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Abstract 
The perceptron algorithm is an iterative method for solving a system of linear inequal­

ities. We study the performance of this algorithm when used as a "learning" algorithm 
in a type of artificial neural networks called perceptrons. We show that the number of 
iterations needed to reach a solution can grow hyperexponentially in the dimensionality of 
the problem. We also extend an earlier result concerning the behaviour of this algorithm 
in the case where no solution exists. 

1 Introduction 

The perceptron algorithm is an iterative algorithm for finding a solution to a set of linear in­
equalities. Our interest in the algorithm stems from the important role it has played in the field 
of artificial neural networks, where it has been used for "training" certain pattern classification 
machines called perceptrons (see for instance [Rosenblatt, 1962] or [Minsky and Papert, 1969]). 

The simplest form of a perceptron is a so called linear classifier. Given two sets of "patterns", 
i.e. two sets of vectors v+ and v- in Rn- 1• By "training" such a perceptron one means running 
an algorithm whose goal is (if possible) to produce a weight-vector win Rn- 1 , and a threshold 
value E> in R such that 

vw > e 
vw < e 

For the sake of conveniance, we put 

for v E v+ 
for v E v-. 

v = {v+x{1}}u{-v-x{-1}}. 

(1) 

(2) 

Using the relation :v = (w, -E>) one easily checks that (w, -E>) is a solution of (1) if and only 
if :v is a solution of 

v:v > 0 for v E V. (3) 

In general, any subset V of Rn for which (3) has a solution :v will be called separable, and 
:v will be called a separating vector for V. We will only consider finite sets V. The perceptron 
algorithm is the following iterative method for computing a separating vector for V: 

Start with some initial vector :v in Rn. 
As long as possible choose any v in V for which 
v:v :::; O, and replace :v by :v + v. 

It is well known that this algorithm terminates with a separating vector for V whenever V 
is separable, see for instance [Minsky and Papert, 1969] or [Block and Levin, 1970]. In the 
non-separable case, it never terminates. 

Let V be a finite set of vectors in Rn. 
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DEFINITION 1 . A V -chain is a sequence of vectors :ll(o) 1 :ll(t) 1 •• • 1 which for all i satisfies 

:ll(i+l) = :ll(i) + V(i) for some V(i) E V satisfying :ll(i)V(i) ~ 0. ( 4) 

Observe that the succesive values of :v being produced by the perceptron algorithm is a V-chain. 
The symbols :ll(o), :ll(t)• ... , :ll(i)• ... , will be used to denote these values. Thus the vector :ll(i) 
is the value reached after i iterations. The initial value :ll(o) can be any vector in Rn, but is 
usually set to 0. 

When :ll(o) = 0 and V is separable, let imax = imax(V) and imin = imin(V) denote, respec­
tively, the maximum and the minimum number of iterations before the algorithm terminates. 
The actual number of iterations will depend on the choice of the vector v in each iteration. 
When Vis given by v+ and v- as in (2), we call V and vectors in V binary if v+ and v- are 
subsets of {0, l}n-t, and bipolar if v+ and v- are subsets of { -1, 1}n-t. Our main theorem's 
about separable sets are restricted to the binary case and the bipolar case, but several of the 
lemma's are valid for more general sets. 

We first consider the case where V is separable. In section 2 we find a general upper 
bound of imax(V). From this formula we get upper bounds in the binary case and in the 
bipolar case. Both these bounds grow hyperexponentially in n. In section 3 we find a lower 
bound of imin(V), valid for a more restricted class of sets. We show that there exist sequences 
of both binary and bipolar sets from this class, for which also imin grow hyperexponentially 
in n. As an easy consequence of these results, we show in section 4 that a conjecture in 
[Minsky and Papert, 1969] is false. 

In [Block and Levin, 1970] a result called the Boundedness Theorem states that for each 
finite subset V of Rn, there exists some constant K = K(V), such that ll:v(i)ll ~ ll:v(o)ll + K. 
Although elegant, the proof is non-constructive. It does not give any indication of the size of 
K or how to compute K. In section 5 we give a new proof of this result, providing a recursive 
formula for computing Kin terms of V. 

It should be emphasized that other and somewhat more efficient algorithms exist for solving 
(3) (see for instance [Hand, 1981]). However, the computations involved in the perceptron 
algorithm are extremely simple and easily implementable in an artificial neural network. 

