
OPTIMIZATION IN `1- NORM FOR

SPARSE RECOVERY

by

THIEN THANH LAM

THESIS

for the degree of

MASTER OF SCIENCE

(Master i Anvendt matematikk og mekanikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

May 2014

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

2

ACKNOWLEDGEMENT

First of all, I would like to thank my supervisor Geir Dahl for his good advice
and guidance. Thank you for constantly keeping me on the right direction
and for supporting me during the work of this thesis. I express my deepest
gratitude to you.

I would also like to thank Øyvind Ryan for helping me with the codes. Thank
you for always being helpful and available for questions and discussions.

Finally, I would like to share my joy with my family and all friends. Thanks
for providing me with love, caring and encouragement through my working
period with the thesis. This has given me alot of motivation. A special
appreciation to my boyfriend, Kai Yao for always believing in me.

Thien Thanh Lam
Oslo, May 2014

4

ABSTRACT

This paper is about solving an optimization problem for a sparse solution.

Given a matrix A and a vector b, the optimization problem is to solve

the linear equation Ax = b for x. The problem can be represented as a

minimization problem where we minimize the norm of x subject to Ax = b.

By using ‖ · ‖0, defined as the number of non-zero components, the problem

becomes an NP-hard problem. Therefore we do a convex relaxation by using

the `1- norm. With this relaxation we are able to find a sparse solution, a

solution with few non-zero entries. The advantage with sparse vectors is

that the computations take less time. Another advantage is that sparse

vectors require less space when being stored, since we only need to know the

position and the value of the entries.

The problem is used in Compressed Sensing and in many other appli-

cations. Compressed Sensing is about representing signals by using few

non-zero coefficients in a basis. For the system we are solving to have sparse

recovery, it requires conditions such as the Null Space Condition, the Spark,

the Restricted Isometry Property and the Coherence. There are many meth-

ods for solving this problem, and in this paper Basis Pursuit and Greedy

algorithms will be presented.

6

CONTENTS

Acknowledgement . 3

Abstract . 5

Contents . 7

1. Introduction . 11

2. Background . 15

2.1 Optimization Problem . 15

2.1.1 Applications . 16

2.1.2 Nonlinear Optimization 17

2.2 Convex Optimization . 18

2.2.1 Subclasses of Convex Optimization 19

2.3 Approximation . 22

2.3.1 Norm Approximation 22

2.3.2 Regularized Approximation 23

2.3.3 Sparse Approximation 25

3. Applications . 27

3.1 Image Denoising and Inpainting 27

3.2 Cryptography . 32

8 CONTENTS

3.3 Traffic Monitoring . 34

4. Compressed Sensing . 37

4.1 Bases and Frames . 38

4.2 Sparse Models . 39

4.3 Conditions for Sparse Recovery 43

4.3.1 Null Space Condition 43

4.3.2 The Restricted Isometry Property 46

4.3.3 Coherence . 48

4.4 Recovery via `1 Minimization 48

4.5 Recovery via Greedy Algorithms 50

5. Algorithms . 53

5.1 Basis Pursuit . 53

5.1.1 Simplex Method . 54

5.1.2 Interior Point Methods 56

5.2 Orthogonal Matching Pursuit 66

5.3 Stagewise Orthogonal Matching Pursuit 67

5.4 Regularized Orthogonal Matching Pursuit 68

5.5 Compressive Sampling Matching Pursuit 69

5.6 Iterative Hard Thresholding Algorithm 70

6. Implementation and Computational Results 73

6.1 Solving Basis Pursuit . 73

6.2 Solving Linear Programming Problems with Matlab . 76

6.3 Recovery of Sparse Signals via Convex Programming 77

6.4 Coin Example . 82

6.5 Image Processing . 86

CONTENTS 9

6.6 Discussion . 92

7. Conclusion . 95

Bibliography . 97

Appendix . 99

A. Matlab code pd.m . 99

B. Matlab code coinexample.m 103

C. Matlab code imagecomp.m 105

10 CONTENTS

1. INTRODUCTION

The main purpose of this paper is to solve a sparse approximation problem.

Given a matrix A and a vector b, we are estimating a sparse vector x that

satisfies a linear system of equations of A and b. By using the `1- norm,

we are able to find a sparse solution which has many advantages. Sparse

approximation is used in many areas. It is used in regularization and com-

pression of signals and images. There are many methods for solving the

problem under important conditions.

In this paper we start by presenting the background theory needed for

the algorithms for solving an optimization problem for a sparse solution in

Chapter 2. The chapter is based on the book Convex Optimization written

by S. Boyd and L. Vandenberghe, [12]. Our minimization problem in `1-

norm has its applications in many areas. In Chapter 3 we present how it is

used in image denoising and inpainting, [7, 8], cryptography [1] and traffic

monitoring. It can be used as a technique for removing the noise an image

has been disrupted with or for reconstructing parts of an image which have

been lost. It can help us finding back the plaintext by a given ciphertext. It

can be used for reducing the storage of some data.

In Chapter 4, Compressed Sensing is presented. We explain the differ-

ence between bases and frames, and how we regularize the underdetermined

12 1. Introduction

system so that there exist sparse solutions. First we use `2- norm, but unfor-

tunately the solution is not sparse. With ‖ · ‖0 the solutions are sparse, but

if the system is large, then finding the solution would be computationally

intractable. Finally we regularize the problem with `1- norm. It is then

able to find sparse solutions and yet remains computationally tractable. We

present the Null Space Condition, the connection between the Spark and the

rank of the matrix Φ, the Restricted Isometry Property and the Coherence.

These are conditions required for our problem to have sparse recovery. This

chapter is mainly based on the book Compressed Sensing written by Y. C.

Eldar and G. Kutyniok, [13].

The regularized minimization problem in `1- norm is known as Basis

Pursuit. It is a convex optimization problem and can be recast as a lin-

ear programming problem. In Chapter 5 we present algorithms which can

solve the problems involving the `1- norm. They are Simplex method and

the Interior point methods, [11, 12]. We also give a description of other

methods, Orthogonal Matching Pursuit [13], Stagewise Orthogonal Match-

ing Pursuit [2], Regularized Orthogonal Matching Pursuit [3], Compressive

Sampling Matching Pursuit [13] and Iterative Hard Thresholding Algorithm

[13]. These algorithms have many similarities with each other. They are

greedy algorithms.

We solve Basis Pursuit in Chapter 6. We show how Basis Pursuit can

be recast as a linear programming problem, and solve it first by using the

command linprog in Matlab [10] and then by the primal-dual interior point

method [4] presented in Section 6.3. Finally we test the codes on a coin

example [6] and in image processing, [14, 15]. The results and discussions

13

are in Section 6.4, 6.5 and 6.6.

14 1. Introduction

2. BACKGROUND

In this chapter we start by giving a short presentation of what an opti-

mization problem is and also its applications. We will tell shortly about

the two subclasses of convex optimization, least-squares problem and lin-

ear programming problem. Finally we end the chapter with approximation.

This chapter is mainly based on the book Convex Optimization written by

S. Boyd and L. Vandenberghe, [12].

2.1 Optimization Problem

Optimization problem is a problem where our goal is to find the best solution

from all feasible solutions. It consists of minimizing or maximizing a function

by selecting values within an allowed set. The optimization problem has the

form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

Here we are minimizing an objective function f0 : Rn → R. The vector x

is the optimization variable. The problem has inequality constraints which

correspond to the functions fi : Rn → R, i = 1, . . . ,m, with the constants

b1, . . . , bm as bounds. The problem also has equality constraints which corre-

16 2. Background

spond to the functions hi : Rn → R, i = 1, . . . , p. If there are no constraints,

then the problem is unconstrained.

A point x is a feasible point if it is in the domain of the problem, that

is if it is in

D =
⋂m
i=0 dom fi ∩

⋂p
i=1 dom hi

and that it satisfies the constraints f1(x) ≤ b1, . . . , fm(x) ≤ bm and h1(x) =

0, . . . , hp(x) = 0. The domain, denoted as dom, is defined as the subset of

Rn of points x for which f(x) and h(x) are defined. A point x? is an optimal

solution if it is feasible and gives us the smallest objective function value

f0(x?) among all others. If f0(x?) =∞, then the problem is infeasible. This

means that no solution satisfies the constraints. If f0(x?) = −∞, then the

problem is unbounded below. This means that there are feasible points xk

with f0(xk)→ −∞ as k →∞.

2.1.1 Applications

We have a set of points x which can be seen as choices. The choices can

be possible or impossible. To separate these choices, we need constraints.

With the constraint functions f(x) and h(x), we can make a set of possible

choices x. Among these possible choices x we can then choose out the best

one x?, and the objective value f0(x?) is the cost for have taken this choice.

In economics the optimization problem is used, for example when we

calculate our budget. We try to minimize the cost we use for buying food

or other things for each month. The optimization variable x corresponds to

2.1. Optimization Problem 17

what kind of things we use our budget for. Then we have limits for how

much we are going to spend on it, and this correspond to the constraint

functions. Finally the objective function will give us the lowest total cost of

the choices we have made.

Optimization problem is also used in mechanics and physics. We calcu-

late how much force a machine uses, and we want to minimize this force.

The optimization variable x corresponds to the different parameters which

affect the force. The adjustment and the limits of the parameters correspond

to the constraint functions f(x) and h(x). After we have found the optimal

solution x?, the objective function f0(x?) will give us the total lowest force

for the parameters we have chosen.

Optimization problem is very important and it is used in many areas.

It is used in economics, engineering, network and it is also for daily use like

for scheduling and planning. The list of applications is still expanding.

2.1.2 Nonlinear Optimization

Nonlinear optimization is an optimization problem where the objective func-

tion or the constraint functions are not linear. There are different approaches

for solving a nonlinear optimization problem.

In local optimization, we are looking for a point which is locally optimal.

This point minimizes the objective function among feasible points that are

near it. A point x is locally optimal if there is an R > 0 such that x is

optimal for

18 2. Background

minimize f0(z)

subject to fi(z) ≤ 0, i = 1, . . . ,m

hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

The methods are fast and can handle large-scale problems, because they

only require that the objective function and the constraint functions to be

differentiable. The disadvantage with local optimization is that the methods

require an initial guess for the optimization variable, and this guess can

greatly affect the objective value.

We have global optimization which is used for problems that have small

number of variables. Then we can find the global solution of the optimization

problem.

2.2 Convex Optimization

A convex optimization problem is an optimization problem where the ob-

jective function and the constraint functions are convex. So the functions

f0, . . . , fm satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. The

functions h0, . . . , hp are affine. A function is affine if it is a sum of a linear

function and a constant. The equality constraint functions hi(x) can be

written as aTi x − bi. An important property of the convex optimization

problem is that the feasible set is convex.

2.2. Convex Optimization 19

2.2.1 Subclasses of Convex Optimization

In this section we are going to present two very well known subclasses of con-

vex optimization. They are least-squares problem and linear programming

problem.

Least-Squares Problem

A least-squares problem is an optimization problem where there are no con-

straints. The solution x is minimizing the Euclidean norm of the residual

vector r = Ax− b,

minimize ‖r‖22 = ‖Ax− b‖22 =
∑p

i=1(aTi x− bi)2

aTi are the rows of the matrix A ∈ Rp×n, where p ≥ n. The vector x ∈

Rn is the optimization variable. The least-squares problem can be solved

analytical,

Ax = b

(ATA)x = AT b

x = (ATA)−1AT b

To know that an optimization problem is a least-squares problem, we

need to check that the objective function is a quadratic function. There are

many good algorithms for solving least-squares problems. If the problem

is large, we can exploit the structure of the matrix A. For example, if the

matrix A is sparse, which means that it has few non-zero entries, then we can

solve the least-squares problem much faster. Now we present two techniques

of the least-squares problem.

20 2. Background

In a weighted least-squares problem we have weights w1, . . . , wp in the

objective function. The weights are positive, and they are chosen to reflect

the different sizes of the terms aTi x−bi. The weighted least-squares problem

has the form

∑p
i=1wi(a

T
i x− bi)2

Weighted least-squares is a good method for problems with few variables.

