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1 Introduction

The paper [1] defines market risk as an investor’s “future net worth”. In the
sequel, the authors also define a measure of risk as a mapping from the set of all
risks G into R and it is interpreted as the minimum extra cash an investor has

1This work was supported by NUFU and is part of my Ph.D thesis being supervised by
Prof. Bernt Øksendal.
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to add to a given risky position which he will invest “prudently” to be allowed
to proceed with his plans. Such strategies are common in markets which are
not complete, where it is not enough to hold a self financing portfolio because
one will not be able to hedge a given payoff. Our choice of the final net worth
of a portfolio is motivated by the fact that a net worth which is always strictly
negative, requires extra capital and thus the risk will not be zero.

For the choice of the final net worth considered in our paper, we aim primarily
to find the explicit representations of the martingale measure that minimizes a
given risk and the corresponding optimal portfolio. Similar considerations were
done in [4] and also in [12]. In both cases, the authors consider the problem of
risk minimization as a zero sum, two player stochastic differential game between
the investor, who holds a portfolio of risky securities and a risk-free investment,
and the “market”. Such an idealized game was proved in both cases to be well
posed. In the former, the authors consider the investor’s efforts, as trying to
hold a portfolio strategically with the aim of minimizing risk represented by the
discounted net hedging loss. The measure of risk is the infimum, over all such
admissible portfolios, of the discounted net loss or shortfall. On the other hand
the market is choosing the volatility as its tool to counter the agent’s objectives,
that is, by trying to maximize over all volatility coefficients, the risk, for all
admissible portfolios. The market chosen in both cases is a Gaussian market. It
is well known that in both papers the market is complete. However in [4] the
authors justify the inability to hedge a given payoff, as the agent’s inability to
pay the Black-Scholes price. In that case the portfolio will not perfectly hedge
the given payoff. In the later, the considerations are the same but instead the
market chooses the drift coefficient and the volatility, so that the market will
have its control u as a pair u = (α, σ) where, α is the drift term and σ is the
volatility term.

In our paper we consider the same predicament for the agent. Our market
model consists of two assets, a stock and a bond. However the stock price
dynamics is modelled by a stochastic process with jumps, which will make the
market incomplete. As a result, a given portfolio, cannot hedge a given payoff
perfectly. We also choose a risk which is coherent. We then aim to find the
optimal portfolio and an optimal market price of risk which minimizes a chosen
coherent risk. We use for the first part, the maximum principle to get a first
result and then dynamic programming for the final result. We therefore consider
our paper as an extension of the results in [4] and [12].

2 The market model

Let (Ω,F , {Ft}t≥0, P ) be a given filtered probability space, satisfying,

1. the probability space (Ω,F , P ) is complete

2. the σ−algebra F0 contains all the P-null sets in F

3. the filtration {Ft}t≥0 is right continuous in the sense that Ft+ = ∩s>tFs.
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On the probability space, we define a pure jump process
ηt =

∫ t

0

∫
R γ(s, z)Ñ(st, dz), where, for later convenience, we shall assume that

γ(t, z) > −1;
∫

R
γ2(t, z)ν(dz)dt < ∞ (1)

for almost all t, z, dt × dν(z), where ν(.) = E[N(1, .)] is a Lévy measure of ηt

and N(t, .) is a Poisson random measure of ηt. In this regard, Ñ(., .) is the
compensated Poisson random measure .

Let α = α(t) be an adapted process, we then define the market model as
follows:

Asset1 (bond price) S0(t) = 1 for a.a (t, ω) ∈ [0, T ]×Ft (2)

where T is some fixed time horizon.

Asset2 (Stock Price) dS1(t) = S1(t−)
[
α(t)dt +

∫
R

γ(t, z)Ñ(dt, dz)
]

(3)

Let π = π(t) be the proportion of wealth invested in the stock at time
t ∈ [0, T ], so that (1− π(t)) of the wealth is invested in the bond.

