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Abstract

An implementation of ISO 15926-8 compliant Installation Descriptions must
comply with a set of quality criteria to verify typing, literals, subclasses, part
8 adherence and be a conservative extension of ISO 15926-8. The first criteria
can be checked with a combination of SPARQL and DL queries together with
an Integrity Constraints Validator. A typical implementation was found to be
a model conservative extension of ISO 15926-8, and limiting the allowed ax-
ioms is sufficient to ensure a model conservative extension. An extended model
conservative extension with stricter requirements was found to limit concept
unsatisfiability.





Martin Giese is the supervisor for this thesis.
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Introduction
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Chapter 1

Thesis

Is it possible to computationally discover if an implementation
according to ISO 15926 part 8 is of high quality?

This thesis is based on a number of criteria by Martin Giese that any imple-
mentation must satisfy. I attempt to automate the checking of these criteria
and explore if and how they can be improved.

The Integrated Operations in the High North project[1] was a basis for this
thesis and the example ontologies where sourced from the project and provided
by Stiftelsen Det Norske Veritas[2].
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Chapter 2

Fundamentals

I base this thesis heavily on Semantic Technologies. This includes the Web On-
tology Language[3] (OWL), the Resource Description Framework[4] (RDF), De-
scription Logics[5] (DL) and the SPARQL Protocol and RDF Query Language[6]
(SPARQL).

2.1 RDF
RDF is a data format with a number of serialisations. The data format is based
on triples, which means to say that you would specify a subject, then link the
subject to an object with property.

Subject Property Object

Example:
dbpedia:Peter_Pan :livesIn :Neverland.

There are many ways of thinking about this. One way is to look at object
orientation where an instance of a class becomes the subject and the property
is a variable name and the object is the value for the variable.

Another way of thinking about it is as a table. Where the property becomes
the name of the table, and the subject and object become two columns. It is
even possible to denormalise it further and just put the property as a column
as well.

Since a triple can be used to denote a directed graph, then RDF can be
considered a notation for graphs. This corresponds well with the object oriented
view where an object can point to other objects creating a directed graph.

To digress it is worth to mention that there do in fact exist object oriented
data stores, notably object oriented databases[7] that stand as a counter part
to the very common relational databases such as SQL databases. And as of late
JSON databases have become common, JSON being the notation for javascript
objects which is heavily used on the web. One such database is RethinkDB[8].
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RDF also comes with a vocabulary set, which most notably includes support
for typing (rdf:type). A simple example is:

dbpedia:Peter_Pan rdf:type foaf:Person

A resource in RDF is represented by an IRI (Internationalized resource iden-
tifier, a superset of URI), so Peter Pan is realised as http://dbpedia.org/resource
/Peter_Pan. It is easy to see that this becomes an easy way of having unique
identifiers as long as you stick to naming things in your own domain.

RDF also supports literals to represent a value that is not a resource, such
as a name or an integer. A literal can also have a type, and these are commonly
chosen from the XML Schema Definition (XSD).

Finally there is support for anonymous nodes by blank nodes. This can be
used to formulate an unknown or to group properties around a node that does
not need to be named or should not be named. For easy reference to a blank
node it can be given a syntax name or a Skolem IRI.

2.2 RDFS
The RDF Schema is built on top of RDF to allow for a richer data representa-
tion. For this thesis, the most important part of RDFS is the subclass property
(rdfs:subClassOf) which makes it possible to model inheritance in a data model.
Together with subclassing, RDFS also defines what a class is (rdfs:Class), fun-
damentals such as rdfs:Resource (even though a property is defined in RDF)
and domain and range attributes for properties.

2.3 OWL
For a richer language there is OWL, the Web Ontology Language. OWL comes
in many flavours, Lite, DL, Full and a number of profiles. All these flavours
have different functionality with different computational properties.

Qualified existential restrictions is important functionality in OWL and is
used in this thesis. With a qualified existential restriction it is essentially pos-
sible to specify variables of a class. By which I mean that it it possible to
require that an instance of the class have a specific property to a certain type of
individual or literal. Universal restrictions are also important since these can be
used to specify that a class instance can only have an object with a limited type
for a certain property. As well as cardinality restrictions to specify a certain
number of objects or a minimum or maximum.

OWL also has intersection and union. So a class can be a subclass of an
intersection of two classes, or the intersection of a class can be the subclass of
owl:Nothing (i.e. bottom) to cause them to be disjoint. Intersection and union
can also be used as a part of a restriction or even in a general axiom.

There are also many features for properties, such as functional, transitive,
symmetric and reflexive among others. These are however not used in this
thesis.
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Having an ontology may be nice in its own way, however the true power comes
when combining an ontology with a dataset and running it through a reasoner.
A reasoner is a computer program that understands OWL and can apply the
axioms in OWL to the ontology and to the data. An example of this is if Peter
Pan is a boy and all boys are human, then Peter Pan is a human. Reasoners can
typically also do more advanced things than simple classification. For instance,
if Peter Pan is a human and all humans are animals and only animals with
wings can fly, then Peter Pan must have wings.

2.4 Description Logic and Manchester syntax.
Since OWL implements DL (Description Logics) features, DL is a natural way
of describing axioms in OWL. Manchester syntax is also a common notation for
OWL as well as many other serialisations such as RDF/XML and Turtle, these
being very detailed and verbose primarily used in machine to machine applica-
tions. Manchester syntax is successfully used for modelling in Protégé[9] and is a
very human readable OWL serialisation. DL is the mathematical representation
of OWL, being very compact and powerful.

For the convenience of the reader table 2.1 is a simple comparison between
DL and Manchester syntax.

DL Manchester syntax Description
A v B A subClassOf B Subclassing
∃prop.B prop some B Existential restriction

= 1 prop.B prop exactly 1 B Cardinality restriction
∀prop.B prop only B For all restriction
A uB t C A and B or C Conjunction and disjunction
A uB |= ⊥ A disjointWith B Disjoint classes

Table 2.1: DL and Manchester Syntax

2.5 SPARQL
SPARQL is a query language for the semantic web that uses a very similar
syntax to RDF. It is a graph query language, as such a user can specify a graph
with variables in place of constants for nodes.

Considering a hypothetical data model for Peter Pan where he has friends
and those friends have a certain age, then a query to find out how old his friends
are could look something like this:

SELECT * WHERE{

dbpedia:Peter_Pan foaf:knows ?friend.
?friend foaf:age ?age.
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}

Or with a blank node:

SELECT * WHERE{

dbpedia:Peter_Pan foaf:knows [ foaf:age ?age] .

}

Joins, which have to be stated in SQL are implicit in SPARQL. There is no
need to specify that the ?friend in the first line is the same as the ?friend in the
second line.

SPARQL also supports aggregates and order by similarly to SQL, and SPARQL
1.1 also supports inserts and deletes and more including simple negation nota-
tion which I have used in this thesis.

2.6 DL-Query
DL-queries as somewhat different from SPARQL. Instead of asking for any vari-
able with a type P (?a rdf:type :P), you would simple query for members of the
class P by simple stating the class. All DL syntax is allowed, so you can query
for the members in the intersection of two classes, or every individual that is in
the abstract concept defined by a restriction, such as “foaf:knows some Person”
would return a set of individuals including Peter Pan.

With DL-queries it is also possible to query for things that are not explicitly
stated (unlike SPARQL). For instance if all boys are between 1 and 18 years
of age, then a query for anyone younger than 25 will return Peter Pan even if
there is no explicit mention of his age just as long as he is a boy.
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Chapter 3

A brief introduction to the
standard

ISO 15926 is large standard with eleven parts (as of 2009)[10] used for data
integration and sharing between systems. The standard handles modelling of a
system, such as oil and gas operations, integrating life-cycle data and sharing
this data. An example of how ISO 15926 is used for sharing data is the Daily
Drilling Report[11] sent to the Norwegian Petroleum Directorate by all “oper-
ating companies drilling wells on the Norwegian Continental Shelf”[11, derived
from].

The eleven parts of ISO 15926 are roughly summarised as:

• Part 1: Introductory part.

• Part 2: Data model with time and space.

• Part 3: Geometry and topology reference data.

• Part 4, 5, 6: Combined reference data terms.

• Part 7: Integration of life-cycle data with templates.

• Part 8: Implementation of part 7 in OWL.

• Part 9: Implementation standards including Façades.

• Part 10: Test methods.

• Part 11: Industrial Usage Guidelines

(Heavily derived from [10])
ISO 15926 aims to take a step further when it comes to data integration and

sharing by one upping what HTML has done for the Web or what JPEG did
for imaging.
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Chapter 4

Templates and OWL

Templates[12] is a contstruction for generating instance data. It does this by
providing a function that maps its inputs into properties and instances and adds
these to an instance of the template class.

A good analogy is constructors in Java. A common way of defining a new
instance of a class is to use the “new” keyword in conjunction to a call to the class
constructor with suitable arguments. The constructor then adds the arguments
to the proper variables in the object and returns the class instance (object).

Similairly a template takes a set of arguments, instansiates the class and
adds the arguments. An example of a template is one for a choke change
event: ChokeChangeEvent(AdjustableChokeValve hasChoke, String valChoke-
Type, DateTime valDateTime).

In OWL this is represented as a class ChokeChangeEvent with four “SubClass
Of” statements:

Class: iohn6tpl:ChokeChangeEvent

SubClassOf:
(iohn6tpl:valChokeType only xsd:string)
and (iohn6tpl:valChokeType exactly 1

xsd:string),
(iohn6tpl:hasChoke only

iohn6:AdjustableChokeValve)
and (iohn6tpl:hasChoke exactly 1

iohn6:AdjustableChokeValve),
(iohn6tpl:valDateTime only xsd:dateTime)
and (iohn6tpl:valDateTime exactly 1

xsd:dateTime),
p7tm:RDLTemplateStatement

This template definition can be used by a computer system for inputting
data into the semantic model, or by an engineer. It is used to represent when
the choke valve or an internal part thereof has been replaced.
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Other templates may be used for modelling the system, such as the Well-
ForPlatform:

Class: iohn6tpl:WellForPlatform

SubClassOf:
(iohn6tpl:hasOilAndGasPlatform only

iohn6:OilAndGasPlatform)
and (iohn6tpl:hasOilAndGasPlatform exactly 1

iohn6:OilAndGasPlatform),
(iohn6tpl:hasWell only iohn6:Well)
and (iohn6tpl:hasWell exactly 1 iohn6:Well),

p7tm:RDLTemplateStatement

And some templates are explicitly used for lifecycle data generated by sensors.
An example of this is for a sand event which is captured by a sensor.

Class: iohn6tpl:SandEvent

SubClassOf:
(iohn6tpl:hasDataSource only iohn6:DataSource)
and (iohn6tpl:hasDataSource exactly 1

iohn6:DataSource),
(iohn6tpl:valDateTime only xsd:dateTime)
and (iohn6tpl:valDateTime exactly 1

xsd:dateTime),
p7tm:RDLTemplateStatement ,
(iohn6tpl:valSandEventId only xsd:integer)
and (iohn6tpl:valSandEventId exactly 1

xsd:integer)

From the appendix Martin Giese makes a good definiton of the templating
language and how it maps to RDF which I will cite here.

• All data is originally represented as a set of “template instances” and “type
assertions”

– A template instance is an n-ary literal of the shape

p(i1, . . . , in)

where i1, . . . , in are literals (strings, numbers, etc) or resources iden-
tifiers (URIs), and p is a template (also identified by a URI)

– A type assertion is a literal
C(i)

where C is an OWL class and i is a resource identifier as before

• For every template p, there is a description giving an RDF property Rp,i

for each of the arguments of p.
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• Any template instance p(i1, . . . , in) is represented in RDF as a set of n+1
triples

_:x rdf:type p;
_:x Rp,1 i1;
. . .
_:x Rp,n in.

