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Abstract 

The imaginary Verma modules (IVM) as an alternative to the Verma modules are 
introduced. The properties of such modules and their irreducible quotients are given 
including the criterion of irreducibility of the IVM, their composition structure and mul­
tiplicities of weights in the IVM and in the irreducible quotients. 

1 Introduction 

Let L be an affine Lie algebra over C, H be a Cartan subalgebra of L [1]. L-module V 
is called weight module if v = Ea v,\' where 

.\en• 

'V,x = {v E Vlhv = A(h)vVh E H}. 

While these modules are natural and important in the applications still there is no 
complete classification of irreducible weight modules even in the case of finite-dimensional 
simple Lie algebras except in case of sl(2) which is well-known. Among the weight L­
modules the most famous are Verma modules, i.e. modules generated by vacuum or 
highest vector, and integrable one, i.e. such that the generators f!i, fi of L ad !<wally 
nilpotently on L. The integrable irreducible quotients of Verma modules are called 
standard modules. The genberator c of the centre of L acts on these modules except 
the trivial one as a non-zero scalar. All another irreducible integrable L-modules with 
finite-dimensional weight spaces are called loop modules and have a trivial action of the 
element c. In the same time there are irreducible integrable L-modules with all infinite 
dimensional weight subspaces and non-trivial action of c constructed by V. Chari and 
A. Pressley [2]. 

1 Kiev University (Kiev, Ukraine, USSR). 
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In the present article we introduce a new family of weight modules which are called 
the imaginary Verma modules. They never have a vacuum vector and they are not an 
integrable. Moreover the irreducible quotients of such modules have the both finite and 
infinite dimensional weight subspaces together with any scalar action of c. 

As a simplest case we consider the algebra L = A~1), using the following convenient 
realization. Let L' = s/(2, C) with standard basis e, J, h, where 

[e,/] = h, [h, e] = 2e, [h,J] = -2/. 

Consider the algebra of Laurent polynomials C[t, t-1] and the loop algebra 

L = L'®C[t,C1] 

with Lie bracket 

for any x, y E L' 

and integer m, n. We will consider L' as the subalgebra of L. Let L denote the one 
dimensional central extension of L: 

where [x ® tn,z] = 0 for all xEL', nEZ and 

[x ® t\ y ® tm] = [x, y] ® tm+n + nOm+n,o(x, y)z, 

(,) denotes the non-singular bilinear form on L'. Now the algebra L = A~1 ) will be the 
extension of L by derivation d: 

L = L E9 Cd = sl(2, C)® C[t, C 1] E9 Cz E9 Cd. 

where [z,d] = 0, [d, x ® tn] = nx ® tn. 
Denote by~ the root system of the affine Lie algebra L, and let 1r = {a, /3} be some 

basis of~' o =a+ /3, ~im = { kolk E Z \ {0}} the set of imaginary roots in ~- Set 

P = P1r,(3 = { -/3 + kolkEZ} U{kolkEN}. 

Then ~ = P U -P and P n -P = 0. 
We have a root space decomposition of L: 
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with Cartan subalgebra H =ChEBCzEBCd and root subspaces Lrp ={X ELI[h,X] =<p(h)X 
for all hE H}. In our case dim Lrp = 1 for all <p E ~- Choose the following basis Xrp in 
each subspace Lrp, <p E ~: 

XfJ+k6 = f ® tk+1 , X-fJ+k6 = e ® tk-I, k E Z, 

n E Z \ {0}. 

Then for any integer k, m we obtain 

{ 0, m+ktfO 
[Xk6' Xm6] = 2kz, m + k = 0, 

[X~c6, XfJ+m6] = -2XfJ+(m+k)6, [X~c6, X-fJ+m6] = 2XfJ+(m+k)6, 

_ { -X(m+k)6, m + k :;f 0 
[XfJ+k6' X-fJ+m6] - -h + (k + 1)z, m + k = 0, 

2 The imaginary Verma modules 

Consider the following subalgebras in L: 

L+ = L: Lrp , L_ = L: Lrp . 
rpEP rpE-P 

Then we have decomposition L into direct sum 

L = L+ EB H EB L_ . 

Let V be a weight L-module. We will denote by P(V) the set of all J.t E H* such that 

v~:~o. 

