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Abstract

We provide a notion of finite element system, that enables the con-
struction spaces of differential forms, which can be used for the numerical
solution of variationally posed partial differential equations. Within this
framework, we introduce a form of upwinding, with the aim of stabilizing
methods for the purposes of computational fluid dynamics, in the vanish-
ing viscosity regime.

Foreword

I am deeply honored to receive the first Stephen Smale prize from the Society
for Foundations of Computational Mathematics.

I want to thank the jury for deciding, in what I understand was a difficult
weighting process, to tip the balance in my favor. The tiny margins that simi-
larly enable the Gömböc to find its way to equilibrium, give me equal pleasure
to contemplate. It’s a beautiful prize trophy.

It is a great joy to receive a prize that celebrates the unity of mathemat-
ics. I hope it will draw attention to the satisfaction there can be, in combining
theoretical musings with potent applications. Differential geometry, which in-
fuses most of my work, is a good example of a subject that defies perceived
boundaries, equally appealing to craftsmen of various trades.

As I was entering the subject, rumors that Smale could turn spheres inside
out without pinching, were among the legends that gave it a sense of surprise and
mystery. I also remember reading about Turing machines built on other rings
than Z/2Z, which, together with parallelism and quantum computing, convinced
me that the foundations of our subject were still in the making. Happy for the
occasion provided by the FoCM conference, to meet the master, I was also a
bit intimidated to learn that we have a common interest in discrete de Rham
sequences. They are the topic of this paper.

Many people have generously shared their insights and outlooks with me. I
feel particularly indebted, mathematically as well as personally, to Jean-Claude
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Nédélec, Annalisa Buffa and Ragnar Winther. I’d like to dedicate this paper
to my grandmother, who will probably joke, as she usually does, that she has
noticed some mistakes on page 5. She constitutes an important fraction of my
readership, also numberwise.

I’m very grateful for this opportunity to make my work more widely known.

Introduction

Finite elements come in a variety of brands. The particular flavour consid-
ered here, called mixed finite elements, was pioneered by [36, 34] and has since
developed into versatile tool for the numerical solution of a variety of partial dif-
ferential equations describing, for instance, fluid flow and electromagnetic wave
propagation [9, 37, 31]. As remarked in [7], lowest order elements correspond
to constructs in algebraic topology referred to as Whitney forms [44, 45, 23].
Uniting these strands has led to the topic of finite element exterior calculus
[27, 2, 28, 15, 3], most recently reviewed in [5].

Finite element systems (FES) were introduced in [16] to provide a generaliza-
tion to arbitrary dimension of the dual elements constructed in [14]. This general
framework allows for a unified analysis of the preceding mixed finite elements,
but can also accommodate polyhedral decompositions of spaces (rather than
just simplices and products thereof) as well as general differential forms (rather
than just polynomial ones). This paper contains an introduction to FES, refer-
ring to [17, 20] for more ample treatments. The flexibility of FES with respect
to meshing techniques is already quite standard in mimetic finite differences and
finite volumes, with which one observes a confluence of techniques [11, 6, 24].
For our present purposes it is, however, the flexibility with respect to choice of
local functions that is of interest, since we will need exponentials and variants
thereof.

In spite of the topological twist of the subject, which might remind of [25, 8],
the ”upwinding” of the title refers not to winding numbers but to wind, of the
blowing kind. The equations of fluid dynamics typically feature a convective
term, hyperbolic in nature, moderated by a diffusive one, elliptic in nature. As
the viscosity vanishes, the nature of the equations changes, say from Navier-
Stokes to Euler’s equations, in what is called a singular limit. The highest order
derivatives are eliminated in a delicate limiting process, where fields display
sharp gradients and form boundary layers.

To handle this convection dominated regime, which is important for many
applications, special numerical methods have been designed, often under the
name upwinding, for instance the famous [13]. They achieve stability by tak-
ing into account the direction in which quantities (such as fluid densities or
momentum) are transported [32, 38]. This paper is devoted to how a form of
upwinding, extending [1, 41, 12, 46], can be incorporated in an FES, expanding
upon Example 5.31 in [20].

Section 1 serves as an appetizer, giving an introduction to the finite element
method in dimension one, exemplifying problems and solutions related to van-
ishing viscosity. Section 2 gives some ingredients on discrete geometry useful
for the definition of finite element systems, which is provided in 3. In section 4
we serve the upwinding technique which we have cooked up for FES. Section 5
contains some remarks for further rumination.
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1 Upwinding in dimension one

In this section we sketch a numerical method for solving one-dimensional convection-
diffusion problems, which is adapted to the convection dominated regime. This
well known method goes back at least to [1, 41] but is presented here in a finite
element language, as in e.g. [33]. Our numerical illustrations follow [39] quite
closely. This will give a quick introduction to the finite element method and
motivate the generalizations presented in the following sections.

