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A CONVERGENT NONCONFORMING FINITE ELEMENT
METHOD FOR COMPRESSIBLE STOKES FLOW

KENNETH H. KARLSEN AND TRYGVE K. KARPER

Abstract. We propose a nonconforming finite element method for isentropic
viscous gas flow in situations where convective effects may be neglected. We
approximate the continuity equation by a piecewise constant discontinuous
Galerkin method. The velocity (momentum) equation is approximated by a
finite element method on div–curl form using the nonconforming Crouzeix–
Raviart space. Our main result is that the finite element method converges to
a weak solution. The main challenge is to demonstrate the strong convergence
of the density approximations, which is mandatory in view of the nonlinear
pressure function. The analysis makes use of a higher integrability estimate on
the density approximations, an equation for the “effective viscous flux”, and
renormalized versions of the discontinuous Galerkin method.

Contents

1. Introduction 1
2. Preliminary material 5
2.1. Functional spaces and analysis results 5
2.2. Weak and renormalized solutions 7
2.3. On the equation div v = f 7
2.4. Finite element spaces and some basic properties 8
3. Numerical method and main result 13
3.1. Main result 15
3.2. The numerical method is well–defined 15
4. Basic estimates 16
5. Convergence 18
5.1. Density method 19
5.2. Strong convergence of density approximations 20
5.3. Velocity method 22
References 23

1. Introduction

Let Ω ⊂ RN , with N = 2 or 3, be a bounded polygonal domain with Lipschitz
boundary ∂Ω and let T > 0 be a fixed final time. In this paper, we consider the
mixed hyperbolic-elliptic type system

∂t%+ div(%u) = 0, in (0, T )× Ω, (1.1)
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−µ∆u− λ∇ div u +∇p(%) = f , in (0, T )× Ω, (1.2)

with initial data

%|t=0 = %0, in Ω. (1.3)

The unknowns are the density % = %(t,x) ≥ 0 and the velocity u = u(t,x) ∈ RN ,
with x ∈ Ω and t ∈ (0, T ). The source term f is a given function representing
body forces such as gravity. We denote by div and ∇ the usual spatial divergence
and gradient operators and by ∆ the Laplace operator. At the boundary ∂Ω, the
system is supplemented with the homogenous Dirichlet condition

u = 0, on (0, T )× ∂Ω.

The pressure p(%) is governed by the equation of state p(%) = a%γ , a > 0.
Typical values of γ ranges from a maximum of 5

3 for monoatomic gases, through
7
5 for diatomic gases including air, to lower values close to 1 for polyatomic gases
at high temperatures. Throughout this paper, we will always assume that γ > 1,
which is the most difficult case. The viscosity coefficients µ, λ are assumed to be
constant and satisfy µ > 0, Nλ+ 2µ ≥ 0.

The system (1.1)–(1.2) is a gross simplification of the isentropic compressible
Navier–Stokes equations. It provides a reasonable approximation in situations
where convective effects may be neglected. Solutions of (1.1)–(1.2) have also been
utilized by Lions [12] to construct solutions of the isentropic compressible Navier–
Stokes equations. Regarding the mathematical theory, the semi–stationary system
(1.1)–(1.3) has been analyzed by Lions [12, Section 8.2], among many others. More
precisely, he proves the existence of weak solutions and provide some uniqueness
and higher regularity results.

In the literature one can find a variety of numerical methods for the compressible
Stokes and Navier–Stokes equations. However, there are few results with reference
to the convergence properties of these methods, especially in several dimensions.
In one dimension, we refer to the works of Hoff and his collaborators [15, 16,
17]. These results apply to the compressible Navier–Stokes equations written in
Lagrangian form and requires the initial density to be of bounded variation. In
several dimensions there are a few very recent results. In [7, 8], the authors present
a convergent finite element method for a Stokes model. This model is a stationary
version of (1.1)–(1.2). In their finite element method the approximation spaces for
the density and velocity are the same. Moreover, their method is based on the
standard weak formulation of the velocity equation (1.2). Since the finite element
space is non-conforming, this approach may not preserve the div–curl structure of
the continuous system. This complicates the convergence proof. In [7, 8], additional
stabilization terms are needed in the discretization of the continuity equation (1.1).
In [11], we construct a convergent mixed finite element method for (1.1)–(1.2).
However, this method is based on a vorticity formulation of the velocity equation,
which is only valid for the Navier slip boundary condition:

u · ν = 0, curlu× ν = 0, on ∂Ω.

In addition, the velocity is approximated by a H(div) (Nedelec) element.
We now outline the numerical method proposed in this paper. First of all,

the density % is approximated by piecewise constants in the spatial and temporal
variables. For the approximation of the velocity u we utilize the Crouzeix–Raviart
element space [4] in the spatial variable, denoted by Vh(Ω), and piecewise constants
in the temporal variable. Hence, the numerical method is nonconforming in the
sense that Vh 6⊂ W 1,2

0 (Ω). In what follows, we mostly suppress the time variable t
and refer to subsequent sections for precise statements. For the continuity equation
(1.1) we make use of a discontinuous Galerkin method. To achieve stability, the
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numerical fluxes are evaluated in the upwind direction dictated by the velocity.
However, since the velocity space is not continuous across element faces, average
velocities are used in this discretization. Our discontinuous Galerkin method is
equivalent to a standard finite volume method for the continuity equation [6, 9].
In [11], we use a similar discontinuous Galerkin method with the velocity in the
div conforming Nedelec space of the first order and kind. Since the method used
herein only depends on the average normal velocity at faces, the approximations
constructed by this method are also solutions to the discrete continuity equation
of [11]. More precisely, if the pair (%h,uh) solves the discrete continuity equation
proposed herein, then (%h,ΠN

h uh) is a solution to the discrete continuity equation
of [11], where ΠN

h is the canonical interpolation operator onto the div conforming
Nedelec space of first order and kind. As a consequence, several of the favorable
properties of the method in [11] continue to hold for the continuity method herein.
In particular, renormalized formulations, weak time-continuity, and consistency
bounds are readily obtained by exploiting this connection.

To discretize the velocity equation (1.2) we bring into service a non-standard
finite element formulation, which starts off from the identity

∫
Ω

DuDv dx =
∫

Ω

curlu curlv + div u div v dx, (1.4)

valid for all u ∈ W 1,2
0 (Ω). However, since the velocity space is nonconforming, this

identity does not hold discretely, but we insist on utilizing the right-hand side of
(1.4) as a starting point for discretizing the velocity equation. Utilizing the form
on the right–hand side, it is possible to split the curl part of the Laplacian away
from the divergence part. By setting v = ∇s, we obtain the divergence part, while
v = curlη gives the curl part. Of course, to satisfy boundary conditions, this
argument must be localized. Discretely, this still holds for the element space Vh

since this admits the exact orthogonal Hodge decomposition

Vh = curl ζh +∇Sh.

Hence, the curl and divergence part of the Laplace operator can be separated by
using test functions vh = curl ζh, ζh ∈ Wh or vh = ∇sh, sh ∈ Sh. This property
lies at the heart of the matter in the upcoming convergence analysis.

Contrasting with the standard situation in which the left–hand side of (1.4) is
used, a discretization based on the right-hand side of (1.4) does not converge unless
additional terms controlling the discontinuities of the velocity are added, cf. Brenner
[2]. The standard discretization of the Laplacian (based on the left–hand side of
(1.4)) leads to a L2 bound on ∇huh, where ∇h is the gradient restricted to each
element E. For the velocity space Vh, this bound actually controls the jump of uh

across faces. This in turn, is sufficient to conclude that ∇huh ⇀ ∇u as h → 0.
When discretizing the Laplacian based on the right–hand side of (1.4), one obtains
L2 bounds on curlh uh and divh uh, where curlh and divh denotes the curl and
divergence operators, respectively, restricted to each element E. The jump of uh

across faces is not controlled by these terms. In fact, Vh contains non-zero functions
for which both divh and curlh are zero. For this reason, extra terms controlling the
jump of uh across faces need to be added.

In choosing these terms we are inspired by the work of Brenner [2], which deals
with two-dimensional elliptic operators of the form “curl curl−β∇ div”. To be more
precise, our finite element method for the velocity equation (1.2) seeks uh ∈ Vh(Ω)
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such that∫
Ω

µ curlh uh curlh vh + [(µ+ λ) divh uh − p(%h)] divh vh dx

+ µ
∑

Γ∈ΓI
h

hε−1

∫
Γ

Juh · νKΓ Jvh · νKΓ + Juh × νKΓ Jvh × νKΓ dS(x)

=
∫

Ω

fhvh dx, ∀vh ∈ Vh(Ω),

(1.5)

for some fixed ε ∈ (0, 1), where ρh and fh are given piecewise functions on Ω with
respect to a tetrahedral mesh Eh with elements E. Moreover, ΓI

h denote the set of
internal faces, and J·KΓ denotes the jump across a face Γ ∈ ΓI

h. The scaling factor
hε is required to prove convergence of the finite element method. Of course, the
size of ε will affect the accuracy of the method [2] and should be fixed very small
in practical computations.

