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A Pricing Measure to Explain the Risk Premium in Power Markets∗

Fred Espen Benth† and Salvador Ortiz-Latorre†

Abstract. In electricity markets, it is sensible to use a two-factor model with mean reversion for spot prices.
One of the factors is an Ornstein–Uhlenbeck (OU) process driven by a Brownian motion and accounts
for the small variations. The other factor is an OU process driven by a pure jump Lévy process
and models the characteristic spikes observed in such markets. When it comes to pricing, a popular
choice of pricing measure is given by the Esscher transform that preserves the probabilistic structure
of the driving Lévy processes while changing the levels of mean reversion. Using this choice one can
generate stochastic risk premiums (in geometric spot models) but with (deterministically) changing
sign. In this paper we introduce a pricing change of measure, which is an extension of the Esscher
transform. With this new change of measure we can also slow down the speed of mean reversion and
generate stochastic risk premiums with stochastic nonconstant sign, even in arithmetic spot models.
In particular, we can generate risk profiles with positive values in the short end of the forward curve
and negative values in the long end. Finally, our pricing measure allows us to have a stationary spot
dynamics while still having randomly fluctuating forward prices for contracts far from maturity.
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1. Introduction. In modeling and analysis of forward and futures prices in commodity
markets, the risk premium plays an important role. It is defined as the difference between
the forward price and the expected commodity spot price at delivery, and the classical theory
predicts a negative risk premium. The economical argument for this is that producers of the
commodity are willing to pay a premium for hedging their production (see Geman [14] for a
discussion, as well as the list of references).

Geman and Vasicek [15] argued that in power markets, the consumers may hedge the price
risk using forward contracts which are close to delivery and thus create a positive premium.
Power is a nonstorable commodity, and, as such, it may experience rather large price variations
over short times (sometimes referred to as spikes). One might observe a risk premium which
may be positive in the short end of the forward market and negative in the long end, where
the producers are hedging their power generation. A theoretical and empirical foundation for
this is provided in, for example, Bessembinder and Lemon [6] and Benth, Cartea, and Kiesel
[3].

When deriving the forward price, one specifies a pricing probability and computes the
forward price as the conditional expected spot at delivery. In the power market, this pricing
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probability is not necessarily a so-called equivalent martingale measure, or a risk-neutral
probability (see Bingham and Kiesel [7]), as the spot is not tradeable in the usual sense.
In other words, we do not have to require that the discounted spot price dynamics become a
(local) martingale with respect to the pricing measure. On the other hand, the pricing measure
must be equivalent, as the forward contracts are financial instruments that are traded, and
therefore by the arbitrage theory (see Bingham and Kiesel [7] and Duffie [11]) their forward
price dynamics must be (local) martingales with respect to this measure. Thus, a pricing
probability can a priori be any equivalent measure and in effect is an indirect specification of
the risk premium. Indeed, typically the pricing measure is parametrically specified and, as
such, can be viewed as a parametrization of the risk premium. This is a statistical approach
to modeling the risk premium which has been applied in fixed-income markets, say (see, for
example, Brigo and Mercurio [8] and Eberlein and Kluge [12]). In commodity markets, one
has alternatively modeled the risk-neutral forward dynamics by means of factors like storage
costs and convenience yield (see Eydeland and Wolyniec [13] and Geman [14] for discussion
of this in energy markets). Again, due to nonstorability of power, this is not sensible in our
context (see Geman and Vasicek [15]). Indeed, the classical buy-and-hold hedging argument
fails in power markets. In this paper we suggest a new class of pricing measures which gives
a stochastically varying risk premium.

We will focus our considerations on the power market, where typically a spot price model
may take the form of a two-factor mean reversion dynamics. Lucia and Schwartz [25] con-
sidered two-factor models for the electricity spot price dynamics in the Nordic power market
NordPool. Arithmetic and geometric models were both suggested, that is, either directly mod-
eling the spot price by a two-factor dynamics or assuming such a model for the logarithmic
spot prices. Their models were based on Brownian motion and, as such, not able to capture
the extreme variations in the power spot markets. Cartea and Figueroa [9] used a compound
Poisson process to model spikes, that is, extreme price jumps which are quickly reverted back
to “normal levels.” Benth, Šaltytė Benth, and Koekebakker [4] give a general account on
multifactor models based on Ornstein–Uhlenbeck (OU) processes driven by both Brownian
motion and Lévy processes. Empirical studies suggest a stationary power spot price dynam-
ics after explaining deterministic seasonal variations (see, e.g., Barndorff-Nielsen, Benth, and
Veraart [1] for a study of spot prices at EEX, the German power exchange). In this paper
we will focus on a two-factor model for the spot, where each factor is an OU process, driven
by a Brownian motion and a jump process, respectively. The first factor models the “normal
variations” of the spot price, whereas the second accounts for sudden jumps (spikes) due to
unexpected imbalances in supply and demand.

The standard approach in power markets is to specify a pricing measure which is preserving
the Lévy property. This is called the Esscher transform (see Benth, Šaltytė Benth, and
Koekebakker [4]), and it works for Lévy processes as the Girsanov transform with a constant
parameter for Brownian motion. The effect of doing such a measure change is to adjust
the mean reversion level, and it is known that the risk premium becomes deterministic and
typically either positive or negative for all maturities along the forward curve.

We propose a class of measure changes which slows down the speed of mean reversion of
the two factors. As it turns out, in conjunction with an Esscher transform as mentioned above,
we can produce a stochastically varying risk premium, where potential positive premiums in
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the short end of the market can be traced back to sudden jumps in the spike factor being
slowed down under the pricing measure. This result holds for arithmetic spot models, whereas
the geometric ones are much harder to analyze under this change of probability. The class
of probabilities preserves the OU structure of the factors and, as such, may be interpreted as
a dynamic structure preserving measure change. For the Lévy driven component, the Lévy
property is lost in general, and we obtain a rather complex jump process with state-dependent
(random) compensator measure.

We can explicitly describe the density process for our measure change. The theoretical
contribution of this paper, besides the new insight on risk premium, is a proof that the density
process is a true martingale process, indeed verifying that we have constructed a probability
measure. This verification is not straightforward because the kernels used to define the density
process, through stochastic exponentiation, are stochastic and unbounded. Hence, the usual
criterion by Lépingle and Mémin [24] is difficult to apply and, furthermore, it does not provide
sharp results. We follow the same line of reasoning as in a very recent paper by Klebaner
and Lipster [23]. The proof is roughly as follows. First, we reduce the problem to showing
the uniform integrability of the sequence of random variables obtained by evaluating the
localized density process at the end of the trading period. This sequence of random variables
naturally induces a sequence of measure changes which, combined with an easy inequality for
the logarithm function, allow us to get rid of the stochastic exponential in the expression to
be bounded. Finally, we can reduce the problem to getting a uniform bound for the second
moment of the factors under these new probability measures.

Interestingly, as our pricing probability is reducing the speed of mean reversion, we might
in the extreme situation “turn off” the mean reversion completely (by reducing it to zero).
For example, if we take the Brownian factor as the case, we can have a stationary dynamics
of the “normal variations” in the market, but when looking at the process under the pricing
probability the factor can be nonstationary, that is, a drifted Brownian motion. A purely
stationary dynamics for the spot will produce constant forward prices in the long end of the
market, something which is not observed empirically. Hence, the inclusion of nonstationary
factors are popular in modeling the spot-forward markets. In many studies of commodity
spot and forward markets, one is considering a two-factor model with one nonstationary and
one stationary component. The stationary part explains the short term variations, while the
nonstationary part is supposed to account for long-term price fluctuations in the spot (see
Gibson and Schwartz [16] and Schwartz and Smith [29] for such models applied to oil markets).
Indeed, the power spot models in Lucia and Schwartz [25] are of this type. It is hard to detect
the long-term factor in spot price data, and one is usually filtering it out from the forward
prices using contracts far from delivery. Theoretically, such contracts should have a dynamics
being proportional to the long-term factor. Contrary to this approach, one may in view of our
new results suggest a stationary spot dynamics and introduce a pricing measure which turns
one of the factors into a nonstationary dynamics. This would imply that one could directly
fit a two-factor stationary spot model to power data and next calibrate a measure change
to account for the long-term variations in the forward prices by turning off (or significantly
slowing down) the speed of mean reversion. An empirical analysis of the change of mean
reversion speed in energy markets is performed in Benth, Cartea, and González-Pedraz [2].

Our results are presented as follows: in the next section we introduce the basic assumptions
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and properties satisfied by the factors in our model. Then, in section 3, we define the new
change of measure and state the main results regarding the uniform integrability of its density
process. We deal with the Brownian and pure jump case separately. In section 4, we recall the
arithmetic and geometric spot price models. We compute the forward price processes induced
by this change of measure, and we discuss the risk premium profiles that can be obtained.
Finally, in the appendix, we give the proof of the uniform integrability of the density process
related to the pure jump part.

2. The mathematical setup. Suppose that (Ω,F , {Ft}t∈[0,T ], P ) is a filtered probability
space satisfying the usual conditions, where T > 0 is a fixed finite time horizon. On this
probability space we define W , a standard Wiener process, and L, a pure jump Lévy sub-
ordinator with finite expectation, that is, a Lévy process with the Lévy–Itô representation
L(t) =

∫ t
0

∫∞
0 zNL(ds, dz), t ∈ [0, T ], where NL(ds, dz) is a Poisson random measure with

Lévy measure � satisfying
∫∞
0 z�(dz) < ∞; see Sato [28]. We shall suppose that W and L are

independent of each other. The following assumption is minimal, having in mind, on the one
hand, that our change of measure extends the Esscher transform and, on the other hand, that
we are going to consider a geometric spot price model.

Assumption 1. We assume that

(2.1) ΘL � sup{θ ∈ R+ : E[eθL(1)] < ∞}
is strictly positive constant, which may be ∞.

Actually, to have the geometric model well defined we will need to assume later that
ΘL > 1. Some remarks are in order.

Remark 2.1. In (−∞,ΘL) the cumulant (or log moment generating) function κL(θ) �
logEP [e

θL(1)] is well defined and analytic. As 0 ∈ (−∞,ΘL), L has moments of all orders.
Also, κL(θ) is convex, which yields that κ′′L(θ) ≥ 0 and, hence, that κ′L(θ) is nondecreasing.
Finally, as a consequence of L ≥ 0, a.s. we have that κ′L(θ) is nonnegative.

Remark 2.2. Thanks to the Lévy–Kintchine representation of L we can express κL(θ) and
its derivatives in terms of the Lévy measure �. We have that for θ ∈ (−∞,ΘL)

κL(θ) =

∫ ∞

0
(eθz − 1)�(dz) < ∞,

κ
(n)
L (θ) =

∫ ∞

0
zneθz�(dz) < ∞, n ∈ N,

showing, in fact, that κ
(n)
L (θ) > 0, n ∈ N.

Consider the OU processes

X(t) = X(0) +

∫ t

0
(μX − αXX(s))ds + σXW (t), t ∈ [0, T ],(2.2)

Y (t) = Y (0) +

∫ t

0
(μY − αY Y (s))ds + L(t), t ∈ [0, T ],(2.3)

with αX , σX , αY > 0, μX ,X(0) ∈ R, μY , Y (0) ≥ 0. Note that, in (2.2), X is written as a sum
of a finite variation process and a martingale. We may also rewrite (2.3) as a sum of a finite
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variation part and pure jump martingale

Y (t) = Y (0) +

∫ t

0
(μY + κ′L(0) − αY Y (s))ds+

∫ t

0

∫ ∞

0
zÑL(ds, dz), t ∈ [0, T ],

where ÑL(ds, dz) � NL(ds, dz) − ds �(dz) is the compensated version of NL(ds, dz). In the
notation of Shiryaev [30, page 669], the predictable characteristic triplets (with respect to the
pseudotruncation function g(x) = x) of X and Y are given by

(BX(t), CX(t), νX(dt, dz)) =

(∫ t

0
(μX − αXX(s))ds, σ2

X t, 0

)
, t ∈ [0, T ],

and

(BY (t), CY (t), νY (dt, dz)) =

(∫ t

0
(μY + κ′L(0)− αY Y (s))ds, 0, �(dz)dt

)
, t ∈ [0, T ],

respectively. In addition, applying Itô’s formula to eαX tX(t) and eαY tY (t), one can find the
following explicit expressions for X(t) and Y (t):

X(t) = X(s)e−αX (t−s) +
μX

αX
(1− e−αX(t−s)) + σX

∫ t

s
e−αX(t−u)dW (u),(2.4)

Y (t) = Y (s)e−αY (t−s) +
μY + κ′L(0)

αY
(1− e−αY (t−s)) +

∫ t

s

∫ ∞

0
e−αY (t−u)zÑL(du, dz),(2.5)

where 0 ≤ s ≤ t ≤ T.

3. The change of measure. We will consider a parametrized family of measure changes
which will allow us to simultaneously modify the speed and the level of mean reversion in
(2.2) and (2.3). The density processes of these measure changes will be determined by the
stochastic exponential of certain martingales. To this end consider the following families of
kernels:

Gθ1,β1(t) � σ−1
X (θ1 + αXβ1X(t)) , t ∈ [0, T ],(3.1)

Hθ2,β2(t, z) � eθ2z
(
1 +

αY β2
κ′′L(θ2)

zY (t−)

)
, t ∈ [0, T ], z ∈ R.(3.2)

The parameters β̄ � (β1, β2) and θ̄ � (θ1, θ2) will take values on the sets β̄ ∈ [0, 1]2, θ̄ ∈ D̄L �
R×DL, where DL � (−∞,ΘL/2) and ΘL is given by (2.1). By Assumption 1 and Remarks
2.1 and 2.2 these kernels are well defined.

Remark 3.1. Under the assumption that
∫∞
0 z3eΘLz�(dz) < ∞, which is stronger than∫∞

0 eΘLz�(dz) < ∞, one can consider the set cl(DL) = (−∞,ΘL/2] and our results still hold

by changing κ′L(θ), κ
′′
L(θ), and κ

(3)
L (θ) by its left derivatives at the right end of DL.

Example 3.2. Typical examples of �,ΘL, and DL are the following:
1. Bounded support: L has a jump of size a, i.e., � = δa. In this case ΘL = ∞ and

DL = R.
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2. Finite activity: L is a compound Poisson process with exponential jumps, i.e., �(dz) =
ce−λz1(0,∞)dz for some c > 0 and λ > 0. In this case ΘL = λ and DL = (−∞, λ/2).

3. Infinite activity: L is a tempered stable subordinator, i.e., �(dz) = cz−(1+α)e−λz

1(0,∞)dz for some c > 0, λ > 0, and α ∈ [0, 1). In this case also ΘL = λ and
DL = (−∞, λ/2).