We choose a < b in R and denote by I the interval [a, b]. For given α > 0
(viscosity), β ∈ R (convection) and f ∶ I → R (source) we want to solve the
second order differential equation for u ∶ I → R:

−αu′′ + βu′ = f, (1.1)

u(a) = 0 and u(b) = 0. (1.2)

This problem can be given a variational formulation. Let X denote the space:

X = H1
0(I) = {u ∈ L2(I) ∶ u′ ∈ L2(I), u(a) = 0, u(b) = 0}. (1.3)

The scalar product of L2(I) and its extensions by continuity to dualities between
Sobolev spaces, will be denoted:

⟨u, v⟩ = ∫ uv. (1.4)

We denote by A the differential operator:

A ∶ u↦ −αu′′ + βu′, (1.5)

and define a bilinear form a on X by:

a(u, v) = ⟨Au, v⟩ = α∫ u′v′ + ∫ βu′v. (1.6)

Introduce also a linear form l on X defined by:

l(v) = ⟨f, v⟩ = ∫ fv. (1.7)

The variational formulation of the above problem (1.1, 1.2) is:

u ∈X, ∀v ∈X a(u, v) = l(v). (1.8)

We now turn to the discretization of (1.8). Given a positive n ∈ N we choose
points xi ∈ [a, b] for i ∈ [[0, n]], such that:

a = x0 < ⋯ < xi < xi+1 < ⋯ < xn = b. (1.9)

These points subdivide [a, b] into n intervals of the form [xi, xi+1] and we denote
by hn the length of the longest one:

hn = max{∣xi+1 − xi∣ ∶ i ∈ [[0, n − 1]]}. (1.10)

We let Xn denote the subspace of X consisting of functions that are piecewise
affine with respect to this subdivision. The Galerkin discretization of (1.8) is:

un ∈Xn, ∀v ∈Xn a(un, v) = l(v). (1.11)
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For the purposes of analysis, one considers a sequence of such subdivisions,
indexed by n, providing a sequence (un) of approximate solutions to (1.8). For
fixed α > 0, β ∈ R, f ∈ L2(I) one has convergence of (un) to u, for instance in
the sense:

∥u − un∥L2(I) ≤ Ch2n and ∥u′ − u′n∥L2(I) ≤ C ′hn. (1.12)

Of course the constants C,C ′ depend on α,β, f . In practice we are interested in
a regime where β and f are moderate (“of order 1”), whereas α is several mag-
nitudes smaller. One analyses this regime by fixing β ≠ 0 and f , and considering
the asymptotic behavior of the sequence un[α], when α → 0 and n → ∞. This
is also referred to as the vanishing viscosity limit.

For illustration we chose a = −1, b = 1, β = 1 and f = 1. The exact solutions
u[α] for various α are plotted in the top graph in Figure 1. As α → 0 the
solution approaches the function u[0] ∶ I → R which solves:

βu′ = f, (1.13)

u(a) = 0. (1.14)

Notice that of the two boundary conditions (1.2), only one is retained by the
limit u[0]. At the other boundary point the small viscosity solutions u[α]
display singular behavior, with formation of a boundary layer. Given that α >
0, the part of the boundary where the homogeneous boundary condition is
respected, is the one where β, interpreted as a vectorfield on I, points into
the domain, called the inflow boundary (a in our case). The boundary layer
appears where β points out of the domain, called the outflow boundary (b in
our case). The thickness of this layer is roughly α/β. Since the differential
equation degenerates in its highest order term, this is an example of what is
called a singular perturbation problem, for which the above (singular) behavior
can be said to be typical.

For the Galerkin discretizations we have chosen equispaced points with
n = 25. Results are plotted in the middle row of Figure 1. As the viscosity
α approaches 0, the quality of the numerical solution deteriorates, with appari-
tion of unwanted oscillations, extending far beyond the boundary layer. The
numerical stability is often evaluated in terms of the dimensionless so-called
Péclet number:

Pé = hnβ/α. (1.15)

In the numerical experiments, α was chosen in such a way that:

Pé = 10k, k ∈ {−0.5,0,0.5,1}. (1.16)

The graphs illustrate that the numerical method rapidly deteriorates when Pé
increases above 1. Notice that the problem is related to stability rather than
consistency: at least away from the outflow boundary, the Galerkin space Xn

contains rather good approximations of the exact solution, but the method is
bad at choosing one.

A better numerical method can be obtained by cleverly choosing a new space
Yn and solving:

un ∈Xn, ∀v ∈ Yn a(un, v) = l(v). (1.17)

Such methods are called Petrov-Galerkin methods. One distinguishes between
the trial space Xn and the test space Yn. A rationale for the choice of Yn can be
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Figure 1: Decreasing viscosity from light gray to black. Exact solutions (top),
standard piecewise affine finite elements (middle), affine trial functions and up-
winded test functions (bottom).
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obtained as follows. Choose a scalar product b on X. Let a⋆ be the transpose
of a, the bilinear form associated with the adjoint differential operator:

A⋆ ∶ v ↦ −αv′′ − βv′. (1.18)

Denote by Φ ∶X →X the map determined by solving the adjoint problems:

∀v,w ∈X a⋆(Φ(w), v) = b(w, v). (1.19)

If we now solve (1.17) with Yn = Φ(Xn) we notice the following. For all w ∈Xn:

b(w,un) = a(un,Φ(w)) = l(Φ(w)) = a(u,Φ(w)) = b(w,u). (1.20)

Therefore un is the b-orthogonal projection of u on Xn. Orthogonal projec-
tion, which yields the best approximation with respect to the chosen norm, is
typically a more stable procedure than the Galerkin projection associated with
non-symmetric bilinear forms, such as a.

However this method can seem unpractical : for a given basis (ei) of Xn it
might seem too difficult a task to determine the basis fi = Φ(ei) of Yn. Recall
that the canonical basis of Xn consists of the functions λi ∶ I → R, indexed by
i ∈ [[1, n − 1]], uniquely determined by the properties λi ∈ Xn and λi(xj) = δij
(Kronecker δ) for all j ∈ [[1, n − 1]]. As it turns out, for certain choices of b we
can construct a similar basis for Yn quite easily, providing not a free lunch but
a bargain one.