For any fixed h > 0, let (%h,uh) = (%h,uh)(t, x) denote the numerical solution to
the compressible Stokes system. Our goal is to prove that {(%h,uh)}h>0 converges
along a subsequence to a weak solution. The main challenge is to show that the
density approximations %h, which a priori is only weakly compact in L2, in fact
converges strongly. Strong convergence is needed when sending h → 0 in the
nonlinear pressure function. It is this issue that motivates the above nonconforming
finite element method. Since the finite element space Vh is piecewise linear and
totally determined by its value at the faces, Green’s theorem yield

divh ΠV
h v = ΠQ

h div v, curlh ΠV
h v = ΠQ

h curlv,

where ΠV
h is the canonical interpolation operator onto Vh and ΠQ

h is the L2 projec-
tion onto piecewise constants. Consequently, the projection of a divergence or curl
free function is again (piecewise) divergence or curl free. Using this, we see that
the function vh = ΠV

h ∇∆−1%h is a solution to the div–curl problem

divh vh = %h, curlh vh = 0,

away from the boundary. By using vh as test function in (1.5), the curl term
vanishes, while the remaining terms constitute the so-called effective viscous flux
Peff(%h,uh) = p(%h) − (λ + µ) div uh, the source term, and the jump terms. The
latter terms are shown to converge to zero. Using this, we are able to prove following
weak continuity property:

lim
h→0

∫∫
Peff(%h,uh) %hφ dxdt =

∫∫
Peff %φ dxdt (Peff , % are weak L2 limits),

(1.6)
for all φ ∈ C∞0 . This is the main ingredient in the strong convergence proof for the
density approximations %h. The argument is inspired by the work of Lions on the
compressible Navier-Stokes equations, cf. [12].

If we instead of (1.5), discretize the Laplacian based on the left–hand side of
(1.4), then the above analysis becomes more involved. In particular, it seems diffi-
cult to establish the key property (1.6). In this case, we would need to establish∫ ∫

∇huh∇hΠV
h

[
∇∆−1%h

]
− divh uh%h dxdt→ 0, as h→ 0,

which is intricate since all the involved quantities are only weakly convergent.
The remaining part of this paper is organized as follows: In Section 2, we first

introduce some relevant notation and state a few basic results from analysis. Next,
we formulate our notion of a weak solution. Finally, we introduce the finite element
spaces and derive some of their basic properties. In Section 3, we present the
numerical method and state our main convergence result. This section also provides
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a result regarding the existence of solutions to the discrete equations. In Section 4,
we derive stability and higher integrability results. Section 5 is devoted to proving
the convergence result stated in Section 3.

2. Preliminary material

2.1. Functional spaces and analysis results. We denote the spatial divergence
and curl operators by div and curl, respectively. As usual in the two dimensions, we
denote both the rotation operator taking scalars into vectors and the curl operator
taking vectors into scalars by curl.

We will make use of the spaces

W div,2(Ω) =
{
v ∈ L2(Ω) : div v ∈ L2(Ω)

}
,

W curl,2(Ω) =
{
v ∈ L2(Ω) : curlv ∈ L2(Ω)

}
,

where ν denotes the unit outward pointing normal vector on ∂Ω. If v ∈ W div,2(Ω)
satisfies v · ν|∂Ω = 0, we write v ∈ W div,2

0 (Ω). Similarly, v ∈ W curl,2
0 (Ω) means

v ∈ W curl,2(Ω) and v × ν|∂Ω = 0. From [10],

W 1,2
0 (Ω) = W curl,2

0 ∩W div,2
0 .

The next lemma lists some basic results from functional analysis to be used in
subsequent arguments (for proofs, see, e.g., [5]). Throughout the paper we use
overbars to denote weak limits, in spaces that should be clear from the context.

Lemma 2.1. Let O be a bounded and open subset of RM with M ≥ 1. Suppose
g : R → (−∞,∞] is a lower semicontinuous convex function and {vn}n≥1 is a
sequence of functions on O for which vn ⇀ v in L1(O), g(vn) ∈ L1(O) for each
n, g(vn) ⇀ g(v) in L1(O). Then g(v) ≤ g(v) a.e. on O, g(v) ∈ L1(O), and∫

O
g(v) dy ≤ lim infn→∞

∫
O
g(vn) dy. If, in addition, g is strictly convex on an

open interval (a, b) ⊂ R and g(v) = g(v) a.e. on O, then, passing to a subsequence
if necessary, vn(y) → v(y) for a.e. y ∈ {y ∈ O | v(y) ∈ (a, b)}.

Let X be a Banach space and X? its dual. The space X? equipped with the
weak-? topology is denoted by X?

weak, while X equipped with the weak topology
is denoted by Xweak. By the Banach-Alaoglu theorem, bounded balls in X? are
σ(X?, X)-compact. If X separable, the weak-? topology is metrizable on bounded
sets in X?, which makes it possible to consider the metric space C ([0, T ];X?

weak)
of functions v : [0, T ] → X? that are continuous with respect to the weak topology.
We have vn → v in C ([0, T ];X?

weak) if 〈vn(t), φ〉X?,X → 〈v(t), φ〉X?,X uniformly
with respect to t, for any φ ∈ X. The succeding lemma is a consequence of the
Arzelà-Ascoli theorem:

Lemma 2.2. Let X be a separable Banach space, and suppose vn : [0, T ] → X?,
n = 1, 2, . . . , is a sequence for which ‖vn‖L∞([0,T ];X?) ≤ C, for some constant C
independent of n. Suppose the sequence [0, T ] 3 t 7→ 〈vn(t),Φ〉X?,X , n = 1, 2, . . . ,
is equi-continuous for every Φ that belongs to a dense subset of X. Then vn belongs
to C ([0, T ];X?

weak) for every n, and there exists a function v ∈ C ([0, T ];X?
weak)

such that along a subsequence as n→∞ there holds vn → v in C ([0, T ];X?
weak).

Later we frequently obtain a priori estimates for a sequence {vn}n≥1 that we
make known as “vn ∈b X” for a given functional space X. What this really means
is that we have a bound on ‖vn‖X that is independent of n.

The following discrete version of a lemma due to Lions [12, Lemma 5.1] will
prove useful in the convergence analysis.

Lemma 2.3. Given T > 0 and a small number h > 0, write (0, T ] = ∪M
k=1(tk−1, tk]

with tk = hk and Mh = T . Let {fh}∞h>0, {gh}∞h>0 be two sequences such that:
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(1) the mappings t 7→ gh(t, x) and t 7→ fh(t, x) are constant on each interval
(tk−1, tk], k = 1, . . . ,M .

(2) {fh}h>0 and {gh}h>0 converge weakly to f and g in Lp1(0, T ;Lq1(Ω)) and
Lp2(0, T ;Lq2(Ω)), respectively, where 1 < p1, q1 <∞ and

1
p1

+
1
p2

=
1
q1

+
1
q2

= 1.

(3) the discrete time derivative satisfies

gh(t, x)− gh(t− h, x)
h

∈b L
1(0, T ;W−1,1(Ω))

(4) ‖fh(t, x)− fh(t, x− ξ)‖Lp2 (0,T ;Lq2 (Ω)) → 0 as |ξ| → 0, uniformly in h.
Then ghfh ⇀ gf in the sense of distributions on (0, T )× Ω.

Proof. Let us introduce an auxiliary piecewise linear function g̃h by setting

g̃h(t, ·) = gh(tk) + h−1(t− tk) (gh(tk+1)− gh(tk)) , t ∈ (tk, tk+1],

for k = 0, . . . ,M − 1. Using property (3),∣∣∣∣∣
∫ T

0

∫
Ω

(g̃h − gh)φ dxdt

∣∣∣∣∣ ≤ h

∣∣∣∣∣
∫ T

0

∫
Ω

(
gh(t, x)− gh(t− h, x)

h

)
φ dxdt

∣∣∣∣∣
≤ Ch‖φ‖L∞(0,T ;W 1,∞(Ω)), φ ∈ C∞0 (Ω).

(2.1)

Thus, (g̃h − gh) ⇀ 0 as in the sense of distributions on (0, T )× Ω as h→ 0.
Next, we write

ghfh = g̃hfh + (gh − g̃h)fh.

By requirement (3), ∂tg̃h ∈b L
1(0, T ;W−1,1(Ω)). This and requirement (4) allow

us to apply a lemma due to Lions [12, Lemma 5.1], yielding

fhg̃h ⇀ fg,

in the sense of distributions on (0, T )× Ω as h→ 0.
It only remains to prove that (gh − g̃h)fh ⇀ 0 in the sense of distributions.

For this purpose, set f ε
h = fh ? κε, where κε is a standard smoothing kernel and ?

denotes the convolution product. We write

(gh − g̃h)fh = (gh − g̃h)f ε
h + (gh − g̃h)(fh − f ε

h).