Next, for β̄ ∈ [0, 1]2, θ̄ ∈ D̄L, define the family of Wiener and Poisson integrals

G̃θ1,β1(t) �
∫ t

0
Gθ1,β1(s)dW (s), t ∈ [0, T ],(3.3)

H̃θ2,β2(t) �
∫ t

0

∫ ∞

0
(Hθ2,β2(s, z) − 1) ÑL(ds, dz), t ∈ [0, T ],(3.4)

associated to the kernels Gθ1,β1 and Hθ2,β2 , respectively.
Remark 3.3. Let M be a semimartingale on (Ω,F , {Ft}t∈[0,T ], P ), and denote by E(M)

the stochastic exponential of M, that is, the unique strong solution of

dE(M)(t) = E(M)(t−)dM(t), t ∈ [0, T ],

E(M)(t) = 1.

When M is a local martingale, E(M) is also a local martingale. If E(M) is positive, then E(M)
is also a supermartingale and EP [E(M)(t)] ≤ 1, t ∈ [0, T ]. In that case, one has that E(M) is
a true martingale if and only if EP [E(M)(T )] = 1. If E(M) is a positive true martingale, it
can be used as a density process to define a new probability measure Q, equivalent to P, that
is, dQ

dP

∣∣
Ft

= E(M)(t), t ∈ [0, T ].

The desired family of measure changes is given by Qθ̄,β̄ ∼ P, β̄ ∈ [0, 1]2, θ̄ ∈ D̄L, with

(3.5)
dQθ̄,β̄

dP

∣∣∣∣
Ft

� E(G̃θ1,β1 + H̃θ2,β2)(t), t ∈ [0, T ],

where we are implicitly assuming that E(G̃θ1,β1 + H̃θ2,β2) is a strictly positive true martingale.
Then, by Girsanov’s theorem for semimartingales (Theorems 1 and 3 on pages 702 and 703
in Shiryaev [30]), the process X(t) and Y (t) becomes

X(t) = X(0) +BX
Qθ̄,β̄

(t) + σXWQθ̄,β̄
(t), t ∈ [0, T ],

Y (t) = Y (0) +BY
Qθ̄,β̄

(t) +

∫ t

0

∫ ∞

0
zÑL

Qθ̄,β̄
(ds, dz), t ∈ [0, T ],(3.6)

with

BX
Qθ̄,β̄

(t) =

∫ t

0
(μX + θ1 − αX(1− β1)X(s))ds, t ∈ [0, T ],(3.7)

BY
Qθ̄,β̄

(t) =

∫ t

0
(μY + κ′L(0) − αY Y (s))ds +

∫ t

0

∫ ∞

0
z(Hθ2,β2(s, z)− 1)�(dz)ds(3.8)

=

∫ t

0

{
(μY + κ′L(0)− αY Y (s)) +

∫ ∞

0
z(eθ2z − 1)�(dz)
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+
αY β2
κ′′L(θ2)

∫ ∞

0
z2eθ2z�(dz)Y (s−)

}
ds

=

∫ t

0

(
μY + κ′L(θ2)− αY (1− β2)Y (s)

)
ds, t ∈ [0, T ],

where WQθ̄,β̄
is a Qθ̄,β̄-standard Wiener process and the Qθ̄,β̄-compensator measure of Y (and

L) is
vYQθ̄,β̄

(dt, dz) = vLQθ̄,β̄
(dt, dz) = Hθ2,β2(t, z)�(dz)dt.

In conclusion, the semimartingale triplet for X and Y under Qθ̄,β̄ is given by (BX
Qθ̄,β̄

, σ2
X t, 0)

and (BY
Qθ̄,β̄

, 0, vYQθ̄,β̄
), respectively.

Remark 3.4. Under Qθ̄,β̄, X and Y still satisfy Langevin equations with different param-
eters; that is, the measure change preserves the structure of the equations. The process L is
not a Lévy process under Qθ̄,β̄, but it remains a semimartingale. Therefore, one can use Itô’s
formula again to obtain the following explicit expressions for X and Y :

X(t) = X(s)e−αX (1−β1)(t−s) +
μX + θ1

αX(1− β1)
(1− e−αX (1−β1)(t−s))(3.9)

+ σX

∫ t

s
e−αX(1−β1)(t−u)dWQθ̄,β̄

(u),

Y (t) = Y (s)e−αY (1−β2)(t−s) +
μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(t−s))(3.10)

+

∫ t

s

∫ ∞

0
e−αY (1−β2)(t−u)zÑL

Qθ̄,β̄
(du, dz),

where 0 ≤ s ≤ t ≤ T.
Remark 3.5. Looking at (3.7) and (3.8), one can see how the values of the parameters θ̄

and β̄ change the drift. Setting θ̄ = (0, 0) we keep fixed the level to which the process reverts
and change the speed of mean reversion by changing β̄. If β̄ = (0, 0), we fix the speed of mean
reversion and change the level by changing θ̄. By choosing β1 = 1, say, we observe that X(t)
in (3.9) becomes (using a limit consideration in the second term)

(3.11) X(t) = X(s) + (μX + θ1)(t− s) + σX(WQθ̄,β̄
(t)−WQθ̄,β̄

(s)) .

Hence, X is a drifted Brownian motion and we have a nonstationary dynamics under the
pricing measure with this choice of β1. Obviously, we can choose β2 = 1 and obtain similarly
a nonstationary dynamics for the jump component as well; however, this will not be driven
by a Lévy process under Qθ̄,β̄.

The previous reasonings rely crucially on the assumption that Qθ̄,β̄ is a probability mea-
sure. Hence, we have to find sufficient conditions on the Lévy process L and the possible values
of the parameters θ̄ and β̄ that ensure E(G̃θ1,β1 + H̃θ2,β2) to be a true martingale with strictly
positive values. As [G̃θ1,β1 , H̃θ2,β2 ], the quadratic co-variation between G̃θ1,β1 and H̃θ2,β2 , is
identically zero, by Yor’s formula (equation II.8.19 in [19]) we can write

(3.12) E(G̃θ1,β1 + H̃θ2,β2)(t) = E(G̃θ1,β1)(t)E(H̃θ2,β2)(t), t ∈ [0, T ],
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and, as the stochastic exponential of a continuous process is always positive, we need only
ensure the positivity of E(H̃θ2,β2)(t). Assume that E(H̃θ2,β2) is positive; then Remark 3.3 yields
that E(G̃θ1,β1 + H̃θ2,β2) is a true martingale if and only if EP [E(G̃θ1,β1 + H̃θ2,β2)(T )] = 1. Using
the independence of G̃θ1,β1 and H̃θ2,β2 and the identity (3.12), we get

EP [E(G̃θ1,β1 + H̃θ2,β2)(T )] = EP [E(G̃θ1,β1)(T )]EP [E(H̃θ2,β2)(T )],

showing that E(G̃θ1,β1 + H̃θ2,β2) is a martingale if and only if E(G̃θ1,β1) and E(H̃θ2,β2) are also
martingales. Hence, we can write

dQθ̄,β̄

dP

∣∣∣∣
Ft

=
dQθ1,β1

dP

∣∣∣∣
Ft

× dQθ2,β2

dP

∣∣∣∣
Ft

, t ∈ [0, T ],

where
dQθ1,β1

dP

∣∣
Ft

� E(G̃θ1,β1)(t) and
dQθ2,β2

dP

∣∣
Ft

� E(H̃θ2,β2)(t), t ∈ [0, T ].
The previous reasonings allow us to reduce the proof that Qθ̄,β̄ is a probability measure

equivalent to P,Qθ̄,β̄ ∼ P to proving that E(G̃θ1,β1) is a martingale (or Qθ1,β1 ∼ P ) and

E(H̃θ2,β2) is a martingale with strictly positive values (or Qθ2,β2 ∼ P ). The literature on this
topic is huge; see, for instance, Kazamaki [22], Novikov [27], Lépingle and Mémin [24], and
Kallsen and Shiryaev [21]. The main difficulty when trying to use the classical criteria is that
our kernels depend on the processes X and Y, which are unbounded.

To prove that E(G̃θ1,β1) is a martingale one could use a localized version of Novikov’s
criterion. However, this approach would entail showing that the expectation of the expo-
nential of the integral of a stochastic iterated integral of order two is finite. Although these
computations seem feasible, they are definitely very stodgy. We shall make use of recent re-
sults obtained by Mijatović and Urusov [26]. They give necessary and sufficient condition for
E(∫ ·

0 b(X(s))dW (s)) to be a true martingale in the case whereX is a one-dimensional diffusion
driven by a Brownian motion W.

On the other hand, the most widely used sufficient criterion for martingales with jumps
is the Lépingle–Mémin criterion. This criterion is very general, but the conditions obtained
are not necessary for the martingale property. Using this criterion we are only able to prove
the result by requiring the Lévy process L to have bounded jumps. In a very recent paper,
assuming some structure on the processes, Klebaner and Lipster [23] give a fairly general
criterion which seems easier to apply than those of Novikov and Lépingle and Mémin. In fact,
their criterion can be applied in our setting and we get the result without requiring additional
conditions on the Lévy processes L.

Finally, note that these results can be extended, in a straightforward manner, to any finite
number of Langevin equations driven by Brownian motions and Lévy processes, independent
of each other. In the following two subsections, we will drop the subindices in the parameters
θ and β.

3.1. Brownian driven OU processes.
Theorem 3.6. Let θ ∈ R and β ∈ [0, 1]. Then E(G̃θ,β) = {E(G̃θ,β)(t)}t∈[0,T ] is a martingale

under P.
Proof. It follows from Corollary 2.2 in Mijatović and Urusov [26]. We apply Corollary 2.2

with
μ(x) = μX − αXx, σ(x) = σX , b(x) = σ−1

X (θ1 + αXβ1x)
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and state space J = R. As the coefficients μ and σ have linear growth, the solution of

X(t) = X(0) +

∫ t

0
μ(X(s))ds +

∫ t

0
σ(X(s))dW (s)

does not exit its state space, i.e., does not explode in finite time. Moreover, μ, σ, and b
satisfy σ(x) �= 0 for all x ∈ J and 1

σ2 ,
μ
σ2 ,

b
σ2 ∈ L1

loc(J). On some filtered probability space

(Ω̃, F̃ , (F̃t)t∈[0,∞), P̃ ), we consider a Brownian motion W̃ and the auxiliary diffusion

X̃(t) = X(0) +

∫ t

0
(μ + bσ)(X̃(s))ds +

∫ t

0
σ(X̃(s))dW̃ (t)

= X(0) +

∫ t

0
(μX + θ1 − αX(1− β1)X̃(s))ds + σXW̃ (t),

with the same state space as X. Corollary 2.2 in [26] states that, under the previous integra-
bility conditions on μ, σ, and b and if X does not exit its state space J , E(G̃θ,β) is a true
martingale if and only if the auxiliary diffusion X̃ does not exit J. This condition for X̃ is
satisfied because it is a linear SDE.

3.2. Lévy driven OU processes.
Theorem 3.7. Let θ ∈ DL and β ∈ [0, 1]. Then E(H̃θ,β) = {E(H̃θ,β)(t)}t∈[0,T ] is a martin-

gale under P .
The previous result follows from Theorem 4.2 in Klebaner and Lipster [23]. However, the

paper [23] is quite technical and sometimes difficult to follow. We have opted for giving a
simpler proof of Theorem 3.7 in the appendix, following the main ideas in [23]. Moreover, we
would like to remark that the very same ideas allow us to prove Theorem 3.6.

4. Study of the risk premium. We are interested in applying the previous probability
measure change to study the risk premium in electricity markets. As we discussed in the in-
troduction, there are two reasonable models for the spot price S in this market: the arithmetic
and the exponential models. We define the arithmetic spot price model by

(4.1) S(t) = Λa(t) +X(t) + Y (t), t ∈ [0, T ∗],

and the geometric spot price model by

(4.2) S(t) = Λg(t) exp(X(t) + Y (t)), t ∈ [0, T ∗],

where T ∗ > 0 is a fixed time horizon. The processes Λa and Λg are assumed to be deterministic,
and they account for the seasonalities observed in the spot prices.

One of the particularities of electricity markets is that power is a nonstorable asset and for
that reason is not a directly tradeable asset. This entails that one cannot derive the forward
price of electricity from the classical buy-and-hold hedging arguments. Using a risk-neutral
pricing argument (see Benth, Šaltytė Benth, and Koekebakker [4]), under the assumption
of deterministic interest rates, the forward price, with time of delivery 0 < T < T ∗, at
time 0 < t < T is given by FQ(t, T ) � EQ[S(T )|Ft], where Q is any probability measure
equivalent to the historical measure P and Ft is the market information up to time t. In what
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follows we will use the probability measure Q discussed in the previous sections. However, in
electricity markets, the delivery of the underlying takes place over a period of time [T1, T2],
where 0 < T1 < T2 < T ∗. We call such contracts swap contracts, and we will denote their
price at time t < T1 by

FQ(t, T1, T2) � EQ

[
1

T2 − T1

∫ T2

T1

S(T )dT |Ft

]
.

We can use the stochastic Fubini theorem to relate the price of forwards and swaps

FQ(t, T1, T2) �
1

T2 − T1

∫ T2

T1

FQ(t, T )dT.

The risk premium for forward prices is defined by the expression RF
Q(t, T ) � EQ[S(T )|Ft] −

EP [S(T )|Ft] and for swap prices by
(4.3)

RS
Q(t, T1, T2) � FQ(t, T1, T2)− EP

[
1

T2 − T1

∫ T2

T1

S(T )dT |Ft

]
=

1

T2 − T1

∫ T2

T1

RF
Q(t, T )dT.

In order to compute the previous quantities we need to know the dynamics of S (that is, of
X and Y ) under P and under Q. Explicit expressions for X and Y under P are given in (2.4)
and (2.5), respectively. In the rest of the paper, Q = Qθ̄,β̄, θ̄ ∈ D̄L, β̄ ∈ [0, 1]2 are defined as
in (3.5), and the explicit expressions for X and Y under Q are given as in (3.9) and (3.10),
respectively, in Remark 3.4.

Remark 4.1. We will use the subindices a and g to denote the arithmetic and the geometric
spot models, respectively. That is, we will use the notation RF

a,Q(t, T ), R
F
g,Q(t, T ), R

S
a,Q(t, T1, T2),

and RS
g,Q(t, T1, T2).

Remark 4.2. In the discussion to follow, we are interested in finding values of the pa-
rameters θ̄, β̄ such that some empirical features of the observed risk premium profiles are
reproduced by our pricing measure. In particular, we show that it is possible to have the
sign of the risk premium changing stochastically from positive values on the short end of
the market to negative values on the long end. This is proved for forward contracts in both
the arithmetic and geometric models. Equation (4.3) tells us only that the risk premium for
swaps becomes the average of the risk premium for forwards with fixed delivery. Hence, we
can also obtain stochastic sign change for these, depending on the length of delivery. It is
worth noticing that contracts in the short end have short delivery (a day or a week), while
in the long end they have monthly/quarterly/yearly delivery. The average for the negative
is negative for the long end, and the average over the short period, dominantly positive, is
positive for the short end.