The advantage with this method is that it can handle regression. The dis-

advantage with it is that the weights have to be known exactly. In mostly

applications they are almost never known, so instead estimated weights are

used.

Regularization is another technique in least-squares. A regularized least-

squares problem is also an optimization problem without constraints. In

regularization extra terms are added to the objective function for penalizing

the large values of x,

∑p
i=1(aTi x− bi)2 + λ

∑n
i=1 x

2
i

The parameter λ > 0 is chosen by the user. Our goal here is to make

the objective function
∑p

i=1(aTi x− bi)2 small and at the same time keeping∑n
i=1 x

2
i small. Later in this chapter, we will see how regularization is used

in approximation.

2.2. Convex Optimization 21

Linear Programming

A linear programming problem is an optimization problem where the objec-

tive function and the constraint functions are linear.

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . ,m

The vectors c, a1, . . . , am ∈ Rn and the constants b1, . . . , bm ∈ R. The objec-

tive function is an affine function. The feasible set of the linear programming

problem is a convex polyhedron. The set is defined as the intersection of

finitely number of half spaces, and each half space is defined by a linear

inequality.

There are many good methods for solving linear programming problems,

and two of them which we are going to present later in details in Chapter 5

are Simplex method and Interior point methods. An optimization problem

is not always in a linear program form, but it can be recast as one by using

techniques. We give an example here by using the Chebyshev approximation

problem,

minimize maxi=1,...,p |aTi x− bi|

We recast this problem as a linear programming problem,

minimize t

subject to aTi x− t ≤ bi, i = 1, . . . , p

−aTi x− t ≤ −bi, i = 1, . . . , p

where x ∈ Rn and t ∈ R.

22 2. Background

2.3 Approximation

Approximation is defined as areas close to the exactly. When the exactly

value is unknown and difficult to obtain, then approximation is used. This

is when some known information around the exact value may be able to

represent the exact value.

2.3.1 Norm Approximation

A norm approximation problem can be on the form

minimize ‖Ax− b‖ (2.1)

A is an m×n matrix, b ∈ Rm, x ∈ Rn and ‖ ·‖ is a norm on Rm. We present

some approximation interpretations.

In a weighted norm approximation we have weights in the objective

function,

minimize ‖W (Ax− b)‖

The matrix W ∈ Rm×m is the weighting matrix. If we denote Â = AW and

b̂ = bW , then the problem will have the same standard form like (2.1).

In a least-squares approximation problem the objective function is a sum

of squares of the residual Ax− b,

minimize ‖Ax− b‖22 = r2
1 + . . .+ r2

m

2.3. Approximation 23

This problem is equivalent to a norm approximation problem using the Eu-

clidean norm.

In a Chebyshev approximation problem we use the `∞- norm instead,

minimize ‖Ax− b‖∞ = max|r1|, . . . , |rm|

This problem can be recast as a linear programming problem similar to how

we described earlier in Section 2.2.1.

If we now use the `1- norm, we have that the objective function is a sum

of the absolute value of the residuals,

minimize ‖Ax− b‖1 = |r1|+ . . .+ |rm|

This problem can be recast as a linear programming problem

minimize 1T t

subject to Ax− t ≤ b

−Ax− t ≤ −b

where t ∈ Rm.

2.3.2 Regularized Approximation

We consider a convex optimization problem with two objective functions,

‖Ax − b‖ and ‖x‖, which we want to minimize. In a regularized approxi-

mation we want to make x small and at the same time also make Ax − b

small.

24 2. Background

minimize (w.r.t. R2) (‖Ax− b‖, ‖x‖)

This formulation is called Bi-criterion formulation. If we first take the min-

imum value of ‖x‖, that is when x = 0. We will then get that the residual

norm is ‖b‖. This is one endpoint of the optimal trade-off between ‖Ax− b‖

and ‖x‖. If both norms are Euclidean, the other endpoint is x = A†b, where

A† is the pseudo-inverse of A.

We can for example use weights in the objective function for regularizing

this problem,

minimize ‖Ax− b‖+ λ‖x‖

where λ > 0 varies. λ is chosen for making both ‖Ax− b‖ and ‖x‖ small.

`1- norm Regularization

Now if we use the `1- norm for the regularization, then we can find a sparse

solution. We have the problem

minimize ‖Ax− b‖2 + λ‖x‖1

The Euclidean norm is used on the residual and the `1- norm is used on the

regularized term. By choosing different values for λ, we get an approxima-

tion of the optimal trade-off between ‖Ax−b‖2 and the sparsity of the vector

x. By sparsity of the vector x, we mean the number of non-zero elements.

We let A be an m× n matrix and we have a vector b ∈ Rm that can be fit

by a linear combination of p < n columns of A. One approach is to find a

small value λ so that the sparsity of the vector x is equal to p. Then we find

2.3. Approximation 25

the value of x that minimizes ‖Ax− b‖2.

2.3.3 Sparse Approximation

Consider we have a given matrix A ∈ Rm×n and an observation vector

b ∈ Rm. Our sparse approximation is the problem of estimating a sparse

vector x ∈ Rn that satisfies a linear system of equations of A and b. The

problem is represented as

minimize ‖x‖0

subject to Ax = b

‖x‖0 is defined as the number of non-zero components of x,

‖x‖0 = #{i : xi 6= 0, i = 1, . . . , n}

This is an NP-hard problem. NP stands for ”Non-deterministic Polynomial”.

It represents one type of problem where the solutions can be determined us-

ing a ”non-deterministic” computer. An NP-hard problem can not be solved

on a standard computer in polynomial time, although it can be simulated.

The simulation takes exponential time, so as the problem size grows, the

time take for solving also grows. We therefore do a convex relaxation of the

problem by using `1- norm instead of ‖·‖0. A relaxation is an approximation

of a difficult problem to a problem which is easier to solve. The `1- norm of

the vector x is a sum of the absolute value of the entries in x,

‖x‖1 =
∑n

i=1 |xi|

We can solve the problem with the `1- norm and be able to find a sparse

26 2. Background

solution under some conditions. This will be detailed explained in Chapter

4.

3. APPLICATIONS

Sparse approximation is used in mathematical and engineering settings. It

is used for compression of signals and images. Sparse approximation is also

used in regularization as we have seen. Each application below which we

are going to introduce briefly about requires different problem formulation,

but the main goal is to find a good approximation, a sparse approxima-

tion. The images that are used for the applications, image denoising and

inpainting, are taken from [7, 8]. Cryptography is based on [1]. The figure

in traffic monitoring is taken from http://www.ibm.com/developerworks/

websphere/library/techarticles/ind-inteltrans/.

3.1 Image Denoising and Inpainting

Image denoising is an image process where we want to remove the noise that

the image has been disrupted with during transfer or while being stored.

For removing this noise, we use sparse approximation. Consider we have an

image f, and this image has been disrupted with the noise v. We let Φ be a

sensing basis. Our measured image is y,

y = Φf + v

To remove the noise from the measured image y, we solve the problem

http://www.ibm.com/developerworks/websphere/library/techarticles/ind-inteltrans/
http://www.ibm.com/developerworks/websphere/library/techarticles/ind-inteltrans/

28 3. Applications

f̂ = arg minf‖f‖1

subject to ‖Φf − y‖2 ≤ ε
(3.1)

Another possible formulation of this problem is

f̂ = arg minf
1

2
‖Φf − y‖22 + λ‖f‖1 (3.2)

For some choices of the parameter λ, the problem (3.1) is equivalent to the

problem (3.2).

The images below taken from [8] show the original image ”Barbara”,

when the image is disrupted with noise and when the image has been de-

noised.

Fig. 3.1: Original image

3.1. Image Denoising and Inpainting 29

Fig. 3.2: Left: Noisy image, Right: Denoised image

Image inpainting is an image process for reconstructing parts of the

images that have been lost. We are using the remaining parts of the image

for building an approximation while we ignore the lost parts of the image.

We have the measured image

y = Φf

Φ is the sensing basis and f is the original image. We denote the parts of

the image that have been lost by a diagonal matrix M. To inpaint the image,

we solve the problem

f̂ = arg minf‖f‖1

subject to My = MΦf

Another formulation of the problem is

f̂ = arg minf ‖f‖1 + λ‖M(y − Φf)‖22

30 3. Applications

where λ > 0.

Below the images of ”Barbara” taken from [7] show this. On the left

side, the images have been inpainted, and on the right side, it shows how

the images looked like before inpainting. From top, the image is with 20%

missing pixels. In the middle, it is 50%. The last image is with 80 % missing

pixels.

3.1. Image Denoising and Inpainting 31

Fig. 3.3: From top: images with 20%, 50% and 80% missing pixels. Left: after
inpainted. Right: before inpainted

32 3. Applications

3.2 Cryptography

Cryptography [1] is the study of hiding information from secure communi-

cation. This is for keeping the information secret and safe. Modern cryp-

tography is a mix of mathematics and computer science.

By using cryptography on the message we want to send, it will be

changed or encrypted before it is sent. The message we want to send is

called a plaintext. The method of changing text is called a code or a cipher.

The changed text is called ciphertext. The message is difficult to read after

it has been changed. The one who wants to read it must therefore change

it back or decrypt it. Only the sender and the receiver know the secret way

to change it, while other people can not.

The problem is described as follow. We have A = ΨΦ, where Ψ ∈ Rm×m

is a random matrix, Φ ∈ Rm×n where m < n. We also have a vector x which

is the secret data. Person1 sends A to Person2, then Person2 adds the secret

data with A by computing

z = Ax

and then sends z to Person1. Person1 tries to get the secret data x by

solving

z = Ax

z = ΨΦx

We set y = Φx. So first we solve for y,

3.2. Cryptography 33

z = Ψy

y = Ψ−1z

Finally we can solve for x,

y = Φx

This is equivalent to solving the minimization problem

minimize ‖x‖1

subject to Ax = z

Fig. 3.4: Cryptography

34 3. Applications

3.3 Traffic Monitoring

Traffic monitoring is a system that monitors traffic data. It could be moni-

toring of network traffic data, transportation traffic data or other infrastruc-

ture traffic data. In traffic monitoring we are dealing with very large data.

We store the data in multiple dimensions and time scales. Large data is

transported across a network to individual operators. Some data are being

analyzed and some other are being stored for other purposes. The man-

agement of these data will eventually increase, therefore we need to reduce

the storage size of the data. For this we need techniques for compression,

and our goal is to obtain low error representations with as little storage as

possible. We use the sparse approximation.

For example, we let a matrix A representing the traffic data collection.

It can consist of periodic and non-periodic variations. The problem can be

formulated similar to the problem for image denoising in Section 3.1. The

measured data is y, the data we want to store is x and the noise is v.

y = Ax+ v

We remove the noise from the data by solving the problem

x̂ = arg minx‖x‖1

subject to ‖Ax− y‖2 ≤ ε

For solving sparse approximation problems we use greedy algorithms.

These algorithms will be presented later in Chapter 5.

3.3. Traffic Monitoring 35

The figure below is taken from http://www.ibm.com/developerworks/

websphere/library/techarticles/ind-inteltrans/. It shows a traffic

data collection. We see first that the data is stored in a Data collection. In

the process Data cleansing errors are found and the data is being corrected.

When coming to the stage Data fussion, the data is being filtered so the

unnecessary information from the data is removed. In our case, this stage is

where we are solving the sparse approximation problem. After this stage, the

data continues to Data warehouse management for analysis, visualization or

being stored.

Fig. 3.5: Traffic monitoring

http://www.ibm.com/developerworks/websphere/library/techarticles/ind-inteltrans/
http://www.ibm.com/developerworks/websphere/library/techarticles/ind-inteltrans/

36 3. Applications

4. COMPRESSED SENSING

Compressed Sensing is about representing signals by using few non-zero

coefficients in a basis or a dictionary. A basis is a set of vectors which

are linearly independent. The definitions on what a basis and a dictionary

are will be more discussed later in this chapter. A vector which have few

non-zero coefficients is called a sparse vector.

