m:KxK--+H by m(k, l) = n(k)n(l)n(klt\ 
and 

v: KxK--+ U((C;(A,H,a',u')) by 

v(k, l) = 1ra'(u(n(k), n(l))u(m(k, l), n(kl))*))..u,(m(k, l)) 

(10) 

(11) 

Then (j3,v)) is a cocycle crossed action of K on c;(A,H,a',u') suchthat 

c;(A, G, a, u) ~ c;( c;(A, H, a', u'), K, /3, v ).' 

Proof: The proof given in (4: Theorem 1] adapts almost verbatim. For 

the convencience of the reader, we repeat here the main steps . 

. For each g E G, let a(g) denote the unitary operator which implements 

a 9 on 1-l, and define b(g) E B(l2 (H, 1i)) by 

(b(g)e)(h) = u(h-I,g)a(g-1 )*u(g-\ h-1g)e(g-1 hg) 

(e E l2(H, 1i), hE H). 

Then b(g) is a unitary operator on z2(H, 1i), which is such that ad(b(g)) 
restricted to c;(A, H, a', u') has the required properties of /g· 

Further, apart from some notational changes, the computations required 

to check that (f3,v) is a cocycle crossed section on c;(A,H,a',u') are pre­

cisely those effectued in (22; p. 306--307]. 

At last, the unitary operator A: z2(K, z2(H, 1i))--+ z2(G, 1i) defined by 
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satisfies 

A 7r p ( 7r a' (a)) A* = 7r a (a) 

A1rp(Au'(h))A* = Au(h) 

AAv(k)A* = Au(n(k)) 

(aEA), 

(hE H), 

(kEK), 

from which it follows that A implements a *-isomorphism from 

C;(C;(A,H, ci,u'),K,j3,v) onto c;(A,G,a,u). D 

·When there is no danger of confusion, we will canonically identify A with 
7ra(A) via 1T"a, and write A instead of Au. The next theorem is essentially 

well-known, at least in the Zeller-Meier case ([32;theoreme 4.12]). 

Theorem 2.2: There exists a faithful conditional expectation ([28; §9]) 

E from c;(A,G,a,u) onto A such that 

E(A(g)) = 0 for all gEG, g=f.e . (12) 

. For each X E c; (A, G' a' u)' define its Fourier-coefficient X (g) E A at g E G by 

x(g) = E(xA(g)*). Then the norm-bounded function x(·): G-+A uniquely 

determines X as an element of c;(A, G, a, u ), and, for x, y E c;(A, G, a, u) 
we have 

(xy)(g) = "Lx(h)ah(y(h-1 g))u(h,h-1 g) 
hEH 

(the sum being taken in the strong operator topology) and 

x*(g) 

for all gEG. 

a9 ( x(g-1 )u(g-1 , g))* 

u(g, g- 1 )* a9 ( x(g-1 ) )* 

(13) 

(14) 

Proof: Instead of going through the machinery which leads to [32; theo­

reme 4.12], we will sketch the main lines of the proof following the argu­

ments given in [3,20]. 

For each g E G, let P9 denote the orthogonal projection from 12( G, H) 
onto [2 ( {g}, H) (identified as a subspace of 12 ( G, H)). 

For each yEB(l2 (G, H)), one then defines Q(y) = "£9 eaP9 yP9 , the sum 

taken in the strong-operator topology, and, as in [3; 6.1.3 (2)], one verifies 
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that Q is a faithful normal conditional expectation from B(l2 (G, 1t)) onto 

{P9 ; g E G}'. Now, since A= 1r~(A) c {P9 ; g E G}', P9 >..(h)P9 = 0 for all 

g E G, all hE G, h =f. e, and Q has norm one, one obtains easily that the 

restriction of Q to c;(A, G, a, u) has the desired properties of E. 
Further, each a9 being unitarily implemented, the map a extends to a 

map a : G ~ Aut( A") such that (a, u) becomes a cocycle crossed action 

of G on A". We may then form the regular extension A" X(a,u) G ([4]), 

which is defined as { 1I'a(A), >..(G)}", where 1I'a is defined analogously to ?r_a 

on l2 (G, 1t). As above, one obtains that the restriction of Q to A"x(~,u) G, 

say E, is a faithful normal conditional expectation from A" X(a,u) G onto 

A" (identified with 1I'a(A")), and that E =Eon c;(A,G,a,u). 
If, for each y E AX(a,u) G, we define y(g) = E(y>..(g )*), g E G, then we 

