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Abstract

The imaginary Verma modules (IVM) as an alternative to the Verma modules are
introduced. The properties of such modules and their irreducible quotients are given
including the criterion of irreducibility of the IVM, their composition structure and mul-
tiplicities of weights in the IVM and in the irreducible quotients.

1 Introduction

Let L be an affine Lie algebra over C, H be a Cartan subalgebra of L [1]. L-module V
is called weight module if V= @ V), where
AEH*

Vi = {v € V|hv = N(h)vVh € H} .

While these modules are natural and important in the applications still there is no
complete classification of irreducible weight modules even in the case of finite-dimensional
simple Lie algebras except in case of sl(2) which is well-known. Among the weight L-
modules the most famous are Verma modules, i.e. modules generated by vacuum or
highest vector, and integrable one, i.e. such that the gencrators ¢;, f; of L act locally
nilpotently on L. The integrable irreducible quotients of Verma modules are called
standard modules. The genberator ¢ of the centre of L acts on these modules except
the trivial one as a non-zero scalar. All another irreducible integrable L-modules with
finite-dimensional weight spaces are called loop modules and have a trivial action of the
element ¢. In the same time there are irreducible integrable L-modules with all infinite
dimensional weight subspaces and non-trivial action of ¢ constructed by V. Chari and
A. Pressley [2].
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In the present article we introduce a new family of weight modules which are called
the imaginary Verma modules. They never have a vacuum vector and they are not an
integrable. Moreover the irreducible quotients of such modules have the both finite and
infinite dimensional weight subspaces together with any scalar action of c.

As a simplest case we consider the algebra L = Agl) , using the following convenient
realization. Let L' = sl(2, C) with standard basis e, f, h, where

[e,fl=h,  [he]=2¢, [hf]=—

Consider the algebra of Laurent polynomials C[t,¢~!] and the loop algebra
L=r'@cClt,t™]

with Lie bracket
[t®t"yet"]=[z,y]®t"*"  for any z,yeL’

and integer m,n. We will consider L' as the subalgebra of L. Let L denote the one
dimensional central extension of L:

L= f}EBCz,
where [t @ t",2] =0 for all z€ L', n€ Z and
[m ®t"y® tm] = [:E, y] Q™" + n6m+n,0(x, y)z’

(,) denotes the non-singular bilinear form on L’. Now the algebra L = Agl) will be the
extension of L by derivation d:

L=L®Cd=sl2C)®C[t,t']|®CzaCd.

where [z,d] =0, [d,z @ t"]| = nz @ t".
Denote by A the root system of the affine Lie algebra L, and let = = {a, §} be some
basis of A, § = a + 8, A™ = {ké|k€Z \ {0}} the set of imaginary roots in A. Set

P =P,5={-p +kélkeZ}| J{ks]keN}.

Then A=PU—-Pand PN—-P=0.

We have a root space decomposition of L:

L=Ho ) L,
pEA




with Cartan subalgebra H = ChpC26HCd and root subspaces L, ={X € Ll[iz, X]=p(h)X
for all A€ H}. In our case dim L, = 1 for all ¢ € A. Choose the following basis X, in
each subspace L, p € A:

Xorws = O, X pus=e®t"!, keZ,
X = het', neZ\{0}.

Then for any integer k, m we obtain

_J 0, m+k#0
[Xk5,Xm5]—{ 2kZ, m+k=0,

[Xks, Xp4ms) = —2Xps(m+k)6 » [ Xk, X-pims] = 2Xp4(m+k)s »

_ —X(m+k)5, m + k # 0
[Xﬁ+k6,X—ﬁ+m6] - { —h+ (k + 1)2, m+k=0,

2 The imaginary Verma modules

Consider the following subalgebras in L:

Ly=YL,, L-=) L.
p€EP p€~P

Then we have decomposition L into direct sum
L = L+ @ H @ L.. .

Let V be a weight L-module. We will denote by P(V) the set of all u € H* such that
V. #0.

Definition 1. Let A€ P(V). A non-zero element v €V, is called an imaginary vacuum
vector of weight A if L, v=0.

