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Abstract 

Although there is no shortage on theories, the issue of sleep function remains one of the open 

questions within neuroscience today. In the current study predictions from a theory of 

synaptic plasticity was tested through a sleep deprivation study of cortical thickness and 

visual evoked potentials. In accordance with our initial hypothesis we report that wake foster 

measurable macrostructural increases in grey matter presented as 4 bilateral clusters. This 

increase was not significantly alternated during a period of sleep deprivation. Thus our results 

support a prominent theory linking sleep to plastic processes, with the findings that waking 

increase synaptic potentiation and that sleep is needed for synaptic regulation. 
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 1.0 Introduction 

On the evening of March 23rd 1989, a ship carrying over 200 000 tons of oil started its 

journey from Alaska to California. The ship called Exxon Valdez was almost brand new but 

had already embarked on this route several times before. Around midnight an exhausted third 

mate named Gregory Cousins was controlling the ship alone, against company rules. Second 

mate Lloyd LeCain was scheduled to have relieved him already, but after a gruelling dayshift 

LeCain was still sleeping in his room. Cousins was aware of his colleague’s desperate need 

for rest and decided not to wake him. Instead he remained on duty himself after 

approximately 18 hours of physical and stressful labour. Some time after midnight the 

massive vessel hit a reef, which ripped through large portions of the ship. It has been 

estimated that between 40 000 and 100 000 tons of oil leaked into the ocean that night. The 

details of Cousins’ state has been debated, but after only 4 hours of preceding sleep Cousins 

was either too cognitively impaired to manage the vessel properly, or worse, he might even 

have fallen asleep. Tiresome overtime without compensatory sleep contributed to one of the 

largest manmade environmental disasters in history (Adasiak, Ricbter, & Spivey, 1990). 

 As exemplified above sleep loss has direct effects on cognitive abilities. Indeed, the 

cognitive setbacks of the sleep-deprived brain have been documented time and again, and 

especially within the field of neuroscience. Lack of sleep can have detrimental effects on 

attention, memory, mood and even decision making to name a few (Durmer & Dinges, 2005). 

Although it is quite clear that sleep offers cognitive as well as physical and mental (Reid et 

al., 2006) benefits, its function remain somewhat of a mystery. It is quite peculiar that humans 

in total spend about 1/3 of their lives asleep (Siegel, 2005), and scientific enquiries have 

provided little if any knowledge as to why.       

 The question of sleep function has been of interest since the time of the ancient 

philosophers, if not earlier. As Aristotle noticed that sleepiness was brought on by meals, he 

concluded in his text on sleep and dreaming that humans and animals sleep to digest food 

(Wijsenbeek-Wijler, 1976). Centuries later, in 1896 the first study that explored sleep 

deprivation in conjunction with cognition was published. The study involved an observation 

of three participants who were sleep deprived for 90 hours consecutively. The researchers 

reported a decline in several motor and memory skills (Durmer & Dinges, 2005). Although it 

has been difficult to date the first study claiming there is a relationship between sleep and 

memory, the article “Obliviscence during sleep and waking” from 1924 is often mentioned 

among the earliest (Jenkins & Dallenbach, 1924). Indeed, the “memory processing-function” 



2 
 

of sleep is still an attractive notion and has been since the 1960’s (Vertes & Eastman, 2000). 

Today, mechanisms of synaptic plasticity are being investigated in conjunction with sleep to 

get new insight to its possible connections to memory (Benington & Frank, 2003). Another 

milestone within sleep research was the discovery of “slow wave sleep” (SWS) in 1937. This 

was achieved by the use of electroencephalography (EEG), a method that continues to be 

pivotal within sleep research today (Blake & Gerard, 1937). In 1953 Aserinskey and 

Kleitmann discovered another intriguing sleep state named rapid eye movement (REM)-sleep 

after its most prominent feature (Sandyk, Tsagas, Anninos, & Derpapas, 1992). As several 

subcomponents of sleep have been discovered, researchers have started to consider if these 

components also serve different functions.       

 What is the function of sleep? Although there is no shortage on theories, this issue 

remains one of the open questions within neuroscience today. In the following, the function of 

sleep will be explored through a theory of synaptic plasticity. This theory suggests that 

synapses are potentiated during the day and that sleep is crucial for bringing potentiated 

synapses back to a homeostatic level (Tononi & Cirelli, 2006). Possible evidence for this 

theory will be demonstrated through a sleep deprivation study and by the use of structural 

magnetic resonance imaging (sMRI) and visual evoked potentials (VEP).  

1.1 Aspects of sleep that support sleep function 

Before examining sleep function one should clarify why scientists are so confident that 

sleep serves a function at all. Several key aspects of sleep have been revealed by a variety of 

research, promoting the understanding that sleep is not a mere epiphenomenon.   

 From an evolutionary perspective sleep can in several ways be regarded as 

maladaptive since animals cannot mate, take care of offspring or acquire food during periods 

of sleep. Also, the sleep-state is a vulnerable state where one is less responsive to stimuli, and 

unable to protect oneself from predators (Siegel, 2012). Sleep does on the other hand have 

positive aspects as well. Sleep saves energy, slows metabolism and prevents animals from 

being active when it is not productive (Siegel, 2009). Nevertheless, numerous researchers 

believe the functions of sleep extend beyond these facets, thus arguing that although sleep 

occurs in the most profitable timeframe it does not automatically make it the sole purpose of 

sleep. In addition, although debated, several prominent sleep researchers state that sleep is in 

fact universal (Gilestro, Tononi, & Cirelli, 2009). This means that all animals including 

insects sleep. Moreover sleep is believed to be both pervasive (Bergh & Mulder, 2012) and 

irresistible (Orzel-Gryglewska, 2010). One could therefore argue that, despite the 
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disadvantages, sleep serves several functions that cannot be accomplished as effectively in 

any other state in any animal (Azar, 2006).       

 As mentioned, cognitive research has not been sparse when it comes to demonstrating 

the limitations of the sleep-deprived brain. In general, converging results strongly support that 

sleep loss is detrimental for most cognitive tasks (Lim & Dinges, 2010). In extreme 

circumstances, total sleep deprivation can cause delusions and hallucinations (Ross, 1965). 

Moreover, rats have been reported to die after some weeks of total sleep loss (Rechtschaffen 

& Bergmann, 1995). Indeed, it has been argued that the same outcome is expected in humans 

after long-term sleep deprivation. Fatal familial insomnia, a rare disease characterised by 

progressive untreatable insomnia, results in death after several months (Almer et al., 1999). 

Still, whether death is directly or indirectly caused by sleep deprivation is disputable.  

 The features described above demonstrate that sleep most likely serve an important 

purpose. There is far less agreement however upon what is actually aided by sleeping. 

Nevertheless, Allan Rechtschaffen captured the current belief within sleep research noting 

that: “If sleep doesn't serve an absolutely vital function, it is the greatest mistake evolution 

ever made” (Stickgold, 2006, p. 559).       

   1.2 Sleep definition, architecture and characteristics     

 At the behavioural level sleep is usually defined by specific postures which vary 

across species, behavioural inactivity, elevated arousal threshold, rebound if deprived, and 

reversed if stimulated (Vassalli & Dijk, 2009). Within the neurosciences, sleep is often 

defined in terms of electrophysiological characteristics. These characteristics can easily be 

detected by the use of polysomnography, which is a conjunction of measurements usually 

comprising an EEG and an electro-oculography (EOG), which measures eye movements, 

which is important for detection of REM-sleep. In addition, one usually includes a measure of 

chin movement and body muscle and hart rate (Taheri, Lin, Austin, Young, & Mignot, 2004). 

 Sleep is today understood as consisting of two distinct forms. These are called REM- 

and non-REM (NREM)-sleep. NREM sleep can be further subdivided into four different 

stages, roughly corresponding to sleep depth. Stage 1-sleep is the lightest form of sleep, which 

occurs immediately after sleep onset or what subjectively might feel like “falling asleep”. 

Stage 2 is another form of light sleep, characterized by bursts of brain activity or what is 

called sleep spindles. Stage 3 and 4 is characterised by low frequency high amplitude (delta) 

waves and is therefore in conjunction referred to as slow wave sleep. SWS is the deepest form 

of sleep and correspondingly responsiveness threshold is elevated during this state (Carskadon 
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& Dement, 2011). It is believed that the thalamus and the cerebral cortex are key 

neuroanatomical components of the bioelectric and behavioral aspects of NREM sleep. Other 

structures are also central such as frontal brain areas, parts of the hypothalamus and brain 

stem, cerebellum, spinal cord as well as parts of the autonomic nervous system (Andrés, 

Garzón, & Reinoso-Suárez, 2011).         