have that LgEG y(g)>..(g) converges toy in the A"-topology on AX(a,u) G, by 

proceeding as in [20] (see also [8; l~mma 1]). The A"-topology on AX(&,u) G 

is the one defined by the pseudonorms y ~w(E(y*y)1 12 ), w E (A")*. The 

second part of the theorem folows now easily for all x, y E A" X(a,u) G, and 

th~refore especially for all· X' y E c; (A, G ,·a' u). 0 

It should be noted that for X E c;(A, G, a, u), the sum LgEG x(g)>..(g) does 

not necessarily converge to x in norm (consider c;(Z) ~ C(T)). 

Notation: For X E c;(A,G,a,u), we set 

supp(x) = {gEGix(g)=f.O}. 

The next corollary is also nearly a classic. 

Corollary 2.3: Let X E c;(A, G, a, u). vVith E defined in theorem 2.2, 

we have 

(a) E(>.(g)x>.(g)*) = a9 (E(x)), gEG. 

(b) E(xx*) = LgeG x(g)x(g)* (in the strong operator topology) 

(c) E(x*x) = LgEG a;1 (x(g)*x(g)) (in the strong operator topology) 

(d) if u is a C:-invariant trace u on A, then T = u o E is a trace on 

c;(A, G,a, u). 
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Proof: We show (a) and (b) and leave the proof of (c) and (d) to the 

reader. 

(a) 

(b) 

E( >.(g )x>.(g )*) ( >.(g )x )(g) 

a9 (x(g- 1g))u(g,g- 1g) 

a9 (x(e)) = a9 (E(x)) 

(by (3) and (13)). 

a 9 ( ay-1 (x(g )u(g, g-1 ))*) 

u(g,g-1 )(x(g),u(g,g-1 ))*u(g,g-1 )* 

x(g )*u(g, g-1 )* 

(by (1) and (14)). Hence, 

E(xx*) xx*( e) 

L x(g )a9 (x*(g- 1 ))u(g, g- 1 ) 

gEG 

L a;(g )x(g )* 
gEG 

(by (13)). D 

Regarding (d), we remind that a linear functional <p on A is called G­

invariant if ~.p(a9 (a)) = ~.p(a) for all gEG, aEA. 

3 The trivial centralizer condition and Kishi­

moto 's result 

Let G denote a group possessing a normal subgroup H with trivial central­

izer, which means that 

{g E Glgh = hg for all hE H} = {e}. 

Problem (I), which is due to de laHarpe ([13]), asks whether G is C*-simple 

whenever H is C* -simple. Our approach to answer it positively is based on 

the following easy observation: 
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Let g E G, g fj. H, and denote by u9 the automorphism of H 

defined by u9 (h) = ghg-1, hE H. Then u9 is outer. 

· · Indeed, if there exists apE H such that u9 (h) = php-1 for all hE H, then 

p-1g belongs to the centralizer of H. Hence, p-1g = e, which is impossible 

since g fj. H. 

Quite naturally, our attention is then drawn to a result of Kishimoto 

([18; Theorem 3.1]), which says that the reduced crossed product of a sim­

ple C* -algebra by a discrete group of outer automorphisms is simple. An 

inspection of his proof, which relies on arguments given by Elliott in [11], 
makes it clear that his result is also true in the twisted setting. For the 

reader's convenience, we present here a slightly modified proof, recalling 

first Kishimoto's key lemma. 

Lemma 3.1 ( cf. [18; lemma 3.2]): Let a be a positive element of 

simple C* -algebra A, { ai; i = 1, ... , n} elements of A, { ai; i = 1, ... , n} 

outer automorphisms of A and € > 0. Then there exists a positive x E A 
with llxll = 1 such that llxaxll2:: llall-€, llx.aiai(x )II< €, i = 1, ... , n. 

Theorem 3.2: Let (a, u) be a cocycle crossed action of a group G on 

a simple C* -algebra A such that each a9 is outer, g f. e. Then B = 

C;(A, G, a, u) is simple. 

Proof: Let E denote the canonical conditional expectation of B onto A 

obtained from Theorem 2.2, and let J f. B be an ideal in B. We must 

show that J = {0}. Now, since E is faithful, it is enough to show that 

E(J) = {0}. 

