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Summary

Primary sclerosing cholangitis (PSC) remains one of the most chal-
lenging conditions of clinical hepatology. There has been a steady
growth in research to overcome this fact and the present review
aims at summarizing the most recently published literature. The
main emphasis will be put on the link of recent pathogenetic
insights to clinical characteristics and patient management. With
regard to pathogenesis, there is no consensus yet as to whether
immune mediated injury or factors related to bile acid physiology
are the most important. It also remains to be clarified whether PSC
is a mixed bag of various secondary etiologies yet to be defined, or a
disease entity predominantly represented by sclerosing cholangi-
tis in the context of inflammatory bowel disease. Most important,
there is no available medical therapy with proven influence on
clinical end points, and timing of liver transplantation and patient
follow-up are challenging due to the unpredictable and high risk of
cholangiocarcinoma.
� 2013 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

To our knowledge, sclerosing cholangitis was introduced as a med-
ical term in 1867 by Hoffman [1]. In the mid 1960s several case ser-
ies were reviewed, establishing the link to inflammatory bowel
disease (IBD) and describing several other clinical characteristics
of a primary form of sclerosing cholangitis (PSC). The introduction
of endoscopic retrograde cholangiography (ERC) throughout the
1970s greatly facilitated diagnosis, and the clinical, radiological
and histopathological criteria for PSC were stated by three publica-
tions in 1980 from the US (Rochester), UK (London), and Norway
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(Oslo). Later, magnetic resonance cholangiography (MRC) has been
recommended as the primary diagnostic modality in suspected
cases of PSC (Clinical Points 1). There has been a steady growth
in research activity around the many clinical challenges associated
with PSC (Fig. 1), including the founding of an international PSC
study group (www.ipscsg.org) in 2010. The aim of the present arti-
cle is to summarize insights provided by the most recent research
(published since our previous update [2]).

Clinical Points 1. Diagnosis of primary sclerosing 
cholangitis (PSC) [114, 117] 

• In patients with a cholestatic biochemical profile not 
otherwise explained and where causes of secondary 
sclerosing cholangitis have been excluded, a 
diagnosis of PSC is made when magnetic resonance 
cholangiography (MRC) shows typical findings 

• Endoscopic retrograde cholangiography (ERC) can 
be considered if high-quality MRC is uncertain and in 
patients with inflammatory bowel disease with normal 
high-quality MRC but high suspicion of PSC

• A liver biopsy is not necessary for the diagnosis of PSC 
in patients with typical cholangiographic findings

• A liver biopsy is recommended to diagnose small 
duct PSC if high-quality MRC (or ERC) is normal 
and in patients with disproportionally elevated 
aminotransferases to identify additional or alternative 
disease processes

The principle challenges in PSC all derive from the fact that

etiology and pathogenesis are still largely unknown. Since the
development of sclerosing cholangitis represents a ‘‘final com-
mon pathway’’ for multiple underlying mechanisms of bile duct
injury, in vivo data in patients with established PSC do not neces-
sarily reflect etiology. The first part of this review elaborates on
recent insights into the pathogenesis of PSC, with a particular
emphasis on research of relevance to novel treatment strategies
currently in the testing phase. An update on aspects relevant to
diagnosis of PSC will also be given, with a particular emphasis
13 vol. 59 j 571–582
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Fig. 1. Published articles reporting the search term ‘‘primary sclerosing cholangitis’’ (http://www.ncbi.nlm.nih.gov/pubmed/). The present review will focus on articles
published from 2010 to 2012.
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on the recent insights into PSC associated clinical aspects, includ-
ing elevated levels of serum IgG4, IBD, cholangiocarcinoma, pru-
ritus, and concurrent autoimmune hepatitis. Finally, we will
summarize the updates regarding treatment and cancer surveil-
lance of PSC patients.
 22 loci

PSC
8 loci

7 loci

 30 loci

1 locus

Fig. 2. Venn diagram illustrating the genetic overlap between primary
sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD). A total of
163 IBD susceptibility loci and 16 PSC susceptibility loci were included in the plot
[9,158]. The major histocompatibility complex (MHC) associations in PSC include
several independent association signals and are counted as one PSC specific locus.
Pathogenesis of PSC – toxicity or immunology?

There is no universally accepted explanation for the bile duct
injury in PSC. Mechanistic aspects of the development of similar
bile duct lesions are under intense study both in human condi-
tions and rodent models, nurturing an ongoing discussion as to
whether the primary injury is caused by immune mediated
mechanisms or biochemical aspects related to bile physiology
and how these two aspects can potentially be integrated in one
model. The definition of a subgroup of PSC patients characterized
by high serum levels of IgG4 in 2006 [3] was in support of the
possibility that the PSC patient population may be heteroge-
neous, and that one pathogenetic mechanism cannot be expected
to account for all cases. Nevertheless, from a clinical perspective
in Northern Europe and the US, a relatively demarcated ‘‘syn-
drome’’ of concurrent bile duct fibrosis, predominant right-sided
colitis and a neoplastic propensity at both these sites, seems to
comprise 70–80% of the PSC patient population. For this group
of patients, it is not unreasonable to expect a relatively uniform
pathogenesis.