Our goal is to reconstruct a signal by finding solutions to an underdeter-

mined linear system. An underdetermined linear system is a system where

we have more unknowns than equations. In general, the system has an in-

finite number of solutions. Compressed Sensing offers the use of sparsity

by allowing solutions with few non-zero coefficients, but not all underde-

termined linear systems have sparse solutions. However, if the system does

have a unique sparse solution, then Compressed Sensing will allow the re-

covery of that solution. For the system to have sparse recovery, it requires

conditions which will be presented.

Compressed Sensing has been used in many areas, such as engineering

and computer science. In this chapter we will first define what a basis and

a frame are, and then how they are used in sparse models. We present

important conditions, and finally how to solve the problem. This chapter is

mainly based on the book Compressed Sensing written by Y. C. Eldar and

38 4. Compressed Sensing

G. Kutyniok, [13].

4.1 Bases and Frames

A basis is a spanning set of vectors which are linearly independent. Let

{φi}ni=1 in Rn be vectors in a basis. Since the vectors are linearly indepen-

dent, the basis has the property that for all c1, . . . , cn ∈ R, if

c1φ1 + . . .+ cnφn = 0

then

c1 = . . . = cn = 0

Since this set of vectors is a spanning set, the basis has the property that

each vector in the set has a unique representation as a linear combination of

these basis vectors. For every x ∈ Rn, there exist c1, . . . , cn ∈ R such that

x =
∑n

i=1 ciφi

Let Φ denote an n × n matrix with columns given by φi. Then we can

represent this more compactly as

x = Φc

The coefficients c1, . . . , cn are uniquely determined by x.

A generalization of a basis to a spanning set of vectors which are linearly

dependent results in what it is called a frame. Since the vectors are linearly

4.2. Sparse Models 39

dependent, the coefficients c1, . . . , cn become more difficult to determine.

One way is to remove the vectors from the frame until it becomes linearly

independent, but the problem is that the frame might lose its possibility

to span the space. To solve this we add more vectors than necessary to

represent x. This means that we do not need to remove the vectors from

the frame. The coefficients c1, . . . , cn are therefore no longer uniquely de-

termined by x, as like for the basis. The vector x can be represented as a

linear combination of φi in many ways.

Let {φi}ni=1 in Rm be vectors in a frame corresponding to a matrix Φ ∈

Rm×n, where m < n. For all vectors x ∈ Rm, the frame satisfies

A ‖x‖22 ≤ ‖ΦTx‖22 ≤ B ‖x‖22

where A and B are two real numbers and 0 < A ≤ B < ∞. They can be

chosen independently of x, they only depend on the matrix Φ. A and B are

called lower and upper frame bounds.

A basis or a frame is sometimes referred as a dictionary or an overcom-

plete dictionary, with the dictionary elements being called atoms.

4.2 Sparse Models

Let Φ be an m × n matrix, where m < n. We have an underdetermined

linear system Φx = b. If it is consistent, it will have an infinite number of

solutions. Therefore we want to regularize the problem so that there exists

a unique solution x.

40 4. Compressed Sensing

For regularizing an underdetermined linear system, one common choice

is to choose the vector x that satisfies Φx = b and minimizes the standard

`2- norm, ‖x‖2 = (
∑

i x
2
i)

1
2 . Unfortunately the minimum `2- norm solution

is almost never sparse. In figure 4.1, the hyperplane is representing the set

of all solutions to Φx = b. The circle is representing the `2- norm solution.

When the radius to this circle increases until it touches the hyperplane, the

point of contact is the minimum value of
√
x2

1 + x2
2 among all points on the

line and it is the solution to Φx = b with minimum `2- norm. As we can see

in the figure, both components are non-zero at this point.

Now we want to look for solutions to Φx = b that have the fewest possible

non-zero components, sparse solutions. We first define ‖x‖0 as the number

of non-zero components in x. For finding a sparse solution, we will now

regularize our problem by looking for a vector x that satisfies Φx = b and

minimizes ‖x‖0.

In figure 4.1, the thick black line is representing the set {x : ‖x‖0 = 1}.

It coincides with the coordinate axes. The points of contact between the

solution set Φx = b and the set {x : ‖x‖0 = 1} are at two places, each on a

coordinate axis. These solutions are sparse.

4.2. Sparse Models 41

Fig. 4.1

−−−− {x : Φx = b}

thick black line {x : ‖x‖0 = 1}

· · · · · · · · · {x : ‖x‖2 = c}, (c is a constant)

Unfortunately if the system is large, then finding the solution to a linear

system Φx = b with the fewest non-zero components will be computation-

ally intractable. Computationally intractable means that a problem can be

solved in theory, but in practise it takes too long for their solution to be

useful.

Now we need a regularization technique that can find sparse solutions

and yet remains computationally tractable. Computationally tractable means

that a problem can be solved in polynomial time. Again we regularize our

42 4. Compressed Sensing

problem by looking for a vector x that satisfies Φx = b, but this time x

minimizes the `1- norm, defined as

‖x‖1 =
∑n

i=1 |xi|

In figure 4.2, the square is representing the `1- norm solution. We see

that the point of contact between the solution set Φx = b and the set of

`1- norm solutions is a non-zero component. It also agrees with a sparse

solution produced by `0 regularization.

Fig. 4.2

−−−− {x : Φx = b}

thick black line {x : ‖x‖0 = 1}

· · · · · · · · · {x : ‖x‖1 = d}, (d is a constant)

4.3. Conditions for Sparse Recovery 43

Solving the `1- norm minimization problem might look difficult, because

|x1| is not differentiable. But it turns out that this problem can be solved

by using convex optimization. The problem can be recast as a linear pro-

gramming problem.

4.3 Conditions for Sparse Recovery

A vector x is k-sparse when it has at most k non-zero components, that is

‖x‖0 ≤ k. We let

∑
k = {x : ‖x‖0 ≤ k}

denote the set of all k -sparse vectors.

We are now going to present conditions guaranteeing that there exists

k -sparse solution to Φx = b. This will help us being able to distinguish it

from all of the other solutions.

4.3.1 Null Space Condition

The null space of a matrix Φ is defined as

N (Φ) = {z : Φz = 0}

First we let x? satisfy Φx? = b. All the other solutions to Φx = b are on

the form x = x? + z, where Φz = 0. This means that z is in N (Φ), the null

space of Φ. We assume x? ∈ Σk for some k, and we will see that x? is the

only k -sparse solution under some conditions.

44 4. Compressed Sensing

Let x?? be another distinct k -sparse solution, that is x?? ∈ Σk. If we

want to recover all sparse vectors x from Φx, we must have that Φx? 6= Φx??,

since otherwise we can not distinguish x? from x??. If we have Φx? = Φx??,

then Φ(x? − x??) = 0, that is x? − x?? ∈ N (Φ), but x? − x?? is not the zero

vector. If x? and x?? are any vectors in Σk, then x? − x?? ∈ Σ2k. Therefore

we conclude that if Φx = b has more than one k -sparse solution, N (Φ) must

contain a non-zero 2k -sparse vector. The contrapositive of this statement

yields the next lemma [6].

Lemma 1

Suppose that Σ2k ∩ N (Φ) = {0}, that is all non-zero elements in the

nullspace of Φ have at least 2k+1 non-zero components. Then any k -sparse

solution to Φx = b is unique.

Lemma 2

The condition Σ2k ∩ N (Φ) = {0} holds if and only if every subset of 2k

columns of Φ is linearly independent.

This property can also be explained by using the spark of the matrix Φ.

It is defined as the smallest number of linearly dependent columns in the

matrix Φ.

spark(Φ) = min {‖x‖0 : Φx = 0, x 6= 0}

This definition implies a guarantee , [9].

Theorem 1

For any vector b ∈ Rm, there exists at most one vector x ∈
∑

k such that

b = Φx if and only if spark(Φ) > 2k.

4.3. Conditions for Sparse Recovery 45

Let us now define the rank of a matrix. The rank of the matrix Φ is

defined as the maximum number of columns of Φ that are linearly indepen-

dent.

There is a connection between the two definitions of the spark and the

rank of the matrix Φ. If we have a k -dimensional subset of column vectors of

Φ that are linearly independent, but there is a subset of k+1 column vectors

which are linearly dependent, then spark(Φ) = k + 1. For an m× n matrix

Φ, if m = n = 1, then spark(Φ) = 1. If m = n ≥ 2 and Φ is invertible, we

have that spark(Φ) = n+ 1. With m ≥ 2, the spark and the rank of Φ are

related by

2 ≤ spark(Φ) ≤ rank(Φ) + 1 (4.1)

.

Example 1

Φ =

1 0 1 −1

0 1 −1 1

We get that rank(Φ) = 2, since there are two linearly independent column

vectors. We get spark(Φ) = 3, since there are minimum three column

vectors that are linearly dependent. So we see that (4.1) holds.

46 4. Compressed Sensing

Example 2

Φ =

1 0 −1 1

0 1 0 1

We get that rank(Φ) = 2, since there are two linearly independent column

vectors. But here we get that spark(Φ) = 2, since there are minimum two

column vectors that are linearly dependent. Again we see that (4.1) holds.

4.3.2 The Restricted Isometry Property

The condition Σ2k ∩ N (Φ) = {0} requires that no non-zero vector x ∈ Σ2k

satisfies Φx = 0. We are now going to restrict to unit vectors with respect

to the `2- norm, because if x 6= 0, then Φx = 0 if and only if Φu = 0, where

u = x
‖x‖2 is a unit vector. Therefore we look for a condition that will make

sure that no unit vector u ∈ Σ2k satisfies Φu = 0. First we require that

there exists a positive constant c1 such that for all 2k -sparse unit vectors u,

we have ‖Φu‖22 ≥ c1. Since ‖Φu‖22 = 0, this will remove Φu = 0. So if our

requirement holds, then Σ2k ∩ N (Φ) = {0}.

The mapping x → ‖Φx‖22 is continuous from Rn to R. The set of 2k -

sparse unit vectors in Rn is also compact, so this means that ‖Φu‖22 has a

maximum value on this set. Therefore there exists a constant c2 > 0 such

that ‖Φu‖22 ≤ c2 for all unit vectors u ∈ Σ2k.

Combining all this together, we will have that

c1 ≤ ‖Φu‖22 ≤ c2

4.3. Conditions for Sparse Recovery 47

We start by redefining Φ by multiplying it with
√

2/(c1 + c2). We will

multiply the whole equation with 2
c1+c2

.

2c1
c2+c1

≤ ‖Φu‖22 ≤ 2c2
c2+c1

c2+c1−c2+c1
c2+c1

≤ ‖Φu‖22 ≤ c2+c1+c2−c1
c2+c1

1− c2−c1
c2+c1

≤ ‖Φu‖22 ≤ 1 + c2−c1
c2+c1

We set δ = c2−c1
c2+c1

. Then we get

1− δ ≤ ‖Φu‖22 ≤ 1 + δ

where both Φ and b are rescaled by a factor
√

2/(c1 + c2).

Definition 1

An m×n matrix Φ satisfies the restricted isometry property (RIP) of order

k if there is some constant δk ∈ (0, 1) such that

1− δk ≤ ‖Φu‖22 ≤ 1 + δk

for all k -sparse unit vectors u ∈ Rn. If Φ satisfies the RIP of order 2k for

some k ≥ 1, then Σ2k ∩ N (Φ) = {0} and any k -sparse solution to Φx = b is

unique.

For any vector x ∈ Rn, we can write x as x = ‖x‖2u, where u = x
‖x‖2 is

a unit vector. We will then get that Definition 1 is equivalent to

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22

for any k -sparse vector x ∈ Rn.

48 4. Compressed Sensing

4.3.3 Coherence

We have now discussed about the spark, the null space condition and the

restricted isometry property. They all give us guarantees for the recovery of

k -sparse vectors. Sometimes we want to use properties of the matrix Φ that

are easily to compute to give us more concrete recovery guarantees, and one

such property is the coherence of a matrix.