For x E B, define lllxlll = inf{llx + jll;j E J}, (the C*-seminorm on B 
induced by the riorm on B/ J). Since A is simple, An J = {0}, and we see 

that the restriction to A of the canonical homomorphism from B onto B / J 

is injective. Hence, lllxlll = llxllfor all xEA. 

We are going to show that IIE(b)ll::::; lllblll for all bE B. Since llljlll = 0 

for all j E J, this will imply that E( J) = {0} as desired. 

By a density argument, we may suppose that b E B is of the form 

b = a+ 'L:9 eF a9 A.(g ), where a E A, F is a finite subset og G\ { e} and a9 E A 
(g E F). Suppose first that a is positive and let € > 0. By lemma 3.1, there 

exists a positive x E A with llxll = 1 such that 
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llxaxll > llall - E, llxagag(x )II ~ € (g E F). 

Therefore, we have 

lllx (2::: a9 A(g)) xlll < L lllxa9 A(g)xlll 
gEF gEF 

L llxagag(x)ll 
gEF 

< card( F) · E, 

which implies that 

IIE(b)ll = llall < llxaxll + € 

< lllxbxlll + lllx (2::: ag>.(g)) xlll + € 
gEF 

< Ill bill+ (card( F)+ 1) ·E. 

This is true for all € > 0, so we have shown that IIE(b)ll ~ lllblll· At last, if 

a is not positive, then E( a*b) =a* E(b) = a* a is positive, and 

IIE(b)ll2 = lla*all = IIE(a'"b)ll ~ llla*blll ~ IIE(b)lllllblll, 

which proves the desired inequality in this case too. 0 

We notice that theorem 3.2 is in fact true under some weaker -hypothesis: 

it is enough to suppose that A is G-simple and that r( a9 ) # { 1} for all 

g E G, g # e, where :f(a9 ) denotes the strong Connes spectrum of a9 (cf. 

[18]). 

We next adapt some arguments of Behncke ([5]) and prove the following 

lemma: 

Lemma 3.3: Let H denote a normal subgroup of a group G and (a, u) 

a cocycle crossed action of G on a C* -algebra A which possess a faithful 

G-invariant state r.p. Let g E G and denote by O" the automorphism of 

H defined by O"(h) = ghg-1 (hE G). Suppose that {O"(h)ph-\ hE G} is 

infinite for all p E H. Then /g, as obtained from theorem 2.1, is an outer 

automorphism of B = c;(A,H,a,u). In fact, 19 is freely acting, which 

means that 0 is the only element b of B satisfying 

! 9 (x)b = bx for all x EB. 
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Proof: Let us first point out that it follows easily from the G-invariance 

of r.p and the cocycle equation (1) that r.p(u(91 ,92)xu(91 ,92)*) = r.p(x) for all 

917 92 E G' X E A, which implies that r.p( u(9b 92 )xu(9b 92 )*) = r.p( X) for all 

91,92 E G, x EA. Further, by representing A via the GNS-construction for 

r.p, we may assume that r.p is a vector-state of A. 
Now, let bE B and suppose 

"Y9 ( x) b = bx for all x E B. 

Especially, we have 

"Y9 (>..(h))b =,b)..(h) for all hEH, 

I.e. 

u(9, h)>..(a(h))b = b)..(h) for all hEH, 

so 

b = u(9,h)>..(a(h))b>..(h)* for all hEH. 

If E denotes the canonical conditional expectation from B onto A obtained 

from theorem 2.2, then we have for all h, p E H 

u(9, h)au(h)(b(p)) 

= u(9, h)au(h)(E(b>..(p)*)) 

= u(9, h )E(>..( a( h) )b>..(p )*>..(a( h))*) 

= E(u(9, h)>..(a(h))b>..(h)* >..(h)>..(p)* >..(a(h))*) 

= E(b>..( h )>..(p )*>..(a( h))*) 

= E(b>..( a( h )ph-1 )*v(p, h)*) 

= E(b>..(a(h)ph-1 )*)v(p, h)* 

= b(a(h)ph-1 )v(p, h)* 

since v(p, h)= u(a(h),p)u(a(h)ph-1, h)* EU(A) satisfies 

>..(a( h) ).\(p )>..(h)* = u( a( h), p )>..(a( h )p )>..(h)* 

=u(a(h),p).\(a(h)p)u(h-1 ,h)*>..(h-1 ) 

= u(o-(h),p)au(h)p(u(h-1 , h))* >..(a(h)p).\(h-1 ) 

= u(a(h),p)au(h)p(u(h-1 , h))*u(a(h)p, h-1 )>..(a(h)ph-1 ) 

= u(a(h),p)u(a(h)ph-1 ,h)*>..(a(h)ph-1 ) (by (5)) 

= v(p, h)>..(a(h)ph-1 ). 