Now, requirement (4) yields

‖fh − f ε
h‖Lp2 (0,T ;Lq2 (Ω)) → 0 as ε→ 0,

uniformly in h, and hence

lim
ε→0

lim
h→0

∫ T

0

∫
Ω

(gh − g̃h)(fh − f ε
h)φ dxdt = 0.

Thus, the proof is complete provided that

lim
ε→0

lim
h→0

∫ T

0

∫
Ω

(gh − g̃h)f ε
hφ dxdt = 0.

By a calculation similar to (2.1) we see that∣∣∣∣∣
∫ T

0

∫
Ω

(gh − g̃h)f ε
h dxdt

∣∣∣∣∣ ≤ h
p2−1

p2 C‖f ε
h‖Lp2 (0,T ;W 1,∞(Ω)),

where we have also applied Lemma 2.10 (below) to the time variable. From this
we can conclude that (gh − g̃h)f ε

h ⇀ 0 in the sense of distributions as h→ 0. This
brings the proof to an end. �
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2.2. Weak and renormalized solutions.

Definition 2.4 (Weak solutions). A pair of functions (%,u) constitutes a weak
solution of the semi-stationary compressible Stokes system (1.1)–(1.2) with initial
data (1.3) provided that:

(1) (%,u) ∈ L∞(0, T ;Lγ(Ω))× L2(0, T ;W 1,2
0 (Ω)),

(2) ∂t%+ div(%u) = 0 in the weak sense, i.e, ∀φ ∈ C∞([0, T )× Ω),∫ T

0

∫
Ω

% (φt + uDφ) dxdt+
∫

Ω

%0φ|t=0 dx = 0; (2.2)

(3) −µ∆u−λD div u+Dp(%) = f in the weak sense, i.e, ∀φ ∈ C∞
0 ([0, T )×Ω),

∫ T

0

∫
Ω

µ∇u∇φ + [(µ+ λ div u− p(%)] div φ dxdt =
∫ T

0

∫
Ω

fφ dxdt. (2.3)

For the convergence analysis we shall also need the DiPerna-Lions concept of
renormalized solutions of the continuity equation.

Definition 2.5 (Renormalized solutions). Given u ∈ L2(0, T ;W 1,2
0 (Ω)), we say

that % ∈ L∞(0, T ;Lγ(Ω)) is a renormalized solution of (1.1) provided

B(%)t + div (B(%)u) = b(%) div u in the sense of distributions on [0, T )× Ω,

for any B ∈ C[0,∞) ∩ C1(0,∞) with B(0) = 0 and b(%) := B′(%)%−B(%).

We shall need the following well-known lemma [12] stating that square-integrable
weak solutions % are also renormalized solutions.

Lemma 2.6. Suppose (%,u) is a weak solution according to Definition 2.4. If
% ∈ L2((0, T )× Ω)), then % is a renormalized solution according to Definition 2.5.

Remark 2.7. Regarding the continuity equation and the definitions of weak and
renormalized solutions, we are requiring the equation to hold up to the boundary.

2.3. On the equation div v = f . Solutions to the following problem are vital to
the upcoming convergence analysis:

div v = f in Ω, v = 0 on ∂Ω. (2.4)

If f ∈ Lp(Ω) with
∫
Ω
f dx = 0, then a solution to (2.4) can be constructed through

the Hodge decomposition
v = ∇s+ curl ξ,

where s ∈ H2(Ω) solves the Neumann Laplace problem, i.e.,

∆s = f in Ω, ∇s · ν = 0 on ∂Ω,

and ξ ∈ H2(Ω) is determined such that v|∂Ω = 0 (cf. [1]). Such a solution can be
constructed using the Bogovskii solution operator [5]. Here, we define the solution
operator B [·] : Lp

0(Ω) → W 1,p
0 (Ω) as one of the solutions to the problem

divB [φ] = φ in Ω, B [φ] = 0 on ∂Ω. (2.5)

We shall need solutions v satisfying curlv = 0. Clearly, this is not compatible
with the Dirichlet boundary condition. However, locally curl free solutions can be
constructed using the operator A [·] : Lp(Ω) → W 1,p(Ω),

A [φ] = ∇∆−1 [φ] , (2.6)

where ∆−1 is the inverse Neumann Laplace operator.
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2.4. Finite element spaces and some basic properties. Let Eh denote a shape
regular tetrahedral mesh of Ω. Let ΓI

h = {Γ ∈ Γh : Γ 6⊂ ∂Ω} denote the set of
internal faces in Eh. We will approximate the density in the space of piecewise
constants on Eh and denote this space by Qh(Ω). For the approximation of the
velocity we use the Crouzeix–Raviart element space [4]:

Vh(Ω) =
{

vh ∈ L2(Ω) : vh|E ∈ PN
1 (E), ∀E ∈ Eh,

∫
Γ

JvhKΓ dS(x) = 0, ∀Γ ∈ ΓI
h

}
,

(2.7)
where J·KΓ denotes the jump across a face Γ. To incorporate the boundary condition,
we let the degrees of freedom of Vh(Ω) vanish at the boundary. Consequently, the
finite element method is nonconforming in the sense that the velocity approximation
space is not a subspace of the corresponding continuous space, W 1,2

0 (Ω).
We introduce the canonical interpolation operators

ΠV
h : W 1,2

0 (Ω) → Vh(Ω), ΠQ
h : L2(Ω) → Qh(Ω),

defined by ∫
Γ

ΠV
h vh dS(x) =

∫
Γ

vh dS(x), ∀Γ ∈ Γh,∫
E

ΠQ
h φ dx =

∫
E

φ dx, ∀E ∈ Eh.

(2.8)

Then, by virtue of (2.8) and Stokes’ theorem,

divh ΠV
h v = ΠQ

h div v, curlh ΠV
h v = ΠQ

h curlv, (2.9)

for all v ∈ W 1,2
0 (Ω). Here, curlh and divh denote the curl and divergence operators,

respectively, taken inside each element.
Now, (2.9) immediately gives

divh ΠV
h B [qh] = qh, ∀qh ∈ Qh(Ω) ∩

{∫
Ω

qh dx = 0
}
,

and, away from the boundary,

divh ΠV
h A [qh] = qh, curlh ΠV

h A [qh] = 0, ∀qh ∈ Qh(Ω),

where B [·] and A [·] are defined in (2.5) and (2.6), respectively. Consequently, this
configuration of elements enables us to construct discrete analogs of the continuous
operators (2.5) and (2.6).

We associate to the space Vh(Ω) the following semi–norm and norm:

|vh|2Vh
= ‖ curlh vh‖2L2(Ω) + ‖divh vh‖2L2(Ω)

+
∑

Γ∈Γh

hε−1
(
‖ Jvh · νKΓ ‖

2
L2(Γ) + ‖ Jvh × νKΓ ‖

2
L2(Γ)

)
,

‖vh‖2Vh
= ‖vh‖2L2(Ω) + |vh|2Vh

.

(2.10)

Let us now state some basic properties of the finite element spaces. We start by
recalling from [3, 4] a few interpolation error estimates.

Lemma 2.8. There exists a constant C > 0, depending only on the shape regularity
of Eh and |Ω|, such that for any 1 ≤ p <∞,

‖ΠQ
h φ− φ‖Lp(Ω) ≤ Ch‖∇φ‖Lp(Ω),

‖ΠV
h v − v‖Lp(Ω) + h‖∇h(ΠV

h v − v)‖Lp(Ω) ≤ chs‖∇sv‖Lp(E), s = 1, 2,

for all φ ∈ W 1,p(Ω) and v ∈ W s,p(E). Here, ∇h is the gradient operator taken
inside each element.
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By scaling arguments, the trace theorem, and the Poincaré inequality, we obtain

Lemma 2.9. For any E ∈ Eh and φ ∈W 1,2(E), we have the following inequalities:
(1) trace inequality,

‖φ‖L2(Γ) ≤ ch
− 1

2
E

(
‖φ‖L2(E) + hE‖∇φ‖L2(E)

)
, ∀Γ ∈ Γh ∩ ∂E.

(2) Poincaré inequality,∥∥∥∥φ− 1
|E|

∫
E

φ dx

∥∥∥∥
L2(E)

≤ ChE‖∇φ‖L2(E).

In both estimates, hE is the diameter of the element E.

Lemma 2.10. There exists a positive constant C, depending only on the shape
regularity of Eh, such that for 1 ≤ q, p ≤ ∞ and r = 0, 1,

‖φh‖W r,p(E) ≤ Ch−r+min{0, N
p −

N
q } ‖φh‖Lq(E) ,

for any E ∈ Eh and all polynomial functions φh ∈ Pk(E), k = 0, 1, . . ..