Let b be defined by:

b(v,w) = ∫ v′w′ = ⟨Bv,w⟩. (1.21)

We notice that B ∶ v ↦ −v′′ induces an isomorphism:

B ∶Xn → Zn = ⊕
i∈[[1,n−1]]

R δxi , (1.22)

with Dirac δ’s at interior vertices. A basis (λ⋆i ) of Yn = Φ(Xn) = A⋆−1B(Xn)
can be obtained by choosing λ⋆i ∶ I → R to be the unique function satisfying
λ⋆i (xj) = δij for all j ∈ [[1, n − 1]] (as for the standard basis) and :

A⋆λ⋆i = 0 on ]xj , xj+1[ for each j ∈ [[0, n − 1]]. (1.23)

Indeed A⋆ then induces an isomorphism:

A⋆ ∶ Yn → Zn. (1.24)

The basis functions λ⋆i can be determined explicitly. When β = 0, the definition
(1.23) yields the standard basis. For β ≠ 0, λ⋆i is, on each sub-interval, a linear
combination of a constant and an exponential:

λ⋆i (x) = c0 + c1 exp(rx) with r = −β/α, and c0, c1 ∈ R. (1.25)

For r = 0 one should replace the above definition by affine functions. Typical
basis functions are represented in Figure 2 for different values of r. Actually the
chosen values are:

r = 10k − 10−k for k ∈ {0.5,0,−0.5,−1,−1.5}. (1.26)
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Figure 2: Basis functions, from moderately downwinded (light gray) to strongly
upwinded (black). Wind blowing from left to right.

In the bottom row of Figure 1 the numerical solutions for the Petrov-Galerkin
method (1.17) with upwinded basis functions for Yn are plotted.

There are many senses in which, as α → 0, the solution u[α] converges to
u[0] — but the norm associated with (1.21) is not one of them. In fact:

∥u[α]∥b →∞ as α → 0, (1.27)

precluding even weak convergence in X. This indicates that the b-norm is a
poor choice for convergence analysis of the numerical method in the vanishing
viscosity regime. From this point of view it is also a bit paradoxical that the
numerical results are so satisfactory. A better, but α-dependent, norm is defined
by:

b[α](v,w) = α∫ v′w′ + ∫ vw, (1.28)

for which one can check:

∥u[α] − u[0]∥b[α] → 0 as α → 0. (1.29)

For the numerics we can use the approximation:

b[α,n](v,w) = α∫ v′w′ +∑
i

v(xi)w(xi)µi, (1.30)

with µi = (xi+1 − xi−1)/2. (1.31)

With this choice we still have an isomorphism (1.22) so we get the same numer-
ical method as for (1.21).

7



Coincidentally the choice b[0, n] shows that the Petrov-Galerkin solution
un[α] is in fact the element of Xn interpolating u[α] at vertices. We conclude
that it is time to go to higher dimensions. We retain that the finite element
method divides space (the interval) into cells, defines functions locally on these
cells (with polynomials or exponentials for instance), imposing mere continuity
between cells. Stability can be achieved by creating pairs of spaces where local
functions match, through the differential operators of the problem to solve.

2 Discrete geometry

Useful references for the considerations recalled in this section include [25, 8].

2.1 Cellular complexes

For any natural number k ≥ 1, let Bk be the closed unit ball of Rk and Sk−1 its
boundary. For instance S0 = {−1,1}. We also put B0 = {0}.

Let S denote a compact metric space. A k-dimensional cell in S is a closed
subset T of M for which there is a Lipschitz bijection Bk → T with a Lipschitz
inverse (if a cell T is both k- and l-dimensional then k = l). For k ≥ 1, we denote
by BT its boundary, the image of Sk−1 by the chosen bi-Lipschitz map (different
such maps give the same boundary). The interior of T is by definition T ∖ BT
(it is open in T but not necessarily in S).

Definition 2.1. A cellular complex is a pair (S,T ) where S is a compact metric
space and T is a finite set of cells in S, such that the following conditions hold:

• Distinct cells in T have disjoint interiors.

• The boundary of any cell in T is a union of cells in T .

• The union of all cells in T is S.

The subset of T consisting of k-dimensional cells is denoted T k.

T k = {T ∈ T ∶ dimT = k}. (2.1)

We also say that T is a cellular complex on S.

Example 2.1. Choose a < b in R and let S = [a, b]. Choose points xi ∈ [a, b] for
i ∈ [[0, n]], such that:

a = x0 < ⋯xi < xi+1⋯ < xn = b. (2.2)

The following determines a cellular complex on S:

T 0 = {xi ∶ i ∈ [[0, n]]}, (2.3)

T 1 = {[xi, xi+1] ∶ i ∈ [[0, n − 1]]}, (2.4)

T = T 0 ∪ T 1. (2.5)

In fact all cellular complexes on S are of this form, for a uniquely determined
choice of points xi subject to (2.2).
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Figure 3: Product complex of two one-dimensional complexes. Cells are repre-
sented in gray, with black boundaries.

Example 2.2. Suppose we have two compact metric spaces M and N , equipped
with cellular complexes U and V. On M ×N we let U × V denote the product
cellular complex on M ×N , whose cells are all those of the form U ×V for some
U ∈ U and V ∈ V.

This construction is illustrated in Figure 3 for the product of two intervals
equipped with cellular complexes.