Therefore, we have 
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b(a(h)ph-1 ) = u(g, h)o:u(h)(b(p))v(p, h) for all h,pEH. 

Now, fixp E Hand choose an infinite sequence {hn} in H such that {Pn} = 

{ u( hn )ph~1 } is an infinite sequence in H. By the above computation, we 

get 

cp(b(pn)b(pn)*) 

= cp( u(g, hn)O:u(hn)(b(p )b(p )*)u(g' hn)) 

= cp( O:u(hn)( b(p )b(p )*)) 

= cp(b(p )b(p )*) 

for all n EN. 
Since 

L cp(b(pn)b(pn)*) < L cp(b(h)b(h)*) 
nEN hEH 

<p (~ b(h)b(h)') 

cp(bb*) < 00' 

(by strong continuity of cp and corollary 2.3. b)), this implies that 

cp(b(p )b(p )*) = 0. Thus, b(p) = 0 by faithfulness of cp. Our choice of p E H 
being arbitrary, this implies that b = 0 as required. 0 

It is clear that the analog of lemma 3.3 for regular extensions of von Neu­

mann algebras is also true. We next state a well-known result ( cf. [5,17]) 

in a form suitable for our purpose: 

Lemma 3.4: Let H be an ICC-group. Then a E Aut(H) is outer if and 

only if {u(h)ph- 1 ihE_H} is infinite for all p E H. 

Proof: Suppose there exists p E H such that L = {u(h)ph-1 ihEH} is 

finite. Clearly, p E L, and L = {p} implies that a is inner. Suppose that 

L =J {p}. Then there exists q E L with q =J p, and one verifies easily that 

L = { u( h )qh-1 ih E H}. This implies that 

{hph-1(hqh- 1 t 1 ih E H} 

C L · L-1 

' 
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so Cis finite. Since H is ICC, we must have that pq- 1 = e, which contra-_ 

diets that p =1- q. Hence, L = {p} and u is inner. The converse part of the 

statement is trivial. D 

Lemma 3.4 is also true for H being an infinite R-group ( hn = pn 

( h, p E H, n E N) implies h = p) or a group with no normal subgroup of 

finite index ( cf. [5; page 589]). The same remark concerning the following 

theorem is therefore valid, but will be of no use in this paper. 

Theorem 3.5: Let H be a normal ICC subgroup of a group G with 

trivial centralizer, and (a, u) a cocycle crossed action of G on a C* -algebra 

A which possess a faithful G-invariant state. Then ( c;(A, G, a, u) is simple 

whenever c;(A, H, a, u) is simple. 

Proof: Let 1r : G ~I< denote the canonical homomorphism from G onto 

the factor group I< = G / H, and choose a section n : K ~ G for 1r with 

n( e) = e. By theorem 2.1, there- exists a cocycle crossed action (f3, v) of 

I< on c;(A; H, a, u) such that c;(A, G, a, u) ~ c;(c;(.A, H, a, u), I<, (3, v), 

where f3k = /n(k) for each k E I< as defined in theorem 2.1. Now, let Uk 

denote the automorphism of H defined by uk(h) = n(k)hn(kt1 (hE H), 
for each k E I<. As observed at the beginning of this section, uk is outer 

for each k E K, k =f- e. Lemmas 3.3 and 3.4 imply then that f3k is an 

outer automorphism of c;(A, H, a, u) for each k E K, k =f- e. Hence, if 

c;(A, H,a,u) is simple, then c;(A, G,a, u) is simple too, as a consequence 

of theorem 3.2. D 

We may now answer problem (I) positively: 

Corollary 3.6: Let H denote a normal subgroup of a group G with trivial 

centralizer. Then G is C* -simple whenever H is- C* -simple. 

