
Average properties of nuclear states
in the quasi-continuum region

Hilde-Therese Nyhus

Thesis submitted in partial fulfilment
of the requirements for the degree of

philosophiae doctor

Department of Physics
Faculty of Mathematics and Natural Sciences

University of Oslo

March 2014



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Hilde-Therese Nyhus, 2014 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 1512 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
Cover: Inger Sandved Anfinsen. 
Printed in Norway: AIT Oslo AS.   
 
Produced in co-operation with Akademika Publishing.  
The thesis is produced by Akademika Publishing merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



Acknowledgments

The completion of this thesis has been made possible by the help and support from

many people around me. First and foremost, I owe a great thanks to my supervi-

sors. Sunniva, thanks for giving me the chance to start my Ph.D. and for always

being very encouraging. Magne, I appreciate that you always give me good and

clear answers. Ann-Cecilie, you always take time to help me, even though you

have tons of things to do. It seems as if you have full control of everything, and

you have been of tremendous help.

A special thanks to Hiroaki for all the help you have given me with the New-

SUBARU experiments, and for letting me take part in the KOBe− collaboration,

it has been interesting and I have learned so much! Thanks also to the Bucharest

team, it has been very nice working with you.

My work and traveling partner Therese, I appreciate all the support and help

you have given me. Thanks for saying yes in the first place to come with me to

Japan. We have had some interesting and fun experiences during our trips, which

I will never forget �.

Thanks also to the engineers at the OCL for providing great experimental

conditions during the campaigns.

I am deeply grateful to the whole physics group at SAFE, for making my time

here a great pleasure. Eda, Francesca, Frank, Aylin and Therese you are always

there when I need a break, for lunch every day, running, swimming... I don’t think

I could have survived the last year without.

I have also gotten support from my friends Gunn, Nina, Siri, Ann-Kristin and

Kosovare, which I appreciate very much.

Last but not least I owe a big thanks to my family. My brothers Helge-Jacob

and Sverre-Kjetil, sister in-law Anette and in-laws Kari and Rune, thanks for al-

ways helping me in any way possible. Especially, thanks for helping out with the

kids leaving me with time to finnish my thesis. Audun, thanks for being under-

i



standing, and for holding out with me, even though I have been a bit absent and

very stressed the last months (or years...). Finally, I would like to thank the two

best boys in the world, my sons, Christoffer and Jacob, for making me take some

much needed time off from work once in a while, and for keeping me happy even

in a stressful time �.

Hilde-Therese Nyhus

March, 2014

ii



Contents

1 Introduction 1

2 Level density, radiative strength function and radiative neutron cap-
ture cross sections 5
2.1 Level density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Gamma decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Radiative strength function . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Modelling the RSF . . . . . . . . . . . . . . . . . . . . . 8

2.4 Radiative neutron capture . . . . . . . . . . . . . . . . . . . . . . 9

3 Photo-neutron experiments 13
3.1 The NewSUBARU laboratory . . . . . . . . . . . . . . . . . . . 13

3.1.1 Laser-Compton scattering γ-ray beams . . . . . . . . . . 16

3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Energy distribution of the γ-ray beam . . . . . . . . . . . . . . . 19

3.4 Measuring neutrons . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Neutron efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Measuring the γ-ray flux . . . . . . . . . . . . . . . . . . . . . . 23

3.7 The monochromatic cross section . . . . . . . . . . . . . . . . . 26

4 Particle-γ experiments 27
4.1 The Oslo Cyclotron Laboratory . . . . . . . . . . . . . . . . . . . 27

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 The thickness spectrum . . . . . . . . . . . . . . . . . . . 32

4.3.2 The time spectrum . . . . . . . . . . . . . . . . . . . . . 33

4.4 Coincidence matrices . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Unfolding γ spectra . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.1 Detector response . . . . . . . . . . . . . . . . . . . . . . 35

4.5.2 The folding iteration proceedure . . . . . . . . . . . . . . 36

4.5.3 The Compton subtraction method . . . . . . . . . . . . . 37

iii



CONTENTS

4.6 Extracting the primary γ-ray matrix . . . . . . . . . . . . . . . . 38

4.6.1 Assumption of the primary γ-ray method . . . . . . . . . 40

4.6.2 The iteration procedure . . . . . . . . . . . . . . . . . . . 41

5 Data analysis 43
5.1 Extracting non-monochromatic cross sections . . . . . . . . . . . 43

5.2 The Oslo Method . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 χ2 minimization . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Normalization proceedure . . . . . . . . . . . . . . . . . 49

5.2.3 Uncertainties of ρ and T . . . . . . . . . . . . . . . . . 52

6 Articles 55
6.1 A brief introduction to the papers . . . . . . . . . . . . . . . . . . 57

6.2 Paper I: Radiative strength functions in 163,164Dy . . . . . . . . . 61

6.3 Paper II: Level density and thermodynamic properties of dyspro-

sium isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.4 Paper III: Energy Calibration of the NewSUBARU Storage Ring

for Laser Compton-Scattering Gamma Rays and Applications . . 83

6.5 Paper IV: Photoneutron cross sections for neodymium isotopes:

toward a unified understanding of (γ,n) and (n,γ) reactions in the

rare earth region I . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Paper V: Photoneutron cross sections for samarium isotopes: to-

ward a unified understanding of (γ,n) and (n,γ) reactions in the

rare earth region II . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Paper VI: Photo-neutron cross sections, radiative strength func-

tions and astrophysical reaction rates of dysprosium isotopes . . . 111

6.8 Paper VII: Level densities and γ-ray strength functions of 105−108Pd121

7 Summary and outlook 133
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Appendices 135

A New intensities and FWHMs deduced for the NaI response functions 137

B Solving for σ(Eγ) by using a Taylor expansion method 139

C Solutions of the primary γ-ray matrix 141

Bibliography 145

iv



Chapter 1

Introduction

Since the discovery of the atomic nucleus at the start of the 20th century, it has

been studied in depth. Along with increased understanding of nuclear physics,

some of the most questioned puzzles of the universe have been resolved. Funda-

mental understanding of the nuclear constituents and interactions is essential to

describe the evolution of the universe and the abundance of elements. Nuclear

research have also shown great impact in many fields of applied science. From

nuclear power, to medicine treatment and diagnostics, ion implantation in material

engineering and radiocarbon dating in geology and archeology, to mention some.

The atomic nucleus is a complex quantum-mechanical system. It consists

of protons and neutrons that are bound together by the strong interaction. The

nucleus can be characterized by quantum numbers such as energy levels, spin

and parity. The unique set of quantum numbers defines the states of the nucleus.

Representing the nucleons as wave functions one can calculate the distinct states.

However, calculations derived from first principles is only possible for a very few

light nuclei. To describe most nuclei one relies on phenomenological models. Two

successful models in this respect is the shell model Monte Carlo method for spher-

ical nuclei, and the Nilsson model for deformed nuclei. Although these methods

provide accurate results for many nuclei, one still depend heavily on experiments

to obtain a full description.

In the discrete energy region one can measure the quantum states through

spectroscopy experiments. While at higher excitation energies, the level density

is so high that modern equipment cannot resolve the individual levels. This region

is known as the quasi-continuum. At even higher excitation energies we have

the continuum region where the levels overlap. Beyond the discrete region it is

reasonable to do simplifications and look at average nuclear properties, rather than

considering single particle descriptions.

Statistical nuclear properties in the quasi-continuum are well described by the

level density and the radiative strength function. The level density gives the aver-
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CHAPTER 1. INTRODUCTION

age number of levels as a function of excitation energy, while the radiative strength

function describes average electromagnetic properties of the nucleus, and it is

therefore closely related to reduced transition probabilities. These two functions

are not only interesting because of the information they reveal on the nuclear struc-

ture, but also because the light they cast upon other fields of physics. Applications

of the level density and radiative strength function include astrophysical calcula-

tions determining the abundance of the elements in the universe, and modelling of

unknown (n,γ) cross sections relevant for next generation reactors.

In this thesis the level density and radiative strength function have been inves-

tigated for several nuclei in the range, A = 105− 164. In particular, small reso-

nances on the tail of the giant electric dipole resonance (GEDR) have been studied,

using complementary techniques to obtain the strength function both above and

below the neutron threshold. By use of the so-called Oslo method the level density

and the radiative strength function can be derived simultaneously from one and the

same experiment. The excitation energy region from where we extract the strength

function extend from the discrete region up to the energy of the neutron separa-

tion threshold. The reaction channels used to excite the nuclei are inelastic- and

neutron pick-up reactions induced with a 3He beam. These experiments have been

performed at the Oslo Cyclotron Laboratory (OCL). In addition, photo-absorption

experiments have been conducted at the NewSUBARU synchrotron laboratory in

Japan. From these experiment we derive the photo-neutron cross section, and the

radiative strength function, from the neutron separation threshold up to the peak

of the GEDR.

In this work we have studied several dysprosium isotopes both above and be-

low the neutron separation threshold, we have also investigated palladium iso-

topes by use of the Oslo method to compare with pre-existing photo-neutron data.

Furthermore, we have investigated numerous neodymium and samarium isotopes

from photo-absorption experiments. These nuclei cover a wide mass region, and

we know that nuclei exhibit different characteristics depending on mass and defor-

mation. For the palladium nuclei, special focus has been on the strength function

at low γ energy, where the strength is relatively constant over a wide γ-energy

region. We also observe indications of a resonance located at energies around

8 MeV. The theoretical explanation for these structures is not yet understood and

it is therefore of great importance to learn more about it, and map the nuclei that

exhibit this behaviour.

The dysprosium nuclei have a collective resonance mode located at around

3 MeV of excitation energy, called the M1 scissors mode. Characteristics of this

resonance have been studied. Photo-neutron data of dysprosium isotopes are also

measured, to give a complete description of the strength function below the peak

of the giant resonance. The measured cross sections are found in an energy region

where there are no preexisting data of dysprosium nuclei. The photo-neutron data
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are used to check and renormalize the Oslo data. Furthermore radiative neutron

capture cross sections are calculate by use of the TALYS reaction code, and as-

trophysical reaction rates are calculated. In particular, how the M1 scissors mode

affect the reaction rated are discussed.

In addition the nuclear level density is studied for palladium and dysprosium

isotopes, which provides rich information on the nuclear structure at low excita-

tion energy. One can identify the region of which the nuclear Cooper pairs are

broken, and we extract thermodynamic quantities from the level density.

Finally, the neodymium and samarium isotopes are of great importance with

respect to astrophysical applications. The s-process path along the line of β stabil-

ity has been studied for the neodymium and samarium isotopes. The short-lived
147Nd isotope is an s-process branch point nucleus, where β -decay and neutron

capture are computing processes. Furthermore, radiative neutron capture cross

sections for 147Nd affects the isotopic ratio of the two s-only nuclei, 148Sm and
150Sm. The present photoneutron measurement also involved a p-process nucleus
144Sm, s-only nuclei 148Sm and 150Sm and an r-only nucleus 154Sm.

This work is organised as follows, chapter 2 outlines the concepts of level

density, radiative strength function, and radiative neutron capture cross sections.

In chapter 3 and 4 experimental details are described, regarding the NewSUBARU

and Oslo experiments, respectively. Chapter 5 is dedicated to the methods used

for data reduction. The full scientific work in form of the papers produced are

presented with reprints in chapter 6. Finally, a summary and conclusions of the

work are drawn in chapter 7.
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Chapter 2

Level density, radiative strength
function and radiative neutron
capture cross sections

We have studied statistical properties of excited nuclei in the quasi-continuum

region. By looking at average nuclear properties, contained in the nuclear level

density and radiative strength function, we obtain importance understanding of

the underlying nuclear structure.

In this chapter, the theory behind the level density and radiative strength func-

tion will be presented, along with the phenomenological models developed to de-

scribe the behaviour of the two quantities. In addition, calculations of the radiative

neutron capture cross sections are described.

2.1 Level density

The level density is defined as the number of quantum levels per energy unit as

a function of excitation energy. At low excitation energy we find discrete levels,

and the level density obtained by spectroscopy measurements. As the excitation

energy increases the quasi-continuum is reached, a region in which the level den-

sity becomes so large that the individual levels can not be resolved in experiments.

The onset of the quasi-continuum region differs for the various mass regions, in

rare earth isotopes it typically starts above 2−3 MeV of excitation energy.

Bethe developed the so called Fermi gas model in 1936 [1], where the particles

are assumed to move independently, and single-particle states are considered to

be equally spaced. The original formula gives the level density as a function of
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CHAPTER 2. LEVEL DENSITY, RADIATIVE STRENGTH FUNCTION

AND RADIATIVE NEUTRON CAPTURE CROSS SECTIONS

excitation energy,

ρ(E) =
√

π
12

exp(2
√

aE)
a1/4E5/4

, (2.1)

at a given excitation energy E. The level density parameter a is expressed by

a =
π
6
(gp +gn), (2.2)

where gp and gn are the single-particle level density parameters for protons and

neutrons, respectively. However, the Fermi gas model is limited by not account-

ing for pairing correlations, collective phenomena or shell effects. Later, modified

versions of the Fermi gas formula has been developed, where these phenomena are

accounted for by employing free parameters that are adjusted to fit the experimen-

tal data on level spacings obtained from neutron and/ or proton resonance experi-

ments. Gilbert and Cameron proposed in 1965 a level density formula where the

effective excitation energy is reduced by the pairing energy Δp and Δn for protons

and neutrons, respectively. In this way E is replaced with U = E −Δp −Δn [2],

resulting in a lower level density for the same excitation energy. The expression

for this level density is as follows,

ρ(U) =

√
π

12

exp(2
√

aU)

a1/4U5/4

1√
2πσ

. (2.3)

The spin cutoff parameter σ is given by,

σ2 = (gp +gn)
〈
m2

〉
T, (2.4)

where
〈
m2

〉
is the mean-square magnetic quantum number for single-particle

states, and the temperature T =
√

U/a.

It was soon realised that the shift, equal to Δp +Δn, is too large and therefore

this energy is back-shifted by a parameter C1, so that U = E −Δp −Δn +C1 [3].

In the back-shifted Fermi gas model described in Ref. [3], both the parameter

C1 and the level density parameter a are treated as free parameters so that the

experimental data can be modelled over a wider range of energies.

In 2005 a back-shifted Fermi gas model was proposed by von Egidy and Bu-

curescu [4]. It is given by the expression

ρBS(E) =
exp[2

√
a(E −E1)]

12
√

2σa1/4(E −E1)5/4
, (2.5)

for an excitation energy E, where the level density parameter a and the energy shift

E1 are treated as free parameters to be fitted to experimental data. The spin-cutoff

parameter σ is given by

σ2 = 0.0146A5/3 1+
√

1+4a(E −E1)

2a
, (2.6)
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2.2. GAMMA DECAY

where A denotes the mass number. The spin cut-off parameter has been further

revised by von Egidy and Bucurescu, the latest version was published in 2009, see

Ref. [5] for more details. In this model the spin cut-off parameter has the form

σ2 = 0.391A0.675(E −0.5Pa)0.312, (2.7)

where Pa is the deuteron pairing energy.

In addition to the Fermi gas model there exists a variety of other models

that can be used to calculate the level density, both semi-empirical and micro-

scopic calculations. Examples of this includes the original HFB plus combinato-

rial model of S. Goriely [6], and the temperature-dependent HFB model of S. Hi-

laire [7]. An other method is the shell model Monte Carlo approach as presented

by Y. Alhassid [8, 9, 10].

2.2 Gamma decay

Nuclear reactions which produces an excited nucleus will be accompanied by γ
decay. The total angular momentum must be conserved. The parameter L rep-

resents the quantum number for angular momentum. The numbers that L can

attain must be integers above zero, where L = 1 characterises a dipole, L = 2 a

quadrupole, L = 3 an octupole etc. Furthermore, the parity of the radiation dis-

tinguishes between electric and magnetic multipole radiation. Electric multipole

radiation have even parity if L is even, while magnetic multi- pole radiation have

even parity if L is odd. Photo emission is dominated by electromagnetic dipole

radiation (E1 in short notation).

2.3 Radiative strength function

The RSF is a measure of the average electromagnetic properties of the nucleus. It

is therefore closely related to the γ decay and photo absorption processes. The ra-

diative strength function (RSF) of a nucleus is defined as the sum over the strength

functions fXL of all possible multipolarities L and electric- and magnetic character

X . We distinguish between two types of radiative strength functions [11],

(i) Downward strength function
←−f related to the average radiative width of γ

decay.

(ii) Upward strength function
−→f connected to the cross-section for γ absorp-

tion.

7



CHAPTER 2. LEVEL DENSITY, RADIATIVE STRENGTH FUNCTION

AND RADIATIVE NEUTRON CAPTURE CROSS SECTIONS

The RSF is closely connected to the γ-transmission coefficient TXL, which repre-

sents a transition with multipolarity XL and energy Eγ ,

TXL(Eγ) = 2πE2L+1
γ

←−fXL(Eγ). (2.8)

In 1972 Bartholomew [12] gave the following model-independent description of

the RSF for a transition from the initial state i to the final state f ,

←−fXL(Eγ) =

〈
Γγi f

〉
E2L+1

γ Di
, (2.9)

where
〈
Γγi f

〉
is the radiative width, Eγ gives the transition energy and Di repre-

sents the level spacing of the initial states.

The upward RSF is given by the average photo-absorption cross section
〈
σXL(Eγ)

〉
summed over all possible spins of the final states [11],

−→fXL(Eγ) =
1

(2L+1)(π h̄c)2

〈
σXL(Eγ)

〉
E2L−1

γ
. (2.10)

According to Fermi’s golden rule and the principle of detailed balance the

upward and downward RSF will correspond to each other, given that the same

states are populated equally whether it is populated from above or below.

2.3.1 Modelling the RSF
The RSF is dominated by the giant electric dipole resonance (GEDR). This is a

collective excitation mode of the nucleus and geometrically it is interpreted to

originate from oscillation of protons against neutrons in the nucleus. The Brink-

Axel hypothesis [13, 14] states that collective excitations built on excited states

have the same properties as those built on the ground state. As a consequence

the probability of γ decay is only dependent on the γ-ray energy Eγ , and not

on the temperature of the final state excitation. The standard Lorentzian model

(SLO) [11] is widely used to describe the GEDR,

f SLO
E1 (Eγ) =

1

3π2h̄2c2

σE1Γ2
E1Eγ

(E2
γ −E2

E1)
2 +Γ2

E1E2
γ
, (2.11)

where σE1, ΓE1 and EE1 represents the strength, width and centroid energy of the

resonance, respectively. The GEDR parameters are derived from photo-absorption

experiments. The SLO model provides a very good description of the GEDR

close to the centroid, for medium heavy and heavy nuclei. However, in the low

excitation energy region (< 2 MeV) the γ-ray strength predicted from Eq. (2.11)

is lower than experimentally observed strength.

8



2.4. RADIATIVE NEUTRON CAPTURE

A model developed by Kadmenskiǐ, Markushev and Furman (KMF model) [15]

reproduces the low energy region well and gives a non-zero strength for Eγ → 0.

In contrast to the SLO model, the KMF model is dependent on the temperature of

the final states Tf ,

f KMF
E1 (Eγ) =

1

3π2h̄2c2

0.7σE1EE1ΓE1ΓKMF(Eγ ,Tf )

(E2
γ −E2

E1)
2

, (2.12)

where the temperature dependent width of the GEDR is given by,

ΓKMF(Eγ ,Tf ) =
Γr

E2
r
(E2

γ +4π2T 2
f ). (2.13)

The temperature dependence is, however, in contradiction with the Brink-Axel

hypothesis. The KMF model fails to describe the GEDR close to the centroid,

where Eq. (2.12) diverges.
The generalised Lorentzian model (GLO) [16],

f GLO
E1 (Eγ)=

1

3π2h̄2c2
σE1ΓE1

[
EγΓKMF(Eγ,T )

(E2
γ −E2

E1)
2 +(EγΓKMF(Eγ ,Tf ))2

+0.7
ΓKMF(Eγ = 0,T )

E3
E1

]
(2.14)

describes both the low energy region and the peak region of the GEDR well, at

least for spherical nuclei.

The contribution from other resonance modes such as the giant magnetic dipole

resonance (GMDR) should also be considered. This resonance has in this work

been described by a standard Lorentzian of the form of Eq. (2.11). The reso-

nance parameters of the M1 resonance is deduced from the systematics given in

Ref. [11]. Various small resonances are also observed in different mass regions.

For the dysprosium nuclei the M1 resonance called the scissors mode is observed

around ≈ 3 MeV. Also this resonance is modelled by a SLO. In the palladium data,

enhanced strength is observed around ≈ 8 MeV. This resonance is often called

pygmy resonances and is best described by a Gaussian with standard deviation

equal to Γpyg/2,

fPd,py =
1

3(π h̄c)2

√
2

π
σpy

Γpy
e−2(Eγ−Epy)

2/Γ2
py . (2.15)

2.4 Radiative neutron capture
It is in general challenging to measure (n,γ) cross sections directly for relatively

high incoming neutron energies (≈ keV). In particular, unstable isotopes are hard

or impossible to measure, because radioactive targets are difficult to handle and

9



CHAPTER 2. LEVEL DENSITY, RADIATIVE STRENGTH FUNCTION

AND RADIATIVE NEUTRON CAPTURE CROSS SECTIONS

because of the high intrinsic radiation. Recently, the (n,γ) cross sections of the

unstable 63Ni isotope (half-life 100.1 yr) was measured for the first time at the

neutron time-of-flight facility n_ TOF at CERN [17]. However, nuclei with half-

lives shorter than this is yet out of reach [18].