The boundary BT of any cell T of T can be naturally equipped with a cellular
complex, namely:

{T ′ ∈ T ∶ T ′ ⊆ T and T ′ ≠ T}. (2.6)

We use the same notation for the boundary of a cell and the cellular complex
it carries.

A refinement of a cellular complex T on S is a cellular complex T ′ on S such
that each element of T is the union of elements of T ′. We will be particularly
interested in simplicial refinements of cellular complexes.

A cellular subcomplex of a cellular complex T on S, is a cellular complex T ′
on some closed part S′ of S such that T ′ ⊆ T . For instance if T ∈ T is a cell,
its subcells form a subcomplex of T , which we denote by T̃ . We have seen that
the boundary of any cell T ∈ T can be equipped with a cellular complex which
is a subcomplex of T̃ .

A simplicial complex on a set S, is a set S of non-empty finite subsets of S,
such that for all T in S the non-empty subsets of T are also in S. The elements
of S are called simplices, the elements of a simplex vertices and the non-empty
subsets of a simplex faces.

We attach a reference cell to any simplex T ∈ S as follows:

∣T ∣ = {x = (xi)i∈T ∈ RT ∶ ∑
i∈T

xi = 1 and ∀i ∈ T xi ≥ 0}. (2.7)
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If T ′ ⊆ T we have a canonical affine map iTT ′ ∶ ∣T ′∣ → ∣T ∣. The direct limit of
this system is denoted ∣S ∣. It is obtained from the disjoint union of reference
simplices, identifying ∣T ′∣ with ∣T ∣ in the preceding situation.

If S is a subset of an affine space V , there are natural maps ΦT ∶ ∣T ∣ → V ,
from reference simplices to V :

ΦT ∶ x = (xi)i∈T ↦∑
i∈T

(xi)i. (2.8)

We say that the simplex is non-degenerate if this map is injective. We say that
the simplicial complex is non-degenerate if the induced map ∣S ∣→ V is injective.

More generally, simplicial cellular complexes are defined, replacing the affine
maps (2.8) by Lipschitz isomorphisms onto their ranges, which are then called
a simplicial cells or curved simplices. These maps should satisfy the relation
ΦT ○ iTT ′ = ΦT ′ when T ′ ⊆ T .

2.2 Cochains

Fix a cellular complex (S,T ). We suppose that for each T ∈ T of dimension
≥ 1, the manifold T has been oriented. The relative orientation of two cells T
and T ′ in T , also called the incidence number, is denoted o(T,T ′) and defined
as follows. For any edge e ∈ T 1 its vertices are ordered, from say 9e to :e. Define
o(e, 9e) = −1 and o(e, :e) = 1. Concerning higher dimensional cells, fix k ≥ 1.
Given T ∈ T k+1 and T ′ ∈ T k such that T ′ ⊆ T we define o(T,T ′) = 1 if T ′ is
outward oriented compared with T and o(T,T ′) = −1 if it is inward oriented.
For all T,T ′ ∈ T not covered by these definitions we put o(T,T ′) = 0.

For each k, let Ck(T ) denote the set of maps c ∶ T k → R. Such maps
associate a real number with each k-dimensional cell and are called k-cochains.
The coboundary operator δ ∶ Ck(T )→ Ck+1(T ) is defined by:

(δc)T = ∑
T ′∈T k

o(T,T ′)cT ′ . (2.9)

The space of k-cochains has a canonical basis indexed by T k. The coboundary
operator is the operator whose canonical matrix is the incidence matrix o, in-
dexed by T k+1×T k. We remark that the coefficients in the sum can be non-zero
only when T ′ ∈ BT ∩ T k. A fundamental property of δ is that δδ = 0 as a map
Ck(T ) → Ck+2(T ). In other words the family C●(T ) is a complex. It is called
the called the cochain complex and represented by:

0→ C0(T )→ C1(T )→ C2(T )→ ⋯ (2.10)

When S is a smooth manifold we denote by Ωk(S) the space of smooth
differential k-forms on S. Differential forms can be mapped to cochains as
follows. Let S be a manifold and T a cellular complex on S. For each k we
denote by ρk ∶ Ωk(S)→ Ck(T ) the de Rham map, which is defined by:

ρk ∶ u↦ (∫
T
u)T ∈T k . (2.11)

As a consequence of Stokes theorem on each cell of T we have that for each k
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the following diagram commutes:

Ωk(S) d //

ρk

��

Ωk+1(S)

ρk+1

��
Ck(T ) δ // Ck+1(T )

(2.12)

A celebrated theorem of de Rham states that the above map induces isomor-
phisms on cohomology groups. Whitney forms, that we shall soon encounter,
were introduced in [44, 45] (relative to smooth partitions of unity) as a tool of
proof, but have recently reappeared in numerical analysis (relative to piecewise
affine partitions of unity). The next section introduces a general framework
containing these forms as well as useful generalizations.

3 Finite element systems

3.1 Definition

For the purposes of analysis of partial differential equations and numerical meth-
ods, smooth differential forms are somewhat insufficient. Banach spaces of differ-
ential forms with various integrability conditions are used. For linear equations,
L2 based Hilbert spaces are often enough.