Now we can construct the universal L-modules generated by imaginary vacuum vector
analogically to Verma modules.

Denote by U(L) the universal enveloping algebra of L. Let A € H*. Define on a
complex field C the structure of an one-dimensional H @ L;-module with action of
Ho L,

(h+z)1 =A(h)-1.
Consider the induced L-module
M) =uIL)RC
UH®Ly)

associated with =, 8, A.
Obviously, the module M()) is weight module and M()\), =1® C ~ C.
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Proposition 1.
1. M()) is free U(L-)-module
2. M()) has the unique maximal L-submodule.
3. P(M(\) = {\ + kB + mé|k,m€ Z,k >0} U {\ — né|n>0}.
4. dim M(A),\+;,p+m5 = 00, k>0.

1, n=0

dim M(M)s-np = { P(n), n>0

where P(n) is the number of partitions of n.

The proof of the proposition follows from the definition of M (A).

The module M()) will be called the imaginary Verma module (IVM).

Denote by N the unique maximal submodule in M()) and by L()\) the irreducible
quotient M(A)/N. Certainly, the module L()) is weight module with imaginary vacuum
vector.

Suppose we have some weight L-module V generated by imaginary vacuum vector v
of weight A. Then there is a unique epimorphism f : M()A)—V such that f(1®1) = v.
It follows from the universal properties of tensor product. Using this fact we can easily

obtain

Proposition 2. Let V be an irreducible weight L-module with imaginary vacuum
vector of weight A\. Then

vV~ L()).

Now we establish the criterion of irreducibility of module M ().

Theorem 1. The module M()) is irreducible if and only if A(z) # 0.
For proving this theorem we will need some previous calculations.
Lemma 1.

1. M(A)r=ns = L(A)r-ns for all n>0 if and only if A(z)#0.
2. L(A)r—ns = 0 for all n>0 if and only if A\(z)=0.




Proof. Fixed the integer n>0 and consider the weight subspace M(A\)x-ns. The basis
of this vector space consists of the elements X_,,ld X 2.5 ® 1, where 300, Lk = n,

kh<...<kn.
Assume that there exists a non-zero element u € N N M(A)r—ns. Then

— h !
u = Z akl,---.km.lly--n’mX—kl& oo X-"l':mﬁ ® 1

kl <...<km
k1+...+km=n

with complex coefficients ax,,... k.. 1 ,....0m . Choose the maximal number k,, among all k,
and maximal [,, among all l,, with the same k,,. Consider in u only monomials

X5 X @1

and repeat the same procedure as above only among k-1 and l,,—1. Then consider only
monomials

hh Im—2 m—l
X—hb‘ . & km— 26X—k,,. ) -k,,.6® 1.

Continue we obtain the unique monomial

L T,,.
X—k15X—k25 —l_cmﬁ ® 1.

Let w = X2, ... XI" ue M()\)x. Then

W = gy, hd (CA2)) I T RS T

i=1

But, M(A\)» NN = 0 and w € M(\)» N N. Therefore, w = 0 and A(z) = 0. It proves that
if A(z) # 0 then M(A)x—ns = L(A)r—ns for all n>0, and thus if E(/\),\_ng =0foralln>0

then A(z)=0. Now, assume that A(z)=0 and consider an arbitrary element

u =Xﬁk15...X_l_";‘m5®1.

Let Y € U(L) and Yu € M()\),. But, Y is the linear combination of the elements
Xi's...Xi}s and each of them acts trivially on u. Therefore, Yu = 0 and u € N. We

obtain that M(A\)x—ns C N for all n > 0 and therefore L(A)a_ns = 0 for all n > 0. It
completes the proof of lemma.

Lemma 2. Let n > 1 and M(/\),\+,,p = i«(/\),\.g.np. Then M(/\),\+np+k§ = f/(/\),\+ng+k5
for all integer k.




Proof. Let k > 0. Suppose that there exists a non-zero element u € M (AMagnpsrs N
N. Then w = X_jsu # 0 by Poincare-Birkhgof-Witt theorem and w € M(A)a4ng N N.