Definition 2

The coherence of a matrix Φ, µ(Φ), is the maximum absolute value of the

inner product between any two columns φi, φj of Φ,

µ(Φ) = max 1≤i<j≤n
|〈φi,φj〉|
‖φi‖2‖φj‖2

The coherence of a matrix tells us about the dependence between the

columns of Φ. If Φ is an orthogonal matrix, the inner products between the

columns would be zero, so µ(Φ) = 0. For matrices with more columns than

rows, µ(Φ) > 0. We desire a small µ(Φ) for recovery problems, Φ is then

closer to being orthogonal. The coherence of a matrix is always in the range

µ(Φ) ∈
[√

n−m
m(n−1) , 1

]
.

By relating the coherence and spark [13], we get that for any matrix Φ,

spark(Φ) ≥ 1 + 1
µ(Φ)

4.4 Recovery via `1 Minimization

Our goal is to recover the vector x from Φx = b. The first approach we are

considering here is to recover x by solving an optimization problem of the

4.4. Recovery via `1 Minimization 49

form

x̂ = arg minx‖x‖0

subject to x ∈ B(b)
(4.2)

where B(b) ensures that x̂ is consistent with the measurements b.

We set B(b) = {x : Φx = b} if our measurements are exact and without

being disrupted by noise. We set B(b) = {x : ‖Φx − b‖2 ≤ ε} if our mea-

surements are disrupted with noise. For both cases, (4.2) can recover the

sparsest vector x that is consistent with the measurements b.

Under the right conditions on Φ, it is possible to solve (4.2). But since

the objective function ‖ · ‖0 is non-convex, (4.2) is very difficult to solve. It

is an NP-hard problem.

As we have mentioned earlier, if the system is large, then finding the

solution to this problem would be computationally intractable. Therefore

we want to translate this problem into something more easier to solve. That

is to replace ‖ · ‖0 with its convex approximation ‖ · ‖1. We consider

x̂ = arg minx‖x‖1

subject to x ∈ B(b)
(4.3)

We assume that B(b) is convex, then (4.3) is computationally feasible. If

B(b) = {x : Φx = b}, then our problem can be recast as a linear program-

ming problem. So the use of `1 minimization can find sparse solutions and

yet remains computationally tractable.

50 4. Compressed Sensing

There exist efficient and accurate numerical solvers for convex optimiza-

tion. If B(b) = {x : ‖Φx−b‖2 ≤ ε}, the minimization problem (4.3) becomes

a convex program with a conic constraint. One possible formulation of this

problem is that we can consider the unconstrained version of this problem,

that is

x̂ = arg minx
1
2‖Φx− b‖

2
2 + λ‖x‖1

For some choices of the parameter λ, this optimization problem will give

us the same result as the constrained version of the problem given by

x̂ = arg minx ‖x‖1

subject to ‖Φx− b‖2 ≤ ε

4.5 Recovery via Greedy Algorithms

Greedy algorithms are algorithms which use many iterations to compute

the result. At each stage, it makes a locally optimal choice with the hope of

obtaining a global optimum. By making one greedy choice after another, it

reduces each given problems into a smaller one. The idea behind a greedy

algorithm is that it performs an iteration process and keep repeating until a

convergence criterion is met. In our case, the algorithm obtains an improved

estimate of the sparse vector at each iteration as the process runs. Some of

the greedy algorithms are similar to `1 minimization algorithms. However,

the techniques required to prove performance guarantees are different.

We will here mention two of the oldest and simplest greedy approaches,

they are Orthogonal Matching Pursuit (OMP) and Iterative Thresholding.

4.5. Recovery via Greedy Algorithms 51

The greedy approach OMP begins by finding the column of Φ that resembles

the most with the current residual. The process will repeat and at each step

it selects these columns which will then be added into a set. The algorithm

will update the residuals by projecting the vector b onto the linear subspace

spanned by the columns that have been selected.

Iterative thresholding algorithms are more straightforward. We consider

Iterative Hard Thresholding (IHT). The algorithm iterates a gradient de-

scent step followed by hard thresholding until a convergence criterion is

met.

These two algorithms are detailed explained in Section 5.2 and Section

5.6, also along with other algorithms.

52 4. Compressed Sensing

5. ALGORITHMS

In this chapter we are going to discuss about methods used to solve sparse

approximation problems. The two most common methods which are in

use are Basis Pursuit and Orthogonal Matching Pursuit. Basis Pursuit

has the advantage that the sparse approximation problem can be replaced

by a convex problem, and there are efficient algorithms that can find the

solutions. We will present algorithms which solve the problems involving the

`1-norm, like the Simplex method and the Interior point methods, [11, 12].

Orthogonal Matching Pursuit [13] is a greedy method. The approximation is

generated by going through an iteration process which builds up the solution.

We are also going to present a brief description of other methods, like

Stagewise Orthogonal Matching Pursuit [2], Regularized Orthogonal Match-

ing Pursuit [3], Compressive Sampling Matching Pursuit [13] and Iterative

Hard Thresholding Algorithm [13].

5.1 Basis Pursuit

Our sparse problem is given as

minimize ‖x‖0

subject to Ax = b
(5.1)

54 5. Algorithms

where b ∈ Rm is a given vector, A is an m × n matrix and x ∈ Rn is the

vector we want to find.

We have discussed earlier that since the objective function ‖ · ‖0 is non-

convex, the problem (5.1) is difficult to solve. Therefore we want to replace

‖ · ‖0 with the `1- norm. This is the basic idea of Basis Pursuit, and it is

given as

minimize ‖x‖1

subject to Ax = b
(5.2)

There are algorithms that will solve the Basis Pursuit problem (5.2).

With the right conditions Basis Pursuit can find a sparse solution. Later in

Chapter 6 we will see how we solve Basis Pursuit.

5.1.1 Simplex Method

The Simplex method is a method used to solve problems in linear optimiza-

tion. The algorithm was first used by the American mathematician George

Dantzig in 1947. The Simplex method solves a linear program of the form

minimize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m < n

xj ≥ 0, j = 1, . . . , n

We have a set of equations. If no solution is found yet, we introduce

the slack variables xn+1, . . . , xn+m. The initial basic feasible solution is the

solution to the problem that satisfies

5.1. Basis Pursuit 55

xi = 0, i = 1, . . . , n

xi = bn−i, i = n+ 1, . . . , n+m

When we have found the solution, we can make improvements for this so-

lution. One nonbasic variable is chosen to be increased so that the value

of the objective function,
∑n

j=1 cjxj , decreases. The variable which is be-

ing increased maintains the equality of all the equations while keeping the

other nonbasic variables at zero, until one of the basic variables is reduced

to zero and then being removed from the basis. This means that when a

new variable becomes basic, another one becomes nonbasic. This process

will be repeated.

There are three possible outcomes for this process. The first one is when

the nonbasic variable no longer decreases the objective function. In this case

the current solution is the optimal solution. The second possible outcome is

when we get an unbounded solution. This is the result of when a nonbasic

variable increases to infinity without making the basic variable decreasing

to zero. The last possible outcome is when no solution exists.

Another alternative way to explain the Simplex method is that it is a

procedure for making and testing vertex solutions to a linear program. It

starts at an arbitrary vertex which is seen as a corner of the solution set. In

each iteration, it selects the variable that makes the largest change towards

the minimum or the maximum solution. That variable will be replaced,

and then the Simplex method keep moving to a different vertex or corner

of the solution set. Eventually it will get closer to the final solution. The

algorithm is greedy since it selects the best choice at each iteration without

56 5. Algorithms

needing information from previous or next iterations. Figure 5.1 is taken

from http://en.wikipedia.org/wiki/Simplex_algorithm.

Fig. 5.1: Simplex method

5.1.2 Interior Point Methods

Interior point methods are algorithms used to solve linear and nonlinear

convex optimization problems. The method was invented by John Von Neu-

mann.

We consider a convex optimization problem with inequality constraints,

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(5.3)

http://en.wikipedia.org/wiki/Simplex_algorithm

5.1. Basis Pursuit 57

where A ∈ Rp×n with rank(A) = p < n, and f0, . . . , fm : Rn → R are convex

and twice continuously differentiable. We assume that an optimal solution

x? exists. Let p? denote the optimal value f0(x?).

We assume that the problem is strictly feasible. This means that there

exists an x that satisfies Ax = b and fi(x) < 0 for i = 1, . . . ,m. Therefore

there also exists dual optimal λ? ∈ Rm, ν? ∈ Rp, which together with x?

satisfy the Karush-Kuhn-Tucker (KKT) conditions

Ax? = b, fi(x
?) ≤ 0, i = 1, . . . ,m

λ?i ≥ 0, i = 1, . . . ,m

∇f0(x?) +
∑m

i=1 λ
?
i∇fi(x?) +AT ν? = 0

λ?i fi(x
?) = 0, i = 1, . . . ,m

(5.4)

Interior point methods solve the problem (5.3) or the KKT conditions

(5.4) by using Newton’s method. Interior point methods solve an optimiza-

tion problem with linear equality and inequality constraints by reducing it

to an optimization problem with only linear equality constraints.

Logarithmic Barrier Function and Central Path

Now we want to formulate the inequality constrained problem (5.3) as an

equality constrained problem so that we can use Newton’s method. We do

this by adding the inequality constraints into the objective function,

minimize f0(x) +
∑m

i=1 I−(fi(x))

subject to Ax = b
(5.5)

58 5. Algorithms

where I− : R→ R is the indicator function. Below u = fi(x), i = 1, . . . ,m.

I−(u) =

 0 u ≤ 0

∞ u > 0

Now the problem (5.5) is an equality constrained problem, but the objective

function is not differentiable, so Newton’s method cannot be used.

The barrier method approximates the indicator function I− by the func-

tion

Î−(u) = −1
t log(−u)

where t > 0 is a parameter that sets the accuracy of the approximation.

The function Î− is convex and differentiable. By changing out I− with Î−

in (5.5), we get

minimize f0(x) +
∑m

i=1−
1
t log(−fi(x))

subject to Ax = b
(5.6)

The objective function is now convex and differentiable, so Newton’s method

can be applied. We let

φ(x) = −
∑m

i=1 log(−fi(x))

This function is called the logarithmic barrier for the problem (5.3).

Now we consider the problem (5.6). We multiply the objective function

5.1. Basis Pursuit 59

by t,

minimize tf0(x)−
∑m

i=1 log(−fi(x))

subject to Ax = b
(5.7)

We define x?(t) as the solution of problem (5.7). The set of points x?(t), t >

0, are called central points. The condition of these points is that x?(t) is

strictly feasible, which means that it satisfies

Ax?(t) = b

fi(x
?(t)) < 0, i = 1, . . . ,m

and there exists a ν̂ ∈ Rp such that

0 = t∇f0(x?(t)) +
∑m

i=1
1

−fi(x?(t))∇fi(x
?(t)) +AT ν̂ (5.8)

holds. We define

λ?i (t) = − 1
tfi(x?(t)) , i = 1, . . . ,m, ν?(t) = ν̂

t

Every central point, x?(t), yields a dual feasible point, λ?(t), ν?(t), and

therefore a lower bound on the optimal value p?. The conditions (5.8) can

be expressed as

t∇f0(x?(t)) + t
∑m

i=1 λ
?
i (t)∇fi(x?(t)) + tAT ν?(t) = 0

∇f0(x?(t)) +
∑m

i=1 λ
?
i (t)∇fi(x?(t)) +AT ν?(t) = 0

x?(t) is minimizing the Lagrangian

60 5. Algorithms

L(x, λ, ν) = f0(x) +
∑m

i=1 λifi(x) + νT (Ax− b)

for λ = λ?(t) and ν = ν?(t). The dual function is

g(λ?(t), ν?(t)) = f0(x?(t)) +
∑m

i=1 λ
?
i (t)fi(x

?(t)) + ν?(t)T (Ax?(t)− b)

= f0(x?(t))− m
t

The duality gap is m
t .

With a specified accuracy ε we can solve the problem (5.3). Let t = m
ε .

