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!.Introduction. 

By a trace on a C* -algebra, we will always mean a tracial state. In other words, we will 

only consider finite traces. Many C* -algebras, especially simple C* -algebras, are equipped 

with a natural trace and it is often interesting to know that this trace is unique. Within 

the theory of von Neumann algebras, this is the characteristic feature of finite factors, but 

it also 'plays a decisive role in the classification of some families of C*-algebras (see for 

example [21] and [26]). Further, in view of the emerging comparison theory for simple C*­

algebras which is surveyed in [7], it is be clear that one should first study the fundamental 

questions of this theory in their easiest setting, which is the class of simple C* -algebras 

with a unique trace. We feel therefore it is of some interest to produce new examples 

belonging to this class. 

A lot of simple C*-algebras arise as crossed products, eventually with some twisting al­

lowed. Our first aim in this note is to give a sufficient condition on the (twisted) action of 

a discrete group acting on a simple unital C* -algebra A with a unique trace in· aim that 

the resulting reduced (twisted) crossed product inherits the same properties. Loosely, this 

condition says that the action is outer when extended to the von Neumann algebra gener­

ated by A in the GNS-representation associated to the trace. As pointed out by Longo in 

[17], the outerness of the action at the C* -level is not sufficient in general. 

The rest of this note is devoted to several applications of this result. Recall from [3] that a 

discrete group G is said to be C* -simple if its reduced group C* -algebra c;( G) is simple, 

and to have a unique trace if the canonical trace on c;( G) is unique. Suppose that a 

discrete group G contains a normal C*-simple subgroup H with trivial centralizer. In [3], 

we showed that G is then C*-simple too. However, we left the following problem open: H 

we suppose further that H has a unique trace, does G have a unique trace too? Our first 

application will be to show that the answer is yes. As an example of this situation, we 

may start with a C* -simple group H whith a unique trace, and let G be the automorphism 

group or the holomorph of H. Hence, this generalizes the result of [19], where Nitica and 

Torok consider the automorphism group of a non-amenable free product of groups. 

Recall further from [3] that a group G is said to be an ultraweak Powers group if G contains 

a normal weak Powers group with trivial centralizer. Weak Powers groups are C*-simple 

and have a unique trace ([5]), so we see that ultraweak Powers groups possess the same 

properties. Suppose now that K is an ultraweak Powers group (or is obtained by repeated 
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extensions of ultra weak Powers groups) and let 

denote an exact sequence where H is a C*-simple group with a unique trace. Then we 

show that G is C*-simple with a unique trace, which generalizes [6; Theorem]. Our result 

is obtai'ned as a consequence of a more general statement about reduced twisted crossed 

products by G. 

Before our work in [3], all C* -simple groups known so far were equipped with a unique 

trace, merely as a by-product of the proof of simplicity, which in all cases but one was 

related to the Dixmier property of the algebras. The only exception to this was the case 

of the matrix groups considered in [13], where the uniqueness of the trace is pointed out 

in [22] (We are indebted to Alain Valette for drawing our attention to [22]). Our results in 

the present note imply that all known C* -simple goups until now do have a unique trace. 

A general proof of this fact is still lacking. 

We next turn to crossed products associated with characters on groups, which are con­

sidered by Yin in [26]. There, Yin asks whether the crossed product of C;( G) by the 

automorphism induced by a character of infinite order has a unique trace when G is a 

Powers group. In the note added in proof, he says that the answer is yes, thanks to [12]. 

However, it is unclear to us how [12] may be used, at least directly. Anyway, we will prove a 

more general result which answers the question positively: Let G denote a C* -simple group 

with a unique trace. Then the crossed product c;(c;(G), r, a) is simple with a unique 

trace whenever r is any subgroup of the character group of G and a: r--+ Aut(C;(G)) is 

the induced action. 

As our last application, we consider crossed products of irrational rotation algebras by 

subgroups of toral automorphisms. For each irrational () E (0, 1 ), let Ao denote the corre­

sponding rotation algebra ([21], [23]), which is known to be simple with a unique trace. 