• Any type assertion C(i) is represented in RDF by a triple

i rdf:type C

End citation.

16



Chapter 5

Example ontology

Figure 5.1: Ontology file overview (shading represent different namespace own-
ers)
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For this thesis I was provided with an example model to work with consisting
of several ontology files. The top ontology file, as shown in figure 5.1 on the
preceding page, named snorreUML-complete.owl is the all inclusive file that
ties together the entire model. This ontology was constructed from a MS Visio
diagram drawing of the constructions at the Snorre oil field. These constructions
include platforms, flowlines, pipes, chokes, pressure elements and temperature
elements among many, many others.

The snorreUML-complete.owl ontology uses the template definitions in iohn6-
templates together with the class listings in iohn6 to model the constructions
using template statements. Essentially individuals of type template, such as
Link.19.103 which is of type ChokeOfWell defined as a subclass of RDLTem-
plateStatement requiring a hasWell and a hasChoke of types Well and Ad-
justableChokeValve (respectively).

Iohn6.owl contains subclassed classes from PCA.owl, such as Well, which is
a subclass of DataSource and ContinousFluidTransportationDevice (iohn6.owl
defined) as well as RDS16458543 defined in PCA.owl with a label “Well”. The
classes in iohn6.owl are used in the template definitions in iohn6-templates.owl,
they become the bridging vocabulary between the templates and the external
definitions.

PCA.owl is the reference data library (RDL) from POSC Caesar Association.
The RDL is only a subset of the complete RDL by POSC Caesar Association.
PCA.owl uses unique id’s as resource identifiers and labels as descriptors. The
top class of PCA.owl is “ISO 15926-4 THING” with two possible subclasses “ISO
15926-4 ABSTRACT OBJECT” and “ISO 15926-4 POSSIBLE INDIVIDUAL”.
For an overview of the PCA.owl reference data library view the screenshot from
Protégé in figure 5.2 on the next page showing a selection of the classes in the
ontology.

There are three other ontologies from ISO. These are p7tpl-no-AND.owl,
p7tm-no-AND.owl and data-model.owl. The two templates with the AND suffix
have been adapted form their original ontologies to better fit with the ontology
managments system from Cambridge Semantics[13] chosen in the Integrated
Operations in the High North project.

The base ontology, data-model.owl, with an extract shown in figure 5.3 on
page 20, consists of a lot of base classes used as building blocks for further
expansions. I did not directly use the ontology, however I would point out
the somewhat unlucky choice of name for Thing since it is already so widely
associated with owl:Thing.

On top of data-model.owl comes the first template definitions in p7tm-no-
AND.owl, extract shown in figure 5.4 on page 21. For the most it is a set
of classes, with the exception of the MetaTemplateStatement subclasses which
have restrictions on the form of template defenitions.

Class: p7tm:TemplateDescription

SubClassOf:
p7tm:hasTemplate
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Figure 5.2: PCA.owl

only p7tm:Template ,
p7tm:hasTemplate

exactly 1 p7tm:Template ,
p7tm:valNumberOfRoles

only xsd:positiveInteger ,
p7tm:valNumberOfRoles

exactly 1 xsd:positiveInteger ,
p7tm:MetaTemplateStatement

The ontology also defines a few object properties which are used in these
restrictions. The top-property is hasObjectRoleFiller which has two subprop-
erties hasBaseTemplateObjectRoleFiller and hasMetaTemplateObjectRoleFiller,
where the former has no sub-properties. There are also five data properties with
the same setup as for the object properties with a top-property valDataRole-
Filler and two main sub-properties one for Base and one for Meta. The two
data properties in the above example (val as prefix) are sub-properties of val-
MetaTemplateDataRoleFiller.

Above p7tm-no-AND.owl sits p7tpl-no-AND.owl with a strikingly similar
name. Where p7tm defines core template concepts, p7tpl actually specifies some
base template statements, or definitions if you prefer. It starts by defining the
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Figure 5.3: data-model.owl

ProtoTemplate with members being individuals and classes (simultaneously), a
technique known as punning[14].

P7tpl goes on to define a series of templates within the InitialSetTemplateSt-
atement and within the ProtoTemplateStatement classes. Examples of these
statements are respectively SymbolOfScale which has a scale and a symbol; and
CoordinateSystem which has a domain and a codomain being property spaces
and number spaces respectively.

Finally the last unmentioned ontology, iohn.owl, is an ontology containing
four classes with several memebers to define datatypes, units of measurements
and aggregation types. The contained individuals are for instance Hour and Cu-
bicMetrePerHour within UnitOfMeasure; SandRate and Stroke for DataType;
InsideDiameter andOutsideDiameter for DiameterType; and AccumulatedValue
and WeeklyAveragedValue for AggregationType among others.
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Figure 5.4: p7tm-no-AND.owl
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Chapter 6

Criteria

Martin Giese has written the paper Quality Criteria for RDF representations of
installations descriptions according to ISO15926 part 8 which is the basis for this
thesis. The paper outlines numerous requirements that an ISO 15926-8 ontology
must fulfil in order to be considered a good ontology. Some of the requirements
are generic, such as 2.4.1 which requires the Abox and Tbox to be consistent,
and some of the requirements are more specific such as the requirement for
conservative extensions[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] (3.1.1).

The entire document is available in the appendix. Examples for many of the
requirements have been added my me to make the document more comprehens-
ible. The document is divided into three main sections and a forth section on
further thoughts.

The first section merely outlines prerequisites related to the templating lan-
guage and the representation thereof in RDF. Following the prerequisites is the
section on “Requirements for RDF representations in general”. This is the main
section on the generic requirements containing the following topics:

• Separation of Information Levels (2.1)

• Literals (2.2)

• Types (2.3)

• Consistency (2.4)

The first topic is a requirement for the later topics. If there is no good separation
of information levels then checking for types becomes much harder. In essence
the information should be divided into two main parts, vocabulary and instance
data. This corresponds nicely to the Abox and Tbox divisions. Further more
the vocabulary should be divided into an application specific vocabulary and a
generic vocabulary.

Literals are first class citizens in RDF, and can be typed, untyped and with
or without a language tag. The requirement simply outlines that all literals
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should be typed, and any literal that is human readable should have a language
tag.

For types, there are several levels of requirements depending on how explicit
that typing should be. Every individual in RDF can have a type, this type can
be stated or inferred. The requirements give several logical levels for typing,
from any inferred type, to that all inferable should be stated.

Consistency is an obvious requirement, it is again divided into two separate
levels. One level simply requires full consistency, while the other requires a
consistent Tbox and any individuals to not be members of disjoint classes (stated
or inferred by RDFS). The latter is the more interesting, since it sacrifices
soundness for tractability.

The second to last section of the document is on ISO 15926 part 8 specific
requirements. There are requirements for part 8 adherence, and a requirement
for conservative extensions. Conservative extensions is quite interesting, which
is why a large part of this thesis is dedicated to the topic.
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Part III

Simple requirements
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Chapter 7

Requirement for literals

The requirement for literals is put in place to limit ambiguity by forcing all
literals to either be a typed literal or a string literal with a language. By forcing
all untyped literals to have a language it is much easier to check for untyped
literals that should be typed. Common typed literals are those for integers, floats
and dates, the typing of literals are defined by the XML Schema Definition[27].
The definition includes 19 primitive types, all with precision requirements which
can be checked by reasoners.

7.1 Verifying with SPARQL
There are several ways to verify literal types of an RDF document. One could
iterate over all literals with Jena and check every one, or attempt to write a
SWRL rule or even use simple regex to process an RDF file (preferably in turtle).

My approach is to write a SPARQL query to extract all literals that do not
adhere to the requirement.

SELECT ?a ?b ?c WHERE {
?a ?b ?c.
FILTER( isLiteral (?c)

&& lang(?c) = ""
&& datatype (?c) = xsd:string

)
}

This SPARQL query works by only keeping literals that have no language
and are strings. Fortunately all literals are a minimum of xsd:string, so even
untyped literals are picked up by the query.

Unfortunately though, the “datatype” function in SPARQL returns xsd:string
for untyped literals, which makes checking literals that are non-human readable
and intentionally lacking a language tag more challenging. With RDF 1.0 a
literal is either plain or typed, where a plain literal is a string with an optional
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language tag[4]. The definition did not specify if the string meant an xsd:string
or not, so in RDF 1.1 this was clarified and as of 1.1 all literals are xsd:string by
default, unless stated otherwise[28]. Such literals are denoted as simple literals
and the lack of xsd:string in syntax form is only available to simplify notation,
rather than as a semantic difference.

RDF 1.1 also brings along a new datatype IRI for use with human read-
able literals. This literal is rdf:langString (http://www.w3.org/1999/02/22-rdf-
syntax-ns#langString). The datatype is defined as an if and only if case, so any
xsd:string with a language tag must also be a rdf:langString. Rdf:langString
is however not implemented, and can not be found in the rdf vocabulary file
online[29] or in the list of available literal datatypes in Protégé (version 4.2 early
2013).

There is still a plain literal datatype (rdf:plainLiteral) in the rdf vocabu-
lary. The comments for the definition say it is “the class of plain (i.e. untyped)
literal values”[29, Ivan Herman 2010], so as an intermediary solution this data-
type would forego the SPARQL query and can be used on non-human readable
strings.
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Chapter 8

Requirements for types

The requirements 2.3.x are all related to typing of individuals. By default all
individuals that are untyped are typed as owl:Thing, however the requirements
require more explicit typing.

The main problem with type checking is to only check types of individuals
in the Abox and only allowing a selection of types. This selection must be
specified to the program in some manner. By the requirement for separation of
information levels it is possible to extract the allowed types from the vocabulary
ontology.

Since the separation of information levels also separates out the instance
data, this model could be loaded into Jena[30] and then iterated over to check
that there was an explicit type for every individual. Another option is to write
a SPARQL query:

SELECT distinct ?a WHERE {
?a ?b ?c.
FILTER (! EXISTS {?a a ?d})

}

The query returns all subjects that do not have a type. For objects it is
possible to check on ?c instead. The biggest problem with this query is the
use of negation, which is very slow. Potentially the query could take O(n2),
depending on how Jena manages to optimise the query.

Another more efficient approach would be to do type checking at parse time.
In pseudo code, a reasonable solution:

Hashmap untyped
Hashmap typed
Hashmap allowedTypes

for every trippel x,y,z
if(y = rdf:type && allowedTypes.contains(z))

untyped.remove(x)
typed.add(x)
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else if(!typed.contains(x))
untyped.add(x)

The code does have an Achilles heel, which is that it would not check if z
has a type. By normalising the RDF and adding a “z a owl:Thing” for every z
in x,y,z, this would easily be solved.

8.1 Allowed types
When using a SPARQL query to check the requirement there are two pos-
sible solutions to limiting the allowed types. The first solution is to generate a
SPARQL query from the list of allowed types within an exists query. Something
like the following:

SELECT distinct ?a WHERE {
?a ?b ?c.
FILTER (! EXISTS{ ?a a :AllowedType1

|| ?a a :AllowedType2
|| ?a a :AllowedType3

})
}

Simply adding more “|| ?a a :x” for x an element of the set of allowed types.
Another approach is to trace the allowed types from the vocabulary ontology

through a joint model of the instance data and the ontologies. Jena does not
have any explicit support for tracing other than allowing a model to be reasoned
by an ontology without merging, though this did not work with Pellet[31]. The
most feasible approach is to add a tracing element onto the classes for the allowed
types, something in the nature of “rdfs:label “uniqueTracingLabel” ”. Then the
SPARQL query would check that the type had such a label.

