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I. Introduction. 

In the last few years there has been an increasing interest among probabilists for 
diffusions on fractals. Thanks to the efforts of Kusuoka (13], Goldstein [7], Barlow and 
Perkins [6], Kigami [11] and others, we have today a fairly good understanding of Brownian 
motion on the Sierpinski gasket, and this theory has been extended in various ways to cover 
more general classes of finitely ramified fractals by Lindstr!l)m (16], Kigami (12], Kusuoka 
[14], and - from a field theoretic point of view - Hattori, Hattori and Watanabe [8]. In 
a series of papers [2], [3], [4], [5], Barlow and Bass have studied Brownian motion on the 
simplest infinitely ramified fractal, the Sierpinski carpet. Since fractals can be considered 
as models for porous media and semiconductors (among other things), there is an extensive 
physics literature on diffusion on fractals; see Havlin and Ben-A vraham [9] for a survey. 

In the pr.esent paper I shall restrict my attention to the Sierpinski gasket, but look 
at a kind of problem that has not been considered in the literature so far. The question 
is simply: can Brownian motion penetrate the Sierpinski gasket; i.e. is there a natural, 
continuous process which behaves like ordinary Brownian motion outside the gasket and 
like fractal Brownian motion inside it? The interesting part, of course, is what happens 
on the boundary where we have a delicate balance between excursions inside and outside 
the gasket; since the time scaling is drastically different in the two sets, it is not at all 
obvious how this balance can be achieved. In addition to its intrinsic appeal, the problem 
may also be of some interest to applications; if, e.g., we model porous rock by fractals, our 
processes will be useful in understanding the seismic properties of the rock. 

As you can tell from the title of the paper, the answer to the question above is yes. 
More surprising, perhaps, is the number of solutions; given a pair of positive functions 
a, (3, where a is defined and harmonic (w.r.t. fractal Brownian motion) inside the gasket 
and j3 is defined and harmonic outside the gasket, I shall construct a solution z(a,P) of the 
problem. The functions a and j3 will describe the density of the process in equilibrium, 
and two solutions z(a,P) and z<a' ,p') will be equal only if there is a constant k such that 
a' = ka and (3' = kj3. 

In addition to looking like Brownian motion both outside and inside the gasket, the 
process z(a,P) will in general have a highly nontrivial behaviour on the boundary between 
the two sets; unless a and j3 are both constant, the process on the boundary will look 
something like a Brownian motion run at infinite speed - although the average particle 
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only spends time zero on the boundary, it still manages to get somewhere. As we shall 
see, this extremely singular behaviour on the boundary is necessary to keep the process in 
equilibrium. 

To construct the processes z(o:,/3), I shall use nonstandard analysis and random walks 
with infinitesimal increments, but readers unfamiliar with nonstandard analysis should 
not have any problems with the basic ideas of the paper as long as they are willing to 
think about infinitely large and infinitely small numbers in an intuitive way. A few words 
about notation and terminology may be useful: *IRis the set of nonstandard real numbers 
(basically IR with infinitesimal and infinite elements added), and "internal" is a technical 
condition on nonstandard sets and functions - in the present paper it will play a role 
analogous to "measurable" in basic probability theory; it's not a condition you offer much 
thought, but your statements will be false if you omit it. Readers who want to know more 
about the formal background for nonstandard probability theory, may try [1] and [15]. 

Acknowledgement: I'm grateful to Martin Barlow who told me about the problem and 
encouraged me to work on it. I would also like to express my gratitude to the Taniguchi 
Foundation for generous financial support, and to Professors N. Ikeda, S. Watanabe and 
S. Kusuoka for an excellently organized conference. 

II. Setting the stage. 

The Sierpinski gasket is obtained by the following construction. Starting with the 

Figure 11.1 

equilateral triangle in Figure II.l.a), we first remove the black triangle in the middle as 
shown in b). This leaves us with three triangles similar two but smaller than the original 
one, and repeating the procedure with each one of these, we get the figure in c). Again we 
repeat the procedure with each of the nine triangles we now have etc. The set we get in 
the limit is the Sierpinski gasket. 

In this paper we shall consider a Sierpinski gasket with sides of length one sitting 
in the middle of a larger triangle with sides of length four as shown in Figure II.2. The 
processes we shall construct will have behave like ordinary Brownian motion in the area 
between the two triangles (with normal reflection at the outer boundary), and like fractal 
Brownian motion inside the gasket. (The only reason for putting in the outer triangle is 
to make some of the more technical arguments a little more transparent.) We shall not 
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allow the process to enter the black triangles removed in the construction of the gasket. 

Figure 11.2 

(An alternative version of the problem would be to construct a process which enters these 
areas and behaves like an ordinary Brownian motion inside them; this is actually a quite 
interesting question from the point of view of singular perturbation of the Laplacian as 
discussed in, e.g., chapter 6 of [1]. It can be solved by minor modifications of the methods 
in this paper). 

As already mentioned, we shall obtain our processes from nonstandard random walks 
with infinitesimal increments. We begin by fixing an infinitely large, nonstandard integer 
N (if you don't like nonstandard analysis, just think of N as a big integer which will 
eventually go to infinity), and divide the sides of the outer triangle into intervals of length 
2-N. Connecting the division points by lines parallel to the sides of the triangle, we get 
a triangular lattice. Finally, we carry out the first N steps in the construction of the 
Sierpinski gasket (since the sides of the big triangle are four times those of the small 
triangle, the pieces we remove in the construction fit in nicely with the lattice). Figure 
II.3 shows the situation for N = 2. 