Genetic association studies

The genetic susceptibility to PSC aligns with prototypical autoim-
mune diseases as much as with IBD (Fig. 2). Indeed, the hallmark
of an ‘‘autoimmune’’ susceptibility at a genetic level; i.e., a pre-
dominant HLA association, also accounts for the overall genetic
architecture of PSC (Table 1). As for most HLA associated diseases
(celiac disease being a notable exception), the immunological
implications of PSC associated HLA variants are unknown. Several
review articles have assessed the theoretical knowledge associ-
ated with each non-HLA susceptibility locus (Table 1) [4–7]. Only
speculations are possible for the potential disease mechanisms
represented by these loci, since most of the functional studies
that serve as the basis of these review articles were performed
prior to, and independently from the knowledge of genetic asso-
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ciations in PSC. Furthermore, the ‘‘pool’’ of risk loci is incom-
pletely defined (for reasons discussed elsewhere [8]).
Importantly, in our opinion, there is also a risk of oversimplifying
implications from genetic association study outcomes if too wide
assumptions are formed on the basis of each individual locus (as
would only be appropriate in a monogenous trait).

Despite these limitations, the largest genetic study in PSC
warrants specific mentioning [9]. The study represents a major
accomplishment by multiple centers within the international
PSC study group. Genetic risk for PSC was assessed by means of
case-control association analysis of a total of 3789 PSC cases to
25,079 controls across 130,422 single-nucleotide polymorphisms
(SNPs) genotyped using the Immunochip [10]. The Immunochip
is a targeted genotyping array covering 186 known disease loci
from various immune-mediated diseases. Outside of these 186
loci, Immunochip also assays thousands of SNPs of intermediate
significance from previous studies in these other diseases. A total
of 9 novel risk loci for PSC were detected in the analysis. Further-
more, by taking a priori knowledge on genetic associations in
other diseases into account (Crohn’s disease, celiac disease, pso-
riasis, rheumatoid arthritis, sarcoidosis, type 1 diabetes, and
ulcerative colitis), there was a posteriori evidence for another 33
3 vol. 59 j 571–582
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Table 1. Genetic susceptibility loci in primary sclerosing cholangitis. Loci are
defined according to genome-wide significance threshold conservatively set at
p <5 � 10�8. For each locus, overlapping associations reported in other diseases
are observed. Additional risk loci may be defined by taking a priori knowledge on
genetic associations reported in these other phenotypes into account (see [9] for
further details).

Locus Notable gene(s) nearby Shared associations
1p36 MMEL1, TNFRSF14 CeD, PBC, RA, UC
2q13 BCL2L11 CLL
2q33 CD28 AA, CeD, CHD, GD, Ht, 

MI, RA, T1D
2q37 GPR35 UC
3p21 MST1 CD,UC
4q27 IL2, IL21 AA, CD, CeD, RA, T1D, 

UC
6p21 HLA class I and II, other 

genes
Multiple diseases

6q15 BACH2 CD, CeD, MS, T1D, Vi
10p15 IL2RA AA, MS, RA, T1D, Vi
11q23 SIK2 Colorectal cancer
12q13 HDAC7 CD, UC
12q24 SH2B3, ATXN2 BP, CeD, Ch, CKD, EC, 

He, Hg, Ht, PBC, RVC, 
T1D

18q21 TCF4 Sch, FCD
18q22 CD226 T1D
19q13 PRKD2, STRN4 CLL, T1D
21q22 PSMG1 AS, CD, UC

AA, alopecia areata; AS, ankylosing spondylitis; BP, blood pressure; CD, Crohn’s
disease; CeD, celiac disease; Ch, cholesterol; CHD, coronary heart disease; CKD,
chronic kidney disease; CLL, chronic lymphocytic leukaemia; EC, eosinophil
counts; FCD, Fuchs’s corneal dystrophy; GD, Grave’s disease; He, haematocrit; Hg,
haemoglobin; HT, hypothyroidism; MI, myocardial infarction; MS, multiple scle-
rosis; PBC, primary biliary cirrhosis; RA, rheumatoid arthritis; RVC, retinal vas-
cular calibre; Sch, schizophrenia; T1D, type 1 diabetes; UC, ulcerative colitis; Vi,
vitiligo.
For gene name abbreviations, see http://www.ncbi.nlm.nih.gov/gene.
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risk loci (including previously reported loci at 2q35 [encompass-
ing several genes including TGR5 and interleukin 8 receptor IL8RA
and IL8RB] and 19q13 [fucosyltransferase 2; FUT2]). The most
notable novel pathway detected relates to the functionally con-
nected PRKD2, HDAC7, and SIK2, but whether these associations
represent aberrations of T-cell activation or bile acid homeostasis
[11,12], or other biological aspects, can only be speculated.

Bile acid toxicity

The concept of sclerosing cholangitis in the context of ‘‘bile tox-
icity’’ has evolved during the years following the description of
the Abcb4�/� mouse and the characterization of nuclear receptor
regulation of bile acid homeostasis. Extensive research on the
potentially beneficial effects of ursodeoxycholic acid (UDCA) in
cholestatic liver diseases has also contributed to the concept
[13]. In 2010, previous notions could be unified by the launching
of the hypothesis that deficiencies of a biliary bicarbonate
‘‘umbrella’’ (i.e., loss of alkalization of cholangiocyte apical mem-
brane proximity) may increase membrane permeation of proton-
ated (and thus hydrophobic) bile acids leading to bile duct injury
[14]. The integrity of the cholangiocyte apical glycocalyx also
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appears critical for the maintenance of cholangiocyte protection
[15]. The ‘‘umbrella’’ hypothesis further involves the interplay
between the Na+-independent Cl�/HCO�3 anion exchanger (AE2)
and active Cl�-transporters, most notably the ATP-driven cystic
fibrosis transmembrane conductance regulator (CFTR), but also
the more recently defined Ca++-driven anoctamin 1 channel
[16]. The bile acid receptor TGR5 is most likely expressed at the
cilia on the biliary epithelium [17], and may be involved in the
regulation of these systems [18].

