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Abstract

Due to the complexity of human locomotion, a quantitative analysis of technique in sports
is often difficult. For that reason a qualitative approach is most widespread, in particu-
lar amongst practitioners. The qualitative approach offers fast and individually adjusted
feedback from a technical coach. However, it is also prone to bias due to the coaches (or
researchers) prior assumptions. A quantitative approach is less prone to such bias.

This thesis suggests two different methods for a quantitative approach to technique analysis.
Both methods are applied to a group of 6 elite cross country skiers using the V2 (or double
dance) technique on a roller skiing treadmill. The methods are used to assess links between
technique and performance, quantified by FIS-points.

The first method was an extensive analysis of the skiers 3D movement patterns, quantified
by the coordinates of 41 markers positioned on the athletes skin and equipment. These
markers determined the skiers posture. A dimensional reduction technique (PCA) was used
to decompose the complex, but highly redundant set of postures into a comprehensible
amount of uncorrelated variables. Each of these uncorrelated variables represented multi-
segment movements, which could be visualized as movements by a stick figure. Also, the
center of mass (COM) of the athletes were determined by a segment model based on the
markers, which enabled an assessment of the effect of postural movements to whole body
movements. Normalization and weighting procedures novel to the field of sports science
enabled a direct comparison of the postural movements between athletes.

The second method used a much simpler approach, and consisted solely of measurements
from an accelerometer and a gyroscope (both 3 axis) positioned at the athletes sacrum.
The aim was to assess whether such a system could record interesting differences between
athletes. If it could, the simplicity of the experimental setup, and the light weight of
the sensor suggest that quantitative measurement of technique would be feasible both in
regular training, and even in competition situations.

Both methods proved able to identify differences in skiing technique, even in a group
consisting solely of elite skiers. Some of the differences appeared to relate to the FIS-
point ranking of the athletes, which suggested that these features could be important for
performance. In particular, the coordination between major hip flexor musculature and
vertical COM motion appeared relevant, and suggested a more beneficial utilization of
potential in the best ranked skiers. A second aspect appeared to be a preference in the
best ranked skiers to use a smaller lateral COM excursion, which was closely linked to the
axial rotation of the pelvis during the leg push.

Also included in this thesis are two appendices. Appendix A outlines the method used
to obtain drift free measurements of displacements from the accelerometer and gyroscope
output, and assess the accuracy of these measurements. Appendix B is included to show
that sensors of similar specifications as those used in appendix A are incorporated in
current marked smart phones, and investigates the possibility use smart phones as a tool
for technique analysis.





Preface

In a way, the path towards this thesis started already seven or eight years ago. I met Jostein

Hallén after a test race in Holmenkollen. Jostein was a professor in exercise physiology at

the Norwegian School of Sport Science (NIH). He had recently developed an interest for

inertial sensors, and wanted to see if this technology could be applied to technique analysis

in skiing. I had just started to work on my bachelors degree in physics. As a physics

student and a cross country skier, naturally this was compelling to me. We both agreed

that it could be an interesting topic for a master’s thesis. However, I also wanted to focus

on my skiing, which implied that it would take some time to finish my bachelor’s degree.

During my bachelor thesis, I spent very limited time on campus. However, one semester I

had to take a course in experimental physics, which meant mandatory laboratory exercises.

This course was held by professor Dag Kristian Dysthe. Again due to the skiing, I some-

times had to catch up to the other students by doing two lab exercises in one day. This

meant longer days for me, and unfortunately for Dag, sometimes also for him. However,

this also resulted in some contact between us. I mentioned to him the conversation with

Jostein some years earlier, and I believe Dag was immediately interested. Even though this

was quite far from his field as a geophysicist, Dag was willing to supervise such a thesis.

When I finally started work on my thesis, the NIH had already done quite a bit of work

on inertial sensors. This work was done by Håvard Myklebust, currently PhD student at

NIH. Luckily for me, there was still work that could be done. I believe the collaboration

with Håvard has been beneficial for both sides: Håvard had already worked a lot with

accelerometers, and put much thought into positioning of sensors and limiting constraints.

I contributed by incorporating gyroscopic measurements, which resulted in a significant

improvement of the measurement accuracy. This collaboration has resulted in a research

article intended for publication. The aim of the article is a validation of the use of low cost

inertial sensors for movement analysis. Håvard is first author on the paper, I contribute

as a co-author. The material presented in appendix A represents my contribution to this

paper. Chapter 4 of this thesis represents my interpretations and ideas on how to use the

measurements obtained from the method presented in appendix A.

The data collection that forms the basis of all data in this thesis (with the exception of

appendix B) was planned and conducted by both Håvard and myself.

During my time a the NIH, I also got into contact with Peter Federolf. Peter was then a

post doc at NIH, now he is professor at the Norwegian University of Science and Technology.

Peter and I have a similar background in physics, and immediately found a good tone. After

the data collection I had a feeling that we did not utilize the dataset to its full potential.
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Peter had extensive experience with the analysis of complex, multi-body systems, and had

suggestions on how we could extract more information from the data set. The material

presented in 3 is the result of this collaboration. This material also forms the foundation

for a research article, which follows chapter 3 closely. I am first author on this article, but

both the article and the contents of chapter 3 was strongly influenced by Peter and his

earlier work.

I would like to express my gratitude to all of my supervisors, who all have contributed

with with their experience and advice whenever I needed it. Håvard Myklebust was not

an official supervisor of my thesis, but he definitely deserves the same acknowledgement.

Finally, I express my gratitude to the athletes who participated in the study. Thank you

for taking the time, and adjusting your training schedules to help me out with my thesis.

Oslo, June 11, 2014

Øyvind Nøstdahl Gløersen
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Chapter 1

Introduction: Technique and

performance

The term technique is frequently used in sports, and refer to an athletes solution to a given

task[1]. In this thesis technique is used to denote the specific movement pattern employed

by athletes when conducting their sport. By this definition it is reasonable to assume that

technique is a determinant for the success for an athlete, along with other determinants

such as aerobic capacity, anaerobic capacity and maximal strength[2, 3].

This thesis investigates the relation between technique and performance. It might seem

premature to assume that such a relation exists. For instance, Bartlett et al. [4] argued

that movement variability and -adaptability are important factors for success, and that

one should exert caution when finding relations between technique and performance. How-

ever, under the assumption that technique is a determinant of performance, it would be

contradictory to assume that no such relations exist. Although some of the variations

in technique might be the result of optimal athlete-specific adaptability, it is difficult to

imagine this is the case for all variation in technique.

The scope of this thesis is limited to the XC skiing V2[5] technique, also referred to as G3[2]

or 1-skate [6] in the literature, or double-dance amongst practitioners. One complete stride

cycle of the V2 technique is shown in Figure 1.1. Qualitatively, the movement pattern is

comprised of a sideways movement caused by an asynchronous leg push, and a symmetric

poling movement that has twice the stride frequency. The duration and timing of the

different propulsive phases has been described in the literature, for instance by Bilodeau

et al. [6].

1
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Figure 1.1: Example stride cycle of the V2 technique. Throughout this thesis, the upper
left situation (poleplant on the right ski) is defined as the beginning and the end of each

stride cycle

1.1 Previous studies on technique and performance in skiing

Several studies have investigated technique differences in the classical styles of cross country

skiing such as double poling [7–11] and diagonal stride [12]. Fewer studies have investigated

the skating techniques. General technique differences between V1 and V2 styles have

been described [13], however, no detailed assessment is yet available that systematically

investigates differences in the V2 skating techniques between elite cross country skiers.

From the studies on the classical techniques, the studies by Holmberg et al. [7], Stöggl and

Holmberg [11] (double poling) and Lindinger et al. [12] (diagonal stride) all investigated

relations between performance and technique. There are few similarities between the di-

agonal stride technique and skating techniques. On the other hand, double poling (DP,

Figure 1.2) has a similar symmetric poling movement as the V2 technique. For that reason,



Chapter 1: Technique and performance 3

Figure 1.2: Example stride cycle of the classical double poling technique. This technique
is not the topic of this thesis. However, due to the similarity of the poling action in the
V2 technique (Fig. 1.1), some of the same basic principles may apply to both techniques

the results of Holmberg et al. [7] and Stöggl and Holmberg [11] might be of relevance for

this thesis. The findings of these studies will be the topic for the next few paragraphs.

Holmberg et al. [7] tested a group of 11 athletes performing the DP-technique at 85%

of their individual maximal velocity while rollerskiing on a treadmill. They measured

selected joint angles, pole and plantar forces, cycle characteristics, and muscle activation

(electromyography, EMG) of selected muscles. Furthermore, two different DP strategies

were determined by a group of researchers from a 2D camcorder analysis of the skiers

techniques. One strategy was characterized by ”more abducted1 shoulder joints (character

1), smaller elbow angles at pole plant (character 2), faster (character 3), and more distinctly

flexed elbow (character 4) and hip joints (characters 5 and 6) during an altogether more

dynamic poling phase (character 7). This pattern was named ”wide elbow” (WE) . . . ”[7,

page 813]. The skiers that followed this strategy also included the faster skiers. The

strategy that was opposite of these criteria was labelled the narrow elbow (NE) strategy.

Skiers using the WE strategy showed a higher relative pole force, a faster force development

(time to peak pole force), and a higher relative force impulse. In addition to the elbow

and shoulder differences described in the previous paragraph, the WE approach was also

linked to a smaller knee and hip joint angle during the pole ground contact period, and

a smaller hip joint angle at the time of pole plant. Finally, muscle activation patterns

revealed that the WE approach was connected to a higher activation in Teres major, and

a lower activation of Latissimus dorsi, compared to skiers who used the NE strategy.

Stöggl and Holmberg [11] tested sixteen male skiers at national and international level

during double poling on a treadmill close to maximal intensity. They measured pole forces

and 3D kinematics of skis and poles. Their findings included that faster skiers generated

longer cycle lengths, and longer recovery phases (i.e. the time of no pole-ground contact)

relative to the poling phase. The main determinant of maximal skiing velocity was the
1Readers that are not familiar with anatomical terminology are encouraged to consult chapter 2 for a

short introduction to the terms necessary to follow the argumentation in this thesis.
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duration of a ”preparation phase” prior to the pole plant. The ”preparation phase” was

described qualitatively as:

”This phase was marked by almost a null velocity in the pole tip’s resultant velocity, with the

pole tip being 18.1 ± 7.2 cm above the treadmill at the end of the forward swing of the poles

and in a horizontal direction 21.0 ± 9.6 cm ahead of the pole tip position at the pending pole

plant. This instant was defined as the ”preparation point”. The subsequent backward and

downward motion of the pole tip to the pole plant was defined as the ”preparation phase,”

with a duration of 82 ± 31 ms.”

The fastest skiers showed a distinct preparation phase, while slower skiers showed a less

distinct or absent preparation phase (i.e. the preparation point coincided with the pole

plant). The preparation phase was linked to a large impulse of pole forces, and a beneficial

timing of the force evolution: A more distinct preparation phase correlated to a later peak

pole force, and a smaller impact pole force relative to the peak force. This is beneficial

because only a small fraction of the pole forces contribute to propulsion when the pole is

directed approximately perpendicular to the ground (which the case at the pole plant),

while it is more parallel to the ground later in the poling cycle[11, 14]. The peak pole force

also correlated significantly to performance, but the correlation was less than that of the

preparation phase duration.

In summary both studies emphasize the ability to produce a high force impulse, which

facilitates a shorter poling period relative to the recovery period. The findings of the

two studies propose slightly different approaches used by skiers to generate such higher

impulses. The findings of Stöggl and Holmberg [11] suggest that a relatively low impact

pole force, followed by a slow rate of force development to a high peak pole force is a

beneficial approach. On the other hand, Holmberg et al. [7] found that the fastest skiers

preferred the WE approach, which was connected to a short time to peak pole force2.

Holmberg et al. [7] argued that the WE approach might lead to a higher loading on the

poles due to a more accentuated lowering of the center of mass (due to smaller minimum

hip and knee angles). On the other hand, Stöggl and Holmberg [11] argued that the aim

should be to combine focus on high pole forces with appropriate timing of the forces, and

that this was dependent on a preparation phase prior to the pole plant.

Exactly how (or if) these findings apply to V2 skating technique is not obvious. The aim

of the V2 technique should be to optimize the cumulative propulsion generated from both

poling and skating movements. This probably places some constraints on the movements
2It should be pointed out that Holmberg et al. [7] observed no direct correlation between performance

(quantified by an incremental maximal speed test) and time to peak pole force. The two groups differed
significantly, but these were selected on basis of the athletes techniques, not their performance. The authors
argued that the WE group included the fastest skiers, however, the exact content of this statement was
not specified.
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with respect to DP, where all propulsion is generated by poling. Nonetheless, a similarity

between the two techniques with regards to the use of potential energy is assumed in this

thesis. As suggested by Holmberg et al. [7], skiers gain potential energy prior to the pole

plant by a ”high hip, high heel” strategy (evident in Figure 1.2, 4. position). This energy

is transferred to the poles during the poling action. The ”high heel”-part is not as evident

in the V2 technique (Figure 1.1), but the hip is clearly elevated prior the the pole plant.

Hence, a similar argument based on potential energy can be applied also to this situation.

Such use of potential energy in V2 has also been proposed by Myklebust et al. [13].

1.2 Structure

The data collection that forms the basis for this thesis was done using two very different

measurement systems, each with its own benefits and limitations: A camera based sys-

tem gave high quality kinematic measurements of the complete movement pattern of the

athletes by tracking the position of 41 markers attached to the athletes and equipment.

These measurements were analysed using a method that utilized a large amount of the

information that was gathered, yet made it possible to quantify the movement using only

a comprehensible amount of uncorrelated variables. The second measurement system was

an inertial measurement unit (IMU). In contrast to the camera based system, the IMU

could measure only a small fraction of the complex movement pattern that makes up the

V2 technique. The advantage of such a system is that it is low cost, light weight and small

size, and has essentially an unlimited capture volume.

In summary, the two measurements systems had more or less the same pros and cons, but

with reversed signs. One aim of this thesis was thus exploit the advantages from both

systems. In the author’s opinion, this was best achieved by structuring the thesis as two

independent, yet fulfilling studies. The first part was to analyse the complete movement

patterns from the camera based measurements, with loss of as little detail as possible. This

study is presented in chapter 3. The second part was to investigate the measurements from

the IMU, and in particular view these results in comparison with the much more detailed

results obtained from the camera system. This study is presented in chapter 4, followed

by a combined conclusion of the two studies.

However, one aspect remained. The accuracy the IMU measurements were uncertain,

and needed to be determined. The validation study presented in appendix A presents

the method used to obtain the data in chapter 4, and the accuracy of the measurements.

However, since it does not provide any insight to the main topic of this thesis (i.e. the

relation between performance and technique), the study has been relegated to an appendix.
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Lastly, results from an experiment with inertial sensors contained in a smart phone is

provided in appendix B. This experiment was done before I started work on the main part

of this thesis, in order to get a ”hands on” feeling with inertial sensors. However, it does

fit into this thesis, because it shows some of the possibilities and limitations by use of

equipment widely available for the general public.

1.3 Notation

The following notation is used consistently throughout this thesis:

• Bold font and capital letters (e.g. M) represent matrices

• Bold font and lower case letters (p) represent vectors

• Overlines (p) denote the time average

• A hat (i.e. x̂) denote the stride cycle average

• T indicates the transposed matrix or vector



Chapter 2

Anatomical terminology

This thesis is written under the assumption that the reader possess basic knowledge of

human anatomy and anatomical terminology. For the reader that is not familiar with

this field, this chapter should cover the necessary terminology, and might be consulted for

explanations of unfamiliar terms.

The contents of this chapter is restricted to explain terms that are needed to understand

the material presented in this thesis. For a more complete introduction, the reader is

referred to any introductory textbook in physiology and anatomy, for instance the book by

Waugh and Grant [15]. To improve readability with respect to positioning of figures, the

rest of this page is left empty.

7
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2.1 Planes and directions

The human body is divided into three planes: the sagittal plane, the coronal plane, and

the transverse plane. The orientation of these planes should be clear from Figure 2.1. The

same goes for the anatomical directions anterior, posterior, superior, inferior, medial and

lateral. The terms proximal and distal are also used in this thesis. Proximal refers to

something that is close to a reference, while distal is more distant from the the reference.

Normally, the reference is the point of attachment of a limb. For instance, the foot is distal

to the knee.

2.2 Joints

A decrease of a joint angle is denoted flexion, while an increased joint angle is called

extension. Furthermore, the movement of a limb away from the the sagittal plane is

denoted abduction, and a movement towards the sagittal plane is an adduction. A rotation

of a limb about its proximal-distal axis is denoted inwards/outwards rotation.

2.3 The pelvis

In the study presented in chapter 4, an IMU was mounted at the sacrum. The sacrum is

part of the pelvis, which is consists of two hip bones, the sacrum, and the coccyx (Figure

2.2). The sacrum is connected to the hip bones through the sacroiliac joint, and joined by

strong ligaments. This ensures that pelvis can be modelled as a rigid body. The orientation

of the pelvis can thus be represented by three angles, each of which describes a rotation

about one of the axes apparent in Figure 2.2. Also indicated in Figure 2.2 are the locations

of the right and left anterior superior iliac spine, abbreviated ASIS. These anatomical

landmarks are used both in chapter 3 and appendix A.
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Figure 2.1: Definition of anatomical planes and directions. Throughout this thesis, an
axis convention is used so that the y-axis is directed in the anterior direction, the z-axis
in the superior direction, and the x-axis in the lateral direction, so that the xyz-frame

makes up a right handed coordinate system.