We can however determine (n,γ) cross sections by an indirect method from the

reversed process, namely photo absorption and neutron emission (γ ,n). In doing

so, we can not use the principal of detailed balance directly, because the (γ ,n)

cross section only represents photo absorption of a γ ray of energy higher than the

neutron separation energy, of a nucleus in its ground state, while a nucleus that

has undergone neutron capture can decay to all possible states below the neutron

capture state, see Fig. 2.1. One can instead use an expression based on the Hauser-

Feshbach statistical model. The expression is applicable for compound nuclei,

where we have a statistical distribution of nuclear excited states [18]. Within these

assumptions, the radiative neutron capture cross section depends on three nuclear

statistical quantities, namely, the neutron optical model potential, the RSF, and the

nuclear level density [19]

σn,γ =
π
k2

n
∑
J,π

gJ
Tγ(E,J,π)Tn(E,J,π)

Ttot
≈ π

k2
n
∑
J,π

gJTγ(E,J,π), (2.16)

where kn represents the incident neutron wave number, E, J and π gives the en-

ergy, spin and parity of the compound state, respectively. Furthermore, the func-

tions Tγ and Tn are the γ- and neutron-transmission coefficients, respectively, and

Ttot = Tγ + Tn. The factor gJ is given by gJ = (2J + 1)/(4Jt + 2), with the spin

Jt of the target nucleus. Note that for keV neutrons, the decay from states above

the neutron separation threshold, is dominated by the neutron emission channel,

the neutron-transmission coefficient is much larger than the γ-transmission coeffi-

cient (Tn >> Tγ ). Furthermore, this means that Tγ(E,J,π) ≈ Ttot, which explains

the simplification of Eq. (2.16).

The γ-transmission coefficient is given as

Tγ(E,J,π) = ∑
ν ,X ,L

T ν
XL(Eγ)+∑

X ,L

∫
TXL(Eγ)ρ(E −Eγ ,J,π)dEγ , (2.17)

where TXL(Eγ) is the γ-transmission coefficient for energy Eγ with multipolarity

XL, and ρ represents the nuclear level density [19]. The first term is a sum of

TXL over low lying discrete states ν relevant to a given multipolarity (XL) and

the second term is an integration of TXL over nuclear states ρ(E −Eγ)dEγ in the

energy interval dEγ at the excitation energy E −Eγ .

The γ-transmission coefficient is uniquely related to the downward RSF
←−fXL(Eγ)

by TXL(Eγ) = 2πE(2L+1)
γ

←−fXL(Eγ), which we can measure directly with the Oslo

10



2.4. RADIATIVE NEUTRON CAPTURE

Figure 2.1: An illustration of the (γ ,n) (left) and (n,γ) (right) reactions. The inverse

process of the photo absorption reaction is represented by the green arrow in the

right figure, where the nucleus decays directly from the capture state to the ground

state. The red arrow represent a typical primary γ transition, while the orange ones

give possible decay routs after the primary γ-ray transition

method. Photodisintegration is an excellent probe of the upward RSF. According

to Fermi’s golden rule and the principle of detailed balance the upward and down-

ward RSF will correspond to each other, given that the same states are populated

equally whether it is populated from above or below.

Neutrons will be quickly thermalised in a dense stellar plasma. We can as-

sume that the neutron spectrum at s-process sites can be described by a Maxwell-

Boltzmann distribution [18]. The Maxwellian-average cross section (MACS) is

therefore considered to represent the stellar reaction cross section, and is found

by averaging the experimental data over such a spectrum [18]. As a standard the

MACS are often compared for a thermal energy of 30 keV.
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Chapter 3

Photo-neutron experiments

In this work, the radiative strength function have been extracted using two very

different techniques, by means of photo-neutron experiments and charged-particle

induced reactions. In this chapter, the photo-neutron measurements are outlined.

From these experiments we extract the radiative strength function above the neu-

tron separation energy Sn.

The experiments were conducted at the NewSUBARU laboratory, which is a

synchrotron radiation facility consisting of an electron storage ring. Here, one can

produce laser-Compton scatterering (LCS) γ-ray beams. Such beams are ideal for

(γ ,n) experiments, because they have tuneable energies and are nearly monochro-

matic.

3.1 The NewSUBARU laboratory

The NewSUBARU laboratory is located at the SPring-8 site (Super Photon ring-

8 GeV) in Japan. SPring-8 is a large synchrotron radiation facility, managed by

RIKEN, which delivers the most powerful synchrotron radiation currently avail-

able [20]. Electron beams are accelerated by the SPring-8 linear accelerator (linac)

alternatively injected into SPring-8 and NewSUBARU storage rings, see Fig. 3.1.

The NewSUBARU ring is smaller than SPring-8, with a circumference of 119 m,

compared to 396 m for SPring8. A photo of the site is displayed in Fig. 3.2. Both

SPring-8 and NewSUBARU have a wide range of users from different research ar-

eas, such as materials science, spectroscopic analysis, earth science, life science,

environmental science and industrial applications. The NewSUBARU laboratory

has nine different research stations as displayed in the overview picture in Fig. 3.3.

In the lowest corner of the figure, marked BL01, the work station for LCS exper-

iments is shown. The electrons are injected into the storage ring with an initial

energy of 974 MeV [21]. They are then subsequently accelerated or decelerated

13



CHAPTER 3. PHOTO-NEUTRON EXPERIMENTS

to energies in the range 0.5− 1.5 GeV [21]. For the particular experiments fea-

tured in this thesis, electron energies in the interval ≈ 600−900 MeV where used.

Figure 3.1: The accelerator complex is comprised of four accelerators: a 1-GeV

linac, an 8-GeV booster synchrotron, an 8-GeV storage ring and a 1.5-GeV New-

SUBARU storage ring. The figure is taken from the homepage of SPring-8 [20].

14



3.1. THE NEWSUBARU LABORATORY

Figure 3.2: An air photo of the SPring-8 site. The figure is taken from Ref. [22].

Figure 3.3: The storage ring and the beam line of the NewSUBARU laboratory.

The figure is taken from the homepage of NewSUBARU [23].
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CHAPTER 3. PHOTO-NEUTRON EXPERIMENTS

3.1.1 Laser-Compton scattering γ-ray beams
The photo-absorption experiments was performed with laser-Compton scattering

(LCS) γ-ray beams. The energy of the LCS γ-ray beam can be expressed by

Eγ =
4γ2EL

1+(γθ)2 +4γEL/mc2
. (3.1)

The factor γ = Ee/mc2 = 1/
√

1−β 2, is due to relativistic electrons, where mc2 =
0.511 MeV is the electron rest energy. Furthermore, EL and Ee are the laser and

electron energies, respectively. The scattering angle from the electron beam is

represented by θ . The electrons and laser photons collide head on, and as we

see from Eq. (3.1) the γ energy is maximised at zero scattering angle. The energy

amplification factor in nearly head-on collisions is very large, of the order of 106−
107, for electrons with energies from several hundred MeV to a few GeV [24].

This means that an eV laser beam can be converted to an MeV γ-ray beam in LCS

experiments.

The NewSUBARU ring has two long straight segments of 14 m [21]. It is

in one of these segments that the LCS γ-ray beams are produced, giving a long

interaction zone. At NewSUBARU γ-ray beams with energies of a few MeV are

produced using a CO2 laser (wavelength λ = 10.59 nm). The CO2 laser was not

used when measuring the target nuclei, however it was used for an energy calibrate

of electron beam as reported in Ref. [24]. The facility also provides γ-ray beams of

a few tens of MeV using a Nd:YVO4 (Nd) laser (wavelength λ = 1064 nm) [24].

Both lasers are used in collisions with electrons of energies 0.5−1.0 GeV.

The Q-switch Nd laser has a time structure with the pulse width 60 ns and a

frequency 20 kHz. The LCS γ-ray beam has a macro time structure, 80 ms beam

on and 20 ms beam off, that was made by applying an external trigger gate to the

Figure 3.4: A sketch of the experimental setup of laser Compton scattered γ rays,

the figure is taken from Ref. [21].

16



3.2. EXPERIMENTAL SETUP

Figure 3.5: Electron beam size (panel a) and laser beam radius (panel b) of the

Nd and CO2 lasers in the interaction zone. The zero value on the horizontal axis

refers to the centre of the long straight section, the figure is taken from Ref. [21].

laser system. The electron beam consists of bunches of electrons, and it has a

frequency of 500 MHz and a 20 ps pulse width.

The collision point of the Nd laser photons with the electron beam is in a

distance of 1847 cm from a 2 mm collimator, see Fig 3.4. The collision point is

marked with an ’A’ in Fig 3.4, the point marked with ’B’ is a collision point used

when applying a CO2 laser. The collision point for this detector is closer to the

laser window, because the diffraction is ten times that of the Nd laser [21].

The collision point is located a place where the electrons beam size is nar-

rowed, see Fig 3.5.

3.2 Experimental setup
Our aim is to calculate the photo-neutron cross section from LCS experiments.

The photo-neutron cross section σ(Eγ) depends upon the normalized energy dis-

tribution of the γ-ray beam nγ(Eγ) as follows ,

∫ EMax

Sn

nγ(Eγ)σ(Eγ)dEγ =
Nn

NtNγξ εng
, (3.2)

where Nn represents the number of neutrons detected, Nt gives the number of tar-

get nuclei per unit area, Nγ is the number of γ rays incident on target, εn represents

17



CHAPTER 3. PHOTO-NEUTRON EXPERIMENTS

Figure 3.6: A sketch of the detectors placed inside the hutch. The LaBr3 detector

is set up before or after each run to measure the energy distribution of the γ-ray

beam.

the neutron detection efficiency, and finally ξ = (1−eμt)/(μt) is a correction fac-

tor for self attenuation in the target. The factor g represents the fraction of γ flux

above the neutron separation energy Sn.

As a first approximation we assume a monochromatic γ-ray beam, by replac-

ing the γ-energy distribution nγ(Eγ) in Eq. (3.2) by a delta function δ (Eγ −Eav).
We obtain the following cross section in the monochromatic approximation,

σmono(Eav) =
Nn

NtNγξ εng
. (3.3)

where Eav is the average energy of the LCS γ-ray beam,

Eav =

∫ EMax
Sn

Eγnγ(Eγ)dEγ∫ EMax
Sn

nγ(Eγ)dEγ
. (3.4)

The measurements were carried out at 6− 17 different energies, depending

on the target, ranging from the neutron separation energy of the target up to ≈
13 MeV. For each LCS γ-ray energy, we made the following measurements:

(1) Counting the number of neutrons with 3He-proportional counters.

(2) Measuring the energy distribution of the LCS γ-ray beam with a LaBr3 : Ce

(LaBr3) detector.

(3) Determining the number of γ rays arriving at the target nucleus using a

NaI:Tl (NaI) detector.
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3.3. ENERGY DISTRIBUTION OF THE γ-RAY BEAM

The LCS γ-ray beam had a time structure with 80 ms beam on and 20 ms beam off.

The purpose of this was to detect background neutrons and γ rays. The measure-

ments were performed inside the beam line named GACKO, which is an acronym

for GAmma Collaboration hutch of KOnan University. The detectors were placed

as illustrated in Fig. 3.6. The target samples were placed inside aluminium con-

tainers. The neutron threshold for aluminium is high, Sn = 13.1 MeV, therefore

we do not open the Al(γ,n) reaction channel.

In the next sections a detailed description will be given of how the quantities

of Eqs. (3.2) and (3.3) are measured and calculated.

3.3 Energy distribution of the γ-ray beam

While assuming the monochromatic approximation, we need to determine the en-

ergy distribution of the γ-ray beam in order to calculate a reasonable average en-

ergy Eav, according to Eq. (3.4). When we want to determine more precisely the

cross section from expression (3.2), the key factor is the energy distribution of the

γ-ray beam. A 3.5′′ × 4.0′′ LaBr3 detector was used for this purpose, a photo of

the detector is displayed in Fig. 3.7. The energy resolution of the detector is 4.0%

FWHM for 662 keV γ rays and 2.6% FWHM for 1332 keV γ rays.

The measurements were carried out right before or after each neutron measure-

ment run. The laser was operated in the continuous-wave mode and at a reduced

power 1 W to avoid pile-up effects in the LaBr3 detector.

 (MeV)
γ

 energy Eγ
6 7 8 9 10 11 12 13 14

C
ou

nt
s

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
 spectrum 3 LaBr

 Monte Carlo simulation 

Figure 3.7: Left panel: A typical LaBr3 spectrum compared with the Monte Carlo

simulation. Right panel: A picture of the detector placed along the beam line.
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The Compton backscattering of laser photons on relativistic electrons and the

electromagnetic interactions of the γ-ray beams inside the LaBr3 detector were

simulated using the EGS4/PRESTA Monte Carlo code [25]. The energy spectra

of the LCS γ-ray beams incident on the targets were obtained by best reproducing

the LaBr3 detector response. A typical spectrum is displayed in Fig. 3.7.

3.4 Measuring neutrons
A high efficiency 4π neutron detector composed of 20 3He proportional counters

was used. They were arranged in three concentric rings, where the innermost ring

consist of four counters, while the two outer rings each have eight counters. The

counters were located at distances of 3.8, 7.0 and 10.0 cm from the γ-ray beam

axis. All the counters are embedded in a 36× 36× 50 cm3 neutron moderator

made of polyethylene, with the target placed in the center, see Fig. 3.8.

We detect the number of neutrons emitted in the 80 ms the laser is on (Nn(on)),
and count background events in the 20 ms it is off (Nn(off)). The number of

neutrons for each run is calculated as follows:

N = Nn(on)−4 ·Nn(off) (3.5)

The amount of neutrons (Nn(on)) detected will depend upon the energy of the γ-

ray beam. At γ-ray energies below the neutron separation threshold, the number of

neutrons detected when the laser is on (Nn(on)) will be comparable to the number

of background neutrons (4 ·Nn(off)).

Figure 3.8: Left panel: A schematic view of the triple-ring neutron detector, the

figure is taken from Ref. [28]. Right panel: A photo of the back side of the neutron

detector.
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3.5. NEUTRON EFFICIENCY

We assume the following statistical uncertainty for when the beam is on and

off respectively,

ΔNn(on) =
√

Nn(on) (3.6)

ΔNn(off) =
√

Nn(off)

The total uncertainty in the number of neutrons is then

ΔN2
n = ΔN2

n (on)+16 ·ΔN2
n (off) (3.7)

ΔN2
n = Nn(on)+16 ·Nn(off). (3.8)

3.5 Neutron efficiency
A ring-ratio technique, developed by Berman [29], has been used to calculate the

efficiency of the neutron detector. Monte Carlo simulations have been performed

to simulate the ring-ratio R as a function of neutron energy En [30]. The neutron

detection efficiency εn can be deduced from the energy. The simulations have been

tested with a 252Cf source that was calibrated at the National Institute of Japan in

AIST [30]. The measured efficiencies compare well with the simulations, as seen

in Fig. 3.9.

We start by calculating the number of neutrons from each ring and the corre-

sponding uncertainty from Eqs. (3.5) and (3.8).

R12 = Nr1
n /Nr2

n (3.9)

R23 = Nr2
n /Nr3

n

R13 = Nr1
n /Nr3

n ,

where the subscripts 1, 2 and 3 gives the ring number. The uncertainty of the ring

ratios ΔR are calculated from error propagation,

(
ΔR12

R12

)2

=

(
ΔNr1

n
Nr1

n

)2

+

(
ΔNr2

n
Nr2

n

)2

(3.10)

ΔR12 =

√(
ΔNr1

n
Nr1

n

)2

+

(
ΔNr2

n
Nr2

n

)2

·R12 (3.11)

We know how the average neutron energy depends on the ring ratio, therefore

we obtain energies E12, E23 and E13 for each of the ring ratios. We find the un-

certainty of the energies from the uncertainty to the ring ratios, by simply adding

and subtracting ΔR from R, and reading out the corresponding energy. Then the
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CHAPTER 3. PHOTO-NEUTRON EXPERIMENTS

Figure 3.9: The neutron detection efficiency of the inner most ring (thinnest solid

curve), the middle ring (dashed curve), and the outer most ring (dotted curve),

along with the total efficiency (thickest solid curve). The detector efficiencies

measured with a 252Cf source are represented by the open circles, in comparison

to the filled triangles which are obtained with the Monte Carlo simulations. The

figure is taken from Ref. [30].

largest difference of these energies with respect to the energy calculated from R
is assumed to be the uncertainty of the energy ΔE. Furthermore, we calculate the

weighted average of the energies as follows,

En =
ω12E12 +ω23E23 +ω13E13

ω12 +ω23 +ω13
, (3.12)

where ω = 1/ΔE, for each of the rings. Once the energy is obtained one finds

the corresponding efficiency from the simulations. The calculated ring-ratios and

corresponding efficiencies for 144Nd is given in Fig. 3.10.

According to Ref. [30], the uncertainty of the neutron detection efficiency is

found to be 3.2% of the absolute emission rate of a 252Cf source. This uncertainty

is used for the experiments presented in this work.
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Figure 3.10: Variation of the ring ratio with neutron energy for 144Nd, and the

corresponding efficiency of the neutron detector. The solid lines represent the

simulations, while the squares give the values deduced from the measurements.

3.6 Measuring the γ-ray flux
A 5′′ × 6′′ NaI detector was used to measure the LCS γ-ray flux. The γ detec-

tor is mounted in the wall behind the neutron detector, as seen in the photo in

Fig. 3.11. For each run we record the γ-ray spectra, when the laser is on full

power mode. Multiple photons will often be detected simultaneously, which will

result in a pile-up spectrum. Before or after each measurement the laser power is

reduced in order to obtain a single photon spectra, where it is most likely to mea-

sure only one photon at a time. Figure 3.12 shows a typical pile-up spectrum and

single-photon spectrum, after background subtraction. From these two spectra we

determine the number of γ rays incident on the NaI detector as follows, where

〈i〉 = (∑xini)/(∑ni), gives the average channel of the pile-up and single-photon

spectrum, and ni is the number of counts in the i’th channel;

Nγ ,detected NaI =
〈i〉pile up

〈i〉single

(∑ni)pile up. (3.13)
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Figure 3.11: The 3He neutron detectors are embedded in the white polyethylene

in front, and a NaI detector is located in the wall behind.

For more details on the derivation of Eq. (3.13), see Ref. [31].

To determine the number of γ rays incident on the target Nγ , we have to ac-

count both for attenuation in the target itself and for attenuation in the NaI detector.

As the targets are quite thick, of the order ∼ 2 g/cm2, the attenuation in the target

is significant, around 2−3% of the γ rays will be affected. The number of γ rays

exiting the target will be

Nγ,after target = Nγ · exp

[
−μt

ρt
tt

]
, (3.14)

where tt gives the target thickness, and
μt

ρt
represents the mass attenuation coeffi-

cient, tabulated in Ref. [32]. All of the target nuclei was made of oxide material,

in general the attenuation of a compound is given by

μ
ρ
= ∑

i
wi

μi

ρi
, (3.15)

where the summation is over the constituents of the compound, and wi gives the

fraction of each constituent to the total amount. Furthermore, the number of γ
rays stopping in the NaI detector is given by

Nγ ,detected NaI = Nγ,after target ·
(

1− exp

[
−μNaI

ρNaI
tNaI

])
. (3.16)
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Figure 3.12: The solid line gives the pile-up spectrum corresponding to a γ beam

centered around energy 12.59 MeV. The dashed line represents the single pho-

ton spectrum taken at the same energy. For the above figure the background is

subtracted for both the pile-up spectra and single-photon spectra.

This results in the following expression for the total number of γ rays incident on

the target:

Nγ =
Nγ,detected NaI

exp
[
−μt

ρt
tt
](

1− exp
[
−μNaI

ρNaI
tNaI

]) . (3.17)

The estimate of the number of incident γ rays depends on the linearity of

the response of the γ-ray monitor detector to the pile-up γ rays. A statistical

analysis of the pile-up spectra was performed in Ref. [33], and the uncertainty in

the number of γ-rays was estimated to be 3%.

25



CHAPTER 3. PHOTO-NEUTRON EXPERIMENTS

3.7 The monochromatic cross section
The monochromatic cross section can be deduced after calculating all the con-

stituents of Eq. (3.3). A typical result is shown for 147Sm in Fig. 3.13. The blue

arrow indicate the neutron separation energy of the nucleus.
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Figure 3.13: The monochromatic (γ,n) cross section of 147Sm.
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Chapter 4

Particle-γ experiments

For this thesis data from 105,106Pd and 163,164Dy have been studied through particle-

γ coincidence measurements performed at the Oslo Cyclotron Laboratory (OCL).

The experiments were conducted in 2006 and 2010, respectively. From the data

recorded we have extracted the radiative strength function below the neutron thresh-

old Sn, in addition to the level density at low temperatures (T < 1 MeV), using

the Oslo method. The experimental setup and data extraction technique will be

outlined in the following chapter.

4.1 The Oslo Cyclotron Laboratory

The Oslo Cyclotron Laboratory (OCL) is a part of the Center for accelerator

based research and energy physics (SAFE). Most of SAFE’s activities are cen-

tered around research performed at this laboratory, which serves as an experimen-

tal center for various fields of research and applications. Until recently it has been

used in production of radioactive isotopes to be used for medical diagnostics at the

Norwegian Radium Hospital in Oslo. Currently it is used for research purposes

in the field of nuclear medicine. The laboratory is also used extensively for basic

research within nuclear physics and nuclear chemistry.

The cyclotron is of type Scanditronix MC-35, and it has been operating since

1979. The accelerator can deliver pulsed light-ion beams, namely 1H and 2H, in

addition to 3He and α particles. A schematic overview of the laboratory and its

target stations is given in Fig. 4.1. The location labeled CACTUS/SiRi is where

the nuclear physic experiments take place, which will be discussed in the follow-

ing section.
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CHAPTER 4. PARTICLE-γ EXPERIMENTS

Figure 4.1: An overview of the OCL with its target stations. The figure is taken

from Ref. [34].

4.2 Experimental setup

The targets, 164Dy and 106Pd, were irradiated with a beam of 3He and the inelastic

(3He,3 He′) reaction and the pick-up (3He,α) reaction were studied. The corre-

sponding Q-values for the reactions are given in Table 4.1. Particle-γ coincidences

were measured with the CACTUS γ-ray array [35], and the Silicon Ring (SiRi)

particle telescope system [36].