Sclerosing cholangitis in the context of deficient Cl�-secretion
in cystic fibrosis occurs in up to 1/3 of the patients. Cystic fibro-
sis-related cholangiopathy has been linked to innate immune
regulation, partly based on the fact that Cftr�/� mice only develop
biliary lesions in the context of induced colitis [19]. The mecha-
nism in this model seems to involve altered regulation of toll-like
receptor 4 (TLR4) signaling in these mice [20]. Intriguingly, the
cholangiopathy in Cftr�/� mice was resistant to treatment with
nor-ursodeoxycholic acid (nor-UDCA), but responded to treat-
ment with oral neomycin and polymyxin B, suggesting a poten-
tial role of the gut microbiota in driving the increased NF-jB
signaling [20]. These aspects add to the prevailing hypothesis of
CFTR dysfunction leading to dehydrated mucosal surfaces and
impaired mucociliary clearance. In PSC, a possible role of altera-
tions in mucus secretion from peribiliary glands has not been
studied [21,22], but warrants incorporation in future CFTR-cen-
tered assessments.

Regulatory aspects of the enterohepatic circulation of bile
acids and bile acid detoxification systems may be relevant to
human PSC. Several recent review articles summarize the princi-
ples of these mechanisms [23,24]. Key updates include the
important role of farnesoid X receptor (FXR) activation in amelio-
rating cholangitis development in the Abcb4�/� model [25,26], as
well as the regulatory function of fibroblast growth factor 19
(FGF19) in bile homeostasis [27–29]. Genetic associations in
ulcerative colitis and to a lesser extent PSC at 2q35 encompass
several genes [30,31], including TGR5 and IL8RA and IL8RB genes
[30,31]. Mechanistically, direct evidence so far available on TGR5
on PSC related aspects seems to concern immunosuppressive
effects of receptor activation [32–36], more than aspects of bile
homeostasis [17,18,37,38]. Interpretation of the genetic findings
at 2q35 in PSC is difficult, since IL8 has also been implicated in
cholestasis [39,40]. Likely there are interactions and synergism
between several of the regulatory pathways in the context of cho-
lestasis (e.g., FXR and TGR5 [41]) and other receptors may also be
involved, e.g., pregnane X receptor (PXR) and G-protein coupled
receptor 35 (GPR35) [42,43]. Importantly, bile homeostasis clo-
sely integrates with regulation of lipid metabolism, as also
reflected by studies in the Abcb4�/� model [44].

The gut-liver axis

The earliest theories of PSC development derive from the poten-
tial relationship between IBD and inflammatory affection in the
portal tracts (‘‘the leaky gut’’). At present, there is renewed
enthusiasm and great expectations concerning the opportunities
associated with characterization of gut microbiota with genomic
technologies [45–47]. The gut microbiota is shaped by host gen-
der [48], genetics [49], immune function [50], as well as environ-
mental factors (e.g., diet and xenobiotics [51]), and is likely to
represent one component of the pathogenesis of several meta-
bolic and inflammatory conditions. One example illustrating
3 vol. 59 j 571–582 573
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Fig. 3. Relationship between pathogenesis of primary sclerosing cholangitis
(PSC) and ongoing studies aimed at elucidating disease mechanisms and
potential therapeutic targets. Importantly, the core processes of PSC develop-
ment remain obscure. However, efforts now delineating mechanisms for bile duct
injury and hepatobiliary inflammation in general, as well as in secondary
sclerosing cholangitis (SSC), are likely to be useful in the definition of novel
treatment strategies even though they may only partly relate to PSC pathogen-
esis. The only approach fully relevant to human PSC is the human genetic
association studies, but they only account for a fraction of the liability in PSC [9],
underscoring the role of environmental factors, including the gut microbiota and
factors interacting with the gut microbiota [51]. IBD; inflammatory bowel
disease.
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how the specific genetic constitution of an individual influences
the gut microbial environment is given by the FUT2 association
in PSC (and Crohn’s disease) [52,53]. Even in healthy individuals,
homozygous state for the disease associated variant is associated
with substantial alterations in gut microbial community compo-
sition [53,54]. The impact of dietary fat on IBD susceptibility rep-
resents another example of gene-environment interactions. The
interleukin 10 gene (IL10) is an established susceptibility factor
for human ulcerative colitis [55]. Saturated fat enriched diet in
Il10�/� mice induces specific changes in the bile acid pool (an
increased fraction of taurocholic acid) that lead to alterations in
the gut microbial community composition ultimately increasing
susceptibility to inflammatory bowel disease in these mice from
25–30% to over 60% [56]. Ongoing research at many sites pres-
ently explores the role of similar effects in human PSC patients
and established mouse models of sclerosing cholangitis.