Figure 11.3 

Our random walks will live on the set SN of vertices that are left after these operations 
(since we only remove the interior of the black triangles, the sites on their boundaries are 
still there). 
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It is natural and convenient to write SN as a disjoint rmion 

sN = sj.y u S'N us~, 

where the set SJv consists of the interior sites strictly inside the bold triangle in Figure 
11.3; the set SJv consists of the exterior sites strictly outside the same triangle; and the set 
S~ of boundary sites are the ones along the sides of this triangle. We shall also need the 
"closures" 

and 

III. The interior process. 

I shall construct the processes z(cx,/3) in stages. Let us first take a look at what happens 
inside the Sierpinski gasket. If ~t = 5-N and 

T = {0, ~t, 2~t, 3~t, · · ·, }, 

we shall study the nearest neighbor random walk 

-z xN: n x T--+ sN 

with the following transition probabilities: If X and y are neighboring sites in S~ and 
XN is at x at time t, then XN will be at y at time t + ~t with probability 1/4 (if x is 
one of the three corners on the boundary, x has only two neighbors and the process will 
remain at x with probability 1/2). It is well know that if we take the standard part of the 
nonstandard process XN, we get Brownian motion on the Sierpinski gasket; this is just 
a nonstandard way of saying that the sequence {X N} N eN converges to Brownian motion 
when N goes to infinity. Observe that XN h~s time increments ~t = 5-N and space 
increments ~x = 2-N, and hence we get 

instead of the usual 

~X = ~tlog 2/log 5 

.l 
~X= ~t2; 

Brownian motions on fractals rrm much faster than ordinary Brownian motion to compen­
sate for the fact that they live in labyrinths. 

To be able to compute excursions from the boundary, we shall need to know a few 
basic facts about X N. 

111.1 Lemma. Let qN be the probability that XN started at A in Figure 111.1 hits B 
before it hits· the l~ne segment CD. Then 

(3.1) 
3 

qN-----­
- 13 -10qN-1' 
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where qN-1 is the corresponding probability on SN-1· 

Proof: Start the process at A and let it rnn nntil it hits one of the points E, F, G og H. If 
it is stopped at either E or F, start it again and let it run until it hits either the point A 
or the line segment C J. 

B 

Figure Ill. 1 

c J D 

This distributes a mass of qN-I/2 at A and (1- qN-d/2 along CJ. If the process was 
first stopped at H or G, start it again and let it run until it hits A, B or K. A trivial 
calculation shows that this distributes a mass of 3/20 at B and K and 1/5 at A. Because 
of the symmetry of the problem we can consider A and K as the same state, and hence we 
end up with a mass of (1-qN-I)/2 along CJ, a mass of qN-1/2+1/5+3/20 = qN2- 1 +7 /20 
at A, and a mass of 3/20 at B. Repeating the experiment with the particles now at A will 
not change the ratio between the mass of B and the mass along C J, and hence 

qN _ 3/20 
1- qN - (1- qN-I)/2. 

Solving this equation for qN, we get (3.1). 

D 

The function 
3 

f(q) = 13- 10q 

has a stable fixed point at q = 130 and an nnstable one at q = 1. A trivial calculation shows 
that q1 = 1/3, and since f is a contraction on an interval containing ( 130 , l ), we get: 

III.2 Lemma. The sequence {qn} converges to 3/10 at a geometric rate. Moreover, there 
are positive constants C, K E ~ such that 

N 

C(130)N ~II qn ~ K(130)N 
n=1 

for all N. 

Proof: That qn converges to 130 at a geometric rate follows immediately from the fixed 
point theorem for contractions. Hence there are positive constants M and r, r < 1, such 
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that 

lq - .!_1 < Mrn 
n 10 - ' 

from which it follows that qn/(3/10) and (3/10)/qn are both less than 1 + M'rn for some 
constant M'. Thus it suffices to show that the products 

are bounded. But this is almost trivial since 

N N N M' 
log IT (1 + M'rn) = L log(1 + M'rn) ~ L M'rn ~ 1 _~. 

n=l n=l n=l 

0 

In Figure III.2 the points A 0 , A 1 , A2 , A3 , • • • along the side of S N have been chosen 
such that IB- Ani= 2-n. Note that the triangle AnBCn is a (scaled) copy of SN-n· 

Figure 111.2 

c 3 c 2 cl 

111.3 Proposition. The probability Pn that Xn starting at An hits Ao before it hits the 
line segment BC0 , is 

(3.2) 

There are positive, real constants C and K such that 

(3.3) C(2_)n < < K(2_)n. 
10 - Pn- 10 

Proof: Obviously, p0 = 1 and since 
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(3.2) follows. The second formula (3.3) is an immediate consequence of (3.2) and Lemma 
III.2. 

0 

The following simple corollary will not be used in the present paper, but it is of some 
independent interest. 

111.4 Corollary: Assume that Figure III.2 shows the full Sierpinski gasket and not just 
SN. Then the probability that a Brownian path starting at An will hit A0 before it hits 
the line segment B C0 is ( 130 ) n. 

For the final results of this section we return once again to Figure III.l. Starting a 
particle at A and stopping it the first time it hits either B or the line segment CD, we 
now want to know the stopping distribution; what is the probability that the particle is 
stopped in B, in the interval C J, and in the interval J D? (If the particle is stopped in the 
common point J of the two intervals, we shall count it as belonging to C J if it approaches 
J through the triangle 6.AC J, and to J D if it approaches J through 6.K J D.) The results 
will only be needed in one place in this paper, and may be skipped at the first reading. 

111.5 Lemma. The hitting probabilities of the point B and the line segments C J and 
CD are, respectively, 

(3.4) 

(3.5) 

(3.6) 

PcJ= 

3 
PB =-----

13- 10qN-l 

20(1- qN_I)(8- 5qN-t) 
(13- 10qN-1)(19- 10qN-t) 

30(1- qN-t) 
PJD =--------~~~~------

(13- lOqN-1)(19- lOqN-1) 

Proof: We have already established (3.4), and hence we know that 

(3.7) 
10(1- qN_I) 

PCJ + PJD = 1- PB = 13 _ 10qN_1 • 

To get a second equation, we copy the proof of Lemma III.1; starting the process at A, we 
first stop it when it hits one of the points E, F, G or H, then start it again and let it run 
until it hits either the segment C J or one of the points A, K or B. According to the proof 
of Lemma III.1, the particle will now be somewhere on the segment CJ with probability 
1-q;- 1 , it will be back at A with probability qN2- 1 +!,and it will be inK with probability 
3/20. Since the situation is left-right symmetric, this means that 

(3.8) 
1- qN-1 qN-1 1 

PCJ = 2 + (-2- + 5)PcJ + 3/20pJD 
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Solving (3. 7) and (3.8), we get (3.5) and (3.6). 