SELECT distinct ?a WHERE {
?a ?b ?c.
FILTER (! EXISTS {?a a [rdfs:label

"uniqueTracingLabel "]})
}

8.2 Reasoning
The requirements for typing include two requirements with reasoning. One
allows for full OWL reasoning (2.3.1) and another limits reasoning to RDFS
(2.3.2). There could also we level in between for different classes of OWL.

Jena has support for RDFS reasoning through ReasonerRegistry.getRDFSRe-
asoner(), and full OWL reasoning can be provided by Pellet (limited to SROIQ(D)[32]).
However, dividing the reasoner and data such that the reasoner can reason on the
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data and give every entailed statement from the data by the ontology does not
work. There are two ways this should work. One is by defining a schema and
model when creating an InfModel: createInfModel(Reasoner reasoner, Model
schema, Model model), however Jena simply merges the schema and model by
schema.add(model) before applying the reasoner. The second is to attach a
schema to the reasoner by reasoner.bindSchema(schema), which also does not
yield a reasoned dataset without the ontology.

The solution is again to trace the ontology though the reasoner by annotation
every subject with rdfs:label “IGNORE” and subtracting these subject in the
SPARQL query. If this is not done, then the SPARQL query will return every
subject in the ontology, since none of these are of an approved type.

SELECT distinct ?a WHERE {
?a ?b ?c.
MINUS{?a rdfs:label "IGNORE "}
FILTER (! EXISTS {?a a [rdfs:label

"uniqueTracingLabel "]})
}

8.3 Requirement 2.3.4 requiring complete expli-
cit typing

As stated in the rationale for the requirement, this requirement makes working
with RDF data easier by eliminating the need for reasoning when looking for
individuals of a certain type. It is also great for working with negation.

An approach to testing this requirement would require full reasoning on
a dataset to list all individuals and all reasoned and stated types for every
individual. Then checking the dataset in its unreasoned form to see if every
individual has every reasoned type stated explicitly. This could be done at
parse time, by filling buckets of all types with the individuals that have those
reasoned types and then subtracting the individuals from their buckets for every
triple with that individual and a stated type.

Another approach would be to generate a SPARQL query. This can be done
as conjunctive query.

ASK {
:someIndividual a :Type1 , :Type2 , :Type3.

}

However this approach does not work for anonymous blank nodes. An an-
onymous blank node is denoted by square brackets in turtle ([]) and does not
have a stable name. Jena names all anonymous blank nodes, but the same RDF
file will have different identifiers for the blank nodes when parsed into two sep-
arate Jena models. If the blank node has a type that specifies a key, then this
key can be used to query for the individual. However it adds a fair amount of
complexity to the query. A simpler approach is to name all blank nodes with a
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UUID at parse time, the non unique name assumption takes care of any blank
nodes that are the same but are named differently.

8.4 Eyeball
“Apache Jena provides a collection of tools and Java libraries to help you to
develop semantic web and linked-data apps, tools and servers.”[30] Among those
tools is one called Eyeball[33].

Eyeball is a self-declared RDF linting tool designed to check the quality of a
RDF document. I considered the tool as a building block for this thesis, since it
allows for user defined SPARQL based constraints. However, since my use-cases
required generating queries on the fly, as well as tracing input data I found it
easier to simply start from scratch.

With Eyeball however a few of the requirements stated here can be tested
to a certain extent. The requirement for literals is easily solvable with Eyeball.
As is checking for untyped resources. However, the requirement for resource
typing also specifies a vocabulary and a limitation to the typing. How Eyeball
will manage this is not tested. There is a mention of a vocabulary inspector in
the documentation[33] so there may be some support for this.

There are also a lot of other checks available with Eyeball. Checking for
broken RDF list structures may not be useful if these are not used, however
checking for ill-formed language tags may be useful where these have been
handwritten or checking for unknown classes and properties. Proper tooling
(like Protégé) will however severely limit these issues.

Consistent typing can also be checked with Eyeball. The definition for con-
sistent typing is rather vague and either states that for any given class, an
individual should only belong to a single subclass, or that all classes are disjoint
with all other classes that are not super- or subclasses. It could also mean both
if all types are derived and Thing is used as a superclass. This would be quite
useful for such things as pipes, where a pipe should only have one diameter and
length and thus belong to only one pipe-class. However, if such cases are few
and far between, then making classes disjoint is much more precise.
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Chapter 9

Subclass requirement

OWL is very good at representing hierarchical data. Classes and subclassing
is an integral part of OWL and is used to show, among other things, that a
Flowline_5inch_Sch160 is a ScheduleFlowline which is a Flowline which is a
ContinousFluidTransportDevice which is an Artefact.

The open world assumption[34, page 372] lets an individual be a member
of a class without being a member of any of it’s subclasses, this is important
because OWL is meant for knowledge representation and such knowledge is
not necessarily complete. Take as an example an ontology of all the cars in
the world, with a main class called Car and several subclasses for every brand
and model. If someone sends you a new Car individual which is a completely
new car, new brand and new model, then you can not assume it must belong
to one of your car subclasses because you don’t know if you have a complete
representation of all car knowledge or not.

However, sometimes it is useful to be able to state that the subclasses rep-
resent a complete knowledge base. It is not particularly easy to come up with
a good example for when this would be a perfect match, so let us look at a less
perfect example. The class ScheduleFlowline contains 7 subclasses:

• iohn6:Flowline_5inch_Sch160

• iohn6:Flowline_5inch_Sch120

• iohn6:Flowline_6inch_Sch120

• iohn6:Flowline_8inch_Sch120

• iohn6:Flowline_10inch_Sch120

• iohn6:Flowline_18inch_Sch120

• iohn6:Flowline_10inch_Sch140

Even though we know that there might be a new flowline introduced in a few
years, such as a Flowline_8inch_Sch140, or that there exists other flowlines
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in other installations, for our purpose and application the group of flowlines is
complete. In OWL such a statement can be made by saying that all the sub-
classes of a class are a disjunctive superclass of the class. For ScheduleFlowline
the definition in manchester syntax is as follows:

Class: iohn6:ScheduleFlowline

Annotations:
rdfs:label "Schedule flowline",
rdfs:comment "Superclass of ..."^^ xsd:string

SubClassOf:
iohn6:Flowline_10inch_Sch120
or iohn6:Flowline_10inch_Sch140
or iohn6:Flowline_18inch_Sch120
or iohn6:Flowline_5inch_Sch120
or iohn6:Flowline_5inch_Sch160
or iohn6:Flowline_6inch_Sch120
or iohn6:Flowline_8inch_Sch120 ,

iohn6:Flowline

The requirement 2.3.5 defines this subclassing and gives a good rationale
for its use. It also gives an example implementation using SPARQL. The im-
plementation is to generate SPARQL queries that checks that every individual
of ScheduleFlowline is also an individual of one of the subclasses. A good use
for this implementation is if we don’t want to define the subclass restrictions
in OWL, but rather in a separate requirements file. Then we could say that
all ScheduleFlowline individuals must also be on of FlowLine_10inch_Sch140,
FlowLine_18inch_Sch120, ... .

Since OWL reasoners are open world, the definition for ScheduleFlowline
written in manchester syntax above will not render the ontology inconsistent
just because there exists an individual of type ScheduleFlowline that is not
specified to be a type of any of the subclasses. The ontology will only become
inconsistent if the reasoner discovers that the individual can not be a member
of any of the subclasses, for instance by negation or by being a member of a
disjoint class. The reasoner can also reason the individual to be a member of,
say FlowLine10_inchSch120 if it can reason it to not be a member of any of
the other subclasses.

If someone comes up with a new flowline, then any individual of that type
will be accepted by the ontology without any problems. The check for the
requirement might fail until the ontology is updated to show the new flowline
as a subclass of ScheduleFlowline, however that will always be the case for
incomplete knowledge bases.

To automate the testing of this requirement we could go with the SPARQL
implementation, however this would require extracting every set of classes and
subclasses that meet the requirement and test all their members. An alternative
idea is to write a SPARQL query to find all individuals that are a member of a
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class where they should be a member of a subclass but are not. However being
able to find out if a an individual should be a member of one of the subclasses
is a Tbox query, since using disjunction in a SPARQL, where the reasoner can
not return an individual as an instance of a specific subclass, is not possible.

SELECT ?a WHERE {
?a a ?type.

FILTER( ?type = iohn6:Flowline_10inch_Sch120
|| ?type = iohn6:Flowline_10inch_Sch140
|| ...

)
}

SELECT ?a WHERE {

OPTIONAL {?a a iohn6:Flowline_10inch_Sch120}
OPTIONAL {?a a iohn6:Flowline_10inch_Sch140}
OPTIONAL ...

}

Both queries above will only return individuals that are actual members of
one or the other subclass. The query will not return any individuals that are
members of one of the classes by reasoning when the reasoner can not find out
which class the individual should be a member of.

DL-queries however allow this behaviour. A DL-query with disjunction will
return all individuals that match the entire disjunction rather than the dis-
crete parts, as SPARQL does. The DL-query “Flowline_10inch_Sch120 OR
Flowline_10inch_Sch140 OR ...” will return all members, including individuals
that are simple members of ScheduleFlowline and not stated members of any of
the subclasses.

This way we can loop through all classes in the ontology and make a dis-
junctive query of all the subclasses for every class. Now there is no need to do
a complicated Tbox query to find out which classes a subclasses of their own
subclasses.

My implementation used OWLAPI to both loop through all the classes and
subclasses and also to run the actual DL-queries against an ontology with data
reasoned on by Pellet.

for (OWLClass owlClass : reasoner.getClasses ()) {

if (owlClass.getSubClasses(ontology ).size() > 0) {
String subClasses = "";
for (OWLClassExpression owlClassExpression :

owlClass.getSubClasses(ontology )) {
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subClasses += owlClassExpression.toString ()
+ " OR ";

}

// remove trailing " OR ".
subClasses = subClasses.

substring(0, subClasses.length () - 4);

// Run query here
}

}

And for running the query I used example code[35] by Matthew Horridge to
parse the string into an OWLClassExpression which I could run on the pellet
reasoner to get all individuals from the ontology. I then ran a separate query for
every one of the subclasses to check that the results from the disjunctive query
was equal to the joint result-set for every subclass. Any individual not in the
joint result-set for every subclass did not meet the requirement, and could be
reported to the user as a violation.
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Chapter 10

Part 8 adherence

10.1 Integrity Constraints
With semantic technologies, open world reasoning is usually the norm. With
open world reasoning there is in essence a quantum effect of uncertainty for any
information that is not stated. Unstated facts are simply unknown, rather than
untrue. With the exception of facts that are stated to be untrue.

This is best explained with an example. Consider a simple ontology with
two disjoint classes, because I am a possessive person I will call the classes Mine
and SomeoneElses. If an object does not belong to someone else, then it must
belong to me (because I am possessive).

Class: Mine
EquivalentTo: NOT SomeoneElses

Class SomeoneElses

If we introduce the crown jewels, and fail to specify that it belongs to
someone else, then it should belong to me. Since Mine is equivalent to the
set of things that are not in SomeoneElses. However, because of the open world
assumption, the reasoner does not assume that the crown jewels can not belong
to someone else, simply because they are not stated as such.

However, if the crown jewels is stated as belonging to “NOT SomeoneElses”,
then by reasoning the crown jewels now belong to me. So it is not a case of
simply ignoring negation, but rather about being guarded when considering
possible unknown behaviour.

Looking at DBpedia the open world assumption is obviously a good choice,
because there are so many cases of missing information it would be impossible
to answer a question like, “in which countries can you not find squirrels”.

With the open world assumption there is one particular behaviour that is
difficult to specify. One great feature of traditional databases is the ability to
specify a required column in a table. Every row in that table needs to have
a non-null value for that field. Null means unknown, which is different from
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stating a value of none[36]. Open world assumption treats a missing value as
a null value, so unless the value is stated as missing it will be handled as if it
could exist. An existential restriction is a requirement that such a value exist,
and due to the open world assumption if the value could possibly exist for the
current Tbox and Abox, then the Tbox and Abox are consistent[37, page 129].