An important aspect of immune-mediated liver diseases and
liver fibrosis is the recruitment process by which immune-cells
and monocytes are recruited from circulation into sites of injury
and inflammation. As reviewed elsewhere [57], gut activated T-
lymphocytes in the context of IBD may contribute to portal
inflammation in PSC due to overlapping adhesion molecule pro-
files of gut and liver endothelium (i.e., mucosal vascular addres-
sin cell adhesion molecule 1 [MadCAM-1] and vascular cell
adhesion molecule 1 [VCAM-1] expression along with chemokine
C-C motif ligand 25 [CCL25] secretion). Generation of the corre-
sponding T-lymphocyte phenotype (i.e., a4b7, a4b1, and chemo-
kine C-C motif receptor 9 [CCR9], respectively) is retinoic acid
dependent [58], predominantly occurs in the gut associated lym-
phoid tissues [59], and only under special circumstances in the
liver [60]. This ‘‘enterohepatic circulation of lymphocytes’’ is
clearly of potential relevance to PSC pathogenesis, and the Mad-
CAM-1 expression observed in PSC affected livers seems to be
dependent on amine oxidase activity of vascular adhesion protein
1 (VAP-1) in the presence of tumor necrosis factor alpha (TNFa)
[61]. Inhibitors of CCR9 (GSK1605786) and a4b7 (vedolizumab)
are already in clinical trials for IBD (www.clinicaltrials.gov). In
addition to these, there may be a role in PSC for liver-specific
therapeutic manipulation of lymphocyte recruitment via VAP-1
[62]. Mechanisms of the recruitment of other inflammatory cells
to the liver (monocytes, Th17 cells, T regulatory cells, and B cells)
have also been explored and may offer similar opportunities for
manipulating inflammatory processes in PSC [63–67].

Pathogenesis or therapeutic opportunities?

To what extent these axes of most active research are represen-
tative of primary disease mechanisms in PSC can only be specu-
lated (Fig. 3). Largely, the key mechanism of IBD associated PSC
phenotype remains obscure. However, regardless of the driving
forces of the disease process in this ‘‘core’’ predominant PSC phe-
notype, efforts now delineating mechanisms for disease propaga-
tion and bile duct fibrosis are likely to be useful in the definition
of novel treatment modalities.
Clinical characteristics of PSC – what is primary and what is
secondary?

The list of causes of secondary sclerosing cholangitis strictly
speaking only pertains to defined etiologies with histopatholo-
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gical appearance similar to PSC (Table 2). Examples include
genetic causes on the one hand, and environmental and iatro-
genic causes on the other (Fig. 4). In clinical practice, it is how-
ever important to recognize that also infiltrative diseases and
various types of malformations may mimic PSC on cholangiogra-
phy (Table 2). As evident from the discussion on pathogenesis, it
remains to be clarified whether the remaining ‘‘bag’’ of PSC after
these causes have been excluded is a ‘‘mixed bag’’ or a relatively
defined disease entity with a predominant representation of the
IBD associated cholangitis. Given the relatively higher frequency
of IBD among PSC patients in Northern Europe and the US (62–
83%) than in Southern Europe (approximately 50%) and Asia
(20–37%), there may be geographic differences (i.e., the
IBD-associated PSC is likely represented by a smaller fraction
outside of populations of Northern European descent). The term
‘‘IBD-related sclerosing cholangitis’’ has been proposed for this
group of patients [68], but is not established.

IgG4 and sclerosing cholangitis

IgG4 associated cholangitis is a sclerosing cholangitis that has
been acknowledged during the recent years. Due to the cortico-
steroid responsiveness, this condition is an important differential
diagnosis to PSC. Etiology is not defined, but may represent an
3 vol. 59 j 571–582
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Table 2. Secondary sclerosing cholangitis. Conditions listed include both
sclerosing cholangitis according to defined etiologies and liver affections that
may mimic primary sclerosing cholangitis (PSC) on cholangiography. According
to clinical practice guidelines, IgG4 related disease is now considered in the
context of secondary sclerosing cholangitis [114,117].

Infection  
Bacterial/parasitic cholangitis
Recurrent pyogenic cholangitis

Mechanic/toxic
Cholelithiasis/choledocholithiasis
Surgical bile duct trauma
Intra-arterial chemotherapy

Ischaemic
Vascular trauma

Paroxysmal nocturnal haemoglobinuria
Pancreatic disease

Chronic pancreatitis
IgG4 related systemic disease

Others

ABCB4 associated cholangiopathy
Sclerosing cholangitis of critical illness
Hypereosinophilic syndrome
Sarcoidosis
Graft-versus-host disease
Amyloidosis
Systemic mastocytosis
Caroli’s disease

Other types of ductal plate abnormalities
Hodgkin’s disease
Cholangitis glandularis proliferans
Neoplastic/metastatic disease
Langerhans cell histiocytosis
Hepatic allograft rejection

Immunodeficiency related (infections)
Congenital immunodeficiency
Acquired immunodeficiency (e.g. HIV)
Combined immunodeficiencies
Angioimmunoblastic lymphadenopathy