If X(π)(t) = X(t) is the corresponding wealth process, then

dX(t) = X(t−)
[
π(t)α(t)dt +

∫
R

π(t)γ(t, z)Ñ(dt, dz)
]

(4)

X(0) = x, t ∈ [0, T ], (T > 0)

whose solution is

X(t) = X(0) exp(
∫ t

0

α(s)π(s)ds +
∫ t

0

∫
R

ln(1 + π(s)γ(s, z))Ñ(ds, dz)

+
∫ t

0

∫
R
[ln(1 + π(s)γ(s, z))− π(s)γ(s, z)]ν(dz)ds) (5)

We assume that π(.)γ(., z) > −1 and X(0) = x > 0
Fix β ∈ (0, 1), then (X(t))β = Xβ(t) gives

Xβ(t) = Xβ(0) exp(
∫

0

βα(s)π(s)ds + β

∫ t

0

∫
R

ln(1 + π(s)γ(s, z))Ñ(ds, dz)

+β

∫ t

0

∫
R
[ln(1 + π(s)γ(s, z))− π(s)γ(s, z)]ν(dz)ds) (6)

By the Itô formula (see Definition 3.2), we get

d(Xβ(t)) = Xβ(t)[(βα(t)π(t)

+
∫

R
{exp(β ln(1 + π(t)γ(t, z)))− 1− βπ(t)γ(t, z)}ν(dz))dt

+
∫

R
{exp(β ln(1 + π(t)γ(t, z)))− 1}Ñ(dt, dz)] (7)
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Note the Xβ(t) is a martingale if

βα(t)π(t) +
∫

R
(exp(β ln(1 + π(t)γ(t, z)))− 1− βπ(t)γ(t, z))ν(dz) = 0

Let θ(t) = θ(t, z) be another adapted process that satisfies∫
R

γ(t, z)θ(t)ν(dz) = α(t) (8)

and

1−
∫

R
θ(t)ν(dz) < 0 (9)

Define a process Zθ(t) by

Zθ(t) = exp
(∫ t

0

∫
R

ln(1− θ(s, z))Ñ(ds, dz)

+
∫ t

0

∫
R
{ln(1− θ(s, z)) + θ(s, z)}ν(dz)ds

)
(10)

Then, since for, T < ∞, we have,
EP

[
exp

(∫ t

0

∫
R ln(1− θ(s, z))Ñ(ds, dz)

)]
= exp

(∫ t

0

∫
R−{ln(1− θ(s, z)) + θ(s, z)}ν(dz)ds

)
, then E[Zθ(T )] = exp(0) = 1.

Next, we define a measure Qθ(T, ω) = Qθ(ω) = Q(ω), by

dQ(ω) = Zθ(T )dP (ω) (11)

then Q is equivalent to P and S1(t) is a (local) martingale with respect to Q .
Let M be the set of all equivalent martingale measures.

3 The stochastic control problem and measure
of risk

Let U = [0, 1] be a Borel set. We set U [0, T ] as the set of all controls (portfolios)
for the agent, that is U [0, T ] = {π : [0, T ]× Ω → U}.

We assume that the owner of the portfolio π, should not be able to exercise
his decision π(t) before the time t really comes. As a result, we demand that
π(t) should be {Ft}t≥0 adapted.

Definition 3.1 A stochastic control for the agent π(.) ∈ U [0, T ] is called feasible
for (6) if

1. π(.) is {Ft}t≥0 adapted and

2. X(t) given by (6) is the unique solution of (7)
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The set of all admissible controls for the agent shall be denoted by Ufeas[0, T ].
The pair (X(.), π(.)), is called a feasible pair.