For each A E SL(2, Z), Watatani has defined in [27] the toral automorphism aA of Ao 

induced by A (see also [9]). Let G be any subgroup of SL(2, Z) and a: G--+ Aut(Ao) the 

induced mapping which is known to be an action ([27]). Then we show that C;(Ao, G, a) 

is simple with a unique trace. The case when G ~ Z2 is generated by ( cl _ ~) has recently 

been studied in [8], while the case when G ~ Z is generated by a matrix A of infinite order 

may be seen to be equivalent to the study of the twisted group C*-algebra c;(Z2xAZ, ao) 

(for a suitable choice of multiplier ao) which simplicity is determined in [20;§3]. 
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Our notation will be as in [2] and [3]. All C* -algebras are supposed to be unital and all 

groups are considered as discrete. 

4 



2. The main result. 

Let A be a simple C*-algebra with a unique trace cp and let ( 1l"r.p, Hr.p, er.p) denote theGNS­
triple associated to cp. Since cp is necessarily faithful, A is *-isomorphic to 7l" r.p( A) and we 

will identify A with 1l"r.p(A). 

Now, l~t a E Aut(A). By uniqueness of cp, cp is a-invariant. Therefore, a is implemented 

on Hr.p by the unitary operator Uo: determined by U0 (aer.p) = a(a)er.p, a EA. Let us denote 

by a the extension of a to A" which is defined by a = ad( U o:) on A". 

Definition: We say that a is cp - outer if a is outer. Further, if (a, u) denotes a cocycle 

crossed action of a group G on A ([3]), we say that (a, u) is cp-outer if each a9 is cp-outer, 

g =1- e. 

Obviously, cp-outerness is a stronger condition than usual outerness. Our interest in intro­

ducing this notion lies in the following: 

Theorem 1: Suppose A is a simple C* -algebra with a unique trace cp and (a, u) is a <p­

outer cocycle crossed action of a group G on A. Then the reduced twisted crossed product 

B = c;(A, G, a, u) is simple with a unique trace T given 9Y T = "PoE, where E denotes the 

canonical conditional expectation from B onto A. 

Proof: Since (a, u) is outer, the simplicity of B follows from the extended version of 

Kishimoto's theorem given in [3; Theorem 3.2]. Further, since cp is a-invariant, r = "PoE 

defines a faithful trace on B. 

Let now (be a trace on B. We will show that ( = r, hence that r is unique, by checking 

the equality on each of the generators of B. 

We start by representing A via theGNS-representation associated to cp and, as before, we 

identify A with 1l"r.p(A). We will write H for Hr.p and eo for er.p· We will also identify A with 

its canonical copy in B. Hence, by definition, B is generated on l2 (G, H) by 

{a, Au(g ); a E A, g E G} where Au is the u-projective left regular representation of G on 

12 ( G, H) ( cf. [3]). 

Since (a, u) clearly extends to a cocycle crossed action (a, u) of G on A", we may also 

form the regular extension A"x(a,u)G which, when identifying A" with its canonical copy 

in A"x(a-,u)G, is the von Neumann algebra generated by {x,.Au(g); x E A",g E G} on 

12 ( G, H) ( cf.[2]), so that we have B" = A"x(a,u)G. 
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For each x E A", set (,O(x) = (xeo,eo). By [25; Prop.3.19], (,0 is a faithful normal trace on 

A" which extends cp. Further, by uniqueness of cp, A" is a factor ([17; lemma 1]), and cp 
is therefore unique. Since (a,u) is outer by assumption, we also have that A"x(ii,u)G is a 

factor too (the proof goes along the same line as the one for usual crossed products and 

may be deduced from [11; Theorem 2]). By the uniqueness of (,0, cp is a-invariant and 

r = (,OoE defines therefore the (unique) faithful normal trace on the finite factor 

8" = A"x(ii,u)G, where E denotes the canonical conditional expectation from 8" onto A" 
(see [10;Theorem 6] or [3; Proof of theorem 2.2]) which is such that E(>..u(g)) = 0 for all 

g E G, g =J e. Since E is, by definition, the restriction of E to 8, and (,0 = cp on A, we see 

that r =ron 8. 