For any cell T , we denote by Xk(T ) be the space of differential k-forms on
T which are L2(T ) and have exterior derivative, a priori defined as a current,
in L2(T ). We let Xk

0 (T ) be the closure of the subspace of Xk(T ) consisting of
forms whose support is a compact subset of the interior of T . If T ′ is a face of
T , let iTT ′ ∶ T ′ → T be the inclusion map. When T ′ has codimension 1 in T , the
pullback of k-forms by iTT ′ defines an operator which is bounded from Xk(T )
to the dual of XdimT ′−k

0 (T ′). It therefore makes sense to define:

Y k(T ) = {u ∈Xk(T ) ∶ ∀T ′ ∈ T T ′ ⊆ T ⇒ u∣T ′ ∈Xk(T ′)}. (3.1)

Definition 3.1. Suppose T is a cellular complex. For each k ∈ N and each
T ∈ T we suppose we are given a space Ek(T ) ⊆ Y k(T ), called a differential
k-element on T . The following conditions should be satisfied:

• If iTT ′ ∶ T ′ ⊆ T is an inclusion of cells, pullback induces a map i⋆TT ′ ∶
Ek(T )→ Ek(T ′).

• The exterior derivative induces maps d ∶ Ek(T ) → Ek+1(T ), for all cells
T ∈ T and all k.

Such a family of elements is called an element system.

A differential element is said to be finite if it is finite dimensional. A finite
element system, abbreviated FES in the following, is an element system in which
all the elements are finite.

For any subcomplex T ′ of T we define Ek(T ′) as follows :

Ek(T ′) = {u ∈ ⊕
T ∈T ′

Ek(T ) ∶ ∀T,T ′ ∈ T T ′ ⊆ T ⇒ uT ∣T ′ = uT ′}. (3.2)

11



An FES over a cellular complex is an inverse system of complexes. To inclusion
of cells T ′ ⊆ T , correspond pullback operators i⋆TT ′ , which are morphisms of
complexes with some obvious properties:

i⋆TT = id, (3.3)

i⋆T ′T ′′ ○ i⋆TT ′ = i⋆TT ′′ , when T ′′ ⊆ T ′ ⊆ T. (3.4)

The space E●(T ′) defined above is an inverse limit of this system and is de-
termined by this property up to unique isomorphism. For a cell T ∈ T , its
collection of subcells is the cellular complex T̃ . Applied to this case, the above
definition of Ek(T̃ ) gives a space canonically isomorphic to Ek(T ), so that we
can identify Ek(T̃ ) = Ek(T ).

Elements of Ek(T ′) may be regarded as differential forms defined cell-wise,
which have a partial continuity property across interfaces between cells, in the
form of equal pullbacks.

Applied to T this will provide spaces Ek(T ) suitable for Galerkin and
Petrov-Galerkin discretizations of PDEs expressed in terms of exterior deriva-
tives.

Also of importance is the application of the above construction to the bound-
ary BT of a cell T , considered as a cellular complex consisting of all subcells of
T except T itself. Considering BT as a cellular complex (not only a subset of
T ) we denote the constructed inverse limit by Ek(BT ). If i ∶ BT → T denotes
the inclusion map, the pullback by i defines a map i⋆ ∶ Ek(T )→ Ek(BT ) which
we denote by B and call restriction.

Given an element system E on a cellular complex T , we consider now the
following conditions:

• Extensions. For each T ∈ T and k ∈ N, restriction B ∶ Ek(T ) → Ek(BT ) is
onto.

• Exactness. The following sequence is exact for each T ∈ T :

0→ R→ E0(T )→ E1(T )→ ⋯→ EdimT (T )→ 0. (3.5)

Definition 3.2. We will say that an element system is compatible if the two
conditions above hold.

The first surjectivity condition can be written symbolically BEk(T ) = Ek(BT ).
We denote also:

Ek0 (T ) = ker B ∶ Ek(T )→ Ek(BT ), (3.6)

= Ek(T ) ∩Xk
0 (T ). (3.7)

The latter equality requires some work.
The following is Theorem 3.1 of [16], see also Proposition 5.16 in [20], and is

comparable to well-known so called piecewise de Rham theorems, see e.g. [25].

Proposition 3.1. If E is a compatible finite element system, the de Rham map
ρ● ∶ E●(T )→ C●(T ) induces isomorphisms on cohomology groups.

Compatible FES also have fairly local bases, see Remark 4.2.
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3.2 Examples

We now provide some examples of element systems, all of which are compatible.

Example 3.1. The spaces Y k(T ) themselves define an element system. It is far
from finite.

On the other hand the spaces Xk(T ) do not constitute an element system.
This family of spaces is stable under the exterior derivative, but not under
restriction from cells to subcells.

Example 3.2. In dimension 1, consider a cellular complex with notations as in
Example 2.1. In the following examples E0({xi}) = R{xi} ≈ R for each i.

• Piecewise polynomials. The space of polynomials of degree at most p is
denoted Pp. Pick an integer pi ≥ 1 for each i ∈ [[0, n − 1]]. Define:

E0([xi, xi + 1]) = Ppi , (3.8)

E1([xi, xi + 1]) = Ppi−1dx. (3.9)

Here, restriction of the polynomials to the interval is implicit.

• Piecewise exponentials. Pick a real ri ≠ 0 for each i ∈ [[0, n − 1]]. Define:

E0([xi, xi + 1]) = {x↦ c0 + c1 exp(rix) ∶ c0, c1 ∈ R}, (3.10)

E1([xi, xi + 1]) = {x↦ c exp(rix)dx ∶ c ∈ R}. (3.11)

• Splines, see [43], can also be accommodated. Inserting knots in cells
[xi, xi+1] is fine, but between cells one has mere continuity in E0, and
no continuity in E1.