Definition 1. Let A E P(V). A non-zero element v E V~ is called an imaginary vacuum 
vector of weight A if L+ v = 0. 

Now we can construct the universal L-modules generated by imaginary vacuum vector 
analogically to Verma modules. 

Denote by U(L) the universal enveloping algebra of L. Let A E H*. Define on a 
complex field C the structure of an one-dimensional H EB L+-module with action of 

HEBL+ 

(h+x)1 =A(h)·l. 

Consider the induced L-module 

M(A) = U(L)®C 

U(H EB L+) 

associated with 1r, {3, A. 
Obviously, the module M(A) is weight module and M(A)~ = 1 ® C ~C. 
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Proposition 1. 

1. M(..\) is free U(L- )-module 

2. M(..\) has the unique maximal L-submodule. 

3. P(M(>.)) ={A+ k/3 + mhlk,mEZ,k>O} U {A- nhln~O}. 

4. dimM(A)..\+ktJ+m.s = oo, k>O. 

. - { 1, n=O 
dtmM(A)..\-niJ = P(n), n>O, 

where P( n) is the number of partitions of n. 
The proof of the proposition follows from the definition of M(A). 
The module M(A) will be called the imaginary Verma module (IVM). 
Denote by N the unique maximal submodule in M(A) and by L(A) the irreducible 

quotient M(A)jN. Certainly, the module L(A) is weight module with imaginary vacuum 
vector. 

Suppose we have some weight £-module V generated by imaginary vacuum vector v 
of weight A. Then there is a unique epimorphism f: M(A)-+ V such that f(l ® 1) = v. 
It follows from the universal properties of tensor product. Using this fact we can easily 
obtain 

Proposition 2. Let V be an irreducible weight £-module with imaginary vacuum 
vector of weight A. Then 

v ~ L(A). 

Now we establish the criterion of irreducibility of module M(A). 

Theorem 1. The module M(A) is irreducible if and only if A(z) 1= 0. 

For proving this theorem we will need some previous calculations. 

Lemma 1. 

1. M(A)..\-n5 = L(A)..\-n5 for all n>O if and only if A(z)#O. 

2. L(A)..\-ncS = 0 for all n>O if and only if A(z)=O. 
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Proof. Fixed the integer n > 0 and consider the weight subspace M(.\)-\-n6· The basis 
of this vector space consists of the elements x~kt6 ... x:km6 ® 1, where L:~tliki = n, 

kt < .. . <km. 
Assume that there exists a non-zero element uEN n M(.\)-\-nc5· Then 

u= 
lrt< ... <lrm 

lrt+···+lrm=n 

with complex coefficients akJ. ... ,km,l1 , ••• ,lm· Choose the maximal number km among all km 
and maximal lm among all lm with the same km. Consider in u only monomials 

and repeat the same procedure as above only among km-1 and lm-1· Then consider only 
monomials 

Continue we obtain the unique monomial 

Let w = xf:5 ... xi:su EM(.\),\. Then 

m 

w -a- - - - (2.\(z))Tt+ ... +Tm IT k~i . [.I 
- kJ, ... ,km,lt,••••lm I 1 ' 

i=l 

But, M(.\),\ n N = 0 and wEM(.\),\ n N. Therefore, w = 0 and .\(z) = 0. It proves that 
if .\(z) =J 0 then M(.\h-ns = L(.\),\-n6 for all n > 0, and thus if L(.\h-ns = 0 for all n >0 
then .\(z)=O. Now, assume that .\(z)=O and consider an arbitrary element 

Let Y E U(L) and Yu E M(.\),\. But, Y is the linear combination of the elements 
x:1

16 ... x::s and each of them acts trivially on u. Therefore, Yu = 0 and u EN. We 
obtain that M(.\)-\-nc5 C N for all n > 0 and therefore L(.\)-\-nc5 = 0 for all n > 0. It 
completes the proof of lemma. 