The particle telescopes are mounted on a ring inside the CACTUS detector

frame. For the dysprosium experiment, the silicon detectors were made up of 8

ΔE counters of thickness ∼ 150 μm, each placed in front of a 1500 μm E detector,

for ΔE-E particle determination [35]. The telescopes were placed in an angle of

45◦ relative to the beam axis.

Later, the silicon detectors have been upgraded and used for the palladium

experiment [36]. In the present setup, each of the front counters are segmented
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4.3. PARTICLE IDENTIFICATION

Figure 4.2: A picture of the silicon ring (left panel), and an illustration of the

segmented ΔE detectors (right panel).

into 8 strips with a thickness of 130 μm, in front of 1550 μm thick E detectors,

see Fig. 4.2. In total, the new SiRi has 64 ΔE-E detectors. The segmented front

counters cover angles of 40◦−54◦, when placed in forward direction, as illustrated

in Fig. 4.2. The new ring makes an angle of 47◦ with the beam axis. The new SiRi

system gives improved energy resolution due to less spread in scattering angle. In

addition, there is a much larger solid angle coverage of ≈ 8% compared to the old

setup with ≈ 1% of 4π . As a result we have a higher detection efficiency.

In front of the detector modules, an aluminium foil is placed to shield the ΔE

detectors from δ -electrons, with thickness of 10.5 μm and 19 μm, for the new

and old setup, respectively [35, 36].

CACTUS consists of 28 NaI(Tl) detector of size 5′′×5′′, which can be seen on

the picture of Fig. 4.3. The NaI(Tl) detectors are mounted on a spherical frame,

and lead collimators are placed in front to reduce Compton events. The total effi-

ciency of the NaI(Tl) detectors is measured to be 15.2% at a γ energy of 1.3 MeV.

The relative energy resolution is ≈ 6% for 1.3 MeV γ-rays.

4.3 Particle identification

We aim to study particle-γ coincidences which stem from the same nuclear re-

action. To be able to distinguish the nuclear reactions taking place, we have to

identify the various charged ejectiles produced. The particles will loose energy

mainly due to ionisation of the atoms in the crystal. The Bethe-Block formula [37]

describes how charged particles deposit energy in a medium,

−dE
dx

= 2πNar2
emec2ρ

Z
A

z2

β 2

[
ln

(
2meγ2v2Wmax

I2

)
−2β 2

]
, (4.1)
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Figure 4.3: A picture of the γ-detector array, named CACTUS. The 28 NaI detec-

tors are seen mounted on the outside of the sphere.

where Na is Avagadros number (6.022 · 1023 mol−1), re is the classical electron

radius (2.817 · 1013 cm) and me is the mass of the electron, z is the charge of the

incoming particle, Z, A and ρ are the atom number, mass number and the density,

respectively, of the absorbing material. The factor β is given by β = v/c, where

v is the speed of the particle and c is the speed of light. The factor γ is given

by γ = 1/
√

1−β 2. The mean excitation potential is denoted by I, while the

maximum energy transferred in a single collision is given by Wmax.

From Eq. (4.1) it follows that the mass and charge of a particle will influence

the energy deposition, and that the energy deposition increases when a charged

particle is slowing down. When plotting the energy deposition in the front detector

versus the energy deposition in the end detector, a unique banana-shaped curve is

found for each charged particle type. Such a plot is given in Fig. 4.4, generated by

a beam of 38 MeV 3He particles on a 106Pd target. The uppermost curve represents

the α particles, while the curve below belongs to 3He ejectiles, in the latter curve

we observe a peak located at approximately 33 MeV in the end detector. This

peak corresponds to the elastic 3He peak. Diagonal to this peak we observe a

tail, which is most likely due to a small amount of ejectiles channeling through

the polycrystalline structure of the front detector. As a result too little energy

is deposited in the front detector. The sharp vertical line seen in the spectrum

above the elastic peak corresponds to the case when δ -electrons deposit energy
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Figure 4.4: Energy deposited in the front detector versus energy deposited in the

end detector, for a 106Pd target exposed to a 38 MeV 3He beam.

in the front detector along with elastically scattered 3He-particles. Below the

elastic peak there is another vertical line that originates when some of the energy

deposited in the front detector is not collected. Similarly the horizontal line to the

left of the peak is due to failure in collecting all the energy in the end detector. At

the bottom left of Fig. 4.4, curves corresponding to tritons, deuterons and protons

are observed.

Nucleus Reaction Q-value

(MeV)
163Dy (3He,αγ) 12.92
164Dy (3He,3 Heγ) -
105Pd (3He,αγ) 11.02
106Pd (3He,3 Heγ) -

Table 4.1: Reactions of interest and corresponding Q-values.
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4.3.1 The thickness spectrum

The range R(E) of a particle describes how far a particle can penetrate in a medium

as a function of energy. From the known range functions we can derive a thickness

spectrum, which gives the observed thickness of the front detector as a function of

particle type. This is achieved by subtracting the range of the particle in the end

detector from the total range of the particle,

dfront = R(ΔE +E)−R(E), (4.2)

where ΔE and E give the energy deposited in the front and end detector, respec-

tively. The 3He peak in Fig. 4.5 corresponds to the true thickness of the front

detector. From the thickness spectrum we can set gates for the 3He and α par-

ticles, which are used in subsequent data sorting routines to extract the α-γ and
3He-γ coincidences.
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Figure 4.5: The thickness spectrum used to set gates on the particle types. The

vertical lines give the gates set on the 3He particles to study 106Pd. Peaks due to

protons, deuterons and tritons can also be seen, in addition the α-peak.
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4.3.2 The time spectrum
We have used a time-to-digital converter (TDC) for each of the NaI(Tl) detectors.

A start signal is generated when a charged particle is detected in the silicon detec-

tors, and a stop signal is created when a γ ray is registered in the NaI(Tl) detectors.

A delay of ∼ 400 ns is set on the stop signal, which results in a prominent peak

in the time spectrum, see Fig. 4.6. Since the beam pulse period is smaller than the

time window, we will generate false coincidences where the particle and γ do not

steam from the same beam pulse. These are seen as the smaller peaks in Fig. 4.6.

We expected a background of false coincidences also underlying the prominent

peak, and therefore we subtract a background of this order of magnitude, see

Fig. 4.6.
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Figure 4.6: The time spectrum of 106Pd, the vertical lines show the gates set on

the prompt peak (red lines) and random peak (blue lines).

4.4 Coincidence matrices
Each individual particle telescope and NaI detector is calibrated by assuming a

linear correlation between the true energy and the channel number

E = a0 +a1 · ch, (4.3)

where E is the energy, a0 is the constant shift, a1 represents the dispersion and

ch gives the channel number in the spectrum. After calibrating all the detectors
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properly, one can add the data of all the particle telescopes together, and like-

wise the NaI spectra. Furthermore, when the gates are sett in the thickness spec-

trum on a specific particle, and appropriate gates in the time spectrum to define

coincidences, the data are sorted into particle-γ ray matrices. The coincidence

matrix for 105Pd is displayed in Fig. 4.7. The neutron threshold Sn for 105Pd is

7094.1 keV. It is interesting to see that there is no abrupt change in the matrix

when the neutron channel is opened. Considering the final nucleus in the reaction
105Pd(3He,αnγ)104Pd, the first excited state is a 2+ located at 556 keV, whilst the

next state is a 4+ state at 1324 keV. As the (3He,α) reaction favours high-l trans-

fer in general, the populated states very likely have an average spin larger than

2. Thus, there is an effective spin hindrance which could explain the observed

behaviour in the coincidence matrix.

For the further analysis the true γ-ray energy has to be determined from the

known detector response. Details of this procedure will be given in the upcom-

ming section.
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Figure 4.7: The coincidence matrix of 105Pd. The diagonal red line represents

where the excitation energy equals the γ-ray energy. The horizontal red line illus-

trates the neutron separation threshold, while the horizontal black lines represent

at what excitation energies the first and second excited states in 104Pd are located.
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4.5 Unfolding γ spectra
Gamma rays interact with matter in various ways. There are three dominating

processes: photoelectric effect, Compton scattering and pair production. In cases

where all the energy of a incoming γ ray is absorbed (through one or multiple

processes) it will contribute to the full energy peak. If the γ ray is scattered by

an electron with partial energy loss out of the detector, we will register an event

in the Compton region. We also observe a single- and double escape peak in

the registered spectrum, where γ rays have undergone pair production creating

an electron-positron pair. The positron is quickly annihilated, and if one or two

of the resulting 511 keV γ rays escape the detector, they will contribute to the

single- and double escape peak, respectively. We also observe a 511 keV peak

due to background annihilation radiation, in addition to a ≈200 keV peak from

backscattering γ rays.

Unfortunately, the processes leading to energy loss in the detector occurs

rather frequently. A peak-to-total ratio is often < 50% [38]. A folding itera-

tion method is therefore used to convert the detected γ-ray spectrum into the true

spectrum. To use this method we need to know how the detector responds to γ
rays of a wide energy range.

4.5.1 Detector response
The response function R(E,Eγ) gives the amount of energy E deposited in the

detector for γ rays of energy Eγ . The response function is measured for several in-

beam γ lines from excited states in 13C, 16,17O, 28Si and 56,57Fe where the relative

detector efficiency as function of γ energy could be extracted in a reliable way [?].

Furthermore, an interpolation procedure is used between these energies in order

to obtain the response function for all energies Eγ . Note that while the unfolding

procedure follows the method described in Ref. [38], the response functions have

recently been remeasured, also the detector efficiencies are changed. Therefore,

the information in Table 1 of Ref. [38] should be overlooked, and replaced with

the values given in Appendix A [39], for the newest data, namely the 105,106Pd

nuclei.

To simplify the interpolation procedure, the full energy, single- and double

escape and annihilation peaks are removed from the measured spectra [38]. Later,

Gaussian distributions will be added at the interpolated peak positions, with proper

intensities and energy resolution [38].

The energy of a Compton scattered electron is given by,

Ee = Eγ −
Eγ

1+
Eγ

mec2 (1− cosθ)
, (4.4)
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where θ is the scattering angle, me is the rest mass of the electron and c represents

the speed of light. When interpolating the Compton background, this is performed

for channels with the same scattering angle, using the following expression,

c(E) =
( dE

Dθ
)

Eγ

[
c1(E1)

( dE
Dθ

)
Eγ,1

+
Eγ−Eγ,1

Eγ,2−Eγ.1
(4.5)

·
(

c2(E2)
( dE

Dθ
)

Eγ,2
− c1(E1)

( dE
Dθ

)
Eγ,1

)]
. (4.6)

The quantities Eγ , Eγ ,1 and Eγ ,2 represents the maximum energies of the Compton

spectrum for the interpolated spectrum end the reference spectra, respectively,

while the values E, E1 and E2 gives the corresponding energies that the electron

deposits as a function of scattering angle.

From Eq. (4.4) we see that the maximum energy transfer is achieved for

θ = 180◦. In Fig. 4.8 we se a sharp drop in the number of counts for electron

energies corresponding to this value. However, there are also some counts above

this edge. These stem from γ rays undergoing two or more Compton scattering

interactions. These channels are added one by one and interpolated [38]. In ad-

dition, we observe a broad peak in the γ spectrum around ∼200 keV. This is due

to backscattering, X-rays and other background events. Here, interpolation is per-

formed between the same channel numbers. If we use a response function with

the experimental energy resolution, this will result in artificial undershoots on

both sides of pronounced peaks [38, 39]. It is found that the best result is obtained

with a response matrix with an energy resolution to 10% of the experimental one1,

FWHMresp = 0.1 ·FWHMexp.

4.5.2 The folding iteration proceedure
The response function is normalized by ∑i Ri j = 1, where channel i represents the

response (amount of energy deposited), when a γ ray of energy corresponding to

channel j hits the detector. The folded spectrum f can be calculated a follows,

f = Ru, (4.7)

where u represents the unfolded spectrum. A straight forward way of calculating

the spectra would be to take the inverse matrix R−1 and multiply with the observed

spectrum [40, 41]. However, taking the inverse of the response matrix could cause

huge fluctuations. Therefore, we use a folding iteration method instead, which

consists of the following steps [38]:

1In Ref. [38], the resolution of the response matrix was set to 50% of the experimental one, but

this has been altered and 10% is used in the analysis of the palladium data.
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Figure 4.8: Illustration of the interpolation of the Compton part of the measured

response functions c1 and c2. The figure is taken from Ref. [38].

1. As a trial function for the unfolded spectrum u0 we start with the observed

one r, u0 = r.

2. We calculate the folded spectrum, f 0 = Ru0.

3. The next trial function will be the difference r − f 0 added to the original

trial function u0, u1 = u0 +(r− f 0).

4. We continue by folding u1 to obtain f 1 which is again used to obtain the next

trial function. This is repeated until f i reproduces r, within the experimental

fluctuations.

4.5.3 The Compton subtraction method

While the first trial function u0 = r has the fluctuations of the observed spec-

trum, the fluctuations will increase and propagate for each iteration. Therefore,

the Compton subtraction method is developed to smooth the Compton contribu-

tion, before subtracting it from the observed spectrum. As a result we will obtain

an unfolded spectrum with the same fluctuations as the observed one. We start

with the unfolded spectrum obtained from the folding iteration procedure. The
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observed spectrum containing all but the Compton contribution is defined as [38],

v(i) = p f (i)u0(i)+w(i), (4.8)

where the first term represents the full energy contribution, followed by w(i) =
us + ud + ua, which gives the single- and double escape peak and annihilation

peak, respectively. These three terms are given by,

us(i− i511) = ps(i)u0(i) (4.9)

ud(i− i1022) = pd(i)u0(i) (4.10)

ua(i511) = pa(i)u0(i). (4.11)

The probabilities ps, pd and pa for single- and double escape peak and annihilation

peak, respectively, are estimated from the measured monoenergetic transitions.

The ua spectrum is smoothed with an energy resolution of 1 FWHM to attain

the energy resolution of the observed spectrum. Whereas, u f , us and ud have an

energy resolution determined from the observed spectrum (1 FWHM) and of the

response matrix (0.1 FWHM), namely
√

12 +0.12 FWHM =
√

1.01 ≈ 1 FWHM.

After smoothening the spectra we extract the Compton background c(i) from

the observed spectra r(i),
c(i) = r(i)− v(i). (4.12)

We know that c(E) should be a slowly varying function of energy. We there-

fore can us a strong smoothening to obtain a resolution of 1 FWHM. Finally, the

smoothed Compton spectra and peak structures are subtracted from the observed

spectra, and the γ- ray energy distribution is corrected for full energy probability

p f and the detection efficiency [38],

u(i) =
r(i)− c(i)−w(i)

p f (i)εtot(i)
. (4.13)

4.6 Extracting the primary γ-ray matrix
From the unfolded γ-ray spectra, we may now obtain the distribution of the pri-

mary γ rays emitted in each decay cascade. We cannot experimentally resolve

the time between the γ rays stemming from the same cascade, therefore we do not

know in which order they were emitted. When measuring γ rays the only informa-

tion we have is at which initial excitation energy the associated γ decay cascades

originated. If each excitation energy bin had an equal chance of direct population,

we could find the primary γ rays by subtracting the spectra of the underlying bins,

hi = fi −
i

∑
0

wi j f j, (4.14)
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where hi gives the primary γ rays at the initial excitation energy bin i, f denotes

unfolded spectra, and wi j is an unknown coefficient that gives the probability of

decay from states in bin i to states in bin j. This factor is normalized such that

∑i wi j = 1, which gives the branching ratios as a function of excitation energy. In

other words, wi gives the primary γ ray spectrum hi at bin i.
However, we know that the excitation levels populated in direct reactions is

not a random process. For reactions induced with the 3He beam for example,

vibrational states with relatively high angular momentum have a high cross section

to be populated. To account for this we must introduce a new factor ni j, that when

multiplied with each spectra fi, gives the same number of cascades. Adding this to

Eq. (4.14) we obtain the following expression for calculating the primary γ rays,

hi = fi −
j

∑
0

wi jni j f j. (4.15)

In the following we will describe two techniques we can use to obtain the normal-

isation factor.

• Singles normalisation To account for the different cross sections when pop-

ulating the energy bins, we can use the singles particle spectrum. Since this

spectrum is proportional to the reaction yield it also gives the number of

cascades decaying from this bin. The population of one level i relative to

a level j is found by dividing the number of counts S in the single particle

spectra,

ni j =
Si

S j
. (4.16)

• Multiplicity normalisation The average γ ray multiplicity gives the average

number of γ rays in the cascades. We can express the average γ-ray energy〈
Eγ,i

〉
decaying from a energy level i by the following expression

〈
Eγ ,i

〉
=

Ei

〈Mi〉
, (4.17)

where Ei is equal to the total energy carried by the γ rays (equal to the

energy of the populated bin), and 〈Mi〉 is the average multiplicity from this

level. Rearranging Eq. (4.17), we have the following expression for the

multiplicity,

〈Mi〉=
Ei〈

Eγ,i
〉 . (4.18)
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Furthermore, the single particle cross section Si is equal to the area of

spectrum fi (the number of cascades) A( fi) divided by the multiplicity,

Si = A( fi)/〈Mi〉. Incerting this onto Eq. (4.16), we obtain,

ni j =
A( fi)/〈Mi〉
A( f j)/

〈
Mj

〉 . (4.19)

The two normalisation methods have been thoroughly tested and compared in

Ref. [43]. It was found that they normally give very similar results that agree

within the error bars. An exception however is in the presence of some isomeric

states, where the multiplicity method must be used to obtain the correct result [43].

The area of the primary γ-ray matrix should be equal to the area of the ob-

served spectrum minus the area of the sum in Eq. (4.15). However, this is not

always the case, due to an improper choice of the weighting function w. To com-

pensate for this we introduce an area correction [42],

A(hi) = A( fi)−δA(gi), (4.20)

where gi = ∑ j
0 wi jni j fi, and δ is a small correction. This corresponds to a γ-ray

multiplicity of one unit. The same value can be expressed by,

A(hi) =
A( fi)

〈Mi〉
. (4.21)

When combining Eqs. (4.20,4.21), we obtain,

δ = (1−1/〈Mi〉)
A( fi)

A(gi)
. (4.22)

The correction parameter δ is varied to obtain the best agreement between the

areas of hi, fi and gi. However, we restrict the correction to be maximum 15%.

4.6.1 Assumption of the primary γ-ray method
For the primary γ-ray method to be valid, it is essential that decay from any ex-

citation level is independent of how the nucleus was excited to this bin, whether

they were initiated directly by the nuclear reaction or by γ decay from higher-lying

states. In the region of high level density, the nucleus seems to attain a compound-

like system before emitting γ rays, even though direct reactions are utilized. This

is fulfilled because a significant configuration mixing of the levels will appear

when the level spacing is comparable to the residual interaction. And because the
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formation of a complete compound state is as fast as ∼ 10−18 s, significantly less

than the typical life time of a state in the quasi-continuum which is ∼ 10−15 s.

Therefore, the assumption is believed to be reasonable, and the decay process is

at least mainly statistical.

4.6.2 The iteration procedure
Since w is identical to the primary γ-ray spectrum h, we can determine both

through an iterative procedure [42]. The steps are as follows:

1. Apply a trial function for wi j.

2. Deduce hi.

3. Extract new wi j functions from hi by giving both variables the same energy

calibration, and normalize the area of hi to unity.

4. If wi j(new)≈ wij(old), convergence is achieved, if not repeat from step 2.

The resulting primary γ-ray spectra are not sensitive to the starting trial func-

tion [43], and one could for instance start with the total unfolded spectrum. The

procedure is fast converging, usually 10− 20 iterations are performed on each

experimental spectrum [43].

The entire landscape of the primary γ-ray matrix, as seen in Fig. 4.9, can

then be disentangled into a product of two functions each of one variable. The

extraction of the level density ρ(E) and the RSF f (Eγ) is described in detail in

the next chapter.
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Figure 4.9: The primary γ-ray matrix of 106Pd.
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Chapter 5

Data analysis

In this chapter an outline of the data analysis methods used to extract the various

functions will be given. The particle-γ coincidences have been analysed using

the so-called Oslo method [45]. The non-monochromatic photo-neutron data are

evaluated by use of a Taylor expansion method [46], which takes into account the

energy spread of the γ-ray beam.

5.1 Extracting non-monochromatic cross sections
For the NewSUBARU experiments, we have so far assumed the monochromatic

approximation which implies a sharp energy of the γ-ray beam. The photo neutron

cross section can be expressed as follows,

∫ Emax

Sn

nγ(Eγ)σ(Eγ)dEγ =
Nn

NtNγξ εng
, (5.1)

where nγ(Eγ) gives the normalized energy distribution of the γ-ray beam, and

σ(Eγ) is the photo-neutron cross section we wish to determine. Furthermore, Nn
represents the number of neutrons detected, Nt gives the number of target nuclei

per unit area, Nγ is the number of γ rays incident on target, εn represents the

neutron detection efficiency, and finally ξ = (1− eμt)/μt is a correction factor

for self attenuation in the target, where t is the target thickness. The factor g
represents the fraction of γ flux above the neutron threshold Sn,

g =

∫ Emax
Sn

nγ(Eγ)dEγ∫ Emax
0 nγ(Eγ)dEγ

. (5.2)

As a first approximation we assume a sharp energy distribution of the γ-ray beam,

by replacing the γ energy distribution n(Eγ) in Eq. (5.1) by a delta function,
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δ (Eγ −Eav). Here Eav is the average energy of the LCS γ beam,

Eav =
∫ Emax

Sn

Eγnγ(Eγ)dEγ . (5.3)

We obtain the following cross section in the monochromatic approximation,

σmono(Eav) =
Nn

NtNγξ εng
. (5.4)

The next step is to correct for the energy spread of the γ-ray beam. A Taylor

expansion method is adapted to solve the integral of Eq. (5.1) with respect to

σ(E), according to Ref. [46]:

σ(Eav)+∑
i

si(Eav) =
nn

NtNγξ εn
, (5.5)

where

si(Eav) =
1

n!
σ (i)(Eav)

∫
sn

nγ(Eγ −Eav)
i. (5.6)

where σ (i)(Eav) represents the i’th derivative of σ(Eav). For details of the Taylor

series, see Appendix C. Now, the aim is to find the cross section as a function of

energy, however in order to do so one must assume an energy dependence in order

to calculate the si terms, hence an iteration procedure must be made. The iteration

procedure contains the following four steps:

1. We use the monochromatic cross section found from Eq. 5.4 as our starting
point σ(0)(Eav) = σmono(Eav), and fit to a Lorentzian function,

σ(E) = σc

(
E −Sn

Sn

)p
1

1+(E2 −E2
R)

2/(E2Γ2)
, (5.7)

where σc, p, ER and Γ are treated as free parameters, as done in Ref. [30].

