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Abstract

The complexity and scale of software systems have dramatically increased in the past
decades. Accordingly, it is becoming critical to reduce the effort in developing and
maintaining software systems. Object orientation is a programming paradigm for
modular development, in which programs can be reused and extended. Consequently,
the amount of duplicated code may be decreased, and it is possible to expand the
system in a systematical way.

Formal verification can be used to improve the quality of the software programs that
are developed. Users may choose a specification language to formulate the properties
of the program behavior in a precise manner and verify the program with respect to
the specification within a formal reasoning framework.

Since most of the software systems are constantly modified and extended according
to the system requirements or user requirements, it would be beneficial to reuse the
unchanged modules by relying on their already proved specifications without knowing
their actual implementation. The global properties of the whole system may be com-
posed of the specifications of each module. Therefore, modularity should be reflected
in software development as well as by the reasoning system.

The behavior of a software system can be captured by histories representing the
communication between modules. In this thesis, concurrent and distributed settings
are taken into account such that different modules can execute at the same time and
possibly on different machines. In this setting, a modular reasoning system of an
object-oriented language supporting concurrent objects is developed based on the use
of communication histories, and it is proved sound and relatively complete.
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CHAPTER 1

Introduction

Software creates new possibilities for our daily life. Some decades ago, transportation
tickets were only sold on board. Now by the invention of online systems, we can pur-
chase tickets at home. Software can replace human effort and do complex computation
which cannot be achieved manually, for example, real-time weather forecast. Software
can be embedded in numerous varieties of machines such as dish washers, air condi-
tioners, and cars. Embedded systems hide the complex implementation but provide
interfaces for the ease of use. Software can however cause crisis as well. A bug in the
code controlling the Therac-25 radiation therapy machine was directly responsible for
human death in the 1980s when the patients were exposed to excessive quantities of
X-rays [77]. Therefore, a software with quality guarantee would not only increase the
pleasure of the users but prevent the execution of software from loosing money or even
human lives.

Compared to sequential programming which involves a consecutive and ordered
execution, concurrent programming [9] increases the computation efficiency by allow-
ing several computations to execute simultaneously and interact with one another.
The execution of software is not restricted to stand-alone machines but can have co-
operative and concurrent computations across the internet connection, which forms
distributed systems. Consequently, concurrent programming can be applied on one
or more than one computers. The actor model [4, 59] was introduced for concurrent
computation. Actors communicate with one another by asynchronous message pass-
ing, which allows the caller to continue with its own activity without blocking while
waiting for the reply. Each actor has its own virtual processor. An actor can send a
finite set of messages to other actors, create a finite set of new actors and designate
the behavior to be used for the next message it receives. Actions of different actors
can be carried out in parallel in an actor system.

Object-oriented programming languages belong to a well-established paradigm for
modular software development of concurrent and distributed systems [65]. Each code
module contains everything necessary to execute only one aspect of the desired func-
tionality. A modular software system can be constructed by combining already existing
modules or extending it with newly built ones. Reusable code modules reduce the time
spent producing duplicated code as well as provide flexibility by placing the same mod-
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ule in different contexts. Concurrent objects combine object-orientation with the actor
model. Each concurrent object has its own virtual processor and at most one process
is active on an object at a time. In this setting, method executions are decoupled
from method invocations using underlying asynchronous message passing. Concurrent
objects communicating by such asynchronous method calls combine object-orientation
and distribution in a natural manner, and therefore appears as a promising paradigm
for distributed systems [27].

In general, a future [14, 53, 79, 97] is a data structure or can be seen as a placeholder
that is created for a result that does not yet exist. The result of the future is computed
concurrently with other executions and can be later collected. When combing the
notion of futures with method invocations in the object-oriented setting, a fresh future
identity is generated by the caller object upon invoking a method and the future is a
placeholder for the method result. Future identities can be shared between objects, i.e.,
first-class futures. Through sharing future identities, the caller allows other objects to
wait for the same method result or even delegates fetching of the method result to other
objects. Compared to classical method calls, by which the callee returns the method
result directly back to the caller, the use of futures results in faster, asynchronous, and
more flexible computation.

The ABS language [52, 67] supports actor-based concurrency, object-orientation
and first-class futures. ABS is a novel language for modeling object-oriented and
distributed systems at an abstract, yet precise level. It is also a fully executable
language and has code generators for Java [51], Scala [85], Maude [22], and Erlang
[13]. By strong encapsulation, the internal state of each concurrent object is hidden
from the environment, external access to the inner state of other objects is not allowed,
neither at the programming level nor at the specification level.

Reasoning about concurrent systems is generally difficult, because of the need
to consider all possible interactions among concurrently executing components. For
distributed systems, reasoning about a component is also challenging since the envi-
ronment of a component is usually unknown. The observable behavior of a system
component interacting with the environment in a distributed setting can be captured
in communication histories [7, 18, 23, 37, 44, 45, 63, 93, 94]. Accordingly, a possible
approach to reason about concurrent and distributed systems is based on communi-
cation histories reflecting the interactions among system components. In addition, to
improve verification efficiency, modularity in software development should be reflected
at the reasoning level in terms of verifying each module and composing the result at
the end. ABS is a successor of the Creol language [69]. However, Creol does not
support first-class futures. The languages we consider in this thesis are inspired by
Creol/ABS. In [7, 44, 45], history-based compositional reasoning systems for Creol
have been developed.

For convenience, in Part 1 of this thesis we will refer to the setting of concurrent
objects communicating by asynchronous method calls and first-class futures by the
term concurrent asynchronous objects.
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1.1 Research Goals

The verification of concurrent and distributed systems is generally complicated and
difficult to achieve. Therefore, the overall goal of this thesis is to achieve effective
reasoning, i.e.,

to simplify reasoning about concurrent objects communicating
by asynchronous method calls using history-based invariants
and to provide corresponding tool support.

To achieve this goal, this thesis will address the following questions:

1. How can we develop a history-based reasoning system for concurrent asyn-
chronous objects which is simpler than the existing one for Creol?

2. As mentioned above, futures improve the communication efficiency between ob-
jects. However, futures are shared entities between objects. How can we achieve
local reasoning inside each class when dealing with futures?

3. How can we prove the soundness and completeness of our reasoning system?

4. How can we realize our reasoning system by means of executable tools?

1.2 Outline

Chapter 2 reviews some main characteristics of concurrency, Chapter 3 describes gen-
eral principles of object-oriented languages and introduces the ABS language, Chap-
ter 4 considers reasoning in the object-oriented setting, and Chapter 5 gives a short
summary of each paper. Chapter 6 gives an evaluation of the contribution of this
thesis towards the research goals stated in this chapter and briefly discusses about
some possible future work.



6 1.2 Outline



CHAPTER 2

Concurrency

To explain the concept of concurrency, I would like to start with a short introduction
of sequential programs. In sequential programs, the syntax determines the order.
Typically, the execution sequence is deterministic. Given the same input, the program
always provides the same output. In concurrent programming, each process (or thread)
is in charge of a sequential execution of statements. There are two possible approaches
for executing the processes. The first approach is by assigning more than one process
to a single processor but at most one process is executed by the processor at a time.
The operating system scheduler decides which process to be executed and at what
time. Compared to sequential programming, processes in this setting may interleave
with one another on the same processor in the sense that the execution of one process
may be interrupted by the execution of another process and continues the execution
later according to the scheduler. Since the time slide for different process executions is
extremely short, the users perceive the tasks as running at the same time. The second
approach for executing processes is by assigning processes to different processors such
that the processes may actually be executed in parallel.

In general, we can distinguish the following three interaction models for concur-
rent processes: shared variables, remote method invocation, and message passing [9].
Accordingly, processes cooperate with one another to accomplish a common task or
solve a problem. The description and the comparison between them are illustrated in
the following subsections.

2.1 Shared Variable Communication

By using shared variable communication, a process writes a value to a memory space
where another object may later read the value. Synchronization is required here in
order to obtain a correct runtime order of the shared-variable access and avoid race
conditions [83].

Let’s look at an example for making withdrawals from a checking account repre-
sented by the shared resource balance:

7



8 2.1 Shared Variable Communication

1 . bool withdraw ( int amount ){
2 . i f ( ba lance >= amount ){
3 . ba lance = balance − amount ;
4 . return true ;
5 . }
6 . return fa l se ;
7 . }

Suppose balance equals 300, and two concurrent processes make the calls withdraw(200)
and withdraw(150). If line 3 in both operations executes before line 5, both opera-
tions will find that balance >= amount evaluates to true, and execution will proceed
to subtracting the amount. However, since both processes perform their withdrawals,
the total amount withdrawn will end up being more than the original balance. These
sorts of problems with shared resources require the use of concurrency control ensuring
that correct results for concurrent operations are generated.

One of the synchronization techniques for concurrency control is to protect the
critical sections, where reading or writing actions to the shared variables are performed,
such that the execution of this block can be seen as an atomic action and at most
one process can execute in this block at a time, i.e., mutual exclusion is guaranteed.
Locks, semaphores [33], and monitors [62], are synchronization constructs to protect
the access to the mutable shared resources within a critical section.

Another synchronization technique is called conditional synchronization. A process
needs to wait for a condition to be satisfied in order to proceed with the execution.
This technique can be used when a process needs to wait until another process has
finished a certain task and then proceeds with the execution, or all the processes need
to wait for one another until all have reached a certain program point and then proceed
to the next execution section together.

Since synchronization limits the possible executions between processes, if we rep-
resent an execution of the concurrent system as a communication history between
processes, synchronization is reflected by the reduced number of possible communica-
tion histories.

Cache Coherence Problems. In hardware systems, caches are used for temporary
storage of data likely to be used again. Each thread may have its own cache which
stores some copies of data from the memory such that the thread does not need to
go to memory for every reference to a variable. Accordingly, the data stored in the
cache could be easily fetched and reused. However, by combining shared memory
communication with the use of caches, memory consistency problems may occur. This
happens when one thread modifies its copy of the data, the other thread will then
have a stale copy of the data in its cache. Cache coherence [12] is intended to manage
such conflicts and maintain consistency between cache and memory.
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2.2 Distributed Programming

In the shared memory model, the processes usually communicate with one another
by reading and writing shared variables on the same machine. However, processes
can also be allocated to different processors located on different machines. In this case
each processor has its own specific memory. Consequently, shared variable concurrency
is not the most suitable way of communication between processes in loosely coupled
systems where communication takes time and inherent latency and unreliability exist
in the network. In this setting, communication between the processes is commonly
through a network by means of sending remote method invocations or exchanging the
messages with one another.