Let now ( 7!"(, 'H(, ec) denote the GNS-triple associated to (8, (), and observe that 

((·) = ({(,ec) defines a faithful normal trace on 7!"((8)" (again by [25; Prop.3.19]). Es­

pecially, ( = (17r((A)" is a faithful normal trace on 7r((A)". Further, since CIA= cp by 

uniqueness of cp, we have for all a E A: 

By simplicity of A, 1l"(IA is *-isomorphism form A onto 7r((A), and from what we just 

have seen, it follows (cf. [14; 7.2.7]) that 1l"(IA extends to a *-isomorphism from A" onto 

7r((A)", which we denote by 8. 

For g, hE G, we set: 

w(g) = 1r((>..u(g)) E U(1r((8)) ~ U(1r((8)"), 

(39 = 8a98-1 E Aut(1r((A)"), 

v(g, h)= 7r(( u(g, h)) E U( 1r({A) ~ U( 1rc(A)"). 

Since w(g)1r((a)w(g)* = 1r((>..u(g)a>..u(g)*) = 1r((a9 (a)) = (39 (1r((a)) for all g E G, a E A, 
it follows by ultraweak continuity that 

(39 = ad(w(g)) on 1rc(A)", g E G. 

Since Au (g )>..u (h) = ad( u(g, h) )>..u (g, h) for g, h E G, we clearly have 

w(g)w(h) = ad(v(g,h))w(g,h), g,h E G. 

Further, by assumption, each a9 (g =J e) is outer on A". Since A" is a factor, Kallman's 

theorem ([15]) implies that each a9 (g =J e) is freely acting on A", from which it follows 

that each (39 (g =J e) is freely acting on 1rc(A)". 
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As we have seen before, 7r((8)" has a faithful normal trace (and there exists therefore a 

faithful normal conditional expectation P from 1r((8)" onto 7r<(A)" ( cf. (24; Corollary 10.6] 

or [25; Proposition 2.36]). Since j39 (x)w(g) = w(g)x for all g E G, x E 1rc(A)", we have 

f39 (x)P(w(g)) = P(w(g))x, so that P(w(g)) = 0 if g =/= e, by freeness of {3. At last, since 

{7rc(A), w(G)} clearly generates 1rc(8) as a C*-algebra, we see that {B(A"), w(G)} = 

{7rc(A)", w(G)} generates 1rc(8)" as a von Neumann algebra. We are now in position 

to invoke the analog version of [24; Prop.22.2], cf. [10; Theorem 7], which characterizes 

regular extensions of countably decomposable von Neumann algebras by discrete groups. 

It says that there exist a *-isomorphism q> from 1rc(8)" onto A"x(a,u)G = 8" such that 

q>( 8( X)) = X ' X E A"' 

q>(w(g)) = Au(g), g E G (and q>(v(g,h)) = u(g,h), g,h E G). 

As 8" is a finite factor, 1rc(8)" is then a finite factor too, and its trace (is therefore unique. 

Hence, ( = 7 o q>, which implies that, for each a E A, g E G, 

((a)= ((7rc(a)) = 7(q>(7rc(a)) = r(a) = r(a), 

and 

((.Au(g)) = ((7rc(.Au(g)) = ((w(g)) = T'(q>(w(g))) = r(.Au(g)) = r(.Au(g)). 

By norm-continuity, we obtain ( = r as required. D 

2. Some applications. 

To ease our exposition, we first introduce som terminology. 

Let H be a group and let u be an automorphism of H. We will say that u acts freely 

on H if the set { u( h )ph -l; h E H} is infinite for all p E H. This definition is motivated 

by [15; Theorem 2.2], where Kallman shows that the *-automorphism of the group von 

Neumann algebra L(H) of H induced by u is freely acting if and only if the above condition 

is satisfied. 

Suppose now H is a normal subgroup of a group G. We will say that G / H acts freely on 

H if ad(g) acts freely on H for all g E G \ H (where ad(g) denotes the automorphism of 

H implemented by g). 