Lateral tilt

Sacrum Hip bone

Left ASISRight ASIS

Coccyx

Pelvis rotation axis

Pelvis
tilt axis

Figure 2.2: Anterior view of the pelvis, with rotation and tilt angle definitions. The
lateral tilt axis is directed out of the plane in this figure. From these axis definitions, a
positive pelvis tilt results in a posteriorly directed pelvis (i.e. the hip bones are moved to
a more posterior position). A positive lateral pelvis tilt results in a left tilted pelvis (i.e.
the left hip bone is elevated compared to the right hip bone). (This figure is based on an
image from Wikimedia commons, provided by Michael Frey. It has been altered for use

in this thesis by adding annotations and axis conventions)





Chapter 3

Analysis of skiing technique: a

holistic approach

3.1 Introduction

The complexity of the V2 movement pattern makes it a challenge to scientifically analyse

the motion. This is particularly true for quantitative analysis. A solution to this problem

might be to restrict the focus to include only a few, preselected variables based on prior

knowledge. An obvious drawback with this approach is the risk of selection bias, which

might result in important relations being overlooked, or confirmatory results. Another

approach is to measure a multitude of variables, before determining what variables appear

most interesting[7, 12]. However, even this approach is subject to selection bias.

Another approach to manage the high complexity in the analysis of multi-body motion

patterns is by conducting a principal component analysis (PCA). A PCA decomposes the

high-dimensional multi-body movement patterns into a set of few one-dimensional move-

ment components that represent the main sources of postural variability, and residuals

that typically contain a small fraction of the postural variability[16, 17]. PCA has been

applied for technique analysis in sports [18, 19], however, an important limitation of pre-

vious PCA-based analyses was that the PCA is calculated separately for each individual

subject. A direct comparison of the techniques between athletes was compromised by other

sources of postural variability such as anthropometric differences. A major methodological

advancement introduced in the current study is an improved normalization technique that

filters out anthropometric differences and that considers the weight distribution between

body segments. This enabled direct comparison of movement components between sub-

jects and it allowed for studying how multi-segment movement components influenced the

skiers’ center of mass motion.

11
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3.2 Theory

To understand the underlying principles of PCA, basic knowledge of linear algebra is

needed. The necessary theory is outlined in this section.

3.2.1 Bases

A basis is a set of linearly independent vectors that spans some vector space H. A common

basis for the vector space Rq (i.e. the space of all possible q-dimensional vectors) are the

columns of the identity matrix Iq. This is known as the standard basis[20]. The standard

basis is an example of an orthonormal basis, i.e. a basis where all vectors are orthogonal

and of unit length. A q-dimensional vector can be expressed in any basis that spans Rq.
However, a clever choice of basis might simplify a problem substantially. This section deals

with one way of determining such a basis.

If we represent a point in a laboratory reference frame using three perpendicular axis XY Z,

this is equivalent to a vector representation in the standard I3-basis. If we want to measure

m points in the XY Z-frame, we need to define m vectors. Alternatively, we can express

the m points as a single 3m-dimensional vector, using a 3m × 3m basis. This approach

was suggested as a method to measure human gait by Troje [17]. He defined a posture
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Figure 3.1: Illustration of the posture vector. Left side: a cloud ofm points in 3D space,
representing a skiers posture at a given time. Right side: 3m-dimensional hyperspace,
with the current posture represented as a single vector (red dot). The cloud of all postures
generated over time (blue dots) has a characteristic shape which depends on the specific
movement pattern, and typically occupy only a small fraction of the 3m-space. Green
lines represent vectors of a new basis, that are directed along the directions of largest

postural variance.
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vector, which consisted of the spatial coordinates of m points on the human body. Using

this terminology, the posture vector p(t) specifies an individuals posture at any given time

point t. If the marker coordinates are all from the XY Z-laboratory coordinate frame, the

posture vector is represented in the I3m-basis.

Human movement, although highly complex, is still subject to a large number of con-

straints. For that reason, the posture vector represented in the I3m-basis is highly re-

dundant, i.e. it occupies only a small fraction of the 3m-dimensional vector space (figure

3.1). This motivates the definition of a new basis, where the basis vectors are aligned in

the directions of large postural variance. Principal component analysis is a decomposition

method that can be used to find such a new basis[16, 17].

3.2.2 PCA

PCA is a linear decomposition method with its mathematical foundation based in lin-

ear algebra. To outline the mathematical principles of PCA, we need the following five

theorems:

Theorem 3.1. For an orthogonal matrix A, then AT = A−1

Theorem 3.2. The transpose of a product is equal to the product of the transposed

matrices, with the order reversed: (AB)T = BTAT

Theorem 3.3. For any matrix A, both ATA and AAT are symmetric matrices

Theorem 3.4. A matrix is symmetric if and only if it is orthogonally diagonalizable.

Theorem 3.5. A symmetric matrix A is diagonalized by a matrix E of its orthonormal

eigenvectors: D = ETAE.

For proofs of these theorems, the reader is referred to any introductory linear algebra

textbook, for instance the book by Lay [20].

We start by defining the measurement matrix M. M is of size n×m, where n is the number

of observations, and m is our number of variables. Assuming that we do not a priori know

the relation between the variables, we can still obtain a measure of their inter-dependence
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by calculating the sample covariance matrix of M: 1

ΣM =
1

n− 1
MTM (3.1)

By theorem 3.3, the covariance matrix is a m × m symmetric matrix. The off diagonal

elements Σi,j are the covariances between measurement i and j, and hence a measure of

their dependence, while the diagonal elements Σi,i are simply the variance of variable i.

Obviously, if all variables are independent, Σ is a diagonal dominant matrix. Hence, if

we can perform a change of basis for the variables of M, so that the covariance matrix of

the new matrix is a diagonal matrix, the variables in the new basis are all uncorrelated.

Furthermore, if the original variables were redundant in the old basis, the number of

uncorrelated variables must be less than the original number of variables. Such a change

of basis is expressed as:

TMT = ΞT (3.2)

where T is a m ×m matrix who’s columns make up an orthonormal basis for Rm. What

remains to show is how T can be determined so that the covariance matrix of Ξ is diago-

nalized.

Writing ΣΞ in terms of T, we find (by theorem 3.2):

ΣΞ =
1

n− 1
ΞTΞ

=
1

n− 1

(
TMT

) (
TMT

)T
=

1

n− 1
TMTMTT

=
1

n− 1
TATT

(3.3)

Where we in the last line defined A = MTM. It follows from theorem 3.3 that the matrix

A = MTM is a symmetric matrix. Furthermore, it follows from theorem 3.4 and 3.5 that

A is diagonalized by a basis of its normalized eigenvectors. Hence, the problem reduces to

determining the normalized set of eigenvectors for A. Since A differ from ΣM by only a

scaling factor, this is equivalent to finding the eigenvectors of ΣM.

It should be clear from theorem 3.5 that if we select T = ET , where the columns of E are

the normalized eigenvectors of A, then ΣΞ is a diagonal matrix. Hence, the variables of

Ξ are uncorrelated. We call the columns of ET the principal components of M, and the

columns of Ξ the time evolution coefficients . Because ΣΞ is diagonal, the variance of the
1The calculation of the sample covariance matrix only makes sense if M is in mean-deviation form, i.e.

that the rows of M has zero sample mean
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new variables are equivalent to the eigenvalues of the computed eigenvectors (or differ only

by a scaling if the eigenvalues are calculated from ΣΞ rather than A).

The principal component vectors are sorted by the corresponding eigenvalues. In summary,

a PCA is comprised of the following four steps:

1. Calculate the sample covariance matrix ΣM of M

2. Obtain an orthonormal set of principal component vectors (PC) by calculating the

eigenvectors of ΣM.

3. Sort the principal component vectors by their eigenvalues in decreasing order.

4. Project the original measurement matrix M onto the principal component vectors

to obtain a set of new, uncorrelated time evolution coefficients (denoted ξ(t), the

columns of Ξ), whose variance is strictly decreasing with the order of the principal

component vectors.

3.2.3 Link to singular value decomposition

The outline of PCA given above underlines the motivation, i.e. to reduce many correlated

variables to fewer, uncorrelated variables. However, computation of the sample covariance

matrix might lead to loss of precision in numerical calculations[20]. For that reason, the

preferred approach in numerical calculations is often to use the singular value decomposi-

tion.

There is a tight link between PCA and the singular value decomposition, which enables a

determination of the principal components and eigenvalues without calculating the sample

covariance matrix. The singular value decomposition states that any n×m matrix X can

be decomposed into a set of three matrices: an orthogonal n× n matrix U, a rectangular

diagonal n×m matrix Λ, and an orthogonal m×m matrix VT :

X = UΛVT (3.4)

No proof of the singular value decomposition will be outlined in this thesis, and again the

reader is referred to the book by Lay [20, ch 7.4]. However, the link to PCA is easily

verified by calculating the sample covariance matrix of X:
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ΣX =
1

n− 1
XTX

=
1

n− 1

(
UΛVT

)T (
UΛVT

)
=

1

n− 1
VΛUTUΛVT

=
1

n− 1
VΛ2VT

(3.5)

Where we have used theorems 3.1 and 3.2. From this it should be clear that if we define

X = 1√
n−1M, and decompose X using the singular value decomposition, then the columns

of V are the principal components of M, and the eigenvalues are simply the square root

of the diagonal elements in Λ.

3.3 Previous studies applying PCA to human movement

As stated in the previous section, the first application of PCA to analyse human move-

ment, at least in a manner similar to what was outlined above, was the study by Troje [17].

The aim of their study was to assess how socially relevant information contained in human

movement patterns could be extracted. To investigate this, he analysed differences in the

walking patterns of males and females. The method involved two subsequent PCAs. First,

he decomposed a set of highly correlated postures (determined by a set of marker coordi-

nates) into an average posture vector, and 4 principal component vectors that covered most

of (> 98%) of the postural variance. Succeedingly, he fitted sine functions to the four cor-

responding time evolutions coefficient series. This enabled a representation of each walker

by a walk-vector, which consisted of the concatenation of the average posture vector, the 4

principal component vectors, and the frequency and phase of the sine functions. The walk

vectors of all individuals formed a new matrix, which was again submitted to a PCA. The

result of this PCA was an average walk vector, and a set of eigenwalkers that represented

the directions of largest walk-vector variance. Finally, a linear classification algorithm was

used to classify walkers as male/female, with a varying number of eigenwalkers included.

The performance of the algorithm was tested against a set of human observers, and showed

a substantially better performance (90% success rate vs 76% success rate).

Daffertshofer et al. [16] did a study showing the applicability of PCA to study coordination

and variability in human movement. They pointed out that a normalization of all variables

to unit variance prior to conducting a PCA is advisable, due to the inherent sensitivity

of PCA to differences in amplitude. This is particularly important if measurements of

different unit are submitted to the same analysis. They applied PCA to two different types
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of data measured during human gait: kinematic data and muscle activation (EMG). Here,

only the kinematic analysis will be assessed. They showed that PCA can be used both as a

method of dimensional reduction, by an approach very similar to the first PCA performed

by Troje [17]. They also showed that it can be used to analyse the variability of human

locomotion. This was achieved by excluding the first four principal components, which

accounted for most of (∼ 90%) the variance. The remaining components contained for the

most part stochastic movements. They showed that for the example subject, substantially

higher movement variability was present in the feet and hands than the rest of the body

segments during gate.

Federolf et al. [21] used PCA to analyse postural movements during bipedal, tandem and

one-leg stance. The analysis procedure was similar to the first PCA described by Troje

[17], with one important difference: instead of submitting each subject to an independent

PCA, all subjects were pooled into one large matrix, which was submitted to a PCA. This

resulted in principal components that reflected the directions of the largest combined pos-

tural variance, and enabled a direct comparison of the time evolution coefficients between

subjects. They developed a method to account for anthropometric differences between the

subjects, with the aim of minimizing the influence of such differences to the result of the

PCA. The method was comprised of three steps: (1) subtraction of the mean posture, (2)

calculation of the vector norm of the of the centered posture vectors, and (3) division of

all centered postures with the mean vector norm. This procedure was performed for each

subject, and ensured that the size of the cloud of postures (Figure 3.1) for each subject

was of uniform size, while its shape remained unchanged.

PCA has also been applied to technique analysis in sports by Federolf et al. [18]. They

investigated the applicability of PCA to the movement patterns of elite junior alpine skiers.

Two different analysis were performed: (1) an individual PCA for each subject, and (2) a

pooled PCA similar to the study described in the previous paragraph [21]. However, no

procedure to reduce the effect of anthropometric differences on the pooled PCA was per-

formed. They concluded that PCA worked well in reducing the complex skiing movement

to a small set of uncorrelated principal movements, which had both and accurate quantifi-

cation (through the time evolution coefficients), and could be interpreted qualitatively by

movements of a stick figure. They suggested that this method should be applicable to a

wide range of sports.

In summary, PCA has proved a powerful tool to analyse complex movement patterns in

a holistic manner. It can be used both as a method to reduce dimensionality, and to

investigate motion variability. For the purpose of this thesis, the focus was restricted to

dimensional reduction. Furthermore, emphasis was put on a direct comparison of movement
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components between athletes, which suggested use of the pooling procedure presented by

Federolf et al. [21].

3.4 Materials and Methods

The following section describes the participating athletes, experimental procedures, equip-

ment, and the data analysis methods used in the current study.

3.4.1 Participants

Six elite cross country skiers (male, age 26 ± 2 years, height 180 ±5 cm, weight 79.5 ± 5 kg)

volunteered for this study, and gave their written informed consent prior to participating.

All athletes had finished in the top 30 in the Norwegian national championships, all but

one of the skiers had FIS2 World Cup experience, and three had multiple World Cup

podium finishes. At the time of the measurement, their FIS sprint point ranking ranged

from 14-157 points on the FIS points list. In the current study we interpreted the athletes’

FIS points as an indicator of their skill level. However, one of the issues that have to be

considered is that skiers with less than five FIS-races get penalized in the official FIS point

ranking. This affected one of our athletes. Without this penalty the athletes’ FIS points

would range from 14-116, which, in our opinion, is a more appropriate representation of

our athletes’ skill level. The results of the current study were therefore compared to the

adjusted FIS points.

3.4.2 FIS-point calculations

FIS-points is a ranking system developed by FIS. All skiers that participate in a FIS-

approved race are awarded FIS-points. The points are calculated from the following

relation[22, page 19]:

FIS-points =

(
tx
t0
− 1

)
· F + Prace (3.6)

where tx is the finishing time of the competitor, t0 is the finishing time of the winner,

and F = 1200 is a scale factor. Prace is a race penalty, and is either determined from the

FIS-points of the five first athletes in the race, or by a fixed penalty. FIS world cup races,

olympic races, or FIS world championship races are the only races with a fixed penalty

of Prace = 0. The FIS-points of an athlete is the average of his five best ranked races

during a period of 12 months. As mentioned above, a competitor with less than five races
2International Ski Federation
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is penalized, however, this penalty has been removed for use in this thesis. Hence, the FIS-

points should be an approximately linear measure of an athletes long time performance.

3.4.3 Experimental protocol

The measurements for the current study were collected during a submaximal load and a

maximal time trial test on a roller skiing treadmill, described in detail by Losnegard et al.

[3]. All subjects were familiar with treadmill testing and the testing protocols, as they

had used such tests regularly for monitoring of their training progress. Preparation of the

athletes, which included anthropometric measurements and mounting of markers, lasted

approximately 45 minutes. After a short warm up on the treadmill, a 5-minute submaximal

bout was performed at a inclination of 4◦ and speed 3m/s. Thereafter, two additional 5

min submaximal bouts at higher inclination were performed, followed by a 10 min brake

before the time trail. The time trail was a 1000m performance test at constant treadmill

inclination of 6◦. The speed was initially set to 3.25m/s for the first 100 meters and then

to 3.5m/s from 100 to 200 meters. Thereafter, the athlete was free to choose his own

speed, with increments of ± 0.25m/s. The athletes were informed of the distance travelled

by both visual feedback on a monitor and oral feedback from the test leader.

For the technique analysis in the current study, two datasets were collected for each skier:

(a) when skiing at 3m/s and a treadmill inclination of 4◦, and (b) when skiing at the

individually chosen maximum speed. This speed was achieved between 200− 440m of the

performance test, ranged from 4.00 to 4.75m/s, and was constant during the analysed time

period. Both sets included at least 12 consecutive stride cycles.

3.4.4 Data collection and instrumentation

The testing took place on a treadmill specially designed for roller skiing, with belt dimen-

sions of 3× 4.5m (Rodby, Södertalje, Sweden). All skiers used the same pair of roller skis

(Swenor Skate 65-000, Sport Import AS, Sarpsborg, Norway). The athletes were allowed

to use their own ski poles, modified with a tip specially adapted for use on a roller skiing

treadmill.

The athletes’ movements were recorded at a frame rate of 250Hz using a 3D motion

analysis system consisting of nine cameras (Oqus 400, Qualisys AB, Gothenburg, Sweden)

controlled by the Qualisys Track Manager (QTM) software (Qualisys AB, Gothenburg,

Sweden). The motion capture system was calibrated dynamically using a wand with two

retro reflective markers at a fixed separation, which resulted in an accuracy < 2mm RMS.