 REM-sleep, which is distinct from the other four sleep types, is often referred to as the 

fifth stage. Although not characterised as light sleep per se, REM brain activity (theta waves) 

actually resembles waking activity. The REM state has several additional characteristics such 

as bursts of rapid eye movements, total body paralysis called atonia and frequent and vivid 

dreaming (Carskadon & Dement, 2011). The pontine tegmentum is central for the generation 

of REM sleep (Braun et al., 1997). In addition, individual signs of REM sleep can be evoked 

by different brainstem structures (Reinoso-Suarez, Andres, Rodrigo-Angulo, & Garzon, 

2001). A human night of sleep usually consists of 90-minute cycles, where one fluctuates 

between the different sleep stages. During the first part of the night when sleep pressure is 

high there is commonly a high prevalence of slow wave sleep. In the later parts of the night 

when sleep pressure declines, REM sleep becomes increasingly central (Feinberg & Floyd, 

1979) 

1.3 Plasticity          

 According to a prominent sleep theory that later will be discussed in detail, sleep could 

be connected to plastic processes within the cortex (Tononi & Cirelli, 2006). Contrary to 

earlier beliefs, one today regards the adult brain as a plastic entity, meaning it has the ability 

to change over time in response to environmental demands (Eriksson et al., 1998). This 

change can be manifested at different levels in terms of structural and functional alterations. 

As changes in neuronal function are essentially always based on a structural change at some 

level, the clear distinction between structural and functional plasticity is at times hard to make 

(Castren & Hen, in press). Macrostructural neuroanatomical changes can be detected in 

humans by employing advanced sMRI techniques typically coupled with motor- or cognitive 

training, allowing for quantification of e.g. cortical grey matter changes (Draganski et al., 

2004).           

 Synaptic plasticity is a leading candidate mechanism for learning (Derrick, 2007). The 

most prevalent forms of synaptic plasticity are long-term potentiation (LTP) and long-term 

depression (LTD). LTP can be defined as a persistent enhancement of synaptic signal 

transmission, while LTD can be defined as a persistent weakening of synaptic signal 
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transmission (Bliss & Lømo, 1973). LTP can be divided into earlier and later phases 

depending on the progress of change. Early LTP (E-LTP) can occur after only a few hours by 

for example a postsynaptic neuron attaining additional receptors (Bliss & Cooke, 2011). 

Neurogenesis on the other hand, is the creation of a new functional nerve cell. This, and other 

protein synthesis-dependent mechanisms are examples of more robust and long-lasting forms 

of LTP (Bliss & Cooke, 2011). These processes could take several days if not weeks and are 

thus understood as late LTP (L-LTP). It has been postulated that sleep might enable the 

plastic processes described to continue efficiently across time (Tononi & Cirelli, 2006).  

2.0 The SHY hypothesis 

 The synaptic homeostasis hypothesis (SHY) is an intriguing theory on sleep function 

formally proposed by Tononi and Cirelli in 2003 (Tononi & Cirelli, 2003). It attempts to 

explain the function of slow wave sleep by connecting it to a process of synaptic downscaling. 

A positive aspect of this theory is that it strives to be consistent with one of the most 

established theories within sleep research today, namely the “Two-process model”. The two 

process model is a description of sleep regulation consisting of a “process S”: homeostatic 

sleep drive and a “process C”: circadian regulation (Borbély & Tononi, 1998). Tononi and 

Cirelli state that SHY is a detailed description of “process S” (Tononi & Cirelli, 2006).  

 A schematic illustration of SHY is provided in Figure 1. The basic assumptions of 

SHY are that wakefulness result in a net increase in synaptic strength. Synaptic potentiation 

increases the metabolic burden, and slow wave sleep is therefore needed to downscale 

synapses back to a sustainable level (Tononi & Cirelli, 2006). In a way sleep is the price we 

pay for plasticity” (Tononi & Cirelli, 2012). 
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Figure 1. Schematic illustration of SHY.         

During wakefulness (light background) humans experience the environment. Synapses (in white) are shown with 

an arbitrary starting weight of 100 and neurons spike as within normal waking which result in a corresponding 

“waking-EEG”. As the day comes to an end one synapse (indicated in red) has grown to a weight of 150, while 

the second synapse remains unchanged. In addition, a new synapse with a weight of five (indicated in red) has 

appeared. During succeeding sleep (dark background) synchronous neuronal firing which results in large slow 

waves are reflected in the EEG. Synaptic downscaling commences and synapses are weakened by (e.g.) 20% 

(green color). The synapse with a weight of 5 has been downscaled below minimum strength and removed. The 

reduced synaptic strength also reduces the synchronization of neuronal activity as reflected in less slow wave 

activity in the EEG. As a new day commences, neural circuits have preserved traces from previous experiences, 

but are at the same time ready for the cycle to start over. Figure adapted from (Tononi & Cirelli, 2006).  

2.1. Wakefulness foster synaptic potentiation 

The awake-state consists of continuous stimulation from the environment. According 

to SHY this stimuli, be it active learning or “passive involvement”, will result in plastic 

changes at the synaptic level (Tononi & Cirelli, 2006). These changes are predominantly 

caused by presynaptic firing, followed by depolarization, that is; firing of postsynaptic 

neurons (Tononi & Cirelli, 2006). In addition the neuromodulatory milieu (for example high 

levels of noradrenaline) will aid the storage of what is registered as a significant event 

(Tononi & Cirelli, 2006). In other words synaptic plasticity will mainly be caused by LTP 

rather than by LTD. Consequently, a full day of waking will generate a net increase in 

synaptic strength throughout large portions of the cortex (Tononi & Cirelli, 2006). 
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2.1.1 Evidence for wakefulness fostering synaptic potentiation 

Much of the supporting evidence for wake fostering synaptic potentiation derives from 

anatomical animal studies. Knott and colleagues (Knott, Quairiaux, Genoud, & Welker, 2002) 

investigated plastic processes within the adult cortex by performing a whisker stimulation 

study on adult mice. A metal piece was fastened onto a single whisker, leaving the others 

untouched. The whisker was then stimulated in a way that resembled normal whisker activity 

by an electromagnetic coil. Synaptic density was then calculated by serial electron 

micrographs, in addition to a “blind” observer counting synapses. The researchers discovered 

that after stimulating the whisker for 24 hours, synaptic density in the corresponding brain 

area had increased by 36%. The increase was concluded to be caused by an escalation of 

synapses, both excitatory and inhibitory (Knott et al., 2002). It should be mentioned that the 

current article is not clear about potential sleep episodes within the experiment. Although the 

mice were “freely moving” and continuously stimulated, this is not necessarily an effective 

deprivation method in itself. As the stimulation was not painful, one cannot eliminate the 

possibility that as mice got progressively tired they were able to sleep while the whisker was 

stimulated.           

 Another rodent study also concluded in favor of SHY. Cirelli and colleagues 

investigated gene expression within the sleep-wake cycle in rats and reported that 

wakefulness (independent of time a day) was associated with molecular changes associated 

with LTP such as Arc and BDNF. Sleep on the other hand was shown to severely reduce or 

even eliminate the expression of LTP-related genes, while at the same time fostering protein 

synthesis and other characteristics of synaptic depression (Cirelli, Gutierrez, & Tononi, 2004).

 Drosophila melanogaster more commonly known as the fruit fly is a popular subject 

within sleep research. Although the drosophila brain is very different from mammalian brains, 

numerous sleep characteristics are shared. In addition, drosophila have similar plastic 

mechanisms and synaptic features as humans (Gilestro et al., 2009). Gilestro and colleagues 

investigated whether waking and sleep affected synaptic markers within the drosophila central 

nervous system. Bruchpilot protein levels, which are important for synaptic activity, were 

used to quantify synapse number. Male flies were either sleep deprived by a mechanical 

method, or were allowed undisturbed sleep. After the deprivation period brains were 

dissected. The researchers found that bruchpilot levels were higher after sleep deprivation 

compared to sleeping controls. This increase correlated with the duration of the sleep 

deprivation. Correspondingly, volumetric increases where located in antennal lobes of sleep 

deprived flies. Although ultimately indirect the observed increases in either number or volume 
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of synaptic connections occurring during wakefulness (Gilestro et al., 2009), is evidence in 

favor of SHY. An additional study also investigating the fruit fly, attempted to find direct 

evidence for wake and sleep fostering morphological changes within synaptic terminals 

(Bushey, Tononi, & Cirelli, 2011). The researchers selected specific cell populations within 

the fly brain and proposed that wake might affect synaptic density and size. Adult flies were 

either sleep deprived or were able to sleep undisturbed. A researcher blind to the conditions 

then imaged the brains with a Prairie confocal microscope. The results yielded a volume 

increase in the presynaptic terminals of certain cells after sleep deprivation. In other cells the 

increase was manifested in spine number, branching and lengthening of dendritic trees. In 

addition, richer waking experiences resulted in larger synaptic growth (Bushey et al., 2011). 

 Human research although indirect has also been in concordance with SHY. A PET 

study by Braun and colleagues reported that metabolism increased from early to late 

wakefulness (Braun et al., 1997). Since brain metabolism as measured by PET likely reflects 

synaptic activity, and since potentiated synapses require more energy, these results are in 

concordance with SHY (Tononi & Cirelli, 2006). 