For requirement 3.2.2, a reasoner with closed world abilities such as Pel-
let ICV (Integrity Constraint Validator), or its incarnation in the Stardog[38]
tripple store, is a possible solution. An alternative, to using an existing solution,
is constructing SPARQL queries to check for missing attributes.

The first query would identify all existential restrictions (in this example),
and with that data a series of queries could be constructed to check instance
data.

select * where {

?class rdf:type owl:Class ;

rdfs:subClassOf [ rdf:type owl:Restriction ;
owl:onProperty ?property ;
owl:someValuesFrom ?type

] .
}

From this query we would get a list of classes and their existential restric-
tions. This result would be used to construct queries on the form of this template
(handlebars style[39]).

select * where {

?a a {{? class }}.

FILTER (! EXISTS {?a {{? property }} [a {{? type}} ]})

}

Different queries have to be used for universal restrictions and for cardinality
restrictions.
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Chapter 11

Satisfiability

One seemingly missing requirement is one for concept satisfiability[40]. When
extending an ontology, conservative extensions prevents concepts in the original
ontology from becoming unsatisfiable. With the more restrictive addition to the
conservative extensions requirement (detailed further in chapter 16 section 16.2
on page 61) the extending ontology must also be satisfiable when incorporated
into the final ontology.

However, the first ontology, the very base of all the extensions, does not need
to be satisfiable. This should never be a problem, as it is of little use to make an
ontology with an unistansiable class. The only time it could become a problem
is when a class beomces unsatisfiable because of instances in another class. This
could happen if the class is to be be equivalent to a set of individuals and all
those individuals become members of disjoint classes.

I would recommend that the intial ontology be an extended model conservat-
ive extension of the empty ontology. This will sufficiently limit unsatisfiability.
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Chapter 12

Criteria implementation

As part of this thesis I created a Java program to automatically check all
the simple criteria. I wrote the program using the Test-driven development
methodology[41] (TDD). Essentially every criteria was first specified as a test,
then I would write the code to pass the test. After passing a test I would either
make changes to it to specify any newly discovered requirements or continue
onto the next criteria by writing a new test.

The overall architecture is based on a controller that reads the ontology
and data files and then runs the criteria checkers. When a criteria checker
requires a model, it requests this from the controller and specifies if it requires
reasoning. Essentially Just-in-time-reasoning that can be cached if Jena uses
forward-chaining[42] or if the InfModel caches its own inferences.

Each criteria is built as an extension to an abstract class, namely Validat-
orAbstract, which has the abstract method validate() which returns void. Val-
idatorAbstract also has a few helper methods and a list for keeping score of
errors. The helper methods are for running a SPARQL query and for reporting
an error. Also there is a nice method for printing errors to standard output.

When extending ValidatorAbstract the validate() method must be overrid-
den with an implementation. This implementation typically defines and runs
a SPARQL query and reports the results to reportError() (which supports
Jena ResultSet). An example of this is ValidateSubjectsHaveExplicitType which
checks that subjects have a type.

public class ValidateSubjectsHaveExplicitType
extends ValidatorAbstract {

@Override
public void validate () {

String query =
"select distinct ?a where {\n" +
"?a ?b ?c.\n" +
"MINUS{?a rdfs:label \" IGNORE \".}" +
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"FILTER (! EXISTS{ ?a rdf:type ?d. \n" +
"?d rdfs:label \"VOCAB \"\n" +
"FILTER (?d != owl:Thing )})\n" +
"}";

reportError(sparql(model.add(vocab), query ));

}
}

ValidatorAbstract also has three variables for the model, the ontology and
the vocabulary. This way the implementation for explicit typing can be extended
by a class that requires explicit typing after RDFS reasoning or after OWL reas-
oning. An example of this is ValidateSubjectsHaveExplicitTypeRDFS which has
the following validate method and extends ValidateSubjectsHaveExplicitType:

@Override
public void validate () {

model = Controller.rdfsReasoning ();

super.validate ();

}

I also looked at two other ways of implementing this. One was with functors,
where the ValidateSubjectsHaveExplicitType class (without reasoning) would
take a functor class that does all the reasoning. This is a very fancy way of
extending the capabilities of a class, but doesn’t chime too well with my exist-
ing use of an abstract class.

The other alternative I looked at was using annotation[43] to inject code
at compile time or runtime. This is a very common approach for big Java
systems that run as containers in a server. For instance Spring[44] has support
for annotation to specify that a certain method should be executed right before
every call to some other method[45]. This way it would be possible to declare a
requirement, such as reasoning, instead of writing the code to do the reasoning.

@Requires.reasoning.rdfs
@Override
public void validate () {

super.validate ();

}

I mainly looked at Plastic[46] from Apache Tapestry[47] to accomplish this.
It has a framework for selecting annotations and wiring them up to methods.
The catch was that without using a server I would have to manually run the
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byte-code through a decompiler and parser such as ASM[48] before running my
program. Otherwise I would be stuck with calling methods through the Plastic
framework, which would also include class instantiation.

Declaratively writing all the requirements would be very convenient, but cre-
ating a language to allow that would go far and wide beyond this thesis. However
a pointer to future implementations, designing a Domain-specific language with
JetBrains MPS[49] is not all that hard.

The test setup uses JUnit 4.1[50] contained a test for every validator (imple-
mentation of criterion) and a helper class called TestFramework that all the tests
extended. The TestFramework handles setting up the controller with the cor-
rect model, ontology and vocabulary as well as checking if the errors produced
by the test are consistent.

When setting up a test, strings for the model, ontology and vocabulary are
added to the TestFramework with a setUp() method annotated with @Before
(from JUnit). Then the test method runs, testValidate() which first adds all the
expected errors, then instantiates the validator, runs the validator and then calls
the TestFramework to assert the expected errors with by using the getErros()
method from the abstract class ValidatorAbstract.

For testing the literal validator I used the following test data:

sim:Homer rdf:type foaf:Person ;
foaf:name "Homer Simpson ";
foaf:age "36"^^ xsd:int.

sim:Marge rdf:type foaf:Person ;
foaf:name "Marge Simpson"@en;
foaf:age "33".

sim:Bart rdf:type foaf:Person ;
foaf:name "Bart Simpson"@en;
foaf:age "12"^^ xsd:int.

sim:Lisa rdf:type foaf:Person ;
foaf:name "Lisa Simpson "^^xsd:string;
foaf:age "12"^^ xsd:int.
sim:PlainLiteralSimpson rdf:type foaf:person ;
foaf:name "PlainLiteralSimpson "^^rdf:plainLiteral.

The expected errors are for Homer since his name does not have a lan-
guage tag, for Marge who’s age is not an xsd:int and for Lisa who’s name, like
Homer’s, does not have a language tag. The difference between Lisa and Homer
is that Lisa’s name is specified as an xsd:string, while Homer’s is implicitly an
xsd:String. Which shows that the requirement for literals needs more refining,
also to test my hypothesis that rdf:plainLiteral passes my tests I added this as
an alternative name for Lisa.

The test for ValidateLiteral is shown below. Each error is added as an
expected error to the TestFramework. The format is the same as is returned
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from toString() for a result from Jena and the ordering was initially a problem
until I decided to split the strings and extract the values. Alternatively I could
have listed the values as parameters to the method call, or as an array.

@Test
public void testValidate () throws Exception {

addExpectedErrors(
"( ?a = <http ://.../ simpsons#Homer > ) " +
"( ?c = \" Homer Simpson \" ) " +
"( ?b = <http :// xmlns.com/foaf /0.1/name > )"

);

addExpectedErrors(
"( ?b = <http :// xmlns.com/foaf /0.1/age > ) " +
"( ?c = \"33\" ) " +
"( ?a = <http ://.../ simpsons#Marge > )"

);

addExpectedErrors(
"( ?a = <http ://.../ simpsons#Lisa > ) " +
"( ?b = <http :// xmlns.com/foaf /0.1/name > ) " +
"( ?c = \"Lisa Simpson \"^^ xsd:string )"

);

ValidatorAbstract val = new ValidateLiteral ();
val.validate ();

assertExpectedErrors(val.getErrors ());

}

I did not test how well my implementation handled large scale ontologies
with large data sets. Also I did not have large data sets at hand and would
have had to generate this. My implementation is limited by the performance of
SPARQL queries in Jena and by how the reasoner. Pellet is not a particularly
fast reasoner, and if the OWL language is sufficiently limited it may have been
interesting to try to use Elk[51].
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Part IV

Conservative extensions of
ISO 15926
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Chapter 13

Preliminaries

For DL semantics see the “Handbook on ontologies”[52].

Definition 1. [Concept Satisfiability] Given an ontology O and a class A, there
is a model of O in which the interpretation of A is a nonempty set.[53, Derived]

Definition 2. [Model conservative extension]
Let T1 and T2 be TBoxes. We say that T1 ∪ T2 is a model conservative

extension of T1 iff for every model I of T1, there exists a model of T1 ∪ T2

which can be obtained from I by modifying the interpretation of the atomic
concepts and roles in sig(T2)\sig(T1) while leaving the domain fixed and all
other interpretations fixed. [Derived from definition in [22]]

Definition 3. [Gamma equality] Let I and I ′ be interpretations. I =Γ I ′ iff
∆I := ∆I

′
and rI := rI

′
and AI := AI′ for all r,A ∈ Γ.

Lemma 4. I ′ |= ϕ if I |= ϕ and I is a model of a Tbox T with a signature
Γ = sig(T ) and I Γ

= I ′.

Definition 5. [Original/Base ontology] Given ontologies T1 and T2, when T1∪T2

is the extended ontology, then T1 is the original ontology.

Definition 6. [Extended ontology] Given ontologies T1 and T2, then T1 ∪ T2 is
the extended ontology of T1.
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Definition 7. [Extending ontology] Given ontologies T1 and T2. When T1 ∪ T2

is the extended ontology of T1 then T2 is considered the extending ontology.

Definition 8. [Disruptive extension] An extensions is a disruptive extension iff
it is not a conservative extension.
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Chapter 14

Introduction to conservative
extensions

There are two types of conservative extensions. Model conservative extensions[15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and deductively conservative exten-
sions[ref same as above]. Model conservative extensions is the stronger ex-
tension, requiring models to be equal with respect to the original signature.
Deductive conservative extensions are weaker, an extension is deductively con-
servative if and only if the possible deductions are the same for the original
ontology and the extended ontology with respect to the original signature.

Loosely put the conservative extension is meant to force an ontology to
be considered complete, and any extension should not add knowledge to the
original ontology that should have been defined in the first place. If you put
on a pair of glasses that are crafted specifically for the original ontology, then
however thoroughly you examine the extended ontology, there will be no way of
distinguishing it from the original ontology when it is a conservative extension.

The first feature of a conservative extension is the preservation of consistency.
If the original ontology is consistent, then the extended ontology will also be
consistent. Any Abox limited to the original ontology will be consistent with
the extended ontology. Without this limitation it is trivial to craft an Abox
that will prove inconsistent with the extended ontology.

Consider two users of an ontology, Steve and Emma. Steve and Emma have
for a long time been able to share data between themselves because they have
been using the exact same ontologies. When Emma decided to expand her
ontology, she did so with a model conservative extension, thus still being able
to read and understand Steve’s data. Steve could also receive data from Emma,
even with her modifications because the ontology was backwards compatible
with his own and he could safely ignore unknown data.