Therefore, we have a contrudiction. Now assume that ¥ < 0 and u € M (A)rtnptes NN
again. Then u is the finite linear combination of elements

Xﬁ+k15 ves Xﬁ,,,,,,.sX_,,g . X_l.s ® 1,

with coefficients ay,,. k.1,..1, EC, where by + ...+ k, — L ... =, =k and k; >...2k,.
Consider the element X_jsue M (M)agng N N. Show that X_isu # 0. Indeed,

X kst = ) Ghypkdssds [Xp+k.5 e Xorkas X-ks X115 .. - X-1,6Q 1

+ E X3+k15 v Xﬁ+(k.~—k)5 - Xp+k,.6X—116 - X..(,,s ® 1] (l)

=1

Let k; be a maximal among all k; in u. Then we have in (1) the elements of kind

Xpt(r-k)s Xkt - - Xprkos Xotrs - - X_1,6@Q) 1

and, therefore, X_isu # 0. We get a contridiction again. Lemma is proved.

Lemma 3. For any integer m>1 and any nonzero element u € M(\)y4mp there exists
integer n >0 such that X_g_nsu # 0.

Proof. 1) Suppose that u = X7' ® 1. Then for any n>0
X_gonsu = .X_g..msX;;" ®1 #0.
2) Let u # X7 ® 1. Then u is a finite linear combination of the elements

Xp.,,k:g . .Xp.'_k;'ngX_pig . .X_[ig@ 1 y

t =1, N for some N and

m 8

YE =6 K>..>k, ke€Z, [>0

i=1 =1

for all 7. Denote

n(i)=2) ki, n=lrg%31cvn(i).

j=1




Show that X_s_nsu # 0. Consider the number i such that 7" k >0. Such number

exists because otherwise ki =...=k! =0=0L =...=[ for all i and u=Xg ® 1. Then
X-p-ns(Xpskis - - Xprris X_tis - . Xiis@1) =
= Xﬁ-{-k{b‘ oo Xﬁ+k;,_l6X(k§,,-n)6X—l§6 e X_155® 1 +... (2)
We have ki, —n <0 and if k; > ki, then of course k; —n > ki, — n. Moreover,
m s m~-1 s
ko —n+ L <k, =Y kE-YL+E==)K-Y <0
_ Jj=1 r=1 j=1 r=1

rés
and thus kj, — n < —I} for any j =T1,s. It proves that kj, — n is the minimal coefficient
in (2). Using this fact it is easy to complete the proof of lemma.

Proof of the theorem. Let M()) be the irreducible. Then M()), = L()), for all
p€ H*. Therefore, A(z) # 0 by Lemma 1. Let A(z) # 0. Then
M(Mans = L(A)rcns
for all n>0. It implies that
MM = L(W)rp
by Lemma 3 and

M(Mrspsrs = L(A\rspers

for all integer k by Lemma 2.
We can continue by induction. Therefore, M()), = L()), for all u€ H* and M()\) =
L()), i.e. M()) is irreducible. The theorem is proved.

3 The irreducible quotients of IVM

If A(z) # 0 then M()) = L()) and the structure of the irreducible module L(}) is given
by Proposition 1. Further, we will assume that A\(z) = 0. We will denote such functional
by /\o.
Consider in L the vector subspace
pEPLAI™
and commutative subalgebra
L= Y L.
¢€—P\A‘”‘

Then we have the following decomposition of L as the vector space

L=L*@HPL .




Definition 2. Let V be a weight L-module, A € P(V). A nonzero element v € V}, is
called a special imaginary vacuum vector (s.i.v.v.) of weight X if Ltv=0.
Let Ao € H*, Ao(2)=0. Define on C the structure of H @ L*-module, where

(4 X)1=X(h) 1

for all he H, X e L*.
Consider the induced L-module

M) =U(L) @ C.

U(HoL*)

The definition implies the following properties of M(Ao).

Proposition 2.