2.2 Sleep and synaptic downscaling       

 Although there are immense adaptive and cognitive benefits to a plastic brain, it is 

understood by SHY that this plasticity also comes with several costs. Tononi and Cirelli state 

that stronger synapses consume more energy, cellular supplies, space and in the end also 

saturate learning ability. It is reasoned that as more synapses are strengthened, firing threshold 

is lowered and neurons will become increasingly excitable. Distinguishing actual signal from 

irrelevant noise will therefore become increasingly difficult. Thus, net potentiation will 

ultimately decrease the signal to noise ratio. Granted the principles described are correct, the 

increase in synaptic strength cannot go on indefinitely. Synapses must be regulated and 

returned to a sustainable level. For cognitive and adaptive reasons this downscaling is 

according to SHY best achieved during sleep. Synaptic homeostasis or net downscaling is 

accomplished by reducing the strength of all synapses converging onto the same neuron 

(Tononi & Cirelli, 2006). In this way it is understood as somewhat different from LTD or de-

potentiation. Possibly pruning or removal of weak synapses may also occur (Tononi & Cirelli, 

2006). If each synapse discards the same amount of weight the relative difference between 

them will be preserved and memory traces would ultimately be maintained. (Tononi & Cirelli, 

2006).  



9 
 

2.2.1 Evidence for downscaling of synapses during sleep 

Supporting evidence for the notion that SWS downscales synapses largely derives 

from animal studies. In the drosophila study by Gilestro and colleagues previously described, 

the researchers additionally sought to investigate the decline in bruchpilot expression during 

sleep. Flies were collected after a day of natural wakefulness, and additionally every 3 hours 

across the night while sleeping. In both males and females, it was reported that bruchpilot 

levels declined progressively in the course of sleep, ultimately reaching its lowest level at the 

end of the night (Gilestro et al., 2009). Although supportive of SHY, one could argue that 

similar results could have occurred if flies were allowed to rest while awake.  

 Indeed, in additional experiments from the study by Bushey and colleagues previously 

described, wakeful rest was implemented as an independent variable.  In these experiments 

the authors focused on morphological changes during sleep. Fruit flies were exposed to what 

is called a “fly mall”, a place where flies could fly around, explore and interact with other 

flies. Flies were then collected either straight after a day of enriched experience, or after 

additional hours of sleep deprivation. The researchers reported that sleep deprived flies had 

similar branch alterations of length and number as flies collected immediately after 

enrichment. Thus, quiet wake did not downscale the alternated branches. In contrast, flies that 

were allowed to sleep after the enriched experience had reversed all morphological 

parameters back to levels observed in waking controls (not experiencing enrichment). 

Additionally, post sleep recordings revealed that flies that had been active in the fly mall for 

12 hours slept more, both during the day and at night (Bushey et al., 2011). Possibly there was 

an additional need for downscaling as the rich waking experience had resulted in larger 

increases in synaptic strength.         

 Rodent studies have also been concordant with the homeostatic proposition of SHY. 

Liu and colleagues sought to find direct evidence for variations in synaptic strength across the 

sleep-wake cycle. More precisely they examined if a net increase in synaptic strength would 

occur after wake and weather this potential increase would be counteracted by sleep. 

Recordings of miniature excitatory postsynaptic potentials (mEPSCs) from frontal cortex 

brain slices of rats were examined for frequency (presynaptic modifications) and amplitude 

(postsynaptic modifications) changes. Rats were either sleep deprived by gentle handling or 

were allowed to sleep without interruption for 4 hours. Rats were subsequently euthanized 

and the synaptic efficacy of pyramidal neurons was measured. It was reported that the 

frequency of mEPSCs was significantly higher in rats kept awake for 4 hours compared to 

sleeping controls. In addition, the mean amplitude of mEPSCs was also larger in sleep 
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deprived rats. To investigate the matter further, another experiment was conducted were 

certain rats were allowed “recovery sleep” of 2 hours after sleep deprivation, while others 

were not (Liu, Faraguna, Cirelli, Tononi, & Gao, 2010). EEG was employed to record sleep 

architecture and length. The rats that were allowed to recover after deprivation had 

significantly lower mEPSCs frequencies compared to deprived controls. Liu and colleagues 

consequently concluded that synaptic strength increases with continuous wake, affecting both 

presynaptic and postsynaptic sites. The net synaptic strength in rat frontal cortex is then 

decreased with recovery sleep. These findings according to the authors is the first direct 

demonstration of cortical synaptic increases within periods of wake and restoration to lower 

levels after periods of sleep (Liu et al., 2010), and therefore serve as highly supporting 

evidence for SHY.     

2.3 Slow wave activity, synaptic strength and homeostatic regulation   

 During NREM sleep most cortical neurons engage in periods of depolarized up states 

characterized by extensive neuronal firing. These periods are followed by hyperpolarized 

down states characterized by neuronal silence (Vyazovskiy et al., 2009). Nevertheless, 

according to SHY, the neuromodulatory milieu (for example low levels of noradrenaline) 

ensures that synaptic activity does not generate synaptic potentiation (Tononi & Cirelli, 

2006). Tononi and Cirelli state that synaptic strength and number influence nighttime firing 

periods, and the architecture of the slow waves within SWS. Stronger synapses directly 

increase neuronal firing synchrony, that is the number of neurons experiencing an up (firing)- 

or down (not firing)-state at the same time (Tononi & Cirelli, 2012). Thus, compared to 

weaker synapses, highly potentiated ones would give rise to an EEG recording of larger 

amplitude waves with steeper slopes. Following this argumentation it would also mean that 

slow wave activity (SWA) would be higher at sleep onset compared to at the end of sleep. 

Additionally, SHY states that SWA can be locally regulated within the cortex. Accordingly, if 

synapses within visual cortex is especially potentiated during wake, post sleep EEG 

recordings should reveal a local SWA increase within visual cortex (Tononi & Cirelli, 2012). 

 A perhaps bold declaration of SHY is that sleep slow waves may not simply reflect 

synapse strength and number but may also have an active role in bringing forward synaptic 

homeostasis (Tononi & Cirelli, 2012). Hence, slow waves are not understood as an 

epiphenomenon, instead the sequences of depolarization-hyperpolarization is believed to 

cause the downscaling of potentiated synapses (Tononi & Cirelli, 2006). 
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2.3.1 Evidence for synaptic strength affecting SWA      

 In a sleep deprivation study Vyazovskiy and colleagues tested whether cortical 

neurons fire differently in sleep depending on time awake. Rats were implanted with 

microwire arrays in the left barrel or frontal cortex, in addition to undergoing a 

polysomnographic test. All rats were sleep deprived for 4 hours by presenting new objects or 

tapping the cage if EEG showed drowsiness or rats laid down in sleeping position. After 

deprivation, rats were allowed rebound sleep. The wake data indicated that as rats were sleep 

deprived neuronal firing rates increased along with increasing sleep pressure. Post deprivation 

sleep data revealed that during early NREM sleep neuronal up states were frequent, short, and 

in addition neurons stopped or resumed firing in near synchrony with the rest of the 

population. Neuronal down states were also frequent but longer. These findings correlated 

with changes in SWA, as early sleep was associated with large slow waves with steeper 

slopes. As sleep progressed firing rates and synchrony decreased, while neuronal up-state 

periods increased. As expected large slow waves within this time period were rare. The 

researchers concluded that increases of firing during wake affect SWA and is counterbalanced 

by sleep (Vyazovskiy et al., 2009).        

 To investigate possible local qualities of sleep regulation Huber and colleagues 

performed an EEG study on human subjects. Participants performed a motor learning task 

with a rotation element just before going to sleep. Subjects also performed a control task 

without the rotation element prior to or after the experimental task. Although the tasks were 

almost indistinguishable, only the rotation task is understood to activate right parietal brain 

areas. Immediately after the rotation adaptation task, the researchers recorded participants’ 

sleep for 2 hours. In addition to the expected general EEG sleep characteristics, it was 

discovered that after the experimental task (mental rotation), recordings showed a local 

increase in SWA within right parietal electrodes. Thus, the rotation adaptation task elicited a 

localized response in the sleep EEG that was not discovered in the control task. The 

researchers concluded that SWA can be selectively induced in restricted regions of the 

cerebral cortex (Huber, Ghilardi, Massimini, & Tononi, 2004).     

 It is difficult to find solid evidence for perhaps the most controversial statement of 

SHY, namely the causal role of SWA. Although Tononi and Cirelli validate that SWA and 

synaptic downscaling are closely related they have not produced direct evidence for a causal 

role. This has also been criticized by several researchers (Frank, 2012). 
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2.4 Critique of the SHY hypothesis        

 SHY has been criticized for being overly simplistic when interpreting molecular 

changes and their effects within the brain. In addition, several processes are highly regulated 

by the circadian system and could therefore account for some of the findings ascribed by SHY 

to sleep and waking. Furthermore, several prominent studies have reported results that 

conflict with certain assumptions and predictions of SHY.  

2.4.1 Molecular change and synaptic effects 

Results from several studies investigating gene expression and molecular changes 

within the sleep-wake cycle have been recapped to promote SHY. However, molecular 

changes do not inevitably reflect or accompany functional changes (Liu et al., 2010). In 

addition, relatively few molecules associated with plasticity have single synaptic effects. 

Molecules that are high in wake such as Arc and BDNF (Cirelli et al., 2004) have been 

interpreted as evidence for wake fostering LTP. Nevertheless, both Arc and BDNF do not 

solely facilitate LTP but additionally at times LTD and other similar processes (Frank, 2012). 

Vice versa molecules interpreted as evidence for synaptic downscaling during sleep are also 

required for some forms of LTP (Frank, 2012).      