Steve could even go so far as to incorporate Emma’s ontology, because the
systems he had built around his own ontology would not be able to perceive any
change.
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There is a slight exception to this rule. Consider that Steve and Emma have
ontologies of cars with every car brand in the book. Then one day a new brand
is introduced, but only Emma adds it to her ontology. Let us call this brand,
Z. Z is a brand of car so every vehicle in the Z class must also be of type car.
Emma has 100 cars in her dataset, 5 of these being Z brand cars. When she
counts all her cars she finds that she has 100 cars. However, unless she explicitly
states that her 5 Z brand cars are of type car, then Steve will only count 95
cars when he looks at Emma’s dataset. If Emma does explicitly state that her
Z brand cars are cars, then Steve will count 100 cars, but suddenly he now has
5 cars of which he does not know the brand.

The correct solution is to ignore Emma’s Z brand cars, because Steve does
not know if they are really cars. Emma’s ontology is a conservative extension
of Steve’s, so every car Steve has is acknowledged by Emma, but every new car
that Emma has does not need to be acknowledged by Steve. However, if Emma
states that her 5 Z brand cars are of type car, then Steve must acknowledge
this and instead only count cars with a specified brand if he wants to be certain
that he can determine the brand of the car.

The definition of a model conservative extension is as follows:

Definition 9. [Model conservative extension]
Let T1 and T2 be TBoxes. We say that T1 ∪ T2 is a model conservative

extension of T1 iff for every model I of T1, there exists a model of T1 ∪ T2

which can be obtained from I by modifying the interpretation of the atomic
concepts and roles in sig(T2)\sig(T1) while leaving the domain fixed and all
other interpretations fixed. [Derived from definition in [22]]

It builds of the notion of two ontologies, T1 and T2. T1 is the original
ontology, also known as the base ontology. This ontology is considered as a
complete and sound ontology that regardless of what instance data is provided
will always return complete and sound answers to queries. T2 is the extending
ontology, it contains the new axioms that are required by the application. The
extended ontology is the union of both these ontologies, T1 ∪ T2.

The key to a model conservative extension lies in how any model for the
base ontology can be morphed into a model for the extended ontology without
making any changes to the interpretations that are specific for the base ontology.

Two simple ways to consider conservative extensions. 1. Can the axioms in
the extension be interpreted to be empty? 2. Can the axioms in the extension
be interpreted as equivalent to axioms in the original ontology interpretation?

An extension that is not conservative is called a disruptive extension (in
this thesis). By disruptive it is meant that the extension disrupts and breaks
something inherent to the base ontology.

A weaker conservative extension if the deductive conservative extension.
Every extension that is model conservative is also deductively conservative, but
every deductively conservative extension is not necessarily a model conservative
extension.
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Definition 10. [Deductive conservative extension]
Let T1 and T2 be TBoxes and L be a language. We say that T1 ∪ T2 is a

deductive conservative extension of T1 iff for every axiom ϕ in L with sig(ϕ) ⊆
sig(T1) then T1 |= ϕ iff T1 ∪ T2 |= ϕ. (Derived from [18])

Deductive conservative extensions are easier to test by computers[22] than
model conservative extensions.

As a side note, there is a term called module extraction which is based
on conservative extensions. One use for module extraction is for reasoning
purposes, if most of the ontology is compliant with a less complex OWL profile,
then being able to extract the more complex parts and do reasoning on this
part separately will make the reasoning less computationally demanding. The
original ontology is seen as a conservative extension to the extracted module[18].

14.1 Query Conservative
One of the most interesting properties of a conservative extension is how queries
over the original ontology and queries over the extended ontology have the same
results. Essentially we could call it a query conservative extension.

First we need some definitions of soundness and completeness. Informally a
sound result from a query is one where there are no wrong answers in the result
set. A complete result from a query is a result that contains every single correct
result.

Formally soundness with regard to an original ontology an extended onto-
logy:

Definition 11. [Query conservative soundness] Let T1 and T2 be Tboxes. Let
I be an Abox restricted to sig(T1). For every query Q over T1(I), Q(T2(I)) ⊆
Q(T1(I)).

The assumption is that when running a query over the original ontology and
dataset, the results from this query are considered the correct results. If the
extension makes new results available, then these must be incorrect since the
original ontology already returns all the correct results. In essence the original
ontology provides all the complete and sound answers to any query.

Definition 12. [Query conservative completeness] Let T1 and T2 be Tboxes. Let
I be an Abox restricted to sig(T1). For every query Q over T1(I), Q(T1(I)) ⊆
Q(T2(I)).

Following on the assumption above, completeness dictates that the original
ontology provides every answer. Any extension should not remove any of those
answers since they are correct.

To start to compare conservative extensions with conservatively preserved
query results we must first limit our queries to only make use of elements in the
signature of the original ontology. Being able to ask arbitrary queries makes it
possible to query something that is only possible in the extended ontology. If
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we limit our Abox to the signature of the original ontology, the queries that can
be performed are fairly limitless.

Take as an example an ontology for vehicles. It has cars and trucks and
busses and so on.

Class: Car
Class: Truck
Class: Bus

If we extend the ontology by saying that there are small cars:

Class: SmallCar
SubClassOf: Car

Then a query for all individuals in Car will exclude SmallCars when asked
over the original query but will include them when asked over the extended
ontology. Technically it is sufficient to limit the Tbox to the signature of the
base ontology, since any Abox assertion implicitly states that the asserted class
is an rdfs:Class due to the range on rdf:type[54].

From the definition of model conservative extension, a model I can be ex-
tended to a model I ′ so that I Γ

= I ′ where Γ is a signature of T1 with regard to
the definition. This is directly related to the limitation of the Tbox and Abox
for queries.

Atomic queries are trivially both sound and complete since they simply list
individuals in a class or property. Consider an Abox limited to the original
ontology that is consistent with respect to that ontology. This Abox is then the
model I and since the model conservative extension makes this model gamma-
equal to the extended model for the extended ontology, I Γ

= I ′, then any atomic
queries limited to the signature of the original ontology must be equal.
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Chapter 15

Approaches to testing
conservative extensions

Getting a rough idea of whether an extension was conservative or not was very
important in the early stages of this thesis. There are papers on conservat-
ive extensions with helpful examples, especially so is the paper[22] by Lutz,
Walther and Wolter where they show how existential restrictions together with
disjointness causes an extension to be disruptive.

They introduce a term called a witness concept and say that if there exists
a witness concept for the original ontology that is not true in the extended
ontology, then the extended ontology is not a conservative extension of the
base. I based my computer program on this idea in order to brute force check
a set of atomic and complex concepts.

All the concepts were limited to the signature of the base ontology, which
helpfully always includes topObjectProperty and Thing. This way it is easy to
see that the following extension is disruptive.

T1 :A v ∃r.C
T2 :D v ∃r.M

M u C v ⊥

Where A v≤1 r.Thing is true in T1 but false in T1 ∪ T2.
I found the easiest way of testing was to query for subclasses of the witness

concept rather than check if the entire axiom was consistent.
Limited to roles and concepts in the signature of the base ontology, r,A ∈

sig(T1), I generated every possible witness concept on the form of:
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∃r.A (15.1)
∀r.A (15.2)

=nr.A | 0 < n < 100 (15.3)

≤nr.A | 0 < n < 100 (15.4)

≥nr.A | 0 < n < 100 (15.5)

The program generated these in Manchester syntax and queried the original
ontology for subclasses and the extended ontology for subclasses and printed
any differences.

To an ontology that adds the following statement: SimpleStatement v=1

has.Artefact u ∀has.Artefact where has,Artefact andSimpleStatement are
all in the signature for the original ontology, then the program prints the fol-
lowing errors (and more):

missing from A:

has min 1 (Artefact) Node( <.../# SimpleStatement > )
has max 1 (Artefact) Node( <.../# SimpleStatement > )
has max 2 (Artefact) Node( <.../# SimpleStatement > )
has exactly 1 (Artefact)Node( <.../# SimpleStatement > )
has only (Artefact) Node( <.../# SimpleStatement > )

This picked up most of the disruptive extensions, though still leaving behind
more complex ontologies. Lacking so far where more realistic conjunctions of
witness concepts. A common trait for template definitions is to require that
there be exactly one individual of a limited type for a given property, on the
form of A v=1 r.B u ∀r.B.

Such witness concepts were generated by creating all combinations of only
and min, only or min, only and exactly, only or exactly.

∀r.A u =nr
′.A′ (15.6)

∀r.A t =nr
′.A′ (15.7)

∀r.A u ≤nr
′.A′ (15.8)

∀r.A t ≤nr
′.A′ (15.9)

Where it is important to note that the left and right side do not need to share
roles and concepts, since it is quite possible to require all types to be of A and
state that it requires a minimum of n individuals of some type that is subclass
to A. This may be useful to define a special minimum of some type without re-
stricting all individuals to that type. An example could be an apartment block
that requires every apartment to have one paying tenant but also wants to re-
gister other non paying tenants: Apartment v ∃hasTennant.PayingTennantu
∀hasTennant.Tennant.
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Also some restrictions may use complex concepts, i.e. ∃r.(A1uA2tA3) and
also with atomic negation. The only way to safely handle this is to generate all
possible combinations of these concepts by using the disjunctive normalform.

A1 uA2 (15.10)
¬A1 uA2 (15.11)
A1 u ¬A2 (15.12)
¬A1 u ¬A2 (15.13)
(A1 uA2) t (¬A1 uA2) (15.14)
(A1 uA2) t (A1 u ¬A2) (15.15)
... (15.16)
(A1 uA2) t (¬A1 uA2) t (A1 u ¬A2) (15.17)
... (15.18)

Generating all these complex concepts is prohibitively expensive. For n
atomic concepts the number of unique complex concepts is 2n

n

. With 4 atomic
concepts we get 65,536 complex concepts, which is where the limit for reasonable
computations. At 5 atomic concepts we have 33,554,432 complex concepts and
at 6 atomic concepts this rises to 68,719,476,736 which would require 64 GiB to
represent if every complex concept could be represented by only 1 byte (which
it can not).

Since anything above 4 atomic concepts was impossible to calculate for me,
I simplified this to only creating all the conjugate complex concepts without
negation and a special complex concept that was equivalent to Thing.

I also tested if every class was satisfiable. This was built into the reasoner
I used as a method called getUnsatisfiableClasses(). I initially used Pellet,
but it crashed on several of the complex concepts with an error in one of its
tableaux methods. So I switched to using Hermit[55].

Nesting was not tested. This would have been two intensive, though a strict
limit of single level nesting could have been possible to implement.

15.1 Tested ontologies and results
I used four base ontologies in my testing.

Case 1. Empty Statement

ObjectProperty: has

Class: RDLTemplateStatement
Class: Artefact

Class: SimpleStatement
SubClassOf:
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RDLTemplateStatement

Case 2. Simple Statement

ObjectProperty: has

Class: RDLTemplateStatement
Class: Artefact

Class: SimpleStatement
SubClassOf:

RDLTemplateStatement ,

(has only Artefact)
and (has exactly 1 Artefact)

Case 3. Double Simple Statement

ObjectProperty: has
ObjectProperty: connectedTo

Class: RDLTemplateStatement
Class: Artefact

Class: SimpleStatement
SubClassOf:

RDLTemplateStatement ,

(connectedTo only Artefact)
and (connectedTo exactly 1 Artefact) ,

(has only Artefact)
and (has exactly 1 Artefact)

Case 4. New Simple Statement

ObjectProperty: has , has2
ObjectProperty: has2

Class: RDLTemplateStatement
Class: Artefact2
Class: Artefact

Class: SimpleStatement
SubClassOf:

RDLTemplateStatement ,
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(has2 only Artefact2)
and (has2 exactly 1 Artefact2)

For these 4 cases I tested, combinatorially, a selection of extensions. This se-
lection included modifying existing template statements and introducing new
template statements.