With remote method invocations, the thread of control is transferred with the
call and the caller activity is blocked until the return values from the call have been
received, as in the case of Java RMI [5]. This blocking of internal activity makes it
difficult to combine active behavior in an object with the processing of requests from
the environment. In a distributed setting, synchronous communication therefore gives
rise to undesired and uncontrolled waiting, and to possible deadlocks.

A method call can also be formed by an invocation and a reply message through
various mechanisms, including channels. Compared to remote method invocation,
message passing does not transfer the execution control between the communicating
units and may be synchronous or asynchronous. By synchronous communication,
both sender and receiver must be ready before communication can occur, as in Ada’s
rendezvous mechanism [64] or Hoare’s CSP [63]. Hence, the objects synchronize on
the message transmission. Remote method invocation may be captured in this model
if the calling object blocks between the two synchronized messages representing the
call [9]. By asynchronous communication, the participants need not be ready for each
other at the same time. The caller’s activity is synchronized with the arrival of the
reply message rather than with the emission of the invocation. The message-receiving
order may then be different from the message-sending order. Unnecessary waiting
between objects can be avoided. Therefore, asynchronous communication provides
better efficiency over distributed systems. Examples include e-mail, discussion boards
and text messaging over cell phones.

The Actor Model. The actor model [4, 59] was introduced in 1973 for concurrent
computation. An actor is a computational entity. Each actor encapsulates its fields
and a single thread of control. Actors communicate asynchronously with each other
through message passing. Accordingly, actors do not block while waiting for the
responses to their messages. Since there is no shared state between actors, actors
never need to compete for locks in order to access the shared data. The actor model is
represented by languages such as Erlang [13], Scala [85], Creol [69], and ABS [52, 67].
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CHAPTER 3

Object Orientation

Object orientation is the leading framework for concurrent and distributed systems. It
has been claimed that object orientation and distributed systems form a natural match
and is recommended by the RM-ODP [27, 65]. Simula (1967) [26] is generally accepted
as the first language that introduced the primary features of object-orientation.

Two central concepts in object-oriented programming are classes and objects. A
well-designed class typically consists of data declarations that represent the fields of
the class, and behavior representation as a set of methods. Objects are generated
at run-time as instances of classes, and each object has a unique identity. The state
of the object is formed by the values of its fields, and the behavior of the object is
represented by its methods. The collection of classes forms the static view of a program.
The dynamic view of the application is a set of objects executing and interacting with
one another.

Due to the language support for modular programming style, code reuse, as well as
encapsulation of individual objects, object-oriented programming languages are widely
used in software development. In this setting, software systems are built by adapting
and combing already existing code modules without knowing their implementation
details.

Some other object-oriented languages are, for example, BETA [73], Smalltalk [50],
Modula-3 [20], C++ [95], Eiffel [81], Java [51], C� [58], Scala [85], and the modeling
language Creol [69]. ABS [52, 67], which we will talk about in the end of the chapter,
is a successor of Creol.

3.1 Modularity

Modular programming is a technique that keeps the complexity of a large program
manageable by systematically splitting the program into different components, i.e.,
modules. Accordingly, a problem can be divided into subproblems, and the solution
to a problem consists of several smaller solutions corresponding to each of the subprob-
lems. Object-oriented programming enhances modular design by providing classes as
the basic modular unit. A program structure is basically organized as a collection of

11
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classes.
To write a new module which relies on the functionalities of other modules, the

programmer has an assumption of what the other modules provide, i.e., the specifi-
cations of other modules, and not how those modules are implemented. Accordingly,
several programmers can work on separated modules at the same time, thus mak-
ing development of program faster, and the code base is easier to debug, update and
modify.

3.2 Encapsulation and Information Hiding

The first step towards modularity in object-oriented programming is through encap-
sulation, such that the internal representation of an module is hidden from the envi-
ronment. Only the relevant aspects of the module are exposed. An abstract data type
(ADT) [78], an interface, or even up to a system can all be seen as a module.

An ADT is a combination of a data structure with a set of operations on the
contained data. For example, one may choose to store the data in an array, in a
linked-list, or in some other data structure. The operations on the contained data
may be to add data to a data structure, remove data from a data structure and search
data from a data structure. The implementation decision for the operations may then
depend on the data structure and vary from application to application. The users of
an ADT do not need to know how the ADT is implemented but only the functionality
that the ADT provides.

Many object-oriented languages support the notion of interfaces, which declare a
set of method signatures for different operations but do not provide the implementa-
tion details of the methods. A class that implements an interface (or more than one
interface) must implement all of the methods described in the interface. An object is
an instance of a class and is typed by the interfaces that the class implements. The
internal representation of an object is generally hidden from view outside of the ob-
ject’s definition and via keywords like public, protected, and private, the programmers
have a degree of control over how much an object can be exposed to the environment.
By strong encapsulation, only the object’s own methods can directly inspect or ma-
nipulate its fields, such that the internal data are protected from being set into invalid
or inconsistent state by the surrounding environment.

3.3 Inheritance

In order to build new software in a modular way, the existing software is required to
be reusable. Inheritance was invented in 1967 for Simula [26] as a mechanism for code
reuse. Inheritance allows classes to extend fields and methods from existing classes,
and to add extra attributes and methods to its own implementation. The resulting
classes are known as derived classes or subclasses, and the resulting hierarchy is known
as a class hierarchy. In single inheritance, a class may extend at most one class. This
is distinct from multiple inheritance, where a class may extend the characteristics
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and features of more than one classes. Multiple inheritance does provide flexibility in
reusing the code from different classes. However, it also increases complexity in case
of conflicting inherited features. For instance, the ”diamond problem” [72] may cause
ambiguity as to which parent class a particular feature is inherited from if more than
one parent classes implement said feature. Inheritance is not considered in this thesis
work. We refer to [46] for a treatment of inheritance.

3.4 Object Interaction

Two basic mechanisms for object interaction are by remote field access or method
invocation. Remote field access allows an object to operate directly on the fields of
other objects, usually by dot notation. For example, an object o may store the value
of the field x of object r in its variable v by executing v := r.x, or object o may modify
the value of x of r by r.x := r.x + 5. On the other hand, object interaction by only
method invocations restricts the modification of the remote fields to be manipulated
only at the callee side. For example, an object o may increase the value of the field x
of object r by invoking a method add(int i){x := x+ i; } on r, such that the execution
of r.add(5) increases x by 5.

3.5 The ABS Language

In thread-based languages such as Java, the execution threads are separated from
objects. Several threads may operate simultaneously on the same object. The en-
capsulation of object orientation is broken. This often leads to a low-level style of
programming based on, e.g., the explicit manipulation of locks. Safety is by conven-
tion rather than by language design [54]. However, this obstacle is avoided in the
actor-based approach by encapsulating control within actors.

The Abstract Behavioral Specification language (ABS) [52, 67] targets distributed
and object-oriented systems and permits actor-style asynchronous communication [59].
ABS is a fully executable language and has code generators for Java [51], Scala [85],
Maude [22] and Erlang [13]. ABS abstracts away many implementation details which
are not desirable at the modeling level such as I/O implementations, and the concrete
representation of internal data structures. ADTs are supported by ABS, as well.

ABS supports first-class futures, i.e., futures [14, 53, 79, 97] which can be shared
between objects. A fresh future identity is generated by the caller upon invoking a
method. The caller does not wait for the return value after invoking the method but
continues its computation. We say futures are resolved when the callee stores the
method result in the future upon termination of the method execution. After the
futures are resolved, they become read-only. By sharing future identities, the caller
allows other objects to wait for the same method result from the same future, and
may even delegate fetching of the method result to other objects. After the future
becomes resolved, all the objects which are the future-identity holders are free to fetch
the value from the future as many times as they require and in any order. Compared
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to classical method calls, by which the callee returns the method result directly back
to the caller, futures offer greater flexibility in application design and can significantly
improve concurrency in object-oriented paradigms.

In ABS, internal interference of an object is avoided since each object has its
own virtual processor and at most one process is executing on an object at the time.
Nevertheless, deadlock may occur in the ABS setting when, for instance, the callee
sends a method call to the caller while the caller is blocking and waiting for a future
value, from the callee. Fortunately, the notion of process release point is supported in
the ABS language. A process is released at a process release point, expressed using a
Boolean guard, when a boolean condition is evaluated to false or a future being queried
is not resolved yet. While the current process is released, other available processes
can be chosen by the scheduler for execution. Therefore, the use of process release
points influences the control flow inside concurrent objects by providing cooperative
scheduling of the method activities. Accordingly, the blocking problem mentioned
above may be overcome by using the combination of asynchronous method calls and
process release points. The method call from the callee object will be executed on the
caller object as soon as any ongoing method execution of the caller object reaches the
end or a release point.

A method call in ABS does not transfer the execution control from the caller to the
callee and a method call leads to a new process on the called object. Object interaction
is only by asynchronous method calls. Remote field access is not supported by the
language, so there is no shared variable communication between different objects.
Consequently, concurrent objects are disjoint such that the processing steps made by
one object do not affect the other objects. The concurrent object model of ABS is
inherently compositional.

The languages we consider in this thesis are inspired by ABS and ignore language
features that are orthogonal to concurrent asynchronous objects, such as component
object groups and the language-based support for product line engineering [89].



CHAPTER 4

Program Analysis for
Object-Oriented Concurrent
Systems

To build reliable software systems, it is important to develop techniques which facili-
tate reasoning about the behavior of the program code. We organize the discussion in
this chapter by first considering programming logic, then discussing abstraction mech-
anisms in program analysis, after that looking more specifically into the challenges
of reasoning about object-oriented concurrent systems. Finally, we will present the
reasoning system we develop for concurrent asynchronous objects.

4.1 Programming Logic

A formal reasoning system provides a structural and mathematical way to verify the
behavior of program code. Hoare logic [60] describes how the execution of a piece
of code changes the state of the computation by an integration of programs and as-
sertions within a single framework. A “Hoare triple” expressing partial correctness,
i.e., program termination is not concerned, is of the form {P} S {Q}, which has the
following meaning:

If the execution of a program S starts in a state where the assertion P
holds and the program terminates normally, the assertion Q will hold in
the final state.