A sketch of the experimental setup is presented in Figure 3.2
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Figure 3.2: Treadmill and camera setup. Z-axis was directed out of the plane. Camera
positions are estimates

Forty-one retro reflective markers attached to the athletes’ skin and skiing equipment

were tracked. The markers were placed on and between anatomical landmarks to track

the motion of the athletes’ segments and joints. Specifically, markers were placed on the

tibialis anterior, knee joint (laterally), rectus femoris, trochanter major, anterior superior

iliac spine, os sacrum, sternum, 10th thoracal vertebra, 12th rib, 7th cervical vertebra,

acromion, biceps brachii, elbow joint (laterally), mid forearm, and on the distal end of the

radius. One marker was attached to the lateral side of each ski boot near the ankle. A

custom built hat, having five markers attached (top, left temple, right temple, left posterior,

right posterior), was worn by all athletes. Additional markers were placed close to the distal

tip on the poles and three markers were attached to each ski (posterior, anterior and 10 cm

superior to the ski). Figure 3.3 shows the positioning of all markers on one of the subjects.

The trajectories of these markers were calculated using the QTM software. A few trajec-

tories exhibited gaps which were filled by interpolation (short gaps) or by a PCA-based

reconstruction algorithm [23]. Filtering of the data was not necessary. The center of mass
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Figure 3.3: Positioning of retro-reflective markers, highlighted in green. The area
marked in red shows the area delimited by two laser beams, which (during the perfor-
mance test) corresponded to the zone where the speed was kept constant. If the athletes
positioned themselves anterior or posterior to this area, the speed was increased/reduced

by increments of 0.25m/s

(COM) of the athletes (including equipment) was estimated by a 19-segment model using

the software Visual3D (C-Motion, Inc., Germantown, MD, USA)3. All other data analysis

was done using Matlab (The MathWorks, Natick, MA, USA). The coordinates of the 41

markers were expressed in a reference system originating in the center of mass position of

the skier, with the X-axis pointing in the lateral direction compared to the treadmill belt,

the Y-axis in anterior, and the Z-axis in vertical direction.

3.4.5 Data analysis: identification of movement components of interest

The data analysis procedure comprised four main steps: First, the kinematic data collected

for each participant was normalized and scaled such that the movement patterns of all

participants could be pooled and submitted to one comprehensive analysis. Second, a

PCA was used to decompose the complex whole-body motion patterns of skating into one-

dimensional, correlated movement components ("principal movements"). Third, features

in the COM movement and in the principal movements were identified that appeared to

change systematically with the rank of the skiers’ skill level, even when accounting for the
3The COM model was mainly developed by Håvard Myklebust, PhD student at the Norwegian School

of Sport Sciences
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intra- and inter-subject variability of motion. Fourth, a statistical analysis was conducted

to assess the specific features identified in step three. The following paragraphs describe

these steps in detail.

Normalization and scaling

Twelve consecutive stride cycles, from the pole plant (right pole) on the right side to the

succeeding pole plant on the right side, were selected for each athlete. The pole plants were

identified as peak acceleration of the pole marker. Each stride cycle was resampled to 401

measurement points, giving a total of n = 4812 samples per athlete. For each time point

ti , i ∈ [1, n] the coordinates of the 41 markers defined a m = 123 (i.e. 3 · 41) dimensional

posture vector p(ti). Each trial of a subject N defined a n × m matrix MN , where the

columns corresponded to the marker coordinates, and the rows corresponded to the time

frames. A mean posture vector (pN ) was calculated as

pN =
1

n

(
n∑
i=1

Mi,1 ,
n∑
i=1

Mi,2 , . . .
n∑
i=1

Mi,m

)
(3.7)

and subtracted from each row of the posture matrix MN , giving a new matrix M′
N . To

account for anthropometric differences, the scaling method proposed by Federolf et al.

[21] was applied: the Euclidean norm di of all rows (i.e. posture vectors) was calculated

and M′
N was divided by the averaged dN . Additionally, each row of M′

N was multiplied

(by elementwise multiplication) with a 123-dimensional weight vector w representing the

relative mass (according to Dempster and Gaughran [24]) of the body segment to which

the marker was attached. If more than one marker was attached to a given segment, then

the mass of the segment was divided equally over the corresponding markers. These two

scaling procedures resulted in matrices M′′
N for each subject N , which could now be pooled

into a Nn×m pooled matrix Mpooled, structured in the following way:

Mpooled =
(
M′′T

1 M′′T
2 M′′T

3 . . . M′′T
N

)T (3.8)

Principal component analysis and principal movements

A PCA conducted on Mpooled, resulted in (i) a 123 × 123 dimensional matrix PC =

[pc1, pc2, . . . ,pck] containing the principal components vectors; (ii) a 123-dimensional

eigenvalue vector λ consisting of the normalized eigenvalues contained in the corresponding

pck–vector; and (iii) the time evolution coefficients ξN,k(ti), i.e. the projection of the

postural movements onto the principal component vectors. The complete posture of any



Chapter 3: Analysis of skiing technique: a holistic approach 23

time frame i could then be expressed as the sum of the mean posture pN and a linear

combination of the pc-vectors:

pN (ti) = pN + S ·
123∑
k=1

ξN,k(ti) · pck (3.9)

where the scaling matrix S was defined as S = [diag(d−1 ·w)]−1. The 123 time evolution

coefficients characterized changes in an athlete’s posture, i.e. his postural movements.

Each of these time evolution coefficients could individually be projected back onto the

original coordinate system using the following relation:

pmN,k(ti) = pN + S · (ξN,k(ti) · pck) (3.10)

where pm stands for ”principal movement”[18]. The pm represented multi segment move-

ment patterns, i.e. components of the athletes’ technique. They could be characterized

qualitatively as movements by a stick figure, and analysed quantitatively through their time

evolution coefficients ξN,k(ti). Their corresponding eigenvalues λk quantified the relative

contribution of the pm to the total variance of the postural movements. Systematic differ-

ences in the athletes’ techniques were then determined as differences in the time evolution

coefficients as a whole or at specific time points.

Feature extraction

Line density plots of the time evolution coefficients were generated using all 72 stride cycles

at the given effort level (6 athletes × 12 cycles). The individual lines were color coded

according to the FIS sprint points ranking of the athletes. Thus, the line density plots

accounted for the intra-subject variability in carrying out the skating steps and visualized

inter-subject differences as a change in color. The line density plots were created by

mapping all cycles into one graph and low-pass filtering in the vertical direction using a

two-way FIR-filter with coefficients decreasing linearly to zero over a range of 7.5% of the

length of the y-axis. Similar line density plots were created for the three components (in

an external reference frame) of the COM movement to assess if characteristic differences

in the overall motion patterns of the subjects existed.

Three types of features were evaluated. Differences in amplitude, denoted with an α,

were measured as peak to peak (p2p) amplitude. If the signal contained higher harmonics

than the cycle frequency, then the p2p amplitude was calculated for each sub cycle and

averaged (feature αpc3). Differences in timing, denoted with a τ , were calculated using

an unbiased cross correlation[25] of each time series (ξ or COM) with the corresponding
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time series representing the mean over all athletes. Three features, φpc4 and φpc5,1/2 , could

not be described using whole-cycle variables. Feature φpc4 was calculated as the difference

between ξ4(ti) in the interval ti, ∈, [7.5, 12.5]% of the stride cycle and the corresponding

symmetric score 50% later in the stride cycle ti ∈ [57.5, 62.5]%. Features φpc5,1/2 were

calculated as the p2p amplitudes between the pairs of peaks in ξ5. The three types of

features are summarized in 3.11

Feature Description Quantification

α Difference in amplitude Peak-to-peak

τ Difference in timing Unbiased cross correlations

φ None of the above Individual descriptions in the text

(3.11)

Statistics

The features of the movements that were deemed to indicate technique differences were

tested for correlations with the FIS-point ranking of the athletes using the sample correla-

tion coefficient r, defined by: [26, page 649]

r =
Sxy√

Sxx ·
√
Syy

(3.12)

also known as Pearson’s r. Here Sxy =
∑n

i=1(xi−x)(yi−y), and Sxx =
∑n

i=1(xi−x)2 (and

similar for Syy). To obtain an estimate of the significance of the correlation coefficients,

the probability that there was no correlation (the null-hypothesis [26, page 418]) between

the two variables of interest was tested. This was done by calculating the test statistic[26,

page 654]

T =
r
√
N − 2√
1− r2

(3.13)

If the null-hypothesis was true, the distribution of the the test statistic would be a Students

t-distribution with N − 2 degrees of freedom4. Hence, the probability of obtaining a less

or equally likely test statistic could be calculated. The null hypothesis was rejected at a

probability (p-value) < 0.05, and the observed correlation was assumed significant (denoted
∗). However, because the sample size in this study was small, and that we should not expect

a strong correlation between the variables (many other factors than technique influence FIS-

point ranking), correlations where the null-hypothesis could not be rejected at the p < 0.05

confidence level were also assessed. These are divided into two types: correlations with a

p-value < 0.1 were considered trends, and denoted T. Correlations with a p-value > 0.1

was considered not significant.
4This is only true if the variables are from a normal distribution. In this thesis, the normality of the

variables were not tested.
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All tests were conducted using the mean values over the 12 cycles of each subject.

3.4.6 Visualization and interpretation of technique differences

Technique differences identified in the time evolution coefficients are difficult to interpret

for researchers and are not useful for athletes or coaches unless they can be visualized

and communicated. To create a visual impression of the technique differences we ”trans-

planted” certain movement components from one skier to another. This allowed creating

two overlying stick figures; one containing the original movement of an athlete, and the

other containing the same individual movement pattern except that one movement com-

ponent had been exchanged with another skier’s movement component. Thus, it could

be visualized how the individual technique of one skier would change, if one principal

movement would change in a desired way. The mathematical foundation for this hybrid

movement pattern was given by

p
(q)
N1N2

(ti) = pN1 + S ·

 123∑
k=1,k 6=q

ξN1,k(ti) · pck + σ · ξN2,q(ti) · pcq

 (3.14)

Here N1 represents the athlete whose movement is altered, and N2 represents the athlete

whose movement component q was transplanted. The additional factor σ introduced in

this equation allowed an artificial amplification of this movement component (for σ > 1)

to better visualize differences in the movement pattern. In that case ξN1,q(ti) was also

multiplied with σ when reconstructing the original movement pattern. This method could

also be generalized to transplant more than just one movement component or to modify

only specific ξN,k(ti) time intervals.

To interpret the consequences of observed differences in technique between athletes, we

investigated if there existed interconnections between the measured variables. Specifically,

features of principal movements that correlated with skill level were compared to COM

movement. Hence, effects of postural movements on whole body movements could be

determined. This was done using two approaches: 1) pm features (α, τ or φ, see 3.11)

were tested for correlations with COM-features, and 2) use of potential energy was assessed

by calculating the correlation coefficients between ξk(ti) and the vertical COM trajectory,

for principal movement components k where potential energy was assumed to contribute.

A higher correlation between ξk and the vertical COM trajectory was considered to imply

a greater ability to utilize potential energy in the corresponding pmk .
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3.5 Results

3.5.1 Skiing technique as characterized by principal movements

The first 5 principal movements, characterized by the time evolution coefficients and by

stick figures representing associated changes in posture, are displayed in Figure 3.5. To-

gether they covered 96.5 ± 0.4% and 96.1 ± 0.2% (maximal and submaximal intensity,

respectively) of the total postural variance. pm1 captured a body lean in the lateral

direction, and parts of the leg push in the sagittal plane. pm2 captured the hip flex-

ion/extension movement, in addition to a pole push. pm3 showed an arm movement and

pole swing corresponding to the poling action in the sagittal plane, and a symmetric hip

ab-/adduction5 in the coronal plane. pm4 showed a movement of the legs in both the

sagittal (asymmetric movement) and coronal plane (symmetric movement), in addition to

a small lateral translation and axial rotation of the hip. pm5 represented an asymmetric

leg movement that captured parts of the lifting of the legs and skis. The relative cycle-to-

cycle variability, quantified by the standard deviation from the mean cycle (shaded area in

figure 3.5), seemed to increase with the order k of the principal movement.

The 10 first eigenvalues are displayed in figure 3.4. The variance contained in each pc

showed a rapid decay, even on a logarithmic scale. We observed no substantial differences

between the two effort levels in the lower order (i.e. k ≤ 10) eigenvalues.
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Figure 3.4: Log-plot of the first 10 normalized eigenvalues λ. Columns represent the
subject mean, while the error bars indicate the subject-to-subject variability (standard

deviation)

5The hip ab-/adduction is not apparent in Figure 3.5, because the figure only shows the sagittal plane.
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Figure 3.5: time evolution coefficients of the postural movements 1-5 (left column) and
stick figures (right column) representing the corresponding posture at the indicated time
points (1, 2, 3). Arrows indicate the velocity vector of each marker at that time point.
The scaling of the arrows vary for each k, and should thus not be compared across pm-s.
The time evolution coefficients are the stride average of an example athlete, with shaded
areas representing the cycle-to-cycle variability (std). Vertical lines indicate pole plants

(solid) of pole leaves (dashed).



28 Chapter 3: Analysis of skiing technique: a holistic approach

3.5.2 Assessment of the differences between skiers’ techniques

COM movement

Two features of the COM movement (Figure 3.6 a-c) suggested a relationship with the

athletes’ FIS points. Statistical analysis (Table 3.1) indicated significant correlations for a

time shift in the vertical COM movement (τcom3) for both the maximal and submaximal

test, and for the lateral COM amplitude (αcom1) in the submaximal test only. In the

maximum effort test a trend was observed for αcom1 . The time shift implied that the best

ranked skiers showed a lower relative COM position at the time of the pole plant. The

magnitude of the timing differences between the three best ranked athletes and the three

lowest ranked athletes were 31 ± 4ms and 35 ± 7ms (mean ± SEM) at maximal and

submaximal intensity, respectively. This corresponded to roughly 2% of the cycle time or

4% of the vertical COM displacement time period.

The lateral movement of the COM indicated that the better ranked skiers used a smaller

amplitude in the sideways movement, with the three best ranked skiers using 54 ± 17mm

and 57 ± 13mm less amplitude in the maximal and submaximal tests, respectively. This

amplitude difference was independent of the athletes’ body height.

Principal movements

Five features of the first five time evolution coefficients (Figure 3.6 d-h) were submitted

to the statistical analysis (Table 3.1). In the sub-maximal effort test, the features τpc2
and αpc3 showed a significant correlation with the FIS point ranking, and φpc4 showed

a trend. In the maximum effort test, τpc2 was significant and features φpc4 and φpc5,1

showed a trend. These results indicated that the best ranked skiers flexed the hip (pm2 )

approximately 31 ± 6ms and 23 ± 10ms earlier (mean ± SEM, maximal and submaximal

effort) compared to the lowest ranked athletes.

In the submaximal test the best skiers showed less amplitude in the arm movement and

pole swing (pm3 ). The lateral translation and axial rotation of their hip (pm4 ) also

showed a different characteristics, which led to a more medial positioning of the push ski,

and a more lateral position of the glide ski at 7.5%−12.5% and 57.5%−62.5% of the stride

cycle, i.e. during a brief period right after pole plant (Figure 3.7).
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Figure 3.6: Line density plots of COM (a-c) and postural (d-h) movements from the
maximal effort test. Areas where all skiers used the same technique appear yellow, green
areas represent the best skiers, red areas represent the skiers with higher FIS-points.
The annotations indicate features that were selected for further statistical evaluation:
α indicates p2p amplitude differences; τ indicates a difference in timing; φ represents

features that are described in the text.
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Table 3.1: Correlation coefficients from comparison of technique features
and FIS-point ranking in the maximal effort (max) and in the submaximal

test (submax).

Reference in Fig 3.6 Description Pearson’s r
max submax

COM features
αTcom1

p2p amplitude 0.76T 0.96∗

τ∗com3
Timing difference 0.98∗ 0.91∗

Postural features
τ∗pc2 Timing difference 0.86∗ 0.93∗

αpc3 p2p amplitude 0.65 0.83∗

φTpc4 Amp. between lines -0.74T -0.75T

φpc5,1 Knee ext. post pole strike 0.76T 0.43

φpc5,2 Knee ext. pre pole strike -0.67 -0.58

∗ Significant to p < 0.05, T Trend (p < 0.1).

Figure 3.7: Hybrid movement pattern from the average movement of the three lowest
ranked skiers, where ξ̂4 was replaced with the mean of the three best ranked skiers. Green
lines: hybrid movement, red lines: average movement of the three lowest ranked skiers
(for comparison). The ξ̂4-coefficients were amplified by a factor σ = 2 to emphasize
the differences. It appeared that the difference in posture (here reconstructed at 10% of
the stride cycle) consisted of a more medial position of the push ski, and a more lateral

position of the glide ski at the start of the push phase
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3.5.3 Relations between COM movement and principal movements

Figure 3.8: Top row: Correlations between COM and pm features. Bottom row:
Correlation coefficients between vertical COM movement and ξ2/3 correlated with FIS-
points. crosses /solid line represent the maximal effort level, circles / dotted line represent

submaximal effort. Error bars indicate the standard error of the mean (SEM)

Two of the pm features appeared to relate to features in the COM movement. First,

the difference in the lateral COM amplitude (αcom1) appeared to relate to the pm4 -

features (φpc4) characterizing lateral pelvis and leg motions and a pelvis rotation (Figure

3.8, upper left panel). However, submitting these features to a statistical analysis, the

correlation indicated a trend only in the submaximal test (p = 0.08), not in the maximum

effort test (p = 0.24). Second, the timing difference in the vertical COM movement (τcom3)

correlated (p < 0.05) with the timing difference in the pm2 -movement (τpc2) characterizing

mainly hip flexion (Figure 3.8, upper right panel). A slope of 0.8 and 0.5 (maximal and

submaximal) in the linear fit between the two features revealed that the time shift was

more pronounced in the COM movement than in the hip flexion.