Lemma 2.11. Let {vh}h>0 be a sequence in Vh(Ω). Assume that there is a constant
C > 0, independent of h, such that ‖vh‖Vh

≤ C. Then there exists a function
v ∈ W 1,2

0 (Ω) such that, by passing to a subsequence as h→ 0 if necessary,

vh ⇀ v in L2(Ω), curlh vh ⇀ curlv in L2(Ω), divh vh ⇀ div v in L2(Ω).

Proof. As ‖vh‖Vh
is bounded independently of h, it follows that vh ∈b L2(Ω),

curlh vh ∈b L2(Ω), and divh vh ∈b L
2(Ω). Thus, we have the existence of functions

v ∈ L2(Ω), ξ ∈ L2(Ω), and ζ ∈ L2(Ω) such that, by passing to a subsequence if
necessary,

vh ⇀ v, curlh vh ⇀ ξ, divh vh ⇀ ζ.

Once we make the identifications ξ = curl v and ζ = div v, the proof is complete.
Fix any φ ∈W 1,2

0 (Ω). An application of Green’s theorem yields∫
Ω

curlh vhφ dx =
∑

E∈Eh

∫
E

vh curlφ dx+
∫

∂E

φ(vh × ν) dS(x)

=
∫

Ω

vh curlφ dx+
∑

Γ∈ΓI
h

∫
Γ

φ Jvh × νKΓ dS(x).

By sending h→ 0 in the above identity, we discover∫
Ω

ξφ dx =
∫

Ω

v curlφ dx+ lim
h→0

∑
Γ∈ΓI

h

∫
Γ

φ Jvh × νKΓ dS(x). (2.11)

Utilizing the bound

hε−1
∑

Γ∈ΓI
h

∫
Γ

Jvh × νK2Γ dS(x) ≤ C, (2.12)

cf. (2.10), and the second condition in (2.7), we control the last term of (2.11):∣∣∣∣∣∣
∑

Γ∈ΓI
h

∫
Γ

φ Jvh × νKΓ dS(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

Γ∈ΓI
h

∫
Γ

(φ− φΓ) Jvh × νKΓ dS(x)

∣∣∣∣∣∣
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≤ h−
ε
2

∑
Γ∈ΓI

h

hε−1

∫
Γ

Jvh × νK2Γ

 1
2
∑

Γ∈ΓI
h

h

∫
Γ

|φ− φΓ|2 dS(x)

 1
2

,

where {φΓ}Γ∈Γh
is a given set of real numbers. For each Γ ∈ Γh, let us take

φΓ := 1
|E|
∫

E
φ dx, where E is arbitrarily fixed as one of the two elements sharing

the edge Γ. Now, using Lemma 2.9 and (2.12), we deduce∣∣∣∣∣∣
∑

Γ∈ΓI
h

∫
Γ

φ Jvh × νKΓ dS(x)

∣∣∣∣∣∣ ≤ Ch−
ε
2h‖∇φ‖L2(Ω).

Hence,

lim
h→

∣∣∣∣∣∣
∑

Γ∈ΓI
h

∫
Γ

φ Jvh × νKΓ dS(x)

∣∣∣∣∣∣ = 0.

By (2.11), this shows that ∫
Ω

ξφ dx =
∫

Ω

v curlφ dx,

and so our claim follows, i.e., ξ = curl v.
By almost identical arguments we find that ζ = div v. �

The following lemma provides us with an estimate of the blow-up rate of ∇hvh,
for any element vh ∈ Vh(Ω).

Lemma 2.12. There exists a positive constant C, depending only on the shape
regularity of Eh and the size of Ω, such that

‖∇hvh‖2L2(Ω) ≤ Ch−1− ε
2 ‖vh‖L2(Ω)

∑
Γ∈ΓI

h

hε−1 ‖JvhKΓ‖
2
L2(Γ)

 1
2

,

for all vh ∈ Vh(Ω).

Proof. By the linearity of vh|E , ∆vh|E = 0 ∀E ∈ Eh. Using this we can apply
Green’s theorem to deduce the bound

‖∇hvh‖2L2(Ω) =
∑

E∈Eh

∫
E

∇hvh · ∇hvh dx =
∑

E∈Eh

∫
∂E

(∇vh · ν)vh dS(x)

=
∑

Γ∈ΓI
h

∫
Γ

(∇ JvhKΓ · ν) vh dS(x)

≤
∑

Γ∈ΓI
h

∫
Γ

|∇ JvhKΓ · ν| |vh| dS(x) =: I.

To obtain the third equality we have used that the average of vh is continuous
across internal faces. Since vh ∈ Vh(Ω), we know that ∇ JvhKΓ is constant for all
internal faces Γ ∈ Γh. Moreover, there must exist a point bΓ ∈ Γ, for every Γ ∈ ΓI

h,
such that Jvh(bΓ)KΓ = 0. By this and the Cauchy-Schwartz inequality, we deduce

I ≤ C
∑

Γ∈ΓI
h

1
h
‖vh‖L2(Γ)‖ JvhKΓ ‖L2(Γ)

≤ Ch−1− ε
2 ‖vh‖L2(Ω)

∑
Γ∈ΓI

h

hε−1‖ JvhKΓ ‖
2
L2(Γ)

 1
2

.
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The last inequality is achieved thanks to the trace inequality (1) in Lemma 2.9,
together with Lemma 2.10. �

Using the previous lemma, we can now establish a Poincaré inequality and a
spatial compactness estimate.

Lemma 2.13. There exists a positive constant C, depending only on the shape
regularity of Eh and the size of Ω, such that for any ξ ∈ R2

‖vh(·)− vh(· − ξ)‖L2(Ωξ) ≤ C|ξ| 12− ε
4 |vh|Vh(Ω), ∀vh ∈ Vh(Ω), (2.13)

where Ωξ = {x ∈ Ω : dist(x, ∂Ω) > ξ}. Moreover,

‖vh‖L2(Ω) ≤ C|vh|Vh(Ω), ∀vh ∈ Vh(Ω). (2.14)

Proof. Fix h > 0, and select an arbitrary function vh in Vh(Ω). For any ξ we
construct a new mesh Gh such that each G ∈ Gh is a subset of one and only one
element E ∈ Eh (e.g., we can divide each element of E ∈ Eh into a number of
smaller elements). Moreover, we construct this new mesh Gh such that

C−1|ξ| ≤ hG ≤ C|ξ|, ∀G ∈ Gh, (2.15)

where hG denotes the diameter of the new element G and the constant C depends
only on the shape–regularity of Eh.

Now, let V|ξ|(Ω) denote the Crouzeix–Raviart element space on Gh and denote
by ΠV

|ξ| : Vh(Ω) → V|ξ|(Ω) the canonical interpolation operator associated with
V|ξ|(Ω).

Denote by h|ξ| the maximal element diameter in Gh. From standard properties
of the Crouzeix–Raviart element [14], we have

‖ΠV
|ξ|vh(x)−ΠV

|ξ|vh(x− ξ)‖2L2(Ωξ) ≤ (h2
|ξ| + |ξ|2)

∑
G∈Gh

‖∇ΠV
|ξ|vh‖2L2(G)

≤ (h2
|ξ| + |ξ|2)‖∇hvh‖2L2(Ω),

where the second inequality follows from the properties of the operator ΠV
|ξ|.

Lemma 2.12 and the bounds (2.15) allow us to conclude the following estimate:

‖ΠV
|ξ|vh(x)−ΠV

|ξ|vh(x− ξ)‖2L2(Ωξ)

≤ h
−1− ε

2
|ξ| (h2

|ξ| + |ξ|2)‖vh‖L2(Ω)

∑
Γ∈ΓI

h

hε−1‖ JvhKΓ ‖
2
L2(Γ)

 1
2

≤ C|ξ|1− ε
2 ‖vh‖L2(Ω)

∑
Γ∈ΓI

h

hε−1‖ JvhKΓ ‖
2
L2(Γ)

 1
2

.

Keeping in mind that vh|E ∈ W 1,2(E), ∀E ∈ Eh, we can apply Lemma 2.8 and
the previous estimate to obtain

‖vh(·)− vh(· − ξ)‖2L2(Ωξ)

≤ 2‖vh −ΠV
|ξ|vh‖2L2(Ωξ) + ‖ΠV

|ξ|vh(x)−ΠV
|ξ|vh(x− ξ)‖2L2(Ωξ)

≤ C|ξ|1− ε
2 ‖vh‖L2(Ω)

∑
Γ∈ΓI

h

hε−1‖ JvhKΓ ‖
2
L2(Γ)

 1
2

.