P and Q are the pre- and post-condition of the program S, respectively. Notice that if
the program does not terminate normally due to infinite loops or the program aborts
because some error situations have occurred, the postcondition of the Hoare triple
does not need to hold. Accordingly, any precondition P for a program S such that
{P} S {false} holds, is a sufficient condition for abnormal behavior of S.

Assertions are defined over the program variables. Auxiliary variables do not ap-
pear in the program code and they are used in the assertions to relate the values of

15
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the program variables in different states [71]. For example, the auxiliary variable x0
in the Hoare triple {n = x0}n := n + 5{n = x0 + 5} is used to store the value of the
program variable n in the prestate such that the initial value of n may be referred to
in the postcondition. The meaning of {P} S {Q} with auxiliary variables is as before
but must hold for all values of the auxiliary variables.

A total correctness specification, in which program termination is required, is ex-
pressible in a strengthened Hoare logic. The Hoare triple of the form [P ] S [Q] has
the following meaning:

If the execution of a program S starts in a state where the assertion P
holds, the program will terminate and the assertion Q will hold in the final
state.

In this thesis, we will restrict ourselves to partial correctness.

4.1.1 Formal Proofs

A proof is a sequence of reasoning steps designed in order to convince the reader about
the truth of some formulae, i.e., a theorem. In order to do this the proof must lead
from axioms which are obviously true to the theorem, by applying proof rules (which
are also called inference rules or deduction rules).

A proof may be seen as a tree with axioms as leaves and the main theorem as the
root. Each internal node of the proof tree is a consequence of its immediate descen-
dant nodes according to given proof rules. For example, a proof rule for sequential
composition may be formulated in the following format using Hoare triples:

Premisses︷ ︸︸ ︷
{P}S1{M} {M}S2{Q}

{P}S1;S2{Q}︸ ︷︷ ︸
Conclusion

This proof rule expresses that we may prove a sequential composition S1;S2 with a
precondition P and a postcondition Q, if we can find an intermediate condition M
such that both {P}S1{M} and {M}S2{Q} are provable. A formula is provable if we
can continue applying proof rules until each branch of the proof tree is closed with an
axiom. Accordingly, for proving the Conclusion, it suffices to prove all Premisses. An
example of an axiom is {P}S{true}, which is accepted as true without controversy.

4.1.2 Gentzen-style Sequent Calculus

Sequent calculus [49] was introduced by Gentzen. A sequent is in the form of

antecedent︷ ︸︸ ︷
ψ1, . . . , ψm �

succedent︷ ︸︸ ︷
φ1, . . . , φn

where the antecedent formulae ψi are the assumption part of the sequent and the
succedent formulae φi are the theorem part of the sequent. The interpretation of a
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sequent is that the truth of the theorem part φ1 ∨ . . . ∨ φn follows from the truth of
the assumption ψ1 ∧ . . . ∧ ψn. A sequent calculus rule is in the form of

Seq1; Seq2; . . . ; Seqn

Seq

Given sequents Seq1, Seq2, . . ., Seqn (n ≥ 0), for premises, we may infer a sequent of
the form Seq, the conclusion.

4.1.3 Dynamic Logic

Dynamic logic [55, 90] is another example of program logic. It was developed by
Vaughan Pratt and can be seen as an extension of Hoare logic. The dynamic logic
formula P → [S]Q is similar to the Hoare triple {P} S {Q} expressing partial correct-
ness, and the dynamic logic formula P → 〈S〉Q is similar to the Hoare triple [P ] S [Q]
expressing total correctness. However, the assertions P and Q are pure first-order for-
mulae in Hoare logic, whereas they can contain programs in dynamic logic. In dynamic
logic we are able to use a program to specify that a data structure is acyclic, which is
not possible in pure first-order logic. Therefore, dynamic logic is more expressive than
Hoare logic.

We may use Gentzen-style sequent calculus to prove dynamic logic formulae. A
sequent may reformulate P → [S]Q into

Γ, P � [S]Q,Δ,

where Γ and Δ stand for (possibly empty) sets of formulae. Below is the proof rule
for the if-else statement:

Γ, b � [p; rest]φ,Δ Γ,¬b � [q; rest]φ,Δ

Γ � [if(b){p}else{q}; rest]φ,Δ

The application of this proof rule splits the proof into two branches. The left branch
assumes that the guard of the conditional statement is true. Here, we have to show
that after execution of the then branch of the conditional and the rest of the program,
we are in a state in which formula φ holds. The right branch is concerned with the
analogue case where the guard is assumed to be false.

4.1.4 Soundness and Completeness

A formula expressed in a formal language is valid if and only if it is true under every
interpretation, i.e., an assignment of meaning to the symbols of the formal language.
For programming languages, semantics describes the behavior that a computer follows
when executing a program in the language. A deductive system is said to be sound
with respect to a semantics if all provable formulae are valid. A deductive system is
said to be complete with respect to a semantics if all valid formulae are provable.
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4.2 Abstraction in Program Analysis

Specification languages generally rely on abstractions of one kind or another since
specifications are typically defined at a more abstract level than the actual implemen-
tation.

Rely/Guarantee Reasoning. In modular reasoning, each module is specified and
verified independently from its environment. However, the behavior of each module
may be affected by its environment. In rely/guarantee reasoning [31, 70], the specifica-
tion of a method is a quadruple (p,R,G,q), where p and q are pre- and post-conditions,
R and G are rely- and guarantee-conditions. A method satisfies its specification if,
given that p is satisfied in the initial state and given an environment whose behaviors
satisfy R, each atomic transition made by the execution of the method satisfies G and
q is satisfied in the final state. We can see rely-conditions as an abstraction of the
environment and guarantee-conditions as an abstraction of what the method promises
to provide.

Class Invariants. In object-oriented programs, classes are the basic modules. A
class invariant provides a way of abstracting the state of an object in one formula and
allows you to have reasoning knowledge of an object without knowing its exact state.
Accordingly, a class invariant of a class C specifies invariant properties of instances of
C.

Model Fields. We may specify class invariants by using model fields [21, 74] with-
out necessarily exposing the class implementation so that information hiding can be
supported. Model fields are specification-only fields and cannot be used in the program
code. The values of the model fields are determined by the concrete fields. Therefore,
a model field is an abstraction of the state. For example, a class Account contains two
fields, income and expense. A model field in this case can be a variable saving defined
as the following:

saving � income - expense

Therefore, a model field can be seen as the abstraction of the concrete fields [21], and
the values of the model fields determines its abstract value [61]. A class invariant for
Account using the model field saving can be

saving > 5000. (4.1)

Communication Histories and Ghost Fields. Another way to achieve abstrac-
tion in program analysis is by writing specifications in terms of potential observable be-
havior. In object-oriented programs, the observable behavior is the communication be-
tween the objects, which can be captured in the communication histories as a sequence
of observable communication events between objects [7, 18, 23, 37, 44, 45, 63, 93, 94].
We can define functions on the communication histories, i.e., history functions, to
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extract information from the histories. Refer to the Account example above, we can
define a history function, Savings(H), which extracts the values of income and expense
from the communication history H. Notice that we may relate model fields to history
functions such as a history-based class invariant for Account can be reformulated from
(4.1) into

Savings(H) > 5000.

Notice that the communication history is more expressive than model fields. We may
be able to relate model fields to history functions but not the other way around. If
histories are too complex then it is not ideal to use histories in the specifications, we
can replace history functions with model fields such as

saving = Savings(H).

A ghost variable [74] (or a mythical variable in [25]) is similar to a model field and
can only be used for specifications. Unlike a model field, a ghost variable is not a
pure abstraction of the state. It is an extension of the semantics and does not have
a value determined by the concrete fields; instead its value is directly determined by
its initialization or by a set-statement. Therefore, a ghost variable is different from
auxiliary variables in a sense that the value of the ghost variable is modifiable. We
may see communication histories as ghost variables.

4.3 Reasoning Challenges for Object-Oriented

Concurrent Programs

The basic problem for program analysis of programs with concurrency is discussed in
[9]. In this section, we will first point out some reasoning challenges for object-oriented
concurrent programs with shared variable concurrency. After that we will discuss the
challenges for reasoning about multithreaded systems. At the end, we will present the
reasoning approach we develop in this thesis and the advantage of using it to reason
about concurrent asynchronous objects.

4.3.1 Shared Variable Communication

Remote access to the internal state variables by dot-notation complicates reasoning.
In the following, we will discuss some related issues.

Remote Access and Aliasing. If an object o can directly modify an object r’s
fields, e.g., r.a := 5, the satisfaction of the class invariant of r needs to rely on o. On
the other hand, if the invariant of the object o depends on the fields of r, it must be
proved that the methods in r maintain the class invariant of o. Therefore, modularity
is broken. The situation is further complicated when remote access is combined with
aliasing. This is because the static reasoning needs to account for the aliasing which
may exist during the execution. Aliasing occurs when more than one variable refers
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to the same object. Therefore, if both variables v1 and v2 refer to the same object o,
i.e., v1 := o; v2 := v1, the modification of v1 on o’s fields should be transparent to the
variable v2.

Reasoning about Shared Variable Communication using Model Fields. An
update of a class field has an instant effect on all the model fields it relates to, therefore
modularity may be broken in a setting with shared variable concurrency. This problem
can be illustrated by the following example: a class C2 is implemented after a class
C1, and C2 has a field of class C1. If the value of a model field mf of C2 depends on a
model field of C1, an update of the fields of C1 may simultaneously change the value
of mf of C2. Since the implementor of C1 need not be aware of C2, this case leads to
a modularity problem and causes a potential invariant violation for C2.

A solution which builds on the Boogie methodology is provided in [15, 76]. In the
Boogie methodology, an object is either in a valid or a mutable state. The transition
from valid to mutable and back is performed by two special statements, unpack and
pack. An object is guaranteed to satisfy its invariant only when in a valid state, and
only fields of objects in a mutable state can be assigned. Model fields are updated
only by a special pack statement. Consequently, the updates of the concrete state
do not automatically change the values of model fields. This methodology guarantees
that whenever an object is manipulated, the invariant of the owner cannot be assumed
to hold, and the specified relation between a model field and the concrete state of an
object holds whenever the object satisfies its invariant in a valid state. However, one
would need more fine-grained control of when a class invariant holds.