1. M (Xo) is weight L-module generated by s.i.v.v. 1® 1.
2. M()o) has a unique maximal submodule N.
3. There exists an epimorphism f : M (Ao)—+M (Xo)-

4. Let V be an irreducible weight L-module with s.i.v.v. of weight Ag. Then
Ve M(do)/N = L(Xo).

5. P(M(X)) = {do+np + k6|kin € Z,n >0} U {Xo}, dim M(Xo)se+nptks = 00, n>1,
dimM(Ao),\o+p+k5 = diInM(/\Q),\o =1.

The main result of this chapter is the following.

Theorem 2. (i) M()o) is irreducible if and only if Ao(h) # 0.
(ii) If Ao(k) = 0 then L()o) is trivial one-dimensional module.

Lemma 4. Let n>1 and J\;I(/\O)Aﬁ,,g = L(Mo)rp4ns . Then
M(20)x04np4k6 = L(A0)rg4npsks

for all integer k.

Proof. Fixed k € Z. Suppose that there is a nonzero element u € M (Ao)rg+np+ks N N.
Then u is the finite linear combination of the elements

Xotks - Xgtkms @1, l

where 31, siki =k, Y si=n, ki <...<kpn.
One can check that w = X_jsu # 0. Therefore we have a nonzero element in
M(Xo)r+ns N N and get a contrudition. Lemma is proved.




Lemma 5. Let MA(h) # 0. Then for any integer n > 1 and any nonzero element
u € M(Xo)ro4np there exists an integer p such that X_sypsu # 0.

Proof. Let

J— L3 8,
u= Z Aky ... km 91 .--nﬂmxﬁ}i-k;& e Xﬁ'-'}:k,,.s ® 1,

where k€7, s, N, Y 8 =n, 30,8k =0, ki <...<kp.

Consider in u a summand
I
Umin = X3, B+F16 ﬂrfm6 ® 1,
where for any ¢ k; is minimal among all k; and 3; is maximal among all s; in the elements
5 85—
ks Xprk_ s Xprkis - Q1.

1. Suppose that M =1. Then u = aoun X3®1 and X_pypsu # 0 for any p>0if n>1
and X_gu #0if n=1.

2. Suppose that M >1 and 3y + 3p—1 >2. For p # —k;, i = 1, M we have

M-i
X_p4pstmin = ‘223'[ Z si+i X, ﬂ+l?:6 X;Hk LA

=1
X XXM - X,
Bt(Fi+kis;+p)6 2 B4Kiy ;6 * < B+kpb ®1+ 5( 1) B+ki6
.o Xﬁ:}-l;.-6Xﬁ+(2ki+P)5 ce Xﬁ+’_¢M5 ® 1] . (3)

It is easy to see that X_g4psu # 0.

3. Let M>1 and 8y = 3p—1 = 1. Then
= Xgihs Xpyin_as Xp+hu16Xp 4t Q1
and in (3) we have a following element
oks - XYy o Kot Gaea +arar)s Q1.
Denote

A = ak] ,...,EM,ij,...,EM_g,l,l ]

Ak,

llkM = aElv""’-‘M—’hkM—hkailr-"viM—Zvlvl ’




Aku-; = Ok, B2 kM =151 i 2,2 *

Suppose that X_g,su = 0 for some integer p # —ki, i =1, M. Then we have an
equality

A+ Akpy D Akys e =0 (4)
Set p = —kum and assume that X_g4p5u = 0. Then we obtain the following equality

—24+ Xo(h)A =2 Aky_y e — 24k, =0 (5)
Comparing (4) and (5) we get

Mo(h)A=0

and thus A = 0. Contrudiction. Therefore, there exists an integer p such that
X_p4+psu#0. Lemma is proved.

Corollary 1. If Ao(k) # 0 then M()o) is the irreducible.

It follows immediately from Lemmas 4 and 5.
Lemma 6. Let \o(h) =0 Then N = ¥ ,4,, M(Xo),-

Proof. Fixed n € Z and consider the element w = X5 ®1. Let Y € U(L) and
Yw€ M(Xo)x,. It is easy to check that in this case Yw =0 because of Ao(k) = 0. It means
that

> M(Mo)r+p4ns C N
ne€Z

and therefore N = ¥,), M(\o). Lemma is proved.