I tested restrictions using existing properties and classes, new properties and
classes and sub-properties and subclasses; and all combinations of those. From
this I discovered that introducing a new template statement is always conser-
vative, regardless of if the new template statement includes restrictions utilising
new properties or classes, existing properties and classes or sub-properties or
subclasses.

Since every class is a subclass of itself, then introducing a new existential
restriction that does not force a new individual by disjointness, then this re-
striction will be satisfied by the fact that the class is a subclass of itself.

A v ∃r.C
For a class A that is in the signature of the base ontology and r and C are role

and concept introduced by the extension (not in the base ontology signature),
then it is seemingly always conservative since in any model, r and C can be
satisfied as the equivalent to how the model satisfies A v A.

This leads to a generalisation that if a newly introduced restriction can be
interpreted as the equivalent of some existing fact of the original ontology, then
it is conservative. For instance:

T1 :A v RDLTemplateStatement

A v= 4 r.C

T2 :A v≤ 4 s.D

T1 ∪ T2 is a model conservative extension of T1 because every model I of T1

can be extended to a model of I ′ of T1∪T2 by making rI := sI
′
and CI := DI

′
.

However, if C and D are disjoint, then T1 ∪ T2 requires the addition of four
new elements to satisfy the axiom in T2.

This can also be extended so that a new restriction is conservative if it can
be mapped onto more than one fact. As in the following example:

T1 :A v RDLTemplateStatement

A v= 4 r.C

A v= 4 p.B

B u C v ⊥
T2 :A v≤ 8 s.D
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As well as being able to generate many DL-queries, my test program was
also able to do full OWL reasoning with Pellet and compare the output from
the base ontology with the extended ontology limited to the signature of the
base ontology. Pellet does not list all consequences of an ontology. I tested
it with the example from “Conservative Extensions in Expressive Description
Logics”[22] with essentially boils down to:

A v ∃r.B
A v ∃r.C

B u C v ⊥

Entailing A v≤ 2 r.> because B and C are disjoint. Pellet does not show
this result. Not even when B and C are set to be subclasses of a common
class D, where it would entail A v≤ 2 r.D. This is of course picked up by the
DL-queries generated by the other section of the testing program.

15.2 Existing solutions
I gave ProSÉ[19] a try, a Protégé plugin for reusing ontologies. It supports
model extraction and engineering and handles the conservative extension parts
for the user. I did not manage to get it to work, but it is still worth mentioning.

The Locality Module Extractor[56] based on the work by Jimenez Ruiz, Sat-
tler and Schneider is being mainted by the Information Systems Group at Oxford
University. This is much simpler than ProSÉ, however only supports modular-
isation and not engineering. It does still handle the conservative extension parts
for the user.

I did not go into depth with any existing tools for checking conservative
extensions.
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Chapter 16

Introducing new template
declarations.

A new template declaration is represented in OWL as a new class (with a new
name) subclassed from RDLTemplateStatement and containing a number of
superclass restrictions. These restrictions are used to map input from a template
statement to the proper types through properties that represent the name of
the variable.

A new policy change, such as a requirement to monitor sea temperatures at
an oil rig, should be implemented as new template declarations that have no
side effects on implementations based on the previous version of the ontology.
To achieve this the new template declarations should amount to a conservative
extension of the original ontology. Also the ontologies are built as levels on top
of each other by importing the one below. These should also be conservative
extensions of the one below.

The motivation for a conservative extension is primarily consistency. Con-
sistency at Tbox level and at data level as well as query consistency. The latter
requiring a model conservative extension[57, page 4].

Alternately to adding a new template declaration, a company could attempt
to modify an existing template declaration by adding new superclass restrictions.
This is a very invasive approach, also on the semantics of the implementation
of the template declaration in levels above the OWL serialisation. A second
approach is to subclass an existing template declaration. More on this later.

16.1 Typical implementation
A typical new template declaration would be a new class subclassing RDLTem-
plateStatement, where the new class is outside the signature of the original
ontology. Let T be a Tbox with the following axioms and Γ be a signature so
that Γ = sig(T ).
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T v RDLTemplateStatement

T 6∈ Γ

A template declaration with one input variable will result in one superclass
restriction:

T v=1 p.R u ∀p.R
Where p is a property and R is an atomic class. p is typically newly defined

while R is usually an existing concept or a subclass thereof.

p 6∈ Γ

R ∨Q ∈ Γ|R v Q

As a simplification, every sentence in the extension will be on the form of T v
C where T is a new concept defined in the extension and not found in the original
ontology. C can be any arbitrary expression, be it RDLTemplateStatement or
an existential and universal quantifier. This simplification makes it simpler to
prove that the common extension is always a conservative extension.

Definition 13. [Gamma equality] Let I and I ′ be interpretations. I =Γ I ′ iff
∆I := ∆I

′
and rI := rI

′
and AI := AI′ for all r,A ∈ Γ.

Lemma 14. I ′ |= ϕ if I |= ϕ and I is a model of a Tbox T with a signature
Γ = sig(T ) and I Γ

= I ′.

Theorem 15. If T1 and T2 are Tboxes, Γ is a signature such that sig(T1) = Γ
and T2 only containing axioms in the form of T v C where T 6∈ Γ and C is an
arbitrary expression, then T1 ∪ T2 is always a conservative extension of T1.

Proof. T1 and T2 are Tboxes and Γ a signature such that sig(T1) = Γ . T2

contains only axioms in the form of T v C for a concept symbol T 6∈ Γ with an
arbitrary expression for C.

Let I be an interpretation where I |= T1 (1)
Define I ′ as I ′ Γ

= I where T I
′

:= ∅ for T ∈ sig(T2)/sig(T1) (2)
To prove a model conservative extension I ′ must be a model for T1 ∪ T2

• ϕ ∈ T1

(1)
↪→ I |= ϕ

(lemma 14)
↪→ I ′ |= ϕ

• ϕ ∈ T2 ↪→ ϕ : T v C for a T ∈ sig(T2)\sig(T1)

–
(2)
↪→ T I′ = ∅ ↪→ I′ |= T v C
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Since theorem 15 shows that all common template declarations are model
conservative extensions, and a model conservative extension is query conservat-
ive and consistent if extending a consistent ontology, these common template
declarations will not break implementations meant for the original ontology.

To put this into perspective, a client who has extended the base ontologies
of ISO 15926 with custom templates on the form described above can send
and receive data files with anyone using the original ontology or other model
conservative extensions of the original ontology.

16.2 Satisfiability
One of the main drawbacks of only using model conservative extensions is that
they do not extend any verification onto the extended model except for consist-
ency and verification related to the original ontology. Mainly this means that
the extended ontology can contain named concepts that are unsatisfiable due to
either the integration between the original ontology and the extension or simply
because they were unsatisfiable in the extension.

T1 :RDLTemplateStatement v Thing

r v rg(A)

T2 :D v RDLTemplateStatement

D v=1 r.S u ∀r.S
S v ¬A

T1 ∪T2 |= D ≡ ⊥ which means that D is unsatisfiable even when T1 ∪T2 is a
conservative extension of T1, which is proven by theorem 15 since every axiom
in T2 is on the form of T v C where T 6∈ sig(T1). Being unsatisfiable is not a
very useful property, and any unsatisfiable concepts should rather be left out to
avoid someone trying to instantiate the concept and make the entire ontology
inconsistent. To mitigate this, it is clear that a more restrictive supplement to
a model conservative extension is needed. One where every concept or role has
to be instantiable, or better, defined as having a non-trivial interpretation.

Definition 16. [Non-trivial interpretation]
Let T be a Tbox. I is a non-trivial interpretation of T iff every role and

concept r,A ∈ sig(T ) have interpretations such that rI 6= ∅ and AI 6= ∅
(unless r = Nothing or A = Nothing). A non-trivial model is a non-trivial
interpretation that is also a model for the given ontology.

By incorporating the non-trivial model into the definition of a model con-
servative extension it is possible to force extensions to include only roles and
concepts that are satisfiable in the final ontology. However, simply latching the
non-trivial model onto the model conservative extension definition would not
work, since any empty model of the original ontology could not possible have a
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non-trivial model when extended by another ontology since the domain would
remain fixed as empty. Another problem is that the model for the original on-
tology could leave a class interpretation as empty, while the extended model
includes a subclass which by the definition of non-trivial model would have to
contain an element. The simplest solution is to only require a non-trivial model
in the extension where there is a non-trivial model in the original ontology.

Definition 17. [Non-trivial model conservative extension]
Let T1 and T2 be Tboxes and Γ a signature so that Γ = sig(T1). We say that

T1 ∪ T2 is a non-trivial model conservative extension of T1 iff T1 ∪ T2 is a model
conservative extension of T1 and for every non-trivial model I of T1 there exists
a non-trivial model I ′ of T1 ∪ T2 so that I Γ

= I ′.
With definition 17 it is possible to restrict all extensions on the original

ontology such that there is never a case where a class is unsatisfiable.
There are some unforeseen consequences of the restrictions in a non-trivial

model conservative extension. Consider an example where we introduce nega-
tion to force disjointness.

T1 :L v RDLTemplateStatement (16.1)
L v=1 r.L u ∀r.L (16.2)

T2 :D v RDLTemplateStatement (16.3)
D v=1 m.S u ∀m.S (16.4)
S v ¬L t ¬D (16.5)

L is a typical template definition. An instance of L has a single parameter
r that is of type L. For this specific template r can only take L type objects,
which is how other template definitions are implemented.

The extension of T1 adds a new concept D which is also a typical template
definition take one parameterm of type S. The propertym could reuse elements
from r, so it is not in violation of the non-trivial model conservative extension.
The concept S is however in violation of the non-trivial model conservative
extension because it is disjoint with L and D. By carefully choosing a model
for T1, this becomes rather obvious.

T1

∆I {1}
topObjectPropertyI {< 1, 1 >}

LI {1}
rI {< 1, 1 >}

Table 16.1: Model of T1 16.1

The interpretation of S now only has one element to choose from, 1. S
could of course have an interpretation of ∅, but then it would not be a non-
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trivial model conservative extension. The above example can even be simplified
to accommodate this last observation.

T1 :L v RDLTemplateStatement (16.6)
T2 :D v RDLTemplateStatement (16.7)

S v ¬L t ¬D (16.8)

And can then be simplified into the bare essentials.

T1 :L v RDLTemplateStatement (16.9)
T2 :D v ¬L (16.10)

These are all still conservative extensions, since they are on the form of
T v C where T 6∈ sig(T1).

Figure 16.1: Venn diagram - Disjoint

Any extensions that creates a new class that is disjoint with all other classes
will not conform to the definitions of a non-trivial conservative model extension.
Let the set of all the elements in all the classes in an interpretation be A in the
venn diagram 16.1. B represents the elements needed to qualify a new disjoint
class. By expanding A to be equal to the domain, then there will be no space for
B and it must become equivalent to ∅. For a model conservative extension this
is perfectly sound, however the definition of a non-trivial model requires B to
be disjoint with ∅, so it can never be a non-trivial model conservative extension.
In the cases where A can be expanded to include every element in the domain,
then B will become empty. If there is no single A to expand, then expanding
all the As until they collaboratively force one or more of the Bs to be empty is
also viable. This would be the case only if two Bs are disjoint.

It is also possible to construct a useful ontology without resorting to negation
that breaks with the non-trivial model conservative extension while still being a
valid model conservative extension. Such an ontology extension has to achieve
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the same outcome as the above example, to force new elements into existence
that can not be extracted from an existing model.

T1 :L v RDLTemplateStatement (16.11)
L v=1 r.L u ∀r.L (16.12)

T2 :D v RDLTemplateStatement (16.13)
D v=2 m.S u ∀m.S (16.14)

T1 is again a typical template definition. It subclasses L from RDLTem-
plateStatement and then requires certain attributes to be attached to L, which
at this point just just a simple r attribute of type L. It could easily be of any
other type, as long as it is not disjoint from L so that a model for T1 can contain
a single element.