 Noradrenaline levels, which Tononi and Cirelli have forwarded as one of the key 

candidate mechanisms for determining the direction of synaptic scaling, actually have 

complex effects on plasticity. For instance, noradrenaline can promote LTD depending on 

brain location and type of receptor (Frank, 2012). Thus, the presence of certain molecules 

alone does not necessarily predict the direction of synaptic change, neither whether there has 

occurred a functional change at all (Frank, 2012).  

2.4.2 Brain temperature and corticosterone levels 

Some of the strongest evidence in favor of SHY has derived from studies employing 

drosophila melanogaster. Drosophila is an ectothermic insect, and therefore does not have the 

ability to internally regulate its brain temperature. Ectothermic insects thus regulate brain 

temperature by modulating activity level or by changing to environments of suitable 

temperature (Stevenson, 1985). Several drosophila studies, including the study described by 

Bushey and colleagues have reported microstructural alterations during wake that accord with 

SHY. Fascinatingly, in drosophila, warm temperatures give rise to several of the same effects, 

such as increased axonal branching within the same neurons that were explored by Bushey 

and colleagues (Peng et al., 2007). Intriguingly, it has been documented that these temperature 
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effects are mediated by pathways which are shared with activity-dependent synaptic plasticity 

(Peng et al., 2007).          

 Numerous reports, including studies reviewed above, have concluded that in 

drosophila sleep reverses the structural alterations caused by wake. This reversal is 

considerably larger than effects reported by studies employing other organisms such as 

rodents (Frank, 2012). Actually, the only animals, which exhibit similar extensive structural 

downscaling during sleep-like states, are hibernators. During hibernation brain temperature 

swiftly declines and there is a massive retraction of dendrites and synapses (Ohe, Garner, 

Darian-Smith, & Heller, 2007). Thus, results from a large amount of studies employing 

drosophila melanogaster could in fact be caused by effects of brain temperature which is not 

in accord to the premises of SHY        

 In rodents the stress related hormone corticosterone is also regulated by the cycle of 

sleep and waking and levels are additionally increased during sleep deprivation. Moreover 

acute increases in corticosterone has been demonstrated to give rise to several structural 

alterations such as both frequency (Olijslagers et al., 2008) and the amplitude (Karst & Joëls, 

2005) increases of mEPSCs in rat hippocampus. Numerous effects reported by rat studies and 

forwarded as support for SHY (as the study by Liu et al. where rats were sleep deprived) 

could in fact be caused by corticosterone increase (Frank, 2012). 

2.4.3 Conflicting evidence 

Although the exact mechanisms remain unclear, a dominating view within 

contemporary sleep research is that sleep promotes memory functions. SHY regards the 

positive influence of sleep on memory as an indirect result of net synaptic downscaling as it 

increases the signal to noise ratio (Tononi & Cirelli, 2006). Granted, several scientists support 

the notion that sleep fosters memory consolidation in a more narrow sense. This view does 

not stem from one well-defined model as is the case with SHY, but generally it is believed 

that neurons that are activated to encode information during wake are selectively reactivated 

during sleep (Born, Rasch, & Gais, 2006). During sleep the reactivated neurons will mainly 

fire within hippocampal ripples and neocortical sleep spindles (Grosmark, Mizuseki, 

Pastalkova, Diba, & Buzsaki, 2012). SHY avoids both the concept of consolidation and 

reactivation of memory traces, which is peculiar as large amounts of research supports this 

notion (Grosmark et al., 2012). Still, the two concepts are not necessarily mutually exclusive 

as a net decrease during sleep could occur in concert with reactivation of certain memory 

traces. Nevertheless, it is not intuitive how this would transpire as SHY predicts that the 
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“sleep-milieu” highly disfavors LTP.        

 By coupling an object location memory task with the odor of a rose, Rasch and 

colleagues elegantly manipulated memory reactivation during sleep (Rasch, Büchel, Gais, & 

Born, 2007). The task, which involved memorizing the location of certain cards, was 

performed in the evening. Subsequent sleep was monitored. During the first periods of SWS, 

the rose-odor was either re-presented or a vehicle was presented for the first time. Subjects 

were subsequently retested the following day. It was reported that compared to the vehicle 

presentation, memory of the card locations had greatly enhanced in the rose-odor re-exposure 

group. Results were not replicated when coupling the rose odor with a procedural tapping 

task, regardless of whether the re-exposure was presented within SWS or REM sleep. 

Moreover, re-presenting the odor to an additional group during the day did not enhance 

memory of card location significantly. To investigate their results further, fMRI was 

employed during post task sleep or during post task waking. As hypothesized, it was reported 

that re-exposure to the odor during SWS and wake activated left anterior and posterior parts 

of the hippocampus. Nevertheless, the effects were considerably weaker within the wake 

group. The researchers concluded that during slow wave sleep hippocampal networks were 

especially sensitive to stimuli that could prompt reactivation. Although these results do not 

exclude the possibility that other processes could be taking place within the cortex during 

SWS, the authors concluded in favor of the “consolidation model”, stating that reactivations 

during SWS are causative factors for the consolidation of hippocampal memories (Rasch et 

al., 2007). It should be mentioned that although Rasch and colleagues reported odor-cued 

activation within hippocampus, they did not locate reactivation of memory traces per se. As 

fMRI was not employed during encoding, one cannot be certain that the memory traces that 

were active during the task were in fact the ones that were reactivated during nighttime. 

 SHY and similar models focus on the homeostatic abilities of SWS and do not 

attribute an explicit role to REM sleep (Grosmark et al., 2012). This is perhaps peculiar, as 

surprisingly few enquiries have been performed to exclude the homeostatic role of REM sleep 

(Grosmark et al., 2012). For instance several studies, (e. g. the article by Bushey et al. 2011 

described above) discuss their findings in relation to sleep but also mostly in relation to SWS 

alone, even though the subjects have been deprived of both REM and SWS.   

 By examining spiking activity of rat hippocampal pyramidal cells and interneurons 

during sleep, Grosmark and colleagues investigated the specific roles of REM and NREM 

sleep, respectively (Grosmark et al., 2012). As rats lay down in sleeping position EEG was 

employed to separate REM from NREM sleep. The researchers discovered a significant 



15 
 

decrease in firing rates in both pyramidal cells and interneurons across the sleep period in 

total. These results are consistent with SHY. However, when analyzing the firing architecture 

within each NREM and REM period independently the researchers observed an increase in 

firing rate during SWS. This increase was counterbalanced by a substantial decrease in firing 

rate during REM sleep, which subsequently resulted in an overall net decrease. Additionally, 

Grosmark et al. discovered significant correlative evidence for theta wave involvement in 

synaptic downscaling (Grosmark et al., 2012). It should be noted that firing rate regulations 

within the cortex do not necessarily involve identical mechanisms as those operating within 

the hippocampus. Still, downscaling of cortical firing rates could in fact not be caused by 

SWA as stated by SHY but instead by intervening REM episodes, as observed within the 

hippocampus in this study (Grosmark et al., 2012). 

2.5 Intention of current study 

For obvious practical and ethical reasons no direct functional or microstructural 

evidence for SHY has derived from human studies. Sleep research employing human subjects 

has typically involved some type of sleep deprivation supplemented with cognitive tasks. 

Results from this line of research have emphasized immense cognitive deterioration caused by 

sleep deprivation (Durmer & Dinges, 2005). A number of human sleep deprivation studies 

have also employed fMRI to investigate corresponding deviations in neuronal activation, and 

both activity impairments and possible compensatory neuronal recruitment have been 

observed (Gujar, Yoo, Hu, & Walker, 2010).     

 Macrostructural consequences of sleep and sleep deprivation on the other hand have 

been sparsely explored within human participants. Recent research demonstrating that subtle 

structural brain differences can be detected in humans after only a few hours (Sagi et al., 

2012) strongly suggests that inquiries into the macrostructural associations with sleep and 

sleep deprivation using MRI measures are feasible.      

 In addition, human sleep-related functional plasticity at the cellular level has been 

scarcely explored. VEP, a visual stimulus specific event-related potential (ERP) indexes 

synaptic transmission and likely aspects of functional plasticity within the visual cortex 

(Elvsåshagen et al., 2012). An averaged ERP consists of several positive and negative 

deflections that are called peaks or components. These peaks typically consist of a number to 

indicate the timing and a letter to indicate valence. The sequence of peaks following a 

stimulus is believed to reflect the sequence of neural processes beginning with early sensory 

processes and advancing through decision- and response-related processes (Lucka, 
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Woodmana, & Vogela, 2000). VEP collected during different phases in a sleep deprivation 

period could therefore provide novel insight into the neuronal and synaptic consequences of 

sleep and sleep deprivation. Moreover, as functional and structural plasticity are closely 

related it would be sensible to conduct studies measuring both manifestations of plasticity in 

conjunction.           

 As described, insect and rodent studies have several limitations such as possible 

confounds of brain temperature, stress and obvious caveats related to generalization to human 

neuroscience. Research employing human subjects is therefore needed. Thus, the main aim of 

the current study was to test specific predictions from SHY by investigating and 

characterizing structural and functional changes in cortical grey matter in human subjects as a 

function of sleep deprivation. We carried out a 24-hour sleep deprivation study using sensitive 

state-of-the art structural MRI and VEP assessments collected at three different time points; 

(1) in the morning after a good night’s sleep, (2) in the evening after about 12 hours of wake, 

and (3) in the morning after 24 hours without sleep.      