4.3.2 Multithreaded Systems

In multithreaded object-oriented systems with shared variable concurrency, each object
encapsulates and protects a set of shared variables and may contain several threads.
However, multiple threads can interfere with each other when accessing the shared
variables in the same object. Consequently, the synchronization techniques such as
locks, semaphores [33] and monitors [62] need to be carefully used in the implementa-
tion of classes. Verification of multithreaded systems can be found in [1, 75]. Below we
will first point out some challenges of rely/guarantee reasoning in this program setting
as well as some approaches to handle the related problems. Then we will discuss a
synchronization technique, monitors, in multithreaded systems.

Rely/Guarantee Reasoning for Multithreaded Systems. When we reason
about multithreaded systems with shared variable concurrency using rely/guarantee
techniques, the whole program state is viewed as a shared resource, and each thread
views the set of other threads in the system as its environment. In order to ensure
non-interference between the thread and its environment, the following property needs
to be satisfied: If the current state satisfies the precondition p but the current thread
is preempted by its environment, p still holds and the environment satisfies its rely
condition R when the current thread resumes its execution in a new state. Notice that
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R needs to capture all possible behaviors of the environment and G needs to specify
threads’ behaviors over the whole object state. Therefore, this requirement makes it
difficult to define R (and G).

In addition, rely/guarantee reasoning related to modularity has the following chal-
lenges. The thread-private resource has to be exposed in the specifications even if a
part of the state might be locally owned by a single thread. Similarly, all the resources
need to be exposed to all the threads even if some of them might be shared only by
a subset of the threads. Even if some components of the system only access a part
of the shared resources, the rely/guarantee conditions of the components still need
to satisfy all the shared resources. Due to all these challenges, it is hard to achieve
compositional reasoning in the rely/guarantee approach with shared variable concur-
rency. Some solutions are proposed in [48, 96] combing rely/guarantee reasoning with
separation logic [91]. Accordingly, specifications and proofs of a program component
mention only the portion of memory used by the component, and not the entire global
state of the system.

Monitors. A monitor [62] can be defined as a thread-safe module that uses mutual
exclusion in order to safely allow access to a method or variable by more than one
thread. Shared data in the monitor is encapsulated and is manipulated using monitor
methods. Only the method’s name is visible from outside the monitor. Statements
inside a monitor do not have access to variables outside the monitor. For synchroniza-
tion, monitor supports implicit mutex. At most one thread can access the monitor
method at a time. Therefore, freedom from interference for monitor execution is guar-
anteed, and the programmer does not need to use any ad hoc methods for mutex. The
monitor’s inner state can be described by a monitor invariant, which needs to be main-
tained by execution of methods. A monitor invariant must hold after initialization,
when the thread is suspended and when a method execution terminates, assuming
the invariant holds when a method execution starts and after a thread resumes the
execution.

4.3.3 Program Analysis for Concurrent Asynchronous
Objects

In our setting (as in Creol/ABS), concurrent objects can be seen as monitors with
cooperative scheduling and asynchronous communication. Remote field access is not
allowed and object interaction is only by asynchronous method calls, i.e., there is no
direct execution control transferred from the caller to the callee. Therefore, aliasing
does not break the modularity of reasoning. Internal interference in a concurrent
asynchronous object is avoided since at most one process is active on an object at a
time. Accordingly, program analysis for concurrent asynchronous objects follows the
monitor approach and we may define an invariant for each class for local reasoning
about classes.

The communication between the objects, i.e., the observable behavior, can be
captured in the communication histories as a sequence of observable communication
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events between objects [18, 63]. At any point in time the communication history
abstractly captures the system state [24, 25]. In fact communication histories are used
in semantics for full abstraction results (e.g., [2, 66]). In this thesis, the semantics
of concurrent asynchronous objects inspired by ABS describes how the execution of
each statement influences the extension of the local communication history of each
object. Moreover, communication histories are expressible in our assertion language.
The class invariant may express the potential interaction between the instances of the
class and the environment in terms of the relation between the observable behavior and
the changes of the internal state. Similar to a monitor invariant, the class invariant is
required to hold after initialization in all the instances of the class, before any process
release point and upon termination of the method executions. Consequently, whenever
the process is released, either by the termination of a method execution or by a process
release point, the process that gains the execution control can then rely on the class
invariant.

The global history of the whole system is formed by the assembly of the local
history of each instance of the class. However, object communication in concurrent
asynchronous objects is by asynchronous method calls, so messages may in general be
delayed in the network. The observable behavior of an object system allows the order
of the messages received by the callee to be different from the order of the messages
sent by the caller. The knowledge of message ordering in our setting is captured by a
global notion of wellformed history.

The use of communication histories supports compositional reasoning. First, we
ensure information hiding for each component, i.e., class. This is achieved by defining
the object invariant which is expressed in terms of the class invariant by hiding the
internal state of the object. Accordingly, the object invariant only exposes the abstract
behavior of the class instances in terms of the local communication history. Since the
global history forms the connection between object invariants, the specification of the
global system may be derived by composing the specifications of each object under the
assumption of history wellformedness. A history invariant is the specification of the
global system which needs to hold for all finite sequences in the prefix-closure of the
set of possible histories, expressing safety properties [8]. Therefore, object invariants
should also be prefix-closed. If necessary, we may derive prefix-closed object invariants
by weakening class invariants. Global program reasoning in the setting of concurrent
asynchronous objects is done by verifying each class against the class invariant.
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components to be analyzed independently of their environment. A proof system for
partial correctness reasoning is established based on communication histories and class
invariants. A particular feature of our approach is that the alphabets of different ob-
jects are completely disjoint. The soundness and relative completeness of this proof
system are shown using a transformational approach from a sequential language with
a non-deterministic assignment operator.

5.2 Paper 2

Title: A Sound and Complete Reasoning System for
Asynchronous Communication with Shared Futures

Authors: Crystal Chang Din and Olaf Owe
Publication: The Journal of Logic and Algebraic Programming (to appear)
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Summary: This paper presents a Hoare style reasoning system for distributed ob-
jects based on a model for asynchronously communicating objects, where return values
from method calls are handled by futures. The model facilitates invariant specifica-
tions over the locally visible communication history of each object. Compositional
reasoning is supported, and each object may be specified and verified independently
of its environment. The presented reasoning system is proven sound and relatively
complete with respect to the given operational semantics.

5.3 Paper 3

Title: Compositional Reasoning about Active Objects with Shared Futures
Authors: Crystal Chang Din and Olaf Owe
Publication: Submitted to The Journal of Formal Aspects of Computing

A short version of this paper has been published at SEFM’12 [39]

Summary: In this paper, a general concurrency and communication model focus-
ing on asynchronous method calls and futures is presented. The model facilitates
invariant specifications over the locally visible communication history of each object.
Compositional reasoning is supported, as each object may be specified and verified
independently of its environment. Soundness of the composition rule is proved. A
kernel object-oriented language with futures inspired by the ABS modeling language
is considered. A compositional proof system for this language is presented and formu-
lated within dynamic logic such that the reasoning rules can be directly implemented
in the KeY framework.

The languages in Papers 2 and 3 are slightly different. Paper 2 contains interfaces
which Paper 3 does not, and Paper 3 contains while-loops which Paper 2 does not.

5.4 Paper 4

Title: A Comparison of Runtime Assertion Checking and Theorem Proving
for Concurrent and Distributed Systems

Authors: Crystal Chang Din, Olaf Owe and Richard Bubel
Publication: Submitted to The Journal of Logic and Algebraic Programming

A short version of this paper has been published at
MODELSWARD’14 [43]

Summary: We investigate the usage of a history-based specification approach for
concurrent and distributed systems by first implementing the reasoning systems pro-
vided by Papers 2 and 3. After that, we compare two approaches on checking that
those systems behave according to their specification. Concretely, we apply runtime
assertion checking and static deductive verification on two small case studies to detect
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specification violations, respectively to ensure that the system follows its specifica-
tions. We evaluate and compare both approaches with respect to their scope and ease
of application. We give recommendations on which approach is suitable for which
purpose as well as the implied costs and benefits of each approach.

5.5 Further Papers

In the following, we list further papers which are technically not presented as part of
this thesis, or correspond to shorter and preliminary versions of the work reported in
this thesis.

Related to Paper 1:

• Observable Behavior of Distributed Systems: Component Reasoning for Concur-
rent Objects has been presented as an extended abstract at the Nordic Workshop
on Programming Theory (NWPT’10) [36].

• A preliminary version has been published as UiO research report [35].

Related to Paper 2:

• Soundness of a Reasoning System for Asynchronous Communication with Fu-
tures has been presented as an extended abstract at the Nordic Workshop on
Programming Theory (NWPT’12) [40].

Related to Paper 3:

• Compositional Reasoning about Shared Futures has been published at the Interna-
tional Conference on Software Engineering and Formal Method
(SEFM’12) [39].

• A preliminary version has been published as UiO research report [38].

Related to Paper 4:

• A Comparison of Runtime Assertion Checking and Theorem Proving for Concur-
rent and Distributed Systems has been presented as an extended abstract at the
Nordic Workshop on Programming Theory (NWPT’13) [34].

• A preliminary version has been published as UiO research report [41].

• Runtime Assertion Checking and Theorem Proving for Concurrent and Distributed
Systems has been published at the International Conference on Model-Driven En-
gineering and Software Development (MODELSWARD’14) 2014 [43]



26 5.5 Further Papers



CHAPTER 6

Discussion

In this chapter, we return to the research questions listed in Section 1.1 and we sum-
marize the contributions of the thesis by answering the questions. In the end, we
discuss the future work.

6.1 Summary of the Contributions

1: How can we develop a history-based reasoning system for concurrent
asynchronous objects which is simpler than the existing one for Creol?