4.1. Arithmetic spot price model. We assume in this section that the spot price S(t) is
given by the dynamics (4.1) for 0 ≤ t ≤ T ∗, T ∗ > 0, with the maturity time of the forward
contract T satisfying 0 < T < T ∗. Using (2.4) and (2.5) and the basic properties of the
conditional expectation we get

EP [S(T )|Ft] = Λa(T ) + EP

[
X(t)e−αX (T−t) +

μX

αX
(1− e−αX(T−t))|Ft

]



RISK PREMIUM IN POWER MARKETS 695

+ EP

[
Y (t)e−αY (T−t) +

μY + κ′L(0)
αY

(1− e−αY (T−t))|Ft

]

+ EP

[
σX

∫ T

t
e−αX (T−s)dW (s) +

∫ T

t

∫ ∞

0
e−αY (T−s)zÑL(ds, dz)|Ft

]
= Λa(T ) +X(t)e−αX (T−t) + Y (t)e−αY (T−t)

+
μX

αX
(1− e−αX(T−t)) +

μY + κ′L(0)
αY

(1− e−αY (T−t))

+ EP

[
σx

∫ T

t
e−αX(T−s)dW (s)

]
+ EP

[ ∫ T

t

∫ ∞

0
e−αY (T−u)zÑL(ds, dz)

]

= Λa(T ) +X(t)e−αX (T−t) + Y (t)e−αY (T−t) +
μX

αX
(1− e−αX(T−t))

+
μY + κ′L(0)

αY
(1− e−αY (T−t)).

Note that we have also used that W and ÑL have independent increments under P to write
conditional expectations as expectations. If we assume that α � αX = αY , then

EP [S(T )|Ft] = Λa(T ) + (S(t)− Λ(t))e−α(T−t) +
μX + μY + κ′L(0)

α
(1− e−α(T−t)).

This last expression for EP [S(T )|Ft] is considerably simpler and depends explicitly on S(t),
the spot price at time t, which is directly observable in the market.

To find a similar expression for EQ[S(T )|Ft] we need the following lemma.

Lemma 4.3. We have that
∫ t
0

∫∞
0 eαY (1−β2)szÑL

Q(ds, dz) is a Q-martingale on [0, T ], T > 0.

Proof. We have to prove that EQ[
∫ t
0

∫∞
0 eαY (1−β2)szvLQ(ds, dz)] < ∞. One has that

EQ

[∫ t

0

∫ ∞

0

eαY (1−β2)szvLQ(ds, dz)

]
= EQ

[∫ t

0

∫ ∞

0

eαY (1−β2)szHθ2,β2(s, z)�(dz)ds

]

= EQ

[∫ t

0

∫ ∞

0

eαY (1−β2)sz

(
eθ2z +

αY β2

κ′′
L(θ2)

eθ2zzY (s)

)
�(dz)ds

]

≤ eαY T

{
Tκ′

L(θ2) + αY T sup
0≤t≤T

EQ[Y (t)]

}
,

and κ′L(θ2) < ∞ because θ2 ∈ DL. The proof that sup0≤s≤T EQ[Y (s)] is finite follows along the
same lines as the last part of Theorem 3.7. Using the semimartingale representation of Y, (3.6),
we obtain that there exist constants C0 and C1 such that EQ[Y (t)] ≤ C0 + C1

∫ t
0 EQ[Y (s)]ds.

Applying Gronwall’s lemma, we get that EQ[Y (t)] ≤ C0e
C1T and the result follows.

Remark 4.4. We need the previous lemma because Girsanov’s theorem ensures only that

(4.4)

∫ t

0

∫ ∞

0
eαY (1−β2)szÑL

Q(ds, dz)

is a Q-local martingale. We want (4.4) to be a Q-martingale because then it follows trivially
that

EQ

[∫ T

t

∫ ∞

0
eαY (1−β2)szÑL

Q(ds, dz)|Ft

]
= 0.
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Note that we cannot reduce the previous conditional expectation (unless β2 = 0, which coin-
cides with the Esscher change of measure) to an expectation because the compensator of NL

Q

depends on Y and, therefore, ÑL
Q does not have independent increments.

Using the basic properties of the conditional expectation, Remark 4.4, and (3.9) and (3.10)
we get

EQ[S(T )|Ft] = Λa(T ) + EQ

[
X(t)e−αX (1−β1)(T−t) +

μX + θ1
αX(1− β1)

(1− e−αX (1−β1)(T−t))|Ft

]

+ EQ

[
Y (t)e−αY (1−β2)(T−t) +

μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(T−t))|Ft

]

+ EQ

[
σX

∫ T

t
e−αX(1−β1)(T−s)dWQ(s)|Ft

]

+ EQ

[ ∫ T

t

∫ ∞

0
e−αY (1−β2)(T−s)zÑL

Q(ds, dz)|Ft

]

= Λa(T ) +X(t)e−αX (1−β1)(T−t) +
μX + θ1

αX(1− β1)
(1− e−αX(1−β1)(T−t))

+ Y (t)e−αY (1−β2)(T−t) +
μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(T−t))

+ EQ

[
σX

∫ T

t
e−αX(1−β1)(T−s)dWQ(s)

]

+ e−αY (1−β2)TEQ

[ ∫ T

t

∫ ∞

0
eαY (1−β2)szÑL

Q(ds, dz)|Ft

]
= Λa(T ) +X(t)e−αX (1−β1)(T−t) + Y (t)e−αY (1−β2)(T−t)

+
μX + θ1

αX(1− β1)
(1− e−αX (1−β1)(T−t)) +

μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(T−t)).

Therefore, we have proved the following result.

Proposition 4.5. The forward price FQ(t, T ) in the arithmetic spot model (4.1) is given by

FQ(t, T ) = Λa(T ) +X(t)e−αX (1−β1)(T−t) + Y (t)e−αY (1−β2)(T−t)

+
μX + θ1

αX(1− β1)
(1− e−αX(1−β1)(T−t)) +

μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(T−t)).

In Lucia and Schwartz [25] a two-factor model (among others) is proposed as the dynamics
for power spot prices in the Nordic electricity market NordPool. Following the model of
Schwartz and Smith [29], they consider a nonstationary long-term variation factor together
with a stationary short-term variation factor. In our context, one could let the mean reversion
in X be zero to obtain a nonstationary factor as a drifted Brownian motion under the pricing
measure Q. After doing a measure transform with β1 = 1, we can price forwards as in
Proposition 4.5 to find

FQ(t, T ) = Λa(T ) +X(t) + Y (t)e−αY (1−β2)(T−t) + (μX + θ1)(T − t)
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+
μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(T−t)).

When T − t becomes large, i.e., when we are far out on the forward curve, we see that

(4.5) FQ(t, T ) ∼ Λa(T ) +X(t) + (μX + θ1)(T − t) +
μY + κ′L(θ2)
αY (1− β2)

.

Thus, the forward curve moves stochastically as the nonstationary factor X. If one, on the
other hand, lets X be stationary, we find that the forward price in Proposition 4.5 will behave
for large time to maturities T − t as

FQ(t, T ) ∼ Λa(T ) +
μX + θ1

αX(1− β1)
+

μY + κ′L(θ2)
αY (1− β2)

.

The forward prices becomes constant after subtracting the seasonal function, with no stochas-
tic movements. This is not what is observed for forward data in the market. However,
following the empirical study in Barndorff-Nielsen, Benth, and Veraart [1], electricity spot
prices on the German power exchange EEX are stationary. One way to have a stationary
spot dynamics, and still maintain forward prices which moves randomly in the long end, is
to apply our measure change to slow down the mean reversion in one or more factors of the
(stationary) spot. In the extreme case, we can let β1 = 1, and obtain a nonstationary factor X
under the pricing measure, in which case we obtain the same long-term asymptotic behavior
as in the generalization of the Lucia and Schwartz model (4.5). In conclusion, our pricing
measure allows for a stationary spot dynamics and a forward price dynamics which is not
constant in the long end.

Let us return to the risk premium, which in view of Proposition 4.5 becomes the following.
Proposition 4.6. The risk premium RF

a,Q(t, T ) for the forward price in the arithmetic spot
model (4.1) is given by

RF
a,Q(t, T ) = X(t)e−αX (T−t)(eαXβ1(T−t) − 1) + Y (t)e−αY (T−t)(eαY β2(T−t) − 1)

+
μX + θ1

αX(1− β1)
(1− e−αX (1−β1)(T−t)) +

μY + κ′L(θ2)
αY (1− β2)

(1− e−αY (1−β2)(T−t))

− μX

αX
(1− e−αX (T−t))− μY + κ′L(0)

αY
(1− e−αY (T−t)).

We analyze different cases for the risk premium in the next subsection.

4.1.1. Discussion on the risk premium. The first remarkable property of this measure
change is that, as long as the parameter β̄ �= (0, 0), the risk premium is stochastic. This might
be a desirable feature in view of the discussion in the introduction where we referred to the
economical and empirical evidence in Geman and Vasicek [15], Bessembinder and Lemon [6],
and Benth, Cartea, and Kiesel [3]. Note that when β̄ = (0, 0), our measure change coincides
with the Esscher transform (see Benth, Šaltytė Benth, and Koekebakker [4]). In the Esscher
case, the risk premium has a deterministic evolution given by

(4.6) RF
a,Q(t, T ) =

θ1
αX

(1− e−αX (T−t)) +
κ′L(θ2)− κ′L(0)

αY
(1− e−αY (T−t)),
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an already known result; see Benth and Sgarra [5].
Another interesting feature of the empirical risk premium is that its sign might change

from positive to negative when the time to maturity τ � T − t increases. Hence, we are
interested in theoretical models that allow us to reproduce such an empirical property. From
now on we shall rewrite the expressions for the risk premium in terms of the time to maturity
τ and, slightly abusing the notation, we will write RF

a,Q(t, τ) instead of RF
a,Q(t, t + τ). We fix

the parameters of the model under the historical measure P, i.e., μX , αX , σX , μY , and αY ,
and study the possible sign of RF

a,Q(t, τ) in terms of the change of measure parameters, i.e.,

β̄ = (β1, β2) and θ̄ = (θ1, θ2) and the time to maturity τ. Note that the present time enters
into the picture only through the stochastic components X and Y. We are going to assume
μX = μY = 0. This assumption is justified, from a modeling point of view, because we want
the processes X and Y to revert toward zero. In this way, the seasonality function Λa accounts
completely for the mean price level. On the other hand, it is also reasonable to expect that
αX < αY , which means that the component accounting for the jumps reverts the fastest (e.g.,
being the factor modeling the spikes). The factor X is referred to as the base component,
modeling the normal price variations when the market is not under particular stress. The
expression for RF

a,Q(t, τ) given in Proposition 4.6 allows for a quite rich behavior. We are going

to study the cases θ̄ = (0, 0), β̄ = (0, 0) and the general case separately. Moreover, in order
to graphically illustrate the discussion we plot the risk premium profiles obtained assuming
that the subordinator L is a compound Poisson process with jump intensity c/λ > 0 and
exponential jump sizes with mean λ. That is, L will have the Lévy measure given in Example
3.2. We shall measure the time to maturity τ in days and plot RF

a,Q(t, τ) for τ ∈ [0, 360],
roughly one year. We fix the values of the following parameters:

αX = 0.099, αY = 0.3466, c = 0.4, λ = 2.

The speed of mean reversion for the base component αX yields a half-life of seven days, while
the one for the spikes αY yields a half-life of two days (see, e.g., Benth, Šaltytė Benth, and
Koekebakker [4] for the concept of half-life). The values for c and λ give jumps with mean 0.5
and frequency of five spikes a month. The values of these parameters are chosen for illustrative
purposes only, although they do not seem to be unreasonable in a power market context (see
Benth and Sgarra [5], who apply the same values).

The following lemma will help us in the discussion to follow.
Lemma 4.7. If μX = μY = 0 and αX < αY , we have that the risk premium RF

a,Q(t, τ)
satisfies

RF
a,Q(t, τ) = X(t)e−αX τ (eαXβ1τ − 1) + Y (t)e−αY τ (eαY β2τ − 1)(4.7)

+
θ1

αX(1− β1)
(1− e−αX(1−β1)τ ) +

κ′L(θ2)− κ′L(0)
αY (1− β2)

(1− e−αY (1−β2)τ )

+
κ′L(0)
αY

Λ(αY τ, 1− β2),

where

Λ(x, y) =
1− e−xy

y
− (1− e−x), x ∈ R+, y ∈ [0, 1],
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lim
x→∞Λ(x, y) =

1− y

y
,

lim
x→0

∂

∂x
Λ(x, y) = 0

is a nonnegative function. Moreover,

lim
τ→∞RF

a,Q(t, τ) =
θ1

αX(1− β1)
+

κ′L(θ2)− κ′L(0)
αY (1− β2)

+
κ′L(0)
αY

β2
1− β2

,(4.8)

lim
τ→0

∂

∂τ
RF

a,Q(t, τ) = X(t)αXβ1 + Y (t)αY β2 + θ1 + κ′L(θ2)− κ′L(0).(4.9)

Proof. It follows trivially from Proposition 4.6 and the assumptions on the coefficients
μX , μY , αX , and αY .

Remark 4.8. The previous lemma shows that the risk premium RF
a,Q(t, τ) vanishes with

the rate given by (4.9) at the short end of the forward curve, when τ converges to zero, and
approaches the value given in (4.8) at the long end of the forward curve, when τ tends to
infinity. It follows that the sign of RF

a,Q(t, τ) in the short end of the forward curve will be
positive if (4.9) is positive and negative if (4.9) is negative. Hence, a sufficient condition
to obtain the empirically observed risk premium profiles (with positive values in the short
end and negative values in the long end of the forward curve) is to choose the values of the
parameters θ̄ ∈ D̄L and β̄ ∈ [0, 1]2 such that the following two conditions are simultaneously
satisfied:

θ1
αX(1− β1)

+
κ′L(θ2)− κ′L(0)
αY (1− β2)

+
κ′L(0)
αY

β2
1− β2

< 0,

X(t)αXβ1 + Y (t)αY β2 + θ1 + κ′L(θ2)− κ′L(0) > 0.

We also recall here that, according to Remark 2.2, κ′(θ) is a positive, increasing function, so
the sign of κ′L(θ2)− κ′L(0) is equal to the sign of θ2. Moreover, it is easy to see that

−κ′L(0) < κ′L(θ2)− κ′L(0) < κ′L(ΘL/2)− κ′L(0) < ∞.