 Based on predictions about synaptic effects of wakefulness our main hypothesis was 

that wakefulness would be associated with cortical thickening from morning to evening in 

concordance with a net increase in synapse potentiation. Furthermore, we anticipated that the 

synaptic potentiation would be accompanied by increased VEP amplitudes. As subjects were 

sleep deprived and synaptic downscaling could not occur, we further hypothesised that 

cortical thickening would continue or remain stable from evening until the following morning 

after sleep deprivation, as would the increases in VEP amplitudes. 

3.0 Methods and materials 

3.1 General overview and design 

The current study was a longitudinal within subjects design sleep deprivation study 

coordinated from Oslo University Hospital, Rikshospitalet. The study was approved by the 

Regional Ethical Committee of South-Eastern Norway (REK Sør-Øst). A general overview of 

the study protocol is provided in Table 1. Subjects (see below for recruitment procedures etc.) 

arrived early in the morning, and extensive MR and VEP data were collected thereafter. 

Preceding the data collection, blood and saliva samples was attained. In total, the morning 

session lasted approximately 2-3 hours after which the subjects were free to leave hospital 

grounds but were firmly instructed not to fall asleep, have no intake of caffeine or energy 

drinks, or exercise. Subjects returned in the evening for an identical reassessment. Following 
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the evening data acquisition, subjects stayed overnight in an office room at the hospital. 

Subjects were instructed to play a videogame of their choice for a minimum of 3 hours. After 

completing the desired amount, most subjects continued to play videogames, while some 

watched a movie and spoke with the research assistant. As the deprivation period expanded 

and subjects became increasingly tired, struggling subjects were permitted to go for short 

walks within hospital grounds accompanied by the research assistant.    

 During the night, subjects also completed sheets of personal information, in addition to 

completing depressive and manic questionnaires. A research assistant monitored the 

participants at all times and no participant fell asleep during the night.    

 The final assessment was initiated precisely 24 hours after subjects had awoken the 

previous morning. Before commencing the last session, participants assessed their sleepiness 

by completing a questionnaire. The research assistant also completed a sleepiness scale on 

behalf of the subject. Total sleep deprivation period was approximately 27 hours as the final 

session commenced after 24 hours of sleep loss.  

Morning 1 approx.  8 am Evening approx. 9 pm Morning 2 approx. 8 am 

MR (resting state-fMRI, DTI and 

sMRI) 35 minutes 

MR (resting state-fMRI, DTI and 

sMRI) 35 minutes 

MR (resting state-fMRI, DTI and 

sMRI) 35 minutes 

EEG/VEP 8 minutes EEG/VEP 8 minutes EEG/VEP 8 minutes 

Saliva sample (cortisol) 

Blood sample (hydration and 

health) 

Saliva sample (cortisol) 

Blood sample (hydration and 

health) 

Saliva sample (cortisol)  

Blood sample (hydration and 

health) 

Went home (no sleeping, no 

training, no caffeine or energy 

drinks) 

Stayed over night playing 

videogames and filling out 

questionnaires (no/little sugar 

intake) 

Went home (experiment 

completed) 

Table 1.  Study protocol 

3.2 Participants 

21 male participants between the ages of 19-25 (Mean: 22.10 SD: 2.07) were recruited 

by student mail lists. After indicating their interest in the study current and prior medical 

history of the participant and family members was disclosed over the phone. Subjects were 

excluded if they had a history of depression, had any head injuries, were on medication, had a 



18 
 

high level of alcohol consumption or consumed any form of drugs other than nicotine. 

Subjects could not be severely addicted to nicotine, as they were not allowed any intake of it 

during the study. All participants were given a detailed oral description of the study in 

addition to a declaration form that was in compliance with the Helsinki Declaration. This 

form was read and signed before study onset. Subjects were also informed to arrive fasting 

with the exception of water before each session. Patients were insured through 

Pasientskadeforsikringsordningen and received NOK 1000,- for participating in the study. 

3.3 MRI acquisition 

Imaging was performed on a 3T Philips Achieva Scanner (Philips Healthcare, 

Eindhoven, the Netherlands) utilizing an 8-channel SENSE head coil at the Intervention 

Centre, Oslo University Hospital. The pulse sequence employed for volumetric analyses was 

a T1-weighted 3D turbo field echo (TFE) sequence (TR/TE = 8.4 ms/2.3 ms, FOV = 256 mm 

× 256 mm × 220 mm, 1 mm isotropic resolution, TA = 7 min 40 s). This sequence was run 

twice in order to increase signal-to-noise ratio.     

 Additionally resting-state fMRI and diffusion tensor imaging (DTI) data were 

collected, although this was beyond the scope of the current study. Participants were 

instructed to keep their eyes open at all times during the session and to focus on the most 

comfortable of 3 fixation crosses marked inside the scanner. It was specified that the 

participant could not under any circumstances fall asleep. During the fMRI acquisition 

patients were instructed to simply lay still and fixate on the cross. As the structural segments 

of the scan began patients listened to the radio channel of their choice in addition to 

performing a subtraction task. The subtraction task was difficult enough for subjects to stay 

alert and focused and they were also instructed to press a button as they reached certain 

numbers. For each button press a signal was given to the research assistants so that they could 

monitor their state of wakefulness. The scan session took approximately 35 minutes in total.

 All patients orally confirmed that they had remained awake and performed the task as 

described within the first two scan sessions. During the third scan, as subjects struggled with 

the effects of sleep loss, several subjects reported that they had difficulties in staying awake. 

Still, as research assistants monitored their button pressing during the task, subjects could not 

have slept for more than a few seconds during the structural portions of the scan. A few 

subjects ceased pressing the button for a short period but instantly continued the task after the 

research assistant addressed them over the calling system. Granted, one subject ceased 

performing the task and did not respond to the research assistant. The completed T1 sequence 
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was examined for movement artifacts and as the T1 sequence was within good standard the 

rest of the session was aborted so that the following tests would not be affected by the subject 

having slept. 

3.4 VEP acquisition         

 Continuous EEG was recorded by the use of 15 monopolar Ag/AgCl electrodes, 

according to the international 10–20 system. Impedances were maintained below 5 kΩ. 

Ground and reference electrodes were attached to the participants forehead. Eye movements 

were recorded by electrodes placed on the outside of each eye close to the temple in addition 

to placing electrodes above and under the right eye. The EEG was sampled at 250 Hz with an 

amplifier band-pass of 0.05–100 Hz.        

 VEP collection was completed at 3 different time points following MR acquisition. 

Participants were placed 97 cm from an LCD screen in binocular vision. They were instructed 

to continuously focus on a centrally presented filled red dot. The paradigm consisted of 

presenting either a grey background or a flickering checkerboard (2 reversals/s; check size = 

0.5º). To avoid startling participants, the checkerboard was presented to subjects before the 

paradigm commenced for approximately 10 seconds. The checkerboard was presented by the 

use of E-Prime 1.1 (Psychology Software Tools, Inc., Sharpsburg, PA, USA).   

 During all three sessions, the VEP paradigm consisted of a flickering checkerboard for 

2 short blocks (20 sec with 40 reversals) separated by periods of grey background of 1 or 5 

minute duration. In total the experiment lasted 8 minutes.     

 Participants were instructed to blink as little as possible during the checkerboard 

phases and were allowed to listen to music during the data acquisition. In addition, all 

participants were monitored by web cam to ensure that they followed instructions and 

maintained awake throughout the session. If participants appeared to dose off, a research 

assistant would address them to keep them alert. Most participants completed all VEP 

acquisitions without significant trouble. One subject struggled excessively with staying awake 

during the last session and a research assistant had to engage in conversation numerous times.  

3.5 Neuropsychology and psychometrics 

For health purposes all participants were weighed before each session and blood 

pressure and pulse was measured during the evening. Furthermore, all participants filled out 

detailed questionnaires concerning general sleep patterns in addition to general demographic 

information such as work and living situation. After 24 hours of sleep deprivation each 

subject completed the Stanford sleepiness scale (Hoddes, Zarcone, Smythe, Phillips, & 
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Dement, 1973), which assesses degree of sleepiness. It consists of an 8-point scale ranging 

from highly alert and awake to asleep. Additionally the research assistant that had followed 

the subject completed a likert sleepiness scale on behalf of the subject ranging from 1-10 

where 1 represented an alert and awake subject while 10 represented the subject being asleep.

 Saliva and blood samples were collected at all three sessions. Blood samples were 

either taken by the research assistant or by a nurse, and saliva samples were collected by the 

research assistant by presenting the subjects with a piece of cotton which was placed in the 

mouth for 1 minute. Blood samples were collected to evaluate the health and hydration of 

individuals while saliva samples were collected to assess cortisol levels.    

 All participants underwent two clinical tests namely: The Montgomery-Asberg 

Depression Scale (MADRS) (Montgomery & Asberg, 1979) and Young Mania Rating Scale 

(YMRS) (Young, Biggs, Ziegler, & Meyer, 1978). Both tests include cognitive aspects such 

as subjective mindset and emotional state and are assumed sensitive to depressive and manic 

symptoms.   