By using Newton’s method we can solve the equality constrained problem

minimize m
ε f0(x) + φ(x)

subject to Ax = b

Newton’s Method

An equality constrained minimization problem can be reduced to an equiv-

alent unconstrained problem. This is done by eliminating the equality con-

straints. Another approach is to solve the dual problem by using an uncon-

strained minimization method, and then we get a dual solution. From this

solution, we can recover the solution of the equality constrained problem.

Now we extend Newton’s method so that it can directly handle the equal-

ity constraints. This method is better than reducing an equality constrained

problem to an unconstrained problem, because the problem structure, such

as sparsity, can be destroyed when eliminating the constraints or when form-

ing it to a dual problem.

5.1. Basis Pursuit 61

We consider a convex optimization problem with equality constraints

minimize f(x)

subject to Ax = b
(5.9)

where A ∈ Rp×n with rank(A) = p < n, and f : Rn → R is convex and

twice continuously differentiable. A point x? is optimal for (5.9) if and only

if there is a ν? ∈ Rp such that

Ax? = b

∇f(x?) +AT ν? = 0
(5.10)

The equality constrained optimization problem (5.9) and the KKT equations

(5.10) are equivalent.

To extend Newton’s method, we need that the initial point must be

feasible, which means that x satisfies Ax = b. We must also have that the

Newton step ∆xnt is a feasible direction, which means that A∆xnt = 0.

At a feasible point x, the Newton step ∆xnt solves the second-order Taylor

approximation of f,

minimize f(x) +∇f(x)T v + 1
2ν

T∇2f(x)v

subject to A(x+ v) = b

with a variable v. We define the Newton decrement

λ(x) = (∆xTnt∇2f(x)∆xnt)
1
2

62 5. Algorithms

Algorithm:

The inputs are a starting point x that satisfies Ax = b and a tolerance

ε > 0.

1. Compute the Newton step ∆xnt and the Newton decrement λ(x).

2. Stopping criterion, we stop if λ2

2 ≤ ε.

3. Choose step size t by using backtracking line search.

4. Update x = x+ t∆xnt.

Primal-Dual Interior Point Method

Primal-dual interior point method is similar to the barrier method. Both the

primal and dual variables are updated at each iteration. When it requires

high accuracy, primal-dual interior point method is more efficient than the

barrier method. We are using Newton’s method together with the modified

KKT equations for computing the search directions.

So first we start with the modified KKT conditions

∇f0(x) +
∑m

i=1 λi∇fi(x) +AT ν = 0

−λifi(x) = 1
t , i = 1, . . . ,m

Ax = b

We express this as rt(x, λ, ν) = 0. For t > 0, we define

5.1. Basis Pursuit 63

rt(x, λ, ν) =

∇f0(x) +Df(x)Tλ+AT ν

−diag(λ)f(x)− 1
τ 1

Ax− b

where f : Rn → Rm and the matrix Df is its derivative.

f(x) =

f1(x)

...

fm(x)

, Df(x) =

∇f1(x)T

...

∇fm(x)T

If x, λ, ν satisfy rt(x, λ, ν) = 0, then x = x?(t), λ = λ?(t) and ν = ν?(t). x

is primal feasible, and λ, ν are dual feasible. The duality gap is m
t .

The first equation of rt,

rdual = ∇f0(x) +Df(x)Tλ+AT ν

is called the dual residual. The second equation,

rcent = −diag(λ)f(x)− 1
τ 1

is called the centrality residual. This is the residual for the modified com-

plementarity condition. The third and last equation,

rpri = Ax− b

is called the primal residual.

For fixed t, at a point (x, λ, ν) that satisfies f(x) < 0, λ > 0, we are

64 5. Algorithms

going to use Newton step for solving rt(x, λ, ν) = 0. So we denote the point

and Newton step as

y = (x, λ, ν), ∆y = (∆x,∆λ,∆ν)

The step is characterized by the linear equations

rt(y + ∆y) ≈ rt(y) +Drt(y)∆y = 0

Drt(y)∆y = −rt(y)

∆y = −Drt(y)−1rt(y)

In terms of x, λ, ν, we have

∇2f0(x) +

∑m
i=1 λi∇2fi(x) Df(x)T AT

−diag(λ)Df(x) −diag(f(x)) 0

A 0 0

∆x

∆λ

∆ν

 = −

rdual

rcent

rpri

The solution of this is the primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd).

From the second equation, we eliminate ∆λpd using

−diag(λ)Df(x)∆xpd − diag(f(x))∆λpd = −rcent

diag(f(x))∆λpd = −diag(λ)Df(x)∆xpd + rcent

∆λpd = −diag(f(x))−1diag(λ)Df(x)∆xpd + diag(f(x))−1rcent

By substituting this into the first equation, we get

∇2f0(x) +
∑m

i=1 λi∇2fi(x) +
∑m

i=1
λi

−fi(x)∇fi(x)∇fi(x)T AT

A 0

∆xpd

∆νpd

5.1. Basis Pursuit 65

= −

rdual +Df(x)Tdiag(f(x))−1rcent

rpri

= −

∇f0(x) + 1
t

∑m
i=1

1
−fi(x)∇fi(x) +AT ν

rpri

For the primal-dual interior point method, we define the surrogate du-

ality gap. For any x that satisfies f(x) < 0 and λ ≥ 0, it is defined as

η(x, λ) = −f(x)Tλ

If x is primal feasible and λ, ν are dual feasible, which means that rpri = 0

and rdual = 0, then the surrogate gap η would be the duality gap.

The basic primal-dual interior point algorithm is taken from [12]:

The inputs are a point x that satisfies f1(x) < 0, . . . , fm(x) < 0, λ > 0,

µ > 1, εfeas > 0 and ε > 0.

1. Set t = µm/η.

2. Compute primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd).

3. Line search and update.

We determine the step length s > 0 and compute y = y+ s∆ypd until

‖rpri‖2 ≤ εfeas, ‖rdual‖2 ≤ εfeas and η ≤ ε.

Later in Chapter 6 we will see how we recover a sparse signal by using

this method.

66 5. Algorithms

5.2 Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is a greedy algorithm. It is based on

an algorithm called Matching Pursuit. OMP starts by finding the column of

a matrix A that resembles the most with the residual, and then this column

will be added into a set of selected columns. This process will repeat. The

algorithm will update the residuals by projecting the vector b onto the space

spanned by the selected columns in the set. After each step, the residuals

are orthogonal to all the selected columns. This means that no column is

chosen twice, and the set with the selected columns will increase after each

step. The advantage with OMP is its fast implementation.

Algorithm:

The inputs are a vector b ∈ Rm, a matrix A ∈ Rm×n and a stopping

criterion. The output is an approximation vector x ∈ Rn.

1. Let the initial solution x0 = 0, and set the residual r0 = b.

Set the iteration counter t = 1 and the index set Λ0 = ∅.

2. Compute the inner product and choose the one with the largest

magnitude, λt = arg minj=1,...,n| < rt−1, aj > |.

3. Update the index set, Λt = Λt−1 ∪ {λt}.

4. Compute the approximation, (xt)Λt = A†Λt
b,

where A†Λt
b is the pseudo inverse of AΛtb.

5. Update the new residual, rt = b−Axt.

6. Increase the iteration counter, t = t + 1.

5.3. Stagewise Orthogonal Matching Pursuit 67

7. Check the stopping criterion. If the criterion is not satisfied, then

return to step 2.

5.3 Stagewise Orthogonal Matching Pursuit

Stagewise Orthogonal Matching Pursuit (StOMP) is an efficient algorithm

for finding sparse solution to large underdetermined problems. It is based on

OMP. The algorithm runs faster than Basis Pursuit and OMP. Compared

with OMP, which at each step adds only one vector into the set of selected

columns, StOMP adds several vectors. The algorithm runs similar as OMP.

The advantage of StOMP is that it uses a small number of iterations, and

therefore the algorithm runs fast.

Algorithm:

The inputs are a vector b ∈ Rm, a matrix A ∈ Rm×n, a threshold pa-

rameter st and a stopping criterion. The output is an approximation vector

x ∈ Rn.

1. Let the initial solution x0 = 0, and set the residual r0 = b.

Set the iteration counter t = 1 and the index set Λ0 = ∅.

2. Compute the inner product, λt = AT rt−1.

Create a set Jt consisting of the vectors with large coordinates

Jt = {j : |λt(j)| > st}.

3. Update the index set, Λt = Λt−1 ∪ Jt.

4. Project the vector b onto the space spanned by the selected columns

68 5. Algorithms

of A by computing the approximation

(xt)Λt = (ATΛt
AΛt)

−1ATΛt
b.

5. Update the new residual, rt = b−Axt.

6. Increase the iteration counter, t = t + 1.

7. Check the stopping criterion. If the criterion is not satisfied, then

return to step 2.

5.4 Regularized Orthogonal Matching Pursuit

Regularized Orthogonal Matching Pursuit (ROMP) is an iterative algorithm

which is also based on OMP with some differences. The algorithm also

selects many vectors at each iteration like StOMP, not like OMP, which at

each step only selects one vector. Another difference is its regularized step

which we will see in the algorithm.

Algorithm:

The inputs are a vector b ∈ Rm, a matrix A ∈ Rm×n, a sparsity level s

and a stopping criterion. The output is an approximation vector x ∈ Rn.

1. Let the initial solution x0 = 0, and set the residual r0 = b.

Set the iteration counter t = 1 and the index set Λ0 = ∅.

2. Compute the inner product, λt = AT rt−1.

Choose a set J of the s largest non-zero coordinates in the magnitude

of the vector λt.

3. Regularize step. Choose a subset J0 with the maximum ‖λ|J0‖2

5.5. Compressive Sampling Matching Pursuit 69

among all the subsets J0 ⊂ J which satisfy |λ(i)| ≤ 2|λ(j)|

for all i, j ∈ J0.

4. Update the index set, Λt = Λt−1 ∪ J0.

5. Project the vector b onto the space spanned by the selected columns

of A by computing the approximation

(xt)Λt = (ATΛt
AΛt)

−1ATΛt
b.

6. Update the new residual, rt = b−Axt.

7. Increase the iteration counter, t = t + 1.

Check the stopping criterion. If the criterion is not satisfied, then

return to step 2.

5.5 Compressive Sampling Matching Pursuit

Compressive Sampling Matching Pursuit (CoSaMP) is similar to StOMP

and ROMP, it is based on OMP and it selects many vectors at each iteration.

An approximation is made at each iteration by using the largest coordinates.

The advantage with CoSaMP is that it works well when the samples are

disrupted with noise.

Before we present the CoSaMP algorithm, we define the support of a

vector x as a set of indices to the elements of x which are non-zeros.

supp(x) = {i : xi 6= 0}

70 5. Algorithms

Algorithm:

The inputs are a sample vector b which are disrupted with noise, a

matrix A, a sparsity level s and a stopping criterion. The output is an

approximation vector x.

1. Let the initial solution x0 = 0. Set the current sample v = b and the

iteration counter t = 0.

2. Update the iteration counter, t = t + 1.

Compute a vector y = AT v.

Choose out the largest components, J = supp(y2s).

3. Set Λ = J ∪ supp(xt−1).

4. Estimate a vector u,

u|Λ = A†Λb

u|Λc = 0

5. Update the approximation, xt = bs.

Update the current samples, v = b−Axt.

6. Check the stopping criterion. If the criterion is not satisfied, then

return to step 2.

5.6 Iterative Hard Thresholding Algorithm

Iterative Hard Thresholding algorithm (IHT) is different from all the previ-

ous algorithms. It is a greedy algorithm. IHT solves a local approximation

to the problem

5.6. Iterative Hard Thresholding Algorithm 71

minimizex ‖b−Ax‖22
subject to ‖x‖0 ≤ k

(5.11)

Instead of directly handle the problem (5.11), we introduce a surrogate

objective function of it. Each x can then be optimized independently. By

ignoring the constraint ‖x‖0 ≤ k, the problem (5.11) has a minimizer,

x? = x+ µAT (b−Ax)

The algorithm uses a nonlinear operator, Hs(), that sets all but the largest

s elements of its argument to zero.