(2.16)

Next, denote by vext
h the extension of vh by zero to all of RN . By the previous

calculations, we conclude that vext
h satisfies (2.16) with Ωξ replaced by RN (keep
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in mind that the jump terms are only summed over internal faces). Thus, we can
fix |ξ| large in (2.16) to discover that

‖vext
h ‖2L2(Ω) ≤ C|diam(Ω)|1− ε

2 ‖vext
h ‖L2(Ω)

∑
Γ∈ΓI

h

hε−1‖
q
vext

h

y
Γ
‖2L2(Γ)

 1
2

,

and hence

‖vh‖2L2(Ω) ≤ C|diam(Ω)|1− ε
2

∑
Γ∈ΓI

h

hε−1‖ JvhKΓ ‖
2
L2(Γ)

 ≤ C|diam(Ω)|1− ε
2 |vh|2Vh

,

which is (2.14).
Finally, setting (2.14) into (2.16) gives (2.13). �

We end this section with

Lemma 2.14. There exists a constant C > 0, which depends only on the shape
regularity of Eh and the size of Ω, such that for any vh ∈ Vh(Ω)∣∣∣∣∣∣

∑
Γ∈ΓI

h

hε−1

∫
Γ

Jvh · νKΓ
q
ΠV

h w · ν
y
Γ

+ Jvh × νKΓ
q
ΠV

h w × ν
y
Γ
dS(x)

∣∣∣∣∣∣
≤ Ch

ε
2 ‖vh‖Vh(Ω)‖∇w‖L2(Ω), ∀w ∈ W 1,2

0 (Ω).

Proof. Using the Hölder inequality,∣∣∣∣∣∣
∑

Γ∈ΓI
h

hε−1

∫
Γ

Jvh · νKΓ
q
ΠV

h w · ν
y
Γ
dS(x)

∣∣∣∣∣∣
≤ h

ε
2

∑
Γ∈ΓI

h

hε−1

∫
Γ

Jvh · νK2Γ dS(x)

 1
2
∑

Γ∈ΓI
h

h−1

∫
Γ

q
ΠV

h w
y2

Γ
dS(x)

 1
2

≤ h
ε
2

∑
Γ∈ΓI

h

hε−1

∫
Γ

Jvh · νK2Γ dS(x)

 1
2

×

( ∑
E∈Eh

h−1

∫
∂E

∣∣ΠV
h w −w

∣∣2 dS(x)

) 1
2

.

To obtain the last inequality, we have applied the calculation
q
ΠV

h w
y2

Γ
=
∣∣(ΠV

h w)|∂E+ −w + w − (ΠV
h w)|∂E−

∣∣2
≤ |(ΠV

h w)|∂E+ −w|2 + |(ΠV
h w)|∂E− −w|2,

where E+ and E− are the two element sharing the face Γ.
By using (1) in Lemma 2.9, we further deduce that∣∣∣∣∣ ∑

Γ∈Γh

hε−1

∫
Γ

Jvh · νKΓ
q
ΠV

h w · ν
y
Γ
dS(x)

∣∣∣∣∣
≤ h

ε
2

∑
Γ∈ΓI

h

hε−1

∫
Γ

Jvh · νK2Γ dS(x)

 1
2
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×

( ∑
E∈Eh

h−2‖ΠV
h w −w‖2L2(E) + ‖∇(ΠV

h w −w)‖2L2(E)

) 1
2

≤ h
ε
2C‖vh‖Vh

‖∇w‖L2(Ω),

where the last inequality follows from Lemma 2.8.
By analogous calculations for the tangential jumps,∣∣∣∣∣∣

∑
Γ∈ΓI

h

hε−1

∫
Γ

Jvh × νKΓ
q
ΠV

h w × ν
y
Γ
dS(x)

∣∣∣∣∣∣ ≤ h
ε
2C‖vh‖Vh

‖∇w‖L2(Ω).

This concludes the proof. �

3. Numerical method and main result

Given a time step ∆t > 0, we discretize the time interval [0, T ] in terms of the
points tm = m∆t, m = 0, . . . ,M , where it is assumed that M∆t = T . Regarding
the spatial discretization, we let {Eh}h be a shape regular family of tetrahedral
meshes of Ω, where h is the maximal diameter. It will be a standing assumption
that h and ∆t are related like ∆t = ch for some constant c. By shape regular we
mean the existence of a constant κ > 0 such that every E ∈ Eh contains a ball of
radius λE ≥ hE

κ , where hE is the diameter of E. Furthermore, we let Γh denote
the set of faces in Eh. Throughout the paper, we will use “three dimensional”
terminology (tetrahedron, face, etc.) when referring to both the three dimensional
case and the two dimensional case (triangle, edge, etc).

On each element E ∈ Eh, we denote by Q(E) the constants on E. The functions
that are piecewise constant with respect to the elements of a mesh Eh are denoted
by Qh(Ω). We denote by Vh(Ω) the Crouzeix–Raviart finite element space (2.7)
formed on Eh. To incorporate the boundary condition, we let the degrees of freedom
of Vh(Ω vanish at the boundary:∫

Γ

vh dS(x) = 0, ∀Γ ∈ Γh ∩ ∂Ω, ∀vh ∈ Vh(Ω).

We shall need to introduce some additional notation related to the discontinuous
Galerkin method. Concerning the boundary ∂E of an element E, we write f+ for
the trace of the function f achieved from within the element E and f− for the trace
of f achieved from outside E. Concerning a face Γ that is shared between two
elements E− and E+, we will write f+ for the trace of f achieved from within E+

and f− for the trace of f achieved from within E−. Here E− and E+ are defined
such that ν points from E− to E+, where ν is fixed (throughout) as one of the
two possible normal components on each face Γ. We also write JfKΓ = f+ − f− for
the jump of f across the face Γ, while forward time-differencing of f is denoted by
JfmK = fm+1− fm and ∂h

t f
m = JfmK

∆t . The set of inner faces of Γh will be denoted
by ΓI

h = {Γ ∈ Γh; Γ 6⊂ ∂Ω}.

Definition 3.1 (Numerical scheme). Let
{
%0

h(x)
}

h>0
be a sequence (of piecewise

constant functions) in Qh(Ω) that satisfies %0
h > 0 for each fixed h > 0 and %0

h → %0

a.e. in Ω and in L1(Ω) as h→ 0. Set fh(t, ·) = fm
h (·) := 1

∆t

∫ tm

tm−1 ΠQ
h f(s, ·) ds, for

t ∈ (tm−1, tm), m = 1, . . . ,M .
Determine functions

(%m
h ,u

m
h ) ∈ Qh(Ω)× Vh(Ω), m = 1, . . . ,M,
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such that for all φh ∈ Qh(Ω),∫
Ω

∂h
t (%m

h )φh dx = ∆t
∑

Γ∈ΓI
h

∫
Γ

(
%m
− (um

h · ν)+h + %m
+ (um

h · ν)−h
)
JφhKΓ dS(x). (3.1)

and for all vh ∈ Vh(Ω),∫
Ω

µ curlh um
h curlh vh + [(µ+ λ) divh um

h − p(%m
h )] divh vh dx

+ µ
∑

Γ∈ΓI
h

hε−1

∫
Γ

Jum
h · νKΓ Jvh · νKΓ + Jum

h × νKΓ Jvh × νKΓ dS(x)

=
∫

Ω

fm
h vh dx,

(3.2)

for m = 1, . . . ,M .
In (3.1), we have introduced the notation

(uh · ν)±h =
(

1
|Γ|

∫
Γ

uh · ν dS(x)
)±

, (3.3)

where a+ = max(a, 0) and a− = min(a, 0).

Remark 3.2. Since the normal velocity components (um
h ·ν) are discontinuous across

element faces, the continuity method (3.1) approximates (%u · ν) using instead the
average normal velocity 1

|Γ|
∫
Γ
(um

h · ν) dS(x), cf. (3.3), and traces of % are taken in
the upwind direction with respect to the average normal velocity.

We now make an observation that will simplify the subsequent analysis. Let
Nh(Ω) denote the lowest order div conforming Nedelec finite element space of the
first kind [13, 11] on Eh. In two dimensions, Nh(Ω) is the Raviart–Thomas space.

We will need the interpolation operator ΠN
h : Vh(Ω) → Nh(Ω) defined by∫

Γ

(
ΠN

h vh

)
· ν dS(x) =

∫
Γ

vh · ν dS(x), ∀Γ ∈ Γh.

Then, by definition, the interpolated velocity

ũm
h := ΠN

h um
h (3.4)

satisfies
(ũm

h · ν)± =
(
ũm

h · ν
)±

h
= (um

h · ν)±h , (3.5)

where the first equality is valid since ũm
h · ν is constant on each Γ ∈ Γh. Since both

element spaces have piecewise constant divergence, a direct calculation yields

div ũm
h = divh um

h . (3.6)

Now, setting (3.5) into the continuity method (3.1) leads to the relation∫
Ω

∂h
t (%m

h )φh dx = ∆t
∑

Γ∈ΓI
h

∫
Γ

(
%m
− (ũm

h · ν)+ + %m
+ (ũm

h · ν)−
)

JφhKΓ dS(x), (3.7)

for all φh ∈ Qh(Ω). Hence, we can think of the pair (%m
h , ũ

m
h ) as a solution to a

continuity method in which Nh(Ω) is used to approximate the velocity. In fact,
(3.7) is the method examined in [11]. We will frequently utilize (3.7), instead of
(3.1), to easily obtain properties of our continuity approximations.