3.6 sMRI analysis 

All datasets were processed and analyzed at the Neuroimaging Analysis Lab at KG 

Jebsen center for psychosis research, Oslo University Hospital. As mentioned fMRI and DTI 

analysis is beyond the scope of this study, and the following analysis is regarding sMRI. The 

analysis tool employed was FreeSurfer (version 5.1.0, http://surfer.nmr.mgh.harvard.edu) and 

the longitudinal analysis consisted of 3 steps typically referred to as Cross, Base and Long 

(Reuter, Schmansky, Rosas, & Fischl, 2012).       

 After sorting the data, we conducted the step called Cross where each time point was 

independently processed cross sectionally resulting in 63 datasets. The two repeated T1 

sequences were extracted from the raw data and combined to increase the signal-to-noise 

ratio. Also, several preprocessing steps such as scull stripping, segmentation, intensity 

normalization and reconstruction of cortical surface was performed at this stage (Reuter et al., 

2012). Cortical thickness at each point across the brain surface was automatically calculated 

as the shortest distance between pial surface and white matter (Fischl & Dale, 2000). All 

datasets were visually inspected and manually corrected if necessary.   

 The Base stage consisted of creating a template (also called base) by averaging the 

data from all three time points for each subject resulting in 21 datasets. Although there are 

several ways to create the template, we treated all time points equally to avoid possible 

asymmetries or biases (Reuter et al., 2012). The template was further visually inspected for 
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errors and corrected if necessary.        

 During Long, each time point was processed longitudinally. Directly copied 

information from the template and some information (not directly copied) from the cross-data 

were combined, and by the use of complex algorithms (Reuter et al., 2012) 63 datasets were 

created once more. At this stage manual editing was performed for the last time.   

 This three-steps approach has been shown to increase sensitivity to longitudinal 

differences (Reuter et al., 2012).The individual cortical thickness maps were subsequently 

resampled onto a common surface, smoothed with a full width at half maximum Gaussian 

kernel of 15 mm and submitted for higher-level analysis (Engvig et al., 2010).  

3.7 VEP analysis  

EEG analysis was conducted with EEGLAB, run by MATLAB 7.6.0. (MathWorks, 

Natick, MA, USA). The data was initially highpass filtered at 1 Hz. Subsequently epochs of 

400 ms were extracted from the raw data. The epochs commenced at -50ms, which is 50 ms 

before the checkerboard was presented and therefore serves as a baseline. The epochs thus 

ended after 350 ms, and this action was performed for each checkerboard reversal. Epochs 

with amplitudes exceeding ±100 microvolts on any channels were rejected. This was 

implemented to remove strong artifacts such as eye blinks. Data was subsequently lowpass 

filtered at 30Hz to more accurately identify peak deflections. Subsequently data was baseline-

corrected relative to the 50 ms pre-stimulus period and averaged to ERPs. ERPs were 

quantified by extracting values from the Oz channel (see below) resulting in C1 P1 and N1.  

3.8. Statistical analysis of sMRI 

Vertex-wise general linear models (GLMs) testing the differences in cortical thickness 

between: tp1 and tp2, tp1 and tp3, and tp2 and tp3 were performed. To further quantify the 

cortical alterations we divided the main clusters and extracted mean cortical thickness within 

each significant cluster across all time points. At this point in the analysis the data was 

thoroughly investigated both graphically and on the standard template to make initial 

judgments of the results.          

 In order to reduce the probability for type I errors, a statistical step was performed to 

correct for multiple comparisons. As Bonferroni correction can be overly conservative when 

employed on MRI data (Hagler, Saygin, & Sereno, 2006) we performed a correction based on 

cluster size inference by means of Z Monte Carlo simulations. By the use of FreeSurfer, 

clusters were tested against an empirical (non-parametric) null distribution of maximum 

cluster size. Initial cluster-forming threshold employed was p < 0.05 (Hagler et al., 2006).
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 Millimeter difference between the first and the two latter scans were transformed into 

percent difference in order to facilitate plotting of group-averaged data. Furthermore, to assess 

a possible relationship between percent thickness change within each cluster and degree of 

sleepiness, bivariate Pearson’s correlation coefficients (r) were calculated. To correct for 

multiple analyses on the same dataset the alpha level was Bonferroni corrected with a factor 

of 14 (corresponding to the number of tests) resulting in a corrected alpha level of 0.004. 

Additionally, post-hoc analyses were run in order to investigate possible relationships 

between structural and functional alterations using Pearson’s correlation analysis. The 

corrected alpha level was employed.  

3.9 Statistical analysis of VEP        

  In order to quantify amplitude alterations of C1, P1, and N1 data was transformed into 

absolute values. To assess whether possible alterations were statistically significant, paired 

samples t tests with an alpha level of 0.05 were performed in SPSS on relevant VEP measures 

(C1, P1 and N1 amplitudes). To correct for multiple analyses on the same dataset, the alpha 

level was Bonferroni corrected (0.05/9) resulting in a new alpha of 0.006. To assess the size 

and direction of a possible relationship between absolute values within each VEP and degree 

of sleepiness, bivariate Pearson’s correlation coefficients were calculated. The Bonferroni 

corrected alpha level was employed.  

3.10 General- and statistical analysis of neuropsychological- and psychometrics tests 

All blood samples were analyzed at Oslo University Hospital, Rikshospitalet and pulse 

and blood pressure was evaluated on the spot to assess subject health. Hydration effects 

within the blood and cortisol effects within saliva could not be analyzed in time of 

submission. MADRS, YMRS, SSS, and the likert sleepiness scale were all analysed in SPSS 

for computation of summary statistics and general descriptives. General sleep pattern the last 

year and demographic information were not analysed as it is beyond the scope of this study.  

4.0 Results  

 4.1. Psychometrics           

 The YMRS test ranges from the minimum score of 0 to the maximum score of 60. 

Within our study 7 was employed as a cut off, thus scoring above 7 would imply that the 

subject could be manic at the time. The YMRS scores ranged from 0 to 4 (M= 0.90, SD= 

1.35). Thus we concluded that none of our subjects were manic at the time of data acquisition.

  MADRS ranges from the minimum score of 0 to the maximum score of 60. The 
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MADRS scores ranged from 0 to 22 (M= 3.52, SD= 4.91). One subject scored 22 indicating a 

possible depression. As several theories have suggested that plasticity might be affected by 

depression (Duman, 2002), this dataset was inspected for deviations compared to the rest of 

the group. No deviations were found, and the dataset was not excluded from the analyses. 

 The SSS scale ranges from the minimum score 1 to the maximum score of 8 

(admittedly indicating asleep). Scores ranged from 2 to 7 (M=4.5, SD= 1.14). The likert 

sleepiness scale completed by the research assistant ranged from 1 to 10. Subjects scored 

within the range of 4 and 9 (M= 5.32, SD= 1.52). It should be mentioned that correlations 

between subjective and assistant scores were mildly negative. Also, assistant scores were not 

collected for 2 of the subjects thus only 19 datasets were analyzed.       

4.2. sMRI  

Figure 2 displays the results from the vertex-wise GLM analysis testing the differences 

in cortical thickness between each time point. Five clusters of significant (p<0.05, corrected, 

right panel) grey matter variation were identified, including four clusters reflecting significant 

differences between time point (tp) 1 and 2 and one cluster reflecting differences between tp 1 

and 3. The four former clusters comprised frontal and temporal regions bilaterally within 

superior frontal cortex, inferior temporal cortex and additionally within middle frontal cortex 

only within the left hemisphere. The latter cluster was highly overlapping with the left frontal 

cluster from the first contrast.         
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Figure 2. Uncorrected (p < .05, left panel) and corrected (p < .05, right panel) GLM analysis results. Five 

significant clusters are depicted. Blue color represents cortical thinning, while red color represents cortical 

thickening between the different assessments.  

 



25 
 

Figure 3 displays the localization and the percent difference in cortical thickness 

between baseline and the two later assessments in the various clusters. There is an increase in 

cortical thickness from the first morning and to the following evening ranging from 1 to about 

2.5% in the various clusters. Cluster 1 (left prefrontal cortex) has the largest alteration while 

cluster 4 (right temporal cortex) has the smallest. From evening and to the following morning, 

there seem to be a trend toward a slight decrease in thickness but not enough to reach baseline 

scan measurements or significane. It should be specified that we know nothing of the 

continuous cortical development between the 3 scanning sessions. Although straight lines 

between scanning time points are depicted in the figure, which might give the illusion of a 

smooth increase or decrease, it is not known how these results transpire. 

 

 

Figure 3. Upper panel: Localizations of significant clusters from the GLM testing the difference in 

cortical thickness between tp1 and tp2. Lower panels: Percent difference in cortical thickness between tp 2 and 3 

relative to baseline. Error bars depict 95 % confidence interval. The grey horizontal line at zero represents the 

first scan, which can be understood as a baseline 
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Within cluster 1, thickness changes between tp 1 and 2 were on average -0.06mm (tdiff 

(20)= -4.26). The difference between tp 1 and 3 were on average -0.04mm (tdiff(20)= -3.07). 