The reader will easily check that the following conditions are equivalent: 

i) G/ H acts freely on H 

ii) the set {hgh- 1 , hE H} is infinite for all g E G \H. 
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Condition ii) appears in [10; Lemma 10], where it is shown to be equivalent to the fact 

that the relative commutant of L(H) in L(G) is contained in L(H). Further, it is clear 

that if G is a semi-direct product of H by K under a homomorphism a : K -+ Aut( H), 

then G I H ~ K acts freely on H if and only if each ak acts freely on H ( k E K, k =f. e). 

We will be mainly interested in the following example: 

-· Suppose H is an ICC-group. Then G I H acts freely on H if and only if H has 

trivial centralizer in G. This fact may be extracted from [3;§3] or proved directly 

form ii) above. 

Let us also mention here another example to which we will refer at the end of this paper: 

- Let A E SL(2, Z) and consider A as an automorphism of Z 2 . Then, trivially, A 

acts freely on Z2 whenever A =f. I. 

After these preliminaries, we now give an analog version of [3; Theorem 3.5] (which only 

deals with the simplicity of the involved algebras). Let us at once remark that in 

[3; Theorem 3.5] one may replace the assumption that H is ICC and with trivial centralizer 

in G by the assumption that GIH acts freely on H. 

Theorem 2: Suppose (a, u) denotes a cocycle crossed action of a group G on a C* -algebra 

A which possess a faithful a-invariant trace <p. Suppose further H is a normal subgroup 

of G such that GIH acts freely on Hand C;(A,H,a,u) is simple with a unique trace a. 

Then c;(A, G, a, u) is simple with a unique trace. 

Proof: The proof is nearly related to the proof of [3; Theorem 3.5], but some preparations 

are required first. Let ( 7r '~'' 'Hr.p, e'~') denote the GNS-triple of A associated to <p. Again, 

we will write 1i for 'Hr.p,eo fore'~' and identify A with 7rr.p(A) (by faithfulness of <p). As 

before, the a-invariance of <p enables us to extend (a, u) to a cocycle crossed action (a, u) 

of G on A". As in the proof of theorem 1' c; (A, G' a' u) and A" X( a, u) G are then defined 

on l 2(G,1i). Further, by restriction, c;(A,H,a,u) and A"x(a:,u)H are well-defined as 

acting on l2(H,1i), and we have C;(A,H,a,u)" = A"x(a,u)H. Let now (7Tu,1iu,eu) 

denote the GNS-triple of C;(A, H, a, u) associated to a. By the assumed simplicity of 

C;(A,H,a,u), a is faithful. Further, by the uniqueness of a, we have a= <poE on 

c;(A, H, a, u), where E denotes the canonical conditional expectation from c;(A, H, a, u) 

onto A. H we define 7]o E z2(H, 1i) by 

TJo(h) = { ~0 ,h = e 
,h =f. e, hE H 

then 7]o is easily seen to be a cyclic unit vector for C;(A, H, a, u) in Z2 (H, 1i) and it follows 
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from u = 'PoE that 

u(y) = (YrJo,rJo), y E c;(A,H,a,u). 

This means that we may identify fiu with z2(H, fi),eu with T}o, 1l"u(C;(A,H,a,u)) with 

C;(A, H, a, u) and A"xui,u)H with 7ru(C;(A; H, a, u))". 

By the decomposition theorems (3; Theorem 2.1] and (2; Theorem 1], we have: 

c;(A,G,a,u) ~ c;(c;(A,H,a,u),K,/3,v) 

and 

A"x<- )G ~ (A"x<- )H)x<-; )K, a,u a,u JJ,v 

where K denotes the factor group G / H and f3, ~ and v are defined as follows: 

First, recall that, for each g E G, there exists /g E Aut(C;(A,H,a,u)) 

(resp. 'fu E A"x(a,u)G) such that 

lu(a) = a 9 (a), a E A, and 

/g(>.u(h)) = u(g, h)u(ghg-1 ,g)* >.u(ghg-1 ), hE H 

(resp.'fg(x) = ag(x), X E A", and 

'fu(>.u(h)) = /g(>.u(h)), hE H). 