For each fixed h > 0, the numerical solution {(%m
h ,u

m
h )}M

m=0 is extended to the
whole of (0, T ]× Ω by setting

(%h,uh)(t) = (%m
h ,u

m
h ), t ∈ (tm−1, tm], m = 1, . . . ,M. (3.8)

In addition, we set %h(0) = %0
h.
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3.1. Main result. Our main result is that, passing if necessary to a subsequence,
{(%h,uh)}h>0 converges to a weak solution. More precisely, we will prove

Theorem 3.3 (Convergence). Suppose f ∈ L2((0, T ) × Ω), and %0 ∈ Lγ(Ω) with
γ > 1. Let {(%h,uh)}h>0 be a sequence of numerical solutions constructed according
to (3.8) and Definition 3.1. Then, passing if necessary to a subsequence as h→ 0,
uh ⇀ u in L2(0, T ;L2(Ω)), %huh ⇀ %u in the sense of distributions on (0, T )×Ω,
and %h → % a.e. in (0, T ) × Ω, where the limit pair (%,u) is a weak solution as
stated in Definition 2.4.

This theorem will be a consequence of the results proved in Sections 4 and 5.

3.2. The numerical method is well–defined. We now turn to the existence of
a solution to the discrete problem. However, we commence with the following easy
lemma providing a positive lower bound for the density.

Lemma 3.4. Fix any m = 1, . . . ,M and suppose %m−1
h ∈ Qh(Ω), um

h ∈ Vh(Ω)
are given bounded functions. Then the solution %m

h ∈ Qh(Ω) of the discontinuous
Galerkin method (3.1) satisfies

min
x∈Ω

%m
h ≥ min

x∈Ω
%m−1

h

(
1

1 + ∆t‖divh um
h ‖L∞(Ω)

)
.

Consequently, if %m−1
h (·) > 0, then %m

h (·) > 0.

Proof. Let ũm
h be given by (3.4). Then, since (%m

h , ũ
m
h ) satisfies (3.7), Lemma 4.1

in [11] can be applied. This concludes the proof. �

Lemma 3.5. For each fixed h > 0, there exists a solution

(%m
h ,u

m
h ) ∈ Qh(Ω)× Vh(Ω), %m

h (·) > 0, m = 1, . . . ,M,

to the discrete problem posed in Definition 3.1.

Proof. As in the proof of [11, Lemma 4.2], the existence of a solution is established
using a topological degree argument. By the arguments corresponding to those
in [11, Lemma 4.2], one reduces the problem to proving existence of a solution
uh ∈ Vh(Ω) to the linear system:

a(uh,vh) :=
∫

Ω

µ curlh uh curlh vh + (µ+ λ) divh uh divh vh dx

+ µ
∑

Γ∈ΓI
h

hε−1

∫
Γ

Juh · νKΓ Jvh · νKΓ + Juh × νKΓ Jvh × νKΓ dS(x)

=
∫

Ω

gvh dx, ∀vh ∈ Vh(Ω),

(3.9)

where g ∈ L2(Ω) is given.
Now, the bilinear form a(·, ·) is clearly bounded on the space Vh(Ω) × Vh(Ω)

equipped with the norm ‖ · ‖Vh
. By an application of the Poincaré inequality

(2.14), we also have the existence of a constant C, independent of h, such that

a(uh,uh) ≥ C‖uh‖2Vh
.

Hence, the bilinear form a(·, ·) is coercive on Vh, and the existence of a function
uh ∈ Vh(Ω) satisfying (3.9) follows.

Since the remaining part of the topological degree argument is very similar to
that found in [11, Lemma 4.2], we omit the details. �
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4. Basic estimates

In this section we establish various a priori estimates for the discrete problem
given in Definition 3.1, including a basic energy estimate and a higher integrability
estimate for the density approximations.

We begin with a renormalized formulation of the continuity method (3.1).

Lemma 4.1 (Renormalized continuity method). Fix any m = 1, . . . ,M and let
(%m

h ,u
m
h ) ∈ Qh × Vh satisfy the continuity method (3.1). Then (%m

h ,u
m
h ) also

satisfies the renormalized formulation∫
Ω

B(%m
h )φh dx

−∆t
∑

Γ∈ΓI
h

∫
Γ

(
B(%m

− )(um
h · ν)+h +B(%m

+ )(um
h · ν)−h

)
JφhKΓ dx

+ ∆t
∫

Ω

b(%m
h ) divh um

h φh dx+
∫

Ω

B′′(ξ(%m
h , %

m−1
h ))

q
%m−1

h

y2
φh dx

+ ∆t
∑

Γ∈ΓI
h

∫
Γ

B′′(ξΓ(%m
+ , %

m
− )) J%m

h K2Γ (φh)−(um
h · ν)+h

−B′′(ξΓ(%m
− , %

m
+ )) J%m

h K2Γ (φh)+(um
h · ν)−h dS(x)

=
∫

Ω

B(%m−1
h )φh dx, ∀φh ∈ Qh(Ω),

(4.1)

for any B ∈ C[0,∞) ∩ C2(0,∞) with B(0) = 0 and b(%) := %B′(%)− B(%). Given
two positive real numbers a1 and a2, we use ξ(a1, a2) and ξΓ(a1, a2) to denote
two corresponding numbers between a1 and a2 that arise from second order Taylor
expansions utilized in the proof.

Proof. Recall the definition of ũm
h , cf. (3.4). By taking B′(%m

h )φh as test function
in (3.7) and repeating the proof of Lemma 5.1 in [11], we obtain (4.1) with um

h

replaced by ũm
h . In view of (3.5) and (3.6), this is identical to (4.1). �

Lemma 4.2 (Stability). Let {(%h,uh)}h>0 be a sequence of numerical solutions
constructed according to (3.8) and Definition 3.1. For % > 0, set P (%) := a

γ−1%
γ .

For any m = 1, . . . ,M , we have∫
Ω

P (%m
h ) dx+

µ

2

m∑
k=1

∆t‖uk
h‖2Vh(Ω) +Nm

diffusion

≤
∫

Ω

P (%0) dx+ C

m∑
k=1

∆t‖fk
h‖2L2(Ω),

(4.2)

where the numerical diffusion term Nm
diffusion ≥ 0 takes the form

Nm
diffusion =

m∑
k=1

∫
Ω

P ′′(ξ(%k
h, %

k−1
h ))

q
%k−1

h

y2
dx

+
m∑

k=1

∑
Γ∈ΓI

h

∆t
∫

Γ

P ′′(%k
† )

q
%k

h

y2

Γ

(
(uk

h · ν)+h − (uk
h · ν)−h

)
dS(x).

In particular, %h ∈b L
∞(0, T ;Lγ(Ω)).
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Proof. Since P ′(ρ)ρ− P (ρ) = p(ρ) and %h > 0, taking φh ≡ 1 in (4.1) yields∫
Ω

P (%k
h) dx+ ∆t

∫
Ω

p(%k
h) divh uk

h dx+
∫

Ω

P ′′(ξ(%k
h, %

k−1
h ))

q
%k−1

h

y2
dx

+ ∆t
∑

Γ∈ΓI
h

∫
Γ

P ′′(ξΓ(%m
+ , %

m
− ))

q
%k

h

y2

Γ
(uk

h · ν)+h

− P ′′(ξΓ(%m
− , %

m
+ ))

q
%k

h

y2

Γ
(uk

h · ν)−h dS(x) =
∫

Ω

P (%k−1) dx.

(4.3)

For k = 1, . . . ,M and x ∈
⋃

Γ∈ΓI
h

Γ, set

%k
† (x) :=

{
max{%k

+(x), %k
−(x)}, 1 < γ ≤ 2,

min{%k
+(x), %k

−(x)}, γ ≥ 2,

and note that

∆t
∑

Γ∈ΓI
h

∫
Γ

P ′′(ξΓ(%m
+ , %

m
− ))

q
%k

h

y2

Γ
(uk

h · ν)+h

− P ′′(ξΓ(%m
− , %

m
+ ))

q
%k

h

y2

Γ
(uk

h · ν)−h dS(x)

≥ ∆t
∑

Γ∈ΓI
h

∫
Γ

P ′′(%k
† )

q
%k

h

y2

Γ

(
(uk

h · ν)+h − (uk
h · ν)−h

)
dS(x).

(4.4)

Next, using vh = uk
h as test function in (3.2), we obtain the estimate∫

Ω

p(%k
h) divh uk

h dx = (µ+ λ)‖divh uk
h‖2L2(Ω) + µ‖ curlh uk

h‖2L2(Ω) −
∫

Ω

fk
huk

h dx

+ µ
∑

Γ∈ΓI
h

hε−1

∫
Γ

q
uk

h · ν
y2

Γ
+

q
uk

h × ν
y2

Γ
dS(x)

≥ µ‖uk
h‖2Vh

−
∫

Ω

fk
huk

h dx, k = 1, . . . ,M.