Hepatic allograft arterial insufficiency

Cystic fibrosis cholangiopathy

Congenital hepatic fibrosis

Familial Sporadic

Oligogenic Polygenic

C
FT

R
, A

B
C

B
4 Infections, 

gallstones

Genetics

Environment

Fig. 4. Concept of the relationship between environmental and genetic risk
factors for sclerosing cholangitis. Secondary sclerosing cholangitis (SSC) entities
cluster at both ends of this spectrum (e.g., genetic causes versus infectious causes,
respectively), whereas primary sclerosing cholangitis (PSC) is a complex pheno-
type involving multiple, interacting genetic and environmental factors. Factors
involved in the development of SSC may modify or complicate disease course in
PSC (e.g., ABCB4 variants and cholangitis, respectively).
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antigen directed specific immune response to environmental
triggers [69]. Diagnostic criteria for IgG4 associated cholangitis
are elaborated upon elsewhere [70] and nearly align with the
HISORt criteria for diagnosing autoimmune pancreatitis [71].
Patients are thus diagnosed on the basis of two or more main
manifestations (elevated serum IgG4, suggestive pancreatic
imaging findings, other organ involvement and bile duct or
papilla Vateri biopsy with >10 IgG4 positive cells/hpf) in combi-
nation with a significant corticosteroid treatment response
defined as markedly improved biliary strictures allowing stent
removal, liver enzymes <2x ULN and significant decreases in
serum IgG4 and CA19-9 levels. Biopsies of the duodenal papilla
are easily accessible [72], yet only moderately sensitive, and pre-
caution must be taken to avoid papilla injury with an increased
risk of complicating pancreatitis. IgG4 is also detectable in bile
[73]. Differential diagnostic assessments versus malignancy
(e.g., cholangiocarcinoma) may sometimes represent a challenge
[74]. Importantly, slight elevations (up to 5 g/L) of serum IgG4 of
uncertain relevance occur also among PSC patients not fulfilling
criteria for IgG4 associated cholangitis. Among these patients, a
more aggressive disease course is often seen [75], but the patho-
genetic significance of the detected serum IgG4 elevation and
management of these patients have not been defined.

IBD in PSC

Concurrent IBD represents the most common inflammatory co-
morbidity in PSC [76]. There is some evidence to suggest that co-
morbidities in PSC (e.g., IBD and other autoimmune diseases) are
of prognostic importance [77–80], but there is no consensus defi-
nition of these subgroups. Although IBD is most often classified
as ulcerative colitis, there are several distinct features of IBD in
PSC (summarized in Table 3). Most characteristically, affection
does not follow a ‘‘distal-to-proximal’’ distribution. Rather, there
is a right sided predominance of inflammation, with also inflam-
matory affections observed in the ileum, i.e., distribution seems
to maximize in the vicinity of the valvula Bauhinii, also consistent
with predominance of right-sided colonic carcinomas in PSC
patients with IBD [81,82]. There is at present no molecular basis
known to explain these features. There is an increased risk of ulcer-
ative colitis even without PSC in siblings of PSC patients, suggest-
ing the presence of a shared genetic predisposition between PSC
and IBD [83]. However, in the most recent large-scale assessment
of this genetic overlap [9], only 8 out of 163 bona fide IBD risk loci
associate with PSC (Fig. 2), and for half of the PSC loci, no consistent
associations could be detected in IBD. Out of the 8 loci associating
with both PSC and IBD in this analysis, one preferentially associates
with ulcerative colitis (Fig. 2) while the others associate also with
Crohn’s disease. Clinical classification of IBD in PSC as Crohn’s dis-
ease that in some cases is in line with this overlap. In our view, the
overall evidence and practical implications (e.g., the increased risk
of dysplasia [84]) support the notion of a distinct sub-entity of IBD
(‘‘PSC-IBD’’) and it may soon be worth considering to implement
this term in clinical practice [85].

Cholangiocarcinoma in PSC

Recently reported patient series support the notion that up to
50% of cholangiocarcinomas in PSC are diagnosed within the first
year after the diagnosis of PSC [86–88] and the challenge of mak-
ing the diagnosis remains unresolved [89]. In up to 1/3 of the
3 vol. 59 j 571–582 575



Table 3. Selected studies from the US, Europe and Asia summarizing key features of patients with primary sclerosing cholangitis (PSC) and inflammatory bowel
disease (IBD) [154–156]. (See below-mentioned references for further information)

Study, [Ref.] NPSC-IBD Pancolitis 
(%)

Backwash ileitis 
(%)

Rectal sparing 
(%)

Neoplasia 
(%)

Faubion et al. [154] 39 80 n.a. 27 10
Loftus et al. [85] 71 87 51 52 15
Joo et al. [155] 40 85 36 18 15
Jørgensen et al. [156] 155 55 20 65 n.a.
Ye et al. [157] 21 95 43 38 14

n.a., not available.
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cases referred for liver transplantation [90], a pre-transplant
diagnosis is impossible to confirm. The importance of considering
also the gallbladder epithelium at increased risk of malignancies
in PSC is now established [91,92], but there is not yet consensus
as to what size of lesions should trigger cholecystectomy [93,94].
The difficulties associated with the detection of increased levels
of CA19-9 outside the context of malignancy emphasize that all
assessments for cholangiocarcinoma in PSC need to be multi-
modal [95,96]. Furthermore, it should be kept in mind that for
genetic reasons some individuals do not produce CA19-9 [97].