Correlation coefficients between the vertical COM trajectory and the time evolution co-

efficients ξ2(ti) (hip flexion/pole push) and ξ3(ti) (arm movement/pole swing) revealed a

difference in the relative timing of the athletes. The best ranked athletes appeared to have

a higher correlation between their vertical COM movement and ξ2(ti) (figure 3.9, upper

left panel), implying that their hip flexion was more synchronized in time with the vertical

COM movement. This relation correlated significantly with the FIS point rating of the
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athletes at sub max effort, while a trend was observed at maximal effort (figure 3.8, lower

left panel). Correlations between ξ3(ti) and the vertical COM showed the opposite result:

the lowest ranked athletes appeared to have larger correlation coefficients than the higher

ranked athletes (figure 3.9, lower left panel). This relation correlated significantly with

FIS-point ranking at both intensities (figure 3.8, lower right panel).

Figure 3.9: Top left panel: Vertical COM mass displacement showed a larger correlation
with ξ2 (representing hip flexion) for better skiers. Bottom left panel indicates that the
opposite was true for ξ3, which represented arm movement. Right panel: Ski trajectories
of the three best ranked skiers (green lines) and the three lowest ranked skiers (red lines).
It appeared that the best skiers started their gliding phase with a more lateral position of
the ski, and finished in a more medial position. This plot is from the submaximal effort

data set, but a similar pattern exists for the maximal effort data set.

3.6 Discussion

3.6.1 Findings

The findings of the current study support the hypothesis that even at the highest skill

level systematic differences exist between the individual techniques of elite cross country

skiers. This suggests that it is not only physiologic characteristics [2, 3], but also the skiing

technique that distinguishes the best athletes from their peers.

Specifically, three aspects in the athletes techniques appeared to show a correlation to the

athletes’ ranking. The first aspect appeared as a timing difference in pm2 , which captured
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a combination of hip flexion and aspects of the pole push. In higher ranked athletes this

movement component was more correlated with the vertical COM motion (Figure 3.9, top

left). These findings suggest that the best athletes coordinated their movements so that

hip flexors and major muscle groups in the stomach necessary to perform pm2 worked in

phase with release of potential energy. In contrast, the sagittal arm swing (pm3 ) was more

correlated with vertical COM motion for the lower ranked skiers (Figure 3.9, bottom left).

One interpretation of this is that these skiers to a smaller extent managed to coordinate

major hip flexor muscles with the release of potential energy, and compensated by using

the smaller extensor muscles in arms and shoulders.

This finding is consistent with some of the findings made in double poling by Holmberg

et al. [7]. They observed that better skiers tended to have a smaller hip angle at the pole

plant. They also suspected that better skiers were able to make use of potential energy

more effectively, however, they were lacking a COM model to assess that suspicion. Due

to the COM model used in the current study, a more explicit argument could be made.

The second technique aspect that correlated with the skiers’ ranking was found as a dif-

ference in the amplitude of pm3 , which captured a combination of sagittal-plane arm and

pole movements and an ab/adduction of the hips. The differences in the pm3 , together

with specific features in the pm4 motion are likely the cause for slightly more bent ski

trajectories (Figure 3.9, right), which enabled the best ranked skiers to better align their

skis with the forward direction during the initial gliding phase, while showing a similar

trajectory in the push-off phase. In the author’s opinion, this difference in the ski trajecto-

ries affected the lateral COM motion, causing the better ranked skiers to exhibit a smaller

lateral excursion (Figure 3.6 a).

All three aspects, better coordination of hip flexion and vertical COM motion, reduced

lateral COM motion at the same forward propulsion, and straighter alignment of the skis

in the gliding phase, are plausible potential causes that could lead to a more efficient

skiing technique. However, while a causal relationship between principal movements and

COM motion may be assumed (due to the definition of the COM), such a causal relation-

ship between the technique differences and skier ranking can a priori not be assumed. A

prospective study would be needed to prove that the observed technique differences can

be improved by training and that these differences actually lead to a better skating per-

formance. The hybrid movement patterns defined by equation 3.14 in the current paper

may prove to be particularly useful in this context, since they offer a way of visualizing

and thus effectively communicating technique differences to the athletes.
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3.6.2 Method limitations

We argued that differences in the timing of movement components were caused by a dif-

ferent coordination of muscle activation. However, no measurements of muscle activation

was performed, so such differences could not be directly observed. A possible extension to

future studies could be to incorporate EMG measurements. Measurements of force (pole

and plantar) could also add valuable information. Such studies has been performed in the

classical DP technique [7], but no detailed studies incorporating both 3D kinematics, force

and EMG measurements have yet been performed in the skating techniques.

PCA is a linear decomposition method. In this study it was applied to a system which

perhaps is better represented in the angular domain. One possible improvement, suggested

also by Troje [17], would be to represent the posture vector using joint or segment angles,

instead of the Cartesian coordinates used in this study. However, for such calculations

the exact joint locations are necessary. Otherwise, the computed angles are susceptible to

errors, which might compromise results of the succeeding PCA.

The pooling procedure used in this study enabled a direct comparison of multi-segment

movements between subjects. An individual-specific PCA could have revealed larger indi-

vidual differences in technique, by defining subject specific principal movements. However,

a direct comparison of the subjects would have been difficult. For that reason, the pooling

procedure was deemed best suited for this study.

Finally, this study has been limited to analyse only dynamic movements. Static differences

in posture, which is also a key aspect of technique, are not taken into account due to the

normalization procedure. A possible extension to include both static and dynamic informa-

tion in the analysis could be to follow the approach of Troje [17] more closely. He submitted

both the average posture (static information), the dominant principal component vectors,

and parameters that determined the time evolution coefficients (dynamic information) to

a second PCA. With this approach, he assessed both static and dynamic differences in

one comprehensive analysis. Such a method applied to this study would have resulted in

an average technique, and principal component vectors that point in the directions of the

largest technique variance within the athlete group. This would likely be highly effective

to determine different technique strategies among the skiers.

Further limitations that are common to both this study and the IMU based study are

discussed in the next chapter, followed by a combined conclusion of the two studies.
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Skiing technique assessed by inertial

sensors

4.1 Introduction

The method described in chapter 3 is suitable when one has a large (but redundant)

data set, most frequently available from measurements with 3D motion capture systems.

However, the apparatus needed to do such measurements are both high cost, and large

size. The measurement volume of this type of equipment is also limited, which in practice

restricts many applications to a laboratory environment. Cross country skiing is an outdoor

activity. Hence, any measurement system that can be used in the field will have a great

advantage over a system that is restricted to the laboratory.

A system that shows potential to do such measurements in field, are suits embedded with in-

ertial sensors. One such design has been developed by the commercial Xsens1 company[27].

These suits often require movements that have periods of fixed contact with the ground

(i.e. no sliding allowed), which is not the case for cross country skiing. However, Supej [28]

showed that this suit could be combined with a high-end GPS unit. He tested the system

on an alpine skiing course, and achieved an accuracy comparable (or better) than using

traditional video based analysis. Still, there is an issue with the size, since high-end differ-

ential GPS receivers are relatively large size, and require the mounting of an antenna on the

athletes back. This at least rules out the possibility to do in-competition measurements.

Another issue is the cost of such equipment.

Although the cost of full body commercial sensor suits currently is rather high, mass

production of miniature (MEMS2) inertial measurements units (IMUs) have made the
1Xsens Technologies B.V., P.O. Box 559, 7500 AN ENSCHEDE, THE NETHERLANDS
2Micro electro mechanical system

35
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actual sensors low cost devices. Furthermore, these types of sensors are standard equipment

in all current smart phones. Hence, a large part of the general public now have access to

motion sensors, which potentially could be used to analyse movement patterns. Also, the

sensors small size and light weight makes in-competition measurements a real prospect.

Of course, the use of a single IMUs restrict the information we can collect. However, due

to the availability of the sensors, it is tempting to study what information can in fact be

determined by such a system.

4.2 Background

Several researchers have used single (or a few) IMUs to monitor human movement. Gait

analysis has perhaps been the subject of most investigations [25, 29–32], but IMUs has

also been applied to sport science[28, 33–36]. Two articles have this far used inertial

sensors to investigate cross country skiing technique: Marsland et al. [37] investigated the

use of a single IMU placed at the upper back, and concluded that they could visually

identify what type of skiing technique was used from the sensor output. However, no

algorithms for automatic detection of techniques were developed. Myklebust et al. [13]

positioned a 3-axis accelerometer at the lower back (os sacrum), and concluded that the

sensor was sensitive enough to record differences in the movement patterns of high level

skiers. Also, they showed that individual skiers reproduced their own movement pattern,

even when the measurements where separated by several months in time. Finally, they

observed a difference in the vertical movement of the hip when comparing the V1 and

the V2 techniques. They argued that this difference indicated a fundamental difference

in way potential energy was utilized in the two techniques. This argument implied that

the center of mass (COM) of the skiers was well approximated by the hip movement.

They performed a 2D video analysis to investigate the relation of COM movements to hip

movements, however, a proper 3D segmental analysis[29, 38] (SA) was not performed.

This study used a setup similar to that of Myklebust et al. [13], with one single IMU

positioned at the athletes sacrum. However, the IMU used in this study also included a

3-axis gyroscope, which resulted in two improvements to the study by Myklebust et al.

[13]: (1) the measurements of acceleration could be corrected to resemble measurements

made in a laboratory reference frame, and (2) the measurements where not restricted to

the translation of the pelvis, but included also rotations. Furthermore, measurements

from the IMU could be directly compared with results from a 3D motion capture system

(described in the previous chapter), enabling a validation of both the sensor accuracy, and

a comparison to the COM trajectory as determined by a SA-model.
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Positioning of the IMU at the sacrum (S1) was motivated by two factors: First, the COM

was hypothesized to be located in proximity to S1. This has been investigated during gait

by Floor-Westerdijk et al. [29], with the conclusion that the displacement of S1 and the

COM (determined from a SA method) differed by < 1 cm. The second arguments was

more subjective, and was due to the authors perception that movements of the hip-region

is considered a key aspect amongst XC-skiing practitioners.

The goals of this study was thus twofold: First we wanted to investigate the relation

between pelvis movements and COM movements while roller skiing with the V2 technique.

Second, we wanted to compare the movements recorded with the IMU to the results in

chapter 3, and see if we could measure some of the same features that correlated with

performance. Also, if the IMU revealed features that where not detected in chapter 3, a

discussion of the relevance would be appropriate.

The first goal complemented the second to some degree, since several of the features that

were revealed in chapter 3 were related to COM movements. For that reason, the relation-

ship between the IMU measurements and the COM movements was considered to be of

high interest. Although Floor-Westerdijk et al. [29] found that displacement of the S1 was

a good indication of the COM displacement during gait, it is hypothesized in this study

that the S1 movement and the COM movement does not correlate as well in the XC skiing

V2 technique. This hypothesis was based on a larger range of motion for the pelvic region

during V2 compared to gait. In particular, tilting of the pelvis was considered likely to

affect the COM movement in both the vertical and anteroposterior directions. However, as

pointed out earlier, an IMU can measure both pelvis orientation and translation. There-

fore, this study also investigated whether information about the pelvis orientation could be

used to improve COM estimates from the IMU, compared to the S1 displacement estimate

alone.

4.3 Materials and Methods

The camera system has already been described in chapter 3, and the reader is referred

to section 3.4.4 for details. The participants and testing procedure was also described in

chapter 3, specifically sections 3.4.1-3.4.3.

The IMU was provided by Apertus (Apertus AS, Sykehusveien 3, 1385 Asker, Norway), and

consisted of a triaxial vibratory MEMS gyroscope, and a triaxial MEMS accelerometer. The

sensing elements where enclosed in a plastic casing with outer dimension 55× 38× 10mm,

and had a total mass of 25 g. Logging was done via a Bluetooth connection to a smart
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phone (Samsung Galaxy young) equipped with logging software developed by Apertus.

Key specifications of the sensors are found in table 4.1.

Table 4.1: IMU specifications

Parameter Conditions Value Unit
Sampling frequency (manufacturer) 100 [Hz]
Sampling frequency (measured)† 101.2 [Hz]
Clock frequency variation ± 1 [%]
Operating temperature range −40 to +85 ◦C

Gyroscope
Full scale range ± 250 [◦/s]
Scale factor sensitivity 131 [LSB/(◦/s)]
Scale factor variation −40◦C to +85◦C ±2 [%]
Bias variation −40◦C to +85◦C ± 20 [◦/s]
Total RMS noise 0.05 [◦/s]
Noise spectral density At 10Hz 0.005 [◦/s/

√
Hz]

Nonlinearity Best fit straight line, 25◦C 0.2 [%]
Cross-Axis Sensitivity ± 2 [%]

Accelerometer
Full scale range ± 2 [g]
Scale factor sensitivity 8192 [LSB/g]
Scale factor variation −40◦C to +85◦C ±0.02 [%/◦C]
Bias variation 0◦C to 70◦C ± 35 (60∗) [mg]
Noise spectral density At 10Hz 0.4 (0.6∗) [mg/

√
Hz]

Nonlinearity Best fit straight line 0.5 [%]
Cross-Axis Sensitivity ± 2 [%]

† The sampling frequency appeared to differ from the value reported by the manufacturer.
For that reason, the sampling frequency was measured experimentally by doing a long

measurement of ten minutes, and comparing it to a more accurate clock.
∗ y-axis value in parenthesis

IMUs take measurements in a local coordinate frame that moves with the sensor housing.

The mathematical foundation to transform the measurements from their local frame to

some earth fixed frame is known as strapdown inertial navigation (SIN). This area is well

researched[39], due to many commercial and military applications. However, understanding

of the equations and theory behind SIN is not required to follow the argumentation and

findings is this chapter. Therefore, this material has been moved to appendix A. In fact, the

entire validation of the accuracy obtained from the IMU measurements has been relegated

to appendix A, enabling this chapter to focus on what (skiing specific) conclusions can be

drawn from the measurements.
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4.3.1 Measurements

Measurements obtained from the IMU were the displacement of the sensor, denoted S1,

along with its two first time derivatives, and the sensor orientation represented by the Euler

angle vector θ = (θx, θy, θz). The axis system of the IMU was defined so that the y-axis

pointed in the anterior direction, z-axis in the superior direction along the spine, while the

x-axis completed the right handed coordinate frame. The Euler angles were based on a

xyz-rotation order, so that θx represented pelvis tilt, θy lateral pelvis tilt, and θz pelvis

rotation (see Figure 2.2, page 9).

To separate measurements based on inertial sensors from the marker based 3D motion

capture system, a superscript i was used to denote quantities obtained from inertial sensors,

while m represented quantities obtained from the marker based motion capture system.

Capital letters XY Z denote the laboratory reference frame, while lower case xyz denote

the IMU’s local coordinate frame.

4.3.2 Data analysis

Twelve consecutive strides were analysed for each athlete at a given effort level, as de-

scribed in the previous chapter. Each stride was re-sampled to 150 time points, using the

cycle definition proposed in the introduction (Figure 1.1, page 2). The pole plants where

detected by the 3D motion capture system as described in section 3.4.5, which in turn was

synchronized with the IMU using the method described in section A.3 of the appendix.

COM models

In addition to the sacrum (S1i ) model, a simple model to improve the COM estimates

from the IMU was developed. For this purpose, a three segment model representing the

sagittal COM position of the skiers was chosen. This model was denoted ES1i. The three

segments were the upper body (ub), the thigh, and the shank (figure 4.1). In order to

determine the COM of these segments using only output available from the IMU, three

constraints was imposed on the system: (1) the ankle joint was assumed to be located

directly under the sacrum, (2) the angle of the upper body with the vertical (θub, figure

4.1) was assumed to move in phase with the pelvis tilt angle (θix) measured by the IMU,

and (3) anthropometric differences between subjects were neglected.
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COM

COMub

COMthigh

COMshank

θub

θthigh

θshank

lshank

h

lthigh

lub

Y

Z

Figure 4.1: Simple three segment model for COM estimation in the sagittal plane. The
three segments are shank, thigh, and upper body (ub). h is the vertical distance from the

foot to the sacrum

Using vector notation, the COM of the skier could be approximated by the sum of the

three segments, weighted by the mass m they represented:

COM =
mshankCOMshank +mthighCOMthigh +mubCOMub

mshank +mub +mub
(4.1)

To simplify the mathematical notation, we defined the mass vector m and displacement

vectors dY and dZ :

m = (mshank, mthigh, mub)

dY = (lshank sin θshank, lthigh sin θthigh, lub sin θub)

dZ = (lshank cos θshank, lthigh(1− cos θthigh), lub cos θub)

(4.2)

Where lshank, lthigh, and lub are the distances between joints and the segment COM, as

indicated in figure 4.1. Using this notation, equation 4.1 was rewritten into its antero-

posterior (Y ) and vertical (Z) components:

COMY =
1

||m||
m · dY + S1Y

COMZ =
1

||m||
m · dZ + S1Z

(4.3)
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Follwing constraint (1), it was possible to estimate the θthigh and θshank-angles, using

knowledge of the vertical pelvis position h (figure 4.1), and the length of the thigh Lthigh

and shank Lshank segments:

θthigh = arccos

(
h2 + Lthigh − Lshank

2hLthigh

)
θshank = arccos

(
h2 + Lshank − Lthigh

2hLshank

) (4.4)

By constraint (3), this implied that the only variable affecting the angles θthigh and θshank
was the vertical position h of the sacrum. Furthermore, we restricted the model to mea-

sure only displacement. Hence, the vertical sacrum position h could be replaced by the

displacement S1iZ , measured by the IMU, and equation 4.3 could be rewritten into the

form:

COMY = F(S1iY , S1
i
Z , θ

i
x)

COMZ = F(S1iZ , θ
i
x)

(4.5)

where the all variables could be measured by the IMU. The rest of the parameters in

equation 4.3 were considered constants (constraint 3), and could be determined using

knowledge of human anatomy, or by comparing the model to a more detailed COM model.