(4.5)

Applying (4.5) and (4.4) to (4.3) leads to the bound∫
Ω

P (%k
h) dx+ µ∆t‖uk

h‖2Vh(Ω) +
∫

Ω

P ′′(ξ(%k
h, %

k−1
h ))

q
%k−1

h

y2
dx

+
∑

Γ∈ΓI
h

∆t
∫

Γ

P ′′(%k
† )

q
%k

h

y2

Γ

(
(uk

h · ν)+h − (uk
h · ν)−h

)
dS(x)

≤
∫

Ω

P (%k−1
h ) dx+

1
2µ

∆t
∫

Ω

|fk
h |2dx+

µ

2
∆t
∫

Ω

|uk
h|2 dx.

Summing over k = 1, . . . ,M yields (4.2). �

Since the stability estimate only provides the bound p(%h) ∈b L
∞(0, T ;L1(Ω)), it

is not clear that p(%h) converges weakly to an integrable function. Hence, we shall
next establish that the pressure is in fact uniformly bounded in L2(0, T ;L2(Ω)).

To increase the readability we introduce the notation

〈φ〉Ω =
1
|Ω|

∫
Ω

φ dx.

Lemma 4.3 (Higher integrability on the pressure). Let {(%h,uh)}h>0 be a sequence
of numerical solutions constructed according to (3.8) and Definition 3.1. Then

p(%h) ∈b L
2((0, T )× Ω).
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Proof. For m = 1, . . . ,M , define vm
h ∈ Vh(Ω) by

vm
h = ΠV

h B [p(%m
h )− 〈p(%m

h )〉Ω] ,

where the operator B [·] is defined in (2.5).
Since div ΠV

h = ΠQ
h div, we have the identity

divh vm
h = ΠQ

h divB [p(%m
h )− 〈p(%m

h )〉Ω] = p(%m
h )− 〈p(%m

h )〉Ω .
By using vm

h as test function in the velocity method (3.2) and applying the
previous identity, we obtain the relation∫

Ω

p(%m
h )2dx = |Ω| 〈p(%m

h )〉2Ω + (λ+ µ)
∫

Ω

divh um
h divh vm

h dx

+
∫

Ω

µ curlh um
h curlh vm

h − fm
h vm

h dx

+ µ
∑

Γ∈ΓI
h

hε−1

∫
Γ

Jum
h · νKΓ Jvm

h · νKΓ + Jum
h × νKΓ Jvm

h × νKΓ dS(x).

Repeated applications of Hölder’s inequality yields

‖p(%m
h )‖2L2(Ω)

≤ C 〈p(%m
h )〉2Ω + (λ+ µ)‖divh um

h ‖L2(Ω)‖divh vm
h ‖L2(Ω)

+ µ‖ curlh um
h ‖L2(Ω)‖ curlh vm

h ‖L2(Ω) + ‖fm
h ‖L2(Ω)‖vm

h ‖L2(Ω)

+ µ

∣∣∣∣∣∣
∑

Γ∈ΓI
h

hε−1

∫
Γ

Jum
h · νKΓ Jvm

h · νKΓ + Jum
h × νKΓ Jvm

h × νKΓ dS(x)

∣∣∣∣∣∣ .
To bound the jump terms we apply Lemma 2.14:

‖p(%m
h )‖2L2(Ω)

≤ C
[
〈p(%m

h )〉2Ω

+
(
(1 + h

ε
2 )‖um

h ‖Vh(Ω) + ‖fm
h ‖L2(Ω)

)
‖B [p(%m

h )− 〈p(%m
h )〉Ω] ‖W 1,2(Ω)

]
≤ C

[
〈p(%m

h )〉2Ω +
(
(1 + h

ε
2 )‖um

h ‖Vh(Ω) + ‖fm
h ‖L2(Ω)

) (
1 + ‖p(%m

h )‖L2(Ω)

)]
,

where the last inequality follows thanks to the estimate ‖B[φ]‖W 1,2(Ω) ≤ C‖φ‖L2(Ω).
Finally, an application of Cauchy’s inequality (with ε) yields

‖p(%m
h )‖2L2(Ω) ≤ C

(
1 + 〈p(%m

h )〉2Ω + ‖um
h ‖2Vh(Ω) + ‖fm

h ‖2L2(Ω)

)
.

Finally, we multiply this inequality by ∆t, sum over m = 1, . . . ,M , and apply
Lemma 4.2. This concludes the proof. �

5. Convergence

Let {(%h,uh)}h>0 be a sequence of numerical solutions constructed according
to (3.8) and Definition 3.1. In this section we will prove that a subsequence of
this sequence converges to a weak solution of the semi–stationary Stokes system,
thereby proving Theorem 3.3.

In view of Section 4, we have the following h–independent bounds:

%h ∈b L
∞(0, T ;Lγ(Ω)) ∩ L2γ((0, T )× Ω),

uh ∈b L
2(0, T ;L2(Ω)),

divh uh ∈b L
2(0, T ;L2(Ω)),

curlh uh ∈b L
2(0, T ;L2(Ω)).
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Consequently, we can assume that there exist limit functions % ∈ L∞(0, T ;Lγ(Ω))∩
L2γ((0, T )× Ω) and u ∈ L2(0, T ;W 1,2

0 (Ω)) such that

%h
h→0
⇀ % in L∞(0, T ;Lγ(Ω)) ∩ L2γ((0, T )× Ω),

uh
h→0
⇀ u in L2(0, T ;L2(Ω)),

(5.1)

and, by Lemma 2.11,

divh uh
h→0
⇀ div u in L2(0, T ;L2(Ω)),

curlh uh
h→0
⇀ curlu in L2(0, T ;L2(Ω)).

(5.2)

Moreover,

%γ
h

h→0
⇀ %γ , %γ+1

h
h→0
⇀ %γ+1, %h log %h

h→0
⇀ % log %,

where each h→0
⇀ signifies weak convergence in a suitable Lp space with p > 1.

Finally, %h, %h log %h converge respectively to %, % log % in C([0, T ];Lp
weak(Ω)) for

some 1 < p < γ, cf. Lemma 2.2 and also [5, 12]. In particular, %, % log %, and % log %
belong to C([0, T ];Lp

weak(Ω)).

5.1. Density method.

Lemma 5.1 (Convergence of %u). Given (5.1) and (5.2),

%huh
h→0
⇀ %u in the sense of distributions on (0, T )× Ω.

Proof. Denote by ũh the function

ũh(t, ·) = ũm
h , t ∈ (tm−1, tm], m = 1, . . . ,M,

where ũm
h is defined in (3.4). By standard properties of the Nedelec interpolation

operator, ‖ũh‖L2(0,T ;L2(Ω)) ≤ C‖uh‖L2(0,T ;L2(Ω)). This, (3.6), and Lemma 4.2
allow us to conclude that ũh ∈b L

2(0, T ;W div,2(Ω)) and

M∑
m=1

∑
Γ∈ΓI

h

∆t
∫

Γ

P ′′(%m
† ) J%m

h K2Γ
∣∣∣ũm

h · ν
∣∣∣ dS(x) ≤ C.

Using these bounds, we can apply to (3.7) the calculations leading to Lemma
5.6 in [11], resulting in the bound

∂h
t (%h) ∈b L

1(0, T ;W−1,1(Ω)). (5.3)

At the same time, Lemma 2.13 tells us that

‖uh(t, x)− uh(t, x− ξ)‖L2(0,T ;L2(Ωξ)) → 0 as |ξ| → 0, uniformly in h. (5.4)

In view of (5.3) and (5.4), an application of Lemma 2.3 concludes the proof. �

Lemma 5.2 (Continuity equation). The limit pair (%,u) constructed in (5.1) and
(5.2) is a weak solution of the continuity equation (1.1) in the sense of Definition
2.4.

Proof. Denote by ũh the function

ũh(t, ·) = ũm
h , t ∈ (tm−1, tm], m = 1, . . . ,M,

where ũm
h is defined in (3.4).

Fix a test function φ ∈ C∞0 ([0, T ) × Ω) and introduce the piecewise constant
projections φh := ΠQ

h φ, φm
h := ΠQ

h φ
m, and φm := 1

∆t

∫ tm

tm−1 φ(t, ·) dt.
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By using φm
h as test function in (3.7) and preforming the same calculations as in

the proof of Lemma 6.4 in [11], we work out the identity∫ T

0

∫
Ω

∂h
t (%h)φh dxdt =

∫ T

0

∫
Ω

%hũh∇φ dxdt+ ω(h), (5.5)

where |ω(h)| ≤ Ch
1
2 and∫ T

0

∫
Ω

∂h
t (%h)φh dxdt

h→0−→ −
∫ T

0

∫
Ω

%φt dxdt−
∫

Ω

%0φ(0, x) dx,

where we have relied on (5.1) and the strong convergence %0
h → %0 a.e. in Ω.