Within cluster 2, thickness changes between tp 1 and 2 were on average -0.05mm (tdiff(20)= -

3.41). Within cluster 3, thickness changes between tp 1 and 2 were on average -0.05mm 

(tdiff(20)= -4.30). Within cluster 4, thickness changes between tp 1 and 2 were on average -

0.04mm (tdiff(20)= -3.83). It should be mentioned that negative values are in fact increases as 

tp 2 and 3 were subtracted from tp 1.   

 Tp1  Tp 2 Tp 3 Tp 1-2 Tp 1-3 Tp 2-3 

M SD M SD M SD tdiff p tdiff p tdiff p 

Cluster 1 2.60 0.13 2.66 0.13 2.65 0.16 -4.26 0.001 -3.07 0.006 0.74 0.469 

Cluster 2 3.26 0.18 3.33 0.18 3.29 0.20 -3.41 0.003 -1.87 0.007 1.50 0.149 

Cluster 3 2.64 0.08 2.69 2.69 2.66 0.14 -4.30 0.001 -0.96 0.351 1.10 0.285 

Cluster 4 3.41 0.17 3.45 0. 17 3.43 0.17 -3.83 0.001 -1.47 0.156 1.71 0.103 

Table 2. Descriptives and accompanying t values and significance levels for each cluster. Note that “1-2”: tp2 

subtracted from tp1 thus negative values are increases.  

4.2.1 Correlations between cortical thickness and sleepiness 

All Pearson’s correlation coefficients (Table 3) between all clusters and both 

measurements of sleepiness were non-significant. These results indicate no relationships 

between feeling or acting sleepy and the structural alterations reported in our study. 
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  Subjective score Assistant score 

  R  Sig. (2-tailed) R Sig. (2-tailed) 

Cluster 1 Tp 1-2   0.15 0.504 0.04 0.871 

Tp 1-3 -0.27 0.243 -0.00 0.997 

Cluster 2 Tp 1-2   0.09 0.691 0.05 0.836 

Tp 1-3  0.17 0.451 0.15 0.531 

Cluster 3 Tp 1-2   0.12 0.621 0.12 0.631 

Tp 1-3 -0.19 0.402 -0.08 0.752 

Cluster 4 Tp 1-2   0.05 0.833 0.15 0.545 

Tp 1-3 -0.07 0.765 -0.08 0.758 

 

Table 3. Depiction of Pearson’s correlation coefficients and significance level between sleepiness data scored by 

subject and by assistant and each cluster. R: Person’s correlation coefficient.  

4.3. VEP amplitudes 

Amplitudes were located for: C1 (most negative value between 110 and 450ms), P1 

(most positive value between 90 and 150ms) and N1 (most negative value between 130 and 

190 ms). As presented in Figure 5 there is a trend toward variation in amplitude for all VEP 

components across all time points. As with the prior figure it should be specified that we 

know nothing of the transpiration of the amplitude variation between data acquisition time 

points. 
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Figure 5. C1, P1 and N1 amplitude change at all three time points by the use of absolute values. Confidence 

interval of 95% is depicted in the graph and the grey horizontal bar illustrates the baseline or first data 

acquisition. C1, P1 and N1 increase during the day becoming more positive and negative respectively. During 

evening and to the following morning all amplitudes return somewhat to their original state but not as much as 

during baseline measurements. All trends were statistically non-significant) 

Within C1, amplitude changes between tp 1 and tp 2 were on average -0.59µV. The 

difference in amplitude between tp 1 and tp 3 was on average -1,51µV and -0.92µV between 

tp 2 and 3. Within P1, amplitude changes between tp 1 and tp 2 was on average -1.13µV.  The 

difference in amplitude between tp 1 and tp 3 was on average -1.27 µV and -0.14µV between 

tp 2 and 3. Within N1, amplitude changes between tp 1 and tp 2 were on average 0.03 µV. 

The difference between tp 1 and tp 3 was on average -0.18µV and -0.20µV between tp 2 and 

3. Neither of the microvolt changes was statistically significant (see table 4). The results of 

the t tests thus indicate that although there were trends depicted in Figure 5. none of these 
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alterations actually reached statistical significance.  

 Tp1  Tp 2 Tp 3 Tp 1-2 Tp 1-3 Tp 2-3 

M SD M SD M SD tdiff p tdiff p tdiff p 

C1 -6.35 4.21 -5.76 3.90 -4.84 4.36 -0.42 0.678 -1.99 0.061 -0.65 0.525 

P1  4.22 5.51  5.35 4.62  5.48 4.97 -0.95 0.353 -2.00 0.059 -0.12 0.908 

N1 -4.98 4.19 -5.00 3.71 -4.80 3.43  0.02 0.982 -0.26 0.800 -0.19 0.852 

Table 4. Descriptives and accompanying t value and significance level for each VEP. Note that “1-2”: tp2 

subtracted from tp1 thus negative values are increases.  

4.3.1 Correlations between VEP and sleepiness  

All Pearson’s correlation coefficients (Table 5) between VEP change and both 

measurements of sleepiness were non-significant. These results indicate no relationships 

between feeling or acting sleepy and the functional alterations reported in our study.  

  Subjective score 

 

Assistant score 

  R Sig. (2-tailed) R Sig. (2-tailed) 

C1 Tp 1-2    0.19 0.404  0.47 0.041 

Tp 1-3   0.14 0.557 -0.17 0.501 

P1 Tp 1-2   -0.32 0.155 -0.22 0.366 

Tp 1-3  -0.01 0.955 -0.26 0.292 

N1 Tp 1-2   -0.03 0.908  0.04 0.873 

Tp 1-3   0.09 0.691 -0.13 0.591 

Table 5. Depiction of Pearson’s correlation coefficients and significance level between sleepiness data scored by 

assistant and subject and VEP components. R: Person’s correlation coefficient.  

4.4 Correlations between structural and functional measures  

All correlation coefficients (see table 6) between all clusters and all VEP components 

were statistically non-significant. These results indicate that there is no relationship between 

functional and structural alterations reported in this study. 



30 
 

 Cluster1  

tp 1-2 

Cluster1 

tp 1-3 

Cluster2 

tp 1-2 

Cluster2 

tp 1-3 

Cluster3 

tp 1-2 

Cluster3 

tp 1-3 

Cluster4 

tp 1-2 

Cluster4 

tp 1-3 

C1 tp 1-2 -0.12 -0.38 -0.19 -0.21 -0.11 -0.20 -0.26 -0.34 

C1tp 1-3 -0.13 -0.19 -0.15 -0.19  0.06 -0.08  0.12 -0.23 

P1 tp 1-2  0.07 -0.22  0.05 -0.01  0.08  0.13  0.33  0.32 

P1tp 1-3 -0.07 -0.17 -0.09  0.16 -0.38 -0.22  0.11  0.11 

N1 tp1-2  0.35  0.41  0.39  0.19  0.32  0.01  0.15 -0.15 

N1 tp1-3 -0.11 -0.13 -0.14  0.10 -0.27  0.10 -0.08 -0.02 

Table 6. Person’s correlation coefficients between structural and functional data. 

5.0 Discussion 

Third mate Gregory Cousins was simply performing a standard turn when it all went 

terribly wrong and he for some reason struck a reef (Adasiak et al., 1990). Owing to large 

amounts of research, one today recognizes that the failed turn by a fatigued boatman was 

probably caused by the detrimental effects sleep deprivation has on cognitive abilities. 

Although the knowledge of sleep has broadened considerably since the time of Aristotle, a 

proper understanding of sleep function is still lacking. Nevertheless, the synaptic homeostasis 

hypothesis, and its propositions on sleep function have grown to be one of several dominant 

theories (Frank, 2012) within the field. As certain aspects of the hypothesis have been 

challenged, research employing new methods and human subjects could inform the current 

debate. In line with our hypotheses, by employing highly sensitive longitudinal measures of 

cortical thickness we have reported that wake foster measurable macrostructural increases in 

grey matter, presented as 4 clusters: within superior frontal cortex bilaterally, left middle 

frontal cortex and inferior temporal cortex bilaterally. This increase was not significantly 

alternated during a period of sleep deprivation. The implication of these results for the debate 

on sleep function will be discussed in the following. 

5.1 Macrostructural increases in grey matter      

 As initially hypothesized we reported in the current study that cortical thickness 

increased from morning to evening, resulting in 4 significant bilateral clusters. The left frontal 

cluster was spatially the largest and additionally showed the largest differences in terms of 

percentiles. If these results genuinely mirror alterations within the brain the possibilities are 
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either intracellular or extracellular. Thus structural alterations do not necessarily mirror 

changes within a cell but could in fact be caused by alterations of the space between cells. A 

possible extracellular candidate could be water. It has been reported that subjects restricted to 

low levels of water for 2 days had significant decreases in grey matter volume (Streitbürger et 

al., 2012). Indeed, there might be a hydration effect in our study as one is typically less 

hydrated early in the morning compared to evenings as one has not been drinking while asleep 

(Armstrong et al., 2010). Although our subjects were allowed to drink as they pleased there is 

still a possibility for increased hydration after a full day of water intake. Unfortunately, due to 

methodological constraints, the anatomical loci of the hydration effects reported by previous 

studies including the left caudate nucleus and right-cerebellar posterior lobe cannot be 

replicated using the current estimates of cortical thickness. However, as subjects drank all 

through the night there should be no trend toward a decrease in cortical thickness between 

time point 2 and 3 if our results are solely based on hydration effects. Moreover it is not 

intuitive why there would be lateral effects if they were caused by variability in hydration. 