D 

Since qN tends to 130 as N goes to infinity, it is convenient to rewrite (3.4)-(3.6) 
slightly. Introducing 

we get 

(3.9) 
3 

p B = -...,------:-
10(1 + rN-1) 

(3.10) 
91(1 + .lfrN_I)(1 + HrN-d 

PCJ = ( )( 5 ) 160 1 + rN-1 1 + srN-1 

(3.11) PJD = ( )( 5 ) 160 1 + rN-1 1 + -srN-1 

Since r N tends to zero at a geometric rate, 

3 91 21 
PB-+ 10'PCJ-+ l60'PJD-+ 160 

all at geometric rates. Again we g~t a corollary for Brownian motion which we shall not 
need in this paper, but which is of some independent interest. 

III.6 Corollary: Assume that Figure III.1 shows the full Sierpinski gasket and not only 
S N. Start a Brownian motion at A and let it run until it hits either the point B or the 
line segment CD. Then the particle is stopped at B with probability 3/10, in the segment 
C J with probability 19610 , and in the segment J D with probability 12610 • 

For the very last result in this section we first take a look at Figure III.3. 

Figure 111.3 

A B 
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Let a, b and c be three real numbers. Assume that u : SN --+ *IR is defined as follows: 
u(A) = a,u(B) = b,u(C) = c;u grows linearly on the line segment from A to B; and u is 
harmonic outside ABU { C}. For each site i E AB, let N( i) be the set of neighbors in the 
interior of SN. 

III. 7 Proposition. There is a real constant C (independent of a, b, c and N) such that 

(3.12) I L L [u(j)- u(i)]u(i)l ~ C(~)NI(c- a)a + (c- b)bl 
iEAB jEN(i) 5 

Remark: This formula is not as mysterious as it may seem at first glance; if we multiply 
it by (f) N, the left-hand side becomes basically the Dirichlet form of our process applied 
to the function u (since u is harmonic, there are no contributions from the interior). From 
this point of view the proposition just tells us that a harmonic function with linear growth 
along one of the edges, has finite Dirichlet integral. Since a fractal thinks that linear 
functions are very irregular (remember that the only at-functions in the domain of the 
Laplacian are the constants), this is not at all obvious. 

Proof of Proposition III. 7: This is one long, terrible, but totally elementary calculation. 
For an integer n < N, let AB(n) be the sites on AB belonging to Sn, and fori E AB(n), 
let N(n)(i) be its neighbors in the interior of Sn. We want to compare the two sums 

(3.13) L [u(j)- u(i)]u(i) 
iEAB(n) jEN(n)(i) 

(3.14) L [u(j) - u( i)]u( i) 
iEAB(n+t) jEN(n+t)(i) 

where u is the function in the proposition. 
Figure III.4 shows the situation; j is a neighbor of it and i2 in Sn, while in Sn+t Jt 

is a neighbor of it and i3, and h is a neighbor i3 and i2. 

j 

Figure 111.4 

+-2 -n__. 
Hence the terms 

[u(j)- u(it)]u(it) and [u(j)- u(i2)]u(i2) 
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in formula (3.13), will in (3.14) be replaced by the terms 

[u(j1)- u(il)]u(il); [u(j1)- u(ia)]u(ia); 

[u(ja)- u(i3)]u(i3 ); [u(Ja)- u(i2)]u(i2). 

Since u is linear along the bottom line segment, 

( .) u(i1)+u(i2) 
u t 3 = 2 . 

Using Lemma III.5 and the easy observation that the process started at j1 will hit the 
intervals i1ia and iai2 in a uniform way, we can also compute u(it): 

u(. ) = ~(1 A )3u(i1) + u(i2) 21 (1 B )u(i1) + 3u(i2) ~(1 C )u( .) 
J1 160 + n 4 + 160 + n 4 + 10 + n J ' 

where An, Bn, Cn converge to zero geometrically. Similarly, 

u(. ) = 21 (1 B )3u(i1) + u(i2) 91 (1 A )u(i1) + 3u(i2) ~(1 C )u( "). 
)2 160 + n 4 + 160 + n 4 + 10 + n J 

We are now ready to compute the contribution to (3.14) from the points in Figure III.4: 

[u(jl)- u(i1)]u(il) + [u(it)- u(ia)]u(ia)+ 

+ [u(h)- u(ia)]u(ia) + [u(h)- u(i2)]u(i2) = 

( . )3u(il) + u(i2) (. )u(i1) + 3u(i2) = u )1 2 + u )2 ---'--......:.......-2__.;~ 

- ~u(i1)2 - u(i!)u(i2)- ~u(i2) 2 = 

= 182~0 (1 + An)u(i1)2 + 152~60 (1 + An)u(i1)u(i2) + 1~~0 (1 + An)u(i2)2+ 

+ 1~~0 (1 + Bn)u(i1)2 + 122~00 (1 + Bn)u(il)u(i2) + 1~~0 (1 + Bn)u(i2)2+ 

+ 2
9
0(1 + Cn)u(j)u(i1) + : 0 (1 + Cn)u(j)u(i2)+ 

+ 1~~0 (1+Bn)u(i1)2 + 1~~~(1+Bn)u(il)u(i2)+ 1~~0 (1+Bn)u(i2)2 

+ 1~~0 (1+An)u(i1?+ 152~60 (1+An)u(i1)u(i2)+ 1~~0 (1+An)u(i2)2 

+ 2
3
0(1 + Cn)u(j)u(i1) + 2

9
0 (1 + Cn)u(j)u(i2) 

- ~u(i1?- u(i1)u(i2)- ~u(i2)2 = 
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= ~(1 + Cn)[(u(j)- u(i!))u(i1) + (u(j)- u(i2))u(i2)]-

116 (. )2 332 (. ) (. ) 116 (. )2 
- 1280 U ZI + 1280 U ZI U Z2 - 1280 U Z2 + 

910 A (. )2 1092 A (. ) (. ) 910 A (. )2 + 1280 nU Z1 + 1280 nU Z1 U Z2 + 1280 nU Z2 

126 B (. )2 420 B (. ) ( . ) 126 B (. )2 + 1280 nU Z1 + 1280 nU Z1 U Z2 + 1280 nU Z2 

+ ~Cnu(i!)2 + ~Cnu(i2? 
= ~(1 + Cn)[(u(j)- u(i!))u(i1) + (u(j)- u(i2))u(i2)]-

l16 + 546An + 210Bn ( (. ) (. )]2 - 1280 U Z1 - U Z2 

where the last step uses that 19610 An+ 1
2
6
1
0 Bn + 130 Cn = 0. Summing over all triangles of 

the form shown in Figure III.4, we get 

L L [u(j)-u(i)]u(i)~ 

~ ~(1 + Cn) L L [u(j)- u(i)]u(i) 
iEAB(n) jEN(n) 

_ k2 . 2_n 116 + 546An + 210Bn 
1280 ' 

where k is the slope of u along the bottom edge of the gasket. Since An, Bn and Cn tend 
to zero at a geometric rate, there must be a real constant C such that 

I L L [u(j)- u(i)]u(i)l ~ 
iEAB(n) jEN(n) 

~ C(~)nl L L [u(j)- u(i)]u(i)l 
iEAB( 0 ) jEN(O) 

3 
= C(5)nl(c- a)a + (c- b)bl, 

and the proposition is proved. 