Recent studies confirm an added value of fluorescent in situ
hybridization (FISH) to conventional brush cytology [98–100],
and at referral centers serving large volumes of PSC patients,
the method should be considered implemented. As is the case
for conventional brush cytology, specificity of FISH is generally
good, whereas the reported sensitivity varies between investiga-
tors and study populations in the range of 50% and 87% [101,102].
The technique of brushing is likely also of importance, but has not
been studied systematically. High quality samples have been
obtained at our center by sampling non-dilated strictures, using
an over-the-wire brush [103]. Brushing with the whole catheter,
as opposed to moving the brush in and out of the catheter, may
increase the yield, avoiding losing material against the edge of
the catheter. The value of detecting cholangiocellular dysplasia
in the absence of suspected cholangiocarcinoma (e.g., dominant
strictures) is controversial since up to 1/3 of PSC patients may
show such features [98,104,105]. However, considering biliary
dysplasia a precursor of cholangiocarcinoma and a reported spec-
ificity of 95% for cytological findings classified as high-grade dys-
plasia, it can be argued that PSC patients with cytological
dysplasia should be referred for liver transplantation [103]. As
for conventional cytology, serial findings of FISH abnormalities
associate with an increased risk of cholangiocarcinoma [99].

Cholestatic pruritus

Cholestatic pruritus may be debilitating for patients with PSC.
Treatment is difficult and reviewed elsewhere [106]. In refractory
cases, plasmapheresis and albumin dialysis may be effective
[107], but sometimes pruritus may represent an indication for
liver transplantation. There seems to be underlying differences
in the patient population biology since some patients may be
highly cholestatic without pruritus, whereas other patients are
severely affected even when cholestasis is modest. Genetic rea-
sons (e.g., modifiers reflecting underlying cholestatic predisposi-
tion [108]) or differences in immune reaction profiles between
the patients [109] may be involved in causing the pruritic predis-
position. At some level, the mechanisms causing cholestatic pru-
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ritus seem to involve the conversion of lysophosphatidylcholine
into lysophosphatidic acid (LPA) by autotaxin [110]. Autotaxin
activity in cholestatic patients correlates with pruritus, which is
not the case for other candidate pruritogens like bile salts, hista-
mine, tryptase, substance P or endogenous opioids. The mecha-
nisms behind the increased autotaxin activity remain to be
established. At another level, accumulated bile acids may be
directly involved in cholestatic pruritus via activation of TGR5
on sensory neurons transmitting pruritus and pain [111].

PSC with features of autoimmune hepatitis

In a position paper published by the International Autoimmune
Hepatitis Group (IAIHG), the demarcations between PSC, autoim-
mune hepatitis (AIH) and primary biliary cirrhosis (PBC) are elab-
orated upon [112]. Importantly, it is argued for abandoning the
term ‘‘overlap syndromes’’ and opting for a primary diagnosis
of either one of the three conditions. In both PSC and PBC, there
is a propensity for non-biliary autoimmunity, and it is not sur-
prising that in some patients this may also include hepatocyte
affection and features of AIH (in 7–14% and 2–19%, respectively).
In cases where a primary diagnosis of PSC and PBC can be made,
the IAIHG scoring systems for AIH should not be applied in the
diagnosing of such features [113]. Probably, sound clinical judg-
ment of biochemical (ALT at least 5x ULN and IgG at least 2x
ULN) and histological (suspected features of AIH is the main indi-
cation for liver biopsy in PSC) parameters should form the basis of
diagnosing such features. Although not evidence based, immuno-
suppressive therapy along standard guidelines for treatment of
AIH is recommended for PSC patients with overlapping features
with AIH [112,114]. Treatment response in terms of delaying cir-
rhosis development is likely less pronounced than in AIH without
a primary diagnosis of PSC [115,116]. It is thus important to be
aware of the risk of side effects and to assess treatment response.
From a mechanistic perspective, it is interesting that co-occur-
rence of PSC and PBC features rarely occurs. There is no evident
explanation, yet it is interesting to note that for a genetic risk
locus where a shared effect between PSC and PBC has been
reported (1p36, see Table 1), the effect (odds ratio) of the risk var-
iant goes in the opposite direction in PSC compared with PBC.
Management – treatment or surveillance?

The almost parallel publication of the European Association for
the Study of the Liver (EASL) and American Association for the
study of Liver Diseases (AASLD) practice guidelines for PSC in
2009 and 2010 [114,117] provided comprehensive directions
3 vol. 59 j 571–582
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for the diagnosis and management of PSC patients (Clinical Points
1 and 2). In most aspects, the guidelines agree (reviewed else-
where [2]), yet the discrepancy on principle directions for pre-
scription of UDCA caused a still ongoing discussion on which
one of the conclusions was most appropriate. The EASL guidelines
concluded that limitations in available data did not yet allow a
specific recommendation for the general use of UDCA in PSC.
The same guidelines opened up to the use of moderate dose
UDCA (15–20 mg/day) in individuals with strong family history
of colorectal cancer, previous colorectal neoplasia or longstand-
ing extensive colitis, not for the improvement of liver disease,
but to prevent neoplasia. The AASLD guidelines unambiguously
recommend against the use of UDCA in adult PSC patients.