The following definition can be found in [10]:

Definition 3.2 (Itô formula) Let X(t) be an Itô - Lévy diffusion given by

dX(t) = α(t)dt + β(t)dB(t) +
∫

R
γ(t, z)Ñ(dt, dz) (12)

where α, β and γ(., .) are adapted real valued functions and let f : R2 → R be
a C2 function. Then the process Y (t) = f(t, X(t)) is again an Itô-Lévy process
and the Itô formula of X(t) is denoted dX(t) and is given by

dX(t) = ∂f
∂t (t, X(t))dt + ∂f

∂x (t, X(t))dX(c)(t) + 1
2

∂2f
∂x2 (t, X(t)).β2(t)dt +∫

R{f(t, X(t−) + γ(t, z))− f(t, X(t−))}N(dt, dz)
where X(c) is the continuous part of X(t), obtained by removing the jumps

from X(t)

Let Yθ(t) = Xβ(t)Zθ(t), so that , by Itô’s formula we have
dYθ(t) = Zθ(t)dXβ(t)+Xβ(t)dZθ(t)+ < Xβ , Z >t where the last part of this

expression is the cross variation of Xβ and Z, dZ(t) = −Z(t)
∫

R θ(t, z)Ñ(dt, dz)
which was given before in its Poisson integral form and Xβ(t) was given in (6).
We then get

dYθ(t) = Yθ(t)[(α̃(t)−
∫

R
γ̃(t, z)θ(t, z)ν(dz))dt

+
∫

R
(γ̃(t, x)− θ(t, z)− γ(t, z)θ(t, z))Ñ(dt, dz)] , Yθ(0) > 0

where α̃(t) = βα(t)π(t) +
∫

R{exp(β ln(1 + π(t)γ(t, z)))− 1− βπ(t)γ(t, z)}ν(dz)
and

γ̃(t, z) = exp(β ln(1 + π(t)γ(t, z)))− 1
Now we assume that the coefficients of Yθ(t) satisfy the existence and unique-

ness properties of a Lévy stochastic differential equation, that is, the property
of Lipschitz continuity and the at most linear growth property. Our controlled
stochastic process Yθ(t) is not required to satisfy some terminal conditions, but,
in [4], they consider a portfolio which is admissible in the sense that, the value
process X(t) is bounded below by an adapted process. In our case, our wealth
process is naturally bounded by A(t) = 0 for almost all t.

Definition 3.3 A stochastic control for the agent (market) is called admissible
if it is feasible, the stochastic differential equation given by (13) admits a unique
solution and the bequest function in the cost function of a generalized stochastic
control problem (which we shall give later) is in L1

FT
(Ω, R).

The set of all admissible controls for the agent (market) is denoted by Ua
adm,

(Um
adm).
With respect to the controls π(.) and θ(., .), a general cost function is of the

form

J(u(.)) = E

[∫ T

0

f(t, Yθ(t), u(t))dt + h(Yθ(T ))

]
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for some functions f and g and for u(.) = (π(.), θ(.)). In our case we shall
consider f ≡ 0 and h(x) = −xδ, where δ ∈ (0, 1). It is therefore certain that
we are considering a utility optimization problem. An optimal control problem
with h = 0 is called a Lagrange problem, while if f = 0 it is called a Mayer’s
problem. In the case that f 6= 0 and h 6= 0, the problem is called a Bolza
problem. Therefore our problem is a Mayer’s problem.

Consider the cost function J(u(.)) = EQ[−Xβ(T )].

Definition 3.4 The measure of risk r is a mapping from the set of all random
variables Z to R and is given by r(Z) = supQ∈ME[−Z].

The measure of risk is considered as the amount of money that the agent is
prepared to pay in order to face the worst possible damage that arises from
being unable to hedge a given payoff, which in our case is F (ω) = 0 in a market
with zero interest rates. Note that, a more general formulation is given in [4]
with F (ω) = C and with a continuous compounding rate of interest ρ. It is
with interest that the authors consider the case of a complete market where the
agent is unable to pay the market price of a given liability (which is given by
the Black-Scholes formula in the case of call and put options). We admit that
it has already been proven that in the case of complete markets, any price paid
other than the Black Scholes price will result in the creation of an arbitrage.
In any case, if an agent has the money determined by the measure of risk, why
not add to the amount he is prepared to pay so that the discounted shortfall
becomes small. If this argument is continued, then the agent will manage to pay
the Black-Scholes price. In our case we consider an incomplete market setup,
and as such the terminal value of a portfolio can be less than the payoff.