Algorithm:

The inputs are a vector b, a matrix A, a step size µ, a sparsity level s

and a stopping criterion. The output is an approximation vector x.

1. Let the initial solution x0 = 0 and the iteration counter t = 0.

2. Update the iteration counter, t = t + 1.

3. Compute xt = Hs(xt−1 + µAT (b−Axt−1)).

4. Check the stopping criterion. If the criterion is not satisfied, then

return to step 2.

72 5. Algorithms

6. IMPLEMENTATION AND COMPUTATIONAL

RESULTS

In this chapter we will present our implementation and computational re-

sults. We want to solve the Basis Pursuit problem, so we start with recasting

it as a linear programming problem. First we solve it by using the command

linprog in Matlab [10] and then using the primal-dual interior point method

[4]. Finally we use it on our coin example [6] and on image processing,

[14, 15].

6.1 Solving Basis Pursuit

Basis Pursuit finds the best representation of an image or a signal by min-

imizing the l1- norm of the components of x, that is the coefficients in the

representation. We would like the components of x to be zero or as close to

zero as possible.

We would like to solve

minimize ‖x‖1

subject to Ax = b
(6.1)

This problem can be recast as a linear programming problem (LP) of

74 6. Implementation and Computational Results

the form

minimize fTx

subject to Ax = b

x ≥ 0

(6.2)

where fTx is the objective function, Ax = b is a collection of equality

constraints, and x ≥ 0 is a set of bounds.

Starting with problem (6.1), we have that

‖x‖1 =
∑n

i=1 |xi|

We can then transfer the nonlinearities to the set of constraints by adding

the new variables u1, . . . , un. This gives

minimize
∑n

i=1 ui

subject to −u ≤ x ≤ u

Ax = b

(6.3)

Rewriting this we get

minimize
∑n

i=1 ui

subject to xi − ui ≤ 0, i = 1, . . . , n

−xi − ui ≤ 0, i = 1, . . . , n

Ax = b

By using identity matrices, we can write the problem above in matrix form

6.1. Solving Basis Pursuit 75

as

minimize
[
0 1

]x
u

subject to

 I −I

−I −I

x
u

 ≤ 0

[
A 0

]x
u

 = b

Thus we have rewritten our problem as an LP, which is the same as problem

(6.2), where fT =
[
0 1

]
.

For our Matlab code, we set

E =

 I −I

−I −I

 , d = 0, C =
[
A 0

]

Thus we have,

minimize fT

x
u

subject to E

x
u

 ≤ d

C

x
u

 = b

(6.4)

An alternative way for instead of rewriting the problem (6.3), we can

76 6. Implementation and Computational Results

directly solve it in Matlab by setting

lb = −u

ub = u

where lb is the lower bound and ub is the upper bound. Later in Section

6.4 we are using both ways to solve the problem for the coin example.

6.2 Solving Linear Programming Problems with Matlab

Matlab provides the command linprog to find the minimizer x of a linear

programming minimum problem.

Let f be a column vector of length n, b a column vector of length m, and

let A be an m × n matrix. A linear program problem may have inequality

constraints or equality constraints.

A linear program problem associated with f, A, b, Aeq, beq is the mini-

mization problem

minimize fTx

subject to Ax ≤ b

Aeqx = beq

where beq is a column vector of length p and Aeq is a p× n matrix.

For solving this problem, we use the command

x = linprog(f, A, b, Aeq, beq)

6.3. Recovery of Sparse Signals via Convex Programming 77

or

[x,fval] = linprog(f, A, b, Aeq, beq)

The general form of calling linprog is

[x,fval,exitflag,output,lambda] = linprog(f, A, b, Aeq, beq, lb, ub, x0, options)

lb is the lower bound and ub is the upper bound. x0 is a startvector for the

algorithm. options are set using the optimset function, they determine what

algorithm to use, for example Simplex method or Interior point method. If

there are no inequality constraints, we can set A=[] and b=[]. If there are

no equality constraints, we can set Aeq=[] and beq=[].

For the output arguments, we have that x is the optimal solution. fval

is the optimal value of the objective function. exitflag tells whether the

algorithm converges or not, exitflag > 0 means convergence. output shows

the number of iterations and the algorithm being used. lambda shows the

Lagrange multipliers corresponding to the constraints.

6.3 Recovery of Sparse Signals via Convex Programming

A sparse signal is a signal with few nonzero elements. Most of its entries are

zeros. To recover a sparse signal x from a number of linear measurements b

= Ax, we can solve a convex program. This convex program can be recast

as a linear program like we have showed before.

In this section we will use the primal-dual interior point method, which

78 6. Implementation and Computational Results

was presented earlier in Chapter 5. We are going to follow the steps in

Section 5.1.2 for solving Basis Pursuit

minimize ‖x‖1

subject to Ax = b

in Matlab. In Section 5.1 we showed how Basis Pursuit can be recast as an

LP problem

minimizex,u
∑

i ui

subject to xi − ui ≤ 0

−xi − ui ≤ 0

Ax = b

For our implementation in Matlab, we set

fu1;i = xi − ui

fu2;i = −xi − ui

λu1;i and λu2;i are the corresponding dual variables,

λu1;i = − 1
fu1;i

λu2;i = − 1
fu2;i

At a point (x, u;λu1 , λu2 , ν) we have that

rdual =

λu1 − λu2 +AT ν

1− λu1 − λu2

6.3. Recovery of Sparse Signals via Convex Programming 79

rcent =

−diag(λu1)fu1

−diag(λu2)fu2

− 1
τ 1

rpri = Ax− b

We have that

∇fu1;i =

 1

−1

 , ∇fu2;i =

−1

−1

 , ∇2fu1;i = 0, ∇2fu2;i = 0

so using the core system from Section 5.1.2, we get

D1 D2 AT

D2 D1 0

A 0 0

∆x

∆u

∆ν

 =

− 1
τ · (−f

−1
u1 + f−1

u2)−AT v

−1− 1
τ · (f

−1
u1 + f−1

u2)

b−Ax

 (6.5)

where

D1 = −diag(λu1)diag(fu1)−1 − diag(λu2)diag(fu2)−1

D2 = diag(λu1)diag(fu1)−1 − diag(λu2)diag(fu2)−1

In our code we set

w1

w2

w3

 =

− 1
τ · (−f

−1
u1 + f−1

u2)−AT v

−1− 1
τ · (f

−1
u1 + f−1

u2)

b−Ax

From the first equation of (6.5), we have

80 6. Implementation and Computational Results

D1∆x+D2∆u+AT∆ν = w1

D1∆x = w1 −D2∆u−AT∆ν

∆x = D−1
1 (w1 −D2∆u−AT∆ν)

From the second equation of (6.5), we have

D2∆x+D1∆u = w2

D1∆u = w2 −D2∆x

∆u = D−1
1 (w2 −D2∆x)

By substituting the second equation into the first equation, we get

∆x = D−1
1 (w1 −D2D

−1
1 (w2 −D2∆x)−AT∆ν)

D1∆x = w1 −D2D
−1
1 w2 +D2

2D
−1
1 ∆x−AT∆ν

∆x(D1 −D2
2D
−1
1) = w1 −D2D

−1
1 w2 −AT∆ν

We set

D3 = D1 −D2
2D
−1
1

Thus

∆x = D−1
3 (w1 −D2D

−1
1 w2 −AT∆ν)

Using ∆x in the third equation gives

A∆x = w3

AD−1
3 (w1 −D2D

−1
1 w2 −AT∆ν) = w3

6.3. Recovery of Sparse Signals via Convex Programming 81

−AD−1
3 AT∆ν = w3 −AD−1

3 (w1 −D2D
−1
1 w2)

∆ν = (−AD−1
3 AT)−1(w3 −A(D−1

3 w1 −D−1
3 D2D

−1
1 w2))

Now that we have ∆x,∆u and ∆ν, we can calculate the change for the dual

variables like in Section 5.1.2

∆λu1 = diag(λu1)diag(fu1)−1(−∆x+ ∆u)− λu1 − 1
τ f
−1
u1

∆λu2 = diag(λu2)diag(fu2)−1(∆x+ ∆u)− λu2 − 1
τ f
−1
u2

For the step length, we choose 0 < s ≤ 1. It is based on the norm of the

residuals. We also have to make sure that the step is feasible, which means

that λu1 , λu2 > 0 and fu1 , fu2 < 0. We start the backtracking line search

with

s = 0.99 ·min{1, min{− λi
∆λi
| ∆λi < 0}}

We multiply s by β ∈ (0, 1) until we have

‖rτ (x+ s∆x, λ+ s∆λ, ν + s∆ν)‖2 ≤ (1− αs) · ‖rτ (x, λ, ν)‖2

α is usually chosen between 0.01 to 0.1. In our code we are using the

surrogate duality gap described in Section 5.1.2, that is

η(x, λ) = −f(x)Tλ

The implementation for this problem is in the file pd.m, see Appendix A.

82 6. Implementation and Computational Results

6.4 Coin Example

We are now going to present a coin example that is from [6]. Suppose we

have 7 coins. We know that one of the coins is counterfeit, and this coin

will have a different mass than the other coins. If we know how much a

coin weighs, we can find out the counterfeit coin by using 7 weighs. The

main point here is that it is possible to find out the counterfeit coin by

using 3 weighs. First we denote the coins with numbers 1 to 7. For the first

weighing, the coins 1, 3, 5 and 7 are on the scale. For the second weighing

we have coins 2, 3, 6 and 7. For the third weighing we use coins 4, 5, 6

and 7. We can express these choices by using a 0-1 matrix Φ. The kth row

shows which coins to include in the kth weighing.

Φ =

1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1

From the outcome of these three weighings we can find out any single bad

coin. For example, if the first set’s mass is different from the nominal value,

then we know that coin #1 is the counterfeit.

coin #2 is the counterfeit: second set’s mass deviates

coin #3 is the counterfeit: first and second set’s mass deviate

coin #4 is the counterfeit: third set’s mass deviates

coin #5 is the counterfeit: first and third set’s mass deviate

coin #6 is the counterfeit: second and third set’s mass deviate

coin #7 is the counterfeit: first, second and third set’s mass deviate

6.4. Coin Example 83

The problem can be formulated as follows. The 0-1 matrix Φ is the

sensing basis. We want to recover x from the given matrix Φ and the mea-

surements b. We are therefore solving the Basis Pursuit problem

minimize ‖x‖1

subject to Φx = b

We can solve this problem with Matlab. One way is to use (6.4) by

setting C =
[
Φ 0

]
. To run this in linprog, we use the command

[x,fval,exitflag,output,lambda]=linprog(f, E, d, C, b, lb, ub, x0, options)

Another way is to use (6.3). We then use the linprog command

[x,fval,exitflag,output,lambda]=linprog(f, [], [], A, b, lb, ub, x0, options)

where A = Φ, lb = −u and ub = u in (6.3).

The coin example has been solved by linprog in Matlab using Simplex

method and Interior point method as options. The number of iterations

and the time used for running these two methods have been compared with

the solution of this example solved by primal-dual interior point method

described in Section 6.3. There is not much difference when it comes to the

number of iterations between the three methods. linprog ’s Interior point

method and Simplex method use almost the same time for solving the prob-

lem, just that the Interior point method runs a little faster. Among the

three methods, the primal-dual method is the fastest as shown below in fig-

ure 6.1. It shows the results of the code after it runs four times, and here

we use (6.4) in linprog.

84 6. Implementation and Computational Results

Fig. 6.1: The results of the three algorithms, coin example, using (6.4)

Figure 6.2 shows the results when using (6.3) in linprog. Comparing the

results in this figure with the results above, we see that the time used is

almost the same, but the methods used less iterations.