Next, ∫ T

0

∫
Ω

%hũh∇φ dxdt =
∫ T

0

∫
Ω

%huh∇φ+ %h (ũh − uh)∇φ dxdt.

In view of Lemma 5.1,∫ T

0

∫
Ω

%huh∇φ dxdt
h→0−→

∫ T

0

∫
Ω

%u∇φ dxdt.

By a standard error estimate for ΠW
h (cf. [13]),∣∣∣∣∣

∫ T

0

∫
Ω

%h (ũh − uh)∇φ dxdt

∣∣∣∣∣
≤ hC‖%h‖L2(0,T ;L2(Ω))‖∇huh‖L2(0,T ;L2(Ω))‖∇φ‖L∞(0,T ;L∞(Ω)) ≤ Ch

2−ε
4 ,

where the final inequality follows from Lemmas 2.12, 4.2, and 4.3.
Summarizing, sending h→ 0 in (5.5) delivers the desired result (2.2). �

5.2. Strong convergence of density approximations. To establish the strong
convergence of the density approximations %h, we will utilize a weak continuity
property of the effective viscous flux: Peff(%h,uh) = p(%h)− (λ+ µ) div uh.

To derive this property we exploit the div–curl structure of the velocity scheme
(3.2) combined with the commutative properties (2.9) of Vh. More specifically, in
view of the commutative property (2.9), the function vh = ΠV

h ∇∆−1%h satisfies
divh vh = %h and curlh vh = 0 on elements away from the boundary. The crucial
point is that the curl part of the velocity method (3.2) vanishes when this vh is
utilized as a test function.

Lemma 5.3 (Discrete effective viscous flux). Given the weak convergences listed
in (5.1) and (5.2),

lim
h→0

∫ T

0

∫
Ω

Peff(%h,uh) %h φψ dxds =
∫ T

0

∫
Ω

Peff(%,u) % φψ dxds,

for all φ ∈ C∞0 (Ω) and ψ ∈ C∞(0, T ).

Proof. Fix φ ∈ C∞0 (Ω), ψ ∈ C∞(0, T ), and for each h > 0 introduce the test
function

vh(·, t) = ψΠV
h [φA [%h − %] (·, t)] , t ∈ (0, T ).

where the operator A [·] is defined in (2.6).
By virtue of (2.9) and curlA [·] = 0, we have the identities

divh vh = ψΠQ
h (∇φA [%h − %]) + ψΠQ

h (φ(%h − %))

and
curlh vh = ψΠQ

h (∇φ×A [%h − %]) .
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For m = 1, . . . ,M , set vm
h := 1

∆t

∫ tm

tm−1 vh(·, s) ds. Taking vm
h as test function

in the velocity method (3.2), utilizing the above identities, multiplying by ∆t, and
summing over m, we obtain∫ T

0

∫
Ω

Peff(%h,uh)(%h − %)φψ dxds

= −
∫ T

0

∫
Ω

Peff(%h,uh)∇φ · A [%h − %]ψ + fh

(
ΠV

h φA [%h − %]
)
ψ dxds

+
∫ T

0

∫
Ω

µ curlh uh (∇φ×A [%h − %])ψ dxds

+ µ
∑

Γ∈ΓI
h

hε−1

∫ T

0

ψ

∫
Γ

Juh · νKΓ Jvh · νKΓ + Juh × νKΓ Jvh × νKΓ dS(x)ds.

(5.6)

In view of (5.3), the following h–independent bounds are immediate:

∂h
t A [%h] = A

[
∂h

t %h

]
∈b L

1(0, T ;W−1,1(Ω)),

A [%h] ∈b L
2(0, T ;W 1,2(Ω)).

(5.7)

Consequently, Lemma 2.3 can be applied with the result that (A [%h])2 h→0
⇀

(
A [%]

)2.
Thus,

A [%h − %] h→0→ 0, in L2(0, T ;L2(Ω)). (5.8)
Now, using (5.8) together with (5.1) and (5.2), we send h→ 0 in (5.6) to obtain

lim
h→0

∫ T

0

∫
Ω

Peff(%h,uh)(%h − %)φψ dxds

= lim
h→0

µ
∑

Γ∈ΓI
h

hε−1

∫ T

0

ψ

∫
Γ

Juh · νK
q
ΠV

h (φA [%h − %]) · ν
y

+ Juh × νK
q
ΠV

h (φA [%h − %])× ν
y
dS(x)dt.

(5.9)

Lemma 2.14 yields∣∣∣∣∣∣µ
∑

Γ∈ΓI
h

hε−1

∫ T

0

ψ

∫
Γ

Juh · νKΓ
q
ΠV

h (φA [%h − %]) · ν
y
Γ
dS(x)ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣µ
∑

Γ∈ΓI
h

hε−1

∫ T

0

ψ

∫
Γ

Juh × νKΓ
q
ΠV

h (φA [%h − %])× ν
y
Γ
dS(x)ds

∣∣∣∣∣∣
≤ h

ε
2C‖ψ‖L∞(0,T )‖uh‖L2(0,T ;Vh(Ω))‖∇(φA [%h − %])‖L2(0,T ;L2(Ω)) ≤ Ch

ε
2 ,

where the last inequality follows from (5.7) and Lemmas 4.2 and 4.3. Applying the
previous bound to (5.9) yields the desired result. �

We can now infer the strong convergence of the density approximations.

Lemma 5.4 (Strong convergence of %h). Suppose that (5.1)–(5.2) holds. Then,
passing to a subsequence as h→ 0 if necessary,

%h → % a.e. in (0, T )× Ω.

Proof. In view of Lemma 5.2, the limit (%,u) is a weak solution of the continuity
equation and hence, by Lemma 2.6, also a renormalized solution:

(% log %)t + div ((% log %) u) = %div u in the weak sense on [0, T )× Ω.
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Since t 7→ % log % is continuous with values in an appropriate Lebesgue space
equipped with the weak topology, we can use this equation to obtain for any t > 0∫

Ω

(% log %) (t) dx−
∫

Ω

%0 log %0 dx = −
∫ t

0

∫
Ω

%div u dxds (5.10)

Next, we specify φh ≡ 1 as test function in the renormalized scheme (4.1),
multiply by ∆t, and sum the result over m. Making use of the convexity of z log z,
we conclude that for any m = 1, . . . ,M∫

Ω

%m
h log %m

h dx−
∫

Ω

%0
h log %0

h dx ≤ −
m∑

k=1

∆t
∫

Ω

%m
h div um

h dxdt. (5.11)

In view of the convergences stated at the beginning of this section and strong
convergence of the initial data, we can send h→ 0 in (5.11) to obtain∫

Ω

(
% log %

)
(t) dx−

∫
Ω

%0 log %0 dx ≤ −
∫ t

0

∫
Ω

%div u dxds. (5.12)

Subtracting (5.10) from (5.12) gives∫
Ω

(
% log %− % log %

)
(t) dx ≤ −

∫ t

0

∫
Ω

%div u− %div u dxds,

for any t ∈ (0, T ). Lemma 5.3 tells us that∫ t

0

∫
Ω

(
%div u− %div u

)
φ dxds =

a

µ+ λ

∫ t

0

∫
Ω

(
%γ+1 − %γ%

)
φ dxds ≥ 0,

for all φ ∈ C∞0 (Ω) ∩ {φ ≥ 0}, where the last inequality follows as in [5, 12], so the
following relation holds:

% log % = % log % a.e. in (0, T )× Ω.

Now an application of Lemma 2.1 finishes the proof. �

5.3. Velocity method.

Lemma 5.5 (Velocity equation). The limit pair (%,u) constructed in (5.1)–(5.2)
is a weak solution to the velocity equation (1.2) in the sense of Definition 2.4.

Proof. Fix v ∈ L2(0, T ;W 1,2
0 (Ω)), and set vh = ΠV

h v and vm
h = 1

∆t

∫ tm

tm−1 vh dt.
Then, setting vm

h as test function in the velocity method (3.2), multiplying with
∆t, and summing over all m = 1, . . . ,M , leads to the identity∫ T

0

∫
Ω

µ curlh uh curlv + [(µ+ λ) divh uh − p(%h)] div v dxdt

+ µ
∑

Γ∈ΓI
h

hε−1

∫ T

0

∫
Γ

Juh · νKΓ
q(

ΠV
h v
)
· ν

y
Γ

+ Juh × νKΓ
q(

ΠV
h v
)
× ν

y
Γ
dS(x)dt

=
∫ T

0

∫
Ω

fhΠV
h v dxdt,

(5.13)

where we have also used (2.9). From Lemma 5.4 and (5.1), we have that p(%h) h→0→
p(%) in L2(0, T ;L2(Ω)). Furthermore, Lemma 2.14 tells us that the jump terms
converge to zero. Hence, we can send h→ 0 in (5.13) to obtain that the limit (%,u)
constructed in (5.1)–(5.2) satisfies (2.3) for all test functions v ∈ L2(0, T ;W 1,2

0 (Ω)).
�
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