• Changing the level of mean reversion (Esscher transform), β̄ = (0, 0): Setting β̄ =
(0, 0), the probability measure Q changes only the level of mean reversion (which is
assumed to be zero under the historical measure P ). On the other hand, the risk
premium is deterministic and cannot change with changing market conditions. From
(4.6), we get that if we set θ2 = 0, which means that we change only the level of the
regular factor X, the sign of RF

a,Q(t, τ) is the same for any time to maturity τ and it
is equal to the sign of θ1; see Figures 1(a) and 1(b). The situation is similar if we set
θ1 = 0; then the sign of RF

a,Q(t, τ) is constant over the time to maturity τ end equal to
the sign of κ′L(θ2)− κ′L(0), that is, to the sign of θ2; see Figures 1(c) and 1(d). When
both θ1 and θ2 are different from zero the situation is more interesting, the sign of
RF

a,Q(t, τ) may change depending on the time to maturity. By Remark 4.8 it suffices
to choose θ1 < 0 and θ2 > 0 satisfying

θ1
αX

+
κ′L(θ2)− κ′L(0)

αY
< 0,(4.10)
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(d) θ1 = 0, θ2 = −0.75

Figure 1. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps. Esscher transform: case β̄ = (0, 0). Arithmetic spot price model.

θ1 + κ′L(θ2)− κ′L(0) > 0(4.11)

(these exist because αX < αY and κ′L(θ) is increasing) to get that RF
a,Q(t, τ) > 0 for τ

close to zero and RF
a,Q(t, τ) < 0 for τ large enough; see Figure 2(a). This corresponds

to the situation of a premium induced from consumers’ hedging pressure on short-term
contracts and long-term hedging of producers. We can also choose values for θ1 > 0
and θ2 < 0 such that (4.10) and (4.11) are satisfied but with inverted inequalities. In
this way, we can get that RF

a,Q(t, τ) < 0 for τ close to zero and RF
a,Q(t, τ) > 0 for τ

large enough; see Figure 2(b). Risk premium profiles with constant sign can also be
generated; see Figures 2(c) and 2(d).

• Changing the speed of mean reversion, θ̄ = (0, 0): Setting θ̄ = (0, 0), the probability
measure Q changes only speed of mean reversion. Note that in this case the risk
premium is stochastic and it changes with market conditions. By Lemma 4.7 we have
that the risk premium is given by

RF
a,Q(t, τ) = X(t)e−αXτ (eαXβ1τ − 1) + Y (t)e−αY τ (eαY β2τ − 1)

+
κ′L(0)
αY

Λ(αY τ, 1− β2)
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Figure 2. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps. Esscher transform: case β̄ = (0, 0). Arithmetic spot price model.

and

lim
τ→∞RF

a,Q(t, τ) =
κ′L(0)
αY

β2
1− β2

≥ 0,

lim
τ→0

∂

∂τ
RF

a,Q(t, τ) = X(t)αXβ1 + Y (t)αY β2.

Hence the risk premium will approach a nonnegative value in the long end of the
market. In the short end, it can be both positive or negative and stochastically varying
with X(t) and Y (t), but Y (t) will always contribute to a positive sign. Actually, as
the function Λ(x, y) is nonnegative and κ′L(0) is strictly positive, the only negative
contribution to RF

a,Q(t, τ) comes from the term due to the base component X. Hence,

if β1 = 0 or X(t) ≥ 0, then RF
a,Q(t, τ) will be positive for all times to maturity. Some

of the possible risk profiles that can be obtained are plotted in Figure 3.
• Changing the level and speed of mean reversion simultaneously : The general case is

quite complex to analyze. As we are more interested in how the change of measure Q
influences the component Y (t), responsible for the spikes in the prices, we are going
to assume that β1 = 0. This means that Q may change the level of mean reversion
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(c) β1 = 0.75, β2 = 0.75, X(t) = −2.5, Y (t) = 0
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Figure 3. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps: case θ̄ = (0, 0). Arithmetic spot price model.

of the regular component X(t) but not the speed at which this component reverts
to that level. The first implication of this assumption is that the possible stochastic
component in RF

a,Q(t, τ) due to X(t) vanishes. This simplifies the analysis, as this
term could be positive or negative. By Lemma 4.7 we get that

RF
a,Q(t, τ) = Y (t)e−αY τ (eαY β2τ − 1) +

θ1
αX

(1− e−αXτ )

+
κ′L(θ2)

αY (1− β2)
(1− e−αY (1−β2)τ )− κ′L(0)

αY
(1− e−αY τ )

and

lim
τ→∞RF

a,Q(t, τ) =
θ1
αX

+
κ′L(θ2)− κ′L(0)
αY (1− β2)

+
κ′L(0)
αY

β2
1− β2

,(4.12)

lim
τ→0

∂

∂τ
RF

a,Q(t, τ) = Y (t)αY β2 + θ1 + κ′L(θ2)− κ′L(0).(4.13)

Note that we can make (4.12) negative by simply choosing θ1

(4.14) θ1 < − αX

αY (1− β2)

(
κ′L(θ2)− κ′L(0) + β2κ

′
L(0)

)
.
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Figure 4. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps. Arithmetic spot price model.

On the other hand, to make (4.13) positive, we have to choose θ1 satisfying

(4.15) θ1 > −(κ′L(θ2)− κ′L(0)) − Y (t)αY β2.

Equations (4.14) and (4.15) are compatible if the following inequality is satisfied:

(4.16) κ′L(θ2)− κ′L(0) + Y (t)αY β2 >
αX

αY (1− β2)

(
κ′L(θ2)− κ′L(0) + β2κ

′
L(0)

)
.

For any θ2 > 0 which yields κ′L(θ2) − κ′L(0) > 0 (and θ1 < 0), we have that there
exists β∗

2 ∈ (0, 1) such that if β2 < β∗
2 , (4.16) is satisfied. Actually, the larger the

value of Y (t), the larger the value of β∗
2 . If Y (t) is close to κ′L(0)/αY , then β∗

2 is close
to (αY − αX)/αY . This says only that if the speed of mean reversion of the spikes
component is large (in absolute value and relative to the speed of mean reversion of
the base component), one can choose β2 close to one. Even in the case that Y (t) = 0,
(4.16) is satisfied by choosing β2 small enough. To sum up, we can create a measure
Q that can have a positive premium in the short end of the forward market due to
sudden positive spikes in the price (that is, Y increases), whereas in the long end of
the market these spikes are not influential and we have a negative premium; see Figure
4.

4.2. Geometric spot price model. We assume in this section that the spot price S(t)
follows the geometric model (4.2) for 0 ≤ t ≤ T ∗, T ∗ > 0, and with the maturity of the
forward contract being 0 < T < T ∗. In our setting, the geometric model is harder to deal
with than the arithmetic one. The results obtained are far less explicit, and some additional
integrability conditions on L are required. A first, natural, additional assumption on L is that
the constant ΘL appearing in Assumption 1 is bigger than 1. This condition is reasonable to
expect because it states only that E[eL(t)] < ∞ for all t ∈ R , and if we want E[eY (t)] to be
finite, it seems a minimal assumption. Note, however, that this is not entirely obvious because
the process Y has a mean reversion structure that L does not have. On the other hand, the
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complex probabilistic structure of the spike factor Y under the new probability measure Q
makes the computations much more difficult. Still, it is possible to compute the risk premium
analytically in some cases. In general, one has to rely on numerical techniques.

In what follows, we shall compute the conditional expectations involved under Q (note
that Q = P when θ1 = θ2 = β1 = β2 = 0). First, we show that the problem can be reduced
to the study of the spike component Y. Due to the independence of X and Y, we have that

EQ[S(T )] = Λg(T )EQ[exp(X(T ) + Y (T ))]

= Λg(T )EQ[exp(X(T ))]EQ[exp(Y (T ))],

which is finite if and only if EQ[exp(X(T ))] < ∞ and EQ[exp(Y (T ))] < ∞. As X(T ) is a Gaus-
sian random variable, it has finite exponential moments. To determine whether EQ[exp(Y (T ))]
is finite or not is not as straightforward. Let us assume, for now, that it is finite. Then, it
makes sense to compute the following conditional expectation:

EQ[S(T )|Ft] = Λg(T )EQ[exp(X(T ) + Y (T ))|Ft]

= Λg(T )EQ[EQ[exp(X(T ))|Ft ∨ σ({Y (t)}0≤t≤T )] exp(Y (T ))|Ft].

Using (3.9), the fact that X is independent of σ({Y (t)}0≤t≤T ), and basic properties of the
conditional expectation we get that

EQ[exp(X(T ))|Ft ∨ σ({Y (t)}0≤t≤T )]

= exp

(
X(t)e−αX (1−β1)(T−t) +

μX + θ1
αX(1− β1)

(1− e−αX (1−β1)(T−t))

)

× EQ

[
exp

(
σX

∫ T

t
e−αX (1−β1)(T−s)dWQ(s)

)]

= exp

(
X(t)e−αX (1−β1)(T−t) +

μX + θ1
αX(1− β1)

(1− e−αX (1−β1)(T−t))

)

× exp

(
σ2
X

4αX(1− β1)
(1− e−2αX (1−β1)(T−t))

)
.

Hence, we have reduced the problem to the study of EQ[exp(Y (T ))|Ft].
Let us start with the Esscher case Q = Qθ2,β2 with θ2 ∈ DL and β2 = 0. We have that

EQ[exp(Y (T ))] = exp

{
Y (0)e−αY T +

μY + κ′L(θ2)
αY

(1− e−αY T )

}

× EQ

[
exp

(∫ T

0

∫ ∞

0
ze−αY (T−s)ÑL

Q(ds, dz)

)]

= exp

{
Y (0)e−αY T +

μY

αY
(1− e−αY T )

}

× EQ

[
exp

(∫ T

0

∫ ∞

0
ze−αY (T−s)NL

Q(ds, dz)

)]

= exp

{
Y (0)e−αY T +

μY

αY
(1− e−αY T )

}
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× exp

{∫ T

0

∫ ∞

0
(eze

−αY (T−s) − 1)eθ2z�(dz)ds

}
,

where we have used that the compensator of L under Q is vLQ(ds, dz) = eθ2z�(dz)ds (note that

eθ2z�(dz) is a Lévy measure) and Proposition 3.6 in Cont and Tankov [10]. Of course, the
previous result holds as long as the integral in the exponential is finite. A sufficient condition
for the integrability of exp(Y (T )) follows from∫ T

0

∫ ∞

0
(eze

−αY (T−s) − 1)eθ2z�(dz)ds

=

∫ T

0

∫ ∞

0
ze−αY (T−s)

(∫ 1

0
eλze

−αY (T−s)
dλ

)
eθ2z�(dz)ds

≤
∫ T

0

∫ ∞

0
ze−αY (T−s)ez(θ2+e−αY (T−s))�(dz)ds ≤ Tκ′L(θ2 + 1).

As θ2 ∈ DL, to have κ′L(θ2 + 1) < ∞ yields the condition

θ2 ∈ Dg
L � DL ∩ (−∞,ΘL − 1) = (−∞, (ΘL − 1) ∧ (ΘL/2)).

Note that for θ2 ∈ Dg
L to be strictly positive and, therefore, include the case Q = P , we need

to have ΘL > 1. This, of course, is a restriction on the structure of the jumps. For instance, if
L is a compound Poisson process with exponentially distributed jump sizes, Example 3.2 (case
2), we have that the jump sizes must have a mean less than one. Note also that if ΘL > 2,
then Dg

L = DL.
Using expression (3.10) and repeating the previous arguments we obtain

EQ[exp(Y (T ))|Ft] = exp

{
Y (t)e−αY (T−t) +

μY

αY
(1− e−αY (T−t))

}

× exp

{∫ T−t

0

∫ ∞

0
(eze

−αY s − 1)eθ2z�(dz)ds

}
.

Hence we have proved the following result.
Proposition 4.9. In the Esscher case for the spike component Y , i.e., θ2 ∈ Dg

L, β2 = 0, and
assuming ΘL > 1, the forward price FQ(t, T ) in the geometric spot model (4.2) is given by

FQ(t, T ) = Λg(T ) exp
(
X(t)e−αX (1−β1)(T−t) + Y (t)e−αY (T−t)

)
× exp

(
μX + θ1

αX(1− β1)
(1− e−αX(1−β1)(T−t)) +

μY

αY
(1− e−αY (T−t))

)

× exp

(
σ2
X

4αX(1− β1)
(1− e−2αX (1−β1)(T−t)) +

∫ T−t

0

∫ ∞

0
(eze

−αY s − 1)eθ2z�(dz)ds

)
,

and the risk premium for the forward price RF
g,Q(t, T ) is given by

RF
g,Q(t, T ) = EP [S(T )|Ft]

{
exp(RF

a,Q(t, T ))
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× exp

(
σ2
X

4αX(1− β1)
(1− e−2αX (1−β1)(T−t))− σ2

X

4αX
(1− e−2αX (T−t))

)

× exp

(
− κ′L(θ2)− κ′L(0)

αY
(1− e−αY (T−t))

)

× exp

(∫ T−t

0

∫ ∞

0
(eze

−αY s − 1)(eθ2z − 1)�(dz)ds

)
− 1

}
,

where RF
a,Q(t, T ) is also understood under the assumption β2 = 0.

Corollary 4.10. Setting θ2 = 0 in Proposition 4.9 we get

EP [S(T )|Ft] = Λg(T ) exp
(
X(t)e−αX (T−t) + Y (t)e−αY (T−t)

)
× exp

(
μX

αX
(1− e−αX (T−t)) +

μY

αY
(1− e−αY (T−t))

)

× exp

(
σ2
X

4αX
(1− e−2αX(1−β1)(T−t)) +

∫ T−t

0

∫ ∞

0
(eze

−αY s − 1)�(dz)ds

)
.