In this study, the latter approach was chosen.

Acknowledging that this model is a very crude approach, it was considered sufficient to use

a first order Taylor expansion in the implementation. Hence, the model to determine the

COM in the vertical and antero-posterior directions was:

ES1iY = C1S1iY + C2S1iZ + C3θ
i
x

ES1iZ = C4S1iZ + C5θ
i
x

(4.6)

where the constants Cj were determined by minimizing the RMS difference between the

ES1i model and the 19 segment SAm model described in chapter 3. The minimization

was performed using the Nelder-Mead algorithm. The constants Cj were determined using

statistical average values from all measurements. To eliminate bias caused by applying

statistical values from a small sample size to the same sample, unique Cj were calculated

for each trial k, by averaging over all trials except the k-th trial.

Feature extraction and statistics

Line density plots of the IMU measurements where calculated by the method described

in 3.4.5, which allowed for identification of features that varied systematically with the
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athletes FIS-point ranking. Features that were identified using this approach was divided

into three types: differences in timing (denoted with a τ), differences in amplitude (denoted

α), and differences that where not adequately described using the two first approaches

(denoted φ). Timing differences were quantified by an unbiased cross correlation of the time

normalized measurements with the average measurement over all athletes, while amplitude

was quantified as the peak-to-peak amplitude. Quantification of φθz was obtained by

calculating the difference of the mean value of θz between 8 − 22% and 58 − 72% of the

stride cycle.

Features of technique (α, τ or φ) that appeared to vary systematically with skill level were

correlated (Pearson’s correlation coefficient, r) against the athletes FIS-point ranking, as

described in section 3.4.5. As in chapter 3, statistical significance was set at a p-value of

p < 0.05, (denoted ∗). A p-value < 0.1 was considered a trend (denoted T)

4.4 Results

4.4.1 Assessment of COM models

Values of the weight coefficients Cj (equation 4.6) are found in table 4.2. Root mean square

deviations between the SAm model, the ES1i , and the S1i model are displayed in table

4.3. The mean trajectories of the models for a typical subject is found in figure 4.2, along

with the deviations of the IMU based models from the SAm model.

Table 4.2: ES1 model coefficients

Coefficient Mean value SEM Unit

C1 0.28 0.04 [-]
C2 0.21 0.01 [-]
C3 0.00 0.02 [m/rad]
C4 1.10 0.02 [-]
C5 0.27 0.01 [m/rad]

The mean values were calculated by minimizing the
RMS difference between SAm and ES1i of all trials.
The standard error of the mean (SEM) was obtained
by minimizing the RMS difference for each trial sep-
arately. Due to the first order Taylor approximation
in 4.6, units of m/rad was necessary for C3 and C5.
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Table 4.3: RMS deviation of IMU based COM models from the SA model.

Model X [mm] Y [mm] Z [mm]

S1i 19± 5 (38± 16) 38± 6 (40± 7) 27± 4 (27± 5)
ES1i 6± 2 (11± 7) 8± 2 ( 9± 2)

The main entries are deviations of each athletes average stride cycle (mean
over all (11) measurements ± standard deviation). Values in parenthesis are
RMS deviations during a single stride cycle (mean over all (132) strides ±
standard deviation).

4.4.2 Assessment of the differences between skiers’ techniques

A time shift in the vertical COM trajectory between the best ranked and the lower ranked

skiers was apparent using both the S1i and ES1i models (Figure 4.3, left panel). This time

shift correlated significantly with FIS-point ranking at both effort levels (Figure 4.4,left

panel).

The amplitude of S1x also appeared to relate to FIS-point rating, where the best ranked

skiers showed the smaller amplitude (Figure 4.3, upper right panel). The amplitude corre-

lated significantly with FIS-point ranking at sub maximal effort level, and showed a trend

at maximal effort (Figure 4.4, upper right panel).

The lower ranked skiers appeared to have a larger amplitude in the θz-angle during a short

time period from 8 − 22% and 58 − 72%, which corresponded approximately to the right

and left leg push [6] (Figure 4.3, bottom right panel). However, statistical analysis revealed

no significant correlation with FIS point ranking (Figure 4.4, bottom right panel).

No timing differences were observed in the pelvis tilt angle (θx).
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Relations between features of technique

Better ranked skiers appeared to have a higher correlation coefficient between their pelvis

tilt angle (θx) and ES1Z (Figure 4.5), implying that the pelvis tilt and vertical COM

movement was more synchronized in time. This relation correlated significantly with FIS-

point ranking at maximal effort level, and qualified to a trend at sub maximal effort

(Figure 4.6, left panel). Furthermore, the amplitude of the sideways S1 displacement

(αS1X ) showed a large correlation with the axial pelvis rotation during the push phase

(φθz). This correlation was significant at maximal effort, and a trend at sub maximal effort

(Figure 4.6, right panel).
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maximal effort, o: submaximal effort
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4.5 Discussion

Due to the twofold purpose of this study, this discussion has two rather independent parts:

(1) to discuss the validity of the two pelvis based COM models and (2) to discuss individual

differences in technique.

4.5.1 Validity of COM models

The results presented in this study indicate that the sacrum model for COM estimation is

not a valid model when applied to the XC-skiing V2 technique. The sacrum models COM

movement satisfactory solely in the medio-lateral direction, where the sacrum and COM

movements are in phase, and differ only slightly in amplitude. In the antero-posterior and

vertical directions sacrum and COM movements are both out of phase, and the amplitudes

differ substantially. However, this study also showed that the sacrum model could be

extended with knowledge of the pelvis orientation, which resulted sagittal plane COM

estimates that deviated < 1 cm compared to a more detailed SA model.

The extended sacrum model was defined by inferring 3 constraints. The first constraint

(restraining the ankle joint to be positioned directly under the sacrum) was probably the

least realistic: the ankle moves both in the sagittal plane and the coronal plane in the V2

technique. For this reason, it is considered likely that an attempt to determine the model

coefficients Cj by using anthropometric measures will give results that does not agree as

well with the SA model. Arguably, fitting the coefficients using measurements from a

more detailed model can correct for some of the constraints that the model was subjected

to. For instance, if the angle between upper body COM and vertical (Figure 4.1) is not

exactly in phase with the pelvis tilt angle (constraint 2), the C3 and C5 coefficients will

have the optimal value to correct for the error in the constraint. This is of course under

the assumption that the SA model corresponds to the true COM, and that the optimal

solution was found during the numeric minimization.

The third constraint (neglection of anthropometric differences) could have been omitted

by calculating subject specific model coefficients. Possibly, this could have improved the

results. However, the aim of this study was to develop a model that can be used with input

solely from one single inertial sensor. For that reason it was decided to use values based

on the whole group, rather than making individual adaptations.

A further consideration is that all subjects in this study were elite skiers. Hence, it is

reasonable to assume that their skiing styles are more similar than that of a group ranging

from elite to recreational level subjects. If the method proposed in this study was applied

to a group of skiers at more diverse levels, one must expect that this will influence the
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model coefficients, which again would likely give a larger deviation between the SA and

ES1 model. For the same reason, the model coefficients presented in this study can not be

assumed to have the same validity if applied to a group of recreational skiers.

Finally, the coefficients were determined by minimizing the RMS difference between the SA

and ES1 model. This will ensure a model that is optimal in the RMS sense (again assuming

that the SA model corresponds to the true COM, and that the optimal solution was

found). However, this does not necessarily give an optimal model with respect to maximal

deviations, or with respect to differentiation of the time series. The latter argument is

especially important due to the relation between resultant force and linear acceleration of

the COM. Therefore, it needs to be pointed out that the results presented here is restricted

to COM displacement, and that no validation of COM acceleration has been attempted.

4.5.2 Differences in technique

The results in this study support the findings of Myklebust et al. [13], i.e. that a single IMU

positioned at the sacrum is sensitive enough to record differences between skiers’ movement

patterns. Further, several of these features was directly related to findings described in

chapter 3, which was based on substantially more detailed data. This indicates that a

single inertial sensor can measure aspects of technique that are important to performance,

and can be used to separate skiers even at an elite level.

Both the S1 and ES1 model revealed a time shift in the vertical COM trajectory, which

corresponded to the results obtained from the SA-model described in chapter 3. As dis-

cussed in the previous section, the vertical S1 trajectory does not model COM satisfactory.

However, both the S1 and ES1 model detected a similar time shift in the vertical trajectory.

This suggests that the time shift was caused by movements in the legs, rather than tilting

of the pelvis. This is further supported by no significant correlation between time shift

in the pelvis tilt angle and FIS-point ranking. The result of these observations was that

the best skiers had a higher correlation coefficient between their vertical COM trajectory

(quantified by ES1Z), and the pelvis tilt. Arguably, this finding is closely related to the

correlations between ξ2(t) and vertical COM (SA model) described in chapter 3. We spec-

ulate that the difference in coordination between upper body and lower body movements

cause a more beneficial transfer of potential energy during the poling action, in the same

way as suggested in chapter 3.

The best skiers showed a smaller sideways amplitude of the COM, as modelled by sacrum

displacement. This feature was also observed and discussed using the SA model in chapter

3. Furthermore, this feature was closely linked to the pelvis orientation during the time

of the leg push[6]. In the authors opinion, this close link is not surprising: a pelvis that
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is orientated with a large axial rotation during the leg push might influence the angling

of the glide ski, again causing the larger lateral COM amplitude. This different angling of

the skis was assessed qualitatively in Figure 3.9, and supports this hypothesis.

As discussed in chapter 3, a smaller lateral excursion of the COM at the same propulsion

is likely to be a more beneficial skiing technique. However, it is not necessarily the optimal

solution for all athletes. When skiing uphill, work against gravity needs to be done when

moving in the forwards direction, while movement in the sideways direction is normally not

not constrained by gravity. Hence, using less lateral COM excursion and a having a glide

ski more aligned with the forward direction is a heavier gear, which perhaps is suitable for

the very best skiers, but to demanding for others.

In chapter 1 it is pointed out that technique is one of the factors that influence performance.

Hence, we should expect only a weak correlation between technique and performance,

due to variations in other determinants. A major drawback in this study is thus the

small sample size: any significant correlations with only 6 subjects needs to show a very

strong correlation. For that reason, lack of statistical significance should not disqualify

any features from further assessment. Neither should features whose correlations were

deemed significant be judged important solely on that basis. Instead, interpretations of

why these differences matter has been emphasized both in chapter 3 and the current study.

Nonetheless, this thesis must be read mainly as a method study.

A final consideration is that both in this study and the study presented in chapter 3,

skill level was quantified by FIS sprint point ranking. It is not obvious that elements of

technique that are beneficial in sprint skiing are the same as those required for success in

distance skiing. Hence, a correlation against FIS distance points might result in features

that differ from the ones observed in these studies.

4.5.3 Prospects

The focus of this study was restricted to the V2 skiing technique, but there is no obvious

reason why the same method should not apply to other skiing techniques. However, new

studies are needed to confirm this.

The IMU proved able to capture differences in timing between upper body and lower body

movements (from θx and S1x / ES1x). Due to the similarity between the poling motion

in the V2 skating technique and the classical double poling technique, we hypothesise that

the features discussed in relation to use of potential energy in this study, also applies to

double poling technique.
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Furthermore, inertial sensors of similar quality that was used in this study is implemented

in the hardware of all current smart phones. Hence, this kind of quantitative technique

analysis might be made available at low cost for the general public, if the right software

is installed on the device. Obviously, this is not only applicable to skiing, but also other

sports or movement patterns. This possibility is discussed further in appendix B.

An obvious extension to this study would be to extend the amount of information by adding

sensors at other body segments. For instance, the current measurements does not contain

any information about the arm swing. Knowledge of the arm-movements could improve the

COM model, and are also important aspects of skiing technique by themselves. However,

as pointed out in the introduction to this study, commercial inertial sensor suits that can

provide extensive measurements of human movement already exist[27]. The strength of the

current study is the small size and low cost of the equipment, which suggests that these

types of measurements can be performed in large volumes, both during regular training

and in a competition situation.



Conclusion

Results in the two previous chapters suggest that coordination between major muscle

groups related to hip flexion and vertical COM motion is important for performance in

the V2 technique, and that this separates skiers even at an elite level. Furthermore, the

best skiers showed a smaller lateral COM excursion while generating the same forward

propulsion, which could indicate a more efficient technique. However, this observation can

also be caused by the fact that a smaller lateral excursion is a heavier gear, which might not

be optimal for the lower ranked skiers. Amplitude of the lateral COM excursion appeared

to be linked to the axial rotation of the pelvis during the push phase, and to a more lateral

position of the glide ski during approximately the same time period.

On a more general basis, both methods presented in chapter 3 and 4 proved able to reveal

possible performance relevant features of technique in skiing. However, because of the small

number of athletes included in these studies, and that athlete-specific adaptations might

be of importance, the findings must be considered no more than interesting observations

that can benefit from further scientific analysis.

In order to assess the claim of a different muscle activation coordination proposed in this

thesis, further studies using EMG-equipment might be performed, preferentially in combi-

nation with motion capture equipment. It is emphasized that no causal relation between

the features revealed in this thesis and skiing performance can be assumed. To prove such

a relation, a prospective study were athletes train to improve the specific features must be

conducted.

Another important limitation is that both studies excluded static differences in technique.

These static differences might be just as performance relevant as the dynamics discussed

in this thesis.
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Appendix A

Validation of inertial sensors for

technique analysis

A.1 Introduction

Motivation for use of inertial sensors to measure movement has already been made apparent

in the previous chapter. What was not clarified in chapter 4 was how low grade inertial

sensors can be used to provide high accuracy, drift free measurements of displacement.

This has been subject to some investigation during the later years. Several researchers

have found that measurements of displacement can be obtained with satisfactory accuracy,

even when the IMU specifications report drift rates that suggests this is not feasible. This

has been done by determining biomechanical and sport specific constraints that govern the

movement, and then implementing these constraints in the inertial navigation algorithms

[33, 35]. This study uses the same approach, however, the constraints that are used makes

the method transferable to a large group of sports. The key limitations are that the

movement patterns must be cyclic, with cycle durations ∼ 2 s or less, and that the average

COM velocity is the same from cycle to cycle. Hence, others sports such as running, race

walking and swimming might also be analysed using the same approach.

The main goal of this study is therefore to present a method that enables the use of low

grade IMUs for technique analysis that applies to a large group of sports, and to validate

the accuracy of such a method.

53



54 Appendix A: Validation of inertial sensors for technique analysis

A.2 Theory

The equations and theory presented in this section is to a large extent based upon the

textbook by Titterton and Weston [39].

A.2.1 Background

Inertial sensors are in the strict sense limited to two types of sensors: angular rate sensing

devices (gyroscopes) and linear acceleration sensors (accelerometers). Combining these

sensors into a inertial navigation system (INS) was first proposed by Boykow in the early

20. century [39, ch. 2.3]. During the 20. century there was a large amount of research on

developing both high quality inertial sensors, and efficient INS algorithms. Lately, much

attention has also been given to the development of miniature inertial sensors, abbreviated

MEMS (micro electromechanical systems)[39, ch. 7]. These sensors have a very small size,

and the production technique is highly suitable for mass production, making them low

cost. Unfortunately, the specifications of the current low-grade MEMS inertial sensors are

typically not good enough to construct a INS with acceptable accuracy for longer periods

of time. However, if the system that is measured follows certain constraints, it might be

feasible to use these types of sensors for short time inertial navigation.

Some different MEMS gyroscope designs have been developed. Most of them have in

common that they are based on the vibratory gyroscope, and thus does not have the

spinning mass of conventional gyroscopes. The vibratory gyro is based upon the principle

of Coriolis acceleration. Different types of gyroscopes have been developed to utilize this

phenomenon, both in MEMS and non-MEMS versions. Figure A.1 shows the working

principle of one such design: the tuning fork gyroscope. The two ends are forced to vibrate

at a certain amplitude A and angular frequency ωr, but in opposite phase. If the tuning

fork is rotated with an angular velocity ωin about its sensitive axis (i.e. about the shaft),

this will induce a Coriolis force Fc on the vibrating elements, following the relation:

Fc = 2mωinAωr cos(ωrt) (A.1)

where m is the mass of vibrating element. Since the two vibrating elements are in opposite

phase, the Coriolis force will be in opposite direction, and in phase with the forced vibration

modes. This will result in a measurable AC torque on the torsion bar, who’s amplitude is

proportional to the applied input angular velocity.

Accelerometers (in the conventional form) work by measuring the force working on some

mass, referred to as a proof mass. Hence, an accelerometer in free fall (i.e. in an inertial

frame) has an output equal to zero. Consequently, an accelerometer at rest on the surface
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ac

acωr ωr

ωin

Gyro input axis Acc. input axis

Torsion bar

Sensor frame Capacitive pickoff

Spring

Proof mass

Damper

k

M

b

Figure A.1: Working principles of a vibratory gyroscope (left side) and accelerometer
(right side). Both sensors are open loop. Gyroscope: the rods of the tuning fork are forced
to vibrate in opposite phase, resulting in a Coriolis acceleration ac of the rods when subject
to a rotation about its sensitive axis. This will result in a torque that acts on the torsion
bar. Accelerometer: The proof mass can be displaced along the sensitive axis. Due to
the spring, the displacement is proportional to the applied linear acceleration (following
Newtons 2. law). The displacement can be measured, for instance by a capacitive pickoff.