0 

IV. The exterior process. 

Let us now describe a process 
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which approximates reflected Brownian motion. Since the time increment .6.t = 5-N is 
smaller than usual, we have to be a little careful with the transition probabilities, but if 
we say that a particle which is at x at time t, will be at each one of x's neighbors with 
probability 

(4.1) 

at t + .6..t, and stay at x with the remaining probability, it is easy to check that we get the 
right variance. Hence the standard part of Y N is reflected Brownian motion in the area 
between the two triangles. 

As with the interior process, we shall need to know a little about the escape probabil­
ities from the boundary. Given a positive integer k, let .6.k be the collection of all points 
X E S[v whose graph distance to the inner boundary s~ is k (i.e. the shortest path from 
X to s~ has exactly k steps.) Figure IV.l shows .6.3. Note that the (euclidean) distance 
from a point in .6..k to S~ is of order of magnitude k · 2-N. 

Figure IV.l 

Define uk(x) to be the probability that YN starting at x will hit .6.k before it hits S'Jv. 
IV.l Lemma. Assume that x E .6.1 for 1 ~ k. Then 

Proof: Define a function v by 

v(x) = 7 if x E .6.m. 

It is easy to check that v is subharmonic with respect to YN; in fact, v is harmonic at 
x E .6.m unless x is a corner in .6.m. 

Since Uk is harmonic, v-uk is a subharmonic function which is zero on .6.k, and hence 
v - Uk ~ 0 inside .6.k. 

0 
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V. The boundary process. 

Fix a finite, internal function 

-i 
a: SN--+ *IR+ 

which is harmonic in s}v (with respect to XN ), and a finite, internal function 

which is harmonic in Siv (with respect to YN). We want to construct a process Z on SN 
which behaves likes XN at interior points, like YN at exterior points, and whose equilibrium 
measure is given by a and {3. More precisely, since there are order of magnitude 3N points 
in S}v and 4N points in S/v, we shall let the equilibrium measure m have the form 

(5.1) {w 
m(x) = ~<;) 

if X E S}v 

if X E Siv 

(what m looks like on the boundary S'/v will be determined later). Note that since a and 
f3 are harmonic functions, there will never be any problem in maintaining the equilibrium 
at points in the interior of S}v and S/v. 

To define the transition probabilities of our process on the boundary, let us first assume 
that x E S'/v and y E S}v are neighbors. If we were just dealing with the interior process 

XN and the distribution ~~),the mass passing from x toy would be 

To keep the equilibrium, we want the same mass transfer in the present setting, and hence 
the transition probability Pxy must satisfy 

I.e. 

(5.2) 

Similarly, if y E Siv is an exterior neighbor of x E S'/v, the mass transfer from x to y is 

according to formula ( 4.1), and hence 
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I.e. 

(5.3) 

It still remains to describe the transition probabilities between two neighboring points 
x and y on the boundary SRr, and here we need to be quite careful if m is going to be an 
equilibrium measure. To see the problem, assume that we start our process Z with initial 
distribution m and run it one step from 0 to ~t. Since a and f3 are harmonic functions, 
we necessarily have 

(5.4) P{Z(~t) = x} = m(x) 

for all x E Sfv U Sf.v, but there is no reason why this formula should hold on the boundary; 
all we can say is that since the mass of all non-boundary sites are preserved, the total 
mass on the boundary must also be preserved. The question is whether we can use the 
transition probabilities along the boundary to shift the mass around in such a way that 
( 5.4) also holds on the boundary. Of course, we have to do this in a reasonably controlled 
manner if the resulting process is going to make sense. The following elementary lemma 
will help us to get started: 

V.l Lemma. Let L be a positive integer and assume that f : N ~ IR is periodic with 
period L (i.e. f(k) = f(k + L) for all k). Then the inhomogeneous difference equation 

(5.5) Xn+l - 2xn + Xn-1 = f(n) n EN 

L 
has a solution with period L if and only if :E f( i) = 0. When such a solution exists, we 

i=1 
can choose it such that 

m-1 k 

(5.6) o ~ xn < 4m~zl L Lf(i)l 
m_ k=1 i=1 

for all n. 

Proof. The general solution of (5.5) is 

if n = 0 
if n = 1 

if n > 1 

where C and D are arbitrary constants. Note that {xn} is periodic if and only if the 
equations xo =XL and x1 = XL+ 1 are both satisfied, i.e. 

L-1 k 

D=LLf(i)+CL+D 
k=1 i=1 
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and 
L k 

C + D = LLf(i) + C(L+ 1) +D. 
k=I i=l 

From the first equation we get 
L-1 k 

c =..!.I: I: J(i) 
Lk . =1 a=l 

and from the second 
1 L k 

C=- LLf(i), 
Lk . =la=l 

L 
and these expressions are compatible if and only if 2::::: f( i) = 0. 

i=l 
To prove (5.6), first observe thar for n :5 L 

n-1 k n-1 k 

lxn-Dl :5 ILLf(i)J+ILLf(i)J~ 
k=I i=I k=I i=I 

n-1 k 

:::; 21 I: I: t(i)J. 
k=I i=I 

m-1 k 

Hence if we choose D = 2 max I 2::::: 2::::: f(i)J, formula (5.6) holds. 
m~L k=I i=I 

0 

To apply the lemma to our problem, fix a site x E S~. At each moment, the total 
mass leaving x for a neighboring point not on the boup.dary, is 

where the summation is only over neighbors. Similarly, the total mass arriving at x from 
neighbors not on the boundary, is 

Hence the total gain of mass at x due to interaction with neighbors not on the boundary, 
IS 

(5.7) (x)= ""'.!_a(y)-a(x) ""'.!_J3(y)-j3(x). 
g L....J 4 3N + L....J 3 5N 

yES~ yESN 
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As we have already observed, the total gain of mass on the boundary is zero, i.e. 