Note that, the function h mentioned before is in this case
h(X(T )) = −Xβ(T ).
We want to find θ and π such that

inf
π∈Ua

adm

(
sup

Q∈M
EQ[−Xβ(T )]

)
= − sup

π∈Ua
adn

(
inf

θ∈Um
adm

E[Zθ(T )Xβ(T )]
)

(13)

= − sup
π∈Ua

adn

(
inf

θ∈Um
adm

E[Yθ(T )]
)

= inf
π∈Ua

adm

(
sup

θ∈Um
adm

E[−Yθ(T )]

)
(14)

Definition 3.5 The min-max quantity
V (x) = infπ∈Ua

adm

(
supθ∈Um

adm
E[−Y (T )]

)
is called the upper measure of risk, while the max-min quantity
V (x) = supθ∈Um

adm

(
infπ∈Ua

adm
E[−Y (T )]

)
is called the lower measure of risk.

The lower measure of risk represents (see [4]) the maximal risk, from the
point of view of an agent faced with the worst possible scenario θ. In the same
way, the upper-measure of risk, is viewed by a regulator, for example, insurer,
as an attempt by the agent, of containing the worst that can happen. These two
are thus lower (max-min) and upper (min-max) values of a fictious two player,
zero sum, stochastic differential game between the agent and the market. We
justify below that in the case of our model, the game has value.
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Note that in our particular case, our measure of risk is coherent as defined
in [1]. Moreover, we have the following:

Proposition 3.1 Let the market be as defined before and let V (x) and V (x) be
the upper measure of risk and the lower measure of risk as defined before. Then
V (x) = V (x)

Proof: We note that, for θ(t, z) = 0 then P = Q. Then by the remarks in [4],
the equality holds. �

As a result of the above proposition, we now look for a saddle point (π̂(.), θ̂(.))
of the game which is a solution of

infπ∈Ua
adm

(
supθ∈Um

adm
E[−Yθ(T )]

)
We solve this problem by first considering the problem of finding θ̂ that solves

Λθ̂(x) = sup
θ∈Um

adm

E[−Y (T )] (15)

We use the maximum principle for this part. Recall that the maximum prin-
ciple is a set of necessary and sufficient conditions for the existence of an optimal
control π̂ which states that any optimal control along with the optimal state tra-
jectory must solve the Hamiltonian systems which is a two-point boundary value
problem plus a maximum condition of a function called a Hamiltonian. The case
of control problems without jumps was discussed fully in [13]. We give here, as
in [10] the modified versions of the conditions for the case of the general one
dimensional Lévy market.

3.1 The maximum principle

Suppose that the controlled jump diffusion in R is given by

dX(t) = b(t, X(t), u(t))dt + σ(t,X(t), u(t))dB(t)

+
∫

R
γ(t, X(t−), u(t−), z)Ñ(dt, dz) (16)

Define , for some fixed investment time horizon T , the performance criterion by

J(u) = E

[∫ T

0

f(t,X(t), u(t))dt + g(X(T ))

]
where f and g are real valued continuous functions and g is C1.

Suppose that E
[∫ T

0
f−(t, X(t), u(t))dt + g−(X(T ))

]
< ∞ for all admissible

controls u.
Consider the problem of finding u∗ ∈ A such that

J(u∗) = sup
u∈A

J(u)

where A is the set of all admissible controls.
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In order to solve the stochastic control above, we may use the maximum
principle which consists, first of defining the Hamiltonian H by

H(t, x, u, p, q, r) = f(t, x, u) + b(t, x, u)p + σ(t, x, u)q

+
∫

R
γ(t, x, u, z)r(t, z)ν(dz) (17)

where p, q and r are some unknown processes to be determined.
Next we setup the adjoint equation in the unknown processes p(t), q(t) and

r(t, z) as the backward stochastic differential equation (BSDE)

dp(t)=− ∂

∂x
H(t, X(t), u(t), q(t), r(t, .))dt + q(t)dB(t)+

∫
R

r(t−, z)Ñ(dt, dz) (18)

p(T ) =
∂

∂x
g(X(T )), t < T (19)

where we assume that
E
[∫ T

0
{σ2(t, X(t), u(t)) +

∫
R |γ(t,X(t), u(t), z)|2ν(dz)}dt

]
< ∞ for all u ∈ A.