(The illustrations are inspired by [39] and [40])

of the earth should have an output of 1g directed vertically upwards (i.e. the force exerted

by the ground against gravity). The term specific force is frequently used to denote the

output of an accelerometer. The specific force is then the sum of non-gravitational forces,

divided by the proof mass[39, page 10]. Using Newtons 2. law, and knowledge of the spring

constant k and damping coefficient b in figure A.1, it can be shown that the displacement

of the proof mass (denoted x) is related to the specific force acting on the sensor frame (f)

via the following equation[40]:

Mẍ2 + bẋ+ kx = Mf (A.2)

It is apparent that the output of an accelerometer might produce an oscillatory output,

due the the second order differential equation. For that reason, the damping coefficient is

usually chosen so that the system is critically damped.

Most high end inertial sensors (both gyroscopes and accelerometers) actively suppress the

displacements of the proof masses (called closed loop sensors). This solution offer better

accuracy over a larger measurement range. However, this technique is still not common in

low grade MEMS sensors, which operate using the open loop principle described in figure

A.1.
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A.2.2 Navigation frames

To make a successful INS it is necessary to have well defined reference frames. For the

purpose of this study, we only need to define three reference frames: the b-frame, the

l-frame, and the sb-frame.

The body frame (b-frame) is an orthogonal axis set where the axis move with the body it

is attached to. Using anatomical terminology, it is customary to define axis that point in

the anterior direction, lateral direction, and superior direction (Davis et al. [41]).

The lab frame (l-frame) is an earth fixed reference frame. Its origin is some point r on the

surface of the earth (assumed to be relatively close to the origin of the body frame), whose

axis move with the earth’s surface. The z-axis point vertically upwards, while the x and

y-axis are mutually orthogonal in the tangential horizontal plane.

The sb-frame (stabilized body frame) is an orthogonal axis set where the axis are fixed

with respect to inertial space. For the purpose of this study, the l-frame is assumed to be

an inertial frame. For that reason, the sb-frame differ from the l-frame only by a (constant)

rotation of the axis system.

Notation: In addition to the notation specified in the introduction to this thesis, the

following notation is used in this appendix:

• the dot-notation for time derivatives (dtdt = ẋ and d2t
dt2

= ẍ)

• a superscript denotes the frame of reference that a measurement is made (qb: vector

quantity q expressed in the body frame)

• A matrix C transforming a vector from frame a to frame b is denoted Cb
a

A.2.3 Strapdown inertial navigation equations

The IMU measures angular velocity ωb and specific force f b in the b-frame. This frame

can be related to the l-frame by a matrix multiplication:

ql(t) = Cl
b(t)q

b(t) (A.3)

The 3 × 3 matrix Cl
b is called the direction cosine matrix, whose columns represent the

unit vectors of the b-frame, projected onto the l-frame. Here qb represents an arbitrary

vector in the b-frame. Differentiating Cl
b with respect to time, we find (by definition):

Ċl
b = lim

δt→0

Cl
b(t+ δt)−Cl

b(t)

δt
(A.4)
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The matrix Cl
b(t+ δt) can be related to Cl

b(t) by multiplication of another direction cosine

A(t), relating the b-frame at time t to the b-frame at time t+ δt:

Cl
b(t+ δt) = Cl

b(t) ·A(t) (A.5)

It can be shown that for small angle rotations, A(t) may be written as a skew symmetric

matrix:

A(t) = (I + δΨ) (A.6)

with I being the 3× 3 identity matrix, and

δΨ =


0 −δθz δθx

δθz 0 −δθy
−δθx δθy 0

 (A.7)

Here δθi represents a small rotation around one of the b-frame axis x,y or z. Putting the

expression for Cl
b(t+ δt) in eq. A.5 into eq. A.3, we obtain:

Ċl
b = Cl

b lim
δt→0

δΨ

δt
(A.8)

In the limit δt → 0, δΨ/δt is simply the skew symmetric form of the angular rate vector

ωblb = [ωx, ωy, ωz]
T, which represents the turn rate of the b-frame with respect to the

l-frame, expressed in body axes. Thus, the relation between the time evolution of the

orientation of the b-frame with respect to the l-frame, and the turn rates expressed in

body axis, is given by the differential equation:

Ċl
b = Cl

b ·Ωb
lb (A.9)

where

Ωb
lb = [ωb

lb]× =


0 −ωz ωx

ωz 0 −ωy
−ωx ωy 0

 (A.10)

Relation to Euler angles

A transformation from one reference frame to another can be represented by three succes-

sive rotations about different axis. A sub group of these kind of rotations are known as

Euler angles, which is made up of twelve different rotation conventions. For the application

to anatomical angles, the following Euler angle convention was suggested by Davis et al.

[41] (starting from the l-frame):
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1. rotate an angle θx about the l-frame x-axis

2. rotate an angle θy about the new y-axis

3. rotate an angle θz about the new z-axis

The rotations about these axis can be expressed via the three direction cosines:

Cx(θx) =


1 0 0

0 cos θx sin θx

0 − sin θx cos θx

 (A.11)

Cy(θy) =


cos θy 0 − sin θy

0 1 0

sin θy 0 cos θy

 (A.12)

Cz(θz) =


cos θz sin θz 0

− sin θz cos θz 0

0 0 1

 (A.13)

A transformation from laboratory to body axis is then given by the direction cosine Cb
l =

CzCyCx. Since the direction cosines are orthonormal, the inverse transform, i.e. the

transform from body to laboratory axis, is simply given by the transpose of Cb
l :

Cl
b = CbT

l (A.14)

Writing out Cl
b, we find:

Cl
b =


cos θy cos θz cos θz sin θx sin θy − cos θx sin θz sin θx sin θz + cos θx cos θz sin θy

cos θy sin θz cos θx cos θz + sin θx sin θy sin θz cos θx sin θy sin θz − cos θz sin θx

− sin θy cos θy sin θx cos θx cos θy


(A.15)
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From this we can compute the Euler angles, as defined above, using the following relations:

θx = arctan

(
C3,2

C3,3

)
θy = − arcsin(C3,1)

θz = arctan

(
C2,1

C1,1

) (A.16)

where Ci,j represents the i, j-th element of the Cl
b-matrix

Navigation from specific force measurements

The transformation matrix Cl
b allows us to transform the measurements of specific force f

from the b-frame to the l-frame. The acceleration of the b-frame with respect to the l-frame

can be expressed in terms of the specific force measurements and the direction cosine in

the following way [39, chapt 3]:

p̈l = Cl
bf
b − 2ωlie × vll + gl − ωlie ×

(
ωlie × r

)
(A.17)

The shaded terms are corrections due to the earth’s rotation: the light gray term corrects

for the Coriolis acceleration, the dark gray term corrects for the centripetal acceleration.

ωlie represents the angular rate vector of the earth with respect to an inertial frame, and

vll is the velocity of the b-frame with respect to the l-frame. gl is the gravity vector, and

r is a vector from the center of the earth to the origin of the lab frame. In this study we

used sensors with low end specifications, and analysed systems moving at relatively low

velocities (|vl| < 5m/s). For that reason, the correction terms in equation A.17 can be

ignored, and the navigation equation reduces to:

p̈l = Cl
bf
b + gl (A.18)

The direction cosine Cl
b is updated in accordance with equation A.9, where Ωb

lb is the skew

symmetric form of the angular rate vector of the b-frame with respect to the l-frame (ωblb).

This rate vector is related to the angular rate vector sensed by a gyroscope (ωbib) through

the equation:

ωblb = ωbib −Cb
lω

l
ie (A.19)

For the purpose of this study the turn rate of the earth is neglected, because the sensors

are not able to measure angular rates to this accuracy. Thus, the turn rates of the b-frame

with respect to the l-frame is considered to be equivalent to the gyroscope output:

ωblb = ωbib (A.20)
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Using the result from equation A.18, the velocity and position of the b-frame can be

expressed in the l-frame from the following equations:

ṗl =

∫ tf

t0

p̈l(t) + ṗl(t0)

pl =

∫ tf

t0

ṗl(t) + pl(t0)

(A.21)

where ṗl(t0) and pl(t0) are the initial values of the velocity and position.

A.2.4 Alignment with the horizontal plane

If the IMU is stationary in the l-frame, the accelerometers will measure only the gravity

vector (neglecting the centripetal acceleration correction term (eq A.17) due to the earth’s

rotation). From these measurements, one can solve a set of equations to align the z-axis of

the IMU with the direction of the gravity vector. The geometry of the problem is apparent

from figure A.2. If we imagine that we can physically rotate the system, the alignment

procedure can be visualized in the following way:

1. Measure the specific force in body axis (f b(t1))

2. Determine the angle θx from:

θx = arctan
f by(t1)

f bz (t1)
(A.22)

3. Rotate the system an angle θx about the b-frame x-axis

4. Make a new measurement of the specific force f b(t2)

5. Determine the angle θy

θy = arctan
f bx(t2)

f bz (t2)
(A.23)

6. Rotate the system an angle −θy about the b-frame y-axis

Following this procedure, the IMU z-axis will be aligned with the gravity vector, and the

x and y axis will be aligned with the horizontal plane. The direction of the axis in the

horizontal plane can in theory be calculated by using a technique called gyrocompassing[39].

However, as this requires a gyroscope that is accurate enough to measure the earth’s

rotation, it is not applicable to the sensor used in this study.
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Figure A.2: Alignment of IMU z-axis with the gravity vector ~g. The angle θx is related
to the gravity components by tan θx = gy/gz, while θy can be related by tan θy = gx/gz

A.2.5 Computations

Orientation

In order to update the orientation of the IMU, the differential equation A.9 needs to be

solved. From one computer update k, to the next update k+1, the solution to this equation

can be written as:

Ck+1 = Ck exp

(∫ tk+1

tk

Ωdt
)

(A.24)

Assuming that the direction of the turn rate vector ωi remains fixed in inertial space over

the time ∆t = tk+1 − tk, the integral can be written as:∫ tk+1

tk

Ωdt = [σ×] (A.25)

where [σ×] is the skew symmetric form of the angle vector σ. This vector has direction

which specifies the rotation axis, and its magnitude is equal to the angle of rotation. Hence,

equation A.24 reduces to:

Ck+1 = CkAk (A.26)
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with Ak = exp ([σ×]). This exponential can be written as an expansion based on the

definition of exp(x):

Ak = I + [σ×] +
[σ×]2

2!
+

[σ×]3

3!
+

[σ×]4

4!
+ . . . (A.27)

From the shape of [σ×], it can be shown that [σ×]n abides the following recursive relation:

[σ×] =


0 −σz σy

σz 0 −σx
−σy σx 0



[σ×]2 =


−(σ2y + σ2z) σxσy σxσz

σxσy −(σ2x + σ2z) σyσz

σxσz σyσz −(σ2x + σ2y)


[σ×]3 = −

(
σ2x + σ2y + σ2z

)
[σ×]

[σ×]4 = −
(
σ2x + σ2y + σ2z

)
[σ×]2

...

writing σ2 = σ2x + σ2y + σ2z , we can rewrite Ak:

Ak = I +

(
1− σ2

3!
+
σ4

5!
− . . .

)
[σ×] +

(
1

2!
− σ2

4!
+
σ4

6!
− . . .

)
[σ×]2 (A.28)

which can be written as:

Ak = I +
sinσ

σ
[σ×] +

1− cosσ

σ2
[σ×]2 (A.29)

If this equation was implemented perfectly, and the assumption that the rotation axis

remains fixed during one computer update is true, the computed orientation would be

exact. In order to implement the equation A.29 in any practical situation, the functions

will have to be truncated at some order in equation A.28. Defining:

a1 = 1− σ2

3!
+
σ4

5!
− . . .

a2 =
1

2!
− σ2

4!
+
σ4

6!
− . . .

then equation A.28 can be written as:

Ak = I + a1[σ×] + a2[σ×]2 (A.30)

a1 and a2 can then be truncated after a certain number of terms in order to achieve a desired
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accuracy. Including just the first term of a1 gives a first order algorithm, truncating both

a1 and a2 after the first term gives a second order algorithm.

A.2.6 Propagation of errors

Orientation algorithm truncation errors

If we denote the computed attitude matrix by Âk, assumed to be truncated at some order,

and the true attitude matrix by Ak, then we can define an error matrix E:

E = A
T
Â− I (A.31)

From equation A.29 and A.30, we find that:

E =
(
σa1 cosσ − sinσ + σ2a2 sinσ

) [σ×]

σ
+ . . .(

1− cosσ − σa1 sinσ + σ2a2 cosσ
) [σ×]2

σ2

(A.32)

The first term will have the form of a skew symmetric matrix (from the [σ×]-term), while

the second term is a symmetric matrix (following [σ×]2). Thus, the error matrix can be

written at the sum of a skew matrix U, and a symmetric matrix S.

Since A is an orthogonal matrix, the relation A
T
A = I is satisfied. For the computed

matrix, this implies:

Â
T
Â = [I + E

T
][I + E]

≈ I + E + E
T

(A.33)

Where we have terms higher than first order of the error matrix. Using that S
T

= S

andU
T

= −U, we find:

Â
T
Â = I− 2S (A.34)

A
T
Â = I + S + U (A.35)

From A.34 it is apparent that S describes the deviation of Â from orthogonal form. If S is

zero, then Â is an orthogonal matrix. U will then be a measure of the difference between

the rotations given by Â and A. A measure of the drift of the computed orientation matrix,

denoted Ddc, can be represented by the root sum square of the upper or lower off diagonal

elements of U, divided by the update interval dt. Assuming rotation about the x-axis only
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(i.e σ = [σ, 0, 0]
T
), the drift term is given by:

Ddc =
1

dt

(
σa1 cosσ − sinσ + σ2a2 sinσ

)
(A.36)

Rotation angle errors

In section A.2.5 the equations were based on the assumption that the direction of the

rotation angle vector σ was constant during a computer cycle. If this was true, then σ

could be computed by evaluating the integral:

σ =

∫ tk+1

tk

ω dt (A.37)

In general, this assumption is not true, and we have:

σ̇ = ω + ε̇ (A.38)

where ω is the measurable angular motion, and ε̇ a component of the angular motion that

is not possible to measure using inertial sensors. This error is frequently referred to as

a coning-error, because the effect is most prominent when a single axis of a body spans

a cone in space. The coning error is reduced with increased sampling frequency, but can

also be reduced by applying an estimate of ε. A method for estimating ε was proposed by

Savage [42]. Defining δα to be the estimate of ε, he proposed the following correction:

δα =

∫ tk+1

tk

α× ω dt (A.39)

where:

α =

∫ tk+1

tk

ω dt (A.40)

The rotation angle is then given by σ = αk+1 + δαk+1.

Magnitude of coning error

It can be shown that if a body oscillates about two axis, following the angular rate vector

ω = 2πf [θx cos 2πft θy cos(2πft+ φ) 0]
T

then a drift term about the z-axis will arise, according to the following relation: [39, chapt

11]

ε̇z = πfθxθy sinφ

(
1− sin 2πfdt

2πfdt

)
(A.41)
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Here θx and θy is the amplitude of the oscillations about the x and y axis, andf is the

frequency of the oscillations. The two oscillations differ in phase by φ, and dt is the

computer update time. Hence, equation A.41 can be used to estimate the effect of drift in

orientation due to coning motion, given initial estimates of the systems behaviour. If the

drift term is negligible compared to the performance requirements, the correction term in

equation A.39 can be omitted.

Position algorithm truncation errors

Sensor bias errors

From the equations A.21 and A.9, it is obvious that any bias in the accelerometer or

gyroscope measurements will cause the orientation, acceleration, velocity and position to

drift over time. A simplified analytical assessment of the propagation of errors can be done

in the short time limit (∆t << 84.4minutes, the Schuler period [39, chapt 12]).

Assuming a constant bias in the all angular rate measurements, denoted δω, we should

expect a drift in the orientation estimate according to:

δθ = δω · t (A.42)

Any drift about the vertical axis in the l-frame will not result in a misalignment with the

gravity vector, but a drift about the two horizontal axis will. Thus, the drift in acceleration

measurements due to gyroscope bias can be modelled as (using sin θ ≈ θ and cos θ ≈ 1−θ2):

δp̈ =


gδωt

gδωt
√

2gδω2t

 (A.43)

Assuming also a uniform bias in the acceleration values (δa), originating in the measure-

ments from the accelerometer, we obtain the following estimates for drift in velocity and

position:

δṗ =


gδω

t2

2
+ δat

gδω
t2

2
+ δat

√
2gδω2 t

2

2
+ δat

 δp =


gδω

t3

6
+ δa

t2

2

gδω
t3

6
+ δa

t2

2√
2gδω2 t

3

6
+ δa

t2

2

 (A.44)
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A.2.7 Cross correlations

In the discrete domain, a cross correlation between two functions f and g is defined as:

(f ? g)[m] :=
∞∑

n=−∞
f∗[n]g[n+m] (A.45)

If the functions are not of infinite length, then one can also the define the biased and the

unbiased cross correlations:

(f ? g)biased[n] =


1

N

N−m−1∑
n=0

f∗[m]g[n+m] if m ≥ 0

1

N

N+m−1∑
n=0

f∗[n−m]g[m] if m < 0

(A.46)

(f ? g)unbiased[n] =


1

N −m

N−m−1∑
n=0

f∗[m]g[n+m] if m ≥ 0

1

N +m

N+m−1∑
n=0

f∗[n−m]g[m] if m < 0

(A.47)

The difference between the biased and the unbiased version is apparent from figure A.3:

both the biased and the unbiased cross correlations reaches a maximum when f and g are

in phase, here illustrated by a sine (f) and a cosine (g). However, due the the scaling

factor, the unbiased cross correlations are not sensitive to the change in overlap of the two

functions.
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Figure A.3: Unbiased (black line) and biased (gray line) cross correlation of a sine and
cosine function, defined in the domain x ε [0, 2π]. The cross correlations are then defined
in the domain x ε [−2π, 2π], i.e. the domain that there exists some overlap between the
two functions. The unbiased cross correlation has equal maximums at both φ = π/2 and
φ = −3π/2, where the functions are in phase. In contrast, the biased cross correlation
has a smaller amplitude at φ = −3π/2 than at φ = π/2, due to the limited length of the

functions.
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A.3 Materials and methods

The materials used in this study was restricted to the 3D motion capture system described

in chapter 3, and the inertial measurement unit described in chapter 4. The reader is

referred to those chapter for details, but for the purpose of this validation study, some

fulfilling information about the camera based system is presented here.