Proof: Recall that a C* -simple group is ICC and apply theorem 3.5 with 

A = C and (a, u) trivial. D 

Corollary 3.7. Let H be a C*-simple group and G denote its automor­

phism group. Then G is C* -simple. 
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Proof: The center of H being trivial, we may identify H canonically as a 

normal subgroup of G with trivial centralizer, and the result follows from 

Corollary 3.6. 0 

For a group H, define An(H) for nEN recursively by 

Aut( H), 

Aut(An-l(H)) (n ~2). 

If H has trivial center, one gets a normal tower 

which satisfies the trivial centralizer condition at each step. By corol­

lary 3. 7, An (H) is C* -simple for all n E N whenever H is C* -simple. On 

the other hand, it is an open question in group-theory whether this series 

necessarily terminates (it does for H finite by a theorem of Wielandt ( [31]) ). 

Before we state our next corollary, we remind the well-known fact that 

the direct product of two C* -simple groups is C* -simple, as remarked in [6; 

page 192] and proved in [29; page 117]. 

Corollary 3.8. Let H denote a C* -simple group and G its holomorph, i.e. 

G is the semi-direct product of H by its automorphism group K = Aut( H) 

under the natural action. Then G is C* -simple. 

Proof: Let us write H' for the canonical copy of H inK. Then it is easy 

to check that the semi-direct product of H by H' is a normal subgroup of 

K with trivial centralizer, which is isomorphic to the direct product of H 

by H. Since H xH is C* -simple from the above remark, G is then C* -simple 

too by Corollary 3.6. 0 

This corollary makes it clearly possible to define another normal tower of 

C* -simple groups starting from a C* -simple group. 

We will obtain some other corollaries to Theorem 3.5 in the next section. 

We conclude this section with the following 
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Problem: Suppose G contains a normal ,subgroup H wioth trivial cen­

tralizer. Then does G have a unique trace whenever H is C* -simple and 

has a unique trace? (We know that G is C*-simple.) 

It should be noticed that Longo has constructed examples of simple C*­

algebras with several traces, obtained as crossed products of simple C*­

algebras admitting a unique trace ([19]). However, his construction cannot 

be used, at least directly, to produce an example answering the above ques­

tion negatively. 

4 Weak Powers groups and ultraweak 

Powers groups 

We first recall that a weak Powers group ([6]) is a group G satisfying the 

following property: 

. Giv~n any non-empty finite subset F ~ G \ { e}, which is included into a 

conjugac~ cla,9s, and any integer n > 1, there exists a partition G = DUE 

and elements g1, ... , gn E G such that 

(i) fD n D = 0 for all jEF, 

(ii) giEngi E = 0 for all i,j,= 1, ... , n, i # j. 

Of course, (i) is then true for all f E FuF-1 . In the original definition of a 

Powers group ([13]), F can be any non-empty finite subset og G \ { e }. The 

class of weak Powers groups includes a wide variety of groups within the 

categories of matrix groups ([13]), of free products with amalgamation and 

HNN-extensions ([13]), of fundamental groups of graphs of groups ([6]) and 

of hyperbolic groups ([14]). As a last example, let us mention the quotient 

of the pure braid group on k generators ( k ~ 3) by its center ([12]). 

In all this section (a, u) will denote a cocycle crossed action of a group 

G on a C* -algebra A. We will say that A is G-simple if {0} and A are the 

only ideals in A which are invariant under all a9 , g E G. A careful reading 

of [6] ensures one that the proofs of [6; propositions 2.3 and 2.6] may be 

adapted to yield the following two results: 

Theorem 4.1: Let G be a weak Powers group. If A is G-simple (so 

especially if .A is simple), then 8 = c; (A, G, a, u) is simple. 
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Theorem 4.2: Let G be a weak Powers group. If T is a trace on B = 

c; (A, G' a' u) then (1 = T I.A. is a G-invariant trace on A such that T = 
aoE, where E denotes the canonical conditional expectation of B onto A. 

Therefore, if A has a unique G-invariant trace, then B has a unique trace. 

Since there are several misprints in [6], making it difficult to follow the 

proofs, we will present a proof of these two results based on the ideas 

of [6,15]. At this point, it should also be noticed that the reduced twisted 

crossed products considered in [6] are of the Zeller-Meier type, and assumed 

to satisfy the normalizing condition: 

u(g,g-1 ) =I for all gEG. 

As pointed out to us by I. Raeburn, this condition may be assumed without 

loss of generality whenever there exists a square root map Von A satisfying 

J a 9 ( u) = a9 ( y'U) (g E G, u E U (A)). ;However, as we shall presently see, 

there is no need of assuming this condition in the, sequel. 