Proof of the Theorem 2. On one hand if Ag(h) # 0 then M()o) is irreducible by
Corollary 1. On the other hand if Xo(h) = 0 then N # 0 by Lemma 3 and thus M()o) is
reducible. It completes the proof of (i). Point (ii) follows directly from Lemma 3.

4 The imaginary Verma modules M())

We will assume that Ag(h) # 0.
Denote by N the maximal submodule in M()o). Then M(/\o)/N = L) = M(X).
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Lemma 7. The module N is generated by subspace

EM(AO)Ao—nS .

n=1

The proof is obvious.

Denote by T(Xo) the subspace of all imaginary vacuum vectors of M ()o).

Lemma 8. Y2, M(Xo)r-ns C T(Mo).

Proof. If u € M()\o)s-ns then Xpsu = O for all £ > 0. Therefore, u € T()\o) and
M(Ao),\o_ns C T(Xo) for all n>0. Lemma is proved.

Consider an arbitrary proper submodule N in M (Ao) and denote
[N] =N Nl M(Xo)ro-ns -

Lemma 9. [N]# 0 and N is generated by [N] as L-module.

Proof. Ifu€N then 0 # Yue Y2, M(Ao)r-ns for some Y € U(L) by Lemma 3. Let
N’ be a submodule of N generated by [N] and suppose that N'# N. Then there exists
a weight element u € N \ N'. Let 4 be an image of u in a factormodule N/N’. Then 1 is
the finite linear combination of the elements

Xﬂ+n;6 o en Xﬁ+nii5X__k;'5 cee X_k:"s ® 1

by Lemma 7, where ki +-- -+k;;. <kF'4...4 kit for all 4.

tit1

Denote a; = X_ji5... X_4i s ® 1. Consider the submodule N’ of N generated by [N]
and all elements X_x,5... X_,s ® 1 such that

Dki>k 4tk
Jj=1
except a;. Then

N/NnN' cN/N

and u has a nonzero image u in N/N N N'. Let @, be an image of a; in N/N'. Then a
is the s.i.v.v. by Lemma 8. The module generated by @, is irreducible by Theorem 2 and
contains u. Therefore there exists Y € U(L) such that

0 75 Yu=a GZ(N/ﬁ,)Ao—kJ .

k=1
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But, Yue N/N N N’ and thus

o]

Z(N/N n ﬁ’)xo-ks #0.

k=1

We have a contradiction. Therefore N'=N. Lemma is proved.

Next theorem describes all imaginary vacuum vectors of M (o).
Theorem 3. T(o) = X0 M(Xo)rg—ns -

Proof. Denote T = Y22 M(Xo)r,—ns- Then T CT()) by Lemma 8. Let u € T()o) and
u@T. Consider the submodule N generated by u. Then NNT =0. But, it’s impossible
by Lemma 9. Therefore, T = T'(Ao). The theorem is proved.

Corollary 2. 1) Let Ao, A\g€ H*, Mo(2) = Xg(2) = 0. Then
Hom(M(Xg), M(Xo)) #0

if and only if Aj = Ao — né for some integer n>0.

2) dim Hom(M()o — né), M(Xo)) = P(n).

Consider the composition structure of M()o).

Lemma 10. Every irreducible factor of M()o) has the imaginary vacuum vector of the
weight Ao — né for some integer n >0.

Proof. Let N;, N, be the submodules of M (M), N7 is the proper submodule of N; and
the factor Ny /N; is irreducible. Then [N;] # [Np] and (N1 /N3)r—ns # 0 for some integer
n >0 by Lemma 9. Therefore, there exists an imaginary vacuum vector in N;/N; by
Theorem 3.

Theorem 4. (i) M()) has an infinite composition series.
(ii) The irreducible modules L()o — né), n>0 completely exhaust all irreducible factors

of the composition series.

Proof. The pomt (ii) follows immediately from Lemma 10. Denote by N;, 1 > 0 L-
submodule of M()o) generated by the subspace Y22 ; M(Xo)rg—ks -
Here N, = M(/\o), N; = N. Then

Ni/Niyr = P(i)L(20 — i6)

and we can easyly complete the construction of the series. The Theorem is proved.
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