In Paper 1 we develop a four-event semantics for classical method communications,
where the callee returns the method result directly back to the caller. A method call
cycle is reflected by four different kinds of events, i.e., the first type of events capture
method invocations, the second type of events capture the starting point of the method
executions, the third type of events capture the termination of the method executions
and the fourth type of events capture the fetching of the method results. In addition,
object generation is reflected in the creation events. Each event is generated by one
and only one object. Therefore, the disjointness of concurrent objects communicating
by asynchronous method calls implies that the generated local histories are disjoint,
in the sense that processing steps made by one object do not affect the history-based
invariants of the surrounding objects.

The former history-based reasoning system for Creol is based on a two-event se-
mantics for method calls [7, 44, 45], where events are visible to more than one object.
For instance, message sending is visible on the local history of the receiver. The local
histories must then be updated with the activity of other objects, resulting in more
complex reasoning systems.

2: Futures improve the communication efficiency between objects. How-
ever, futures are shared entities between objects. How can we achieve local
reasoning inside each class when dealing with futures?

27
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Futures are global entities shared between objects. Local reasoning inside a class
involving method communication using futures is therefore challenging. We solve this
problem by adapting our four-event semantics for classical method communications
from Paper 1. Each event is generated by one object. Disjointness is guaranteed at
the language level between objects and at the reasoning level using histories. However,
the difference is: all the communication events relating to method invocations, method
executions and value fetching from futures contain a future identity. Accordingly, we
can define history-based class invariants expressing future-related properties for lo-
cal reasoning and achieve the same efficiency as the reasoning approach for classical
method calls handled in Paper 1.

3: How can we prove the soundness and completeness of our reasoning
system?

The semantics of concurrent asynchronous objects without futures is defined in
Paper 1 by using a transformational approach from a syntactical encoding of the
different program statements into an underlying sequential language. In each of Pa-
pers 2 and 3 an operational semantics is chosen to define the semantics of concurrent
asynchronous objects. The reasoning systems in Papers 1 and 2 are defined in Hoare
logic, and in Papers 3 and 4 are defined in dynamic logic. We have proved that our
reasoning systems are sound and relatively complete with respect to the chosen se-
mantics. Specifications in terms of history invariants may be derived independently
for each object and composed in order to derive properties for the global system. The
soundness proof of the compositional rule is provided in Paper 3.

4: How can we realize our reasoning system by means of executable tools?

Runtime assertion checking and static deductive verification are two approaches cho-
sen in this thesis to check whether concurrent asynchronous objects behave according
to their specifications. By using the approach of Papers 2 and 3, we implement the
history-explicit semantics of concurrent asynchronous objects in Maude as an exten-
sion of the ABS interpreter, by means of a global history reflecting all events that
have occurred in the execution. We also extend ABS with method annotations such
that ABS programmers can specify invariants, pre- and post-conditions in the code.
Future-oriented and history-based properties are expressible in our assertion language
and are checked during simulation. KeY is chosen as the formal verification tool in this
thesis. We extend KeY with extra rules for proving future-oriented and history-based
properties.

In conclusion, to tackle the complexity of distributed systems, we have insisted
that the analysis technique in this thesis should be compositional. Accordingly, we
develop a sound and relatively complete reasoning system based on a four-event seman-
tics for asynchronous method calls (and first-class futures), which introduces disjoint
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alphabets for the local histories of different objects. The processing steps made by
one object do not affect the history-based invariants of the surrounding objects. The
wellformedness property of global history serves as a connection between the local
histories. The global invariant of a total system may be constructed from the history
invariants of the composed objects, requiring wellformedness of the global history.
Compared to previous work for Creol, this approach allows us to formulate a much
simpler proof system for object-oriented language based on concurrent objects com-
municating by asynchronous method calls (and first-class futures). Furthermore, we
provide a runtime assertion checker and an extension of the KeY theorem prover for
verifying concurrent asynchronous objects based on our reasoning system.

In these ways we have contributed towards our overall goal which is to simplify rea-
soning about concurrent objects communicating by asynchronous method calls using
history-based invariants and to provide corresponding tool support.

6.2 Future Work

History invariants can be naturally included in interface definitions, defining the exter-
nal visible alphabet of an object and specifying the external behavior of the provided
methods. Adding interfaces to our formalism would affect the composition rule in that
events not observed through the interface must be hidden.

It will be natural to investigate how our reasoning system would benefit by ex-
tending it with rely/guarantee style reasoning. We may for instance (1) use callee
interfaces as assumptions in order to express properties of the values or (2) adapt
rely/guarantee style reasoning to history invariants [27, 68], for example, the rely part
may be expressed as properties over input events, whereas the guaranteed behavior is
associated with output events.

Some other object-oriented features such as inheritance is not considered in this
work. However, our approach may be combined with behavioral subtyping and lazy
behavioral subtyping which has been worked out for the same language setting [46].

At the moment we use explicit quantification in first-order formulae to express
ordering constraints over histories for the KeY tool. However, treatment of quantifica-
tion is a challenge in first-order theorem proving and performance reduces in general
significantly with their nesting depth. Therefore, another direction of future work
could be to improve the automation of history-based verification in KeY by replacing
the use of quantifiers with suitable abstract predicates. Since this approach has been
successfully used to support KeY automation for Java strings [19], we believe this
approach will also be applicable to sequences including communication histories.
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APPENDIX A

Appendix

A.1 Syntax of the ABS functional sublanguage

BNF syntax for the ABS functional sublanguage with terms t, data type definitions
Dd , and function definitions F is given below:

Dd ::= data D {[Co(T ∗)]∗} data type declaration
F ::= def T fn([T x]∗) == rhs function declaration
t ::= Co(e∗) | fn([e]∗) constructor and function application

| (e, e) pair constructor
p ::= v | Co(p∗) | (p, p) pattern
rhs ::= e pure expressions

| case e{b∗} case expression
b ::= p ⇒ rhs branch

Data types are implicitly defined by declaring constructor functions Co. The right
hand side of the definition of a function fn may be a nested case expression. Patterns
include constructor terms and pairs over constructor terms. The functional if-then-else
construct and infix operators are not included in the syntax above. We use + and −
for numbers, and and or for booleans, and = for equality.

A.2 Complete Code of Fairness Reader/Writer

data Data{int(Int) bool(Bool) string(String) obj(Obj) Nothing}
data Map{Empty Bind(Int, Data, Map)}
data DataSet{Empty Add(Data, DataSet)}

def Bool isElement(Data element, DataSet set) ==
case set{Empty => False;

Add(d, s) => element = d or isElement(element, s)}

def Data lookup(Int key, Map map) ==
case map{Empty => Nothing;

Bind(k, d, m) => if key = k then d else lookup(key, m) }

def DataSet delete(Data element, DataSet set) ==
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case set{Empty => Empty;
Add(d, s) => if element = d then delete(element, s) else Add(d, delete(element, s))}

def Map modify(Int key, Data element, Map map) ==
case map{Empty => Bind(key, element, Empty);

Bind(k, d, m) => if key = k then Bind(k, element, m)
else Bind(k, d, modify(key, element, m))}

def Int size(DataSet set) ==
case set{Empty => 0;

Add(d, s) => 1 + size(s)}

interface RW{
Void openR();
Void closeR();
Void openW();
Void closeW();
Data read(Int key);
Void write(Int key, Data element) }

interface DB{
Data read(Int key);
Void write(Int key, Data element)}

class DataBase implements DB{
Map map;
{map := Empty;}
Data read(Int key) {return lookup(key, map)}
Void write(Int key, Data element) {map := modify(key, element, map)} }

class RWController() implements RW{
DB db; DataSet readers; Obj writer; Int pr;
{db := new DataBase(); readers := Empty; writer := null; pr := 0}
Void openR(){await writer = null; readers := Add(caller, readers)}
Void closeR(){readers := delete(caller, readers)}
Void openW(){await writer = null; writer := caller; readers := Add(caller, readers)}
Void closeW(){await writer = caller; writer := null; readers := delete(caller, readers)}
Data read(Int key){ Data result;

await isElement(caller, readers); pr := pr + 1;
await result := db.read(key); pr := pr − 1; return result }

Void write(Int key, Data value){
await caller = writer and pr = 0 and
(readers = Empty or (isElement(writer, readers) and size(readers) = 1));

db.write(key, value) }}

A.3 Definition of Writers

Writers : Seq[Ev] → Set[Obj]

Writers(ε) � ∅
Writers(h � o← this.openW) � Writers(h) ∪ {o}
Writers(h � o← this.closeW) � Writers(h) \ {o}
Writers(h � others) � Writers(h)

A.4 Definition of Writing

Writing : Seq[Ev] → Nat
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Writing(h) � #(h/{this → db.write})−#(h/{this � db.write})

A.5 Verification Details for RWController

A.5.1 Method: openR

I1 ∧ I2 ∧ I3 ∧ I4 :

{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
await writer = null;
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H) ∧
writer = null}

{Readers(H) ∪ {caller} = Add(caller, readers) ∧Writers(H) = {writer} ∧
Reading(H) = pr ∧OK(H) ∧#Writers(H) = 0}

readers := Add(caller, readers);
{Readers(H) ∪ {caller} = readers ∧Writers(H) = {writer} ∧
Reading(H) = pr ∧OK(H) ∧#Writers(H) = 0}

A.5.2 Method: openW

I1 ∧ I2 ∧ I3 ∧ I4 :

{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
await writer = null;
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H) ∧
writer = null}

{Readers(H) ∪ {caller} = Add(caller, readers) ∧
Writers(H) ∪ {caller} = {caller} ∧ Reading(H) = pr ∧OK(H) ∧#Writers(H) = 0}

writer := caller;
{Readers(H) ∪ {caller} = Add(caller, readers) ∧
Writers(H) ∪ {caller} = {writer} ∧ Reading(H) = pr ∧OK(H) ∧#Writers(H) = 0}

readers := Add(caller, readers);
{Readers(H) ∪ {caller} = readers ∧
Writers(H) ∪ {caller} = {writer} ∧ Reading(H) = pr ∧OK(H) ∧#Writers(H) = 0}

A.5.3 Method: closeR

I1 ∧ I2 ∧ I3 ∧ I4 :

{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
{Readers(H) \ {caller} = delete(caller, readers) ∧
Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}

readers := delete(caller, readers);
{Readers(H)\{caller} = readers∧Writers(H) = {writer}∧Reading(H) = pr∧OK(H)}
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A.5.4 Method: closeW

I1 ∧ I2 ∧ I3 ∧ I4 :

{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
await writer = caller;
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)