• More generally take, on each interval, for E0, a space of functions con-
taining at least a constant function and one with different values at the
extremities, and for E1 the space of derivatives.

Example 3.3. In the situation of Example 2.2, suppose that one has differential
elements Ek(U) for U ∈ U and F k(V ) for V ∈ V, both forming systems according
to Definition 3.1. It is then possible to define a natural notion of tensor product
of E and F , as an FES on the product complex of U and V, see [20] p. 77–79.
As one might expect, if E and F are compatible, in the sense of Definition 3.2,
then so is their tensor product.

This can be combined with the preceding Examples to define FES on prod-
ucts of intervals.

Example 3.4. Let V be a finite dimensional vector space. We denote by Pp(V )
the space of polynomials on V of degree at most p, by Λk(V ) the space of
alternating k-linear maps V k → R and by PΛkp(V ) the space of differential
k-forms on V which are polynomials of degree at most p.

Denote the Koszul operator by κ. It is the contraction of differential forms
by the identity, interpreted as a vectorfield:

(κu)x(ξ1, . . . , ξk) = ux(x, ξ1, . . . , ξk). (3.12)
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Alternatively one can use the Poincaré operator associated with the canonical
homotopy from the identity to the null-map. Let T be a simplicial complex.
Define, for any non-zero p ∈ N, any simplex T ∈ T and any k ∈ N:

Λkp(T ) = {u ∈ PΛkp(T ) ∶ κu ∈ PΛk−1p (T )}, (3.13)

= PΛkp−1(T ) + κPΛk+1p−1(T ). (3.14)

For fixed p, we call this the trimmed polynomial finite element system of order
p.

This construction, due to [36] for R2, [34] for vector fields in R3, and [27]
for differential forms, is thoroughly treated in [3]. The case p = 1 corresponds
to constructs in [44, 45], called Whitney forms, as pointed out in [7].

Whitney forms are defined as follows. For a given simplicial mesh T , let λi
denote the barycentric coordinate map associated with vertex i. It is the unique
continuous and piecewise affine function taking the value 1 at vertex i and the
value 0 at other vertices j ∈ T 0. To a simplex T ∈ T k of dimension k ≥ 1 one
attaches the k-form λT defined by:

λT = k!
k

∑
i=0

(−1)iλidλ0 ∧⋯(dλi)∧⋯∧ dλk. (3.15)

Here, the vertices of T are labelled {0, . . . , k}, respecting the orientation of T .
The superscript (⋅)∧ signifies omission of this term. The λT for T ∈ T k constitute
a basis for Λk1(T ).

It was usual to start the indexing in (3.13) at p = 0 but, as remarked in the
preprint of [15], the advantage of letting the lowest order be p = 1, is that the
wedge product induces maps:

∧ ∶ Λk0p0(T ) ×Λk1p1(T )→ Λk0+k1p0+p1(T ). (3.16)

In words, the wedge product respects the grading in k and the filtering in p.

Example 3.5. A convenient way of constructing a compatible FES on a cellular
complex T is to take a refinement T ′ on which one has a compatible FES
Ek(T ), and consider this as an FES on T . Namely, if T ∈ T , consider T as a
cellular subcomplex T̃ of T ′ and define F k(T ) = Ek(T̃ ). The Galerkin spaces
associates with E and F are identical, even though they are different as FES.
The versatility of such composite finite elements has already been put to good
use, perhaps most famously in the Clough-Tocher element of class C1(S).
Example 3.6. For an interpretation of so-called hp finite elements in this frame-
work, see Example 5.24 p. 79 in [20].

Remark 3.1. This point of view on finite elements is at variance with Ciarlet’s
definition, as provided, for instance, in [22] §10.

• Firstly, we consider fields not just on cells of maximal dimension but also
on all their faces.

• Secondly, we consider at once differential forms of all degrees, rather that
say just functions or just vector fields.

• Thirdly, so called degrees of freedom are not part of the definition, instead
inter-element continuity is enforced by conditions on pullbacks to faces.
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Our definition is more restrictive in the sense that we have not accommodated
say finite elements for matrix fields such as those of elasticity or those with
higher order inter-element continuity such as Hermite polynomials. On the
other hand it is tailored to account for the successes of the elements defined in
Example 3.4.

4 Upwinding in FES

4.1 Locally harmonic forms

Let T be a cell where, for each k, Ek(T ) is equipped with a scalar product b.
Orthogonality with respect to b will be denoted ⊥. We say that a k-form u on
T is E–harmonic if:

du ⊥ dEk0 (T ) and u ⊥ dEk−10 (T ). (4.1)

One can for instance take b to be the L2(T ) scalar product on differential
forms, associated with some Riemannian metric. Denote by d⋆ the formal ad-
joint of d with respect to this scalar product. The continuous analogue of the
above condition (4.1) is:

d⋆du = 0 and d⋆u = 0. (4.2)

From the other point of view, (4.1) is the Galerkin variant of (4.2).
Let E be a finite element system on T . Define a finite element system E̊ by:

E̊k(T ) = {u ∈ Ek(T ) ∶ ∀T ′ ∈ T T ′ ⊆ T ⇒ u∣T ′ is E–harmonic}. (4.3)

We say that E̊ is the subsystem of E of locally harmonic forms.
The following was essentially proved in [16].