The previous result is as far as one can go using “basic” martingale techniques. In the
general case, in order to find conditions under which EQ[exp(Y (T ))] < ∞, and also to compute
EQ[exp(Y (T ))|Ft], it is convenient to look at Y as an affine Q-semimartingale process with
state space R+. In what follows, we follow the notation in Kallsen and Muhle-Karbe [20]
but take into account that in our case the Lévy characteristics do not depend on the time
parameter. The Lévy–Kintchine triplets of Y are

(β1
0 , γ

11
0 , ϕ0(dz)) = (μY + κ′L(θ2), 0,1(0,∞)e

θ2z�(dz)),

(β1
1 , γ

11
1 , ϕ1(dz)) =

(
− αY (1− β2), 0,

αY β2
κ′′L(θ2)

1(0,∞)ze
θ2z�(dz)

)
,

which, according to Definition 2.4 in Kallsen and Muhle-Karbe [20], are (strongly) admissible.
Note that, as the triplets do not depend on t, we can choose any truncation function. Moreover,
as Y is a special Q-semimartingale, we choose the (pseudo)truncation function h(x) = x.
Associated to the previous Lévy–Kintchine triplets we have the following Lévy exponents:

Λθ2,β2
0 (u) =

(
μY + κ′L(θ2)

)
u+

∫ ∞

0
(euz − 1− uz)eθ2z�(dz)

= μY u+

∫ ∞

0
(euz − 1)eθ2z�(dz)

= μY u+ κL(u+ θ2)− κL(θ2),

Λθ2,β2
1 (u) = −αY (1− β2)u+

αY β2
κ′′L(θ2)

∫ ∞

0
(euz − 1− uz)zeθ2z�(dz)

= −αY u+
αY β2
κ′′L(θ2)

∫ ∞

0
(euz − 1)zeθ2z�(dz)

= −αY u+
αY β2
κ′′L(θ2)

(
κ′L(u+ θ2)− κ′L(θ2)

)
.
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We have the following result.
Theorem 4.11. Let β̄ ∈ [0, 1]2, θ̄ ∈ D̄g

L � R×Dg
L. Assume that ΘL > 1, that Ψ0

θ2,β2
,Ψ1

θ2,β2
∈

C1([0, T ],R) satisfy the ODE

(4.17)
d
dtΨ

1
θ2,β2

(t) = Λθ2,β2
1 (Ψ1

θ2,β2
(t)), Ψ1

θ2,β2
(0) = 1,

d
dtΨ

0
θ2,β2

(t) = Λθ2,β2
0 (Ψ1

θ2,β2
(t)), Ψ0

θ2,β2
(0) = 0,

and that the integrability condition

(4.18) κ′′L

(
θ2 + sup

t∈[0,T ]
Ψ1

θ2,β2
(t)

)
=

∫ ∞

0
z2 exp

{(
θ2 + sup

t∈[0,T ]
Ψ1

θ2,β2
(t)

)
z

}
�(dz) < ∞

holds. Then, we have that the forward price FQ(t, T ) in the geometric spot model (4.2) is
given by

FQ(t, T ) = Λg(T ) exp
(
X(t)e−αX (1−β1)(T−t) + Y (t)Ψ1

θ2,β2
(T − t) + Ψ0

θ2,β2
(T − t)

)
× exp

(
μX + θ1

αX(1− β1)
(1− e−αX(1−β1)(T−t)) +

σ2
X

4αX(1− β1)
(1− e−2αX (1−β1)(T−t))

)
,

and the risk premium for the forward price RF
g,Q(t, T ) is given by

RF
g,Q(t, T ) = EP [S(T )|Ft]

{
exp(X(t)e−αX (T−t)(eαXβ1(T−t) − 1))

× exp(Y (t)(Ψ1
θ2,β2

(T − t)− e−αY (T−t)))

× exp

(
μX + θ1

αX(1− β1)
(1− e−αX (1−β1)(T−t))− μX

αX
(1− e−αX(T−t))

)

× exp

(
σ2
X

4αX(1− β1)
(1− e−2αX(1−β1)(T−t))− σ2

X

4αX
(1− e−2αX (T−t))

)

× exp

(
Ψ0

θ2,β2
(T − t)− μY

αY
(1− e−αY (T−t))−

∫ T−t

0

∫ ∞

0
(eze

−αY s − 1)�(dz)ds

)
− 1

}
.

Proof. We apply Theorem 5.1 in Kallsen and Muhle-Karbe [20]. Note that by making the
change of variables t → T − t the ODE (4.17) is reduced to the one appearing in items 2 and
3 of Theorem 5.1. The integrability assumption (4.18) implies conditions 1 and 5 in Theorem
5.1, and condition 4 is trivially satisfied because Y (0) is deterministic. Hence, the conclusion
of that theorem, with p = 1, holds and we get

(4.19) EQ[exp(Y (T ))|Ft] = exp
(
Y (t)Ψ1

θ2,β2
(T − t) + Ψ0

θ2,β2
(T − t)

)
, t ∈ [0, T ].

The result now follows easily.
Remark 4.12. Equation (4.17) is called a generalized Riccati equation in the literature.

Note that the equation for Ψ0
θ2,β2

(t) is trivially solved, once we know Ψ1
θ2,β2

(t), by

Ψ0
θ2,β2

(t) =

∫ t

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds.
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Hence, the problem is really reduced to studying the equation for Ψ1
θ2,β2

(t).

Remark 4.13. The Esscher case can be obtained from Theorem 4.11, as Ψ1
θ2,0

(t) = e−αY t

and

Ψ0
θ2,0(t) =

μY

αY
(1− e−αY t) +

∫ t

0

∫ ∞

0
(eze

−αY s − 1)eθ2z�(dz)ds

solve
d
dtΨ

1
θ2,0

(t) = −αY Ψ
1
θ2,0

(t), Ψ1
θ2,0

(0) = 1,
d
dtΨ

0
θ2,0

(t) = μYΨ
1
θ2,0

(t) + κL(Ψ
1
θ2,0

(t) + θ2)− κL(θ2), Ψ0
θ2,0

(0) = 0.

As supt∈[0,T ]Ψ
1
θ2,0

(t) = 1, the integrability condition (4.18) is satisfied because θ2 ∈ Dg
L.

In general, one cannot find explicit solutions for the nonlinear differential equation (4.17)
in Theorem 4.11 and has to rely on numerical techniques. However, the main problem that we
find is that the maximal domain of definition of Ψ0

θ2,β2
and Ψ1

θ2,β2
may be a proper subset of

[0,∞), in particular when β2 is close to 1. As we are particularly interested in the solution of
(4.17) for large T , we shall give a general sufficient criterion for global (defined for any t > 0)
existence and uniqueness of the solution of (4.17). The next theorem classifies the behavior
of the solutions of (4.17).

Theorem 4.14. Assume that ΘL > 1. For any δ > 0, the system of ODEs (4.17) with
β2 ∈ (0, 1) and

θ2 ∈ Dg
L(δ) � (−∞, (ΘL − 1− δ) ∧ (ΘL/2))

admits a unique local solution Ψ0
θ2,β2

(t) and Ψ1
θ2,β2

(t). In addition, let u∗(θ2, β2) be the unique
strictly positive solution of the following equation:

(4.20) u =
β2

κ′′L(θ2)
(
κ′L(u+ θ2)− κ′L(θ2)

)
.

The behavior of Ψ0
θ2,β2

(t) and Ψ1
θ2,β2

(t) is characterized as follows:

1. If u∗(θ2, β2) > 1, then Ψ0
θ2,β2

(t) and Ψ1
θ2,β2

(t) are globally defined and satisfy

0 < Ψ1
θ2,β2

(t) ≤ 1, 0 ≤ Ψ0
θ2,β2

(t) ≤
∫ ∞

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds < ∞

and

lim
t→∞

1

t
log(Ψ1

θ2,β2
(t)) = −αY (1− β2),(4.21)

lim
t→∞Ψ0

θ2,β2
(t) =

∫ ∞

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds < ∞.(4.22)

2. If u∗(θ2, β2) = 1, then Ψ1
θ2,β2

(t) ≡ 1 and Ψ0
θ2,β2

(t) = {μY + κL(1 + θ2)− κL(θ2)}t.
3. If u∗(θ2, β2) < 1, then the maximal domain of definition of Ψ0

θ2,β2
(t) and Ψ1

θ2,β2
(t) is

[0, t∞), where

0 < t∞ =

∫ ΘL−θ2

1
(Λθ2,β2

1 (u))−1du < ∞.
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In addition,

lim
t↑t∞

Ψ1
θ2,β2

(t) = ΘL − θ2, lim
t↑t∞

Ψ0
θ2,β2

(t) =

∫ t∞

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds,

where the previous integral is nonnegative and may be finite or infinite.

Proof. We have to study the vector field

Λθ2,β2
1 (u) = −αY u+

αY β2
κ′′L(θ2)

∫ ∞

0
(euz − 1)zeθ2z�(dz), β2 ∈ [0, 1], θ2 ∈ Dg

L.

Consider

D(Λθ2,β2
1 ) � int({u ∈ R : Λθ2,β2

1 (u) < ∞})
= int({u ∈ R : κ′L(u+ θ2) < ∞}) = (−∞,ΘL − θ2),

and, for any δ > 0, define

Dδ � int

( ⋂
β2∈[0,1],θ2∈Dg

L(δ)

D(Λθ2,β2
1 )

)
= (−∞,ΘL − ((ΘL − 1− δ) ∧ (ΘL/2)))

= (−∞, (1 + δ) ∨ (ΘL/2)).

On the other hand, for u, v ∈ D(Λθ2,β2
1 ), one has that

∣∣∣Λθ2,β2
1 (u)− Λθ2,β2

1 (v)
∣∣∣ ≤ αY |u− v|+ αY β2

κ′′L(θ2)

∫ ∞

0
|euz − evz | zeθ2z�(dz)

and ∫ ∞

0
|euz − evz| zeθ2z�(dz) ≤ |u− v|

∫ ∞

0
e(u∨v+θ2)zz2�(dz).

Moreover, note that

int

({
u ∈ R :

∫ ∞

0
z2e(u+θ2)z�(dz) < ∞

})
= (−∞,ΘL − θ2) = D(Λθ2,β2

1 ).

Hence, the vector field Λθ2,β2
1 (u), θ2 ∈ Dg

L(δ), β2 ∈ [0, 1] is well defined (i.e., finite) and locally
Lipschitz in Dδ. As the initial condition for Ψ1

θ2,β2
(t) is Ψ1

θ2,β2
(0) = 1, it is natural to require

that 1 ∈ Dδ, and this is precisely the role of δ > 0. Then, by the Picard–Lindelöf theorem (see
Theorem 3.1 on page 18 in Hale [17]), we have local existence and uniqueness for Ψ1

θ2,β2
(t)

and Ψ1
θ2,β2

(0) ∈ Dδ. In addition, we have that 0 ∈ Dδ and, hence, we have local existence

and uniqueness for solutions of Ψ1
θ2,β2

(t) with Ψ1
θ2,β2

(0) = 0. As Λθ2,β2
1 (0) = 0, we have that

Ψ1
θ2,β2

(t) ≡ 0 is the unique global solution of (4.17) starting at 0. As a consequence, it is

sufficient to study the vector field Λθ2,β2
1 (u) for u ≥ 0 because any solution of (4.17) with

Ψ1
θ2,β2

(0) = 1 cannot cross the negative real line without contradicting the uniqueness result
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at 0. The unicity of Ψ0
θ2,β2

(t) trivially follows from that of Ψ1
θ2,β2

(t). The next step is to study

the zeros of Λθ2,β2
1 (u), u ∈ Dδ ∩ [0,∞). We have to solve the nonlinear equation

(4.23) 0 = Λθ2,β2
1 (u) = −αY u+

αY β2
κ′′L(θ2)

(
κ′L(u+ θ2)− κ′L(θ2)

)
.

Note that (4.23) has the trivial solution u = 0. As the first and second derivatives of

Λθ2,β2
1 (u) are

d

du
Λθ2,β2
1 (u) = −αY +

αY β2
κ′′L(θ2)

κ′′L(u+ θ2),

d2

du2
Λθ2,β2
1 (u) =

αY β2
κ′′L(θ2)

κ
(3)
L (u+ θ2) > 0,

we have that there exists a unique 0 < u∗(θ2, β2) < ΘL − θ2 for θ2 ∈ Dg
L(δ) and β2 ∈ (0, 1)

such that (4.23) is satisfied. Moreover, Λθ2,β2
1 (u) < 0 for u ∈ (0, u∗(θ2, β2)) and Λθ2,β2

1 (u) > 0
for (u∗(θ2, β2),ΘL − θ2). When β2 ↓ 0, u∗(θ2, β2) converges to ΘL − θ2. On the other hand,
when β2 ↑ 1, u∗(θ2, β2) converges to zero. Therefore, we have three possible cases to discuss.

• Case 1: If u∗(θ2, β2) > 1, then Ψ1
θ2,β2

(t) will monotonically converge to 0 and, by
uniqueness of solutions, it will take an infinite amount of time to reach 0. Hence,
Ψ1

θ2,β2
(t) will be a globally defined bounded solution. The exponential rate of conver-

gence of Ψ1
θ2,β2

(t) to zero, (4.21), follows by applying L’Hôpital’s rule to

lim
t→∞ t−1 log(Ψ1

θ2,β2
(t)) = lim

t→∞

d
dtΨ

1
θ2,β2

(t)

Ψ1
θ2,β2

(t)

= lim
t→∞

Λθ2,β2
1 (Ψ1

θ2,β2
(t))

Ψ1
θ2,β2

(t)

= lim
t→∞

−αY Ψ
1
θ2,β2

(t) + αY β2

κ′′
L(θ2)

{κ′L(Ψ1
θ2,β2

(t) + θ2)− κ′L(+θ2)}
Ψ1

θ2,β2
(t)

= −αY +
αY β2
κ′′L(θ2)

lim
t→∞

∫ 1
0 κ′′L(θ2 + λΨ1

θ2,β2
(t))dλΨ1

θ2,β2
(t)

Ψ1
θ2,β2

(t)

= −αY (1− β2).

It follows that Ψ0
θ2,β2

(t) will also be globally defined and, as Λθ2,β2
0 (u) = μY u +∫ 1

0 κ′L(θ2 + λu)dλ > 0 for u ∈ (0, 1), by monotone convergence

lim
t→∞Ψ0

θ2,β2
(t) =

∫ ∞

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds.

In order to show that the previous integral is actually finite, it suffices to prove that
Λθ2,β2
0 (Ψ1

θ2,β2
(t)) converges to zero faster than t−(1+ε), for some ε > 0, when t tends to

infinity. We have that

Λθ2,β2
0 (Ψ1

θ2,β2
(t)) = μY Ψ

1
θ2,β2

(t) + κL(Ψ
1
θ2,β2

(t) + θ2)− κL(θ2)
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=

{
μY +

∫ 1

0
κ′L(θ2 + λΨ1

θ2,β2
(t))dλ

}
Ψ1

θ2,β2
(t)

and

d

dt

(
Λθ2,β2
0 (Ψ1

θ2,β2
(t))
)
=

d

du
Λθ2,β2
0 (u)

∣∣∣∣
u=Ψ1

θ2,β2
(t)

d

dt
Ψ1

θ2,β2
(t)

= {μY + κ′L(θ2 +Ψ1
θ2,β2

(t))}

×
{
−αY Ψ

1
θ2,β2

(t) +
αY β2
κ′′L(θ2)

(
κ′L(Ψ

1
θ2,β2

(t) + θ2)− κ′L(θ2)
)}

= {μY + κ′L(θ2 +Ψ1
θ2,β2

(t))}

×
{
−αY +

αY β2
κ′′L(θ2)

∫ 1

0
κ′′L(θ2 + λΨ1

θ2,β2
(t))dλ

}
Ψ1

θ2,β2
(t).