∧ writer = caller}
{Readers(H) \ {caller} = delete(caller, readers) ∧
Writers(H) \ {caller} = {null} ∧ Reading(H) = pr ∧OK(H)}

writer := null;
{Readers(H) \ {caller} = delete(caller, readers) ∧
Writers(H) \ {caller} = {writer} ∧ Reading(H) = pr ∧OK(H)}

readers := delete(caller, readers);
{Readers(H) \ {caller} = readers ∧
Writers(H) \ {caller} = {writer} ∧ Reading(H) = pr ∧OK(H)}

A.5.5 Method: read

I1 ∧ I2 ∧ I3 ∧ I4 :

{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
await isElement(caller, readers);
{Readers(H) = readers ∧
Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H) ∧ isElement(caller, readers)}

{Readers(H) = readers ∧
Writers(H) = {writer} ∧ Reading(H) + 1 = pr+ 1 ∧OK(H) ∧Writing(H) = 0}

pr := pr+ 1;
{Readers(H) = readers ∧
Writers(H) = {writer} ∧ Reading(H) + 1 = pr ∧OK(H) ∧Writing(H) = 0}

await result := db.read(key);
{(∃result . (I1 ∧ I2 ∧ I3 ∧ I4)Hpop(H)) ∧H ew this � db.read(result)}
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr− 1 ∧OK(H)}
pr := pr− 1;
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
return result;
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}

A.5.6 Method: write

I1 ∧ I2 ∧ I3 ∧ I4 :

{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}
await caller = writer && pr = 0 &&
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(readers = Empty ∨ (isElement(writer, readers)&&size(readers) = 1));
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H) ∧
caller = writer ∧ pr = 0 ∧ (readers = Empty ∨
(isElement(writer, readers) ∧ size(readers) = 1))}

{Readers(H) = readers ∧
Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H) ∧ Reading(H) = 0 ∧
#Writers(H) = 1}

db.write(key, value);
{Readers(H) = readers ∧Writers(H) = {writer} ∧ Reading(H) = pr ∧OK(H)}

A.6 Verification Details for Unbounded Buffer

A.6.1 The put method

Proof outline:

{I}
{((cnt = 0 ⇒ Qcell

x ) ∧ (cnt �= 0 ⇒ QHH�this→next.put(x)�this�next.put))
H
H�caller�this.put(x)}

H = H � caller � this.put(x);
{(cnt = 0 ⇒ Qcell

x ) ∧ (cnt �= 0 ⇒ QHH�this→next.put(x)�this�next.put)}
if (cnt = 0) then {Qcell

x } cell := x
else if (next = null) then next := new Buffer fi;

{next �= null ∧QHH�this→next.put(x)�this�next.put}
next.put(x)

fi;
{Q}
cnt := cnt+ 1;
{IHH�caller←this.put}
H = H � caller ← this.put;
{I}

where Q � IH,cnt
H�caller←this.put,cnt+1

The proof outline leads to two verification conditions:

(1) I ∧ cnt = 0 ⇒ (Qcell
x )HH�caller�this.put(x)

(2) I ∧ cnt �= 0 ⇒ (QHH�this→next.put(x)�this�next.put)
H
H�caller�this.put(x)

Invariant Analysis

The two class invariants are proved by the following verification conditions:

I1 : cnt = #(cell 
 buf(next,H))
(1) :
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cnt = #(cell 
 buf(next,H)) ∧ cnt = 0
⇒
cnt+ 1 = #(x 
 buf(next,H))
(2) :
cnt = #(cell 
 buf(next,H)) ∧ cnt �= 0
⇒
cnt+ 1 = #(cell 
 (in(next, h) � x after #out(next, h)))

I2 : fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
(1) :
I1 ∧ (fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))) ∧ cnt = 0
⇒
fifo(next,H) ⇒ in(this,H) � x = out(this,H) �
 (x 
 buf(next,H))
(2) :
I1 ∧ (fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))) ∧ cnt �= 0
⇒
(out(next,H) ≤ in(next,H) � x) ⇒ in(this,H) � x = out(this,H) �
 (cell 

buf(next,H) � x)

A.6.2 The get method

Proof outline:

{I}
{IHH�caller�this.get}
H = H � caller � this.get;
{I} var Obj r; {I} await(cnt > 0); {I ∧ cnt > 0}
{((cell = null ⇒ ∀r′.Qr,H

r′,H�this→next.get�this�next.get(r′)) ∧ (cell �= null ⇒ (Qcell
null)

r
cell))

cnt
cnt−1}

cnt := cnt− 1;
{(cell = null ⇒ ∀r′.Qr,H

r′,H�this→next.get�this�next.get(r′)) ∧ (cell �= null ⇒ (Qcell
null)

r
cell)}

if(cell = null) then {∀r′.Qr,H
r′,H�this→next.get�this�next.get(r′)} r := next.get()

else {(Qcell
null)

r
cell} r := cell; cell := null fi;

{Q}
return r;
{IHH�caller←this.get(r)}
H = H � caller ← this.get(r);
{I}

where Q � IHH�caller←this.get(r)
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The proof outline leads to three verification conditions:

(1) I ⇒ IHH�caller�this.get

(2) I ∧ cnt > 0 ∧ cell = null ⇒ (∀r′.Qr,H
r′,H�this→next.get�this�next.get(r′))

cnt
cnt−1

(3) I ∧ cnt > 0 ∧ cell �= null ⇒ ((Qcell
null)

r
cell)

cnt
cnt−1

Invariant Analysis

The two class invariants are proved by the following verification conditions:

I1 : cnt = #(cell 
 buf(next,H))
(1) :
cnt = #(cell 
 buf(next,H))
⇒
cnt = #(cell 
 buf(next,H))
(2) :
cnt = #(cell 
 buf(next,H)) ∧ cnt > 0 ∧ cell = null
⇒
cnt− 1 = #(cell 
 (in(next, h) after #(out(next, h) � x)))
(3) :
cnt = #(cell 
 buf(next,H)) ∧ cnt > 0 ∧ cell �= null
⇒
cnt− 1 = #(null 
 buf(next,H))

I2 : fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
(1) :
fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
⇒
fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
(2) :
I1 ∧ (fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))) ∧ cnt >
0 ∧ cell = null
⇒
(out(next,H) � r ≤ in(next,H)) ⇒ in(this,H) = (out(this,H) � r) �
 (cell 

rest(buf(next,H)))
(3) :
fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))∧ cnt > 0∧ cell �= null
⇒
fifo(next,H) ⇒ in(this,H) = (out(this,H) � cell) �
 (null 
 buf(next,H))

A.6.3 The conditional FIFO property

We derive the conditional FIFO property, fifo(next,H) ⇒ fifo(this,H), from the as-
sumption of class invariant (7.7)
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fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
⇒
fifo(next,H) ⇒ fifo(this,H)

in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
⇒
out(this,H) ≤ in(this,H)

A.6.4 Verification of the History Invariant

Here we consider the details for verifying the conditional FIFO property, named
Condfifo, as a history invariant. The invariant is formulated as: fifo(next,H) ⇒
fifo(this,H) A history invariant, Ithis:C(cp), can be verified by showing that it is main-
tained by each local statement s affecting the history, i.e., one must prove {Ithis:C(cp)(H)∧
P} s {Q⇒ Ithis:C(cp)(H)} where P and Q are the pre- and postconditions of s used in
the proof outline of the method.

The put method

In the above sections, we have proved that Condfifo follows by implication from the
class invariant, and that the class invariant holds at method termination. Thus, it
remains to prove that Condfifo holds after each history extension inside the method
body, i.e., we must prove that the property holds after next.put(x):

{Condfifo ∧ P} next.put(x) {Q⇒ Condfifo}

where
Q � (fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H)))H,cnt

H�caller←this.put,cnt+1

the actual assertion P is not needed here, but it is given in the proof outline above.
The postcondition: Q⇒ Condfifo is proved as follows:

(fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H)))
⇒
(fifo(next,H) ⇒ fifo(this,H))

in(this,H) = out(this,H) �
 (cell 
 buf(next,H))
⇒
out(this,H) ≤ in(this,H)

The get method

In the above sections, we have proved that Condfifo follows by implication from the
class invariant, and that the class invariant holds at method termination. Thus, it
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remains to prove that Condfifo holds after each history extension inside the method
body, i.e., we must prove that the property holds after r:=next.get():

{Condfifo ∧ P} r:=next.get() {Q⇒ Condfifo}
where
Q � (fifo(next,H) ⇒ in(this,H) = out(this,H) �
 (cell 
 buf(next,H)))HH�caller←this.get(r)

the actual assertion P is not needed here, but it is given in the proof outline above.
(fifo(next,H) ⇒ in(this,H) = out(this,H) � r �
 (cell 
 buf(next,H)))
⇒
(fifo(next,H) ⇒ fifo(this,H))

in(this,H) = out(this,H) � r �
 (cell 
 buf(next,H))
⇒
out(this,H) ≤ in(this,H)

A.7 Proof of Lemma 7.6

For an assertion P , we let P ′ abbreviate Pw,H
w′,H′ , and I abbreviates IC .

A.7.1 Soundness

For the rules (notNull), (return), (suspend), (await), (callAsync), (call-
Sync1), (callSync1-1), (awaitCall1), (awaitCall2), and (new)which are of
the form {P} s {Q}, soundness follow directly from the wlp, i.e., for each rule the
formula P ⇒ wlp(s,Q) holds.