Proposition 4.1. If E is a compatible FE system then E̊ is a compatible FE
system such that the de Rham maps ρk ∶ E̊k(T )→ Ck(T ) are isomorphisms.

Example 4.1. This construction generalizes [30], in which div-conforming finite
element vector fields are defined on polyhedral meshes in R3.

Remark 4.1. Since Ck(T ) has a canonical basis, the de Rham map determines
a corresponding canonical basis of E̊k(T ). Its elements can be constructed by
recursive harmonic extension. Explicitly, to construct the k-form uT attached
to a given T ∈ T k, define uT ∣T to be the unique element of Ek(T ) orthogonal
to dEk−10 (T ) and with integral 1. For T ′ ∈ T k, different from T , set uT ∣T ′ = 0.
Supposing u has been defined on the l-skeleton of T (constituted by cells of
dimension at most l), u is extended to the (l + 1)-skeleton through harmonic
extension to (l + 1)-dimensional cells, as defined by (4.1).

Remark 4.2. More generally it is possible, for any compatible FES E, to define
isomorphisms:

⊕
T ∈T

Ek0 (T )→ Ek(T ), (4.4)

through a procedure of recursive harmonic extension, see Proposition 3.14 in
[17] (also Proposition 3.1 and Remark 3.3 in [16]). More general isomorphisms
are constructed in [4].
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Example 4.2. Start with a fine cellular complex, and coarsen it by agglomerating
cells, as in Example 3.5. An FES on the fine mesh yields an FES on the coarse
mesh, of which one can consider the subsystem of locally harmonic forms. The
construction can be applied recursively, agglomerating cells at each step, and
taking at a given level the locally harmonic fields of the refined level. This yields
nested spaces that can be used for multilevel preconditioning [35].

Example 4.3. On simplices, lowest order trimmed polynomial differential forms
are locally harmonic in the sense of (4.2), with respect to the L2(T ) product
associated with any Euclidean metric (a Riemannian metric which is constant
on T ), as pointed out in §4.1 of [16]. Whitney forms, as defined by (3.15),
provide an explicit solution to the problem of recursive harmonic extension.

Example 4.4. For a given complex T , consider its barycentric refinement T ′
(assuming it is well defined), and reassemble the simplices of T ′ to form the
dual T ⋆ of T . Take lowest order trimmed polynomial differential forms on T ′.
Consider them once as an FES on T and once as an FES on T ⋆, as in Example
3.5. For these two FES consider their subsystems of locally harmonic forms.
At least in some cases, one can prove that these two subsystems are in duality,
providing a finite element analogue of Hodge duality, which has applications to
preconditioning [14]. For a tentative application to fluid dynamics, see Example
5.30 in [20].

Remark 4.3. Local harmonicity appears to behave naturally with respect to the
tensor products of Example 3.3.

4.2 Application to upwinding

We now apply the construction of locally harmonic forms to obtain a general-
ization of Section 1 to multidimensional problems, extending also, for instance,
[12]. We have in mind applications to fluid dynamics. A model problem for this
situation is the following. Consider a bounded domain S in a Euclidean space,
α > 0, a divergence free vector field V on S and also a function f on S. Consider
the equation for a scalar field u on S:

−α∆u + V ⋅ gradu = f in S, (4.5)

u∣BS = 0. (4.6)

The variational form of this equation is:

u ∈X0
0(S), ∀v ∈X0

0(S)∫ gradu ⋅ (α grad v + V v) = ∫ fv. (4.7)

One is interested in the asymptotic behavior of u for small positive α. One
is also interested in similar problems for vector fields. Typically the flow field
itself satisfies an equation of this type. More generally, analogous equations
for differential forms are of interest. We are going to design Petrov-Galerkin
methods of the form (1.17) for this purpose.

Consider a cellular complex and a large compatible finite element system on
it, obtained for instance by considering trimmed polynomial differential forms
on a simplicial refinement, as in Example 3.4. We let one space (say the trial
space) consist of locally harmonic forms for the standard L2 product, deduced
from the Euclidean metric. For the other space (say the test space) we use
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locally harmonic forms for a weighted L2 product. To motivate our choice of
weight we introduce some machinery.

Let β be a one-form on S. The associated covariant exterior derivative is:

dβ ∶ u↦ du + β ∧ u. (4.8)

These operators do not form a complex but we have:

dβdβu = (dβ) ∧ u. (4.9)

In gauge theory (see [29]) the term dβ is called curvature. Supposing that β = dφ
for a function φ we have:

dβ = exp(−φ)d exp(φ)u. (4.10)

One says that u↦ exp(φ)u is a gauge transformation.
We denote by d⋆β the formal adjoint of dβ with respect to the L2 scalar

product on differential forms. When β = dφ we have:

d⋆βu = exp(φ)d⋆ exp(−φ). (4.11)

A natural generalization of (4.2) is then:

d⋆βdu = 0 and d⋆βu = 0, (4.12)

which can be written:

d⋆ exp(−φ)du = 0 and d⋆ exp(−φ)u = 0. (4.13)

Returning to (4.5) we suppose S is a domain in a Euclidean space. We fix
a cellular complex T on S, with flat cells, and a large compatible FE system
E on it, as indicated above. This means that Ek0 (T ) should have large enough
dimension, to accommodate a variety of differential forms. We construct two
spaces of locally harmonic forms deduced from E, distinguished by the choice
of scalar product b defining orthogonality in (4.1). For one (the trial space)
take b to be the standard L2 scalar product. For the other (the test space) we
introduce the 1-form β defined by:

βx(ξ) = V (x) ⋅ ξ. (4.14)

We choose for each T ∈ T , a constant approximation βT of the pullback of β
to T . Let φT be an affine function such that dφT = βT . One can determine it
completely for instance by imposing zero mean on T . To mimick (4.13) we use
the scalar product:

b(u, v) = ∫
T

exp(φT /α)u ⋅ v, (4.15)

to define the locally harmonic functions. For explicitness, recall that the local
trial functions u ∈ E̊k(T ) should then satisfy the equations:

∀v ∈ Ek0 (T ) ∫ exp(φT /α)du ⋅ dv = 0, (4.16)

∀v ∈ Ek−10 (T ) ∫ exp(φT /α)u ⋅ dv = 0. (4.17)
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The canonical basis of the test space, as defined by Remark 4.1, will then be
upwinded, compared with the canonical basis of the trial space. To get an idea of
the shape of upwinded basis functions we can remark that when v is a constant
differential k-form on T , u = exp(−φT /α)v satisfies the equations (4.16, 4.17),
whatever element system is used.

Example 4.5. In dimension 1 we recover the upwinded basis functions defined
in Section 1, from the infinite dimensional element system Y . These are “true”
locally harmonic functions, with respect to an exponential weight. In higher
dimensions one cannot hope to have explicit formulas for these, which is why
we have introduced discrete analogues. The challenge was to get a discrete
analogue where basic properties, such as local sequence exactness with respect
to the exterior derivative, are satisfied.

Remark 4.4. There is at least one case in which one can get an explicit formula
for the upwinded differential forms, namely the extension of 0-forms from ver-
tices to the 1-skeleton. In some cases this is all one needs. Let T be a simplicial
complex. Define a coefficient µe attached to the edge e ∈ T 1, with vertices i and
j, by:

µe = −∫
S

dλi ⋅ dλj . (4.18)

We suppose the simplices are such that µe ≥ 0. For Whitney 1-forms u, v ∈ Λ1
1(T )

one then has an estimate of the form:

∣∫ u ⋅ v −∑
e

µe(ρ1u)e(ρ1v)e∣ ≤ Ch (∥u∥L2∥dv∥L2 + ∥du∥L2∥v∥L2) , (4.19)

where, we sum over edges e ∈ T 1 and h represents the largest diameter of a
simplex of T , see [26] (or [19]). This indicates that the discrete sum on the left
hand side is a good approximation of the integral.

Define, on X0
0(S) ×X0

0(S):

a(u, v) = ∫ gradu ⋅ (α grad v + V v), (4.20)

and its approximation (ρ is the de Rham map):

ah(u, v) =∑
e

µe(ρ1du)e(ρ1(αdv + βev))e. (4.21)

Letting u ∈ Λ0
1(T ) and v be defined at vertices and upwinded on edges according

to (4.16) with E = Y , we recover the scheme of [46].

Remark 4.5. Residual Free Bubbles (see e.g. [10]) on the other hand, from which
the Streamline Upwind Petrov Galerkin method [13] can be deduced, works by
extending standard finite elements on cells of maximal dimension only, by the
whole space Xk

0 (T ), and reducing the resulting equation to a modifed one on
the original space in special circumstances.

5 Further topics

High order upwinding. Let E be a large compatible FES, providing workspace,
and let F be a compatible FES that we wish to upwind, within E. For any func-
tion φ defined on the simplexes of T , we denote by bφ the weigthed L2 product
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of forms on T :
bφ(u, v) = ∫

T
exp(φT )u ⋅ v. (5.1)

We define:

Gk(T ) = {u ∈ Ek(T ) ∶ ∀T ′ ⊆ T ∃v ∈ F k0 (T ′) (5.2)

∀w ∈ Ek0 (T ′) bφ(du,dw) = b0(dv,d(exp(φ)w)), (5.3)

∀w ∈ Ek−10 (T ′) bφ(u,dw) = b0(v,d(exp(φ)w))}. (5.4)

Then G defines a compatible FES, of the same dimension as F , which appears
to be locally upwinded version of it (scaling φ by α).

Minimal FES. The framework of FES can also be applied to construct a
minimal compatible FES containing certain prespecified differential forms, see
[18]. The trimmed polynomial finite element system of order p is a minimal
compatible one containing polynomial differential forms of order p − 1.

Vector bundles. The covariant exterior derivative defined by (4.8) corre-
sponds to a very special choice of vector bundle, namely one with fiber R and
gauge group R+ consisting of positive reals under multiplication. A somewhat
more elaborate variant uses fibers C and gauge group U(1) consisting of com-
plex numbers with modulus 1. For an extension of the present theory to this
case, with applications to wave equations of Helmholtz type, see Example 5.32
in [20].

Analysis. At present we are quite far from a satisfactory analysis of upwinded
FES. Even for one dimensional problems there are recent interesting develop-
ments, e.g. [40]. For standard FES, such as trimmed polynomial differential
forms (Example 3.4), a powerful tool for convergence proofs is the construc-
tion of projections that commute with the exterior derivative, yet are uniformly
bounded with respect to L2 norms, [42, 15, 3, 21]. The important property of
these examples is that they are scale invariant FES, and the analysis has been
carried over to this setting in [20] §5.2-4. Various Lp estimates are obtained,
yielding discrete Sobolev injections and translation estimates. However, up-
winded FES are not scale invariant, since they take into account certain length
scales, such as the thickness of the boundary layers.
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