·The key lemma here is a variation of Powers original argument due .to 

de la Harpe and Skandalis, which proof is easily obtained from their proof 

of [15; lemma 1]. 

Lemma 4.3: Let x be a hounded self-adjoint operator on a Hilbert space 

1{, and suppose there eJ_Cists a projection p and unitaries u1 , u 2 , U3 in B(H) 

such that pxp = 0 and that the projections Ui (I - p) ui are pmrwtse 

orthogonal ( i = 1, 2, 3). Then 

for any number d satisfying~+ V: < d < 1 (such as d = 0.991). 

Let us next introduce some terminology. 

···A .simple G-averaging proce.s.s on B = c;(A, G, a, u) will be a linear 

map ~ : B ~ B such that there exist n E N and s1 , ... , Sn E G satisfying 

that 

1 n 

~(b)=-L .X(si)b.X(si)* for all bE B. 
n i=l 
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Further, a G-avera9in9 process on B will be a linear map '1/J : B --+ B 

such that there exist m E N and </>1 , ... , </>m simple G-averaging processes 

on B with '1/J = </>m o </>m-1 o ... o ¢>1 . It is clear that such a '1/J is positive and 

bounded with 11'1/JII = 1. 

For 9E G, we set 

((9) = { F' ~ Gl there exist a finite subset F of the conjugacy 
class of 9 with F' ~ (FuF-1 )} . 

At last, we let 80 denote the dense *-subalgebra of B generated by A and 

.A( G). In other words, 

80 = { x E B lsupp( x) is a finite subset of G}. 

Lem1na 4.4: Let x be a self-adjoint element of 80 with supp( x) E ((9) for 

some 9 E G \ { e}, and let '1/J be a G-averaging process on B. Then '1/J( x) is a 

self-adjoint element of 80 with supp( '1/J( x)) E ((9 ). 

Proof: It is rather trivial to check that '1/J( x) is a self-adjoint element of 

8 0 • Next, for aEA, ~,hEG, we have that 

.A( s )(a..\( h) ).X( s )* as(a).X(s).X(h).X(s)* 
as(a)u(s, h)..\(shs-1 ). 

From this observation, it follows easily that, if </> is a simple G-averaging 

process on B, then ¢>( x) E ( (9), and the same result for '1/J follows then by 

induction. 0 

Lemma 4.5: Suppose G is a weak Powers group and let x be a self-adjoint 

element of 8 0 with supp(x)E((9) for some 9EG\ {e}. Then, for any 8>0, 

there exists a G-averaging process 'lj;9 on B such that 

11'1/Jg(x)ll < 8 · 

Proof: Let D,E and 91 ,92 ,93 be given from the definition of G being a 

weak Powers group (with n=3). Let p be the projection of l2 (G, 1i) onto 

l2 (D,1i) and set Ui = >..(9i) (i= 1,2,3). A straightforward computation 

shows that Ui(I -p)ui is the projection of l2 (G, 1i) onto l2 (9iE, 1i). It 

follows therefore from (i) and (ii) in the definition of a weak Powers group 
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that pxp = 0 and that Ui(I-p)u'[ are pairwise orthogonal (i = 1,2,3). 
3 

By lemma 4.3, ,PI(·) = ~I: >..(gi) · >..(gi)* is a simple G-averaging process 
i=I 

on B satisfying II,PI(x)ll < dllxll for d = 0.991. By lemma 4.4, we may 

proceed inductively and obtain that, for each kEN, there exists a simple 

G-averaging process ,Pk on B such that, if '1/Jk = ,Pk o ,Pk-I o ... o ,PI, then 

il¢k(x)ll ~ dkllxll· Therefore, if 8>0 is given, there exists a '1/Js as required. 

0 

Lemma 4.6: Suppose G is weak Powers group and let x be a self-adjoint 

element of B with e rf. supp(x ). Then, for any € > 0, there exists a G-. 

averaging process ,Pt on B such that 11'1/Jt(x)ll <E. 