 It is also important to discuss possible scanner artefacts such as scanner temperature. 

In the current study, when scans were performed in the morning our subjects were the first to 

enter the scanner that day. In the evening on the other hand our subjects were the last 

individuals to get scanned after the scanner had consequently been employed for a full day. 

Thus, it is possible that the scanner was cooler in the morning compared to the evening 

consequently causing the reported results (be it expressed in an extracellular or intracellular 

fashion). Still, in addition to lateral effects there is a significant difference in cluster 1 

between the first and the second morning (with uncorrected alpha level) in which the scanner 

should be within approximately equal temperature. It is not intuitive why these effects would 

transpire if they were solely caused by scanner artefacts related to time of scanning etc.  

 If the results reported are intracellular a possible underlying mechanism could be 

features connected to LTP. As grey matter alterations have occurred after approximately 12 

hours, neurogenesis or any other forms of L-LTP cannot be the underlying cause. There is 

evidence on the other hand (Bliss & Cooke, 2011) for E-LTP occurring after only a few 

hours. Thus our results might possibly be connected to some of the earliest manifestations of 

naturally occurring plasticity. Although one can only speculate as to what manifestations have 

been detected, the results are still in concordance with the premises of SHY. As described 

earlier functional synaptic strength (which supposedly expand across the day), is most likely 

initiated by structural alterations (Castren & Hen, in press). Hence, it is logical that highly 

potentiated synapses are somehow larger than less potentiated synapses. Accordingly, the 
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current study might have detected the structural “instigator” of the functional daytime 

increase forwarded by SHY and reported from several studies.    

 There were no significant differences in cortical thickness between time point 2 and 3. 

Although somewhat difficult to assess, we hypothesized that cortical thickness should either 

expand or remain stabile during the period of sleep deprivation. This with the logic that 

synapses would not be able to become downscaled during continued wakefulness. As there 

were no significant alterations our initial hypothesis of stabilisation was confirmed. Why there 

was not a continuing grey matter increase could be because synapses had already reached 

their maximum potentiation level. Indeed our results fit well with other articles reporting that 

extending waking period beyond its natural physiological duration did not result in further 

structural increases (Maret, Faraguna, Nelson, Cirelli, & Tononi, 2011). Admittedly, there 

was a non-significant trend toward a decrease in cortical thickness during extended sleep 

deprivation, and one cannot exclude the possibility of this trend being significant with a larger 

N. Although speculative, such a decrease could be related to effects of stress or downscaling 

during micro sleep episodes, both of which we could not control for in the present study.

 Why are the structural alterations reported mostly within frontal areas? Following the 

premises of SHY one would possibly expect a non-specific increase in synapses across cortex. 

Nevertheless, synaptic potentiation could according to SHY transpire locally (Tononi & 

Cirelli, 2006) and be positively modulated by usage. It is therefore a possibility that frontal 

areas were frequently accessed during a day of school and studying, as our sample mostly 

comprised of students.  

5.2 No relationship between sleepiness or functional data and structural data 

We found no effects of sleepiness on the structural results reported and this is perhaps 

counterintuitive within the logic of SHY. Would not synapses of maximum weight result in a 

dire sleep need? And are not increases in subjective and behavioural sleepiness connected to 

an elevated physical drive for sleep? Not necessarily. The subjective feeling of sleepiness is 

not always proportionate to actual sleep need. Sleep regulation is partly controlled by 

circadian rhythm, a biological clock that regulates the sleep wake cycle (Borbély & Tononi, 

1998). The circadian rhythm can be affected by “external signs of morning” such as 

temperature and light (Honma, Honma, Kohsaka, & Fukuda, 1992). Consequently, sleep 

deprived individuals might feel sleepier around 5 am. when it is colder and darker compared 

to at 7am. when it is warmer and lighter. Moreover, as our two assessments of sleepiness 

correlated negatively, alternative sleep measurements such as EEG could possibly have given 
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different results.          

 Although there are strong connections between structural and functional plasticity we 

found no relationship between these aspects in our current study. This could be since we are 

measuring possible alterations within two different brain areas and that these effects are not 

mediated across the brain. Besides, following our earlier incentive of what the structural 

alterations supposedly depicted, it is only logical that we did not find any functional 

alterations in primary visual cortex as we found no structural alterations within this area. As 

we did find significant structural alterations within frontal areas on the other hand, it is more 

feasible to expect a possible functional alteration within this area although this would only be 

speculation.  

5.3 Limitations of current study and future research 

If the structural daytime alterations reported in the current study are in fact 

intracellular they might nevertheless be evidence against the SHY hypothesis. Stress related 

hormones called Glucocorticoids are highly regulated by the circadian system (Mongrain et 

al., 2010). Glucocorticoids reach their extreme during wake, low point during sleep and levels 

are additionally elevated during sleep deprivation (Mongrain et al., 2010). Stress is hence a 

problematic confound for several of the premises of SHY and additionally for sleep 

deprivation studies in general. Intriguingly, glucocorticoids can effect synapses in a way that 

closely resembles the alterations hypothesized by SHY (Frank, 2012). Corticosterone the 

rodent equivalent of cortisol has as previously described profound effects on synaptic efficacy 

and plasticity-related molecules (Frank, 2012). In prolonged waking corticosterone has been 

reported to both enhance neuronal excitability and promote LTP (Joëls, Krugers, & Karst, 

2008). Although less is known about the effects of cortisol, one cannot exclude the possibility 

that our daytime results were not caused by wake per se but instead by cortisol levels that are 

regulated by wake. Unfortunately, cortisol levels could not be analysed in due time for the 

present thesis, but future research should get a better understanding of the effects of cortisol 

and correct or control for these effects as best possible. Nevertheless it should be mentioned 

that although cortisol levels increase during sleep deprivation we did not in fact find any 

significant alterations within this period.      

 Within the current study we had little control over certain aspects of subject sleep. 

Subjects were instructed to get a good night sleep prior to the first assessment. We employed 

the first scan as a baseline assuming that subjects had followed our instructions. Still, as they 

were not monitored as they slept, we have no knowledge of their sleep quality or if they even 
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slept at all. Additionally, the first scan was conducted early in the morning, and certain 

subjects thus had to wake up as early as 6 am, possibly affecting their normal sleep pattern. 

Moreover as subjects were free to leave after the first data acquisition, we had little control 

over what subjects did during the day. One cannot exclude the possibility that subjects drank 

coffee, exercised or even slept during the day. Micro sleep episodes during sleep deprivation 

or moments of sleep during resting state fMRI were additionally not controlled for. Thus 

future research should employ higher control over subject sleep both the night before and 

within the 24 hour study. Eye tracking could additionally be employed during MR 

acquisitions and EEG could be employed during the sleep deprivation period to study both 

micro sleep episodes and sleepiness as this can be detected by EEG (Mardi, Ashtiani, & 

Mikaili, 2011Mardi, Ashtiani, & Mikaili, 2011).      

 In our study all VEP trends were ultimately statistically non-significant thus 

challenging our initial hypothesis. The trend of an amplitude increase during the day would 

have been in concordance with the SHY hypothesis, and one could speculate if a larger N 

would have resulted in significant effects. Moreover our subject group consisted of only men 

and within fairly young ages (19-25). Thus, it might be hard to generalize our results to other 

groups. Additionally we have no information on how the daytime structural alterations 

transpired within the current study as we only had one scan during the morning and one 

during the evening. Furthermore, although the within-subject longitudinal design provide a 

sensible approach for studying effects of sleep deprivation, we could not compare our results 

to a group which was not sleep deprived. Thus future research should employ larger subject 

groups, including both men and women and employ additional scans during daytime to clarify 

how the temporal and directional effects of cortical variation transpire. Moreover, future 

research should have a group of sleeping controls to increase our understanding of cortical 

variation during sleep and sleep deprivation.       

 As our subjects were deprived of all sleep, and as few explorations have been 

performed earlier, if would be profitable if impending research explored the relationship 

between SWS and REM more closely and employed selective deprivation methods. In 

addition as it is unclear whether neuronal activity varies depending on brain region during 

sleep this should be investigated further. Future research should additionally increase the 

understanding of hydration effects and cortisol level, on cortical thickness.  
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6.0 Conclusion  

Our initial hypotheses were validated as we found 4 significant bilateral clusters of 

grey matter increase during a day of wake. This increase was not significantly reduced during 

sleep deprivation. After careful consideration and discussion it is concluded that these results 

can be employed as additional evidence for the SHY hypothesis. Nevertheless it would be 

rewarding if future research got a better understanding of the relationship between REM and 

SWS and effects of brain temperature as these are weaknesses within the synaptic 

homeostasis hypothesis. Additionally impending research should get a better understanding of 

hydration- and cortisol level effects, as these are possible confounds within the current study.  
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