It is clear that 'f9 = lu on C;(A, H, a, u), g E G. 

For a chosen section n : K -+ G for the canonical homomorphism from G onto K with 

n( e) = e, f3( resp · f3) and v are defined by 

f3k = /n(k) (resp. f3k = 'fn(k)), k E K and 

v(k, l) = u(n(k), n(l))u(m(k, l), n(kl))* >.u(m(k, 1)), 

where m(k, l) = n(k)n(l)n(kZ)-I, k, l E K. 

If we can show that each 'f9 , g E G \ H is outer, it will follow from the above identifi­

cations that (/3, v) is u-outer on c;(A, H, a, u ), and Theorem 1 will therefore imply that 

c;(A, G, a, u) is simple with a unique trace as desired. 

Now, our assumption that G/H acts freely on H implies precisely that each 'f9 ,g E G\H, 
is outer. The proof of this assertion is essentially the same as the one of (3; Lemma 3.3], 

where the outerness of /g is shown. We mention here the required changes: Let ::P denote 

the normal trace on A" associated to eo. Then ::pis faithful (again by [25; Prop.3.19]) and 
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cp is a-invariant (by the o:-invariance of r.p and the ultraweak continuity of a and cp). In the 

proof of [3; Lemma 3.3], replace then A by A", (o:,u) by (a,u),u by ad(g),r.p by cp, B by 

A"x(i5t:,u)H, /g by ;y9 , E by the canonical conditional expectation E from A"x(i5t:,u)H onto 

A" and define the Fourier coefficients of operators in A"x(O:,u)H with respect to E (as in 

the proof of [3; Theorem 2.2]). Then the proof goes through verbatimly. 

D 

Corollary 3: Let H denote a normal subgroup of a group G and w a two-cocycle of G 

with values in the circle group T (i.e. w is a multiplier of G). Suppose G I H acts freely 

on H and c; ( H, w) is simple with a unique trace. Then c; ( G, w) is simple with a unique 

trace. 

Proof: Set A= C, a: = id and u = w in Theorem 2.0 

As promised in the introduction, we may now answer positively the problem raised in [3]. 

Corollary 4: Let H denote a normal subgroup of a group G with trivial centralizer in 

G and suppose H is C* -simple with a unique trace. Then G is C* -simple with a unique 

trace. 

Proof: Set w = 1 in Corollary 3 and recall that a C* -simple group is necessarily ICC, so 

that G I H acts freely on H. D 

This corollary generalizes Akemann and Lee's result [1; Theorem 3], where His supposed 

to be a non-abelian free group. If H is a C* -simple group with a unique trace, we may let 

G be the automorphism group of H or the holomorph of H, cf. [3; Corollaries 3.7 and 3.8]. 

Hence, Corollary 3 also generalizes the recent result of Nitica and Torok [18]. At last, it 

shows that an ultraweak Powers group is C*-simple and has a unique trace. Moreover, we 

have: 

Corollary 5: Suppose (a:, u) is a cocycle crossed action of an ultraweak Powers group G 

on a simple C*-algebra A with a unique trace. Then C;(A, G, a:, u) is simple with a unique 

trace. 

Proof: The group G contains a normal weak Powers group H with trivial centralizer. 

Then His ICC and C;(A,H,o:,u) is simple with a unique trace by [3; Theorems 4.1 and 

4.2]. Hence, c;(A,G,o:,u) is simple with a unique trace by Theorem 2. D 

By an inductive argument based on the decomposition theorem, the conclusion of Corollary 
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5 still holds if we only assume that G may be obtained by successive extensions of ultraweak 

Powers groups. The same is true for the next corollary: 

Corollary 6: Suppose 1 --+ H --+ r --+ G --+ 1 is an exact sequence of groups, where H is 

C* -simple with a unique trace and G is an ultraweak Powers group. Then r is C* -simple 

with a unique trace. 

Proof: Since c;(r) decomposes as C;(C;(H),G,a,u) for some (a,u), this follows from 

Corollary 5. D 

This generalizes Boca and Nitica's [6; Theorem]. 