Lemma 2. Let n ~ 1 and M(.\)-\+n.B = L(.\)-\+n.B· Then M(A)-\+n.B+k6 = L(.\)Hn,B+k6 
for all integer k. 
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Proof. Let k > 0. Suppose that there exists a non-zero element u E M(..\)A+n.B+k5 n 
N. Then w = x_HU =1- 0 by Poincare-Birkhgof-Witt theorem and wE M(..\)..\+n.B n N. 
Therefore, we have a contrudiction. Now assume that k < 0 and u E M(..\)A+n.B+k5 n N 
again. Then u is the finite linear combination of elements 

with coefficients ak1 , ..• ,kn11 , ... ,1. E C, where kt + ... + kn- lt ... -la = k and kt ~ ... > kn. 
Consider the element X_HuEM(..\)..\+n.B n N. Show that X_Hu =f. 0. Indeed, 

X-k5U = E akJ, ... ,kn,h, ... ,l, [x.B+kl6 ... x.B+kn6X-k.sX-h5 ... X-1,5 Q91 
n 

+ L X,a+k1 5 · · · X.a+(k;-k)6 ... X.a+kn6X-h6 ... X_z • .s Q91) (1) 
i=l 

Let k1 be a maximal among all k1 in u. Then we have in (1) the elements of kind 

and, therefore, X-k6U =f. 0. We get a contridiction again. Lemma is proved. 

Lemma 3. For any integer m~1 and any nonzero element uEM(..\)A+m.B there exists 
integer n > 0 such that X-.a-n.su =f. 0. 

Proof. 1) Suppose that u = Xfj ® 1. Then for any n > 0 

2) Let u =f. XJ3 ® 1. Then u is a finite linear combination of the elements 

i = 1,N for some Nand 

m tJ 

""' ki. = ""' zi. L..J J L..J J' 
j=l j=l 

for all i. Denote 

m 

n(i) = 2L k}, 
j=l 

n = max n(i). 
I$iS,N 
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Show that X-fJ-nSU =/:- 0. Consider the number i such that Ej=J.1 k) > 0. Such number 
exists because otherwise k1 = ... = k~ = 0 = l{ = ... = l~ for all i and u = Xfj ® 1. Then 

X-{3-ns(XfJ+klS ... Xp+k:,.sX-tis ... Xt~stg)l) = 
= X{J+k~S ... XfJ+k!,._1 sX(ki,.-n)SX-l~S ... X-t~s®l +... (2) 

We have k~ - n < 0 and if k) > k~ then of course k; - n > k~ - n. Moreover, 

and thus k~ - n < -z; for any j = 1, s. It proves that k~ - n is the minimal coefficient 
in (2). Using this fact it is easy to complete the proof of lemma. 

Proof of the theorem. Let M(-\) be the irreducible. Then M(-\) 11 = L(-\)11 for all 
J.LEH*. Therefore, -\(z) =/:- 0 by Lemma 1. Let -\(z) =/:- 0. Then 

M(A).x-ns = L(-\h-ns 

for all n ~ 0. It implies that 

M(-\).x+fJ = L(A)A+fJ 

by Lemma 3 and 

M(-\)A+fJ+kS = L(-\h+fJ+kS 

for all integer k by Lemma 2. 

We can continue by induction. Therefore, M(,\) 11 = L(-\)11 for all J.LEH* and M(-\) = 
L(-\), i.e. M(-\) is irreducible. The theorem is proved. 

3 The irreducible quotients of IVM 

H -\(z) =/:- 0 then M(,\) = L(,\) and the structure of the irreducible module L(-\) is given 
by Proposition 1. Further, we will assume that -\( z) = 0. We will denote such functional 
by Ao. 

Consider in L the vector subspace 

L+ = E L'{J 
'fJEPUt::..im 

and commutative subalgebra 

L- = E LVJ. 
'fJE-P\Aim 

Then we have the following decomposition of L as the vector space 

L = L+EIJHEIJL-. 
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Definition 2. Let V be a weight L-module, >. E P(V). A nonzero element v E V.\ is 
called a special imaginary vacuum vector (s.i.v.v.) of weight >.if L+v=O. 

Let >.0 E H*, >.o( z) = 0. Define on C the structure of H E9 L +-module, where 

(h + X)1 = >.o(h) · 1 

for all hEH, XEL+. 
Consider the induced L-module 

M(>.o) = U(L) Q9 C. 
U(H(l)L+) 

The definition implies the following properties of M(>.0 ). 

Proposition 2. 