The reference frame used by the cameras was constructed using a proprietary metal frame

with reflective markers (manufactured by Qualisys, Qualisys AB, Gothenburg, Sweden),

which was placed on the treadmill when it was in a level position. The direction of the

Y -axis was in the forward direction of the treadmill, the X-axis pointing sideways to the

right (compared the the forward direction), and the Z-axis pointed vertically upwards.

This assured that the XY -plane coincided with the horizontal plane. Any misalignments

between theXY -frame used by the camera system and the horizontal plane, or the direction

of the treadmill compared with the Y -axis, was considered negligible.

Only three of the retro reflective markers were used in this study: The sacrum marker (S1),

which was placed on top of the IMU sensor housing (Figure A.5), and markers on the left

and right anterior superior iliac spine (lASIS and rASIS. See Figure 2.2, page 9 for details

on pelvis anatomy). The pelvis can be modelled as a rigid body. Hence, the S1, rASIS and

lASIS could be used to define a local coordinate frame for the pelvis. The origin of this

coordinate frame was at S1. The x-axis was parallel to the rASIS-lASIS vector, the y-axis

passed through the rASIS-lASIS vector perpendicularly, and the z-axis was computed as

the cross product of the x and y-axis. An illustration of this local coordinate frame is

shown in figure A.4. The pelvis coordinate frame was then used to construct a direction

cosine matrix, and the Euler angles θ = (θx, θy, θz) of the pelvis could be determined

using eqations A.16. With the xyz rotation order, the angles corresponded to the pelvis

tilt angle (θx), lateral tilt angle (θy) and pelvis rotation (θz). Figure 2.2, page 9 includes

a illustration of the rotation axes.

In order to compare the velocity and acceleration computed from the IMU output, a

numerical differentiation of the S1 position data had to be performed. For that reason, it

was deemed necessary to low pass filter the position data. The filter used was a second

order Butterworth filter with cutoff frequency 15Hz. For the differentiation, a five point

numerical approach[43] was used.

Synchronization

The camera system and the IMU did not support any direct synchronization of the signals,

so a method to synchronize the two systems had to be developed. The start and stop of the
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Figure A.4: Construction of the local pelvis coordinate frame. The x-axis was parallel
to the rASIS-lASIS vector. The y-axis was in the S1-lASIS-rASIS plane, perpendicular
to the x-axis. The z-axis was constructed to be mutually orthogonal to x and y-axis.

measurements was done manually, with estimated deviations between the two systems of

∼ 1 s. In order to determine the synchronization error between the two systems, a method

based on cross correlations was developed. The outline of the method was:

1. Differentiate the position of the S1 marker to find the acceleration (aS1).

2. Add a component of gravity in the vertical direction (fS1 = aS1 + g).

3. Calculate the vector norm of both the specific force measurement from the IMU

(|fIMU|), and the mimicked specific force measurement from the S1 marker (|fS1|).

4. Re-sample the IMU-data to the camera system frame rate.

5. Cross correlate the two signals using equation A.47 (unbiased version) to find the

time shift between the two signals.

One challenge with this method was the large variability in the clock frequency of the

IMU (table 4.1). A variation in clock frequency of 1% was considered to give intolerable

synchronization error. For this reason, points 4-5 above was repeated for many small

variations in the sampling frequency of the IMU. This method allowed to determine both

the synchronization error, and the sampling frequency of the IMU. A test of this method

using controlled synchronization times and sample frequency deviations was performed.
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The algorithm checked for variations in sample frequency in the range ±0.5%, using 501

equally spaced steps. From this test, the synchronization error was 0.007 ± 0.002 s, and

the sampling frequency error was 0.01 ± 0.02Hz. This was considered sufficient.

After the synchronization procedure, both signals where re-sampled to 100Hz, which was

close to the IMU original frequency. All inertial navigation calculations where done using

data re-sampled to this frequency. This choice was made in order to have control of the

actual sampling frequency (which appeared to vary slightly for the IMU), and to avoid

using data up-sampled to a significantly higher rate than that at which the measurements

where recorded.

IMU

Positioning: The IMU was adhered directly to the skin at the sacrum (S1, Figure 2.2)

using a medical tape. It was oriented so that the axis pointed lateral to the right (x),

anterior (y), and superior (z), as indicated in figure A.5.

x

y

z

38
m
m

55mm

10mm

Reflective marker

Figure A.5: Positioning of the IMU and S1 marker. The axis system indicates the direc-
tion of the IMU’s axis. The wire going out from the IMU was from another accelerometer

logging system, who’s results is not used in this study.
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Filtering: The output signals from the accelerometer and gyroscope where not filtered.

An exception to this was the anti-aliasing filters applied during the re-sampling procedure

under synchronization with the camera system. This decision was done based on the aim

of this study, which was to mainly to investigate the validity of the displacement estimates.

Since numerical integration by itself reduces high frequency noise, low pass filtering was

considered unnecessary, along with the risk that all filtering corrupts the data to some

degree.

Transformation to l-frame: In order to express the IMU measurements in the laboratory

frame, a two step method was used. The first step consisted of correcting for the dynamic

rotations caused by movement of the sensor during stride cycles. The second step was to

align the axis of the fixed frame with the axis of the laboratory frame.

For the first step, the equations A.26 and A.30 was used. In order to determine the number

of terms needed to compute Ak with sufficient accuracy, values for the maximal angular

velocities during the measurements where put into equation A.36. The maximum angular

velocity that the sensor measured during a typical stride cycle was ∼ 200◦/s. The estimated

drift was then < 0.1◦/s for a first order algorithm , while a second order algorithm yielded

a drift term < 0.05◦/s. Over a typical measurement length of ∼ 20 s, this corresponded

to a drift of < 2◦ and < 1◦ respectively . These drift terms was considered to be small

compared to the drift due to bias errors in the gyroscope measurement.

An error due to coning effect was calculated using estimates of θx = 15
◦
, θy = 10

◦
,

f = 1.5Hz and φ = π/2 in equation A.41. This resulted in an estimated orientation drift

< 1.1
◦
/s. These estimates were assumed to be worst case scenarios, however, it could

not be ruled out that an error due the the coning effect would significantly influence the

accuracy of the results.

With the drift estimates derived above, it was decided to do the calculations using two

different algorithms: a first order algorithm without any coning correction term (denoted

1NCC), and a second order algorithm where a coning correction term was included (de-

noted 2CC). The rotation angle σ was in both cases computed by the trapeze method for

numerical integration. In the non-corrected case, σ was considered equal to α in equation

A.40, while in the corrected algorithm, the correction term in equation A.39 was included.

In order to align the axis of the gyro stabilized frame with those of the laboratory frame,

it was assumed that the yz-frame of the sensor frame would on average be aligned with

the laboratory Y Z-frame. The alignment of the two planes could then be achieved by

calculating the Euler angles relating the body frame and the laboratory frame (eq A.16),

subtracting the mean angles, and then calculating new direction cosines using these angles

and equation A.15.
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Since the laboratory XY -plane coincided with the horizontal plane, the xy-plane of the

IMU needed to be aligned with the horizontal plane. This was done using the assumption

that during the measurement time of twelve cycles (∼ 20 s), the mean acceleration that the

IMU was subjected to was zero. This can be justified by (1) that the athletes are skiing

at a constant speed, and (2) we take the mean over a whole number of stride cycles, so

any variations in speed during a stride cycle should approximately cancel out. Under this

assumption, the procedure outlined in section A.2.4 was valid, given that the instantaneous

measurement of the specific force was replaced by the average over the measurement time.

The angle around the x-axis could then be determined using equation A.22, and the IMU

output could be rotated using the direction cosine Cx(θx) given by equation A.11. The

measurement of the specific force after this rotation was then put into equation A.12, giving

the angle θy. Measurements in the gyro stabilized IMU frame could now be expressed in a

frame that was aligned with the horizontal-plane via a the direction cosine:

Cl
sb = Cy(−θy)Cx(θx) (A.48)

where the index sb indicates a stabilized body frame.

Drift compensation: Under the assumption of a constant gyroscope bias error, the

computed orientation of the gyro stabilized reference frame was considered to have a linear

drift term. Since no real time computations was needed in this study, this linear drift was

measured by calculating a linear fit to the Euler angles relating the body frame to the

laboratory frame, and then subtracting the trend line.

The effect of the accelerometer bias error was reduced by imposing a constraint demanding

that the acceleration of the sensor over the entire measurement period was zero.

Since there will always be some variation in the bias error, this assumption was only deemed

adequate for the orientation computations. Because of the higher order drift terms in com-

puting the velocity and displacement (equations A.44), the drift due to both accelerometer

bias errors and gyroscope bias errors was considered to be to large if the integration was

done over the entire measurement period of ∼ 20 s. For that reason, it was decided to

calculate the velocity and position over time intervals limited to the duration of each stride

cycle. The velocity and position were calculated using equations A.21, where the integrals

were evaluated using the trapeze method. The initial conditions ṗ(t0) and p(t0) were un-

knowns. This was solved by inferring two new assumptions: (1) The mean velocity was

zero over each stride cycle, and (2) the mean position was zero over each stride cycle. The

initial conditions were then found by first using initial values ṗ(t0) = p(t0) = 0, and then

subtracting the mean velocity and displacement after the integrals were evaluated.
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Calibration: The IMU was calibrated using a method proposed by Fong et al. [44]. The

idea behind the method was to use the direction and magnitude of the gravity vector as a

calibration constraint, both for the accelerometer and gyroscope calibration. The IMU was

placed in 18 different orientations for a period of ∼ 4 seconds. The accelerometer sensor

could then be calibrated by minimizing the following cost function:

Lacc(φacc) =

18∑
k=1

(
1− ||Eacc(f

b
k − bacc)||2

)2
(A.49)

where f bk was the mean specific force measurement from orientation k, bacc was the ac-

celerometer bias, and Eacc = MS was the correction matrix, calculated from the scaling

(S, including cross axis terms) and axis misalignment matrices (M):

S =


sxx sxy sxz

syx syy syz

szx szy szz

 M =


1 −αyz αzy

0 1 −αzx
0 0 1


The vector φacc was made up of all the elements of the correction matrix Eacc, and the

bias vector bacc. The cost function L was minimized using the Nelder-Mead method for

non-linear minimization. The calibration factors determined using this method gave the

acceleration relative to the magnitude g of the local Earth gravitational field. In this study,

g was set equal to 9.82ms−2.

The gyroscope bias vector bgyro was calculated by averaging the output from a static

measurement of duration 30minutes. A correction matrix Egyro was then calculated using

a similar method as for the accelerometer. The cost function to be minimized was defined

as:

Lgyro(φgyro) =
17∑
k=1

||Ck+1
k f bk − f bk+1||2 (A.50)

where Ck+1
k was the direction cosine relating body frame at orientation k to the body

frame at orientation k+1. Ck+1
k was calculated using a second order strapdown integration

algorithm (eq. A.30). The angular rate output from the sensors, denoted ωbs was multiplied

with the correction matrix Egyro, constructed in the same way as Eacc. The resulting rates

(ωbc = Egyroω
b
s) where used as input to the strapdown orientation computations. The

cost function was minimized using the same non linear minimization algorithm as above

(Nelder-Mead), which resulted in a vector φgyro where the entries made up the correction

matrix Egyro
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A.4 Results

Root mean square (RMS) and maximal (max) deviations between the position, velocity,

acceleration and orientation calculated from the IMU output and the camera system are

reported in tables A.1 and A.2. Entries in table A.1 are deviations for single stride cycles,

while the results in table A.2 are obtained by first averaging over all twelve stride cycles,

and then comparing the results. The latter method gave smaller deviations, since some of

the random errors were reduced by the averaging.

In addition to the deviation along each axis, the Euclidean norm (denoted norm) is also

reported. In the orientation estimates, the Euler angles relating the local pelvis coordinate

frame to the lab frame is compared to the Euler angles relating the sensor frame to the lab

frame.

Typical results from the IMU and camera system for one of the subjects is plotted in figures

A.6 (displacement and velocity) and A.7 (acceleration and orientation).

The RMS deviation of the sensors displacement from the actual path (assumed to be

represented correctly by the camera system) was < 1.5 cm along the two horizontal axes,

while it was < 0.4 cm in the vertical direction. The maximal deviations where somewhat

larger in magnitude, with the horizontal axes having values < 4.5 cm and the vertical axis

< 1.0 cm. If one is interested in only the average displacement over several strides, table

A.2 shows that averaging over 12 strides reduced the deviation to < 0.8 cm (< 0.3 cm

vertically) RMS, and < 1.2 cm (< 0.5 cm vertically) maximal deviation.

From tables A.1 and A.2, and figure A.7 (right panel), it appeared that the Euler angles

relating the local pelvis frame to the lab frame differed to some degree from the Euler angles

relating the IMUs orientation to the lab frame. This appeared to be especially apparent

in the lateral tilt angle (θy), where the deviations were ∼ 2.5◦ RMS (∼ 5.5◦ max). For

comparison, the deviations between the axial rotation angles (θz) were ∼ 1◦ RMS (∼ 2◦

max).
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Figure A.6: Results of IMU computations for one of the subjects. Blue lines: IMU, red
lines: Camera system. The results are the mean over 12 stride cycles, with the shaded area
indicating the cycle-to-cycle variability. Left panel: displacement, right panel: velocity
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Figure A.7: Results of IMU computations for one of the subjects. Blue lines: IMU, red
lines: Camera system. The results are the mean over 12 stride cycles, with the shaded
area indicating the cycle-to-cycle variability. Left panel: acceleration, right panel: Euler

angles
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Tables A.1 and A.2 revealed minor differences in the results of the two different orientation

algorithms that were used (1NCC and 2CC). Table A.3 show results of a direct comparison

of the two algorithms. It appeared that the use of a higher order algorithm, with a coning

correction term, did affect the results to a measurable degree. The effect of a higher order

algorithm was most pronounced in the lateral (X) direction, with a reduction in the dis-

placement deviation of −16.7% (RMS). The effect was more than twice as large at maximal

effort compared to the sub maximal effort (−23.9% vs −10.0% respectively). The effect

of the higher order algorithm on the anterior-posterior direction (Y ) was not measurable,

while the vertical direction was slightly improved at maximal intensity (−4.2%), but not

at sub maximal intensity (+0.1%)

Effort level RMS deviation maximal deviation
X Y Z norm X Y Z norm

All -16.7 0.4 -1.8 -6.8 -18.6 0.5 -4.3 -1.8
SUB -10.0 0.0 0.1 -3.2 -15.3 -0.0 -2.1 -0.5
MAX -23.9 1.1 -4.2 -11.5 -22.0 1.3 -6.1 -3.6

Table A.3: Percent-wise improvement of displacement calculations due to use of the
2CC algorithm rather than the 1NCC algorithm. All values are in %, minus signs mean

a reduction in the deviation between the camera system and the IMU.

The relative deviations of the displacement, velocity and acceleration (i.e. divided by their

range of motion) is presented in table A.4. It appeared that the relative deviation in the

lateral and vertical direction was < 3% for all three kinematic variables. The anterior-

posterior direction had somewhat larger relative deviations, where the largest deviations

where found in the displacement calculations (∼ 5%).

Kin. variable Effort level X [%] Y [%] Z [%]

Displacement
All 1.4 ± 0.2 5.1 ± 2.5 1.8 ± 0.7
SUB 1.5 ± 0.3 6.0 ± 1.2 2.4 ± 0.4
MAX 1.3 ± 0.3 4.2 ± 2.2 1.3 ± 0.8

Velocity
All 1.8 ± 0.4 2.8 ± 1.4 1.5 ± 0.5
SUB 1.6 ± 0.4 2.9 ± 0.3 1.7 ± 0.2
MAX 1.9 ± 0.4 2.7 ± 1.0 1.2 ± 0.4

Acceleration
All 2.3 ± 0.6 3.3 ± 1.0 2.6 ± 0.5
SUB 2.1 ± 0.4 3.3 ± 0.5 2.4 ± 0.6
MAX 2.4 ± 0.5 3.3 ± 0.7 2.7 ± 0.5

Table A.4: RMS deviations relative to the range of motion. The results was calculated
using the mean over all stride cycles, using the 2CC algorithm. All: all trials, SUB: sub

maximal effort trials, MAX: maximal effort trials
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A.5 Discussion and conclusion

Displacement: It appears that in a controlled environment, the use of a low grade

MEMS IMUs can give estimates of the displacement of an XC-skiers pelvis movement with

an accuracy < 1.5 cm (RMS), or < 0.8 cm if it is sufficient to analyse just the mean over

multiple strides. This accuracy is not as good as offered by 3D motion capture camera

systems (which is typically some mm), but is sufficient to give high quality quantitative

information about a skiers movement pattern. The findings is in agreement with the

results reported by Floor-Westerdijk et al. [29] with respect to the accuracy of the sensor

estimates. Also, they support the findings of Chardonnens et al. [33] and Dadashi et al.

[35], who found that sub-INS quality sensors can give high quality measurements if the

movements follows well defined constraints.