Rule (method) Let s′ � H := H � caller � this.m(x); s;H := H � caller ←
this.m(return)

The rule may then be formulated as:

(method)
{S} s′ {wf(H) ⇒ R}

{∀y . S}m(x){var y; s} {∃y .R}
and we have the following wlp:

wlp(m(x){var y; s}, Q) � wlp(var y; s′,wf(H) ⇒ Q)

where y /∈ FV[Q].
For soundness, we need to ensure

∀y . S ⇒ wlp(var y; s′,wf(H) ⇒ ∃y .R)
under the assumption S ⇒ wlp(s′,wf(H) ⇒ R) (rule premise). Since R ⇒ ∃y .R,

we have wlp(s′,wf(H) ⇒ R) ⇒ wlp(s′,wf(H) ⇒ ∃y .R). Thus it suffices to prove
∀y . S ⇒ wlp(var y, S) which is trivial.
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Rule (callSync2) Let i denote the event this → o.m(e), and c(o,v) denote the event
this � o.m(v). We have the following proof obligation:

Sx,caller,H
e,this,H�i ∧ o = this ⇒ wlp(v := o.m(e), ∃z . Rv,return,caller,H

z,v,this,pop(H) ∧H ew c(this,v))

under the assumption S ∧ caller = this ⇒ wlp(body, R ∧ caller = this) (rule premise).
Here, the wlp is defined by:

wlp(v := o.m(e), Q) � o = this ⇒ (wlp(body, Qv,H,y,v′
v′,H�c(this,v′),y′,return))

x,caller,y′,H
e,this,y,H�i

which means that the above proof obligation can be written as:

Sx,caller,H
e,this,H�i ⇒ (wlp(body, (∃z . Rv,return,caller,H

z,v,this,pop(H) ∧H ew c(this,v))
v,H,y,v′
v′,H�c(this,v′),y′,return))

x,caller,y′,H
e,this,y,H�i

Remark that S and R are assertions over the state of the called method, i.e., y and y′

does not occur in these assertions. Since y /∈ FV[R], we have the following implication:

R ∧ caller = this ⇒ (∃z . Rv,return,caller,H
z,v,this,pop(H) ∧H ew c(this,v))

v,H,y,v′
v′,H�c(this,v′),y′,return

Since wlp is monotonic, it therefore suffices to prove:

Sx,caller,H
e,this,H�i ⇒ (wlp(body, R ∧ caller = this))x,caller,y

′,H
e,this,y,H�i

which follows by rule premise and the trivial implication:

Sx,caller,H
e,this,H�i ⇒ (S ∧ caller = this)x,caller,y

′,H
e,this,y,H�i

Rule (callSync2-1) This proof follows the same pattern as for (callSync2). As
above we have y and y′ not in FV[S] and FV[R], and we therefore ignore these variables
below. Here we have the proof obligation:

Sx,caller,H
e,this,H�i ∧ o = this ⇒ wlp(o.m(e), ∃v′ . Rcaller,return,H

this,v′,pop(H) ∧H ew c(this,v′))

under the assumption S ∧ caller = this ⇒ wlp(body, R ∧ caller = this) (rule premise).
Here, the wlp is defined by:

wlp(o.m(e), Q) � o = this ⇒ (wlp(body, QH,v′
H�c(this,v′),return))

x,caller,H
e,this,H�i

Since
R ∧ caller = this ⇒ (∃v′ . Rcaller,return,H

this,v′,pop(H) ∧H ew c(this,v′))
H,v′
H�c(this,v′),return

The proof obligation reduces to

Sx,caller,H
e,this,H�i ⇒ (wlp(body, R ∧ caller = this))x,caller,He,this,H�i

which is satisfied by the same argument as above.
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A.7.2 Completeness

Statement suspend.

1. {I} suspend {I} (suspend)
2. {H = h0} suspend {h0 ≤ H} (his)
3. {wf(H)} s {wf(H)} (wf)
4. {I ∧H = h0 ∧ wf(H)} suspend {I ∧ h0 ≤ H ∧ wf(H)} (1, 2, 3, (conj))
5. {∀w′,H′ . (∀h0 . I ∧H = h0 ∧ wf(H) ⇒ I ′ ∧ h0 ≤ H′ ∧ wf(H′)) ⇒ Q′}

suspend {Q} (4, (adap))
6. {∀w′,H′ . (I ∧ wf(H) ⇒ I ′ ∧H ≤ H′ ∧ wf(H′)) ⇒ Q′} suspend {Q} (5,math)
7. {I ∧ wf(H) ∧ ∀w′,H′ . (I ′ ∧H ≤ H′ ∧ wf(H′)) ⇒ Q′} suspend {Q} (6, (cons))
8. {wlp(suspend, Q)} suspend {Q} (7, def)

Statement await b.

1. {I} await b {I ∧ b} (await)
2. {H = h0} await b {h0 ≤ H} (his)
3. {wf(H)} s {wf(H)} (wf)
4. {I ∧H = h0 ∧ wf(H)} await b {I ∧ b ∧ h0 ≤ H ∧ wf(H)} (1, 2, 3, (conj))
5. {∀w′,H′ . (∀h0 . I ∧H = h0 ∧ wf(H) ⇒ I ′ ∧ b′ ∧ h0 ≤ H′

∧wf(H′)) ⇒ Q′} await b {Q} (4, (adap))
6. {∀w′,H′ . (I ∧ wf(H) ⇒ I ′ ∧ b′ ∧H ≤ H′ ∧ wf(H′)) ⇒ Q′}

await b {Q} (5,math)
7. {I ∧ wf(H) ∧ ∀w′,H′ . (I ′ ∧ b′ ∧H ≤ H′ ∧ wf(H′)) ⇒ Q′}

await b {Q} (6, (cons))
8. {wlp(await b,Q)} await b {Q} (7, def)
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Statement await o.m(e).

1. {h0 = H � this → o.m(e) ∧ IHh0
∧ o = o0}

await o.m(e)
{h0 ≤ H ∧ IHpop(H) ∧ ∃v .H ew this � o0.m(v)} (awaitCall2)

2. {wf(H)} s {wf(H)} (wf)
3. {h0 = H � this → o.m(e) ∧ IHh0

∧ o = o0 ∧ wf(H)}
await o.m(e)
{h0 ≤ H ∧ IHpop(H) ∧ ∃v .H ew this � o0.m(v) ∧ wf(H)} (1, 2, (conj))

4. {∀w′,H′ . (∀h0, o0 . (h0 = H � this → o.m(e) ∧ IHh0
∧ o = o0 ∧ wf(H))

⇒ h0 ≤ H′ ∧ (IHpop(H′))
w
w′ ∧ ∃v .H′ ew this � o0.m(v) ∧ wf(H′))

⇒ Qw,H
w′,H′}await o.m(e){Q} (3, (adap))

5. {∀w′,H′ . (IHH�this→o.m(e) ∧ wf(H) ⇒
H � this → o.m(e) ≤ H′ ∧ (IHpop(H′))

w
w′ ∧ ∃v .H′ ew this � o.m(v)

∧wf(H′)) ⇒ Qw,H
w′,H′}await o.m(e){Q} (4,math)

6. {IHH�this→o.m(e) ∧ wf(H)∧
∀w′,H′ . (H � this → o.m(e) ≤ H′∧
(IHpop(H′))

w
w′ ∧ ∃v .H′ ew this � o.m(v) ∧ wf(H′)) ⇒ Qw,H

w′,H′}
await o.m(e){Q} (5, (cons))

7. {IHH�this→o.m(e) ∧ wf(H)∧
∀v′, w′,H′ . (H � this → o.m(e) ≤ H′∧
Iw,H
w′,H′ ∧ wf(H′ � this � o.m(v′))) ⇒ Qw,H

w′,H′�this�o.m(v′)}
await o.m(e){Q} (6, (cons))

8. {o = null} await o.m(e) {false} (notNull)

9. {o �= null ⇒ (IC
H
H�this→o.m(e) ∧ wf(H)∧

∀v′, w′,H′ . (H � this → o.m(e) ≤ H′∧
Iw,H
w′,H′ ∧ wf(H′ � this � o.m(v′))) ⇒ Qw,H

w′,H′�this�o.m(v′))}
await o.m(e){Q} (7, 8, (disj))

10. {wlp(await o.m(e), Q)} await o.m(e) {Q} (9, def)
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Statement await v := o.m(e).

1. {h0 = H � this → o.m(e) ∧ IHh0
∧ o = o0}

await v := o.m(e)
{h0 ≤ H ∧H ew this � o0.m(v) ∧ ∃v . IHpop(H)} (awaitCall1)

2. {wf(H)} s {wf(H)} (wf)
3. {h0 = H � this → o.m(e) ∧ IHh0

∧ o = o0 ∧ wf(H)}
await v := o.m(e)
{h0 ≤ H ∧H ew this � o0.m(v) ∧ ∃v . IHpop(H) ∧ wf(H)} (1, 2, (conj))

4. {∀v′, w′,H′ . (∀h0, o0 . (h0 = H � this → o.m(e) ∧ IHh0
∧ o = o0 ∧ wf(H))

⇒ h0 ≤ H′ ∧H′ ew this � o0.m(v′) ∧ (∃v . IHpop(H′))
w
w′ ∧ wf(H′))

⇒ Qv,w,H
v′,w′,H′}await v := o.m(e){Q} (3, (adap))

5. {∀v′, w′,H′ . (IHH�this→o.m(e) ∧ wf(H)

⇒ H � this → o.m(e) ≤ H′ ∧H′ ew this � o.m(v′)∧
(∃v . IHpop(H′))

w
w′ ∧ wf(H′)) ⇒ Qv,w,H

v′,w′,H′}await v := o.m(e){Q} (4,math)

6. {IHH�this→o.m(e) ∧ wf(H)∧
∀v′, w′,H′ . (H � this → o.m(e) ≤ H′ ∧H′ ew this � o.m(v′)∧
(∃v . IHpop(H′))

w
w′ ∧ wf(H′)) ⇒ Qv,w,H

v′,w′,H′}await v := o.m(e){Q} (5, (cons))

7. {IHH�this→o.m(e) ∧ wf(H)∧
∀v′, w′,H′ . (H � this → o.m(e) ≤ H′∧
Iw,H
w′,H′ ∧ wf(H′ � this � o.m(v′))) ⇒ (Qv

v′)
w,H
w′,H′�this�o.m(v′)}

await v := o.m(e){Q} (6, (cons))
8. {o = null} await v := o.m(e) {false} (notNull)
9. {o �= null ⇒ (IHH�this→o.m(e) ∧ wf(H)∧

∀v′, w′,H′ . (H � this → o.m(e) ≤ H′∧
Iw,H
w′,H′ ∧ wf(H′ � this � o.m(v′))) ⇒ (Qv

v′)
w,H
w′,H′�this�o.m(v′))}

await v := o.m(e){Q} (7, 8, (disj))
10. {wlp(await v := o.m(e), Q)} await v := o.m(e) {Q} (9, def)