1. M(>.o) is weight L-module generated by s.i.v.v. 1 ® 1. 

2. M(>.o) has a unique maximal submodule N. 

3. There exists an epimorphism f: M(>.o)-+M(>.o). 

4. Let V be an irreducible weight L-module with s.i.v.v. of weight >.0 • Then 
v -:::!.M(>.o)j fv ':::!. L(>.o). 

5. P(M(>.o)) = {>.o + nf3 + k8lktn E Z, n > 0} U {>.o}, dimM(>.o).\o+n/3+k6 = oo, n > 1, 
dimM(>.oho+/3+k6 = dimM(>.o).\0 = 1. 

The main result of this chapter is the following. 

Theorem 2. (i) M(>.o) is irreducible if and only if >.0(h) =f. 0. 

(ii) H >.o(h) = 0 then L(>.o) is trivial one-dimensional module. 

Lemma 4. Let n ~ 1 and M(>.o).\o+n/3 = L(>.oho+n/3. Then 

M(>.o).\o+n/3+k6 = L(>.o).\o+nP+k6 

for all integer k. 

Proof. Fixed k E Z. Suppose that there is a nonzero element u E M(>.oho+nP+k6 n N. 
Then u is the finite linear combination of the elements 

X,8+k16 · · · X,8+km6 @1, 

where L:f:!:1 Si ki = k, L:f:!:1 Si = n, kt < ... < km. 
One can check that w = X_Hu =f. 0. Therefore we have a nonzero element in 

M(>.oho+n/3 n Nand get a contrudition. Lemma is proved. 
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Lemma 5. Let .\0 ( h) =f. 0. Then for any integer n ~ 1 and any nonzero element 
u EM( Ao )..\o+nP there exists an integer p such that X-f3+p6U =f. 0. 

Proof. Let 

where ki E Z, Si EN, Ef!,1 Si = n, Ef!,1 siki = 0, k1 < ... < km. 

Consider in u a sununand 

where for any i ki is minimal among all ki and Si is maximal among all Si in the elements 

1. Suppose that M = 1. Then u = Cl.{),nX3®1 and X-J1+p6U =f. 0 for any p > 0 if n > 1 
and X_pu =f. 0 if n = 1. 

2. Suppose that M> 1 and SM + SM- 1 >2. For p =f. -ki, i = 1,M we have 

M M-i 

X-J1+p6Umin = -2 LSi [ L Si+ix;~k16 ... x;~k;6 . .. 
i=1 j=1 

X X ii+j-1 XiM 1 1 ( 1)xs1 
· · · P+(k;+k;+;+p)6 J1+'k;+;6 • • • P+'kM6 ® + 2 8 i - P+'k16 • ·• 

X i;-2 x x•M 101 1] 
• • · P+k;6 P+(2'k;+p)6 · · · P+kM6 101 • 

(3) 

It is easy to see that X -fl+pSU =f. 0. 

3. Let M> 1 and SM = SM-1 = 1. Then 

and in (3) we have a following element 

Denote 

A= a~: r - - 11 ll:lo···•II:M,.slo···•.SM-2• , ' 
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Suppose that X-f3+p6U = 0 for some integer p-:/: -ki, i = 1, M. Then we have an 
equality 

{4) 

Set p = -kM and assume that X-fJ+p6U = 0. Then we obtain the following equality 

{5) 

Comparing {4) and {5) we get 

.Xo(h)A = 0 

and thus A = 0. Contrudiction. Therefore, there exists an integer p such that 
X-f3+p6U -:/:0. Lemma is proved. 

Corollary 1. If .X0 (h)-:/: 0 then M(Ao) is the irreducible. 

It follows immediately from Lemmas 4 and 5. 

Lemma 6. Let .Xo(h) = 0 Then N = E~J~.\o M(.Xo)~J. 

Proof. Fixed n E Z and consider the element w = XfJ+n6 ® 1. Let Y E U(L) and 
Y wE M( Ao ).x0 • It is easy to check that in this case Y w = 0 because of .Xo( h) = 0. It means 
that 

L M(.Xoho+.B+n6 C N 
nEZ 

and therefore N = E~J~Ao M(.Xo). Lemma is proved. 

Proof of the Theorem 2. On one hand if .X0(h) -:/: 0 then M(.Xo) is irreducible by 
Corollary 1. On the other hand if .X0(h) = 0 then N-:/: 0 by Lemma 3 and thus M(.Xo) is 
reducible. It completes the proof of (i). Point (ii) follows directly from Lemma 3. 