The extension is a less typical template definition. It requires two attrib-
utes of the same type and with the same property to be attached to any in-
stance of template D. If there is a way to distinguish two attributes, then
such an approach makes for a more precise model. As an example of this is
the FlowConnection RDLTemplateStatement . This connects two Continuous-
FluidTransportationDevice together so liquid can flow from one to the other.
Additionally it is known which device is upstream and which device is down-
stream, so this is naturally expressed by having two separate properties, one for
upstream and one for downstream (hasDownstreamCFTP). A recommendation
is to have a common super-property so that a flow connection could be inferred
regardless of direction of flow.

When there is no particular way of differentiating two attributes, using a
cardinality restriction (with more than 1) to specify the multiple of the attrib-
ute is an alternative to inventing properties to simply denote the ordering in
the template definition when this is semantically unspecified. In the example
above, since the interpretation of D can always be set to the empty set, then
the cardinality restriction can be ignored and the extension is a valid model
conservative extension.

For a non-trivial extension the extended model must be non-trivial as well,
so D must contain an element and thus S must contain two because of the
cardinality restriction.

With the model for T1 containing only one element it is trivial to see that
a non-trivial model can not exist for T1 ∪ T2 because such a model requires a
minimum of two elements in the interpretation’s domain.

Looking at the venn diagram 16.2 on the next page as a representation of the
above problem. A is the set that represents all the required elements to satisfy
a non-trivial model of T1 and B represents the elements required to satisfy a
non-trivial model of T1∪T2. When the domain can be reduced to the barriers of
A, then B becomes equal to A and then there can not exist a non-trivial model
of T1 ∪T2 for every non-trivial model of T1 because the extension requires more
elements than are present in A.
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T1 T1 ∪ T2

∆I {1} {1, ?}
topObjectPropertyI {< 1, 1 >} {< 1, 1 >,< 1, ? >,<?, 1 ><?, ? >}

RDLTemplateStatementI {1} {1}
LI {1} {1}
rI {< 1, 1 >} {< 1, 1 >}
DI - {1}
SI - {1, ?}
mI - {< 1, 1 >,< 1, ? >}

Table 16.2: Model of T1 and T1 ∪ T2 for 16.11

Figure 16.2: Venn diagram - subset

Every extension that requires more elements than are strictly required in the
non-trivial model of the original ontology will result in a violation of the non-
trivial model conservative extension. To rectify this and allow these extensions,
the definition of non-trivial model conservative extensions needs to be loosened.

Categorically from the example above and from the example equation 16.9
on page 63 it is clear that two attributes are required for the models:

1. An expandable domain

2. Expandable classes and properties

A new extensions definition would require some way of making the interpreta-
tions for the domain, classes and properties expandable.

Definition 18. [Model subset] Let T1 and T2 be Tboxes and I be a model
for T1 and I ′ be a model for T2. I E I ′ iff for every atomic role and concept
r,A ∈ sig(T1) the interpretation rI ⊆ rI

′
and AI ⊆ AI

′
and ∆I ⊆ ∆I

′
.

Then by adding this definition as a restriction to a regular model conservative
extension we get the following definition.
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Definition 19. [Extended non-trivial model conservative extension]
Let T1 and T2 be Tboxes. T1 ∪ T2 is an extended non-trivial model conser-

vative extension of T1 iff T1 ∪ T2 is a model conservative extension of T1 and
every non-trivial model I of T1 can be extended to a non-trivial model I ′ of
T1 ∪ T2 such that I E I ′.

16.3 Improving on model conservative extension
Definition 19 explicitly requires the extended model to be a model conservative
extension of the base model as well as giving a new restriction on top of this
to require subset models for non-trivial models. This second attribute is the
important addition to the regular model conservative extension definition that
guarantees satisfiability. One question is, what would happen if we did not
require the extended model to be a model conservative extension of the original
model?

Let us state a new, simpler definition for non-trivial model conservative
extensions. Calling it instead, model subset extension.

Definition 20. [Model subset extension]
Let T1 and T2 be Tboxes. T1 ∪ T2 is a model subset extension of T1 iff every

non-trivial model I of T1 can be extended to a non-trivial model I ′ of T1 ∪ T2

such that I E I ′.

The missing part of the definition is obviously a way to limit the use of trivial
models. So right off the bat the definition will not hold for ontologies without
a non-trivial model. Such an ontology would have to have a concept become
equivalent to Nothing by definition, reasoning or a combination of the former
together with single elements as members of the other concepts or roles.

If the ontology does in fact have a non-trivial model, which it should, then the
extension is now restricted to models that are supersets of the former model. In
comparison to regular model conservative extensions the following (table 16.3)
is now allowed.

MCE MSE
r,A ∈ sig(T1) rI = rI

′
, AI = AI

′
rI ⊆ rI

′
, AI ⊆ AI

′

r,A ∈ (sig(T2)\sig(T1)) rI
′ ⊆ ∆I , AI

′ ⊆ ∆I rI
′
, AI

′

Table 16.3: Comparison of model conservative extension (MCE) and model
subset extension (MSE)

Exploring the comparison table 16.3 it becomes clear that there are two
possible extensions that would not be model conservative but still a model
subset extension. Namely an extension that either forces roles and concepts to
contain new elements when extended or forces the extension roles and concepts
to require elements not in the domain.

One attempt at forcing new elements is to specify that they are required.
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T1 :L v > (16.15)
T2 :a : L (16.16)

This seems to be a disruptive extension since the interpretation of L could
be empty, and the extension would then cause it to contain at least one element.
Also it is a model subset extension because every model of T1 can be extended
by adding a new element to the domain to interpret a and adding this element
to the interpretation of L this making the model a model for T1 ∪ T2.

However, since model conservative extensions only apply to the Tbox of an
ontology, the above example is actually still a model conservative extension.
The concept assertion is essentially ignorable because it is in the Abox.

To create an ontology then, that is a model subset extension while not being
model conservative requires us to only use the Tbox to force either interpreta-
tions of predicates in sig(T1) to include new elements, or to force new elements
in the domain by the interpretations of predicates in sig(T2)\sig(T1)).

The first thing we need is to force the existence of more elements. Without
resorting to the Abox, the easiest way to do this is to add a superclass to
an existing class that requires a certain number of elements by a cardinality
restriction.

T1 :L v > (16.17)
T2 :L v= 2 r.M (16.18)

Such an extension can not be model conservative, since any model of T1

where LI := {1} would now have a domain with two elements when extended
to a model for T1 ∪ T2. In contrast, the extended model would still be a subset
of the original model, so would still be model subset extension. If T1 ∪ T2 is in
fact a model subset extension, then the definition for a model subset extension
is obviously not strong enough.

Proposition 21. If T1 and T2 are Tboxes where T1 = {C} and T2 = {C v=
2 r.M}, then T1 ∪ T2 is a model subset extension of T1.

Proof. T1 and T2 are Tboxes and T1 = {C} and T2 = {C v= 2 r.M}. (0)
Let I be an interpretation where I |= T1. Without loss of generality, 2, 3 66∈

∆I (1)
Define I ′ as I E I ′ where ∆I

′
:= ∆I ∪{2, 3}, CI := CI

′
, MI

′
:= {2, 3} and

for every i ∈ CI , < i, 2 > and < i, 3 > are elements in rI
′
. (2)

To prove that T1 ∪ T2 is a model subset extension of T1, then I ′ must be a
model of T1 ∪ T2.

• C v >: fulfilled by I ′ with lemma 4 because sig(T1) = {C} and CI := CI′

• C v= 2 r.M : CI := CI
′
and (= 2rM) = CI = CI

′
because rI

′
= {<

i, 2 >,< i, 3 >| i ∈ CI} ↪→ I ′ |= C v=2 r.M
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Chapter 17

Conclusion

SPARQL queries and DL queries can be utilised to check for simple quality
requirements. Checking that literals have types can be done with a SPARQL
query, however because of RDF 1.1, machine-readable strings can not simply be
of type xsd:string and must instead be of a specific type such as rdf:plainLiteral.
Type checking of individuals is also possible with a SPARQL query, however
there needs to be some way of limiting the scope to only instance data and the
types to only vocabulary types. This can be done by adding annotations to the
data.

For checking if an individual needs to belong to a subclass but is not stated
to be, DL queries are the simplest approach. Every class can be queried for
individuals that conjunctively belong to the subclasses and then compared to
the actual listed members of the subclasses.

It is also recommended to use an Integrity Constraints Validator to check
that all restrictions are fulfilled. As an alternative it is possible to generate
SPARQL queries to check the constraints automatically.

The requirement for model conservative extensions is possible to achieve
without any testing as long as the extending axioms are on a specific form where
the left side (subclass) of a subclass expression is outside of the scope of the
base ontology. The model conservative extension leaves a lot to be desired for
limiting unsatisfiable concepts in the extended ontology. The new definition for
an extended non-trivial model conservative extension alleviates these issues and
is preferable to only using a model conservative extension. The new definition
still lacks an implementation and is unfeasible to test in its current state.
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Quality Criteria for RDF representations
of installations descriptions

according to ISO15926 part 8
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1 Prerequisites

We assume the following:

• All data is originally represented as a set of “template instances” and “type asser-
tions”

– A template instance is an n-ary literal of the shape

p(i1, . . . , in)

where i1, . . . , in are literals (strings, numbers, etc) or resources identifiers
(URIs), and p is a template (also identified by a URI) Do we allow

blank nodes
in template
instances?

– A type assertion is a literal
C(i)

where C is an OWL class and i is a resource identifier as before

• For every template p, there is a description giving an RDF property Rp,i for each
of the arguments of p.

• Any template instance p(i1, . . . , in) is represented in RDF as a set of n + 1 triples

:x rdf:type p;
:x Rp,1 i1;

. . .
:x Rp,n in.

• Any type assertion C(i) is represented in RDF by a triple

i rdf:type C

• These representations are complemented by an ontology, including the ISO15925
part x/y/z vocabularies, and the template and meta-template ontologies, as well
as a domain-specific ontology built on top of these.
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2 Requirements for RDF representations in general

2.1 Separation of Information Levels

Requirement 2.1.1 There is a clear separation of the set of triples into

• a vocabulary description, and

• instance data.

This separation might be effected through the storage in different files, in different graphs
underlying a SPARQL endpoint, etc. In any case, it must be possible to say which part
a given triple belongs to.

Counterexample:

Mixed Ontology and Instance Data - Turtle:
:TemperatureSensor rdfs:subClassOf :Sensor.

:tempSensor1 :minTemp "275.0"^^ xsd:float;

:LightSensor rdfs:subClassOf :Sensor.

Example:

Ontology - Turtle:
:TemperatureSensor rdfs:subClassOf :Sensor.

:LightSensor rdfs:subClassOf :Sensor.

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

Rationale: The main purpose of this separation is to provide a basis for the remaining
criteria. The rules applying to the vocabulary definition and the instance data will
be different.

Implementation: This is not a requirement that can be tested. Rather, implementations
testing the other requirements will need this separation as part of their input.

Note that information both of the vocabulary description and the instance data
may well be spread over several documents or data sources. The important point
is that it must be clear for each triple which part it belongs to.

Requirement 2.1.2 There is a clear separation of the vocabulary definition into

• an application specific vocabulary

• a generic vocabulary

For the meaning of ‘separation’, see Req. 2.1.1.

Counterexample:
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Ontology - Turtle:
:Sensor rdfs:subClassOf :PhysicalObject.

:TMP36 rdfs:subClassOf :Sensor.

Example:

Generic Ontology - Turtle:
:Sensor rdfs:subClassOf :PhysicalObject.

Domain Ontology - Turtle:
:TMP36 rdfs:subClassOf :Sensor.