Statement v := o.m(e).
Let i abbreviate the event this → o.m(e) (which equals this → this.m(e) under the
assumption this = o), and let c(o,v) abbreviate the event this � o.m(v). Given an

arbitrary postcondition Q to the statement v := o.m(e), i.e., FV[Q] ⊆ {w,H, cp, y, l}
where y are the method-local variables of the caller (including the formal parameters
and caller) and l is a list of logical variables. Observe that return /∈ FV[Q] since Q
appears inside the body of the calling method. By definition, the assertion wlp(v :=
o.m(e), Q) may then be written as:

o �= null ⇒ ∀v′ . if o = this then (wlp(v′ := m′(e, this), Qv,H
v′,H�c(this,v′)))

H
H�i

else Qv,H
v′,H�i�c(o,v′)

which by definition of wlp(v′ := m′(e, this), Q) can be rewritten as:

o �= null ⇒ ∀v′ . if o = this then

((wlp(m′(x, caller) body, (Qv,H
v′,H�c(this,v′))

y,v′
y′,return))

x,caller,y′
e,this,y )HH�i

else Qv,H
v′,H�i�c(o,v′)
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By simplifying the substitutions, this formula may be written as:

o �= null ⇒ ∀v′ . if o = this then

(wlp(m(x)body, Qv,H,y
return,H�c(this,return),y′))

x,caller,H,y′
e,this,H�i,y

else Qv,H
v′,H�i�c(o,v′)

In the proof below, we let P denote the following assertion:

(wlp(m(x) body, Qv,H,y
return,H�c(this,return),y′))

x,caller,H,y′
e,this,H�i,y

which means that the wlp can be written as:

wlp(v := o.m(e), Q) � o �= null ⇒ ∀v′ . if o = this then P else Qv,H
v′,H�i�c(o,v′)

In the proof below, we let S denote the formula wlp(m(x) body, Qv,H,y
return,H�c(this,return),y′),

and R denote the formula Qv,H,y
return,H�c(this,return)y′ .

1. {S}m(x)body {R} (premise)

2. {Sx,caller,H
e,this,H�i ∧ o = this}

v := o.m(e){∃z .Rv,return,caller,H
z,v,this,pop(H) ∧H ew c(this,v)} (1, (callSync2))

3. {∀w′,H′, v′ . (∀y′, l . Sx,caller,H
e,this,H�i ∧ o = this ⇒

(∃z .Rv,return,caller,H
z,v,this,pop(H) ∧H ew c(this,v))

w,H,v
w′,H′,v′) ⇒ Qw,H,v

w′,H′,v′}
v := o.m(e){Q} (2, (adap))

4. {Sx,caller,H,y′
e,this,H�i,y ∧ o = this} v := o.m(e) {Q} (3, (cons))

5. {P ∧ o = this} v := o.m(e) {Q} (4, def)

6. {∀v′.Qv,H
v′,H �i�c(o,v′) ∧ o �= this} v := o.m(e) {Q} (callSync1)

7. {(P ∧ o = this) ∨ (∀v′.Qv,H
v′,H �i�c(o,v′) ∧ o �= this)} v := o.m(e) {Q} (5, 6, (disj))

8. {∀v′ . if o = this then P else Qv,H
v′,H �i�c(o,v′)} v := o.m(e) {Q} (7,math)

9. {o = null} v := o.m(e) {false} (notNull)

10. {o �= null ⇒ ∀v′ . if o = this then P else Qv,H
v′,H �i�c(o,v′)}

v := o.m(e){Q} (8, 9, (disj))
11. {wlp(v := o.m(e), Q)} v := o.m(e) {Q} (10, def)

Statement o.m(e).
Following the same outline as for statement v := o.m(e) above, wlp(o.m(e), Q) can be
written as:

o �= null ⇒ ∀v′ . if o = this then

(wlp(m(x)body, QH,y
H�c(this,return),y′))

x,caller,H,y′
e,this,H�i,y

else QHH�i�c(o,v′)
Below we let P denote the assertion:

(wlp(m(x)body, QH,y
H�c(this,return),y′))

x,caller,H,y′
e,this,H�i,y
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Assertion S denotes wlp(m(x)body, QH,y
H�c(this,return),y′), and R denotes QH,y

H�c(this,return),y′ . The
proof then corresponds to the one above:

1. {S}m(x)body {R} (premise)

2. {Sx,caller,H
e,this,H�i ∧ o = this}

o.m(e){∃v′ . Rreturn,caller,H
v′,this,pop(H) ∧H ew c(this,v′)} (1, (callSync2-1))

3. {∀w′,H′ . (∀y′, l . Sx,caller,H
e,this,H�i ∧ o = this ⇒

(∃v′ . Rreturn,caller,H
v′,this,pop(H) ∧H ew c(this,v′))

w,H
w′,H′) ⇒ Qw,H

w′,H′}
o.m(e){Q} (2, (adap))

4. {Sx,caller,H,y′
e,this,H�i,y ∧ o = this} o.m(e) {Q} (3, (cons))

5. {P ∧ o = this} o.m(e) {Q} (4, def)
6. {∀v′.QHH �i�c(o,v′) ∧ o �= this} o.m(e) {Q} (callSync1-1)

7. {(P ∧ o = this) ∨ (∀v′.QHH �i�c(o,v′) ∧ o �= this)} o.m(e) {Q} (5, 6, (disj))

8. {∀v′ . if o = this then P else QHH �i�c(o,v′)} o.m(e) {Q} (7,math)

9. {o = null} o.m(e) {false} (notNull)
10. {o �= null ⇒ ∀v′ . if o = this then P else QHH �i�c(o,v′)}

o.m(e){Q} (8, 9, (disj))
11. {wlp(o.m(e), Q)} o.m(e) {Q} (10, def)

Rule (method).
The side condition y /∈ FV[Q] means that ∃y .Q = Q. By the rule premise, we

have S = wlp(s′,wf(H) ⇒ Q), where s′ is as for the soundness proof of (method)
above. The remaining verification condition wlp(var y, S) ⇒ ∀y . S is trivial.
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A.8 Complete Code of Publisher-Subscriber

Example

data News = E1 | E2 | E3 | E4 | E5 | None;

interface ServiceI{
Void subscribe(ClientI cl);
Void produce()}

interface ProxyI{
ProxyI add(ClientI cl);
Void publish(Fut<News> fut)}

interface ProducerI{
News detectNews()}

interface NewsProducerI{
Void add(News ns);
News getNews();
List<News> getRequests()}

interface ClientI{
Void signal(News ns)}

class Service(Int limit, NewsProducerI np) implements ServiceI{
ProducerI prod; ProxyI proxy; ProxyI lastProxy;
{prod := new Producer(np); proxy := new Proxy(limit,this); lastProxy := proxy; this!produce()}

Void subscribe(ClientI cl){lastProxy := lastProxy.add(cl)}

Void produce(){var Fut<News> fut := prod!detectNews(); proxy!publish(fut)}}

class Proxy(Int limit, ServiceI s) implements ProxyI{
List<ClientI> myClients := Nil; ProxyI nextProxy;

ProxyI add(ClientI cl){
var ProxyI lastProxy = this;
if length(myClients) < limit then myClients := appendright(myClients, cl)
else if nextProxy == null then nextProxy := new Proxy(limit,s) fi;
lastProxy := nextProxy.add(cl) fi; put lastProxy}

Void publish(Fut<News> fut){
var News ns = None;
ns = fut.get; myClients!signal(ns);
if nextProxy == null then s!produce() else nextProxy!publish(fut) fi}}

class Producer(NewsProducerI np) implements ProducerI{
News detectNews(){
var List<News> requests := Nil; News news := None;
requests := np.getRequests();
while requests == Nil do requests := np.getRequests() od
news := np.getNews(); put news}}

class NewsProducer implements NewsProducerI{
List<News> requests := Nil;
Void add(News ns){requests := appendright(requests,ns)}
News getNews(){var News firstNews := head(requests); requests := tail(requests); put firstNews}
List<News> getRequests(){put requests}}

class Client implements ClientI{
News news := None;
Void signal(News ns){news := ns}}

We have here augmented the given core language with ABS syntax for data types.
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[2] E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen. Behavioral interface description
of an object-oriented language with futures and promises. Journal of Logic and
Algebraic Programming, 78(7):491–518, 2009.

[3] G. Agha, S. Frølund, W. Kim, R. Panwar, A. Patterson, and D. Sturman. Abstrac-
tion and modularity mechanisms for concurrent computing. Parallel Distributed
Technology: Systems Applications, IEEE, 1(2):3 –14, may 1993.

[4] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7:1–72, 1998.

[5] A. Ahern and N. Yoshida. Formalising Java RMI with explicit code mobility.
Theoretical Computer Science, 389(3):341 – 410, 2007.

[6] W. Ahrendt and M. Dylla. A verification system for distributed objects with
asynchronous method calls. In K. Breitman and A. Cavalcanti, editors, Proc.
International Conference on Formal Engineering Methods (ICFEM’09), volume
5885 of LNCS, pages 387–406. Springer-Verlag, 2009.

[7] W. Ahrendt and M. Dylla. A system for compositional verification of asyn-
chronous objects. Science of Computer Programming, 77(12):1289–1309, Oct.
2012.

[8] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, Oct. 1985.

[9] G. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 1999.

[10] K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, Oct. 1981.

163



164 BIBLIOGRAPHY

[11] K. R. Apt. Ten years of Hoare’s logic: A survey — Part II: Nondeterminism.
Theoretical Computer Science, 28(1–2):83–109, Jan. 1984.

[12] J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Trans. Comput. Syst., 4(4):273–298, Sept.
1986.

[13] J. Armstrong, R. Virding, and M. Williams. Concurrent programming in ER-
LANG. Prentice Hall, 1993.

[14] H. G. Baker Jr. and C. Hewitt. The incremental garbage collection of processes.
In Proceedings of the 1977 symposium on Artificial intelligence and programming
languages, pages 55–59, New York, NY, USA, 1977. ACM.

[15] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verifica-
tion of object-oriented programs with invariants. Journal of Object Technology,
3:2004, 2004.

[16] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec� programming system: An
overview. In Proceedings of the 2004 International Conference on Construction
and Analysis of Safe, Secure, and Interoperable Smart Devices, CASSIS’04, pages
49–69, Berlin, Heidelberg, 2005. Springer-Verlag.
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