Clinical Points 2. Treatment of primary sclerosing 
cholangitis [114, 117] 

• The role for ursodeoxycholic acid (UDCA) in PSC 
is currently debated. There is no definite evidence 
that UDCA improves survival or is efficacious in the 
prevention of colorectal or biliary neoplasia. Practice 
varies, however, between centers. It has been the 
tradition of the current authors to be reluctant to start 
PSC patients on UDCA 

• Although not evidence-based, PSC patients with 
features overlapping with those of autoimmune 
hepatitis should be considered for therapy with 
corticosteroids and/or other immunosuppressive 
agents. Therapy should be individualized and adjusted 
according to response and the risk of side effects

• In PSC patients with dominant bile duct strictures 
causing biochemical and/or clinical signs of 
cholestasis, endoscopic dilatation with or without 
stenting is recommended. Short-term (2-3 weeks) 
stenting is favored by many, including the current 
authors. A multicenter, prospective, randomized 
intervention trial to compare the efficacy of single 
session balloon dilatation and short-term stenting is 
currently ongoing. Prophylactic antimicrobial therapy is 
recommended during the procedure 

• Liver transplantation is a curative treatment modality 
in PSC patients with end-stage liver disease and in 
selected cases with severe symptoms of cholestasis. 
Transplantation may also be considered in patients 
with evidence of biliary epithelium dysplasia
Bile acid therapy

We will not re-review the literature that led to the slightly differ-
ing conclusions on UDCA therapy in PSC [2], but rather mention
some subsequent reports that have elaborated on the complexity
of the problem. Serum alkaline phosphatase (ALP) level is a long
established risk factor for disease progression in PSC [118]. Genetic
risk factors for PSC (i.e., FUT2) overlap with genetic factors influ-
encing serum levels of ALP in healthy individuals [119,120], but
how these factors are involved in the prognostic importance of
ALP has not been studied. In a retrospective analysis of 139 PSC
patients [121], those receiving UDCA and achieving an improve-
ment of ALP to <1.5x ULN had significantly longer survival without
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end points compared with patients without ALP normalization. In
series involving patients from previous UDCA treatment trials, the
association between ALP normalization and PSC behavior seemed
to be independent of UDCA administration [122,123]. The inter-
pretation of all these data requires some caution; in principle both
UDCA administration and PSC behavior seem to independently
influence ALP levels. At present, it cannot be claimed that ALP nor-
malization in the context of UDCA administration is representative
of drug efficacy. Accounting for FUT2 related biology, there is a
strong basis for further studies to clarify these mechanisms that
seem to converge on a robust representative of disease intensity
in PSC, potentially also amendable by means of bile acid therapy.

The effects of high-dose UDCA (28–30 mg/kg/day) treatment
on the bile acid pool warrant reflections [124]. In PSC patients
receiving such treatment, there was both an expansion and com-
positional changes of the total bile acid pool. While only the
expansion seemed to associate significantly with adverse out-
comes (progression to cirrhosis, development of varices, cholan-
giocarcinoma, liver transplantation, and death), the increased
proportion of lithocholic acid found in this trial is theoretically
harmful. It needs to be noted that in another study of bile acid
pool compositional effects from UDCA treatment, only UDCA
itself was significantly enriched [125]. Nevertheless, given the
disease distribution in PSC, predominantly affecting the ‘‘proxim-
ities of the enterohepatic circulation’’, the influence of bile acid
treatment, or treatment aiming at modifying the regulation of
bile acid homeostasis (e.g., FXR agonists), needs further consider-
ation. Importantly, the bile acid pool serves not only as a poten-
tial ‘‘toxic medium’’ to epithelial surfaces, but profoundly
interacts with the metabolism and immune function via effects
on the gut microbiota [56,126,127]. There is growing interest in
the influence of this interaction on IBD and liver diseases [128–
130], and it may be wise to advice for future clinical trials in
PSC to include assessments of bile acid composition and metage-
nomic parameters in the basic study readout [51].

Antibiotics and beyond

Of the many approaches currently explored for treatment of PSC,
antibiotics most clearly link up with the intersections between
inflammation, bile acid homeostasis, and gut microbiota. Distin-
guishing between non-absorbable (i.e., local effects on the gut
microbiota only) and absorbable (i.e., including a portal and sys-
temic anti-microbial effect) is reasonable. Non-absorbable antibi-
otics like vancomycin exert effects on systemic immune function,
e.g., by influencing regulatory T-cell subsets. In a trial of 14 pedi-
atric patients with PSC [131], significant improvement in hepatic
biochemistries was observed, paralleling increased levels of reg-
ulatory T-cells. Regarding absorbable antibiotics, improvements
in hepatic biochemistries have also been observed for metronida-
zole [132], azithromycin [133] and minocycline [134], altogether
suggesting that liver affection in PSC may be influenced by anti-
microbial therapies. We anticipate that upon the further charac-
terization of metagenomic components in PSC pathogenesis
(Fig. 3), specific attempts to manipulate these (by antibiotics, pro-
biotics, prebiotics or dietary means) will be made.
The paradox of immunosuppression