2. The fitted function σ(E) is further divided into small regions of 300 keV,

each region is fitted by a third order polynomial.

3. The third order polynomials are in turn used to calculate the derivatives

σ (i)(Eav), of Eq. (5.6).

4. Combining Eq. (5.4) and (5.5), we solve for σ(Eav),

σ(1)(Eav) = σmono(Eav)+S2(Eav)+S3(Eav). (5.8)

The calculated photoneutron cross section σ(1)(Eav) is used for the next

iteration, and we continue until convergence is achieved.
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Figure 5.1: The calibrated monochromatic and non-monochromatic (γ,n) cross

section of 154Sm.

By taking the detour of finding the third order polynomial, instead of simply using

the best fit function of Eq. (5.7), the higher order terms vanish in Eq. (5.5), because

σ (i)(Eav) = 0, for i > 3. Also the s1 term is omitted, as this will cancel out, see

Appendix B for details. We find that the series converges rather fast, usually

within 5−10 iterations.

The cross sections have been normalized to cross sections retrieved from a
197Au measurement as the standard for photoneutron cross sections [30]. The
197Ag target sample had a purity of 99.99%, a thickness of 4.00 mm and a diam-

eter of 10.0 mm. A comparison between three measured cross sections found at γ
energies 8.6, 9.08 and 10.18 MeV was compared to corresponding cross sections

published in Ref. [30].

The energy spread of the γ beam is indeed very narrow, and the overall cor-

rection for the energy spread of the γ beam is small. Only cross sections located

at the highest average energy obtain a significant correction, as seen in Fig. 5.1.

5.2 The Oslo Method
The Oslo method is a method that enables us to extract both the level density

and the radiative strength function from one experiment [45]. These functions are
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extracted below the neutron separation threshold for a low spin region (0− 6 h̄).

The basic concept behind the method was first presented by L. Henden et. al. [49]

in 1995, while the first attempt to solve the problem iteratively was presented by

T. S. Tveter shortly after. However, the first complete and successive method to

extract the two functions were presented by A. Schiller et. al. in 2000 [45]. The

method has gradually been developed and has resulted in many publications.

The starting point of the data extraction is the primary γ-ray matrix P(Ei,Eγ).
The exited nucleus will decay through a number of γ decay cascades down to

the ground state. Utilizing a subtraction technique as discussed in Chapter 3,

we extract the primary γ rays emitted in each decay cascade, for each excitation

energy bin. The primary γ-ray matrix corresponds to the probability distribution

of the energies of the primary γ rays Eγ at the respective excitation energies Ei of

the nucleus.

Fermi’s golden rule predicts that the decay probability may be factorized into

a transition matrix element between the initial and final states, and the density of

final states. According to the Brink-Axel hypothesis [13, 14], the γ-ray transmis-

sion coefficient T is approximately independent of excitation energy. From this

we deduce that the probability for γ decay at a certain excitation energy Ei to a

final level E f , by a γ ray of energy Eγ = Ei −E f is proportional to the product of

the level density at the final level ρ(E f ) and the γ transmission coefficient T (Eγ),
given that we are in the statistical energy region. The normalized primary γ-ray

matrix can therefore be written as

P(Ei,Eγ) =
T (Eγ)ρ(Ei −Eγ)

∑Ei
Eγ=Emin

γ
T (Eγ)ρ(Ei −Eγ)

. (5.9)

The functional form of Eq. (5.9) does not give a one-to-one solution, but an infinite

number of possibilities. It can be shown that all solutions can be deduced from

each other through the following transformation,

ρ̃(Ei −E f ) = ρ(Ei −E f )Aeα(Ei−Eγ ) (5.10)

T̃ (Eγ) = T (Eγ)BeαEγ , (5.11)

see Appendix C for the details of the derivation. In these formulas the parameters

A, B and α can be chosen arbitrary and still give a good agreement with the exper-

imental primary γ-ray matrix. However, in order to obtain the desired functions ρ
and T , the extracted functions ρ̃ and T̃ , are normalized to known experimental

data. Details of this procedure will be discussed in section 5.2.2.
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5.2.1 χ2 minimization
A least-squareds method is performed in order to determine ρ and T . The func-

tions are therefore chosen such that the function

χ2 =
1

N

Emax
i

∑
Ei=Emin

i

Emax
i

∑
Eγ=Emin

γ

(
P(Ei,Eγ)−Pexp(Ei,Eγ)

ΔPexp(Ei,Eγ )

)2

, (5.12)

is minimised. The factor N in the above expression represents the number of

degrees of freedom, which is equal to

N = NP −Nρ −NT (5.13)

where NP is the number of entries in the primary γ ray matrix, and Nρ and NT

are the number of data points in the respective spectra [45]. This χ2 is minimised

with respect to T at every γ energy bin, and with respect to ρ at every excitation

energy E f = Ei −Eγ ,

∂
∂T (Eγ)

χ2 = 0 and
∂

∂ρ(Ei −Eγ)
χ2 = 0. (5.14)

As a starting point we set ρ(0) = 1, to be a zeroth order estimate. This can be

chosen arbitrary and all other solutions can be found from the transformations of

Eq. (5.11). Inserting this solution into Eq. (5.9) we obtain

P(Ei,Eγ) =
T ((0)Eγ)

∑Ei
Eγ=Emin

γ
T (0)(Eγ)

. (5.15)

Furthermore, we sum over all excitation energy bins, while requiring that the γ
energy can not exceed the excitation energy,

Emax
i

∑
Ei=max(Emin

i ,Eγ )

P(Ei,Eγ) = T (0)(Eγ)
Emax

i

∑
Ei=max(Emin

i ,Eγ )

1

∑Ei
Eγ=Emin

γ
T (0)(Eγ)

. (5.16)

We choose to set the sum on the right hand side equal unity, and obtain the zeroth

order estimate for T ,

T (0)(Eγ) =
Emax

i

∑
max(Emin

i ,Eγ )

P(Ei,Eγ). (5.17)

The next step is to calculate higher order estimates. To do so we have to evaluate

Eq. (5.14), in doing so we can derive the following expressions [45],
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T (Eγ) =
∑

Emax
i

max(Emin
i ,Eγ )

ρ(Ei −Eγ)φ(Ei,Eγ)

∑
Emax

i
max(Emin

i ,Eγ )
ρ2(Ei −Eγ)ψ(Ei,Eγ)

(5.18)

ρ(E f ) =
∑

Emax
i

max(Emin
i ,Ef+Emin

γ )
F(Ei −E f )φ(Ei,Ei −E f

∑
Emax

i
max(Emin

i ,Ef+Emin
γ )

F2(Ei −E f )ψ(Ei,Ei −E f )
, (5.19)

where

φ(Ei,Eγ) =
a(Ei)

s3(Ei)
− b(Ei)

s2(Ei)
+

P(Ei,Eγ)

s(Ei)(ΔP(Ei,Eγ))2
(5.20)

ψ(Ei,Eγ) =
1

(s(Ei)ΔP(Ei,Eγ))2
, (5.21)

and

a(Ei) = ∑
Eγ=Emin

γ

(
T (Eγ)ρ(Ei −Eγ)

ΔP(Ei,Eγ)

)2

(5.22)

b(Ei) = ∑
Eγ=Emin

γ

T (Eγ)ρ(Ei −Eγ)P(Ei,Eγ)

(ΔP(Ei,Eγ))2
(5.23)

s(Ei) = ∑
Eγ=Emin

γ

T (Eγ)ρ(Ei −Eγ). (5.24)

We start each new iteration by calculating a, b and s, from Eqs. (5.22)-(5.24). The

result is inserted into Eqs. (5.20) and (5.21) to obtain φ and ψ . Finally, we can

calculate the new ρ and T , using Eqs. (5.18) and (5.19). In Fig. 5.2 an illustration

of how the summations used in the above equations are performed. Only the white

region of the figures are used when extracting ρ and T . We exclude the low

excitation energy region, due to non-statistical γ decay. The low γ energy region

are excluded due to insufficient subtraction of yrast transitions and limitations in

the electronics that make the low γ-ray energy region not reliable. We observe

from the left panel of Fig. 5.2 that when the γ energy Eγ exceeds the minimum

excitation energy Ei,min, the summation has to start from Ei = Eγ .

Convergence is often achieved fast. However, in some cases the χ2-minimum

is very shallow. To ensure that we find the global minimum we set a restriction to

the maximum change of every datapoint in ρ and T within one iteration, to a set
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Figure 5.2: A sketch of how the summation over the excitation energy bins (left),

and γ energy bins (right) of the primary γ-ray matrix are performed. The red lines

give the directions of the summation. The shaded area is usually excluded due to

methodical problems.

percentage P [45]. In the case the value is higher than the accepted value, it is set

to the value equal the maximum allowed change. The chosen allowed change is

narrowed as the number of iterations increase, in this way we limit the execution

time while retaining an accurate solution [45].

The first generation spectra P for 164Dy at six different excitation energies

are displayed in Fig. 5.3 and compared to the ones obtained by multiplying the

extracted T and ρ functions. In general, the agreement between the experimental

data and the fit is very good.

5.2.2 Normalization proceedure

The functional form of ρ and T are uniquely determined by the Oslo method,

but in order to normalize on depends upon complimentary experimental data. The

transformation generators α , A and B of Eqs. (5.11) and (5.11), represents the

slope of the two functions and the absolute normalisation of ρ and T , respec-

tively.
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Figure 5.3: Comparison of experimental first-generation spectra (squares) and the

ones obtained from multiplying the extracted T and ρ functions (red line).

Normalizing ρ
The parameters α and A can be determined by normalising ρ to known discreet

levels at low excitation energy [47], and at high energy from the density of neu-

tron resonances following (n,γ) capture at the neutron separation energy Sn. The

level density ρ(Sn) is calculated from s-wave (or p-wave) resonance spacings D0

taken from RIPL-3 [11]. The total level density at the neutron separation energy

assuming s-wave (l = 0) is [45],

ρ(Sn) =
2σ2

D0

1

(I +1)exp[−(I +1)2/2σ2]+ exp[−I2/2σ2]
, (5.25)

where I is the spin of the target nucleus. The spin-cut off parameter σ depends

on the model assumed for ρ , see discussion in chapter 2. The experimental data

normally extends up to ∼ Sn −1 MeV, we therefore extrapolate ρ(Sn) by a Fermi

gas level density to fill the gap between the data and the calculated ρ(Sn) [45]. An

illustration of the normalisation of ρ is given in the upper panel of Fig. 5.4.

Normalizing T

The parameter B controls the scaling of the transmission coefficient T . It is

determined using the average, total radiative width
〈
Γγ

〉
at Sn. Assuming that the
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transmission coefficient. The normalization is preformed in the regions between

the arrows.

γ decay is dominated by dipole transitions, the width is given by [48]

〈
Γγ

〉
=

1

2πρ(Sn, I,π)∑
I f

∫ Sn

0
dEγBT (Eγ)ρ(Sn −Eγ , I f ), (5.26)

for initial spin I and parity π . The summation and integration run over all final

levels with spin If that are accessible by E1 or M1 transitions with energy Eγ . In

Fig. 5.4, the normalisation of the transmission coefficient of 164Dy is displayed.

Correcting α , A and B using photo-absorption data

From Eq. 5.26 we see that the determination of B depends on the spin-cut off pa-

rameter σ . The spin distribution is however, difficult to determine, as discussed
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in Ref. [43]. Hence, there are some uncertainties originating from the normaliza-

tion procedure. Another procedure is therefore adopted, where we compare the

RSF with the extrapolation of known data from photo-absorption reactions. This

method has been applied to check and correct the normalization of the dysprosium

isotopes.

The RSF can be calculated from T by [11],

f (Eγ) =
1

2π
T (Eγ)

E3
γ

, (5.27)

assuming dipole radiation. The RSF is compared with the strength function de-

rived from the cross section σ from photo-absorption experiments by [11],

f (Eγ) =
1

3π2h̄2c2

σ(Eγ)

Eγ
. (5.28)

The photo-absorption data is extrapolated below Sn using the generalized Lorentzian

(GLO) as defined in RIPL [11] to describe the GEDR, but with a constant temper-

ature of the final states Tf . In addition we have two M1 resonances, the scissors

mode and the spin-flip, which are both assumed a Lorentzian shape, as discussed

in chapter 2.

The renormalisation of the dysprosium isotopes have been determined by si-

multaneously varying the parameters α and B and the strength σpy, width Γ
py and

centroid EPy of the scissors mode, to best mach the two sets of experimental data

and to find an appropriate model. In Fig. 5.5 the results of the renormalisation of
161Dy is displayed.

One can then normalize the level density ρ , by applying the same slope α as

determined for the strength function, and determine the absolute normalization A
by fitting ρ to known discrete levels at low excitation energies.

5.2.3 Uncertainties of ρ and T

Only statistical errors are taken into consideration when calculating the uncertain-

ties of ρ and T , possible errors steeming from the models chosen for normali-

sation are not considered. Since the experimental primary γ-ray matrix has been

obtained from raw data, one first have to estimate the error of the primary γ-ray

matrix data, an furthermore estimate the error propagation through the unfolding-

and subtraction techniques discussed in the previous chapter. An outline of how

these estimations were made can be read in Ref. [45]. An analysis of possible

systematic errors in the Oslo method is discussed in detail in Ref. [43].
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6.1. A BRIEF INTRODUCTION TO THE PAPERS

6.1 A brief introduction to the papers

Paper I and II

The nuclei 163,164Dy have been investigated using the Oslo method on data from

the pickup reaction (3He,αγ)163Dy and the inelastic scattering (3He,3 He′γ)163Dy,

respectively. The nuclei have been evaluated using the Oslo method.

In paper I the radiative strength function for both nuclei are presented. In par-

ticular, a small resonance centred around Eγ ≈ 3 MeV, is evaluated. The parame-

ters of this so-called pygmy M1 resonance (the scissors mode) are compared with

previous results on 160,161,162Dy using the Oslo method, and with data on 163Dy

measured by the Prague group using the two-step cascade method. The integrated

reduced transition probability B(M1 ↑) of the pygmy resonance is compared with

neighbouring dysprosium isotopes, and all agree within the uncertainties.

Paper III is dedicated to study the level densities and thermodynamic prop-

erties. Thermodynamics are deduced within both micro-canonical and canonical

ensemble theories. A phase transition from the pair-correlated state at low ener-

gies to a less correlated or uncorrelated state is studied in both ensembles. We

observe transitions between the various quasiparticle regimes when studying ther-

modynamical properties within the framework of the micro-canonical ensemble.

In the canonical ensemble we observe a second-order phase transition, influenced

by the first broken pairs of the nucleus, but also the later breaking of Cooper pairs

enhances the phase transition significantly. It is investigated whether the temper-

ature of the nucleus is constant or a varying function of excitation energy. It is

found that above an excitation energy of 3 MeV the temperature of all five dys-

prosium nuclei have a constant value within the experimental uncertainties. The

impact of a constant-temperature level density versus a Fermi gas level density is

discussed with respect to the canonical heat capacity.

Paper III

The electron beam at the NewSUBARU facility has been calibrated in the nominal

energy range 550− 974 MeV. The electron beam was calibrated by using γ-ray

beams produced in inverse Compton scattering between CO2 laser photons and

relativistic electrons. The resulting laser Compton-scattered (LCS) γ-ray beams

were in the energy range from 561 keV to 1728 keV, and detected with a high

purity germanium detector. The electron beam energies were determined by re-

producing the full energy peaks of the γ-ray beams by Monte Carlo simulations.

The reproducibility of the electron beam energy is excellent in an independent

injection and deceleration. The present energy calibration of the electron beams
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offers a standard for the energy calibration of high-energy LCS γ-ray beams pro-

duced with a Nd:YVO4 laser.

Paper IV and V

Photo-neutron cross sections of five neodymium (paper IV) and seven samarium

(paper V) isotopes have been studied. The experiments were performed at the

NewSUBARU synchrotron laboratory, using laser Compton backscattered γ-ray

beams. The photo-neutron cross sections where extracted from the neutron sep-

aration threshold of each isotope up to ≈ 13 MeV. The radiative neutron capture

cross section where extracted using an indirect method called the γ-ray strength

function method. The measurements were performed as a step to obtain a unified

understanding of (γ,n) and (n,γ) reactions in the rare earth region.

The present systematic measurement included two odd-N nuclei, 143Nd and
145Nd for which photo-neutron cross sections are presented near neutron threshold

for the first time. Photo-neutron cross sections for two odd-N nuclei, 147Sm and
149Sm, are also measured for the first time

The neodymium and samarium isotopes are of special interest with regards to

nuclear astrophysics. The s-process path along the line of β stability has been

studied for the neodymium and samarium isotopes. The short-lived 147Nd isotope

is an s-process branch point nucleus, where β -decay and neutron capture are com-

puting processes. Furthermore, radiative neutron capture cross sections for 147Nd

affects the isotopic ratio of the two s-only nuclei, 148Sm and 150Sm. The present

photo-neutron measurement also involved a p-process nucleus 144Sm, s-only nu-

clei 148Sm and 150Sm and an r-only nucleus 154Sm.

Paper VI

The photo-absorption cross section of 162,163Dy have been extracted from (γ,n)
experiments, and the radiative strength functions are deduced. The experiments

where performed at the NewSUBARU synchrotron laboratory, using laser Comp-

ton backscattered γ-ray beams, which are nearly monochromatic. The data are

extracted from the neutron separation threshold up to around ≈ 13 MeV, cover-

ing an energy region where there are no preexisting data for dysprosium isotopes.

The new data are compared with Dy data evaluated by the Oslo method, and a

renormalisation is made. Furthermore, the M1 scissor mode is discussed, and it is

evaluated how it will influence astro-physical reaction rates.
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Paper VII
The nuclear level densities and radiative strength functions of 105−108Pd have been

investigated using the Oslo method. Particle-γ coincidence measurements were

performed at the Oslo cyclotron laboratory. Using a 3He beam, both the pickup

reaction (3He,αγ) and the inelastic scattering (3He,3 He′γ) channel was studied.

The level densities exhibits well known characteristics. The extracted radiative

strength functions indicate a sudden increase in magnitude for Eγ > 4 MeV, which

is believed to be caused by a pygmy resonance centered at Eγ ≈ 8.5 MeV. The

enhancement is likely cased by resonances related to neutron skin oscillations.

We also observe an interesting feature in the radiative strength function at low

γ-ray energy, where we have a nearly constant strength over a long energy region.

We also see slightly indications of increasing strength at very low γ-ray energy,

known as the upbend. This indicates that the Pd isotopes is in a transitional region

considering the upend behaviour.
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Radiative strength functions in 163,164Dy

H. T. Nyhus,1,* S. Siem,1 M. Guttormsen,1 A. C. Larsen,1 A. Bürger,1 N. U. H. Syed,1 G. M. Tveten,1 and A. Voinov2
1Department of Physics, University of Oslo, N-0316 Oslo, Norway
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The nuclei 163,164Dy have been investigated using the Oslo method on data from the pickup reaction
164Dy(3He,αγ )163Dy and the inelastic scattering 164Dy(3He,3He′γ )164Dy, respectively. The radiative strength
functions for both nuclei have been extracted, and a small resonance centered around Eγ ≈ 3 MeV is observed
in both cases. The parameters of this so-called pygmy M1 resonance (the scissors mode) are compared with
previous results on 160,161,162Dy using the Oslo method, and with data on 163Dy measured by the Prague group
using the two-step cascade method. In particular, the integrated reduced transition probability B(M1 ↑) of the
pygmy resonance is compared with neighboring dysprosium isotopes. We also observe an enhanced strength in
the region above Eγ ≈ 5 MeV in 164Dy. Possible origins of this feature are discussed.

DOI: 10.1103/PhysRevC.81.024325 PACS number(s): 25.20.Lj, 24.30.Gd, 25.55.Hp, 27.70.+q

I. INTRODUCTION

A continuing effort has long been devoted to studying
γ decay from excited nuclei. The radiative strength function
(RSF) represents the mean value of the decay probability via
a γ ray with energy Eγ , and contains rich information on the
average electromagnetic properties of the nucleus.
For high-energy γ transitions (∼7–20 MeV), the RSF is

dominated by the giant electric dipole resonance (GEDR).
At lower energies other resonances have been discovered,
such as the giant magnetic dipole resonance (GMDR, also
called the giant magnetic spin-flip resonance) and the electric
quadrupole resonance; however, these have a significantly
lower strength [1]. In addition, there are other structures
observed in the RSF governed by various collective modes
of the nucleus. These structures are often referred to as pygmy
resonances because of their low strength compared to the
GEDR. There are two known pygmy resonances: the E1
resonance for γ ray energies between 5 and 10 MeV, which is
believed to stem from neutron skin oscillation [2], and theM1
resonance called the scissors mode, which is observed in the
region of Eγ = 3 MeV for rare-earth nuclei [3].
The RSFs below the neutron threshold have been studied

mainly by (γ, γ ′) experiments, also called nuclear resonance
fluorescence (NRF) [4]. Other methods, such as the two-step-
cascade (TSC) method [5] and the Oslo method [6], have also
successfully provided data on the RSFs for many nuclei. The
latter method enables us to extract the RSF for γ ray energies
up to the neutron binding energy Bn. This method has been
used in the present analysis.
Previous experiments have been performed on 160,161,162Dy

[7] using the Oslo method [6]. From these data, the widths
of the M1 pygmy resonance have been found to be about
two times greater than the width found for 163Dy obtained by
the Prague group using the TSC method [8]. In the present
work, we have studied 163,164Dy to investigate the discrepancy
between themeasured widths. In particular, we have compared

*h.t.nyhus@fys.uio.no

the total integrated strength B(M1 ↑) of all the mentioned Dy
isotopes.
Details about the experimental method are presented in

Sec. II, followed by the experimental results for the RSF in
Sec. III. Finally, conclusions are drawn in Sec. IV.

II. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

The experiment was conducted at the Oslo Cyclotron
Laboratory (OCL), using a 38-MeV beam of 3He particles.
The target of 98.5% enriched 164Dy had a thickness of
1.73 mg/cm2, and the reactions 164Dy(3He,αγ )163Dy and
164Dy(3He,3 He′γ )164Dy were studied.
The γ rays and ejectiles were measured with the CACTUS

multidetector array [9], which consists of a sphere of 28
collimated NaI γ detectors with total efficiency of 15% of
4π , surrounding a vacuum chamber containing eight�E − E

Si particle telescopes with thicknesses of 140 and 1500 μm.
The particle telescopes were placed in the forward direction at
45◦ relative to the beam axis.
From the known Q values, the excitation energies of the

nuclei were calculated from the detected ejectile energy using
reaction kinematics. The particles and γ rays were measured
in coincidence; hence, each γ ray could be assigned to an
initial excitation energy of the nucleus. The γ ray spectra
were unfolded using the known response functions of the
CACTUS detector array [10]. The excited nuclei decayed
through a cascade of γ rays down to the ground state.
By using the first-generation method [11], we were able to
isolate the first (primary) γ rays emitted in each γ decay
cascade. The distribution of primary γ rays was found for
each excitation energy bin, giving an excitation energy vs
γ ray energy matrix denoted by P (Ei,Eγ ). The primary γ ray
spectrum was normalized to unity for each excitation energy
bin, which then represents the decay probability for each
γ raywith energyEγ decaying from a certain excitation energy
Ei :

∑Ei

Eγ =Emin
γ

P (Ei,Eγ ) = 1. The primary γ ray matrix for
164Dy is shown in Fig. 1. The diagonal line of the matrix
corresponds to decay directly to the ground state (Eγ = Ei);

0556-2813/2010/81(2)/024325(6) 024325-1 ©2010 The American Physical Society
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FIG. 1. Primary γ -ray matrix for 164Dy, displaying primary
γ rays emitted at each initial excitation energy.

however, it is more probable to decay to the first excited 2+ and
4+ states. Therefore, a ridge is formed in the matrix for decay
to Ei ∼ 150 keV, see Fig. 1.
The original Brink-Axel hypothesis [12,13] states that

the GEDR can be built on every excited state, and that the
properties of the GEDR do not depend on the temperature of
the nuclear state on which it is built. This hypothesis can
be generalized to include any type of collective excitation.
Provided that this hypothesis is valid, the primary γ ray matrix
can be factorized as

P (Ei,Eγ ) ∝ T (Eγ )ρ(Ei − Eγ ), (1)

where P (Ei,Eγ ) is the experimentally obtained and normal-
ized primary γ ray matrix. The function T (Eγ ) represents
the radiative transmission coefficient, and ρ(Ei − Eγ ) is
the level density at the final energyEf = Ei − Eγ . The above
factorization is based on the essential assumption that the
system is fully thermalized prior to γ emission, so the reaction
can be described as a two-stage process of which the first is
the formation of the compound nucleus, which subsequently
decays in a manner that is independent of the mode of
formation [14]. The formation of a complete compound state is
as fast as∼10−18 s, significantly less than the typical lifetime of
a state in the quasicontinuum, which is ∼10−15 s. Therefore,
the assumption is believed to be reasonable, and the decay
process is at least mainly statistical. Recently, it has been
shown that Eq. (1) can be valid even in some cases where
full thermalization is not achieved [15].
However, there is experimental evidence that the Brink-

Axel hypothesis is violated for high temperatures (above
1–2 MeV). In particular, the width of the GEDR has been
shown to depend on the temperatures of the final states [16].
For our experimental conditions, the excitation energy (and
thus the temperature) is relatively low and changes slowly with
excitation energy (T ∼ √

Ef ). Therefore, we assume that the
radiative strength function does not depend on temperature in
the energy region under consideration.
The right-hand side of Eq. (1) is normalized to unity,

yielding

P (Ei,Eγ ) = T (Eγ )ρ(Ei − Eγ )∑
E′

γ =Emin
γ

T (E′
γ )ρ(Ei − E′

γ )
. (2)

Using this equation and applying a least-squares fit to the
primary γ ray matrix, a unique functional form of ρ(Ei − Eγ )
and T (Eγ ) is derived [6], while the normalization is yet
to be determined. There are infinitely many normalization
options that reproduce the experimental primary γ ray matrix.
All the solutions are related to each other through the two
transformations [6]

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ) (3)

and

T̃ (Eγ ) = B exp(α Eγ ) T (Eγ ), (4)

where A, B, and α are constants representing the absolute
values of ρ(Ei − Eγ ) and T (Eγ ), and the slopes of the two
functions, respectively. These parameters are determined by
normalizing Eqs. (3) and (4) to known experimental data.
The parameters A and α are identified by normalizing the
experimental level density to known levels found from discrete
spectroscopy at low energies. At higher excitation energies, the
experimental level density is normalized to the level density
determined from the known neutron resonance spacing data [1]
at the neutron binding energy Bn. The present experimental
data extend up to about Bn–1 MeV; an interpolation is thus
required to reach Bn. The back-shifted Fermi gas model
[17,18] was applied for this purpose:

ρbs(E) = η
exp(2

√
aU )

12
√
2a1/4U 5/4σ

, (5)

where the constant η is applied to adjust ρbs(E) to the
semiexperimental level density at Bn. The intrinsic excitation
energy is given by U = E − C1 − Epair, where C1 is the
back-shift parameter equal to C1 = −6.6A−0.32 MeV, where
A represents the mass number. The pairing energy Epair is
based on the pairing gap parameters �p and �n evaluated
from odd-even mass differences [19] according to Ref. [20].
The parameter a = 0.21A0.87 MeV−1 corresponds to the level
density parameter. The spin-cutoff parameter σ is given
by σ 2 = 0.0888aT A2/3, where the nuclear temperature is
described by

T =
√

U/a. (6)

The normalization of ρ(Ei − Eγ ) for 164Dy is displayed in the
upper panel of Fig. 2.
Finally, T (Eγ ) is normalized by determining the coefficient

B, which gives the magnitude of T (Eγ ). We have the
following relation between the total radiative width of neutron
resonances 〈	γ 〉 at the neutron binding energy and the radiative
transmission coefficient T (Eγ ) [21]:

〈	γ 〉 = 1

4πρ
(
Bn, J

π
i

) ∑
Jπ

f

∫ Bn

0
dEγ BT (Eγ )ρ

(
Bn−Eγ , J π

f

)
,

(7)

where Di = 1/ρ(Bn, J
π
f ) is the average spacing of s-wave

neutron resonances. The summation and integration extends
over all final levels with spin Jf which are accessible by
γ radiation with energy Eγ .
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FIG. 2. Upper panel: Level density of 164Dy, normalized to known
discrete levels and to ρ(Bn) calculated from neutron resonance
spacing data, with an interpolation using the back-shifted Fermi gas
model. Lower panel: Radiative transmission coefficient of 164Dy with
extrapolations. The normalization is performed in the regions between
the arrows.

Due to methodological difficulties, T (Eγ ) cannot be deter-
mined experimentally for low-energy γ rays, Eγ < 1 MeV
[22]. In addition, the data suffer from poor statistics for
γ ray energies Eγ > Bn–1 MeV. We therefore extrapolate
T (Eγ ) with an exponential function, as demonstrated for
164Dy in the lower panel of Fig. 2. For further details of
the normalization procedure, see Ref. [22]. The parameters
used for normalizing ρ(Ei − Eγ ) and T (Eγ ) are given in
Table I.
Note that the uncertainties displayed in Fig. 2 only reflect

statistical uncertainties and do not include the uncertainties
related to the model used for normalization. This is also the
case for the other figures showing experimental data.

III. RADIATIVE STRENGTH FUNCTIONS

Assuming that γ decay taking place in the quasicontinuum
is dominated by dipole transitions (L = 1), the radiative
strength function can be calculated from the normalized
transmission coefficient by

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (8)
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FIG. 3. Normalized RSFs of 163,164Dy.

Using this relation, we obtain the experimental RSFs displayed
in Fig. 3. We observe that they are increasing functions of
γ energy, and we can easily identify theM1 pygmy resonance
in both cases.We expect the RFS to be composed of the pygmy
resonance, the giant electric dipole resonance (GEDR), and the
giant magnetic dipole resonance (GMDR). The Kadmenskiı̆-
Markushev-Furman (KMF) model [23] is employed to char-
acterize the E1 strength. In this model, an excitation-energy
dependence is introduced through the temperature of the final
states Tf , i.e.,

f KMFE1 (Eγ ) = 1

3π2h̄2c2
0.7σE1Eγ 	2E1

(
E2

γ + 4π2T 2f
)

EE1
(
E2

γ − E2
E1

)2 , (9)

where σE1, 	E1, and EE1 denote the peak cross section,
width, and the centroid of the GEDR, respectively. In general,
the KMF model describes experimental data very well;
however, the temperature dependence violates the Brink-Axel
hypothesis. In line with the previously mentioned argument
that the temperature varies relatively little in our region
of interest, we have assumed that the temperature can be
considered to be constant. Thus, the Brink-Axel hypothesis is
revived.
It was found that a constant temperature of Tf = 0.3 MeV

gives a good fit to the experimental data, in agreement with
Ref. [7]. For deformed nuclei, the GEDR is split into two and
is therefore described as the sum of two strength functions
given by Eq. (9). The GMDR is thought to be governed by
the spin-flip M1 resonance [22] and can be described by a

TABLE I. Parameters used for normalizing ρ and T .

Nucleus Epair C1 a D σ (Bn) Bn ρ (Bn) Jt 〈	γ 〉 η

(MeV) (MeV) (MeV−1) (eV) (MeV) (MeV) (106 MeV−1) (meV)

163Dy 0 −1.293 17.653 62(5) 5.435 6.271 0.96(12) 0 112 0.52
164Dy 0.832 −1.291 17.747 6.8(6) 5.541 7.658 1.74(21) 5

2 113 0.56
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TABLE II. Parameters used for the radiative strength functions.

Nucleus E1
E1 σ 1E1 	1E1 E2

E1 σ 2E1 	2E1 EM1 σM1 	M1 β2
(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV)

163Dy 12.37 278.50 3.17 15.90 139.04 5.12 7.51 1.49 4.00 0.300
164Dy 12.26 280.41 3.12 15.95 140.00 5.15 7.49 1.49 4.00 0.314

Lorentzian function:

fM1(Eγ ) = 1

3π2h̄2c2
σM1Eγ 	2M1(

E2
γ − E2

M1

)2 + E2
γ 	2M1

, (10)

where σM1, 	M1, and EM1 give the peak cross section, width,
and the centroid of the GMDR, respectively. The GEDR and
GMDR parameters are taken from the systematics of Ref. [1]
calculated with the deformation parameter β2 [1]. The M1
pygmy resonance fpy is described by a Lorentzian function
similar to the one given in Eq. (10). All parameters are listed
in Table II.
The theoretical strength function is then given by

f = κ(fE1 + fM1)+ fpy, (11)

where fE1, fM1, and fpy represent the contributions from the
GEDR, GMDR, and the M1 pygmy resonance, respectively.
The parameter κ is a normalization constant. Together with
the pygmy-resonance parameters σpy, 	py, and Epy, κ is
used as a free parameter when performing a least-squares
fit to adjust the total theoretical strength to the experimental
data.
The fit to the experimental data points is shown in Fig. 4 for

both nuclei. The upper panels show the contributions κfE1

and κfM1 and the sum of these two contributions. In the
lower panels the sum κ(fE1 + fM1) is subtracted from the
experimental data, and the fit to the M1 pygmy resonance is
displayed.Wenotice that the fit to the experimental data around
theM1 pygmy resonance is good, especially for 163Dy. When
comparing the pygmy-resonance parameters of 163,164Dy (see
Table III) to those extracted for 160,161,162Dy reported in
Ref. [7], we find a smaller width of the pygmy resonance.
The previous measurements for 160,161,162Dy yielded widths
in the range of 	py = 1.26–1.57 MeV using a constant
temperature of Tf = 0.3MeV. In the present work, with
the same constant temperature, we find widths of 	py =
0.86 and 0.80MeV for 163Dy and 164Dy, respectively. The
nucleus 163Dy has been investigated earlier by the Prague
group, analyzing TSC spectra from the 162Dy(n, 2γ )163Dy

TABLE III. Fitted pygmy-resonance parameters and normaliza-
tion constants.

Nucleus Epy σpy 	py κ

(MeV) (mb) (MeV)

163Dy 2.81(9) 0.72(12) 0.86(19) 1.78(14)
164Dy 2.81(6) 0.53(6) 0.80(12) 1.72(6)

reaction [8]. In their work, the width of the pygmy reso-
nance was reported to be 	py = 0.6 MeV. For this specific
case (163Dy), the measured 	py from the Oslo data and
the data from the Prague group are comparable within the
uncertainties.
We note fromFig. 4 that σM1 for 163Dy is significantly larger

than for 164Dy. The reason for this is not yet understood. To
obtain a more precise comparison, the total integrated strength
B(M1 ↑) given by

B(M1 ↑) = 9h̄c

32π2

(
σ	

E

)
M1 py

, (12)

is calculated for 160−164Dy, and the results are displayed in
Fig. 5. When calculating the weighted average of the Oslo
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FIG. 5. (Color online) IntegratedB(M1 ↑) strength of the pygmy
resonance for Dy isotopes measured with the Oslo method (filled
circles) and their average value (solid line). The TSC data point for
163Dy [8] is also displayed (filled square).

data, a value of 6.6(4)μ2N is found.
1 The B(M1 ↑) value from

the TSC experiment is not included in the fit, because no errors
are given in Ref. [8]. We observe that all the measured values
agree within the uncertainties.
For 164Dy, we observe an increase in the RSF compared

to theory for energies above Eγ ≈ 5.0 MeV. Similar features
have been observed in (γ, γ ′) experiments on other nuclei, e.g.,
116,124Sn [24] and 208Pb [25]. For these nuclei, the structure
is thought to be governed by the so-called neutron skin
oscillation, a collective mode of E1 character that for stable
nuclei is located in the region ofEγ = 5–10MeV. This feature
has been observed in nuclei with a high neutron-to-proton
ratio N/Z and is interpreted as an oscillation of the neutron-
enriched periphery of the nucleus versus a core consisting of
equally many protons and neutrons, N = Z [2,26]. Enhanced
strength is also observed in the RSF of 117Sn measured at
OCL [27]. Unfortunately, the present experimental technique
cannot provide information on the electromagnetic character
of the enhanced strength in 164Dy. However, it might be a
reasonable guess that the observed strength stems from theE1
skin oscillation, since we note that Dy nuclei have a high
neutron-to-proton ratio of N/Z = 1.36–1.48 for the stable
isotopes. Evidence of both the M1 pygmy resonance and
the E1 pygmy resonance in one and the same nucleus has,
however, not been reported earlier.
Data on 160Dy from a previous experiment [7] also appear

to have excess strength, see Fig. 6. Unfortunately, the strength
function in the interesting region (Eγ > 7 MeV) suffers from

1The B(M1 ↑) values for 160,161,162Dy are calculated from
Ref. [6]. The values of 161,162Dy are the weighted averages of the
values obtained from the (3He,α) and (3He,3He′) reactions.
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FIG. 6. Experimental RSF for 160Dy. The dashed line represents
the tail of the GEDR, while the dashed-dotted lines give the
contributions from the GMDR and the M1 pygmy resonance. The
solid line is the sum of all the resonances. The fit to the experimental
data points is performed up to Eγ = 6.9MeV.

poor statistics. However, this could be a hint that the same
feature is present in this nucleus.

IV. SUMMARY AND CONCLUSIONS

The nuclei 163,164Dy have been investigated using the Oslo
method. The radiative strength functions have been extracted,
displaying theM1 pygmy resonance. This resonance has been
studied in detail, and it is found that the measured widths are
smaller than what has previously been measured in other Dy
nuclei at OCL. However, the pygmy widths of 163,164Dy in the
present work are still larger than what has been measured for
163Dy bymeans of the TSCmethod.When comparing the total
integrated strength B(M1 ↑) of theM1 pygmy resonance, the
results for all the nuclei agree within the uncertainties.
For 164Dy, we have observed an excess of strength forEγ >

5 MeV compared to model calculations; similar features can
also be seen in 160Dy. The enhanced strength might be due to
neutron skin oscillations. If that is the case, this is the first time
both the scissors mode and the neutron-skin oscillation mode
is seen in one and the same nucleus.
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Erratum: Radiative strength functions in 163,164Dy [Phys. Rev. C 81, 024325 (2010)]

H. T. Nyhus, S. Siem, M. Guttormsen, A. C. Larsen, A. Bürger, N. U. H. Syed, G. M. Tveten, and A. Voinov

(Received 11 August 2010; published 30 August 2010)

DOI: 10.1103/PhysRevC.82.029909 PACS number(s): 25.20.Lj, 24.30.Gd, 25.55.Hp, 27.70.+q, 99.10.Cd

The pairing energies Epair and spin-cutoff parameters σ were misquoted in Table I. The correct values are Epair = 0.661 and
1.707 MeV and σ = 5.408 and 5.492 for 163Dy and 164Dy, respectively. In the calculations of ρ(Bn) in Table I the correct values
were used, and the published results are based on these correct values.

0556-2813/2010/82(2)/029909(1) 029909-1 ©2010 The American Physical Society





6.3 Paper II: Level density and thermodynamic prop-
erties of dysprosium isotopes



PHYSICAL REVIEW C 85, 014323 (2012)

Level density and thermodynamic properties of dysprosium isotopes
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1Department of Physics, University of Oslo, N-0316 Oslo, Norway
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163,164Dy nuclei have been measured by use of the Oslo method on data from pick-up (3He, α) and inelastic
scattering (3He,3He′) reactions, respectively. The level densities for these dysprosium isotopes together with
previously measured 160–162Dy are extracted in the region below the neutron binding energy. Thermodynamic
properties are deduced within both micro-canonical and canonical ensemble theories. A phase transition from
the pair-correlated state at low energies to a less correlated or uncorrelated state is studied in both ensembles. It
is investigated whether the temperature of the nucleus is constant or a varying function of excitation energy. It
is found that above an excitation energy of 3 MeV the temperature of all five dysprosium nuclei have a constant
value within the experimental uncertainties. The impact of a constant-temperature level density versus a Fermi
gas level density is discussed with respect to the canonical heat capacity.

DOI: 10.1103/PhysRevC.85.014323 PACS number(s): 21.10.Ma, 24.30.Gd, 25.55.Hp, 27.70.+q

I. INTRODUCTION

The nuclear level density is defined as the number of
quantum energy levels per energy unit, and it may give
information on the underlying nuclear structure. In particular,
step structures in the level density can be interpreted as
fingerprints of the pair-breaking process. At low excitation
energy all nucleons are coupled together in time-reversed
orbitals, so-called Cooper pairs. As the energy increases the
pairs will break up. The first broken pairs of the nucleus cause
a large and abrupt change to the system. As the number of
broken pairs increase more and more of the levels near the
Fermi energy are occupied by unpaired particles. One therefore
expects a weakening of the pair correlation, and eventually it
will vanish. Within the seniority model, the step structure in
the level density is connected to a specific seniority quantum
number (see, e.g., Ref. [1] and references therein).
Also, onemay shed new light on the process of quenching of

the pair correlations using the framework of thermodynamics.
Thefirst broken pairs result in a first-order phase transition seen
as discontinuities in the micro-canonical heat capacity. The
nucleuswill also undergo a phase transitionwhenmoving from
the pair-correlated state to a less correlated state. A signature
of such a phase transition would be the S shape of the heat
capacity derived in the canonical ensemble. This transition
has been observed in dysprosium nuclei and in other nuclei in
the same mass region [2,3].
In this paper we will compare new data on 163,164Dy to

the previously extracted 160–162Dy data. One of the goals
is to map the behavior of nuclei in this mass region to
achieve further knowledge of the systematics of such nuclei.
We have investigated in detail how the nuclear temperature
depends upon the excitation energy. All the experimental data
are extracted using the Oslo method [4]. Details about the
experimental method are presented in Sec. II, followed by

*h.t.nyhus@fys.uio.no

the experimental results for the level density in Sec. III. In
Sec. IV thermal properties of the nuclei are extracted and
discussed, within the framework of both the micro-canonical
and the canonical ensemble. Finally, conclusionswill be drawn
in Sec. V.

II. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

The experiment was performed at the Oslo Cyclotron
Laboratory (OCL). A self-supporting target of 164Dy enriched
to 98.5%,with a thickness of 1.73mg/cm3, was bombarded by
a 38-MeV beam of 3He particles. The target was placed in the
center of the multidetector array CACTUS [5]. Surrounding
the target, eight Si telescopes were placed at a 45◦ angle,
relative to the beam line in the forward direction, tomeasure the
ejectiles. The particle telescopes were composed of a thin front
detector (≈140 μm), which the particles traverse depositing
some energy, and a thick end detector (≈1500 μm), where the
particles are stopped completely. To measure the γ decay 28
collimated NaI(Tl) detectors were used. The γ -ray detectors
were mounted on a spherical frame surrounding the particle
telescopes. The γ detectors have a total efficiency of 15.2%
for Eγ = 1332 keV.
The reactions of interest were the pick-up re-

action 164Dy(3He, α)163Dy and the inelastic scattering
164Dy(3He,3He′)164Dy reaction. From the knownQ value and
the reaction kinematics, the ejectile energy is transformed
into initial excitation energy of the residual nuclei. Further,
coincidence matrices containing excitation energy versus γ -
ray energy could be extracted. The excitation energy bins are
chosen to be 120 keV wide, and total γ -ray spectra were ob-
tained for each bin. These γ -ray spectra where unfolded using
the measured response function of the CACTUS array [6].
The first (primary) γ rays emitted in each γ -decay cascade

reveal essential information about decay properties. The
primary γ rays in each decay cascade are extracted. These
γ rays are used to construct the so-called first-generation

014323-10556-2813/2012/85(1)/014323(10) ©2012 American Physical Society
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matrix P (Ei,Eγ ), which is a two-dimensional matrix giving
the excitation energy of the nucleus versus the energy of the
primary γ rays. Experimentally, one cannot resolve which
γ ray in a cascade is emitted first. However, a subtraction
method, described in Ref. [7], has been developed. This
method enables us to extract the primary γ rays from the
rest of the cascade. An assumption made in this procedure
is that the γ -decay pattern is independent of whether the
state is populated in a direct reaction or is populated via γ

decay from higher lying states following the initial reaction.
When the states have equal chance of being populated by
the two processes, the assumption is fulfilled because the
following γ decay is a property of the states themselves. When
the states have different cross sections to be populated by
the two processes, the assumption may not hold. However,
in the region of high level density it is likely that the γ

distribution is independent of the type of population. The
experimental γ -ray matrix is displayed in Fig. 1.
According to Fermi’s golden rule the decay probability may

be factorized into the transition matrix element between the
initial and final state, and the density at the final state ρf [8],

λi→f = 2π

h̄
|〈f |H |i〉|2ρf . (1)

By normalizing the primary γ -ray spectrum to unity for each
excitation energy bin, the first-generation matrix P (Ei,Eγ )
will represent the decay probability forEi → Ef = Ei − Eγ ,

Ei∑
Eγ =Emin

γ

P (Ei,Eγ ) = 1. (2)

We may write the equivalent expression of Eq. (1) as

P (Ei,Eγ ) ∝ Ti→f ρf , (3)

where Ti→f is the γ -ray transmission coefficient, and ρf =
ρ(Ei − Eγ ) is the level density at excitation energy Ef after
the first γ -ray emission. The Brink-Axel hypothesis states
that the γ -strength function, and thus also the transmission
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FIG. 1. (Color online) The experimental first-generation matrix
of 163Dy. The dashed lines show the limits set in the experimental
first-generation matrix.

coefficient, depends only on the energy of the γ transition
and not on the excitation energies of the initial (Ei) and final
(Ei − Eγ ) states [9,10]. Assuming that this hypothesis is valid,
we can write Eq. (3) as

P (Ei,Eγ ) ∝ T (Eγ )ρ(Ei − Eγ ). (4)

The above factorization is based on the essential assumption
that the system is fully thermalized prior to γ emission, so
that the reaction can be described as a two-stage process of
which the first is the formation of the compound nucleus,
which subsequently decays in a manner that is independent
of the mode of formation [11]. This requirement is fulfilled
by two factors. First, the spacing between the levels in the
quasicontinuum is so small that it is comparable to the residual
interaction. The wave functions will therefore overlap and
we obtain a significant configuration mixing. Second, the
formation of a complete compound state is as fast as∼10−18 s,
significantly less than the typical lifetime of a state in the
quasicontinuum,which is∼10−15 s. Therefore, the assumption
is believed to be reasonable, and the decay process is at least
mainly statistical.
The ρ and T functions can be determined by an iterative

procedure [4], where each data point in the two functions is
adjusted until a global χ2 minimum with the experimental
P (Ei,Eγ ) matrix is reached. In the fitting procedure a region
of low excitation energy is excluded from the P matrix due to
nonstatistical decay, as indicated in Fig. 1. The first-generation
method has a weakness in that it is difficult to subtract
yrast transitions correctly in the P matrix. The levels from
which these transitions originate are populated more strongly
from higher excited levels through γ emission than through
the direct reaction. In addition there are limitations in the
electronics that make the low γ -ray energy region (Eγ <

400 keV) not reliable. For these reasons a region of low γ -ray
energy in the P matrix is excluded.
The first-generation spectra P for 164Dy at six different

excitation energies are displayed in Fig. 2 and these are
compared to the ones obtained by multiplying the extracted
T and ρ functions. In general, the agreement between the
experimental data and the fit is very good.
It has been shown [4] that if one solution of the multiplica-

tive functions ρ andT is known, one may construct an infinite
number of other functions, which give identical fits to the P

matrix. All the solutions are related to each other through the
two transformations [4]

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ) (5)

and

T̃ (Eγ ) = B exp(α Eγ )T (Eγ ), (6)

where A, B, and α are constants representing the absolute
value of T and ρ and the slope of the two functions,
respectively. From the γ -ray transmission coefficient T , the
γ -ray strength function can be extracted, as has been reported
in Ref. [12] for 163,164Dy. In this paper we will focus on the
level density.
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FIG. 2. (Color online) Comparison of experimental first-generation spectra (squares) and the ones obtained from multiplying the extracted
T and ρ functions (red line).

III. THE LEVEL DENSITY

Through the global fitting to the data points the functional
form of ρ is determined. The absolute normalization of the
function as well as the slope remains to be found. These
coefficients are found by normalizing Eq. (5) to known
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FIG. 3. Normalization of the level densities of 163Dy to neutron
resonance data (upper panel) and to discrete levels (lower panel). The
regions in between the arrows are used for normalization.

experimental data. At low excitation energy it is assumed that
all levels are known from discrete spectroscopy. The level
density is normalized to these levels; the result can be viewed
in the lower panel of Fig. 3. At higher excitation energies ρ

is normalized to the level density determined from the known
neutron resonance spacing data [13] at the neutron binding
energyBn. To calculate the level density atBn, the back-shifted
Fermi gas model was used [14,15]:

ρ(U, J ) =
√

π

12

exp(2
√

aU )

a1/4U 5/4

(2J+1) exp[−(J+1/2)2/2σ 2]
2
√
2πσ 3

,

(7)

ρ(U ) = exp(2
√

aU )

12
√
2a1/4U 5/4σ

, (8)

where ρ(U, J ) represents the level density for both parities for
a given spin J , and ρ(U ) is the level density for all spins and
parities. The parameter σ gives the spin dependence and a is
the level density parameter. The intrinsic excitation energy is
given by U .
The neutron resonance spacing D for s-wave neutron

capture can be expressed as follows:

1

D
=1
2

[
ρ

(
Bn, J=Jt+1

2

)
+ρ

(
Bn, J=Jt−1

2

)]
, (9)

where Jt is the spin of the target nucleus in neutron capture.
Here we assume that both parities contribute equally to the
level density at the neutron binding energy Bn [4]. As recently
reported in Ref. [16], calculations of the parity asymmetry of
163Dy and 164Dy show that it approaches zero as a function
of excitation energy; in fact it is approximately zero from
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TABLE I. Parameters used for normalizing ρ.

Nucleus Epair C1 a D σ (Bn) Bn ρ(Bn) Jt

(MeV) (MeV) (MeV−1) (eV) (MeV) (106 MeV−1)

163Dy 0.661 −1.293 17.653 62(5) 5.408 6.271 0.96(12) 0
164Dy 1.707 −1.291 17.747 6.8(6) 5.492 7.658 1.74(21) 5

2

around 4 MeV, which is far lower than Bn. When combining
Eqs. (7)–(9) one can obtain an expression for the level density
at the neutron binding energy of

ρ(Bn)=2σ
2

D

1

(I+1) exp(−(I+1)2/2σ 2)+I exp(−I 2/2σ 2)
,

(10)

where the spin-cutoff σ is calculated as follows [15]:

σ 2 = 0.0888
√

aBnA
2/3, (11)

and A is the mass number of the nucleus.
The experimental data extend up to about Bn − 1 MeV; an

interpolation is thus required to reach Bn. The back-shifted
Fermi gas model [14,15] was applied for this purpose:

ρbs(E) = η
exp(2

√
aU )

12
√
2a1/4U 5/4σ

. (12)

The intrinsic excitation energy is given by U = E − C1 −
Epair, where C1 is the back-shift parameter equal to C1 =
−6.6A−0.32 MeV. The pairing energy Epair is based on the
pairing gap parameters �p and �n evaluated from odd-even
mass differences [17] according to Ref. [18]. The spin-cutoff
parameter σ is given by σ 2 = 0.0888aT A2/3, where the
nuclear temperature is described by

T =
√

U/a. (13)

The back-shifted Fermi gas model of Eq. (12) must be scaled
in order to fit the level density calculated at Bn using the
experimentally determined neutron resonance spacing. This is
done through the parameter η, which is equal to 0.52 and 0.56
for 163Dy and 164Dy, respectively. The normalization at high
excitation energy for 163Dy is displayed in the upper panel of
Fig. 3. All the parameters used in the normalization are given
in Table I.
Note that the uncertainties displayed in Fig. 3 only reflect

statistical uncertainties and do not include the uncertainties
related to the model used for normalization. This is also the
case for the other figures showing experimental data. We have
chosen the present parametrization for normalization in order
to be consistent with previous work on 160–162Dy.
The normalized ρ of both nuclei are displayed in Fig. 4. We

observe a characteristic steplike structure in the level density of
the even-even 164Dy nucleus. Similar structures are observed in
several rare earth isotopes, in particular for even-even nuclei.
Microscopic calculations based on the senioritymodel indicate
that step structures in the level density can be explained by the
consecutive breaking of nucleon Cooper pairs [1]. The discrete
levels below the plateau located beneath 1 MeV of excitation
energy are caused by rotational modes of the nucleus.

We observe a steep slope of the level density around
1.6MeV for 164Dy, which corresponds to twice the pairing gap
parameters, 2�n = 1.66MeV and 2�p = 1.75MeV, which is
the expected energy needed to break a neutron and proton pair,
respectively. The even-odd nucleus already has an unpaired
neutron at low energies. Due to the smearing effect of this
valence neutron we cannot identify as easily the breaking of
Cooper pairs in 163Dy by studying the level density directly. In
the following we will investigate this further by studying the
thermodynamics of the nucleus.

IV. THERMAL PROPERTIES

Themicro-canonical ensemble describes an isolated system
with fixed total energy E and volume size V . The micro-
canonical ensemble is often preferred as the proper framework
when describing a nucleus. One can justify this because the
nuclear force has a very short range, and the nucleus does
normally not share its excitation energy with its surroundings.
It is therefore fair to consider the nucleus as an isolated system.
However, the drawback for applying this ensemble is that some
thermodynamic properties, such as the temperature T and heat
capacity CV , can show huge fluctuations and even negative
values. If one applies the canonical ensemble, allowing heat
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164Dy (lower panel). The regions in between the arrows are used for
normalization.
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exchange, these mathematical difficulties are met. However,
this approach causes structural changes to be smoothed.
Results obtained from both the micro-canonical and canon-

ical ensemble are given in the following. In both ensembles
one observes phaselike transitions as the system goes from a
state where all the particles are coupled to a less correlated or
uncorrelated state.

A. Micro-canonical ensemble

The micro-canonical partition function is given by the
multiplicity of states �(E), which is directly proportional to
the level density and a spin dependent factor:

�s(E) ∝ ρ(E)(2〈J (E)〉 + 1), (14)

where 〈J (E)〉 represents the average spin at excitation energy
E. The 2〈J 〉 + 1 degeneracy of magnetic substates is not
known, because there exist little experimental data regarding
the spin distribution. We have therefore chosen to work with
a multiplicity solely depending on the experimental level
density:

�l(E) = ρ

ρ0
, (15)

where ρ0 is a constant used for normalization.
The level density is our starting point for extracting

thermodynamic properties of the nucleus. The entropy S is
then described by

S = kB ln�l(E) = kB ln ρ(E)+ S0, (16)

where S0 = −kB ln ρ0. The constant S0 is a normalization
factor adjusted to fulfill the third law of thermodynamics,
which states that the entropy approaches a constant value as
the temperature goes to zero. In the even-even nucleus 164Dy,
there is only one possible configuration in the ground state,
and thus the ground-state entropy should be S = ln 1 = 0. The
normalization factor is calculated to be S0 = −2.08kB to fulfill
this requirement. The same value is used in 163Dy; however,
there are more possible configurations at low temperature in
this nucleus and therefore the entropy has a nonzero value at
low temperature.
The extracted entropies are displayed in Fig. 5. We observe

a near-constant entropy difference between the two nuclei. As
was reported in an earlier work [19], the entropy excess �S

may be interpreted as the single-quasiparticle entropy. In this
case the entropy can be expressed by

S = nS1, (17)

where n is the number of quasiparticles and S1 is the
single-quasiparticle entropy. The entropy difference is almost
constant in the region above an excitation energy of 2 MeV.
After performing a least-squares fit in this region the entropy
difference is found to be S1 = 1.94(1)kB . This suggests that
the entropy is an extensive function with respect to the number
of quasiparticles (as opposed to macroscopic systems where it
is an extensive quantity which scales with the volume of the
system). This is a rather surprising result that contradicts the
well-established Fermi gas model, which is often applied to
model the level density.

)
B

E
n

tr
o

p
y 

S
 (

k

0

2

4

6

8

10

12

Dy164

Dy163

Excitation energy E (MeV)
0 1 2 3 4 5 6 7

)
B

S
 (

k
E

n
tr

o
p

y 
d

if
. 

0.5
1

1.5
2

2.5
3

3.5
4

FIG. 5. (Color online) Upper panel: The micro-canonical en-
tropies of 163,164Dy, where the solid lines represents a linear fit to
the data points to obtain the temperature in different energy regions.
Lower panel: The entropy difference between 163Dy and 164Dy, where
the solid line gives the average entropy difference in the energy region
Ei = 2–5 MeV.

Other thermodynamic quantities such as temperature and
heat capacities are derived from the entropy. The temperature
T for a system in equilibrium is given by

T =
(

∂S

∂E

)−1

V

. (18)

The temperature of the systems is found by applying Eq. (18),
which corresponds to the inverse slope of the entropy displayed
in Fig. 5. The slopes were found through a least-squares fit
to the experimental entropy. However, we observe in Fig. 5
that the functional form of the entropy is not linear but has
some structure and a slight curvature. This results in different
temperatures in different energy regions. We have therefore
performed a fit in three energy regions, namely the 2–3, 3–4,
and 4–5 MeV regions. The fits are displayed as solid lines in
the upper panel of Fig. 5. The entropies of 160–162Dy, taken
from the experiments discussed in Ref. [20], are displayed
in Fig. 6. Similarly, the temperatures of 160–162Dy have been
extracted within the three energy regions. The fits are indicated
in Fig. 6 and all the temperatures are given in Table II. The
average temperatures have been extracted within the three
regions for all thementioned dysprosiumnuclei, and the results
are displayed in Fig. 7. We observe from Fig. 7 and Table II
that the lowest energy region has a lower temperature for all
the nuclei, with an average of T2–3MeV = 0.51(2) MeV. The
two higher energy regions have a more similar temperature of
T3–4 MeV = 0.60(2) MeV and T4–5MeV = 0.57(3) MeV, and
thus they agree within the uncertainties. Note that the highest
energy region in 161Dy and 163Dy is close to the neutron
separation energy and therefore the uncertainties are rather
high.
In Ref. [21] temperatures of some dysprosium isotopes

were found using a constant-temperature formula of the level
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density, fitted to a level density derived from the low energy
level schemes and neutron resonance densities. The following
temperatureswere found:T161Dy = 0.57(3),T162Dy = 0.58(1),
T163Dy = 0.59(2) and T164Dy = 0.58(1). This is in excellent
agreement with the temperatures found from this dataset in
the region above an excitation energy of 3 MeV.
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TABLE II. Least-squares average of temperature in different
energy regions.

Nucleus/energy region 2–3 MeV 3–4 MeV 4–5 MeV

(3He,α)160Dy 0.46(8) 0.66(8) 0.59(11)
(3He,α)161Dy 0.52(4) 0.61(5) 0.53(16)
(3He,3He)161Dy 0.48(7) 0.57(11) 0.64(23)
(3He,α)162Dy 0.48(4) 0.64(4) 0.57(4)
(3He,3He)162Dy 0.49(7) 0.61(9) 0.60(10)
(3He,α)163Dy 0.54(8) 0.58(11) 0.73(48)
(3He,3He)164Dy 0.55(4) 0.55(4) 0.53(6)
Average 0.51(2) 0.60(2) 0.57(3)

Viewing Fig. 6 we observe structure in the entropy,
especially pronounced in 160Dy. This is again interpreted as
pair breakups, and in 160Dy also more than one broken pair
can be identified. The largest difference in the temperature
when comparing the excitation energy regions is found in
160Dy, where the temperatures are T2–3 = 0.46(8) MeV and
T3–4 = 0.66(8) MeV. This is probably due to these structures
we observe.
A slight change in the entropy will result in significant

fluctuations in the temperature, as shown in Fig. 8. The micro-
canonical heat capacity CV is given by

CV =
(

∂T

∂E

)
V

. (19)

Because negative slopes of the temperature occur this will
create negative values of the heat capacities. In Fig. 8 the
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(left) and 164Dy (right).
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temperatures and heat capacities are displayed together with
the entropy for both nuclei. The negative branches of the heat
capacities can be identified as the breaking of nucleon Cooper
pairs, which results in a first-order phase transition. Negative
heat capacities are not observed in macroscopic systems, but
they have been observed in other microscopic systems [22].
The low-energy region is displayed in Fig. 8 to illustrate how
the first broken pairs can be identified. At higher energies the
transitions are harder to identify due to the smoothening of the
already broken pairs.
It should be noted that the region below2� in Fig. 8 is domi-

nated by collective excitations, especially for 164Dy, which has
no valence neutron. It is therefore a challenge to interpret the
temperature and heat capacity at such low excitation energies,
since rotational states are considered to be cold. Therefore, we
do not take these low-energy data points into consideration
when interpreting the thermodynamic quantities.

B. Canonical ensemble

The partition function of the canonical ensemble is ex-
pressed as the Laplace transformation of the multiplicity of
states �(Ei),

Z(T ) =
∞∑
i=0

�(Ei)e
−Ei/kBT , (20)

where �(Ei) = δEiρ(Ei), and where Ei is the excitation
energy, δEi is a small energy interval, and ρ(Ei) represents
the level density at excitation energyEi . The sum of the above
equation runs from zero to infinity; however, the experimental
level density is only extracted up to the neutron binding
energy Bn. Above this region the level density has reached
the quasicontinuum and is expected to follow the Fermi gas
model expression given by Eq. (12).
From the partition function all other thermodynamic quan-

tities in the canonical ensemble can be derived. The Helmholtz
free energy F is defined by

F (T ) = −kBT lnZ(T ). (21)

The canonical entropy S, average energy 〈E〉, and heat
capacity CV are given by the three following equations:

S = −
(

∂F

∂T

)
V

, (22)

〈E〉 = −T 2
(

∂(F/T )

∂T

)
V

, (23)

CV = −T

(
∂2F

(∂T )2

)
V

, (24)

respectively.
In Fig. 9 the canonical temperature is displayed together

with the micro-canonical temperature for 164Dy. Due to
the strong smoothening introduced by the transformation to
the canonical ensemble we do not observe clear transitions
between the various quasiparticle regimes as we do in the
micro-canonical ensemble, but only at the transition where
all pairing correlations are quenched as a whole. With this
in mind the results extracted within the canonical framework
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FIG. 9. The temperature of 164Dy derived within the micro-
canonical ensemble (circles) and the canonical ensemble (line).

are presented. The canonical entropy, average energy, and heat
capacities are displayed in Fig. 10, for both nuclei. We observe
in the upper panel of Fig. 10 a clear entropy difference between
the two nuclei at temperatures below T � 0.5–0.6MeV,where
the odd-A 163Dy nucleus has the highest entropy. For the
lowest temperature we observe an entropy difference of≈2kB

between the two nuclei, which is of the same order as in the
micro-canonical ensemble. At around T = 0.5–0.6 MeV the
entropies of the even-odd and even-even systems approach
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FIG. 10. (Color online) The canonical entropy (a), average energy
(b), and heat capacity (c) of 163Dy (dashed line) and 164Dy (solid
line).
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FIG. 11. (Color online) The heat capacities of 163,164Dy derived
from level density functions which have been varied according to a
normal distribution.

each other; this corresponds to an average excitation energy
of 〈E〉 = 2.7–4.6 MeV in 163Dy and 〈E〉 = 3.1–5.5 MeV
in 164Dy. Above this region the entropy curves coincide
and display almost identical behavior. Also the entropies of
161,162Dy coincide at approximately the same temperature [19],
and the forms of these entropies are very similar to what we
observe in 163,164Dy. This is because pairing is expected to
play a less significant role as the level density becomes high.
Naively, we expect that adding two additional quasiparticles
to 163Dy hardly has any effect on the entropy, when in a region
of high temperature.
The average excitation energies 〈E〉 behave smoothly as

a function of temperature, as shown in the central panel of
Fig. 10. We observe that 164Dy has a higher 〈E〉 than the
neighboring 163Dy nucleus as a function of temperature. In
Ref. [23] a model based on the canonical ensemble theory
was applied to perform calculations for nuclei around 162Dy.
It was found that even-even, odd-even/even-odd, and odd-
odd systems have different excitation energies at the same
temperature, and the even-even system requires the highest
〈E〉 value. This is also confirmed by experimental data (for
example in Ref. [20]) for 160,161Dy.