Fig. 6.2: The results of the three algorithms, coin example, using (6.3)

6.4. Coin Example 85

Now we make a 20× 100 matrix Φ by choosing n = 20 random subsets

of coins to weigh. Each entry is chosen randomly as 0 or 1. The component

bi of the vector b = Φx shows the different mass from the nominal of the

mass of the ith subset. From a given Φ and the measurements b, our goal

is to recover x. Again, we solve this with linprog ’s Interior point method

and Simplex method, and primal-dual method. By comparing we still see

that primal-dual method runs fastest among the three methods. When it

comes to the number of iterations, linprog ’s Simplex method uses the most

iterations compared to the two other methods. This is shown in figure 6.3

where we use (6.4) in linprog.

Fig. 6.3: The results of the three algorithms, 20 x 100 matrix, using (6.4)

Below figure 6.4 shows the results when using (6.3) in linprog. Again we

see that the methods are using less iterations, especially linprog ’s Simplex

method we can also see that the time used for solving is less.

86 6. Implementation and Computational Results

Fig. 6.4: The results of the three algorithms, 20 x 100 matrix, using (6.3)

The implementation for this is in the file coinexample.m, see Appendix

B.

6.5 Image Processing

By reducing the size in bytes of an image, it can for example allow us to

store more images in a disk or reducing the time for when we send the

images through internet. The most common compressed image formats are

JPEG and JPEG-2000. The vectors in the image which represent the pixel

sampling are being transformed. This means that it will be represented in

a new coordinate system.

In JPEG, the discrete cosine transform (DCT) is used. It is a variant of

Fourier transform (DFT). DFT transforms a sampling of a function into a

combination of complex sinusoids. Instead of sinusoids, DCT transforms the

6.5. Image Processing 87

sampling to cosine functions. The first transform coefficients are large, and

the later ones are small and can therefore be seen as zeros. By approximating

the first coefficients we will get a sequence which can be stored in a few bits.

This sequence can then be inverse transformed by using IDCT to get back

to the original representation.

In JPEG-2000, the discrete wavelet transform (DWT) is used. Similar

to DCT, the small coefficients are seen as zeros. The large coefficients are

approximated and then we get a sequence which can be stored. Again, to get

back to the original representation, it can be inverse transformed by using

IDWT. A different property of the DWT compared to the DCT is that there

are few large coefficients, so the DWT of such content is more sparse than

the DCT.

One technique of image compression is therefore to find sparse solutions

to underdetermined systems of linear equations. Now we want to recover f

from an underdetermined system Φf = b. f may not be sparse, but it could

be that f = Ψx where Ψ is an n × n orthogonal matrix and x is a sparse

vector. This means that f has a sparse representation in a basis spanned by

the columns of Ψ. This leads to the system ΦΨx = b, where we first recover

x and then recover f.

For our image compression code, we denote f as our image, the matrix

Φ is the sensing basis, the matrix Ψ is the representation basis and b is the

compression of the image. We are going to solve the optimization problem

minimize ‖x‖1

subject to Ax = b
(6.6)

88 6. Implementation and Computational Results

where A = RΦΨ and b = RΦf . R is a vector consisting of m random

elements from a vector in Rn.

We have from earlier that

f = Ψx

In image processing, the vector x is a sparse vector for images. It is also a

sparse vector for many wavelets. So we have that

x = DWT (f)

The problem (6.6) can be rewritten as

minimize ‖x‖1

subject to RΦ(DWT)Tx = RΦf

We solve this problem by first obtaining the solution x. Then the image can

be found from f = (DWT)Tx.

The steps in our code are as follows. First we make our image f and

take the size of it. The matrix of the image consists of non-zero coefficients

in the left top corner, and the rest are zeros. It is a 16 × 16 matrix. The

variable red in our code shows how many parts we want to divide the image

in. If red is small, then the image is divided in many parts. If it is large,

then we are working with few parts of the image.

We let Φ be a random matrix. We make a QR decomposition of Φ, and we

get an orthogonal matrix Q and an upper triangular matrix R. We create the

6.5. Image Processing 89

random vector R. Then we make the vector b by computing b = RΦf . Next

we make the matrix A by computing A = RΦ(DWT)T . In this step we are

using methods Amult53.m, Amult97.m and AmultHaar.m which are functions

that do the multiplication between A and x. These three methods are using

three different wavelets. They are Spline 5/3-wavelet, CDF 9/7-wavelet and

Haar-wavelet. The numbers 5/3 and 9/7 correspond to the number of filter

coefficients in the corresponding lowpass or highpass filters. The Spline

5/3-wavelet is a function approximation scheme based on piecewise linear

functions. The Haar-wavelet is a function approximation scheme based on

piecewise constant functions. By using the standard basis as input for x in

these functions, we will get out the matrix A.

After we have computed A and b, we use linprog in Matlab as described in

Section 6.2 to solve for x. Finally we compute the approximation (DWT)Tx

to get the image. The implementation of this code is in the file imagecomp.m,

see Appendix C.

We test our code with red = 2, 4, 8 and 16. We also compare the results

when we are using Amult53.m, Amult97.m and AmultHaar.m. Below figure

6.5 shows that the time used for solving are almost the same for all three

methods. When the image is divided in few parts, the code runs faster.

Method AmultHaar.m uses less iterations than the other two methods.

90 6. Implementation and Computational Results

Fig. 6.5: The results of the three methods with red = 2, 4, 8 and 16

Figure 6.6 shows the original image f. Figure 6.7 shows the images when

using Amult97.m. We see that the image is the most clear when the image

is divided in many parts, that is when red = 2. Figure 6.8 shows the results

for Amult53.m. For this method, all the images are very unclear. Figure

6.9 shows the results when using AmultHaar.m, and here we see that all the

images are very clear. The wavelets in AmultHaar.m are orthogonal, while

the wavelets in Amult53.m and Amult97.m are not. Among all the three

6.5. Image Processing 91

methods, AmultHaar.m works best.

Fig. 6.6: The original image

Fig. 6.7: Amult97, from left to right: red = 2, 4, 8 and 16

Fig. 6.8: Amult53, from left to right: red = 2, 4, 8 and 16

92 6. Implementation and Computational Results

Fig. 6.9: AmultHaar, from left to right: red = 2, 4, 8 and 16

6.6 Discussion

In Section 6.1 we recast the Basis Pursuit problem to a linear programming

problem, and we show two ways to solve it in Matlab. One way is to use

(6.4) and the other way is to use (6.3). We use both ways for our coin

example in Section 6.3 and see that by solving the problem using (6.3),

the time the methods used for solving and the number of iterations are less

compared to when solving the problem using (6.4). The reason for this is

when we rewrite Basis Pursuit to a problem on the form (6.4), we are using

identity matrices making the matrix larger. The problem (6.4) has also both

inequality constraints and equality constraints which we use as inputs for

the command linprog. By solving the problem on the form (6.3), we have

an equality constraint, a lower bound lb = −u and a upper bound ub = u.

So if we solve a problem with larger matrices, it is more efficient to use (6.3)

than (6.4).

In our code for image processing we are using a very small and simple

image. The reason for doing this is that in our code we are using a full

matrix expression. If we use an ”advanced” image, the computation will

take more time because the matrix will be much larger, so this will not work

well with large images. To solve this we can instead of using the full matrix

6.6. Discussion 93

expression, we implement a function that compute the implementation with

the DWT-matrix. With this we can then use a more ”advanced” image. So

the use of full matrix expression in our code restricts us to the use of small

and very simple images.

The idea behind the coin example and image processing is to use a sparse

matrix, a matrix with few non-zero elements. In the coin example we use

a 0-1 matrix Φ with rows as the weighings of the coins. The matrix is also

chosen randomly as 0 or 1. In image processing, we let the sensing basis Φ

be a random matrix, the representation basis Ψ correspond to three different

wavelets and the image f consists of few non-zero coefficients. The results

show that since the wavelets being used in method Amult97.m are close to

being orthogonal, and the wavelets in method AmultHaar.m are orthogonal,

they work better than method Amult53.m. The advantages with working

with a sparse matrix are that the computation time is fast and the storage

takes less space since the matrix contains a large number of zero-valued

elements, and also we only need to know the indices and the value of the

elements.

94 6. Implementation and Computational Results

7. CONCLUSION

In this paper we have presented the background theory for optimization and

approximation. We have discussed about the applications where the main

goal is to find a sparse approximation. Compressed Sensing relies on the `1-

norm optimization for reconstructing signals. We explained the conditions

for the system we want to solve to have sparse recovery. We presented the

methods for solving it, and also gave a brief description of greedy algorithms.

Finally we tested our codes on a coin example and in image processing.

Optimization based on `1- norm for sparse recovery has a huge research

area. Its applications are still expanding, and are connected with other areas

such as physics, mechanics, biology, medical, informatics and economics.

Some changes in the conditions for the system to have sparse recovery can

lead to many other research problems. Algorithms for solving the problem

are still being developed and finely adjusted. Compressed Sensing is an

active area, especially now when the data technology is expanding. The

storage of huge data and the computation time need compression. Key words

as sparse, convex optimization, `1 minimization and compressed sensing are

important tools for the engineers in the future.

96 7. Conclusion

Bibliography

[1] Cryptography, http://en.wikipedia.org/wiki/Cryptography

[2] D. L. Donoho, Y. Tsaig, I. Drori, J-L. Starck, Sparse Solution of Under-
determined Linear Equations by Stagewise Orthogonal Matching Pur-
suit. Stanford University, March 2006.

[3] D. Needell and R. Vershynin, Signal Recovery From Incomplete and
Inaccurate Measurements via Regularized Orthogonal Matching Pursuit.
Selected Topics in Signal Processing, IEEE Journal, April 2010.

[4] E. Candes and J.Romberg, `1MAGIC: Recovery of Sparse Signals via
Convex Programming. Caltech, October 2005.

[5] E. J. Candes and T. Tao, Decoding by Linear Programming. University
of California, Los Angeles, December 2004.

[6] K. Bryan and T. Leise, Making Do with Less: An Introduction to Com-
pressed Sensing. Society for Industrial and Applied Mathematics, 2013.

[7] M. Elad, J-L. Starck, P. Querre, D. L. Donoho, Simultaneous cartoon
and texture image inpainting using morphological component analysis
(MCA). Journal on Applied and Computational Harmonic Analysis
ACHA Vol.19, 2005.

[8] M. Elad and M. Aharon, Image Denoising Via Sparse and Redundant
Representations Over Learned Dictionaries. IEEE transactions on im-
age processing Vol.15 No.12, December 2006.

[9] M. F. Duarte and M. A. Davenport, Null Space Conditions. produced
by The Connexions Project and licensed under the Creative Commons
Attribution License, April 2011.

[10] Matlab linprog, http://www.mathworks.se/help/optim/ug/linprog.html

[11] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Princeton University, Princeton, 2001.

98 BIBLIOGRAPHY

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, 2004.

[13] Y. C. Eldar and G. Kutyniok. Compressed Sensing, Theory and Appli-
cations. Cambridge University Press, 2012.

[14] Ø. Ryan. Compressed sensing and image compression. http://folk.
uio.no/oyvindry/cs.pdf.