The strong HLA association along with multiple shared risk loci
between PSC and prototypical autoimmune diseases (Table 1),
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more pronounced than for IBD, strongly suggests that PSC patho-
genesis has an ‘‘autoimmune’’ component [2]. Antibodies against
biliary as well as colonic epithelial cells have been reported, and
the preferential usage of particular T-cell receptor gene segments
of hepatic T-cells also suggests the existence of tissue-specific
antigens in PSC pathogenesis. In spite of this, no immunosuppres-
sive drug tested to date has shown to significantly improve clin-
ical outcomes. Of particular interest are cyclosporine A (CsA) and
tacrolimus that exert immunosuppressive actions via inhibition
of calcineurin, which again is indispensable for cytokine induc-
tion, interleukin 2 (IL2) in particular, upon engagement of the
T-cell receptor. Genetic associations in PSC are reported both at
the IL2 and IL2 receptor alpha (IL2RA) loci (Table 1), directly sug-
gesting an involvement of the IL2-signaling pathway in PSC path-
ogenesis. Treatment trials show some influence from CsA on IBD
activity in PSC [135], and from tacrolimus on hepatic biochemist-
ries [136], but no effects on clinical end points are evident and
side effects preclude a broad application. Effects of CsA and
tacrolimus may also differ, at least concerning IBD in the context
of PSC. This was recently underscored by the finding of enhanced
IBD activity after liver transplantation for PSC in patients receiv-
ing tacrolimus and mycophenolate compared with patients on
CsA and azathioprine [137]. Mechanistic elucidation of the
immunological consequences of PSC susceptibility loci in vivo
needs to be performed before rational application of immunosup-
pression can be drafted on the basis of genetics.

Antifibrotic therapy

To some extent, it may be argued that present clinical trials in PSC
have concerned patients in whom fibrotic lesions are already mani-
fested and efficacy of immunosuppressive and antibiotic treatment
cannot be expected. Antifibrotic treatment strategies in preparation
largely build on studies on the Abcb4�/� mouse model. Some effects
converge on nuclear receptor signaling pathways, including TGR5,
FXR, and peroxisome proliferator activated receptor gamma (PPARc)
[26,138]. So far, no nuclear receptor has been identified as a target of
nor-UDCA [139]. Other components of the Abcb4�/� fibrogenesis are
currently being targeted in treatment trials, e.g., lysyl oxidase-like 2
[140] by monoclonal antibody GS6624 (http://clinicaltrials.gov/ct2/
show/NCT01672853). Up to the point where a diagnosis of PSC may
be made at a pre-clinical, pre-fibrotic stage, therapies derived from
this model may hold promise.

Cholangiocarcinoma surveillance

The most challenging aspect of PSC follow-up remains the unpre-
dictable occurrence of cholangiocarcinoma. Management and
surveillance strategies are reviewed elsewhere [89], and novel
aspects predominantly derive from proteomic and epigenetic
approaches. In serum, a proteomic study report the potential
diagnostic improvement achieved by including serum leucine-
rich a-2-glycoprotein (LRG1) and IL6 in prediction models for
cholangiocarcinoma [141]. In bile, a panel of 22 peptides detected
in a screening panel was shown to discriminate between cholan-
giocarcinoma and PSC with an area under the receiver operating
characteristics curve of 87% [142], correctly detecting 8 out of 10
cases of cholangiocarcinoma complicating PSC. In urine, a similar
approach led to comparable results [143], with correct classifica-
tion of 10 out of 10 cases of cholangiocarcinoma arising in the
context of PSC. Based on experience in other cancers and preli-
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minary data [144,145], epigenetic markers are also potential bio-
markers for early cholangiocarcinoma development. This
accounts for genes affected by CpG hypermethylation [146], as
well as cholangiocarcinoma-associated serum micro RNA pro-
files. The prospective clinical utility of all these approaches is
presently under study at several sites and it is likely that some
approaches will be incorporated in patient management in the
near future. This will ease timing for liver transplantation and
thus ultimately assist in reducing cholangiocarcinoma-related
deaths in the PSC population.

Liver transplantation

Due to the lack of effective medical treatment, liver transplanta-
tion remains the principle therapeutic option in PSC. The present
literature on the high risk of acute cellular rejections in PSC follow-
ing liver transplantation and PSC recurrence in the allograft was
recently reviewed elsewhere [147]. One key ongoing discussion
relates to whether the presence of an intact colon in PSC patients
with IBD influences disease recurrence, but due to the lack of
reproduction so far [148], these data are only useful for pathophys-
iological considerations and should not prompt pre-transplanta-
tion colectomy on a general basis. In our center, biliary
epithelium dysplasia by brush cytology is considered an indication
for liver transplantation in PSC, but this practice has not been pro-
spectively evaluated. Also, in highly selected cases of hilar cholan-
giocarcinoma, liver transplantation in conjunction with neo-
adjuvant chemotherapy and radiation should be considered
[149,150], in particular since patients with PSC may present with
favorable tumor characteristics compared with cholangiocarci-
noma outside of the context of PSC [151]. Further studies are
needed to clarify the utility of liver transplantation for intrahepatic
cholangiocarcinoma [152], which is presently advised against. In
areas where prioritizations for liver transplantations are made on
the basis of model of end-stage liver disease (MELD) assessments,
issues related to malignancies in PSC add to an already ongoing dis-
cussion on exception criteria for patients with PSC [153].
Conclusions

There is a growing interest in the hepatological community to
resolve the main challenges associated with PSC. Ongoing efforts
to delineate pathogenesis are of key importance, since they ulti-
mately may guide the rational management of remaining clinical
challenges, i.e., early diagnosis of PSC in patients with IBD, early
diagnosis of cholangiocarcinoma in PSC, determining surrogate
markers for disease progression and disease activity; and finally,
treatment modalities that significantly influence clinical outcome.
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