In Fig. 10 we observe the characteristic S shape of the
heat capacity of 164Dy, which is interpreted as a fingerprint
of a phase transition. The S shape is much weaker for 163Dy,
displayed in the same figure. In Ref. [24] two different critical
temperatures were discovered in the canonical ensemble
using the method discussed in Refs. [25,26]. The lowest
critical temperature is explained by the first breakup of
Cooper pairs. The second critical temperature is due to
the continuous melting of Cooper pairs at higher excitation
energies. We see an increase in the heat capacity around
temperature T ≈ 0.45–0.55 MeV in the 164Dy nucleus, which
may be interpreted as the first critical temperature. This first
contribution is strongest for 164Dy because this is an even-even
nucleus and thus the first broken pair represents a large and
abrupt step in the level density and thereby a large contribution
to the heat capacity. The second critical temperature can be
observed at about T ≈ 0.55–0.65 MeV and agrees with the
region where the entropy curves coincide. Similar features for
the heat capacity as discussed here have been observed for
160,161Dy [20].
There are no error bars displayed in Fig. 10. Since all the

thermodynamic quantities are derived from the experimental
level density, possible uncertainties must stem from this
function. To ensure that the uncertainties do not exceed the
odd-even differences the level densities of 163,164Dy have
been varied according to a normal distribution N (μ, σ ), with
the experimentally determined μ and standard deviation σ .
Figure 11 displays the heat capacities of 163,164Dy with 30
variations of the heat capacity for both nuclei. We note
that varying the level density produces slightly different heat
capacities; however, these differences are of a much smaller
scale than the odd-even differences.
We continue the discussion of whether the micro-canonical

temperature is constant or varying as a function of excitation
energy, by studying the canonical heat capacity. First, we
have compared the level density of 164Dy calculated from
the Fermi gas model to a constant-temperature level density,
satisfying T = 0.5MeV in themicro-canonical ensemble. The
results are displayed in the left panel of Fig. 12. The Fermi
gas level density resembles to some degree the experimental
functions. However, the Fermi gas model gives a strong
curvature of the level density, when viewed on a logarithmic
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FIG. 12. (Color online) Left panel:
The level density of 164Dy calculated
from the Fermi gas model and from a
constant-temperature level density. Right
panel: The corresponding heat capacities.
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FIG. 13. (Color online) The heat capacities of 164Dy derived from
the level density, where the Fermi gas extrapolation is taken from
different temperatures.

scale. The corresponding experimental function displays a
more or less constant slope above an excitation energy of
3 MeV. In the right panel of the same figure the canonical
heat capacities are displayed. The constant-temperature level
density diverges around T = 0.5 MeV, while the Fermi gas
level density gives a heat capacity which resembles more
the ones displayed in Fig. 10, although it hardly gives any
phase transition as observed in Fig. 10. However, the presence
of some linear behavior of the entropy may induce strong
S-shape-like behavior for the heat capacity. It is interesting to
investigate what gives rise to the characteristic S shape of the
heat capacities in even-even nuclei.
Figure 13 displays the heat capacities found from the

level density, where the experimental level density has been
replaced by a Fermi gas function above five different excitation
energies: 2, 3, 4, 5, and 6 MeV. It is interesting to see that
the region of constant temperature, with an excitation energy
of 3–5 MeV, contributes significantly to the second-order

phase transition. However, we can clearly identify a phase
transition alsowhen only including experimental data below an
excitation energy of 2 MeV, although this transition is weaker.
This is in the same region where we observe the step structure
in the entropy, thought to be caused by the first pair splittings.
There are thus several features that determines the shape of the
heat capacity.

V. CONCLUSIONS

The level density and thermodynamic quantities of
160–164Dy have been extracted by use of the Oslo method. The
level density displays the characteristic step structure seen at
low excitation energy in several rare earth isotopes. The step is
most pronounced in the even-even nuclei, which also coincides
with previous findings.
We observe transitions between the various quasiparticle

regimes when studying thermodynamical properties within
the framework of the micro-canonical ensemble. The micro-
canonical temperatures for 160–164Dy have been extracted
within three energy regions, E = 2–3, 3–4, and 4–5 MeV. We
have found that the temperature increases up to E ∼ 3 MeV
and then remains approximately constant due to the continuous
breaking of nucleon pairs. In the canonical ensemble we
observe a second-order phase transition, influenced by the
first broken pairs of the nucleus, but also the later breaking
of Cooper pairs enhances the phase transition significantly. In
results obtained from the canonical ensemble we observe a
transition to a state where pair correlations no longer play a
central role.
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Energy Calibration of the NewSUBARU Storage
Ring for Laser Compton-Scattering Gamma Rays

and Applications
Hiroaki Utsunomiya, Tatsushi Shima, Keiji Takahisa, Dan Mihai Filipescu, Ovidiu Tesileanu, Ioana Gheorghe,

Hilde-Therese Nyhus, Therese Renstrøm, Yiu-Wing Lui, Yasuhisa Kitagawa, Sho Amano, Shuji Miyamoto

Abstract—Using γ-ray beams produced in the inverse Compton
scattering between CO2 laser photons and relativistic electrons,
we have calibrated electron beam energies in the nominal energy
range 550 - 974 MeV at the synchrotron radiation facility
NewSUBARU. The laser Compton-scattering (LCS) γ-ray beams
were produced at energies from 561 keV to 1728 keV and detected
with a high-purity germanium detector. The electron beam
energies were determined by reproducing the full energy peaks
of the γ-ray beams by Monte Carlo simulations. The accuracy
of the calibration is (5.5 - 9.4) × 10−5. The reproducibility of the
electron beam energy is excellent in an independent injection and
deceleration. The present energy calibration of the electron beams
offers a standard for the energy calibration of high-energy LCS
γ-ray beams produced with a Nd:YVO4 laser. As applications
of the energy calibration, we investigated the energy linearity of
a 3.5” × 4.0” LaBr3(Ce) detector in the response to γ rays at
energies up to 10 MeV and the energy profile of the high-energy
LCS γ-ray beams.

I. INTRODUCTION

QUASIMONOCHROMATIC γ-ray beams are produced at

the synchrotron radiation facility NewSUBARU in the

inverse Compton scattering of laser photons from relativistic

electrons circulating in a storage ring [1], [2]. A beam of 974

MeV electrons is injected from a linear accelerator into the

NewSUBARU storage ring. The energy represents a relative

value with ∼ 1% uncertainty based on the magnetic field

strength and the beam optics of the storage ring [3] and is

hereafter referred to as the nominal energy in this paper. The

injected beam can be either decelerated down to 0.5 GeV or

accelerated up to 1.5 GeV.
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In the laser inverse Compton scattering, the energy of

scattered photons is given by

Eγ =
4η2εL

1 + (ηθ)2 + 4ηεL/(mc2)
, (1)

where εL is the energy of a laser photon, mc2 is the rest

mass energy of an electron, θ is the scattering angle of a laser

photon with respect to the electron incident direction, and η is

the Lorentz factor for electron, η = Ee/mc2, defined by the

total electron energy Ee and the rest mass energy.

The energy amplification factor in nearly head-on collisions

(θ ≈ 0), Eγ /εL ≈ 4η2, is very large on the order of 106 - 107

for several hundred MeV to a few GeV electrons (1.6 × 107

for Ee = 1 GeV) so that an eV laser beam can be converted to

an MeV γ-ray beam in the laser inverse Compton scattering.

Note that the numerator in Eq. (1) is a dominating factor to

determine the LCS γ-ray energy. At NewSUBARU, one can

produce low-energy γ-ray beams at a few MeV using a CO2

laser (wave length λ=10.59μm) and high-energy γ-ray beams

at a few tens of MeV using a Nd:YVO4 laser (λ=1064nm) in

collisions with 0.5 - 1.0 GeV electrons.

It is not straightforward to calibrate the energy of the

LCS γ-ray beam in the region of a few tens of MeV for a

lack of proper γ-ray sources. A high-resolution germanium

detector may be used for calibration. However, the standard

γ-ray sources can cover only low energies so that a linear

extrapolation must be employed to extend the energy range

to high energies. It may not be surprising that such extrap-

olation causes uncertainties of ∼ 50 keV around 10 MeV.

Furthermore, a large-volume Ge detector is needed to detect a

high-energy edge corresponding to the full-energy (FE) peak

for 10 MeV γ rays if it may not identify the FE peak as an

isolated peak.

One can see by setting θ = 0 in Eq. (1) that the maximum

energy of the LCS γ-ray beam can be determined if the

electron beam energy is known. It is, however, risky to rely

on the nominal energy because the 1% uncertainty results in

2% uncertainty in the maximum γ-ray energy. Obviously, one

derives from Eq. (1)

ΔEγ

Eγ
≈ 2

ΔEe

Ee
. (2)

We searched the neutron threshold for 197Au located at 8.07

MeV [4] by detecting neutrons from 197Au(γ,n) reactions with
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a 2 mm-thick 197Au target. LCS γ-ray beams were produced

with a Nd:YVO4 laser and electron beams at the nominal

electron energies from 677 to 661 MeV in steps of 2 MeV.

By changing the electron-beam energy by 2 MeV, we changed

the γ-ray energy by ∼ 50 keV. Note that electrons at 676.43

MeV produce an LCS γ-ray beam with the maximum energy

at the neutron threshold for 197Au. Neutrons were detected

with a 4π neutron detector consisting of 20 3He proportional

counters embedded in a polyethylene moderator. Statistically

significant events were observed above the nominal energy

667 MeV, indicating that the neutron threshold lies between

two LCS γ-ray energies produced by electrons at the nominal

energies of 667 and 665 MeV. This observation led to the fact

that there is 1.4 - 1.7% discrepancy between real and nominal

energies in this energy region; the real energy is higher than

the nominal energy.

The threshold search for 197Au showed that absolute cali-

bration of electron beam energies is of critical importance to

photoneutron cross section measurements near neutron thresh-

old with LCS γ-ray beams. We performed absolute calibration

of electron beam energies of the storage ring NewSUBARU

in the nominal energy range of 0.55 - 1.0 GeV. In this paper,

we report results on the calibration of the NewSUBARU and

applications of calibrated electron beams.

II. EXPERIMENT

The technique of laser Compton backscattering has been

developed to accurately determine electron beam energies as

an alternative to the technique of the resonant spin depolar-

ization which is limited to high energy electrons because of

the spin depolarization time [6]. This technique was widely

used to calibrate electron beam energies by using low-energy

LCS γ-ray beams produced with a CO2 laser [5], [7], [8], [9]

and a free electron laser [10] at different facilities worldwide.

Unlike the past calibrations, however, we performed the energy

calibration systematically in the following five steps; (1)

production of low-energy LCS γ-ray beams in collisions of

CO2 laser photons with electrons at ten nominal energies

from 974 MeV to 550 MeV; (2) measurements of LCS γ-

ray beams with a high-purity germanium (HPGe) detector;

(3) energy calibration of the HPGe detector with the standard

γ-ray sources; (4) determination of electron beam energies by

Monte Carlo simulations, and (5) study of the accuracy and

the reproducibility of the electron beam energies.

Figure 1 depicts the experimental setup for the present

measurement in the γ-ray beam line BL01 of the NewSUB-

ARU synchrotron radiation facility. An electron beam was

injected from the linear accelerator into the NewSUBARU

storage ring at the nominal energy 974 MeV. A grating-fixed

CO2 laser (INFRARED INSTRUMENTS, IR-10-WS-GF-VP)

oscillated at a single line of the strongest master transition

P(20). The central wave length of the P(20) transition is known

(λ =10.5915μm ± 3Å) [11] with the band width 1.3Å in the

full width at half maximum FWHM [12]. The band width, i.e.

the gain linewidth 340 MHz in FWHM, was provided by the

INFRARED INSTRUMENTS. Including the band width, the

accuracy of the wave length of CO2 laser is 4.1 × 10−5.

Fig. 1. Experimental setup.

The CO2 laser photons produced outside the storage ring

vault were led through four mirrors and one lens into the

vacuum tube of the ring to a collision point P1 in the straight

section of the storage ring. The alignment and stability of the

laser optical elements were carefully checked by sending a

He-Ne laser beam into the straight section of the ring from

the upstream on the other side of the beam line and back

to the center of the exit of the CO2 laser through the optical

elements. The collision point P1 for the CO2 laser is located at

the distance of 878cm from a collimator set in the experimental

Hutch 1. The collision between laser photons and electrons

takes place with the maximum collision efficiency at P1, where

the electron beam forms a narrow waist in the beam optics [1].

In contrast, the collision point P2 for the Nd:YVO4 laser is

located at 1847cm from the collimator.

The fundamental parameters for the production of low-

energy LCS γ-ray beams such as the central wave length (λ)

and the band width (δλ) of the CO2 laser, the size (σe), the

divergence (θe), and the energy spread (δEe) of the 974 MeV

electron beam, and the angle acceptance of the collimator (θc)

are listed in Table I [1], [13]. The electron beam size at the

collision point P1, which is circular, is calculated from the

Twiss parameters in the straight section of the ring [1].

The beam line BL01 has two collimators; one (C1) in the

storage ring vault and the other (C2) in Hutch 1. Both colli-

mators are made of 10cm thick Pb. In the present experiment,

we used the C1 collimator with an aperture of 6mm diameter.

The C2 collimator with an aperture of 2mm diameter defined

scattering angle for laser Compton backscattering. A NaI(Tl)

detector of 6” diameter and 5” thickness was mounted at the

end of the beam line in the experimental Hutch 2, GACKO

(Gamma collaboration hutch of Konan University), to monitor

the γ-ray flux. The C2 collimator was mounted on an x-y-

θ stage driven by stepping motors. Fine tunings of the laser
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TABLE I
FUNDAMENTAL PARAMETERS FOR THE PRODUCTION OF A LOW-ENERGY

LCS γ-RAY BEAM WITH A CO2 LASER AT THE NOMINAL ELECTRON BEAM

ENERGY 974 MEV AT THE NEWSUBARU STORAGE RING: THE CENTRAL

LASER WAVE LENGTH λ, THE LASER BAND WIDTH δλ, THE ELECTRON

BEAM SIZE σe , THE ELECTRON BEAM DIVERGENCE θe , THE ELECTRON

BEAM ENERGY SPREAD δEe , AND THE ANGLE ACCEPTANCE OF THE 2MM

COLLIMATOR θc .

central λ band width δλ σe θe δEe θc
(μm) FWHM (mm) (mrad) (%) (mrad)

10.5915±3Å 1.3 Å 0.3 0.13 0.042 0.11
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Fig. 2. Response function of the HPGe detector to LCS γ-rays produced in
collisions of CO2 laser photons with electrons at the nominal energy of 850
MeV

optics and the collimator alignment along the horizontal (x),

vertical (y) and rotational (θ) axes were carried out to achieve

the maximize γ-ray flux. A coaxial HPGe detector (64 mm

in diameter × 60 mm in length) was mounted in GACKO

and aligned with synchrotron radiation to measure the low-

energy LCS γ rays. The HPGe detector was calibrated with the

standard γ-ray sources, 60Co including the sum peak, 133Ba,
137Cs, and 152Eu and a natural radioactivity 40K.

After the injection of 974 MeV electrons into the NewSUB-

ARU storage ring, the electron beam was decelerated to the

nominal energy 950 MeV, and subsequently down to 550 MeV

in steps of 50 MeV followed by a production of the LCS γ-

ray beam and a measurements with the HPGe detector at every

energy.

III. RESULTS

A. Response functions of the HPGe detector to LCS γ-ray
beams

Figure 2 shows a response function of the HPGe detector to

LCS γ-rays produced in collisions of CO2 laser photons with

electrons at the nominal energy of 850 MeV. One can identify

the FE peak as well as the Compton scattered component. The

FE peak has an energy spread arising from angle acceptance

of the 2 mm collimator and the electron beam emittance.

Furthermore, the high-energy edge of the FE peak has a slope

that reflects the energy resolutions of the electron beam and the

HPGe detector. Because of the energy spread and the slope of

the FE peak, the electron beam energy cannot be determined

analytically using Eq. (1).
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Fig. 3. (a) Monte Carlo simulation (dotted line) with a calibrated energy
of the electron beam 982.2 MeV in comparison with the experimental data
(solid line) taken at a nominal energy 974 MeV. (b) The same as (a), but
for a simulation with a calibrated energy 860.7 MeV in comparison with the
data at a nominal energy 850 MeV. (c) The same as (a), but for a simulation
with a calibrated energy 559.6 MeV in comparison with the data at a nominal
energy 550 MeV.

B. Energy Calibration

The production of LCS γ-rays and the response function

of the HPGe detector to the γ-rays were simulated with

the Monte Carlo code of Ref. [8]. The EGS4/PRESTA code

simulates laser-Compton backscattering and interactions of γ
rays with detector materials. The production of γ-rays is based

on the kinematics and the cross section for laser Compton

backscattering. The cross section in the rest frame of electron

is given by the Klein-Nishina formula. The code EGS4 [14]

is utilized for the latter simulation.

The effect of the electron beam emittance on the laser

Compton backscattering consists of those of the beam size and

the beam divergence. The divergence of non-parallel electron

beams causes a kinematical effect that increases an angu-

lar acceptance of the collimator for Compton backscattering

compared to that for parallel beams and has no influence
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on the maximum energy of the LCS γ-ray beam which

geometrically corresponds to θ=0. The electron beam size

defines the size of ”a light source” from which LCS γ rays are

emitted within a finite solid angle subtended by the collimator.

Therefore, the angular acceptance of the collimator increases

with increasing the electron beam size compared to that for

the point source. As a result, the divergence and size of the

electron beam have the same kinematical effect which affects

only the energy spread of the LCS γ-ray beam in the Monte

Carlo simulation. Thus, the electron beam divergence can be

effectively incorporated into the electron beam size though

they are different physics quantities, which forms an effective

source size [15].

The divergence of the laser beam as well as of the electron

beam does not change the maximum energy of the LCS γ-

ray beam because it is distributed around zero approximately

in a Gaussian function. The maximum allowed misalignment

of the laser optics is estimated to be 3mrad for the lens with

the Rayleigh length 40cm used for the CO2 laser with the

beam radius 1.2mm. The 3mrad misalignment between the

incoming CO2 laser and 974 MeV electron beam decreases

the maximum energy of the LCS γ-ray beam by 3.3 × 10−6.

Therefore, laser misalignment, particularly after tuning the

laser optics in the head-on collision geometry by optimizing

the intensity of the LCS γ-ray beam, can be safely neglected

in the present measurement.

The energy resolution of the HPGe detector can be ef-

fectively incorporated into the energy spread of the electron

beam, which forms the effective energy spread. The two fitting

parameters, the electron beam energy and the effective energy

spread have a good control on the position and the slop of the

high energy edge of the HPGe response function, respectively,

as shown in [6], whereas the effective source size has a good

control on the energy spread of the LCS γ-ray beam.

Monte Carlo simulations were carried out to reproduce the

FE peak of the response function with three fitting parameters;

the electron beam energy, the effective energy spread, and the

effective source size (ζ) at the collision point. The parameters

of the distance of the collimator from the collision point, the

collimator size, the wave length of the CO2 laser, and the size

of the HPGe crystal are fixed.

Examples of the best fits to the spectra are shown in Fig.

3. The FE peaks were well reproduced by the Monte Carlo

simulations with the source size ζ = 0.9 - 1.1 mm. The

overall energy resolution was taken to be ΔEe/Ee ≈ 0.1%

in the standard deviation of Gaussian function, which is a

quadratic sum of the detector resolution 0.077% (2.43 keV in

FWHM for 1332 keV γ rays) and the intrinsic energy spread

of the electron beam 0.063%. The estimated energy spread is

consistent with the fundamental parameter listed in Table I.

The difference of the calibrated energy Ec
e , thus determined

by the Monte Carlo simulation from the nominal energy En
e ,

ΔE = Ec
e -En

e is shown in Fig. 4 as a function of En
e . The

4th-order polynomial fit to the data gives

ΔE = −4.6949× 10−10(En
e )

4 + 1.3017× 10−6(En
e )

3

−1.3596× 10−3(En
e )

2 + 0.63854(En
e )− 103.94. (3)
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Fig. 4. The difference ΔE of the calibrated energy Ec
e from the nominal

energy En
e of the electron beams, ΔE = Ec

e -En
e , at the NewSUBARU

storage ring.

Here Ec
e and En

e are given in MeV. The discrepancy of the

energy calculated by using Eq. (3) from the calibrated energy

is 6 - 215 keV (1 × 10−3−2 × 10−2 %) at the ten data points.

The difference between the nominal and calibrated energies is

10.44 MeV (1.56%) at the nominal energy 667 MeV, being

consistent with the result of the neutron-threshold search for
197Au.

C. Accuracy of the electron beam energy

Besides the wave length of the CO2 laser, the accuracy

of the electron beam energy is determined by two factors

involved in the response function measurement, i.e., the energy

calibration and the counting statistics of the response function

[10]. The systematic uncertainty arises from the former factor

and the wave length through Eq. (1), while the statistical

uncertainty from the latter factor in the least-squares fit to

the response functions. The energy calibration of the HPGe

detector is shown in Fig. 5. Note that the energy range of the

LCS γ-ray beams produced below 1.8 MeV is fully covered by

the present calibration. The slope and intercept of the linear fit

to the calibration data are given in the figure. The systematic

uncertainty for the energy calibration is energy-dependent; it

is 7.9 × 10−5 at the nominal energy 550 MeV and 5.4 ×
10−5 at 974 MeV, including the accuracy of the wave length

(4.1 × 10−5). We obtained the statistical uncertainty of (1 -

5) × 10−5 in the least-squares fit to the response functions.

An example of the dependence of the Monte Carlo simulation

on the electron beam energy is shown in Fig. 6. The overall

uncertainty in the present calibration over 550 - 974 MeV is

(5.5 - 9.4) × 10−5, which is to be compared with the one (3

×10−5) reported in Ref. [10].

D. Reproducibility of the electron beam energy

To test the reproducibility of the electron beam energy, we

aborted the 550 MeV electron beam left in the calibration runs,

initialized all the dipole magnets of the storage ring, newly
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Fig. 6. The dependence of the Monte Carlo simulation on the electron beam
energy is shown for the response function of the HPGe detector to the LCS
γ-ray beam produced at the nominal energy 850 MeV. The best-fit result with
Ec

e = 860.72 MeV is shown in comparison with those obtained with Ec
e =

860.72 ± 0.50 MeV and Ec
e = 860.72 ± 1.00 MeV.

injected an electron beam at the nominal energy 974 MeV, and

repeated the procedure of deceleration down to 550 MeV. We

produced LCS γ-ray beams with the CO2 laser at two nominal

energies, 974 MeV and 550 MeV. The response functions of

the HPGe detector measured in the second injection are shown

by the open circles in Fig. 3(a) and 3(c). The high-energy edge

of the LCS γ-ray beam was excellently reproduced at these

two energies.