Proof: By a density argument, we may assume that the given x lies in 

80 • Then there exist n EN, ai E A \ { 0} and hi E G \ { e} ( i = 1, ... , n) such 

that x =XI+ ... + Xn, where Xi= ai>..(hi) + u(hi\ hi)*ah;(ai)>..(hii) is a 

self-adjoint element of Eo satisfying 

By lemma 4.5, there exists a G-averaging process ¢I on B such that 

II¢I(xt)ll < Ejn. Set XI = x1. If n ~ 2, we may proceed inductively, 

using repeatedly lemmas 4.4 and 4.5, in such a way that, for each Xk = 

'1/Jk-I o ... o '1/JI(xk), there exists a G-averaging process '1/Jk on B such that 

ll¢k(xk)ll < Ejn (k = 2, ... , n). Then ,Pt = '1/Jn o ... o '1/JI is a G-averaging 

process on B such that 

n 

so 111f1t(x )II ~ I: 111f1t( Xi)ll < n · Ejn = €, as desired. 
i=I 

D 

Lemma 4. 7: Suppose A is G-simple and let a be a non-zero positive 

element of A. Then there exist n E N, a I, ... , an E A and hi, ... , hn E G 
such that 

n 

2: aiah;(a)a7 ~I. 
i=I 
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Proof: Let J be the two-sided ideal of A algebraically generated by 

{a8 (s)is E G}. Then J is G-invariant. Indeed, let wE J and g E G. By 

definition of J, there exist m EN, X1, Y1, ... , Xm, Ym E A and s1, ... , Sm E G 
such that 

m 

W =I: Xifrs;( a)yi 
i=l 

Hence, 

m 

a9 ( w) - I: a9 (xi)a9 ( as;( a))a9 (Yi) 
i=l 
m 

I:( a9 (xi)u(g, Si))a9 s; (a)( u(g, si)*a9 (yi)) 
i=l 

E J 

Since J f. {0} and A is G-simple, this implies that J =A. Thus J =A, 
since A has an identity. Therefore, there exist n EN, c1 , d1, ... , Cn, dn E A 
a,nd h1, ... , hn E G ~uch that 

n I 
I: qah,(a)di = 2 ~ 
i=l 

Now, set ai = Ci + di, i = 1, ... , n. Then 
n n n 
I: aiah, ( a)ai =I: Cifrh; ( a)ci +I: diah,( a)di +I> I. 
i=l i=l i=l D 

Proof of theorem 4.1: Let J be a non-zero ideal in B and let y be 

a non-zero positive element of J. If E denotes the canonical conditional 

expectation from B onto A, then E(y) is a non-zero positive element of A, 
and lemma 4. 7 implies that there exist n EN, a1, ... , an E A and h1, ... , hn E 

G such that 

n 

I: aiah,(E(y))ai ~I. 
i=l 

Since 

n 

= L:aiah,(E(y))ai (by Corollary 2.3b) ), 
·i=l 
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n 
, we may, by replacing y with I: aiA(hi)YA(hi}''ai if necessary, suppose that 

i=l 

E(y) >I. By lemma 4.6 (with x = y-E(y) and € = t), we obtain that there 

exist a G-averaging pmcess 1/1 on B such that 

hence 

1 
111f1(y -. E(y)) II < 2 ' 

> 1 
ll1/1(y) -1/1(E(y))ll < 2 · 

Since 1f1(E(y)) > 1/1(!) =I and 1f1(y) is positive, this implies that 1f1(y) is 

invertible. But clearly 1j1(y) E J, hence .I =B, and B is simple. 0 

Proof of theorem 4.2: Observe first that if 7 is a trace on B and 1/1 is 

a G-averaging process on B, then 7( 1/1( b)) = 7( b) for all b E B. It follows 

therefore easily from lemma 4.6 that 7(x -E(x)) = 0 for all self-adjoint 

elements x in B. Hence 7(x) = 7(E(x)) = a(E(x)) for all such x, where 

a- 7 lA. Consequently, 7 =a o E on ~. The last assertion follows then from 

corollary 2.3.d). · 0 

We now obtain 

Corollary 4.8: Suppose His a normal subgroup of G such that the factor 

group K = G / H is a weak Powers group. Then 

(a) c;(A,G,a,u) is simple whenever c;(A,H,a,u) is simple. 

(b) c;(A, G, a, u) has a unique trace whenever c;(A, H, a, u) has a unique 

trace. 

Especially, we have 

(c) G is C* -simple whenever H is C* -simple. 