By L’Hôpital’s rule and (4.21),

lim
t→∞ t(1+ε)Λθ2,β2

0 (Ψ1
θ2,β2

(t)) = lim
t→∞(1 + ε)tε

⎛
⎜⎝− d

dtΛ
θ2,β2
0 (Ψ1

θ2,β2
(t))(

Λθ2,β2
0 (Ψ1

θ2,β2
(t))
)2
⎞
⎟⎠

−1

= (1 + ε)
μY + κ′L(θ2)
αY (1− β2)

lim
t→∞ tεΨ1

θ2,β2
(t) = 0,

and we can conclude that (4.22) holds.
• Case 2: If u∗(θ2, β2) = 1, then Ψ1

θ2,β2
(t) ≡ 1 will be the unique global solution and

Ψ0
θ2,β2

(t) =

∫ t

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds = {μY + κL(1 + θ2)− κL(θ2)}t.

• Case 3: If u∗(θ2, β2) < 1, then Ψ1
θ2,β2

(t) will increase monotonically to ΘL−θ2 because

the vector field Λθ2,β2
1 is strictly positive in [1,ΘL − θ2). Separating variables and

integrating the equation for Ψ1
θ2,β2

(t) with Ψ1
θ2,β2

(0) = 1 we get that the maximal

domain of definition of Ψ1
θ2,β2

(t) is [0, t∞) with

t∞ �
∫ ΘL−θ2

1
(Λθ2,β2

1 (u))−1du.

To show that t∞ is actually finite we have to distinguish between the cases ΘL < ∞
and ΘL = ∞. If ΘL < ∞, then (Λθ2,β2

1 (u))−1 is bounded in [1,ΘL−θ2) and the integral

is obviously finite. If ΘL = ∞, we have to ensure that (Λθ2,β2
1 (u))−1 converges to zero

fast enough when u tends to infinity. Note that, by monotone convergence, one has
that

lim
θ→∞

κL(θ) =

∫ ∞

0
lim
θ→∞

(eθz − 1)�(dz) = ∞,
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lim
θ→∞

κ
(n)
L (θ) =

∫ ∞

0
lim
θ→∞

zneθz�(dz) = ∞, n ≥ 1.

For any 0 < ε < 1, we have that

lim
u→∞u−(1+ε)Λθ2,β2

1 (u) = lim
u→∞u−(1+ε)

{
− αY u+

αY β2
κ′′L(θ2)

(κ′L(u+ θ2)− κ′L(θ2))
}

=
αY β2
κ′′L(θ2)

lim
u→∞

κ′L(u+ θ2)

u(1+ε)
=

αY β2
(1 + ε)κ′′L(θ2)

lim
u→∞

κ′′L(u+ θ2)

uε

=
αY β2

(1 + ε)εκ′′L(θ2)
lim
u→∞u1−εκ

(3)
L (u+ θ2) = ∞,

which yields that the integral defining t∞ is finite. According to Remark 4.12, we have
that

(4.24) lim
t→t∞

Ψ0
θ2,β2

(t) =

∫ t∞

0
Λθ2,β2
0 (Ψ1

θ2,β2
(s))ds,

which may be finite or infinite depending, of course, on how fast Λθ2,β2
0 (Ψ1

θ2,β2
(s))

diverges to infinity when s approaches to t∞.
As it does not seem possible to give simple conditions for the finiteness (or not) of the

integral (4.24) and it is not relevant in the discussion to follow, we do not proceed further in
the analysis.

Remark 4.15. If β2 = 0, then Ψ1
θ2,0

(t) = e−αY t and

Ψ0
θ2,0(t) =

∫ t

0
μY e

−αY sds+

∫ t

0
κL(e

−αY s + θ2)− κL(θ2)ds

=
μY

αY
(1− e−αY t) +

∫ t

0

∫ ∞

0
(eze

−αY s − 1)eθ2z�(dz)ds.

Obviously, limt→∞ eαY tΨ1
θ2,0

(t) = 1 and

lim
t→∞Ψ0

θ2,0(t) =
μY

αY
+

∫ ∞

0

∫ ∞

0
(eze

−αY s − 1)eθ2z�(dz)ds < ∞.

Note that∫ ∞

0

∫ ∞

0
(eze

−αY s − 1)eθ2z�(dz)ds =

∫ ∞

0

(∫ ∞

0
(eze

−αY s − 1)ds

)
eθ2z�(dz)

≤
∫ ∞

0

(∫ ∞

0

(∫ 1

0
eλze

−αY s
dλ

)
ze−αY sds

)
eθ2z�(dz)

≤ 1

αY

∫ ∞

0
ze(1+θ2)z�(dz) =

κ′L(1 + θ2)

αY
< ∞.

If β2 = 1, we have that

d

du
Λθ2,β2
1 (u) = −αY +

αY

κ′′L(θ2)
κ′′L(u+ θ2) = αY

(
κ′′L(u+ θ2)

κ′′L(θ2)
− 1

)
> 0
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for u ∈ (0,ΘL − θ2), which yields that Ψ1
θ2,1

(t) > 1 and monotonically diverges to infinity.
Although the previous result characterizes the behavior of the solution of the ODE (4.17)

for different values of (θ2, β2) in terms of u∗(θ2, β2), usually one cannot find u∗(θ2, β2) ana-
lytically and, given (θ2, β2), (4.20) must be solved numerically to know whether the solution
associated to (4.17) is approximately bounded or not. Hence, the following corollary of The-
orem 4.14 may be helpful in practice.

Corollary 4.16. Under the hypothesis of Theorem 4.14 and for θ2 ∈ Dg
L(δ) fixed, a sufficient

condition for u∗(θ2, β2) > 1 is that

(4.25) β2 <
κ′′L(θ2)

κ′L(1 + θ2)− κ′L(θ2)
.

Proof. Assume θ2 ∈ Dg
L(δ) fixed. According to the discussion in the proof of Theorem

4.14, for any θ ∈ Dg
L(δ) and β2 ∈ (0, 1) there exists a unique root u∗ = u∗(θ2, β2) of the vector

field Λθ2,β2
1 (u) defined by (4.20) and such that Λθ2,β2

1 (u) < 0 if (0, u∗(θ2, β2)) and Λθ2,β2
1 (u) > 0

if (u∗(θ2, β2),ΘL − θ2). Now, note that

β∗
2(1) �

κ′′L(θ2)
κ′L(1 + θ2)− κ′L(θ2)

is such that 1 = u∗(θ2, β∗
2(1)). If β2 < β∗

2(1), one has that

Λθ2,β2
1 (1) = αY

(
− 1 +

β2
κ′′L(θ2)

κ′L(1 + θ2)− κ′L(θ2)
)

< 0,

which yields that the unique root u∗ = u∗(θ2, β2) of the vector field Λθ2,β2
1 (u) must be strictly

greater than one and, therefore, we are in case 1 of Theorem 4.14.
Next, we present two examples where we apply the previous results.
Example 4.17. We start with the simplest possible case. Assume that the Lévy measure

is δ{1}(dz), that is, the Lévy process L has only jumps of size 1. In this case ΘL = ∞ and,

hence, Dg
L = R. We have that κL(θ2) = eθ2 − 1 and κ

(n)
L (θ2) = eθ2 , n ∈ N. Therefore,

Λθ2,β2
0 (u) = μY u+ κL(u+ θ2)− κL(θ2) = μY u+ (eu+θ2 − eθ2),

Λθ2,β2
1 (u) = −αY u+

αY β2
κ′′L(θ2)

(
κ′L(u+ θ2)− κ′L(θ2)

)
= −αY u+ αY β2(e

u − 1).

First, we have to solve

d

dt
Ψ1

θ2,β2
(t) = −αYΨ

1
θ2,β2

(t) + αY β2(e
Ψ1

θ2,β2
(t) − 1),(4.26)

Ψ1
θ2,β2

(0) = 1

and then integrate Λθ2,β2
0 (Ψ1

θ2,β2
(s)) from 0 to t. Although (4.26) can be solved analytically,

its solution is given in implicit form and a numerical method is easier to use. In this example,
(4.20) reads as

(4.27) u =
β2
eθ2

(
eu+θ2 − eθ2

)
= β2(e

u − 1),
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which can only be solved numerically. Heuristically, if β2 is close to one, the solution of the
previous equation must be close to zero and, hence, the solution Ψ1

θ2,β2
(t) diverges to ∞.

Applying Corollary 4.16 we can guarantee that Ψ1
θ2,β2

(t) converges to zero if

β2 <
κ′′L(θ2)

κ′L(1 + θ2)− κ′L(θ2)
=

eθ2

e1+θ2 − eθ2
= (e− 1)−1.

Example 4.18. Assume that the Lévy measure is �(dz) = ce−λz1(0,∞), that is, L is a
compound Poisson process with intensity c/λ and exponentially distributed jumps with mean
1/λ. In this case ΘL = λ and, hence, Dg

L = (−∞, (λ − 1) ∧ (λ/2)). We have that κL(θ2) =
cθ2

λ(λ−θ2)
and κ

(n)
L (θ2) =

cn!
(λ−θ2)n+1 , n ∈ N. Therefore,

Λθ2,β2
0 (u) = μY u+ κL(u+ θ2)− κL(θ2)

= μY u+
c(u+ θ2)

λ(λ− θ2 − u)
− cθ2

λ(λ− θ2)
,

Λθ2,β2
1 (u) = −αY u+

αY β2
κ′′L(θ2)

(
κ′L(u+ θ2)− κ′L(θ2)

)
= −αY u+

αY β2(λ− θ2)
3

2

{
1

(λ− θ2 − u)2
− 1

(λ− θ2)2

}
.

Hence, we have to solve

d

dt
Ψ1

θ2,β2
(t) = −αYΨ

1
θ2,β2

(t) +
αY β2(λ− θ2)

3

2

{
1

(λ− θ2 −Ψ1
θ2,β2

(t))2
− 1

(λ− θ2)2

}
,

Ψ1
θ2,β2

(0) = 1

and then integrate Λθ2,β2
0 (Ψ1

θ2,β2
(s)) from 0 to t. As in the previous example, there is an

analytic solution to this equation in implicit form, but it is easier to use a numerical method.
In this example, (4.20) reads as

u = β2
(λ− θ2)

3

2

(
1

(λ− θ2 − u)2
− 1

(λ− θ2)2

)
,

which has roots

(u0, u−, u+) =
(
0,

λ− θ2
4

(
4− β2 −

√
β2
2 + 8β2

)
,
λ− θ2

4

(
4− β2 +

√
β2
2 + 8β2

))
.

We are interested only in the root u− ∈ (0, λ − θ2); note that u+ > λ − θ2. The inequality
λ− θ2 > u− > 1 yields

(4.28) 0 < β2 < 2
(λ− θ2 − 1)2

(λ− θ2)(2(λ− θ2)− 1)
.

Hence, for any θ2 ∈ Dg
L(δ) and β2 satisfying (4.28) we can ensure global existence and bound-

edness of Ψ0
θ2,β2

(t) and Ψ1
θ2,β2

(t).
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4.2.1. Discussion on the risk premium. For the study of the sign change we are going
to abuse the notation, as in the arithmetic spot price model, and we will denote RF

g,Q(t, τ) �
RF

g,Q(t, t+τ), where τ = T−t is the time to maturity. We also fix the parameters of the model
under the historical measure P, i.e., μX , αX , σX , μY , and αY , and study the possible sign of
RF

g,Q(t, τ) in terms of the change of measure parameters, i.e., β̄ = (β1, β2) and θ̄ = (θ1, θ2) and
the time to maturity τ. As in the arithmetic model, the present time enters into the picture
only through the stochastic components X and Y. We are also going to assume μX = μY = 0.
Analogously to the arithmetic case, in this way the seasonality function Λg accounts completely
for the mean price level. We also assume that αX < αY , which means that the component
accounting for the jumps reverts the fastest. Finally, in what follows, we are going to assume
that we are in case 1 of Theorem 4.14, i.e., the values θ2, β2 are such that u∗(θ2, β2) > 1, and
Ψ0

θ2,β2
and Ψ1

θ2,β2
are globally defined and the exponential affine formula (4.19) holds.

The following lemma will help us in the discussion to follow.
Lemma 4.19. If μX = μY = 0 and αX < αY , we have that the sign of the risk premium

RF
g,Q(t, τ) will be the same as the sign of

Σ(t, τ) � X(t)e−αXτ (eαXβ1τ − 1) + Y (t)(Ψ1
θ2,β2

(τ)−Ψ1
0,0(τ))(4.29)

+
θ1

αX(1− β1)
(1− e−αX (1−β1)τ ) +

σ2
X

4αX
Λ(2αXτ, 1− β2)

+ Ψ0
θ2,β2

(τ)−Ψ0
0,0(τ),

where Λ(x, y) is the (nonnegative) function defined in Lemma 4.7. Moreover,

lim
τ→∞Σ(t, τ) =

θ1
αX(1− β1)

+
σ2
X

4αX

β1
1− β1

(4.30)

+

∫ ∞

0
κL(Ψ

1
θ2,β2

(t) + θ2)− κL(θ2)− κL(e
−αY t)dt,

lim
τ→0

∂

∂τ
Σ(t, τ) = X(t)αXβ1 + Y (t)αY β2

κ′L(1 + θ2)− κ′L(θ2)
κ′′L(θ2)

(4.31)

+ θ1 + κL(1 + θ2)− κL(θ2)− κL(1).

Proof. The result follows easily from Theorem 4.11 and the following computations with
Ψ1

θ2,β2
(τ) and Ψ0

θ2,β2
(τ). We have that

lim
τ→0

d

dτ
Ψ1

θ2,β2
(τ) = lim

τ→0
Λθ2,β2
1 (Ψ1

θ2,β2
(τ)) = Λθ2,β2

1 (1)

= −αY + αY β2
κ′L(1 + θ2)− κ′L(θ2)

κ′′L(θ2)

and

lim
τ→0

d

dτ
Ψ0

θ2,β2
(τ) = lim

τ→0
Λθ2,β2
0 (Ψ1

θ2,β2
(τ)) = Λθ2,β2

0 (1)

= κL(1 + θ2)− κL(θ2).
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In Theorem 4.14, it is proved that Ψ1
θ2,β2

(τ) converges to 0 when τ tends to infinity and

lim
τ→∞Ψ0

θ2,β2
(τ) =

∫ ∞

0
Λθ2,β2
0 (Ψ1

θ2,β2
(t))dt.

Hence, using the definitions of Λθ2,β2
0 (u) and Λ0,0

0 (u), the fact that Ψ1
0,0(t) = e−αY t, and

κL(0) = 0 we get

lim
τ→∞(Ψ0

θ2,β2
(τ)−Ψ0

0,0(τ)) =

∫ ∞

0
κL(Ψ

1
θ2,β2

(t) + θ2)− κL(θ2)− κL(e
−αY t)dt.