IV. APPLICATIONS

A. Linearity of a LaBr3(Ce) detector

An interesting application of the present energy calibration

of the electron beam may lie in energy calibration of photon

detectors. To demonstrate such an application, we produced

high-energy LCS γ-ray beams in an energy range of 10

- 8 MeV at the nominal energies 753.0 (calibrated energy

764.0), 714.0 (724.8) and 677.0 (687.7) MeV with a Nd:YVO4

laser (SPECTRA-PHYSICS, INAZUMA, λ=1064 nm) and

measured the γ-ray beams with a LaBr3(Ce) detector (3.5” in

diameter × 4.0” in length, BrilLanCe380 89S102/3.5, Saint-

Gobain) at the count-rate less than 10 Kcps with a bias voltage

of +400 V and a shaping time 0.5 μs of a NIM amplifier

module. Figure 7 shows response functions of the LaBr3(Ce)

detector to these LCS γ-rays.

We performed Monte Carlo simulations of the response

function of the LaBr3(Ce) detector. The angle acceptance of

the collimator with an aperture of 2mm diameter which is

located at 1847cm from the collision point P2 is 0.054 mrad.

It is pointed out in Ref. [10] that the γ beam energy spread due

to the collimation is smaller than or comparable to that due

to the electron beam energy spread, the collimation effect will

start to alter the high energy edge of the spectrum, resulting in

a shift of the spectrum toward the higher energy. This is not the

case in the present measurement because the γ beam energy

spread due to the collimation is η2θ2c = (5.31 - 6.55) × 10−3,

whereas that due to the electron beam energy spread is 1.26

× 10−3. The energy resolution of the LaBr3(Ce) detector was

incorporated into the simulation as effective energy resolution

of the electron beam as was done for the HPGe detector. Best

fits were obtained with the resolution 0.45% which can be

translated into the detector resolution 2.1% in FWHM for

8 - 10 MeV γ rays. The energy resolution of the present

LaBr3(Ce) detector was 4.0% in FWHM for 662 keV γ rays

and 2.6% in FWHM for 1332 keV γ rays. These energy

resolutions are less than those (2.8% at 662 keV, 2.1% at 1332

keV, and 1% at 10 MeV) reported in small (3 × 10 mm3 [16],

2” × 2” [17]) detectors.

Results of the Monte Carlo simulation are shown by the

dotted lines in Fig. 7. The high-energy portion of the spectra

including the FE peak and the bump of Compton scattering

was well reproduced. It is noted that the low energy yield

of the data includes contributions from backscattering by Pb

blocks that were used as a part of the detector mount for the

LaBr3(Ce). The discrepancy between the experimental data

and the simulation in the low-energy region is due to this

backscattering. The FE peaks formed at 10.19 MeV, 9.14 MeV,

and 8.19 MeV corresponded to the channel numbers, 947.2,

857.8, and 775.8, respectively. The linearity in the response

of the LaBr3(Ce) detector to the 8 - 10 MeV LCS γ rays is

shown in Fig. 8, where the low-energy data were taken with

the standard γ-ray sources (60Co, 133Ba, 137Cs, and 152Eu)

and an Am-Be neutron source as a 4.4 MeV γ-ray emitter,

including the single escape peak.

The data show that the linearity is slightly deteriorated at

high energies beyond the Am-Be data at 4.4 MeV. A best

fit with the 2nd-order polynomial function is shown by the

solid line in Fig. 8 together with the best-fit parameters. For

comparison, a linear fit to the data taken with the standard

γ-ray sources and the Am-Be source is also shown by the

dashed line in the figure. It is seen that the output of the

LaBr3(Ce) detector for 8 - 10 MeV γ rays is quenched to

lower channel numbers from the linear response; the higher the

energy is, the larger the quenching. A similar quenching effect
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Fig. 7. (a) Monte Carlo simulations (dotted line) with 764.0 MeV (nominal
energy 753 MeV) and ζ=1.7 mm for the LCS γ-ray beam produced with a
Nd:YVO4 laser in comparison with the experimental data (solid line). The
experimental data are energy-calibrated following the simulation. (b) The same
as (a), but for a simulation with 724.8 MeV (nominal energy 714 MeV) and
ζ=2.5 mm. (c) The same as (a), but for a simulation with 687.7 MeV (nominal
energy 677 MeV) and ζ=2.5 mm.

was previously reported above 10 MeV in a 2” × 2” LaBr3(Ce)

detector [17]. It is unknown, however, that the quenching is

due to scintillation property intrinsic to the LaBr3(Ce) crystal

or saturation of the photomultiplier tube.

B. Energy profile of the LCS γ-ray beams

The present large volume LaBr3(Ce) detector identified the

FE peak in the response function as shown in Fig. 7. The

Monte Carlo simulation, which best reproduced the response

functions of the LaBr3(Ce) detector, also provides the energy

distribution of the LCS γ-ray beam incident on the detector.

The energy profile of the LCS γ-ray beams is shown in Fig.

8. The present study shows that using a 2 mm collimator,

LCS -ray beams were produced at 10.19 MeV in the FE peak

with a 267 keV spread (δE) in FWHM, at 9.14 MeV with δE

=394 keV, and at 8.19 MeV with δE =339 keV. The energy
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Fig. 8. Linearity in the response of a LaBr3(Ce) detector to γ rays in the
energy range 356 - 10190 keV. The data for low-energy photons were taken
with the standard γ-ray sources, 60Co, 133Ba, 137Cs, and 152Eu, along with
an Am-Be source. The data include the single escape peak of 4.4 MeV γ rays
(Am-Be). The data for 8 -10 MeV γ rays were taken with LCS γ-ray beams
produced with a Nd:YVO4 laser. The solid line is the 2nd-order polynomial
fit to the data, while the dashed line is the best linear fit to the low-energy
data excluding those for the LCS γ rays.
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Fig. 9. (Color online) Results of the Monte Carlo simulations for energy
distributions of the LCS γ-ray beams produced at the γ-ray experimental
hutch GACKO of the synchrotron radiation facility NewSUBARU.

spread amounts to 2.6 - 4.3% in FWHM. The energy spread

of the LCS γ-ray beam depends on tuning the electron and

laser beam optics besides the collimator size.

V. CONCLUSION

We have systematically calibrated energies of the electron

beams in the storage ring NewSUBARU in the nominal energy

range of 550 - 974 MeV by using low-energy LCS γ-ray

beams produced with a CO2 laser at the γ-ray experimental

hutch GACKO. The absolute energy calibration of the electron

beams with the high accuracy and excellent reproducibility

provides the energy calibration of high-energy LCS γ-ray

beams produced with a Nd:YVO4 laser. The energy-calibrated
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LCS γ-ray beams produced in the range of 5.6 - 17.3 MeV

in the fundamental mode of the laser operation with λ =

1064 nm offer a variety of experimental opportunities in

nuclear science. The energy range can be extended to 11.2

- 34.6 MeV and 16.8 - 51.9 MeV in the second and third

harmonics of the laser with λ = 532 nm and λ = 355 nm,

respectively. As applications of the calibrated electron beams,

we demonstrated a detector-calibration measurement with a

3.5” × 4.0” LaBr3(Ce) detector in its response to 8 - 10 MeV

γ rays and an energy-profile study of the high-energy LCS

γ-ray beams. The large-volume LaBr3(Ce) detector with the

excellent response function and the good energy resolution can

be a good instrument to determine the energy profile of the

high-energy LCS γ-ray beams.
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Chapter 7

Summary and outlook

7.1 Summary

Statistical nuclear properties in the quasi-continuum energy region are studied for

a wide range of nuclei, namely Dy, Pd, Sm and Nd isotopes. In particular, the

nuclear level density, the radiative strength function and (γ,n) cross sections are

studied thoroughly. The experimental techniques used are particle-γ coincidence

measurements and photo-neutron experiments.

Small resonances in the vicinity of the giant electric dipole resonance are ev-

ident in the radiative strength function (RSF). Some of whom have a theoretical

explanation and some which are jet to be fully understood. In the mass region of

Pd isotopes we observe an enhanced strength in the ≈ 8 MeV γ-energy region.

The strength might stem from the skin oscillation of excess neutrons against the

core, but this is still an open question. The characteristics of this resonance is

examined for 105−108Pd. Surprisingly, the strength is best modelled by a gaus-

sian distribution. This Gaussian-shape might be made up of the sum of two or

more Lorentzian functions, and one should consider the possibility of several res-

onances overlapping in this region.

The shape of the RSF at low γ energies indicate that Pd isotopes are in a

transitional region regarding the upend structure. The upbend feature is not very

pronounced, but we observe a constant strength over a wide γ-energy region. Also

the origin of the upbend is not theoretically settled, and it is therefore of uppermost

interest to study its appearance.

New Dy data are extracted at energies above the neutron separation threshold

for 162Dy and 163Dy, in a region where there are no existing data. The photo-

neutron cross sections and RSF’s are evaluated. Dysprosium data have also been

extracted at lower γ-ray energies for the 160−164Dy nuclei. In the mass region of

Dy isotopes, the M1 scissors resonance mode is found around 3 MeV of γ energy.
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The resonance can be modelled with a Lorentzian shape, where the strength, width

and centroid are fitted to experimental data. The resonance parameters of the Dy

isotopes are studied thoroughly.

The Nd and Sm isotopes are also investigated from photo-absorption experi-

ments. The photo-neutron cross sections are extracted for the 143−146,148Nd and
144,147−150,152,154Sm nuclei. The TALYS reaction code have been used to repro-

duce the radiative neutron capture cross sections for the Nd and Sm isotopes,

which are known, in addition to the unknown radiative neutron capture cross sec-

tions of the 147Nd and 153Sm nuclei.

The nuclear level densities and thermodynamic quantities are studied for the

Dy nuclei. Thermodynamical properties are deduced within both micro-canonical

and canonical ensemble theories. A phase transition from the pair-correlated state

at low energies to a less correlated or uncorrelated state is studied in both ensem-

bles. We observe transitions between the various quasiparticle regimes within the

framework of the micro-canonical ensemble. In the canonical ensemble we ob-

serve a second-order phase transition, influenced by the first broken pairs of the

nucleus, but also the later breaking of Cooper pairs enhances the phase transition

significantly.

7.2 Outlook
In future experiments it would be interesting to extend the study of the upend

structure to more nuclei. As mapping the properties of this enhancement would

be crucial to obtain a theoretical understanding of its origin. The same reasoning

should motivate further investigation of the enhanced strength in the ≈ 8 MeV

γ-energy region of Pd, and neighbouring nuclei.

Explaining the origin of enhanced strength at low energies is interesting, not

only with respect to the fundamental understanding of nuclear physics, the (n,γ)
cross section for incident keV neutrons depends sensitively on the RSF, in the

energy range below the neutron threshold, typically around 6 MeV of γ-ray en-

ergy. The predicted tail of the strength function at low energies therefore plays a

fundamental role with respect to astrophysical applications.
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Appendix A

New intensities and FWHMs
deduced for the NaI response
functions

The unfolding procedure of the Oslo method is described in Ref. [38]. However,

new and improved measurements of the response functions of the NaI detectors

have been performed. New intensities and FWHMs deduced for the NaI response

functions are given in Table A.1. The response functions are measured for several

in-beam γ lines from excited states in 13C, 16,17O, 28Si and 56,57Fe [?].

In addition, the resolution of the response function is set to 10% of the exper-

imental one due to technical reasons, compared to 50% in the method described

in Ref. [38]. Besides these changes, the new unfolding method follows the proce-

dures described in the paper from 1996, see Ref. [38].
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APPENDIX A. NEW INTENSITIES AND FWHMS DEDUCED FOR THE

NAI RESPONSE FUNCTIONS

Eγ (keV) FWHM[keV]a εb
tot p f pc ps pd pa

800.0 72.8 0.923 0.5778 0.4222 0.0000 0.0000 0.0000

1600.0 103.1 1.003 0.3968 0.5896 0.0097 0.0000 0.0039

2400.0 135.7 1.023 0.3135 0.6537 0.0180 0.0000 0.0148

3200.0 163.9 1.037 0.2443 0.6918 0.0340 0.0071 0.0227

4000.0 188.2 1.045 0.1970 0.7059 0.0444 0.0086 0.0441

4800.0 207.3 1.053 0.1599 0.7256 0.0525 0.0092 0.0529

5600.0 222.7 1.059 0.1435 0.7489 0.0577 0.0084 0.0415

6400.0 238.6 1.066 0.1296 0.7671 0.0590 0.0081 0.0362

7200.0 263.5 1.071 0.1200 0.7760 0.0524 0.0089 0.0427

8000.0 287.4 1.073 0.1102 0.7850 0.0458 0.0096 0.0493

8800.0 310.2 1.076 0.0999 0.7953 0.0389 0.0104 0.0556

9600.0 331.9 1.079 0.0897 0.8054 0.0321 0.0111 0.0619

10400.0 351.9 1.081 0.0830 0.8126 0.0307 0.0113 0.0623

a Normalized to 79.9 keV (6%) at 1.33 MeV.
b Normalized to 1 at 1.33 MeV.

Table A.1: New intensities and FWHMs deduced for the NaI response functions.
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Appendix B

Solving for σ(Eγ) by using a Taylor
expansion method

We will use a Taylor expansion method to solve for σ(Eγ) in the following ex-

pression [46], ∫ EMax

Sn

nγ(Eγ)σ(Eγ)dEγ =
Nn

NtNγξ εng
, (B.1)

where Nn represents the number of neutrons detected, Nt gives the number of tar-

get nuclei per unit area, Nγ is the number of γ rays incident on target, εn represents

the neutron detection efficiency, and finally ξ = (1−eμt)/(μt) is a correction fac-

tor for self-attenuation in the target. The factor g represents the fraction of γ flux

above the neutron threshold Sn.

We choose to expand the cross section σ(Eγ) around the average γ-ray energy

Eav,

σ(Eγ) =
∞

∑
i=0

σ (i)(Eav)

i!
(Eγ −Eav)

i. (B.2)

Inserting into Eq. (B.1), we obtain

∫ EMax

Sn

nγ(Eγ)σ(Eγ)dEγ = σ (0)(Eav)
∫ EMax

Sn

nγ(Eγ)dEγ (B.3)

+ σ (1)(Eav)
∫ EMax

Sn

nγ(Eγ)(Eγ −Eav)dEγ

+
1

2
σ (2)(Eav)

∫ EMax

Sn

nγ(Eγ)(Eγ −Eav)
2dEγ

+
1

6
σ (3)(Eav)

∫ EMax

Sn

nγ(Eγ)(Eγ −Eav)
3dEγ ,
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METHOD

where we have truncated the series for i > 3. When we have applied these for-

mulas, we have ensured that the cross sections take the form of a third order

polynomial, with the result that all higher order terms vanish. We can also show

that the second term of the series equals zero:

σ (1)(Eav)
∫ EMax

Sn

nγ(Eγ)(Eγ −Eav)dEγ (B.4)

= σ (1)(Eav)[
∫ EMax

Sn

nγ(Eγ)EγdEγ −
∫ EMax

Sn

nγ(Eγ)EavdEγ ].

The integral in the first term in Eq. (B.4) is identified as the the average γ energy

of the beam, ∫ EMax

Sn

nγ(Eγ)EγdEγ = Eav, (B.5)

which is exactly the same solution we obtain from the second term,

∫ EMax

Sn

nγ(Eγ)EavdEγ = Eav

∫ EMax

Sn

nγ(Eγ)dEγ = Eav, (B.6)

since the energy distribution of the γ-ray beam is normalized to one. Hence, the

terms in the bracket expression in Eq. (C.4) cancel out, and the S1 term disappears.

We also notice that the first term in the Taylor series of Eq. (B.4) equals the

cross section derived at the average energy, which we identify as the monochro-

matic cross section σmono(Eav). We can express Eq. (B.4) in the more compact

way, ∫ EMax

Sn

nγ(Eγ)σ(Eγ)dEγ = σmono(Eav)+S2 +S3, (B.7)

where

S2 =
1

2
σ (2)(Eav)

∫ EMax

Sn

nγ(Eγ)(Eγ −Eav)
2dEγ (B.8)

S3 =
1

6
σ (3)(Eav)

∫ EMax

Sn

nγ(Eγ)(Eγ −Eav)
3dEγ .
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Appendix C

Solutions of the primary γ-ray
matrix

The normalized primary γ ray matrix can be written as [45]

P(Ei,Eγ) =
T (Eγ)ρ(Ei −Eγ)

∑Ei
Eγ=Emin

γ
T (Eγ)ρ(Ei −Eγ)

. (C.1)

This function does not give a one-to-one solution when solving for ρ(Ei −Eγ)
and T (Eγ), but an infinite number of possibilities. If we have one set of solutions

ρ(Ei −Eγ) and T (Eγ), we can construct other solutions through the following

transformation [45]:

ρ̃(Ei −Eγ) = ρ(Ei −E f )g(Ei −Eγ) (C.2)

T̃ (Eγ) = T (Eγ) f (Eγ). (C.3)

All solutions have to fulfill Eq. (5.9),

P(Ei,Eγ) =
T (Eγ)ρ(Ei −Eγ)

∑Ei
E ′

γ=Emin
γ

T (E ′
γ)ρ(Ei −E ′

γ)
=

T̃ (Eγ)ρ̃(Ei −Eγ)

∑Ei
E ′

γ=Emin
γ

T̃ (E ′
γ)ρ̃(Ei −E ′

γ)
. (C.4)

Inserting Eqs. (C.3) and (C.3) into Eq. (C.4),

T (Eγ)ρ(Ei −Eγ)

∑Ei
E ′

γ=Emin
γ

T (E ′
γ)ρ(Ei −E ′

γ)
=

T (Eγ) f (Eγ)ρ(Ei −E f )g(Ei −Eγ)

∑Ei
E ′

γ=Emin
γ

T (E ′
γ) f (E ′

γ)ρ(Ei −E f )g(Ei −E ′
γ)
,(C.5)
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and rearranging we obtain

f (Eγ)g(Ei −Eγ)
Ei

∑
E ′

γ=Emin
γ

T (E ′
γ)ρ(Ei −E ′

γ) =

Ei

∑
E ′

γ=Emin
γ

f (E ′
γ)g(Ei −E ′

γ)T (E ′
γ)ρ(Ei −E f ). (C.6)

We observe that the right hand side of the above equation is independent of Eγ ,

thus the left hand side must also be independent of this variable. As a result we

can conclude that the product of f and and g is a function of Ei alone,

f (Eγ)g(Ei −Eγ) = h(Ei). (C.7)

We aim to find a functional form of f and g. In order to do so we investigate

Eq. (C.7) for some special values of Eγ . First, examining the equation for Eγ = Ei,

yielding

A f (Eγ) = h(Eγ), (C.8)

where we have set the constant g(0) = A. Since Eq. (C.7) should hold for all

values of Eγ , we can insert the above result,

f (Eγ)g(Ei −Eγ) = A f (Ei). (C.9)

Furthermore, setting Eγ = 0 and f (0) = B, we can write

Bg(Ei) = A f (Ei). (C.10)

Inserting this in Eq. (C.9) one obtains

g(Eγ)g(Ei −Eγ) = Ag(Ei). (C.11)

Using a Taylor series expansion for the function g in the limit of Eγ → 0 yields

(A+g′(0)Eγ)(g(Ei)−g′(Ei)Eγ) = AgEi, (C.12)

where we terminate second and higher order terms in the series. Further, this is

equivalent to,

Ag′(Ei) = g′(0)g(Ei). (C.13)

We define α ≡ g′(0)/A, and we solve the differential equation
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∫ Ei

0

dg(EI)

g(Ei)
= α

∫ Ei

0
dEi. (C.14)

We then obtaining the following:

g(Ei) = AeαEi . (C.15)

Combining Eqs. (C.15) and (C.10) gives the remaining relation

f (Ei) = BeαEi . (C.16)

Finally, inserting Eqs. (C.15) and (C.16) into Eqs. (C.3) and (C.3) we get

ρ̃(Ei −Eγ) = ρ(Ei −Eγ)Aeα(Ei−Eγ ) (C.17)

T̃ (Eγ) = T (Eγ)BeαEγ . (C.18)

143



APPENDIX C. SOLUTIONS OF THE PRIMARY γ-RAY MATRIX

144



Bibliography

[1] H.A. Bethe, Phys. Rev. 50, 332 (1936).

[2] A. Gilbert, A. G. W. Cameron, Can. J. Phys. 43 (1965) 1446.

[3] T. von Egidy, H. H. Schmidt, A. N. Behkami, Nucl. Phys. A 481 (1988) 189.

[4] T. von Egidy, Dorel Bucurescu, Phys. Rev. C 72 , (2005), 044311, and Phys.

Rev. C 73 , (2006), 049901(E).

[5] T. von Egidy and D. Bucurescu. Phys. Rev. C 80, 054310 (2009).

[6] S. Goriely, S. Hilaire, and A.J. Koning, Phys. Rev. C 78, 064307 (2008).

[7] S. Hilaire, M. Girod, S. Goriely, and A.J. Koning, Nucl. Phys. C 86, 064317

(2012).

[8] H. Nakada, and Y. Alhassid, Phys. Rev. Lett. 79, 2939 (1997).

[9] Y. Alhassid, S. Lui, and H. Nakada, Phys. Rev. Lett 83, 4265 (1999).

[10] Y. Alhassid, S. Lui, and H. Nakada, Phys. Rev. Lett 99, 162504 (2007).

[11] R. Capote et. al., Reference Input Library, RIPL-2 and RIPL-3, available

online at URL: http://www-nds.iaea.org/RIPL-3/.

[12] G. A. Batholomew, E. D. Earle, A. J. Fergusson, J. W. Knowles. M. A. Lone,

Adv. Nucl. Phys. 7 , 229 (1972).

[13] D. M. Brink, Ph.D. thesis, Oxford University (1955).

[14] P. Axel, Phys. Rev. 126, 671 (1962).
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