(5.8) L g(x) = 0. 
xES~ 

Let us try to compensate for the gain of mass received from neighbors not on the 
boundary by giving away mass to neighbors on the boundary. Assume that site x gives 
away mass "lx to each of its neighbors x' and x" on the boundary, and in return receives 
"lx' and "lx" from each of them. Then if the mass at x is going to remain the same, we 
need to have 

(5.9) "lx" - 2ryx + 'flx' = -g( X). 

This is exactly the kind of difference equation we solved in the lemma, and due to (5.8) 
we know that it has a periodic solution. 

It should now be clear how to finish the construction of our process; we simply have to 
choose the equilibrium measure m and the transitition probabilities between neighboring 
boundary sites such that at each instant a mass "lx passes from x to each one of its 
neighbors. For this to make sense we have to choose our solution 'fJ of (5.9) to be positive, 
and m(x) has to be as least as large as 2ry(x). We could be in trouble here; perhaps these 
conditions force us to assign noninfinitesimal (or- even worse- infinite) measure to the 
boundary st. Fortunately, this is not the case - at least not under the following, mild 
continuity conditions: 

V.2 Condition. (a) f3 is Lipschitz continuous; i.e. there is a real constant C such that 
lf3(x)- f3(y)l:::; Clx- Yl for all x,y E S~. 

(b) There exist positive, real constants K and € such that 

(5.10) 
lx _ Yllog{5/3)/log 2 

Ia( x) - a(y )I :::; K (log I x!:_y J)l+E 

for all boundary sites x, y E S'N. 
Remark: Barlow and Perkins [6, Theorem 5.22] have shown that functions in the domain 
of the Laplacian on the Sierpinski gasket typically are Holder continuous with exponent 
log{!)/log2. I do not know if they satisfy the slightly stronger condition (5.10), and for 
that reason I have decided only to impose (5.10) on the boundary, although it is going to 
cost us some extra work. As we shall see, the logarithmic correction is needed in the proof 
of Proposition V.3. 

Here is the result we are working towards: 

V.3 Proposition. Assume that a and f3 satisfy condition V.2. Then (5.9) has a positive 
and periodic solution 'fJ such that 

(5.11) -
2 

max ry(x) :::; K(- )N 
xES~ 5 
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for some K E R 

Remark: That ry(x) is of order of magnitude Cl)N means that we can choose m(x) to be 
of the same order for X E st. The total mass of the boundary st is then of order 2N ( ~ )N' 
hence infinitesimal. 

The first step on the way to Proposition V .3 will be to show that the condition 
(5.10) on a's behavior on the boundary, can be used to obtain some information about a's 
behavior near the boundary. Figure V.1 shows a piece of SN's boundary of length 2-n. 
Let B be the set of sites on the line segment between XL and XR. We want to estimate 
Ia( x) - a( XT) I where x E B and XT is the top vertex of the triangle. 

Figure V.1 

-n .________ 2 --------· 

V.3 Lemma. If a satisfies (5.10) there is a real constant C (independent of n) such that 

(5.12) 

for all x E B. 

Proof: Start the process in XT and let it run until it hits st. If y E st, let 'Try be the 
probability that the process is stopped at y. Since a is harmonic, a(xT) = I:a(y)ny, and 
hence 

a(x)- a(xT) = L (a(x)- a(y))ny. 
yes tv 

Let us try to estimate 1r y for a point y a given distance away from x. Figure V .2 shows 
a bigger piece of the fractal where the triangle XLXRXT in Figure V.1 now is the small 
triangle in the lower left corner. 
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Figure V.2 

Assume that y belongs to the interval I a distance no more that 2-n+3 away. A path 
stopping at y has to pass P before it hits the boundary, and according to Lemma 111.2 
the probability for this is bounded by a constant times ( 130 ?. Similarly, the probability 
of stopping in an interval of length 2-n+k-1 no more than a distance 2-n+k away from x, 
is bounded by the same constant times ( 130 )k-1 • (I'm neglecting the possibility that the 
path may stop in an interval on one of the other sides of the gasket, but this case can be 
treated in an analogous way). Hence 

L ia:(x)- a:(y)l1l'y S 
yES~ 

n-1 12-n+kllog(j)jlog2 3 ""'c ( )k-1 < 
L....J 1 I log 2n-k 11+E 10 -
k=O 

0 

For the next lemma let us return for a moment to Figure V.l. Recall that the set of 
all sites on the boundary between x L and x R is called B. The set of all interior neighbors 
of B is called N (we only include those neighbors which belong to the triangle XLXRXT ). 
We want to estimate 

a:(xL) + a:(xR) ""' ( ) ""' ( ) Pn = 2 · + L....J 0: X - L....J 0: Y , 
xEBo yEN 
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where Bo = B \ {xL, XR} (we treat the endpoints XL and XR separately as they have only 
one neighbor each inN). 

V.4 Lemma. Assume that a satisfies (5.10). There is a real number C (independent of 
n) such that 

(5.13) 

Proof: Pick a point y E N, start the process in y and stop it when it hits either B or xr 
(recall that XT is the top vertex in Figure V.1 ). H x E B U { XT}, let 1r yx be the probability 
that the process is stopped at x. Since a is harmonic 

(5.14) a(y) = L a(x)7ryx + a(xr)7ryxT· 
xEB 

The probability 1r yxT of hitting xr first is easily seen to be independent of y, and we shall 
just denote it by 7rT. According to Proposition III.3, 

(5.15) C ( 3 )N-n 
7rT = qN-n · qN-n-1 ...•. q1 ~ 1 10 · 

If we sum (5.14) over ally EN, we get 

(5.16) L o:(y) = L a(x) L 1ryx + 2N-n7rro:(xr). 
yEN xEB yEN 

Using the symmetry of the situation, it is easy to check that 2: 1ryx must be the same for 
yEN 

all x E B0 , and that 

for x E B0 • Since 

we get 

and 

""' ""' + 2N -n 2N -n ~ ~ 7r yx 7rT = , 
xEB yEN 

L 7r yx = 1 - 7rT for x E B. 
yEN 

""' ""' 1 - 7rT ~ 1ryxL = ~ 1ryxR = 2 
yEN yEN 

Substituting this into (5.16), we get 

""' ""' a(xL) + a(xr) N-~ a(y) = (1- 7rr)( ~ o:(x) + 2 ) + 2 n7rra(xr), 
yEN xEBo 
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and hence 