The sign of Σ(t, τ) is more complex to analyze than the sign of RF
a,Q(t, τ), the risk premium

in the arithmetic model. In the Esscher case the computations can be done quite explicitly.
In the general case we shall make use of Lemma 4.19 to prove that one can generate the
empirically observed risk premium profile. Moreover, some additional information on Σ(t, τ)
can be deduced from classical results on comparison of solutions of ODEs. In order to graph-
ically illustrate the discussion we plot the risk premium profiles obtained assuming that the
subordinator L is a compound Poisson process with jump intensity c/λ > 0 and exponential
jump sizes with mean λ. That is, L will have the Lévy measure given in Example 3.2, case 1.
We shall measure the time to maturity τ in days and plot RF

g,Q(t, τ) for τ ∈ [0, 360], roughly
one year. We fix the values of the following parameters:

αX = 0.099, σX = 0.0158, αY = 0.3466, c = 0.4, λ = 2.

The speed of mean reversion for the base component αX yields a half-life of seven days, while
the one for the spikes αY yields a half-life of two days. The value for σX yields an annualized
volatility of 30%. The values for c and λ give jumps with mean 0.5 and frequency of five
spikes a month.

• Changing the level of mean reversion (Esscher transform), β̄ = (0, 0): Setting β̄ =
(0, 0), the probability measure Q changes only the level of mean reversion (which
is assumed to be zero under the historical measure P ). Moreover, as RF

a,Q(t, τ) is

deterministic when β̄ = (0, 0), we have that the randomness in RF
g,Q(t, τ) comes into

the picture through EP [S(T )|Ft], in particular through the levels of the driving factors
X and Y. By Proposition 4.9 we have that

RF
g,Q(t, τ) = EP [S(t+ τ)|Ft]

×
{
exp

(
RF

a,Q(t, τ)−
κ′L(θ2)− κ′L(0)

αY
(1− e−αY τ )

)

× exp

(∫ τ

0

∫ ∞

0
(eθ2z − 1)(eze

−αY s − 1)�(dz)ds

)
− 1

}
,

and the sign of RF
g,Q(t, τ) is the same as the sign of

RF
a,Q(t, τ)−

κ′L(θ2)− κ′L(0)
αY

(1− e−αY τ ) +

∫ τ

0

∫ ∞

0
(eθ2z − 1)(eze

−αY s − 1)�(dz)ds



RISK PREMIUM IN POWER MARKETS 717

=
θ1
αX

(1− e−αXτ ) +

∫ τ

0

∫ ∞

0
(eθ2z − 1)(eze

−αY s − 1)�(dz)ds,

which is equal to Σ(t, τ) in Lemma 4.19.
If θ2 = 0, then the sign of RF

g,Q(t, τ) is the same as the sign of θ1 and it is constant

over all times to maturity τ. Similarly, if θ1 = 0, the sign RF
g,Q(t, τ) is the same as the

sign of θ2 and it is also constant. If both θ1 and θ2 are different from zero, we can get
risk premium profiles with nonconstant sign. By Lemma 4.19, we have that

lim
τ→0

∂

∂τ
Σ(t, τ) = θ1 + κL(1 + θ2)− κL(θ2)− κL(1)

= θ1 +

∫ ∞

0
(eθ2z − 1)(ez − 1)�(dz).

Hence, if we want the sign of RF
g,Q(t, τ) to be positive when τ is close to zero, we have

to impose

(4.32) θ1 +

∫ ∞

0
(eθ2z − 1)(ez − 1)�(dz) > 0.

For large times to maturity, Lemma 4.19 yields

lim
τ→∞Σ(t, τ) =

θ1
αX

+

∫ ∞

0
κL(e

−αY t + θ2)− κL(θ2)− κL(e
−αY t)dt

=
θ1
αX

+

∫ ∞

0

∫ ∞

0
(eθ2z − 1)(eze

−αY t − 1)�(dz)dt.

Using Fubini’s theorem we get that∫ ∞

0

∫ ∞

0
(eθ2z − 1)(eze

−αY t − 1)�(dz)dt

=

∫ ∞

0
(eθ2z − 1)

∫ ∞

0
(eze

−αY t − 1)dt�(dz)

=

∫ ∞

0

(eθ2z − 1)

αY
(Ei(z)− log(z)− γ) �(dz),

where Ei(z) =
∫ z
−∞

et

t dt is the exponential integral function and γ is the Euler–

Mascheroni constant. Hence, if we want RF
g,Q(t, τ) to be negative when τ is large,

we have to impose

(4.33) θ1 +
αX

αY

∫ ∞

0
(eθ2z − 1) (Ei(z)− log(z)− γ) �(dz) < 0.

Note that Ei(z)− log(z)− γ ≥ 0 for all z ≥ 0 and ez − 1− αX
αY

(Ei(z) − log(z)− γ) > 0
for all z > 0 and αX < αY .Therefore, for all θ2 > 0 one has that

(4.34) 0 <

∫ ∞

0
(eθ2z−1) (Ei(z)− log(z)− γ) �(dz) <

αY

αX

∫ ∞

0
(eθ2z−1) (ez − 1) �(dz).
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(a) θ1 = −0.3, θ2 = 0.9, X(t) = −0.5, Y (t) = 0.5
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(b) θ1 = 0.03, θ2 = −0.9, X(t) = 0.5, Y (t) = 0.5
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(c) θ1 = −0.09, θ2 = 0.9, X(t) = −0.5, Y (t) = 0.5
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(d) θ1 = −0.2, θ2 = 0.1, X(t) = 0.5, Y (t) = 0.5

Figure 5. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps. Esscher transform: case β̄ = (0, 0). Geometric spot model.

Combining (4.32), (4.33), and (4.34) we can conclude that it is possible to choose
θ1 < 0 and θ2 > 0 such that RF

g,Q(t, τ) > 0 when the time to maturity is close to

zero and RF
g,Q(t, τ) < 0 when the time to maturity is large. Some of the possible risk

profiles that can be obtained are plotted in Figure 5.
• Changing the speed of mean reversion, θ̄ = (0, 0): Setting θ̄ = (0, 0), the probability

measure Q changes only the speed of mean reversion. By Lemma 4.19 we have that
the sign of RF

g,Q(t, τ) will coincide with the sign of

Σ(t, τ) = X(t)e−αXτ (eαXβ1τ − 1) + Y (t)
(
Ψ1

0,β2
(τ)−Ψ1

0,0(τ)
)

+
σ2
X

4αX
Λ(2αXτ, 1− β2) +

(
Ψ0

0,β2
(τ)−Ψ0

0,0(τ)
)

� Σ1(t, τ) + Σ2(t, τ) + Σ3(t, τ) + Σ4(t, τ)

and

lim
τ→∞Σ(t, τ) =

σ2
X

4αX

β1
1− β1

≥ 0,
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lim
τ→0

∂

∂τ
Σ(t, τ) = X(t)αXβ1 + Y (t)αY β2

κ′L(1) − κ′L(0)
κ′′L(0)

,

where κ′L(1) − κ′L(0) and κ′′L(0) are strictly positive. Hence, the risk premium will
approach a nonnegative value in the long end of the market. In the short end, it can
be both positive or negative and stochastically varying with X(t) and Y (t), but Y (t)
will always contribute to a positive sign. For any τ, the sign of Σ1(t, τ) will be the
sign of X(t), which can be positive or negative. As the function Λ(x, y) is positive,
the term Σ3(t, τ) is always positive. To analyze the sign of Σ2(t, τ), note that

Λ0,β2
1 (u)− Λ0,0

1 (u) =
αY β2
κ′′L(0)

∫ ∞

0
(euz − 1)z�(dz) ≥ 0, u ≥ 0,

and Ψ1
0,β2

(1) = Ψ1
0,0(τ). Hence, applying a comparison theorem for ODEs (see Theorem

6.1 on page 31 in Hale [17]), we have that Ψ1
0,β2

(τ)−Ψ1
0,0(τ) ≥ 0 for all τ, and, as Y (t)

is always positive, the term Σ2(t, τ) is also always positive. Finally, as

Λ0(u) � Λ0,β2
0 (u) = Λ0,0

0 (u) =

∫ ∞

0
(euz − 1)�(dz)

is a strictly increasing function and Ψ1
0,β2

(t) ≥ Ψ1
0,0(t) we get that

Σ4(t, τ) = Ψ0
0,β2

(τ)−Ψ0
0,0(τ) =

∫ τ

0
{Λ0(Ψ

1
0,β2

(t)) − Λ0(Ψ
1
0,0(t))}dt ≥ 0.

Hence, if β1 = 0 or X(t) ≥ 0, then RF
g,Q(t, τ) will be positive for all times to maturity.

Some of the possible risk profiles that can be obtained are plotted in Figure 6.
• Changing the level and speed of mean reversion simultaneously : We proceed as in the

arithmetic case. As we are more interested in how the change of measure Q influences
the component Y (t), responsible for the spikes in the prices, we are going to assume
that β1 = 0. This means that Q may change the level of mean reversion of the regular
component X(t) but not the speed at which this component reverts to that level.
According to Lemma 4.19 we have that the sign of RF

g,Q(t, τ) will coincide with the
sign of

Σ(t, τ) = Y (t)(Ψ1
θ2,β2

(τ)− e−αY τ ) +
θ1
αX

(1− e−αXτ ) + Ψ0
θ2,β2

(τ)

−
∫ τ

0

∫ ∞

0
(eze

−αY s − 1)�(dz)ds

= Y (t)
(
Ψ1

θ2,β2
(τ)−Ψ1

0,0(τ)
)
+

θ1
αX

(1− e−αXτ ) +
(
Ψ0

θ2,β2
(τ)−Ψ0

0,0(τ)
)

� Σ1(t, τ) + Σ2(t, τ) + Σ3(t, τ)

and

lim
τ→∞Σ(t, τ) =

θ1
αX

+

∫ ∞

0
κL(Ψ

1
θ2,β2

(t) + θ2)− κL(θ2)− κL(e
−αY t)dt(4.35)
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(a) β1 = 0.4, β2 = 0.2, X(t) = 1.0, Y (t) = 0.5
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(b) β1 = 0.75, β2 = 0.0, X(t) = −2.5, Y (t) = 0.5
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(c) β1 = 0.75, β2 = 0.3, X(t) = −2.5, Y (t) = 0.0
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(d) β1 = 0.5, β2 = 0.2, X(t) = −2.5, Y (t) = 2.5

Figure 6. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps: case θ̄ = (0, 0). Geometric spot price model.

=
θ1
αX

+

∫ ∞

0

∫ 1

0
κ′L(θ2 + λΨ1

θ2,β2
(t))dλΨ1

θ2,β2
(t)dt

−
∫ ∞

0

∫ 1

0
κ′L(θ2 + λe−αY t)dλe−αY tdt,

lim
τ→0

∂

∂τ
Σ(t, τ) = Y (t)αY β2

κ′L(1 + θ2)− κ′L(θ2)
κ′′L(θ2)

(4.36)

+ θ1 + κL(1 + θ2)− κL(θ2)− κL(1)

= Y (t)αY β2
κ′L(1 + θ2)− κ′L(θ2)

κ′′L(θ2)
+ θ1

+

∫ 1

0
κ′L(θ2 + λ)dλ− κL(1).

Note that we can make (4.35) negative by simply choosing θ1:

θ1 < −αX

∫ ∞

0

∫ 1

0
κ′L(θ2 + λΨ1

θ2,β2
(t))dλΨ1

θ2,β2
(t)dt(4.37)
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+ αX

∫ ∞

0

∫ 1

0
κ′L(θ2 + λe−αY t)dλe−αY tdt.

On the other hand, to make (4.36) positive, we have to choose θ1 satisfying

(4.38) θ1 > −
∫ 1

0
κ′L(θ2 + λ)dλ+ κL(1)− Y (t)αY β2

κ′L(1 + θ2)− κ′L(θ2)
κ′′L(θ2)

.

Equations (4.37) and (4.38) are compatible if the following equation is satisfied:

U+(θ2, β2) �
∫ 1

0
κ′L(θ2 + λ)dλ+ αX

∫ ∞

0

∫ 1

0
κ′L(θ2 + λe−αY t)dλe−αY tdt

+ Y (t)αY β2
κ′L(1 + θ2)− κ′L(θ2)

κ′′L(θ2)

> αX

∫ ∞

0

∫ 1

0
κ′L(θ2 + λΨ1

θ2,β2
(t))dλΨ1

θ2,β2
(t)dt+ κL(1) � U−(θ2, β2).(4.39)

As e−αY t ≤ 1,Ψ1
θ2,β2

(t) ≤ 1, κ′L(θ) > 0 and κ′′L(θ) > 0, we have that

κ′L(1 + θ2)− κ′L(θ2)
κ′′L(θ2)

=

∫ 1
0 κ′′L(θ2 + λ)dλ

κ′′L(θ2)
> 1,

∫ ∞

0

∫ 1

0
κ′L(θ2 + λe−αY t)dλe−αY tdt ≥ κ′L(θ2)

αY

and ∫ ∞

0

∫ 1

0
κ′L(θ2 + λΨ1

θ2,β2
(t))dλΨ1

θ2,β2
(t)dt ≤

∫ 1

0
κ′L(θ2 + λ)dλ

∫ ∞

0
Ψ1

θ2,β2
(t)dt.

As Ψ1
θ2,β2

(t) converges to zero exponentially fast (see (4.21)), we have that∫ ∞

0
Ψ1

θ2,β2
(t)dt < ∞.

Actually, as Λθ2,β2
1 (u) < Λθ2,β2

1 (1) < 0, 0 < u < 1, we can use a comparison theorem
for ODEs to obtain that

Ψ1
θ2,β2

(t) ≤ eΛ
θ2,β2
1 (1)t = exp

(
−αY (1− β2

κ′′L(θ2)
(κ′L(1 + θ2)− κ′L(θ2)))t

)
,

which yields ∫ ∞

0
Ψ1

θ2,β2
(t)dt ≤ 1

αY

(
1− β2

∫ 1
0 κ′′L(θ2 + λ)dλ

κ′′L(θ2)

)−1

.

Hence,

U+(θ2, β2) ≥
∫ 1

0
κ′L(θ2 + λ)dλ+

αX

αY
κ′L(θ2) + Y (t)αY β2 � V+(θ2, β2),
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Figure 7. Risk premium profiles when L is a compound Poisson process with exponentially distributed
jumps. Geometric spot model.