We then have the following result from [10].

Theorem 3.1 (A sufficient maximum principle) Let û ∈ A and let X̂ =
X(û) be the corresponding solution of the controlled equation (16). Suppose that
there exists a solution (p̂(t), q̂(t), r̂(t, z)) of the corresponding adjoint equation
(18) and (19) satisfying

E

[∫ T

0

{q̂2(t) +
∫

R
|r(t, z)|2ν(dz)}dt

]
< ∞.

Moreover, suppose that

H(t, X̂(t), û(t), p̂(t), q̂(t), r̂(t, .)) = sup
u∈A

H(t, X̂(t), u, p̂(t), r̂(t, .))

for all t; that g is a concave function of x and that
Ĥ(x) = maxu∈AH(t, x, u, p̂(t), r̂(t, .)) exists and is concave in x for all t ∈ [0, T ].
Then û is an optimal control.

This theorem was proved in [10] for the multidimensional case. What is impor-
tant to our case is that we can establish the first order adjoint equations for the
Itô - Lévy case as an extension of the Itô diffusion case which was well treated
in [13].

The only disadvantage of the maximum principle is that one has to check
on the smoothness properties of h(.) and concave or convex properties of the
Hamiltonian. In our case one can easily check that both conditions are satisfied.
However even in the case that the Hamiltonian is not concave, one can establish
the second order adjoint equation which makes the new Hamiltonian concave.
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3.1.1 Adjoint equation and first result

The Hamiltonian for our optimal stochastic control problem is

H(t, y, θ, p, r) = (α̃(t)−
∫

R
γ̃(t, z)θν(dz))yp

+y

∫
R
(γ̃(t, z)− θ − θγ̃(t, z))r(t, z)ν(dz) (20)

and this can be written

H(t, y, θ, p, r) = θ[−yp

∫
R

γ̃(t, z)ν(dz)− y

∫
R
(γ̃(t, z) + 1)r(t, z)ν(dz)]

+α̃(t)yp + y

∫
R

γ̃(t, z)r(t, z)ν(dz) (21)

The Hamiltonian given above is linear in θ so that H can only be optimized with
respect to θ if

p(t)
∫

R
γ̃(t, z)ν(dz) +

∫
R
(γ̃(t, z) + 1)r(t, z)ν(dz) = 0 (22)

Therefore the first order adjoint equation, after considering (22) is

dp(t) = (α̃(t)p(t) +
∫

R
γ̃(t, z)r(t, z)ν(dz))p(t)dt +

∫
R

r(t, z)Ñ(dt, dz)

p(T ) = 1 (23)

We try p(t) = m(t)Yθ(t) where m is a C1 function. We get

dp(t) = [m′(t)Yθ(t) + m(t)Yθ(t)(α̃(t)−
∫

R
γ̃(t, z)θ(t, z)ν(dz)]dt

+m(t)Yθ(t)
∫

R
(γ̃(t, z)− θ(t, z)− γ̃(t, z)θ(t, z))Ñ(dt, dz) (24)

Comparing (24) and (23), we get the following system of equations:

m′(t)Yθ(t) + m(t)Yθ(t)(α̃(t)−
∫

R
γ̃(t, z)θ(t, z)ν(dz)

= (α̃(t)p(t) +
∫

R
γ̃(t, z)r(t, z)ν(dz))p(t) (25)

m(t)Yθ(t)(γ̃(t, z)− θ(t, z)− γ̃(t, z)θ(t, z)) = r̂(t, z) (26)

Substituting (26) into (22), we get∫
R

γ̃(t, z)ν(dz)−
∫

R
(γ̃(t, z) + 1)(γ̃(t, z)− θ − θγ̃(t, z)ν(dz)) = 0 (27)

Solving we get

θ̂(t, z) =

∫
R γ̃(t, z)(γ̃(t, z) + 2)ν(dz)∫

R(γ̃(t, z) + 1)2ν(dz)
= 1−

∫
R

ν(dz)
(1 + γ̃(t, z))2ν(dz)

(28)
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where γ̃(t, z) = eβ ln(1+π(t)γ(t,z)) − 1 = (1 + π(t)γ(t, z))β − 1. Therefore Λθ̂ =
E[−Yθ̂] where Yθ̂(t) is actually Yθ(t) given by (13) with θ substituted with θ̂.