4 The imaginary Verma modules M(Ao) 

We will assume that .X0 ( h) -:/: 0. 
Denote by N the maximal submodule in M(.X0 ). Then M(.Xo)/ N = L(.X0 ) ~ M(.X0 ). 
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Lemma 7. The module N is generated by subspace 

00 

L:M(-\o)..\0 -nS · 
n=t 

The proof is obvious. 

Denote by T(-\0 ) the subspace of all imaginary vacuum vectors of M(-\0 ). 

Lemma 8. L~=O M(,\o)..\0 -nS C T(-\o). 

Proof. If u E M(-\o)..\o-nS then Xksu = 0 for all k > 0. Therefore, u E T(-\o) and 
M(-\o)..\0 -nS C T(-\o) for all n~O. Lemma is proved. 

Consider an arbitrary proper submodule N in M(-\o) and denote 

[N] = N n L~=t M(-\oho-nS. 

Lemma 9. [N] =f. 0 and N is generated by [N] as £-module. 

Proof. If uEN then 0 =f. YuEl:~=t M(-\oho-nS for some YE U(L) by Lemma 3. Let 
N' be a submodule of N generated by (N] and suppose that N' =f. N. Then there exists 
a weight element u E N \ N'. Let u be an image of u in a factormodule N IN'. Then u is 
the finite linear combination of the elements 

by Lemma 7, where k~ +· · ·+kt ~ kf+I +· · ·+k;~~ for all i. 
Denote ai = x-k~S ... x-k:.s ® 1. Consider the submodule N' of N generated by [N] 

• 
and all elements X-k1S ... X-knS ® 1 such that 

n 

E kj ~ k: + ... + kJ1 

j=t 

except a1 . Then 

N j N n N' c N j N' 

and u has a nonzero image u in N IN n N'. Let lit be an image of at in N IN'. Then at 

is the s.i.v.v. by Lemma 8. The module generated by lit is irreducible by Theorem 2 and 
contains u. Therefore there exists YeU(L) such that 

00 

0 =/:- Yu =litE L:(N I N'ho-kS. 
k=t 
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But, YuEN/N n N' and thus 
00 

~(N/NnN')>.o-ks -10. 
k=l 

We have a contradiction. Therefore N' = N. Lenuna is proved. 

Next theorem describes all imaginary vacuum vectors of M(.X0 ). 

Theorem 3. T(.Xo) = L:~=O M(.Xo)>.0 -ns. 

Proof. Denote T = L:~=o M(.Xoho-nS. Then TcT(.Xo) by Lenuna 8. Let uET(.Xo) and 
u ¢T. Consider the submodule N generated by u. Then NnT=O. But, it's impossible 
by Lemma 9. Therefore, T = T(.X0 ). The theorem is proved. 

Corollary 2. 1) Let .X0 ,A~EH*, .X0 (z) = .X~(z) = 0. Then 

Honl(Af(.X~),Af(.Xo)) #0 

if and only if A~ = Ao - nh for some integer n ~ 0. 

2) dimHon1(M(.X0 - n6),M(.X0 )) = P(n). 

Consider the composition structure of Af(.X0 ). 

Lemma 10. Every irreducible factor of Af(.X0 ) has the imaginary vacuum vector of the 
weight .X0 - nh for some integer n~O. 

Proof. Let N1 , N2 be the submodules of Af( .X0 ), N2 is the proper submodule of N1 and 

the factor Nt/N2 is irreducible. Then [N1] "I [N2] and (Nt/N2)>.o-nS-/:- 0 for some integer 
n ~ 0 by Lenuna 9. Therefore, there exists an imaginary vacuum vector in N1 / N2 by 
Theorem 3. 

Theorem 4. (i) M(Ao) has an infinite composition series. 

(ii) The irreducible modules L( Ao - nh), n ~ 0 completely exhaust all irreducible factors 
of the composition series. 

Proof. The point (ii) follows immediately from Lemma 10. Denote by Ni, i ~ 0 L­
submodule of Af(.Xo) generated by the subspace L:k:i M(..\o)>.o-kS. 

Here N0 = Af( .X0 ), N1 = N. Then 

Ni / Ni+I ~ P( i)L( Ao - i6) 

and we can easyly complete the construction of the series. The Theorem is proved. 
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