[15] Ø. Ryan. Linear algebra, signal processing, and wavelets. A unified ap-
proach. University of Oslo, Manuscript under preparation.

http://folk.uio.no/oyvindry/cs.pdf
http://folk.uio.no/oyvindry/cs.pdf

APPENDIX

A. Matlab Code pd.m

This code is for solving the problem described in Section 6.3.

f unc t i on xpd = pd(x0 , A, b)

e p s i l o n = 1e−3; % t o l e r a n c e
maxiter = 50 ; % maximum i t e r a t i o n s

alpha = 0 . 0 1 ;
beta = 0 . 5 ;
mu = 10 ;

n = length (x0) ;
gradf0 = [z e r o s (n , 1) ; ones (n , 1)] ;

x = x0 ;
u = (0 . 9 5)∗ abs (x0) + (0 . 1 0)∗max(abs (x0)) ;

% f i r s t i t e r a t i o n
fu1 = x − u ;
fu2 = −x − u ;

% lambda : the cor respond ing dual v a r i a b l e s
lamu1 = −1./ fu1 ;
lamu2 = −1./ fu2 ;

v = −A∗(lamu1−lamu2) ;
Atv = A’∗ v ;

100 BIBLIOGRAPHY

% sur roga t e d u a l i t y gap
eta = −(fu1 ’∗ lamu1 + fu2 ’∗ lamu2) ;
tau = mu∗2∗n/ eta ;

% dual r e s i d u a l
rdua l = gradf0 + [lamu1−lamu2 ; −lamu1−lamu2] +

[Atv ; z e r o s (n , 1)] ;
% c e n t r a l r e s i d u a l
r cent = [− lamu1 .∗ fu1 ; −lamu2 .∗ fu2] − (1/ tau) ;
% primal r e s i d u a l
r p r i = A∗x − b ;
% norm of the r e s i d u a l s
resnorm = norm ([rdua l ; r c ent ; r p r i]) ;

i t e r = 0 ;
done = (eta < e p s i l o n) | (i t e r >= maxiter) ;
whi l e (˜ done)

i t e r = i t e r + 1 ;

D1 = −lamu1 . / fu1 − lamu2 . / fu2 ;
D2 = lamu1 . / fu1 − lamu2 . / fu2 ;
D3 = D1 − D2. ˆ 2 . /D1 ;

w1 = −1/tau ∗(−1./ fu1 + 1 ./ fu2) − Atv ;
w2 = −1 − 1/ tau ∗ (1 . / fu1 + 1 ./ fu2) ;
w3 = −r p r i ;

% So lv ing f o r dv
r s i d e = −(w3 − A∗(w1 . /D3 − w2.∗D2 . / (D3.∗D1))) ;
l s i d e = A∗(spar s e (diag (1 . /D3))∗A’) ;
dv = inv (l s i d e)∗ r s i d e ;

dx = (w1 − w2.∗D2. /D1 − A’∗ dv) . /D3 ;

Atdv = A’∗ dv ;

du = (w2 − D2.∗ dx) . /D1 ;

BIBLIOGRAPHY 101

% c a l c u l a t i n g the change in the i n e q u a l i t y dual
v a r i a b l e s

dlamu1 = (lamu1 . / fu1).∗(−dx+du) − lamu1 −
(1/ tau)∗1 . / fu1 ;

dlamu2 = (lamu2 . / fu2) . ∗ (dx+du) − lamu2 − 1/ tau ∗1 ./ fu2 ;

% make sure that the s tep i s f e a s i b l e : keeps
lamu1 , lamu2 > 0 , fu1 , fu2 < 0

negind1 = f i n d (dlamu1 < 0) ;
negind2 = f i n d (dlamu2 < 0) ;
s = min ([1 ; −lamu1 (negind1) . / dlamu1 (negind1) ;

−lamu2 (negind2) . / dlamu2 (negind2)]) ;

pos ind1 = f i n d ((dx−du) > 0) ;
pos ind2 = f i n d ((−dx−du) > 0) ;
s = (0 . 9 9)∗min ([s ;
−fu1 (posind1) . / (dx (posind1)−du(posind1)) ;
−fu2 (posind2)./(−dx (posind2)−du(posind2))]) ;

% us ing backtrack ing l i n e search
normdec = 0 ;
b a c k i t e r = 0 ;

whi l e (˜ normdec)

xpd = x + s ∗dx ;
upd = u + s ∗du ;
vpd = v + s ∗dv ;

Atvpd = Atv + s ∗Atdv ;

lamu1pd = lamu1 + s ∗dlamu1 ;
lamu2pd = lamu2 + s ∗dlamu2 ;

fu1pd = xpd − upd ;
fu2pd = −xpd − upd ;

rdualpd = gradf0 + [lamu1pd−lamu2pd ;
−lamu1pd−lamu2pd] + [Atvpd ; z e ro s (n , 1)] ;

rcentpd = [− lamu1pd .∗ fu1pd ; −lamu2pd .∗ fu2pd]

102 BIBLIOGRAPHY

− (1/ tau) ;
rpr ipd = r p r i + s ∗A∗dx ;

normdec = (norm ([rdualpd ; rcentpd ; rpr ipd]) <=
(1−alpha ∗ s)∗ resnorm) ;

s = beta ∗ s ;
b a c k i t e r = b a c k i t e r + 1 ;

end

% next i t e r a t i o n
x = xpd ;
u = upd ;
v = vpd ;
Atv = Atvpd ;

lamu1 = lamu1pd ;
lamu2 = lamu2pd ;

fu1 = fu1pd ;
fu2 = fu2pd ;

% sur roga t e d u a l i t y gap
eta = −(fu1 ’∗ lamu1 + fu2 ’∗ lamu2) ;
tau = mu∗2∗n/ eta ;

r p r i = rpr ipd ;
r cent = [− lamu1 .∗ fu1 ; −lamu2 .∗ fu2] − (1/ tau) ;
rdua l = gradf0 + [lamu1−lamu2 ; −lamu1−lamu2]

+ [Atv ; z e r o s (n , 1)] ;
resnorm = norm ([rdua l ; r c ent ; r p r i]) ;

done = (eta < e p s i l o n) | (i t e r >= maxiter) ;

d i sp (s p r i n t f (’ I t e r a t i o n s = %d , tau = %8.3e ,
Primal = %8.3e , PDGap = %8.3e , Dual r e s = %8.3e ,
Primal r e s = %8.3e ’ , i t e r , tau , sum(u) , eta ,
norm(rdua l) , norm(r p r i))) ;

end

BIBLIOGRAPHY 103

B. Matlab Code coinexample.m

This code is for solving the problem described in Section 6.4.

f unc t i on coinexample (m, n)
% m − number o f rows
% n − number o f columns

i f m == 3 && n == 7
% Matrix f o r co in example
A = [1 0 1 0 1 0 1 ; 0 1 1 0 0 1 1 ;

0 0 0 1 1 1 1] ;
x s o l = [0 ; −0.18; 0 ; 0 ; 0 ; 0 ; 0] ;
b = A∗ x s o l ;

e l s e
% A 20 x100 matrix :
% randerr (m, n , ones) makes an mxn matrix with
% f i x e d number o f ”1” in each row
A = randerr (m, n , randi ([1 n])) ;
b = randi ([0 1] ,m, 1) ;

end

I = eye (n) ;
E = [I −I ; −I −I] ;
d = ze ro s (2∗n , 1) ;

C = [A ze ro s (m, n)] ;
x0 = rand (2∗n , 1) ;
f = [z e r o s (n , 1) ; ones (n , 1)] ;

% lower and upper bounds
f o r i =1:2∗n

lb (i) = −I n f ;
ub (i) = I n f ;

end

104 BIBLIOGRAPHY

lb = lb ’ ;
ub = ub ’ ;

% l i n p r o g I n t e r i o r po int method :
d i sp (s p r i n t f (’ Linprog : I n t e r i o r po int method ’))
opt ions = opt imset (’ MaxIter ’ , 3 0 0 0 , ’ TolFun ’ , 1 e−3);
t i c
[x ip , f va l , e x i t f l a g , output , lambda] = l i n p r o g (f ,E,
d ,C, b , lb , ub , x0 , opt ions)

toc
x ip (1 : n) ;

% l inprog S imp l ex method :
d i sp (s p r i n t f (’ Linprog : Simplex method ’))
opt ions = opt imset (’ LargeScale ’ , ’ o f f ’ , ’ Simplex ’ ,

’ on ’) ;
t i c
[x s , f va l , e x i t f l a g , output , lambda] = l i n p r o g (f ,E,
d ,C, b , lb , ub , x0 , opt ions)

toc
x s (1 : n) ;

% primal−dual i n t e r i o r method from pd .m:
d i sp (s p r i n t f (’ Primal−dual i n t e r i o r−po int method ’))
t i c
x pd = pd(x0 , C, b)
toc
x pd (1 : n) ;
obj = sum(x pd (1 : n)) ;

end

BIBLIOGRAPHY 105

C. Matlab Code imagecomp.m

This code is for solving the problem described in Section 6.5.

m = 2 ;
red = 2 ; % red = 2 ,4 ,8 ,16

% c r e a t e image , a 16x16 matrix
f = ze ro s (1 6) ;
f (1 : 4 , 1 : 4) = 255∗ ones (4) ;
N = s i z e (f , 1) ;

% Phi
phi=rand (N) ;
% upper t r i a n g u l a r matrix R and un i tary matrix Q
[Q,R]= qr (phi) ;
% random column vecto r R
Rvect = randsample (1 : (Nˆ2) , Nˆ2/ red) ;

% Q and Rvect toge the r d e s c r i b e the matrix Phi .
Y = Q∗ f ∗Q’ ; % Phi∗ f :
y = mattovec (Y) ’ ;
% y = R∗Phi∗ f
y = y (Rvect) ; % t h i s i s the compress ion o f the

image

% methods used : Amult97 , Amult53 , AmultHaar
opA=@(x , mode) Amult97 (Q, Rvect ,m,N, x , mode) ;

% standard b a s i s as input to get out matrix A
A = ze ro s (Nˆ2/ red ,Nˆ 2) ;
f o r i =1:Nˆ2

e n = ze ro s (Nˆ 2 , 1) ;
e n (i) = 1 ;

A(: , i) = opA(e n , 1) ;
end

106 BIBLIOGRAPHY

% Create inputs f o r us ing l i n p r o g : i n t e r i o r po int
method

C = [A ze ro s (Nˆ2/ red ,Nˆ 2)] ;
x0 = rand (Nˆ 2 , 1) ;

I = eye (Nˆ 2) ;
E = [I −I ; −I −I] ;
d = ze ro s (2∗Nˆ 2 , 1) ;

f = [z e r o s (Nˆ 2 , 1) ; ones (Nˆ 2 , 1)] ;

% lower and upper bounds
f o r i =1:2∗Nˆ2

lb (i) = −I n f ;
ub (i) = I n f ;

end
lb = lb ’ ;
ub = ub ’ ;

d i sp (s p r i n t f (’ Linprog : I n t e r i o r po int method ’))
opt ions = opt imset (’ MaxIter ’ , 3 0 0 0 , ’ TolFun ’ , 1 e−3);
t i c
[x , f va l , e x i t f l a g , output , lambda] = l i n p r o g (f ,E, d ,C, y ,

lb , ub , x0 , opt ions)
toc
x = x (1 :Nˆ 2) ;

% now having x , computing back the image
X = vectomat (x ’ ,N,N) ;
f r e c = DWT2Impl97transpose (X,m) ;

%f r e c = DWT2Impl53transpose (X,m) ;
%f r e c = IDWT2HaarImpl (X,m) ;
imwrite (u int8 (f r e c) , ’ image1616 . jpg ’ , ’ jpg ’) ;

	Acknowledgement
	Abstract
	Contents
	Introduction
	Background
	Optimization Problem
	Applications
	Nonlinear Optimization

	Convex Optimization
	Subclasses of Convex Optimization

	Approximation
	Norm Approximation
	Regularized Approximation
	Sparse Approximation

	Applications
	Image Denoising and Inpainting
	Cryptography
	Traffic Monitoring

	Compressed Sensing
	Bases and Frames
	Sparse Models
	Conditions for Sparse Recovery
	Null Space Condition
	The Restricted Isometry Property
	Coherence

	Recovery via 1 Minimization
	Recovery via Greedy Algorithms

	Algorithms
	Basis Pursuit
	Simplex Method
	Interior Point Methods

	Orthogonal Matching Pursuit
	Stagewise Orthogonal Matching Pursuit
	Regularized Orthogonal Matching Pursuit
	Compressive Sampling Matching Pursuit
	Iterative Hard Thresholding Algorithm

	Implementation and Computational Results
	Solving Basis Pursuit
	Solving Linear Programming Problems with Matlab
	Recovery of Sparse Signals via Convex Programming
	Coin Example
	Image Processing
	Discussion

	Conclusion
	Bibliography
	Appendix
	A. Matlab code pd.m
	B. Matlab code coinexample.m
	C. Matlab code imagecomp.m