We now want to find π̂ = π̂(t) such that J̃ π̂ = infπ∈Ua
adm

E[−Yθ̂(T ) =
− supπ∈Ua

adm
E[Yθ̂(T )].

4 Dynamic programming

To solve the second part of our problem, we use the method of dynamic program-
ming by using the Hamilton Jacobi Bellman (HJB) equation for jump diffusions.

Just like the maximum principle, dynamic programming is another mathe-
matical technique for making a sequence of interrelated decisions which can be
applied to optimal control problems, which are special cases of the more general
optimization problems. Even with its weaknesses, one can always resort to the
viscosity solutions to the HJB. A detailed treatment for the non-jump case can
be found in [13]. Here, we provide, thanks to [10], the dynamic programming
framework for the general Itô-Lévy one dimensional case and then use this to
solve the second part of our problem, that is, that of finding π̂.

Definition 4.1 Let
dX(t) = b(X(t))dt + σ(X(t))dB(t) +

∫
R γ(X(T−), z)Ñ(dt, dz) ;X(0) = x ∈ R

be a Lévy-Itô diffusion. Then the generator of X(t) on C2
0 (R) is A , given by

Aφ(x) = b(x)
∂φ

∂x
+

1
2
σ2(x)

∂2φ

∂x2

+
∫

R
{φ(x + γ(x, z))− φ(x)− ∂φ

∂x
(x).γ(x, z)}ν(dz) (29)

for all φ : R → R and x ∈ R such that the sums and integrals in (29) exist.

Now we consider the controlled diffusion X(t) = X(u)(t) given by
dX(t) = b(X(t), u(t))dt+σ(Y (t), u(t))dB(t)+

∫
R γ(X(t−), u(t−), z)Ñ(dt, dz);

X(0) = x ∈ R for functions b, σ and γ satisfying the necessary conditions for the
above equation to have a unique strong solution.

Let S ∈ R be a fixed domain and consider the stopping time
τS , inf{t > 0 : X(u)(t) 6∈ S}. Let f : S → R and g : R → R be given

functions. Then we consider the performance criterion J = J (u)(x) of the form

J (u)(x) = Ex

[∫ τS

0

f(X(t), u(t))dt + g(X(τS))
]

.

We assume that Ex
[∫ τS

0
f−1(X(t), u(t))dt + g−1(X(τS))

]
< ∞.

The stochastic control problem consists of finding the optimal control u∗ ∈ A
and the value function Φ(x) such that

Φ(x) = sup
u∈A

J (u)(x) = J (u∗)(x).

The dynamic programming approach to solve the above problem is sum-
marized by the HJB conditions as given in the theorem below, whose proof is
omitted and can be found in [10].
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Theorem 4.1 (HJB for optimal control of the jump diffusions) (a)
Suppose that φ ∈ C2(S) ∩ C(S) satisfies the following

1. Aφ(x) + f(x, v) ≤ 0 for all y ∈ S, v ∈ A
2. limt→τ−S

φ(X(t)) = g(X(τS)) a.s for all u ∈ A.

3. Ex
[ ∫ τS

0

{
σ(X(t)) ∂

∂xφ(X(t))|2 +
∫

R |φ(X(t)+γ(X(t), u(t), z))
−φ(X(t))|2ν(dz)

}
dt
]

< ∞
4. {φ−1(X(τ))τ≤τS

} is uniformly integrable for all u ∈ A and x ∈ S.
Then φ(x) ≥ Φ(x) for all x ∈ S.
(b) Moreover, suppose that for each x ∈ S, there exists v = û(x) ∈ A such that

5. Aû(x)φ(x) + f(x, û(x)) = 0 and

6. {φ(X(û)(τ))} is uniformly integrable

Suppose that u∗(t) := û(X(t−)) ∈ A. Then u∗ is an optimal control and
φ(x) = Φ(x) = J (u∗)(x) for all x ∈ S.