(d) G has a unique trace whenever H has a unique trace. 
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Proof: (a) and (b) follows from theorem 4.1 and theorem 4.2, in combi­

nation with theorem 2.1, while (c) and (d) are special cases of (a) and (b). 

D 

H H is also a weak Powers group, corollary 4.8 (c) and (d) is proved in [6; 

Proposition 2.101 (with a different proof). We will shortly give a stronger 

version of part (c) (corollary 4.12). 

As a partial answer to problem (III) in the introduction, we have: 

Corollary 4.9: Suppose G is an extension of a weak Powers group by 

a weak Powers group, and A is simple (resp. has a unique trace). Then 

c;(A, G, a, u) is ~imple (resp. has a unique trace). 

Proof: This follows from theorem 4.1 (resp. 4.2) combined with corol-

lary 4.8(a) (resp. 4.8(b)). D 

With the results of section 3 at hand together with those of this section, 

we are in position to prove the announced results about ultraw~ak Powers 

groups. We recall that an ultraweak Powers group is a group containing a 

weak Powers group with trivial centralizer. Examples are furnished by the 

automorphism group and the holomorph of any weak Powers group. 

Corollary 4.10: Suppose G is an ultraweak Powers group and A is simple 

with a faithful G-invariant state. Then c;(A, G, a, u) is simple. Especially 

G is C*-simple and c;(G,w) is simple for any cocycle w: GxG--+T. 

Proof: The first assertion follows from theorems 3.5 and 4.1, while the 

second is a consequence of the first. D 

In connection with the problem raised at the end of section ·3, one may ask 

whether an ultraweak Powers group necessarily has a unique trace. 

Corollary 4.10 provides another partial answer to problem (III). In fact, 

one can push this game a little bit further: 

Corollary 4.11: Suppose G is an extension of an ultraweak Powers group 

H by an ultraweak Powers group K and A is simple with a faithful G­

invariant state r.p. Then c;(A,G,a,u) is simple. Especially G is C*-simple 

and c; ( G' w) is simple for any co cycle w : G X G--+ T. 
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Proof: Decompose c;(A, G, a, u) as in theorem 2.1: c;(A, G, a, u) :::::: 
(C;(c;(A,H,a,u),K,/3,v) and denote byE' the canonical expectation 

from C*(A, H, a, u) onto A. 

We have that C;(A,H,a,u) is simple by corollary 4.10. Further, one 

checks easily that((; =t.poE' is a faithful K-invariant state on c;(A, H, a, u). 
Another application of corollary 4.10 gives the first assertion and therefore 

the second. D 

H H in the above corollary contains a normal Powers subgroup with trivial 

centralizer, then it follows easily from (6; Proposition 1.5] that· G is an 

ultraweak Power group too. 

Our last corollary provides a quite general answer to problem (II). 

Corollary 4.12: Suppose G is an extension of a C*-simple group H by 

an ultraweak Powers group K. Then G is C* -simple. 

Proof: Decompose c;( G):::::: C;( c;( H), K, (3, v) as in theorem 2.1 and no­

tice that the canonical trace' on c;( H) is K -invariant. Apply then _corollary 

4.10. D 

By an inductive argument, Corollary 4.12 remains true if K has a normal 

tower K1 ::::! K2 ::::! ... ::::! Kn = K where Ki and Ki+l / Ki are ultraweak Powers 

groups (i=1, ... , n -1): 

We conclude this paper with a couple of remarks about the braid group 

Bn with n generators (n ~ 3) ((10,12]). Denote by Cn its center (which is 

isomorphic to Z) and set Bn=Bn/Cn. 
Let us :first observe that Bn is an ultraweak Powers group. In fact, Bn is a 

group of Akemann-Lee type: Dyer and Grossmann show in the course of the 

proof of (10; Corollary 17] that Bn contains a normal copy of the free group 

on n-1 generators with trivial centralizer. Hence, Bn is C*-simple (and has 

a unique trace). Dyer and Grossmann also show that Aut(Bn):::::: Aut(Bn) 

([10; Theorem 20]). It folows therefore from Corollary 3.6 that Aut(Bn) is 

C*-simple. 

At last, we note that Aut(Bn) (n ·~ 4) and Aut(Aut(B3)) are complete 

([10; Theorem 22 and Proposition 23]) so that the tower of automorphisms 

groups ends very quickly in this case, as it does in the case of free groups 

([9]), cf. our comments following corollary 3.7. 
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