We next give an application of theorem 1 to crossed products associated with characters 

of groups. 

Let G denote the character group of a group G. Recall that a character on G is defined to 

be a group homomophism from G to the circle group T, and that G is the abelian group 

consisting of all characters of Gunder pointwise multiplication. 

For each 'Y E G, we denote by 0'.-y (resp. a-y) the *-automorphism of c;(G) (resp. c;(G)") 
induced by 'Y (cf.[4],[26]). Then a-y = 0'.-y on c;(G). H T denotes the canonical trace on 

c;(G), it is well known that we may identify 1-lr with 12(G) and 7rr with the identity 

representation. Further, if G is ICC, then the induced action a : G --+ Aut(C;(G)") is 

outer ([4; Theorem 5.4]), which implies that a : G--+ Aut(C;(G)) is also outer (see also 

[26; Prop. 2.13]). 

Theorem 7: Let K denote a subgroup of G. Then the crossed product c;(C;(G), K, a) 
is simple ( resp. simple with a unique trace) whenever G is C* -simple ( resp. C* -simple 

with a unique trace). 

Proof: A C* -simple group being ICC, the first part follows from Kishimoto's theorem (16; 

Theorem 3.1] and the fact that a is outer, while the respective part follows from theorem 

1 and the fact that a is outer. D 

In [26; Conjecture 1, p.117], Yin conjectured that C;(C;(G),K,a) has a unique trace 

whenever G is a Powers group and K = { 'Yn, n E Z} for som 1 E G of infinite order. 

Theorem 7 provides a more general answer to this conjecture (see our comment in the 

introduction). 

Finally, we consider cross products of irrational rotation algebras by groups of toral auto­

morphisms. Let f) be a fixed irrational number in (0, 1) and let Ae denote the corresponding 
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rotation algebra, which is known to be simple and have a unique trace 1.p ( cf. [21), [23]). It is 

the (universal) C*-algebra generated by two unitaries U and V satisfying UV = e21ri9VU. 

For each A= (~ ~) E SL(2, Z), let aA denote the toral automorphism of Ae induced by 

A ([9], [27]), which is determined by 

aA(U) = e-7ri8ac uayc and 

aA(V) = e-7ri8bd UbVd. 

Let also a: SL(2, Z) ---+ Aut(Ae) denote the induced action. Then we have: 

Theorem 8: Let G be any subgroup of SL(2, Z). Then the reduced crossed product 

c;(Ae, G, a) is simple with a unique trace. 

Proof: The result may be obtained without too much difficulty as a direct consequence 

of Theorem 1. We will sketch a slightly different approach, based on the well known fact 

that Ae may be realized as c; ( Z2 ' cr)' where cr : Z2 X Z2 ---+ T is defined by 

cr(x,y) = exp(1rixt(~8 80)y). 

Then aA is determined by aA(Au(x)) = Au(Ax), (x E Z2 ). 

Now, let r denote the semi direct product of Z2 by G under the natural action of G on Z2 , 

and let w : r X r ---+ T be defined by 

w((x, A), (y, B))= exp(1rixt(~8 80)Ay). 

Then one verifies easily that w is a multiplier of r, which clearly coincides with cr on 

r 1 = Z2x{I}. As remarked at the beginning of this section, each A E SL(2, Z), A# I, acts 

freely on Z2 , and it follows therefore that r ;r 1 acts freely on r 1. Since Ae ~ c; (r 1, w) is 

simple with a unique trace, the same is true for c;(r,w) by Corollary 3. A straightforward 

application of the decomposition theorem [3; Theorem 2.1) gives that 

c;(r,w) ~ c;(c;(rbw),G,(3,v) 

where (3 coincides with a on C;(r1,w) ~ Ae and v = 1. Thus, C;(r,w) ~ C;(Ae, G, a) 

and the result follows. 0 

The case G ={I, ( 01 _~)}has recently been studied in [8). We also refer the reader to 

[19) and [20) for some related results, especially when G is generated by a matrix of infinite 

order. 
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