U−(θ2, β2) ≤ αX

αY

∫ 1

0
κ′L(θ2 + λ)dλ

(
1− β2

∫ 1
0 κ′′L(θ2 + λ)dλ

κ′′L(θ2)

)−1

+ κL(1) � V−(θ2, β2),

and if we can find θ2 ∈ Dg
L(δ) for some δ > 0 and β2 ∈ (0, 1) such that V+(θ2, β2) >

V−(θ2, β2), then (4.39) will be satisfied. Note that the larger the value of Y (t), the
easier it is to find such θ2 and β2. Even in the case that Y (t) = 0, by choosing β2 close
to zero and θ2 large enough we can get V+(θ2, β2) > V−(θ2, β2). This shows that we
can create a change of measure Q generating the empirically observed risk premium
profile; see Figure 7.

Appendix. In this technical appendix we will prove that E(H̃θ,β) is a martingale under P.
First we will prove that H̃θ,β is a square integrable martingale.

Proposition A.1. Let θ ∈ DL, β ∈ [0, 1]. Then H̃θ,β = {H̃θ,β(t)}t∈[0,T ], defined by (3.4), is
a square integrable martingale under P .

Proof. Ikeda and Watanabe [18, pages 59–63] say that EP [
∫ T
0

∫∞
0 |Hθ,β(s, z)− 1|2�(dz)dt]

< ∞ needs to be checked. We can write

EP

[∫ T

0

∫ ∞

0
|Hθ,β(s, z) − 1|2�(dz)dt

]
≤ T

∫ ∞

0
|eθz − 1|2�(dz)

+
α2
Y(

κ′′L(θ)
)2
∫ ∞

0
e2θzz2�(dz)

∫ T

0
EP [|Y (t)|2]dt.

By the mean value theorem in integral form we have that |eθz − 1|2 = |θz ∫ 1
0 eλθzdλ|2 ≤

θ2z2e(2θ∨0)z . Hence, as θ ∈ DL,∫ ∞

0
|eθz − 1|2�(dz) ≤ θ2

∫ ∞

0
z2e2θz�(dz) = θ2κ′′L(2θ ∨ 0) < ∞.

Therefore, the result follows by showing that supt∈[0,T ] EP [|Y (t)|2] < ∞. We have that
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sup
t∈[0,T ]

EP [|Y (t)|2] ≤ 2 sup
t∈[0,T ]

{(
Y (0)e−αY t +

μY + κ′L(0)
αY

(1− e−αY t)

)2

+ EP

[(∫ t

0

∫ ∞

0
ze−αY (t−s)ÑL(ds, dz)

)2]}

≤
(
Y (0) +

μY + κ′L(0)
αY

)2

+ sup
t∈[0,T ]

∫ t

0

∫ ∞

0
z2e−2αY (t−s)�(dz)ds

≤
(
Y (0) +

μY + κ′L(0)
αY

)2

+ Tκ′′L(0) < ∞.

Note that the stochastic exponential E(H̃θ,β) satisfies the following SDE:

E(H̃θ,β)(t) = 1+

∫ t

0
E(H̃θ,β)(s−)dH̃θ,β(s) = 1+

∫ t

0

∫ ∞

0
E(H̃θ,β)(s−)

(
H̃θ,β(s, z)−1

)
ÑL(ds, dz),

and it can be represented explicitly as

E(H̃θ,β)(t) = eH̃θ,β(t)
∏

0<s≤t

(1 + ΔH̃θ,β(s))e
−ΔH̃θ,β(s)(A.1)

= exp

⎛
⎝H̃θ,β(t)−

∑
0≤s≤t

ΔH̃θ,β(s)− log(1 + ΔH̃θ,β(s))

⎞
⎠ , t ∈ [0, T ].

Hence, a necessary and sufficient condition for the positivity of E(H̃θ,β) is that ΔH̃θ,β >
−1, up to an evanescent set. Moreover, by the definition of H̃θ,β(t) and Hθ,β(t, z) we have
that

(A.2) ΔH̃θ,β(t) = Hθ,β(t,ΔL(t))− 1 = (eθΔL(t)− 1)+
αY β

κ′′L(θ)
ΔL(t)eθΔL(t)Y (t−), t ∈ [0, T ],

which yields the condition

(A.3) P

(
αY β

κ′′L(θ)
(ΔL(t))Y (t−) > −1, t ∈ [0, T ]

)
= 1.

Remark A.2. As we assume that L is a subordinator and Y (0) ≥ 0 and μ ≥ 0, we have
that P (Y (t) ≥ 0, t ∈ [0, T ]) = 1, condition (A.3) is automatically satisfied, and E(H̃θ,β) is
strictly positive.



724 FRED ESPEN BENTH AND SALVADOR ORTIZ-LATORRE

Proof of Theorem 3.7. As H̃θ,β is a martingale on [0, T ], we have that E(H̃θ,β) is a local
martingale on [0, T ] and, by Remark A.2, E(H̃θ,β) is strictly positive. Hence, by Remark 3.3,
to show that E(H̃θ,β) is a martingale is equivalent to showing that EP [E(H̃θ,β)(T )] = 1. As
E(H̃θ,β) is a local martingale on [0, T ], there exists an increasing sequence stopping time with
{τn = T} ↑ Ω almost surely such that stopped processes E(H̃θ,β)

τn(t) � E(H̃θ,β)(t∧τn), n ≥ 1,
are martingales on [0, T ]. Therefore, EP [E(H̃θ,β)

τn(T )] = EP [E(H̃θ,β)
τn(0)] = 1, n ≥ 1, and if

we show that

(A.4) lim
n→∞EP [E(H̃θ,β)

τn(T )] = EP [E(H̃θ,β)(T )],

we will have finished. To show (A.4) is equivalent to proving that sequence {E(H̃θ,β)
τn(T )}n≥1

is uniformly integrable. Applying de la Vallée-Poussin’s theorem with test function x log(x),
the uniform integrability of {E(H̃θ,β)

τn(T )}n≥1 follows by showing

(A.5) sup
n≥1

EP [E(H̃θ,β)
τn(T ) log(E(H̃θ,β)

τn(T ))] < ∞.

By (A.1), we get

log(E(H̃θ,β)
τn(T )) ≤ H̃τn

θ,β(T )−
∑

0≤t≤τn∧T
ΔH̃θ,β(t)− log(1 + ΔH̃θ,β(t)) ≤ H̃τn

θ,β(T )

because the function x− log(1 + x) ≥ 0 for x > −1. Hence, we can write

EP [E(H̃θ,β)
τn(T )H̃τn

θ,β(T )]

= EP

[(
1 +

∫ T∧τn

0
E(H̃θ,β)(t−)dH̃θ,β(t)

)
H̃τn

θ,β(T )

]

= EP

[(
1 +

∫ T

0
E(H̃θ,β)

τn(t−)dH̃τn
θ,β(t)

)
H̃τn

θ,β(T )

]

= EP

[
H̃τn

θ,β(T )] + EP [

(∫ T

0
E(H̃θ,β)

τn(t−)dH̃τn
θ,β(t)

)(∫ T

0
1[0,τn](t)dH̃

τn
θ,β(t)

)]

=

∫ T

0

∫ ∞

0
EP

[
1[0,τn](t)E(H̃θ,β)

τn(t)

(
eθz − 1 +

αY β

κ′′L(θ)
eθzzY (t)

)2
]
�(dz)dt

= EP

[
E(H̃θ,β)

τn(T )

∫ T

0

∫ ∞

0
1[0,τn](t)

(
eθz − 1 +

αY β

κ′′L(θ)
eθzzY (t)

)2

�(dz)dt

]

≤ 2T

∫ ∞

0

∣∣∣eθz − 1
∣∣∣2 �(dz) + 2

α2
Y κ

′′
L(2θ)

(κ′′L(θ))2
EP

[
E(H̃θ,β)

τn(T )

∫ T∧τn

0
Y (t)2dt

]
,(A.6)

where we have used that for any stopping time τ ≤ T the process H̃τ
θ,β(T ) is a P -martingale

with zero expectation. In addition, we have used that for all n ≥ 1 fixed, EP [E(H̃θ,β)
τn(T )] = 1

and

EP

[
EP

[
E(H̃θ,β)

τn(T )1[0,τn](t)

(
eθz − 1 +

αY β

κ′′L(θ)
eθzzY (t)

)2

|Ft

]]
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= EP

[
1[0,τn](t)EP [E(H̃θ,β)

τn(T )|Ft]

(
eθz − 1 +

αY β

κ′′L(θ)
eθzzY (t)

)2
]

= EP

[
1[0,τn](t)E(H̃θ,β)

τn(t)

(
eθz − 1 +

αY β

κ′′L(θ)
eθzzY (t)

)2
]

because τn is a reducing sequence for the local martingale E(H̃θ,β). One can reason as in the

proof of Proposition A.1 to show that the terms
∫∞
0

∣∣eθz − 1
∣∣2 �(dz) and κ′′L(2θ) in (A.6) are

finite. Note that
∫ T∧τn
0 Y (t)2dt =

∫ T∧τn
0 Y (t ∧ τn)

2dt ≤ ∫ T
0 Y τn(t)2dt; thus, it remains only to

prove that

sup
n≥1

EP

[
E(H̃θ,β)

τn(T )

∫ T

0
Y τn(t)2dt

]
< ∞

to finish the proof. As E(H̃θ,β)
τn is a strictly positive martingale, by Remark A.2, we can

define the probability measure Qn
θ,β ∼ P by setting

dQn
θ,β

dP

∣∣
Ft

� E(H̃θ,β)
τn(t), t ∈ [0, T ], and,

hence, it suffices to prove that supn≥1 EQn
θ,β

[
∫ T
0 Y τn(t)2dt] < ∞. Using Girsanov’s theorem

with Qn
θ,β ∼ P, n ≥ 1, the process Y τn can be written as

Y τn(t) = Y (0) + B̃τn(t) +

∫ t

0

∫ ∞

0
1[0,τn](s)zÑ

L
Qn

θ,β
(ds, dz), t ∈ [0, T ],

where

B̃τn(t) =

∫ t

0

1[0,τn](s)(μY + κ′
L(0)− αY Y (s))ds+

∫ t

0

∫
R

z1[0,τn](s)(Hθ,β(s, z)− 1)�(dz)ds

=

∫ t

0

1[0,τn](s){(μY + κ′
L(0)− αY Y (s)) +

∫
R

z(eθz − 1)�(dz) +
αY β

κ′′
L(θ)

∫
R

z2eθz�(dz)Y (s)}ds

=

∫ t

0

1[0,τn](s) (μY + κ′
L(θ)− αY (1− β)Y (s)) ds, t ∈ [0, T ],

and ÑL
Qn

θ,β
(ds, dz) is the compensated version of the random measure NL

Qn
θ,β

(ds, dz) with the

Qn
θ,β-compensator given by ν̃LQn

θ,β
(ds, dz) = {1[0,τn](s)(Hθ,β(s, z)− 1) + 1}�(dz)ds. Hence,

EQn
θ,β

[(Y τn(t))2] ≤ 4

{
Y (0)2 + EQn

θ,β

[(∫ t

0
1[0,τn](s)(μY + κ′L(θ) + αY (1− β)Y (s))ds

)2]

+ EQn
θ,β

[(∫ t

0

∫ ∞

0
1[0,τn](s)zÑ

L
Qn

θ,β
(ds, dz)

)2]}

≤ 4

{
Y (0)2 + TEQn

θ,β

[ ∫ t

0
1[0,τn](s)(μY + κ′L(θ) + αY (1− β)Y τn(s))2ds

]

+ EQn
θ,β

[∫ t

0

∫ ∞

0
1[0,τn](s)z

2{1[0,τn](s)(Hθ,β(s, z)− 1) + 1}�(dz)ds
]}

.
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On the one hand,

EQn
θ,β

[ ∫ t

0
1[0,τn](s)(μY + κ′L(θ) + αY (1− β)Y τn(s))2ds

]

≤ 2T (μY + κ′L(θ))
2 + 2α2

Y

∫ t

0
EQn

θ,β
[(Y τn(s))2]ds.

On the other hand,

EQn
θ,β

[∫ t

0

∫ ∞

0
1[0,τn](s)z

2{1[0,τn](s)(Hθ,β(s, z)− 1) + 1}�(dz)ds
]

= EQn
θ,β

[∫ t

0

∫ ∞

0
1[0,τn](s)z

2Hθ,β(s, z)�(dz)ds

]

= EQn
θ,β

[∫ t

0

∫ ∞

0
1[0,τn](s)z

2

(
eθz +

αY β

κ′′L(θ)
eθzzY (s−)

)
�(dz)ds

]

≤ T

∫ ∞

0
z2eθz�(dz) + EQn

θ,β

[∫ t

0

∫ ∞

0
1[0,τn](s)

αY β

κ′′L(θ)
eθzz3Y τn(s)�(dz)ds

]

≤ Tκ′′L(θ) +
αY β

κ′′L(θ)

∫ ∞

0
z3eθz�(dz)

∫ t

0
EQn

θ,β
[Y τn(s)]ds

≤ Tκ′′L(θ) +
αY κ

(3)
L (θ)

κ′′L(θ)

∫ t

0
EQn

θ,β
[(Y τn(s))2]ds.

To sum up, EQn
θ,β

[(Y τn(t))2] ≤ C0 + C1

∫ t
0 EQn

θ,β
[(Y τn(s))2]ds, where

C0 = C0(Y (0), μY , θ, T ) � 4Y (0)2 + 8T 2(μY + κ′L(θ))
2 + 4Tκ′′L(θ),

C1 = C1(αY , T ) � 8Tα2
Y + 4

αY κ
(3)
L (θ)

κ′′L(θ)
,

and applying Gronwall’s lemma to the function EQn
θ,β

[Y τn(t)2], we get that

(A.7) EQn
θ,β

[Y τn(t)2] ≤ C0e
C1T .

Finally, using Fubini–Tonelli and inequality (A.7) we obtain

sup
n≥1

EQn
θ,β

[∫ T

0
Y τn(t)2dt

]
≤ sup

n≥1

∫ T

0
EQn

θ,β
[Y τn(t)2]dt ≤ TC0e

C1T < ∞,

and the proof is finished.

Remark A.3. If L has finite activity, that is, �((0,∞)) < ∞, then one can use the kernel

Mθ,β(t, z) � eθz
(
1 +

αY β

κ′L(θ)
Y (t−)

)
, t ∈ [0, T ], z ∈ R,
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and the Poisson integral

M̃θ,β(t) �
∫ t

0

∫ ∞

0
(Mθ,β(s, z)− 1)ÑL(ds, dz)

to define the change of measure. The results in Proposition A.1 and Theorem 3.7, below, also
hold. Note that the change of measure with M̃θ,β does not work for the infinite activity case.
This is because, in the analogous proofs of the statements in Proposition A.1 and Theorem
3.7 using the change of measure induced by M̃θ,β, there appears the integral

∫∞
0 e2θz�(dz),

which is divergent if �((0,∞)) = ∞.
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