( ~ [ ( ) ( )] a(xL)- a(xr) a(xR)- a(xr)) 
Pn = 7rT L....,; a x - a xr + 2 + 2 

xEBo 

According to (5.15), 7rT ~ C1( 130 )N-n, and according to the preceding lemma 

for all x E B. Hence 

lp I < C (~)N-n2N-n. C n-(l+f)(~)n < C n-(l+f)(~)N 
n - 1 10 2 5 - 3 5 0 

The last lemma we shall need is a slight variation on the previous one. The situation 
in Figure V.3 is exactly like the one in Figure V.1 except that the triangle depicted is now 
sitting in one of the corners of the gasket, and hence two of its edges now belong to the 
boundary st. Let B be the piece of the boundary between XL and X R' and let N be the 
sites in the triangle XLXCXR bordering on B. 

Figure V.3 

Define weight functions J.L : B ~ N and v : N ~ N by 

Note that 

{ 
1/2 ~ x =XL or x = XR or x borders on xc 

p(x)= 0 ifx=xc 
1 otherwise 

v( x) = { 2 if x is the corner x D 
1 otherwise 

L p(x) = L v(x) = 2N-n+I- 2 
xEB xEN 
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V.5 Lemma 2: a(x)JL(x) = 2: a(y)v(y). 
xEB yEN 

Proof: Pick a point yEN, start the process at y and let it run until it hits B. Let Tryx be 
the probability that the process is stopped at x. Since a is harmonic, 

a(y) = L a(x)Tryx, 
xEB 

and summing over y, we get 

(5.17) L a(y)v(y) = L a(x) L Tryxv(y) 
yEN xEB yEN 

Exploiting the geometric structure of the fractal it is not hard to see that the total hitting 
distribution x---+ 2: Tryxv(y) must be proportional to JL, and since JL and v have the same 

yEN 
total mass, this means that 

JL(x) = L Tryxv(y), 
yEN 

and hence the lemma follows from (5.17). 

0 

We now have all the information we shall need: 

Proof of Proposition V .3: Enumerate the sites on the boundary x1, x2, x3, · · · , x 3 .2N 

counter-clockwise starting at the midpoint of one of the sides (see Figure V.4). According 
to Lemma V.1 and formula (5.7), we have to show that 

~ ~ ~ [~ a(y)- a(xi) 1 j3(y)- j3(xi)] 
L..J L..J L..J 4 3N + 3 5N 
k=l i=l yEN(x;) 

is bounded by a constant times (~)N. (In this formula N(xi) is the set of interior and 
exterior neighbors of Xi)· The j3-part is trivial; since j3 is Lipschitz-continuous 

n-1 k 

ILL L j3(y)- j3(xi) I< 
k=l i=l yEN(x;) 

5N -

The a-part is much more subtle and we shall have to use our lemmas. We first note 
that in order to estimate the sum 

k 

L L (a(y)- a(xi)), 
i=l yEN(x;) 
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it is convenient to break the summation over i into parts, each part corresponding to a 
triangle of the kind shown in figures V.l and V.3. We want to choose each of these triangles 
as large as possible. Figure V.4 shows the idea; in order to sum from x 0 to Xk, we first 
sum over 2:1 , then over 2:2 , and so on. 

~ 
~.A; 
~ .A; 
~.A A .A; 
~ Jil. 
~A AJ!l. 
~ .A. .A ~ 
~ ......... ~ 
~ .A; 
~· A..A; 
~ • • .A; 

~··· A..AA..A; ~ ... ... iii. 
~· .... .... A.Jil. 

Figure V.4 

~A..AA..A.A..A~ 
~ ............................ .A; 

The sum over each L:i can be estimated using lemmas V.4 and V.5; a "round the corner" 
summation like 2:1 and 2:3 on the figure will be free, while a "straight" summation like 
2:2 , 2:4 and L:s will cost us Cn -(Ht:) ( ~ )N, where 2-n is the length of the segment we are 
summing over. Since we shall only have to do that at most one "straight" summation of 
a given length, the total cost is bounded by 

N 

L cn-(HE)(~)N ~ C'(~)N 
n=l 

00 

since the series L: n-(l+E) converges. 
n=l 

The rest is easy; we simply note that 

n-l k 

:E:E :E 

and Proposition V.3 is proved. 

0 

It may be useful to sum up our findings in a theorem. To make the notation a little 
more compact, let me write m( x) = 0( ( ~ )N) to say that there is a finite constant C 
(independent of N) such that m(x) ~ C(~)N for all N. 
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V .6 Theorem: Let a and f3 be two finite, internal functions which are harmonic in S~ 
and S!v, respectively, and which satisfy Condition V.2. Then there is a nearest neighbor 
random walk Z on S N whose invariant measure m( x) and transition probabilities Pxy 
satisfy the following requirements: 

(a) m(x) = ~(~) when xES~ 
(b) m(x) = ~~) when x E S!v 
(c) m(x) = O(i)N when x E Si,r 

In the following we always assume that x and y are neighbors: 

(d) Pxy = 1 when x E S~ 
(e) Pxy = t(t)N when x E S!v 
(f) Pxy = 0( I )N when X E Si,r, y E s~ 
(g) Pxy = 0( 2 )N when x E Si,r, y E S!v 
(h) Pxy = 0(1) when x E Si,r, y E Si,r 

Proof: The only parts we haven't already checked are (f),(g) and (h). To prove (f), just 
observe that since we need to have 

1 a(x) 
m(x)Pxy = 4 3N , 

and m(x) = O(i)N by (c), we must have Pxy = O(:)N. The same argument works for 
(g); since 

1 4 N f3(x) 
m(x)Pxy = 3(5) 4N 

and m(x) = O(i)N, we get Pxy = O(t)N. Finally, to prove (h) just observe that 

m(x)Pxy = TJ(x), 

and that according to Proposition V.3, TJ(x) = O(i)N. Since m(x) is also of order (~)N, 
we get Pxy = 0(1 ). 