Rationale: Like Req. 2.1.1, this is mainly to provide a basis for the remaining criteria.
For instance, resources will be required to carry a sufficiently specific type, in
the sense that types mentioned in the application specific vocabulary and not the
generic vocabulary are considered specific enough.

Implementation: See Req. 2.1.1. Again, each part of the vocabulary may well be spread
over several documents or data sources. The important point is that it must be
clear for each triple (RDFS/OWL axiom) which part it belongs to.

Definition 2.1.3 An application class is a class that is mentioned in the application
specific vocabulary, but not in the generic vocabulary. Any class mentioned in the generic
vocabulary is called a generic class.

2.2 Literals

Requirement 2.2.1 Any literal should be either typed (by one of the standard datatypes
defined by OWL 2) or carry a language tag.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0";

rdfs:label "This is a temperature sensor ".

Example:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float; #float number

rdfs:label "This is a temperature sensor"@en. #english lang

Rationale: Any literal is either intended for machine processing or to be read by humans.
In the first case, it should carry a datatype delimiting the interpretation (the
datatype might by xsd:string if that is the intention). In the latter case, it is a
natural language string, which should carry its language tag.

Implementation: This should be easy to implement using SPARQL queries with suitable
filter expressions.
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2.3 Types

Requirement 2.3.1 Any resource mentioned should have a type, either explicitly given
with rdf:type, or inferable, that is related to the application domain. This type should
in other words be an application class in the sense of Def. 2.1.3.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

Example:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

#Either#

:tempSensor1 rdf:type :AboveFreezingTemperatureSensor. #explicit

type

Ontology - Manchester:
#Or#

Class: AboveFreezingTemperatureSensor

EquivalentTo: minTemp some double[> 273.15]

Rationale: All objects referred to the description of an installation should have to do
directly with that installation. They must therefore have a more concrete type
than being a “Thing”, a “possible individual”, etc. Any kind of further processing
of the RDF description will require more concrete types.

Note that this requirement does not require types to be given explicitly. Types
maybe inferred from an ontology and the relations in which a resource stands with
other resources, e.g. domain and range reasoning.

Since it cannot be decided from the data alone what constitutes a sufficiently
specific type, the separation of the vocabulary according to Req. 2.1.1 is used to
decide which parts of the vocabulary are to be counted as the domain vocabulary,
and which are generic terms.

Implementation: This requirement is not easy to implement, since it requires reasoning.
However, if the model and accompanying ontology can be classified, the available
types for all individuals can easily be checked.

The previous requirement is comparatively weak, and hard to check, but it can be
seen as a minimal requirement. We can ask for more by restricting the reasoning to
simple cases.

Requirement 2.3.2 Requirement 2.3.1 is refined by requiring that a application class
can be derived as type of any resource by some simple reasoning regime, e.g. RDFS
entailment
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Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

Example:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float.

Ontology - Turtle:
:minTemp rdf:type rdfs:domain :TemperatureSensor . #inferrable

type

Rationale: This requirement is easy to check algorithmically, although it cannot be
checked with a SPARQL query.

Implementation: RDFS reasoning (domain/range, subclass, subproperty) can be used
to check for the existence of types. In fact, reasoning can be aborted for each
individual, as soon as at least one type has been derived.

The latter requirement can be seen as one element in a family of requirements, indexed
by the reasoning regime to be supported. At the extreme end, we can require that no
reasoning is needed at all:

Requirement 2.3.3 Requirement 2.3.1 is refined by requiring at least one application
class to be explicitly given as type with an rdf:type triple for every resource.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

#inferrable type , but at least one must be listed

Ontology - Turtle:
:minTemp rdfs:domain :TemperatureSensor . #inferrable type

Example:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

rdf:type :AboveFreezingTemperatureSensor.

Ontology - Turtle:
:minTemp rdfs:domain :TemperatureSensor . #inferrable type

Rationale: No reasoning is needed to check this requirement. And it can be implemented
without adding too much overhead to the RDF representation.
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Implementation: The presence of rdf:type triples can probably be checked with a
SPARQL query.

To ease further processing, we can add the following requirement:

Requirement 2.3.4 Requirement 2.3.3 is refined by requiring that all (named) types that
can be inferred for a resource are explicitly given by rdf:type triples.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

rdf:type :AboveFreezingTemperatureSensor.

Ontology - Turtle:
:minTemp rdfs:domain :TemperatureSensor . #inferrable type

Example:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

rdf:type :AboveFreezingTemperatureSensor , :TemperatureSensor.

Ontology - Turtle:
:minTemp rdfs:domain :TemperatureSensor . #inferrable type

Rationale: This makes it easy for software that processes the RDF representation to
find all instances of any given type, without requiring reasoning.

Implementation: Checking this requires reasoning again. The model needs to be clas-
sified, and for each individual i and each type C it belongs to, the presence of a
triple i rdf:type C needs to be checked.

A certain kind of “useless” type information allowed by the previous requirements can
be eliminated by the following one:

Requirement 2.3.5 If a resource i has (can be inferred to have) type C and C is (can be
inferred to be) covered by some of its sublcasses D1, . . . , Dn v C, with C v D1t· · ·tDn,
then there is a k ∈ {1, . . . , n} such that i has (can be inferred to have) type Dk.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

rdf:type :Sensor.
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Ontology - Manchester:
Class: TemperatureSensor

SubClassOf: Sensor

Class: LightSensor

SubClassOf: Sensor

Class: Sensor

SubClassOf: LightSensor or TemperatureSensor

Example:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

rdf:type :Sensor , :TemperatureSensor.

Ontology - Manchester:
Class: TemperatureSensor

SubClassOf: Sensor

Class: LightSensor

SubClassOf: Sensor

Class: Sensor

SubClassOf: LightSensor or TemperatureSensor

Rationale: C plays the role of an “abstract superclass”: any element of C must also
belong to one of the subclasses D1, . . . Dn. We require the model to say explicitly
which of the subclasses this is. For instance, if “sensor” is covered by “temperature
sensor”, “pressure sensor”, and “motion sensor”, then the model should say for any
concrete resource with type “sensor” which of the subclasses it belongs to.

Note: it is not clear whether this is always a desired property. For a given
application, “sensor” may sufficiently concrete, and giving the actual type of sensor
would not add any value. On the other hand, the ontology used to define sensors
might include covering axioms for types of sensors. In such a case, this requirement
should not be enforced. It only makes sense if the “granularity” of the ontology is
not finer than required by the application.

Implementation: This requires reasoning in general. Given an ontology, reasoning could
be used to find all sets of covering axioms as asked for in this requirement, and
then generate a single SPARQL query that checks the requirement, provided type
information is represented explicitly. E.g. given the sensor ontology, a SPARQL
query could be written that checks that whenever a triple i rdf:type :Sensor

is present, there is also a triple i rdf:type :TemperatureSensor or i rdf:type
:PressureSensor or i rdf:type :MotionSensor.

The previous requirements require types of resources to be inferable, and require at
least one of them to belong to the domain vocabulary. This is not the same as the
following mostly orthogonal property:
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Requirement 2.3.6 Requirement 2.3.1 is refined by requiring that all (named) types any
resource belongs to are explicitly given or can be inferred.

Rationale: What this means is that anything that is e.g. a temperature sensor actually
carries that type, explicitly or implicitly. For the previous requirements, it would
be enough if a temperature sensor belonged to the supertype “sensor”, assuming
that “sensor” is part of the domain vocabulary.

Implementation: This cannot be checked mechanically, since it requires knowing what
identifiers refer to.

2.4 Consistency

Requirement 2.4.1 The RDF representation and its accompanying ontology must be
consistent.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

:minTemp "100.5"^^ xsd:float.

Ontology - Manchester:
Class :TemperatureSensor

SubClassOf: :minTemp exactly 1 double

Rationale: An inconsistent model is obviously faulty.

Implementation: The implementation requires full OWL DL reasoning.

If the model is too large to be classified, this requirement could be weakened be
restricting the reasoning performed, for instance as follows:

Requirement 2.4.2 The ontology TBox must be consistent, and no individual is asserted
(or can be inferred by RDFS reasoning) to belong to two classes that are known to be
disjoint from TBox reasoning.

Counterexample:

Instance Data - Turtle:
:tempSensor1 :minTemp "275.0"^^ xsd:float;

rdf:type :TemperatureSensor ,

:LightSensor.

Ontology - Turtle:
:TemperatureSensor owl:disjointWith :LightSensor.
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Rationale: For large ABoxes with reasonably sized TBoxes, this might be tractable, and
catch most potential mistakes.

Note that it is hard to give a semantic explanation for such a restriction. If the
model as a whole is inconsistent, then it has no interpretation, and no amount of
restricted reasoning can change that.

3 Requirements for RDF representations in accordance with
ISO15926 part 8

3.1 Conservative Extensions

Requirement 3.1.1 The application specific vocabulary must be a conservative extension
of the underlying ISO15926 part x/y/z, template, and meta-template vocabularies.

Rationale: This ensures that the application specific ontology does not “modify” the
meaning of the underlying ontologies.

Implementation: This requires reasoning, and that reasoning is non-standard. Not sure
which implementations exist at all.

This is a nice minimal requirement, but might be hard to check.
It might be possible to relax this, by restricting the way in which the domain vocab-

ulary can refer to the imported ontologies, e.g. only by subclassing. Such restrictions
can easily become over-restrictive however.

3.2 Part 8 adherence

We want to ensure that all information is actually represented as “reified” template
statements.

Requirement 3.2.1 For any triple x y z belonging to the instance data, where y is dif-
ferent from rdf:type, and y is not declared by the vocabulary description to be an
owl:AnnotationProperty, there is a (possibly inferred) triple x rdf:type p where p is
in turn of type . . . (what? abc:Template?)

Rationale: We want only template instances and type assertions in the RDF data. How-
ever, annotations are allowed, like for instance rdfs:label to give a human read-
able identifier to a resource.

Note: in combination with Req. 2.3.1, this means that the template types p should
also be part of the application specific vocabulary.

Implementation: This can be checked with SPARQL queries generated from the domain
vocabulary, provided that the types are explicitly represented. Maybe with a static
SPARQL query.
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Requirement 3.2.2 For any resource or blank node x mentioned in the instance data,
such that x rdf:type p for some n-ary template p with declared properties Rp,i, there
is a triple x Rp,i yi for all i = 1, . . . , n, either explicitly or implicitly, for some literal
or named resource yi.

Rationale: Whenever a template instance is given, all arguments should be given. Not
just inferred to exist.

TODO: Have to think about blank nodes for the yi. It might make sense to have
blank nodes in the template instances. But then, such blank nodes have to be kept
apart from things that can be inferred to exist simply from the template axioms.

Implementation: This can be checked with SPARQL queries generated from the domain
vocabulary, provided that the types are explicitly represented. Maybe with a static
SPARQL query.

4 Further Thoughts

1. Many of the previous requirements can be read the “semantic” way, i.e. as require-
ments on inferable information, or as requirements on explicitly given information.
Which to choose depends on how much reasoning we are willing to perform. In
any case, it would be good to find a structure for this document which allows
referring to requirements together with the implied amount of reasoning without
reduplicating all the requirements.

2. We have several recurring categories of implementability:

a) undecidable

b) algorithm not known to us

c) algorithm known but non-standard

d) implemented by standard reasoning tools

e) implementable as a set of SPARQL queries that can be computed from the
domain ontology

f) implementable as a static SPARQL query, independent of the domain vocab-
ulary.

Should make reference to these categories more systematic.

3. At some point, we might want to look into an axiomatisation of properties of
templates, like symmetry, transitivity, etc. which may not be easy to express after
the part 8-isation.
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5 TODO

• Criteria for URIs, prefixes/namespaces

• No relative URIs?

• Running Example

• Positive/negative examples for each criterion
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