The previous theorem gives both the necessary and sufficient conditions for
the existence of the optimal control u∗ for the stochastic control problem de-
scribed before.

We therefore apply the theorem for our particular case.

4.1 Optimal portfolio: the main result

Recall that

dYθ(t) = Yθ(t)[(α̃(t)−
∫

R
γ̃(t, z)θ(t, z)ν(dz))dt

+
∫

R
(γ̃(t, x)− θ(t, z)− γ̃(t, z)θ(t, z))Ñ(dt, dz)] (30)

where α̃(t) = βα(t)π(t) +
∫

R{exp(β ln(1 + π(t)γ(t, z)))− 1− βπ(t)γ(t, z)}ν(dz)
and

γ̃(t, z) = exp(β ln(1 + π(t)γ(t, z)))− 1

Let W (t) =
(

s + t
Yθ(t)

)
, t ≥ 0; W (0−) = w =

(
s
y

)
, Then the generator

A(π) of the controlled process W (t) is
A(π)φ(w) = ∂φ

∂s + (α̃−
∫

R γ̃θν(dz))∂φ
∂y

+
∫

R{φ(s, y + γ̃ − θ̂ − γ̃θ̂)− φ(s, y)− (γ̃ − θ̂ − γ̃θ̂)∂φ
∂y }ν(dz)

We ”try” φ(s, y) = k(s) + h(s)y where k and h are C1.
Substituting, we get
A(π)φ(w) = k′(s) + h′(s)y + (α̃−

∫
R γ̃θ̂ν(dz))h(s)

= k′(s) + h′(s)y + (βαπ +
∫

R{(1 + πγ)β − 1− βπγ}ν(dz))h(s)
− h(s)

∫
R θ̂[(1 + πγ)β − 1]ν(dz).

Let p(π) = k′(s) + h′(s)y + (βαπ +
∫

R{(1 + πγ)β − 1− βπγ}ν(dz))h(s)
− h(s)

∫
R θ̂[(1 + πγ)β − 1]ν(dz), then
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∂p
∂π = h(s)

[
βγ −

∫
R βγν(dz) +

∫
R βγ(1 + πγ)β−1(1− θ̂)ν(dz)

]
.

Then ∂p
∂π = 0 ⇒ βγ −

∫
R βγν(dz) +

∫
R βγ(1 + πγ)β−1(1− θ̂)ν(dz) = 0

⇒ 1−
∫

R
ν(dz) + (1− θ̂)

∫
R
(1 + πγ)β−1ν(dz) = 0 (31)

Let m(π) = 1 −
∫

R ν(dz) + (1 − θ̂)
∫

R(1 + πγ)β−1ν(dz), then there exists at
least one value π̃ such that m(π̃) > 0. A good example could be π̃ = 1

γ for θ̂ < 1
2

Moreover, m → 1−
∫

R ν(dz) < 0 as π →∞. Furthermore, by (28), we have
that θ̂(t, z) < 1, for all t, z, so that 1− θ̂(t, z) ≥ 0.

Now, m′(π) = (1− θ̂)(β− 1)
∫

R(1 + πγ)β−2ν(dz) which implies that m′(π) is
always negative, and thus m(π) is monotonic decreasing. Therefore there exists
a unique solution π of (31).

We call this solution π̂ and have proved the following:

Theorem 4.2 Let π̂ be given by (31) and let θ̂(t) be given by (28), then the
risk is minimized by the portfolio π̂(t) and the equivalent martingale measure Q

given by θ̂(t).

4.2 Conclusion

Our results show that the optimal portfolio π̂ which represents the proportion
of wealth invested in the stock, is unique. The mini-max problem was simplified
thanks to the maximum principle and dynamic programming.
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