0 

As you will have observed, there are more than one process Z satisfying the theorem 
above; if I have one such process, I can always get another one by multiplying the values 
of m on Si,r by a constant factor larger than one, and then readjusting the transition prob­
abilities to maintain the equilibrium. These different nonstandard processes will probably 
be indistinguishable from a standard point of view (in standard terms this corresponds to 
slightly different random walks converging to the same limit process), and I shall just work 
with any one of them. Unless otherwise specified, I shall always assume that the process 
is started with the equilibrium distribution m, but normalized so that I have a probability 
measure. 
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VI. Continuity 

So far our process Z (satisfying Theorem V.6) exists only as a nonstandard object, and 
to show that it induces a reasonable standard process, we must prove that it is continuous 
in the following nonstandard sense: A nonstandard process Z : n x T --+ Rd is S-continuous 
if there is a set no c n of measure zero (w.r.t. to the natural Loeb measure on n) such 
that z ( w' t) ~ z ( w' s) whenever w ct. no and s and t are two infinitely close, finite elements 
in T. Throughout this section I shall assume that Condition V.2 is satisfied. 

We shall need a little more terminology from the nonstandard theory of processes. 
Assume that X : n X T --+ R is an internal process adapted to an internal filtration 
{FtheT· I shall write ~X(t) for the increment X(t + ~t) - X(t), and I shall use the 
summation convention 

t 

LX(s) = X(r) + X(r + ~t) + · · · + X(t- ~t); 
s=r 

note that X ( t) is !_JOt included in the sum. Define 

t 

[X](t) = L(~X(s))2 

s=O 

t 

< X(t) >= L E(~X(s)2 1Fs) 
s=O 

Our main tool will be the following theorem (Hoover and Perkins [10, Theorem 8.5]): 

VI.l Theorem. Let X be a locally square $-integrable Fr martingale. 

(a) X is $-continuous iff and only if [X] is. 
(b) If all X's increments ~X(w, t) are infinitesimal, then X isS-continuous if and only 

if< X> is. 

(I have adapted - and weakened - the theorem for our purposes; see Hoover's and Perkins' 
paper for the full story). 

Returning to our process Z, we first split it into three parts 

t 

ze(t) = L lsN(Z(s))~Z(s) 
s=O 

t 

zb(t) = L ls~(Z(s))~Z(s) 
s=O 

t 

zi(t) = L ls~(Z(s))~Z(s). 
s=O 

To show that the exterior process ze is continuous is straightforward. 
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VI.2 Lemma. ze is $-continuous. 

Proof: Apply Theorem VI.1(b) to each component, and check that nothing wrong happens 
at the boundary. 

0 

The boundary process Z 6 is more subtle and we shall need all our estimates from 
previous sections. 

Vl.3 Lemma. Z 6 is S-continous. 

Proof: Let us first replace Z 6 by a one-dimensional martingale M. If Pr is the projection 
onto the triangle determined by S'/v, let 

C:..M(w, t) = e1Pr(6.Z6(w, t))l 

where e is +1 if 6.Z6(w, t) is a step in the anti-clockwise direction, and -1 otherwise. 
Clearly, Z 6 must be continuous if M is. 

To show that M is a square integrable martingale, it suffices to show that E([M](t)) 
is finite. According to Theorem V.6 there will at any time be 0( t )N particles on the 
boundary and with probability 0(1) they will each take a step of size 2-N. Hence 

and since 5-N = C:..t, this means that there is a finite C such that 

E[M(t)] :5 Ct. 

Hence M is square integrable (note that the calculations above would break down if our 
estimate for m(x),x E S'fv, were any bigger than O(~)N; this is one of the reasons why we 
had to be so careful in the previous section). 

$-integrability ensures us that M is reasonably well behaved (see Chapter IV of [1] for 
details), but it doesn't give us continuity. However, by Theorem VI.1 it is enough to show 
that [M] is $-continuous. Assume that it is not, then it is easy to check that there must 
be a real, positive number e and an internal set !1' C !1 with noninfinitesimal measure a 
such that for each w E Q' there exist finites, t E T, s ~ t, such that 

(6.1) [M](w, t)- [M](w, s) >e. 

Since IC:..MI :5 2-N, this means that Z must have made at least € • 4N visits to S'fv between 
s and t. Since s and t are infinitely close, M has not had time to make noninfinitesimal 
excursions into SN- or Sj., in the mean time. So what we have to calculate is the proba­
bility that Z will make e · 4N consecutive visits to S'fv without starting a noninfinitesimal 
excursiOn. 

As a preliminary step, let us assume that Z(t) = x E S'fv, and let A, B, and C be the 
vertices of the miniature Sierpinski gasket of size 2-n(n EN) that x belongs to (see Figure 
VI.l). 
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Figure Vl.l 

B X c 
+-----2-n 

What is the probability that Z will immediately leave S'Jv and hit A before it hits S'Jv? 
According to Theorem V.1, the probability of going from x to one of its interior neighbors is 
0( f )N, and once that neighbor is reached, the probability of hitting A before returning to 
BC is 0( 130 )N-n (Proposition III.3). Hence the total probability of starting an "excursion 
of size 2-n, in the interior, is 

We have bounds below as well as above, and hence there are constants C and K such that 

where p(x, 2-n) is the probability that a particle at x will immediately start an interior 
excursion of size 2-n. (A simpler, but similar calculation using Lemma IV .1 shows that 
the probability of starting an exterior excursion of size lis O(l-14-N); we shall not need 
this, but it is reassuring to see that the two probabilities are of the same order). 

We are ready for the main argument. Let M be a (large) real number, and let 
tbtz,t3,t4 ,···,tM.4 N be theM ·4N first times Z visits S'Jv. Partition {t1,t2,t3,···} into 
intervals I J.2 • • · of size !. · 4 N • 

' ' 2 ' 

It = {t1, tz, · · ·, t.t...4 N }, Iz = {t.t...4 N+ 1 , • • ·, t2 . .t.. 4 N }, • • • 
2 2 2 

(€ is as in formula (6.1); we can clearly choose it such that ! · 4N is an integer). Note 
that if there is a sequence of consecutive t~s of length € • 4N where no excursion is started, 
then there must be an interval Ij where no excursion is started. The probability that no 
excursion of size 2-n is started in a given interval Ij is clearly 

(1 0 ( 1Q)n4-N).qN -~O(ll)n 
- - 2 ~e 2 a 3 . 