The accuracy of the displacement in the vertical direction was better than in the two

horizontal directions. This difference is likely caused by the influence of gravity on the

accelerometer measurements. This can be seen directly from equation A.44, or from a

simple geometric consideration: the component of gravity affecting the vertical direction is

proportional to cos(δθ), with δθ being the misalignment error. In any horizontal direction,

the component is proportional to sin(δθ). For small misalignments, a 2. order Taylor

expansion shows that the error due to misalignment with the vertical axis gives an error

∝ δθ in the horizontal directions, while the error is ∝ 1

2
δθ2 in vertical direction.

Velocity and acceleration: The velocity and acceleration can also be measured to a

satisfactory degree using low grade MEMS sensors, with deviations < 3.5% compared to

measurements made by a 3D motion capture system. However, due to numerical differen-

tiation of the camera systems position estimates, it is not obvious what system offers the

highest accuracy in these measurements.

Orientation: The orientation calculated by the IMU and the orientation from the camera

system deviated by as much as 5◦ (maximal deviation). The deviations were largest in the

θy-angle. Furthermore, some of the deviations appeared highly systematic (Figure A.7,

right panel mid row). This suggest that some systematic error caused a misalignment

between the sensor frame and the sacrum-rASIS-lASIS frame. In the author’s opinion, the

most likely cause of this is skin movement. The reflective markers where not anchored to the

bony landmarks, which compromised the model of the pelvis as a rigid body. Furthermore,

the IMU was also subject to skin movement. Arguably, the IMU axis of rotation that was

most susceptible for this type of error was the y-axis, i.e. the axis directed perpendicular

to the skin surface. This was also the axis where we observed the largest deviations.
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Although the two coordinate frames do not align perfectly, the use of gyroscopic measure-

ments from a sensor positioned at the S1 appear to give interesting information about the

skier pelvis orientation.

A.5.1 Sources of error and improvements

The major sources of error when calculating the displacement of the sensor was considered

to be the bias of the measurements from both the accelerometer and gyroscope sensors. For

that reason, some heavy constraints were imposed on the system. These constraints where

necessary to reduce drift, but they also reduced the sensitivity to large deviations from

an average stride cycle. For instance, the largest deviation of the displacement measures

during all measurements was 9 cm, which is almost 5 times larger than the typical maximal

deviation. It is likely that errors this large was due to stride cycles that did not follow the

imposed constraints.

A source of error that was not attempted corrected in this study was the misalignment

angle between the direction of the treadmill (the Y -axis), and the direction of the sensor

y-axis. It was assumed that this error was small, both due to the sensor housing having a

relatively large flat side which was adhered directly to the skin, and that the skier would

on average align his pelvis with the direction of travel. For future studies, the first error

might be accounted for by having the subject perform some controlled motion. Some early

tests have been performed where the subjects has been instructed to do a double poling

motion, i.e. a movement that is restricted to the sagittal plane. The results of this method

seem promising, however, since the subjects involved in this study did not do this kind of

calibration movement, the error have to remain uncorrected.

The influence of temperature changes on the sensor output will also contribute to errors in

the IMU calculations. However, it is apparent from table 4.1 that the scale factors change

relatively little with temperature. The bias is more sensitive to change in temperature,

but because of the precautions taken to compensate for sensors bias errors, the effect of

temperature on the results is not considered a dominant factor.

Conclusion

It is possible to obtain high quality, drift free estimates of displacement using low cost

IMUs, if (1) the movement pattern that is analysed is cyclic with periods ∼ 2 s, and (2)

the average velocity is constant from cycle to cycle. The light weight and small size of

the sensors make in-competition measurement a possibility, and the low cost make sensors

readily available.
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Inertial sensors in smartphones

B.1 Introduction

Results presented earlier in this thesis suggests a single IMU, consisting of an accelerometer

and a gyroscope, might provide measurements that capture interesting aspects of skiing

technique. It has also been pointed out that these sensors are incorporated in current

market smart phones, which suggests that skiers, both recreational and athletes, can mea-

sure their own skiing technique without the need for further equipment. This appendix

investigates the validity of such a claim.

Several master theses at the University of Oslo have in the recent years investigated the

possibility for inertial navigation using smart phones. Hamra [45] developed an application

for logging of sensor data on an Android platform, which formed the basis for the theses

of Kyllo [46], Mugisha [47], Lefoka [48]. The last three theses included measurements

from a deterministic track generator, where the accuracy of the measurements could be

assessed. The focus of all thesis were to model the sensor noise using Kalman filters. They

report substantial improvements in the accuracy of position and velocity estimates by this

approach.

The approach used in this appendix differ from that of the theses mentioned above, and

instead builds on a priori knowledge of constraints that govern the system, similar to

the approach in appendix A. However, the basic idea is the same: to analyse a system

that moves in a deterministic manner, which enables an assessment of the accuracy of the

method. Instead of a track generator, the phone was suspended from strings to make a

simple pendulum.

81
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B.2 Theory

This section will outline the equations that govern the movement of a simple pendulum,

and deduce an analytical solution for measurements of specific force. For INS theory, the

reader is referred to section A.2.

B.2.1 Pendulum dynamics

Figure B.1: Free body diagram showing the forces on the pendulum. The orientation of
the body coordinate frame of the pendulum bob (b-frame), and the laboratory coordinate

frame (l-frame) are illustrated for clarity.

We will consider the case of a simple pendulum, i.e. a pendulum bob of some point

mass M , a massless and rigid pendulum rod of length L, and a frictionless suspension

point. Furthermore, any effect of air resistance is neglected. A free body diagram of such a

pendulum is found in Figure B.1. The movement of such a pendulum follows the differential

equation

θ̈ +
g

L
sin θ = 0 (B.1)
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For small angles θ << 1 (in radians), then sin θ ≈ θ. Under this assumption, equation B.1

reduces to that of a simple harmonic oscillation[49, page 436], which has a simple, closed

form solution. With initial conditions of θ = θ0 and θ̇ = 0, the solution to equation B.1 is:

θ(t) = θ0 cos

(√
g

L
t

)
(B.2)

With the solution for θ(t) in equation B.2, and the geometry made apparent in Figure B.1,

the position of the pendulum bob in the laboratory frame is easily obtained: 1

xl =


0

L sin θ

L(1− cos θ)

 (B.3)

By differentiation we also obtain the velocity and acceleration of the pendulum bob:

ẋl =


0

Lθ̇ cos θ

Lθ̇ sin θ

 (B.4)

ẍl =


0

−(g cos θ + Lθ̇2) sin θ

(g cos θ + Lθ̇2) cos θ − g

 (B.5)

B.2.2 Specific force measurements

From Figure B.1 it is readily verified that the specific force2 in the b-frame xy-plane is

equal to zero, because the movement is not restricted in this plane. This is not the case

along the z-axis, where both a component of gravity3, and the centripetal acceleration term

Lθ̇2 is acting. Hence, the specific force vector in the body frame is given by:

f b =


0

0

g cos θ + Lθ̇2

 (B.6)

1Here the origin is defined to be the position of the bob in the θ = 0 position. This does not correspond
to the axis system in Figure B.1, which is meant to indicate only the direction of the axes.

2The term specific force is outlined in chapter A.2
3More specifically, a component of the earth’s force against gravity
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Under the assumption that the yz plane is aligned with the Y Z plane, a transformation

between the b-frame and the l-frame can be be obtained by a left multiplication of the

direction cosine Cx (equation A.11). Writing out the result, we find:

f l =


0

−(g cos θ + Lθ̇2) sin θ

(g cos θ + Lθ̇2) cos θ

 (B.7)

As expected, the specific force in the laboratory frame (eq. B.7) is equal to the acceleration

of the pendulum bob in the laboratory frame (eq. B.5) after subtraction of the gravity

vector g = (0, 0, g)T .

B.2.3 Correction terms

If the sensing elements are not positioned at the center of mass (COM) of the pendulum

bob, the analytical solutions derived in the previous sections will not be valid. This section

will outline correction terms to account for the situation where the sensing elements are

displaced some distance d along the y-axis of the b-frame (Figure B.1). We denote the

correction terms ∆, ∆̇, and ∆̈, so that the corrected solutions are:

xs = x + ∆

ẋs = ẋ + ∆̇

ẍs = ẍ + ∆̈

(B.8)

It is readily verified from simple geometry that the correction terms for xls in the laboratory

reference frame (denoted with a superscript l) are:

∆l =


0

d cos θ

d sin θ

 (B.9)

By differentiation we also obtain correction terms for the velocity and acceleration:

∆̇
l

=


0

−dθ̇ sin θ

dθ̇ cos θ

 (B.10)
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∆̈
l

=


0

−d
(
θ̈ sin θ + θ̇2 cos θ

)
d
(
θ̈ cos θ + θ̇2 sin θ

)
 (B.11)

B.3 Materials and methods

The materials used for this experiment was a smart phone (Samsung Galaxy Nexus GT-

I9250), some thin string, a yardstick and a laser level. A commercial logging software that

enabled logging of sensor output (SensorInsider version 3.1.1), and a toolbox that included

an accelerometer based level application (Smart Tools version 1.4) was installed on the

phone. Included in the hardware of the phone was a MEMS accelerometer (Bosch BMA

250) and a MEMS gyroscope (Invensense MPU-3050). Key sensor specifications from the

manufacturers are reproduced in table B.1.

Table B.1: Nexus sensor specifications

Gyroscope
Full scale range ± 2000 [◦/s]
Scale factor sensitivity 16.4 [LSB/(◦/s)]
Scale factor variation −40◦C to +85◦C ±2 [%]
Bias variation −40◦C to +85◦C ± 0.03 [◦/s/K]
Total RMS noise 0.1 [◦/s]
Noise spectral density at 10Hz 0.01 [◦/s/

√
Hz]

Nonlinearity Best fit straight line, 25◦C 0.2 [%]
Cross-Axis Sensitivity ± 2 [%]
Sample frequency† 1 (8) [kHz]

Accelerometer
Full scale range ± 2 [g]
Scale factor sensitivity 256 [LSB/g]
Scale factor variation −40◦C to +85◦C ±0.02 [%/K]
Bias ± 80 [mg]
Bias variation −40◦C to +85◦C ± 1 [mg/K]
Noise spectral density 0.8 [mg/

√
Hz]

Nonlinearity Best fit straight line 0.5 [%FS]
Cross-Axis Sensitivity ± 1 [%]
Sample frequency† 2 [kHz]

† The sampling frequency used in these experiments where limited by the Android oper-
ating system software. This is described in detail later in the text
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Figure B.2: Experimental setup of the pendulum.

B.3.1 Experimental setup

The phone was suspended from two strings, which were fitted so that the display-side of the

phone was always perpendicular to the (ideal) pendulum rod (Figure B.2). Since the exact

COM of the phone was unknown, the length of the idealized rod (L) was approximated

with distance from the point of suspension to the center of the phone in the yz-plane,

indicated with the crossing of two white lines in Figure B.2. This length was measured

with a yardstick.

The position of accelerometer chip on the phones circuit-board was not known. However, a

teardown of the phone4 revealed that the most distal chips were positioned approximately

4 cm from the center in the y-direction. This corresponded to a maximal possible displace-

ment d = 4 cm (Figure B.1) of the sensing element compared to the center line indicated in

Figure B.2. Correction terms based on this value were estimated using equations B.9-B.11,

and resulted in ”worst case” solutions.
4http://www.ifixit.com/Teardown/Samsung+Galaxy+Nexus+Teardown/7182
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The initial displacement in the y-direction was measured by mounting a laser level at the

point of suspension, and a measuring the distance along the ground with a yardstick. This

was done to ensure a starting angle of approximately 10◦. This accuracy of this method

was estimated to be only within ± 1 cm. For this reason, the value of θ0 that was used in

the analytical solutions was instead determined from the gyroscopic output. Specifically,

θ0 was defined to be the half of the range of motion of the angle θx, averaged over the

analysed periods of the pendulum.

Due to software limitations, it was not possible to set an exact sample frequency for the

inertial sensors. Instead, a minimum time interval between samples of dt = 0.01 s was

selected.

The pitch and roll of the phone in the θ = 0 position was both measured by a level

application on the phone to be < 1.1◦, and is considered negligible.

B.3.2 Data analysis

The sensor data was exported into Matlab, which was used for all data analysis. First,

the sensor data was interpolated to obtain measurements sampled at a constant rate of

100Hz. This was done because the logging software did not support logging at an exact

sample rate. Second, the data was passed through an algorithm that detected each time

the pendulum passed the θ = 0 position. This algorithm worked by low pass filtering the

gyroscope output with a second order, zero lag Butterworth filter with cutoff frequency

5Hz. The heavily filtered data was submitted to a peak detection algorithm5. It is obvious

from equation B.2 that the angular velocity θ̇ has a maximum in the θ = 0 position.

Hence, the peaks of the low pass filtered ωx (i.e. the angular rate about the sensor x-axis)

determined the time points of each complete pendulum period. A total of 10 complete

pendulum periods were submitted to further analysis.

The orientation of the phone, described by the Euler angles θx, θy, θz was calculated with

a xyz rotation sequence, using the 2. order algorithm with the coning correction terms

described in appendix A. As in appendix A, drift in the orientation estimates was reduced

by subtraction of the linear trend line of the Euler angles. The initial conditions were set

by subtracting the average orientation angles, so that the time average of the b-frame was

aligned with the l-frame.

The acceleration, velocity and displacement in the inertial reference frame (which was

assumed to coincide with the laboratory frame) was also calculated by a method equivalent

to the method in appendix A: The average acceleration over all 10 pendulum periods was
5Matlab’s findpeaks() was used for this purpose
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first subtracted. Then a numerical integration using the trapeze method was performed

for each pendulum period. The initial conditions for each period were determined by the

assumption that both the average velocity and the average displacement were zero during

each pendulum period.

The experimental data was not filtered, and no calibration of the sensor output was per-

formed.

B.4 Results

The gyroscope estimate for the initial angle of the pendulum was θ0 = 10.9 ± 0.2◦. A com-

parison of specific force measurements from the accelerometer to the theoretical solution

based on θ0 and equation B.6 is presented in Figure B.3.

The phase space of θ for a pendulum in the small angle approximation makes an ellipse6.

In Figure B.4 this is used to assess the orientation measurements. θx is plotted versus the

angular rate ωbx (multiplied with the constant
√
L/g), which theoretically (under the small

angle assumption) should form a circle.

The performance of the position, velocity, acceleration and orientation estimates are sum-

marized in table B.2. This table reports the RMS deviations of the experimental estimates

from the theoretical solutions in equations B.2-B.5. Figures B.5 and B.6 compare the same

material graphically.

6This should be apparent from equation B.2, along with its time derivative.

Table B.2: RMS deviations between theoretical solution and experimental results

Displacement [mm] Velocity [mm/s] Acceleration [mg] Orientation [◦]

X 2.0± 0.7 (1.8) 9± 3 (7.3) 10.0± 0.4 (4.4) 0.49± 0.02 (0.47)
Y 5.4± 1.4 (5.1) 24± 5 (22) 13.8± 0.5 (9.5) 0.14± 0.01 (0.14)
Z 1.8± 0.8 (1.5) 9± 3 (6.2) 10.1± 1.1 (4.3) 0.32± 0.01 (0.31)
norm 6.1± 1.5 (5.6) 27± 5 (24) 19.9± 0.5 (11.0)

Root mean square deviations between the theoretical COM solution (eq B.2-B.5) and experimental
results. The results are reported as the mean over all pendulum periods ± the period-to-period standard
deviation. Values in parenthesis are RMS deviations between the theoretical solution and the pendulum
trajectory averaged over all (10) periods.
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B.5 Discussion and conclusion

The results of these experiments show that we can obtain high accuracy, drift free measure-

ments of velocity and displacement from the MEMS inertial sensors incorporated in current

market smart phones, given prior knowledge of the movement. We observed an accuracy

similar to that obtained by the dedicated system described in appendix A, although the

quality of the phone sensors had lower specifications than the dedicated system (table B.1

vs 4.1). However, some challenges were also revealed.

One challenge was that the positioning of the accelerometer chip on the phones circuit

board. It is apparent from Figure B.5 that for small displacements, the exact position of

the sensing element influenced the result substantially. An accurate determination of the

accelerometer chip in the particular phone used in this experiment would have enabled a

better assessment of the sensor performance. However, the aim of this experiment was to

investigate the use of smart phones to measure detailed movement patterns. The unknown

position of the sensing elements in then an inherent weakness in such analysis. Hence, an

accurate determination of the sensing element was not considered relevant to investigate

the aim of the study.

Another challenge appeared to be limitations in the software. The logging application was

not able to log data at a constant rate. This problem was caused by either the logging

application, or restrictions within the Android operating system. If the latter is the case,

it might pose difficulties for the type of calculations presented in this appendix.

Although the challenges mentioned above show that there are some limitations by using

sensors incorporated in smart phones rather than a dedicated system, it still appears pos-

sible to obtain interesting measurements with such a system. In fact, an application has

been developed for the Apple IOS platform that utilizes the inertial sensors included in

the Iphone to give feedback on XC skiing double poling technique (SmartSki, SmartSki

Technologies AS, www.smartski.tictail.com).

It is evident from Figure B.3 that the sensor output deviated substantially from the the-

oretical model. Hence, a calibration of the sensors to obtain better estimates of the scale

factors and offsets, for instance using the method suggested by Fong et al. [44], would likely

have improved the results.

Conclusion

Inertial sensors in smart phones have the potential to give decent quality measurements of

displacement (deviations of a few cm) and other kinematic variables, given that measured
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movement follows well defined constraints. The use of these types of sensors for integrated,

on phone analysis appear feasible, but needs to overcome difficulties with uneven sampling

frequency, and unknown sensor locations.
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