Hence the probability that all the intervals I 2 , I2 , • • • contain an excursion of size 2-n is 

(1- e-~O(lj-)n?M/E, 
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which we can get as close to 1 as we want by choosing n large enough. 

This would close the argument if we only knew that the typical particle visits the 
boundary S'Jv at most 0( 4N) times in any finite time interval. Again we get the information 
we need from Theorem V .6; since 0( ~) N of the particles are at S'N at any given time and 
there are 0(5N) points in a finite time interval, only a neglegible number of particles can 
make more than 0( 4N) visits to S'Jv in finite time. 

D 

VI.4 Lemma. zi is S-continuous. 

Proof: Since Brownian motion on the Sierpinski gasket is continuous (more precisely: since 
the nonstandard random walk inducing Brownian motion is S-continuous ), zi can only 
fail to be S-continuous when it is infinitely close to the boundary. Indeed, it is easy to 
see that if zi is not S-continuous then there must be a set 0 1 c n of noninfinitesimal 
measure and an infinite integer k such that the following happens: For each w E 0 1 , there 
IS a sequence 

of elements in T such that Z(tm) E S'Jv for all m; Z(t) E Sk and d(Z(t), S'Jv) < ¥2-k if 
tzm-1 < t < tzm for some m; tzn - t1 is infinitesimal but 

n 

I L (Z(tzm)- Z(tzm-dl 
m=l 

is not infinitesimal. Figure VI.2 shows what is going on; in each interval (tzm-17 tzm) 
the process makes an excursion into one of the miniature gaskets D1, Dz, D3, · · ·. The 
excursions add up to a noninfinitesimal passage in infinitesimal time. Note that we can 
clearly assume that all the excursions are along the same edge of the gasket. 

Since Z is not even a semimartingale, it's difficult to estimate the excursions of Z 
directly. The trick we shall use is basically to estimate u( Z) instead, where u is a suitable 
harmonic function, but we have to be a little careful how we set things up. 

Figure Vl.2 

A B 

Let u be the linear function on the line segment AB which is zero in A and one in B. At 
the top vertex of one of the small gaskets Di let u have the average of the two values at 
the other vertices (see Figure VI.3). 
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u=(i-1/2)2-k 

Di 

-k u=(i-1 )2 

Figure V 1.3 

H D? is what remains of Di when we remove the bottom edge and the top vertex, we 
now extend u to a harmonic function in D?. The process 

t 

U(t) = L lun?(Z,)(u(Z(s + ~t))- u(Z(s))) 
s=O 

is clearly a martingale since u is harmonic in UD?, and by definition of u, 

n n 

I L (Z(t2m)- Z(t2m-l))l = I L (U(t2m)- U(t2m-1))1 = IU(t2n- U(t!)l. 
m=1 m=1 

Hence if we can show that u is S-continuous we shall have the contradiction we are working 
toward. We shall, in fact, prove much more; not surprisingly it turns out that U is almost 
constant. 

To begin the calculations, note that 

t 

E([U](t)) = L L L[u(y)- u(x)] 2Pxy a3~) 
s=O xEuD? y 

t 2"-1 
(6.2) ~ llalloo L L L L)u(y)- u(x)]2Pxy3-N 

.!=0 i=O xED? y 

2"-1 
~ llalloo · t · 5N L L L[u(y)- u(x)]2Pxy a;~) 

i=O xED; Y 

The sum 5N :Z::: :Z::: [u(y)- u(x)J2Pxy3-N is just the Beurling-Deny expression for 
xED; yED; 

the Dirichlet form of XN restricted to Di, and it can be rewritten as 
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Since u is harmonic in D?, all the contributions from elements x E D? vanish. In fact, so 
does the contribution from the top vertex thanks to our choice of value for u. Hence the 
expression reduces to 

(~)N L L[u(y)- u(x)]u(x)Pxy, 
xED; y 

where Di is the bottom edge of Di. According to Proposition III.7, this is less than 

Returning to (6.2), we see that 

E([U](t))::; llalloot2kC(~)k · 4-k 

= Cllalloot( ~ )k 

which is infinitesimal. Hence U(t) is infinitesimal almost everywhere, and the lemma 
follows. 

D 

Combining the three lemmas above, we now have: 

VI.5 Theorem. Z is S-continuous. 

D 

Any nonstandard, S-continuous process induces a continuous, standard process called 
the standard part. If z is the standard part of Z, then z is clearly a continuous process 
which behaves like fractal Brownian motion inside the Sierpinski gasket and like ordinary 
Brownian motion outside. The equilibrium measure of z is given by the two harmonic 
functions a and /3. More precisely, our results can be summed up as follows. 

VI.6 Theorem. Let a and {3 be two real-valued functions defined on the outer boundary 
of the Sierpinski gasket. Assume that {3 is Lipschitz continuous and that there are constants 
K, E E IR+ such that 

lx _ Yllog(5/3)/log2 

ia(x)- a(y)i < K (log I x:_y l)l+E 

for all x, yon the boundary. Then there is a continuous process z( = z(a,fi)) which behaves 
like fractal Brownian motion inside the gasket and like ordinary Brownian motion outside 
it, and whose equilibrium measure is adj.l +{3d)., where 1-l is the Hausdorff measure on the 
gasket, ). is the Lebesgue measure on the complement of the gasket, a is the harmonic. 
extension (w.r.t. to fractal Brownian motion) of a to the gasket, and {3 is the harmonic 
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extension of (3 outside the gasket. Particles starting outside the gasket will penetrate it 
and vice versa. 

0 

Remark: The last statement in the theorem is obviously true (since Z is a nonstandard 
Markov process), but quite clumsy. It would have been more satisfactory to say that z is 
a strong Markov process, but I haven't actually proved that, and the paper is already long 
enough! 

0 

Let me end with a few words about possible future developments. An alternative 
approach to the whole problem would be to use Dirichlet forms; this is probably difficult 
in the general case where a and (3 are not constant (because z is then not symmetric), but 
seems quite promising when a and (3 are constant- the problem is simply to make sense 
out of the formal expression 

where 6 is the Dirichlet form of fractal Brownian motion on the Sierpinski gasket and 
6 is the Dirichlet form of reflected Brownian motion in the complement of the gasket. 
The main obstacle for this approach is probably that we today have very little positive 
information about the domain of 6. One way to get more information is by extending 
and systematizing the results from sections III and V of the present paper, and I hope to 
return to that in the near future. 
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