SYMBOL 

0 
uv 
v.L 

v..lG 
proj(v, G) 
L(v, G) 
Ik 
Ek 
At 

Span(V) 
dim(V) 
conv(V) 
Vz 
int(B) 
8B 
[a,b] 
zv 
p 

DESCRIPTION 

the number 0, and also the 0-vector (0, 0, ... , 0). 
euclidean inner product between vectors u and v. 
the n- 1 dimensional subspace of vectors orthogonal to v, 

vERn\ {0}. 
vector v is orthogonal to the subspace G. 
orthogonal projection of v onto G. 
angle between vector v and subspace G, i.e. L(v, proj(v, G)). 
k X k identity matrix. 
the k-dimensional vector ( 1, 1, ... , 1). 
transpose of the matrix A. 
space spanned by the vectors in the set V. 
dimension of Span(V). 
convex hull of V. 
the subset of vectors in V orthogonal to z E Rn \ {0}. 
interior of the set B. 
the boundary of the set B. 
the line segment conv( {a, b}), a, b E Rn. 
the line through p parallel to v, for v in V and pin v.L. Such 

lines will be called V -lines. 
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2 Upper bound of imax 

In this section we first find a general upper bound of imax for separable, finite, and nonempty 
subsets V of Rn. Then we specialize to the binary case and the bipolar case, and obtain upper 
bounds of imax expressed as functions of n only. Observe that if Vis a separable set, then 0 is 
not contained in V. To simplify notation we omit the condition v E V in min{·} and max{·} 
expressions. 

For p E Rn, let 

B(p) {:cERn: llx- ~11 2 :::; 11~11 2 } 
{ :c E Rn : :c:c :::; :cp }, (5) 

thus B(p) is the ball with center ~and radius 11~11· 

LEMMA 2 . If V C B(p) then all V-chains starting with a vector in B(p) will remain in 
B(p). 

Proof. Let :c and :c + v be two subsequent vectors in a V-chain. Assume :c E B(p). We must 
proove that :c + v E B(p). We know that :cv :::; 0, and since :c E B(p) and v E B(p) we have 
:c:c :::; :cp and vv :::; vp. Then 

(:c + v)(:c + v) 

so :c + v E B(p). 

:c:c + 2:cv + vv 

< :cp+vp 

(:c + v)p 

LEMMA 3 . Let V be a separable, finite, and nonempty subset of Rn. If V C B(p) then 

. < pp 
tmax_ • { }' mm vv 

D 

(6) 

Proof. Let :C(o) 1 :C(l)• ••• , be a V-chain produced by the perceptron algorithm. Since :C(o) = 
0 E B(p) we can apply Lemma 2 and conclude that :C(i) E B(p), in particular :C(i)P :::; pp. Since 
:C(i) is a sum of i vectors from V, we also have 

:C(i)P > i min{vp} 

> i min{vv}. 

The algorithm must terminate before i min{vv} increases beyond pp, and that implies (6). D 

Let V be as in Lemma 3, then there exists a vector p such that V C B(p). Indeed, if :c is a 
separating vector for V, p = k:c, and k ~max{:;}, then V C B(p). 

The best bound we can get from (6) is obtained when pis as small as possible. From the 
definition of B(p) it follows that the set S = {p ERn : V C B(p)} is both closed and convex 
(and nonempty since V is separable). Then there exists a unique smallest vector in S. Let p* 
denote this vector. We get 

. p*p* 
tmax :::; • { } mm vv 

(7) 

Before further elaboration on this bound, we consider another bound of imax· In 
[Minsky and Papert, 1969] and [Block and Levin, 1970], bounds of imax are found which can 
be rewritten or generalized to 

max{vv} 
imax :::; ---''---::... 

ww 
(8) 
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where w is any separating vector for V satisfying ww ::::; min{ vw }. In this case there exists a 
largest such vector w, which we denote w* (this is in fact the unique smallest vector in conv(V)). 
The best bound obtainable from (8) is 

. max{vv} 
Zmax < · - w*w* 

(9) 

To compare these bounds, let J,g: Rn---+ R be defined by f(ro) = roro/min{vv} and g(ro) = 
max{vv}/roro. Put C = max{vv}j min{vv}. From (7) we have imax ::::; f(p*) and from (9) 
imax::::; g(w*). Using that w*w* =min{ vw*}, it is easy to check that the vector p = (m;t: 1 )w* 
satisfies V C B(p), and that 

f(p*) ::::; f(p) = C · g(w*). 

Similarly, the vector w = (m~~~"."})p* satisfies ww::::; min{vw}, and 

g(w*) ::::; g(w) = C · f(p*). 

When Vis a bipolar set then C = 1 and f(p*) = g(w*), so in this case (7) and (9) give exactly 
the same bound of imax· When Vis a binary set, all we know is that C::::; n. For some binary 
sets we have f(p*) < g(w*), for other sets f(p*) > g(w*). We will continue with finding an 
upper bound of f(p*). We have not found an upper bound of g(w*), other than C times an 
upper bound of f(p*). 

Now, if v1, ... , Vn E V are linearly independent, define X = X(v1, ... , vn) to be the unique 
vector satisfying ViVi = viX for i = 1, ... , n. 

LEMMA 4 If Span(V) = Rn we can find linearly independent vectors v1, ... , Vn in V such 
that 

Proof. Let V' = V n 8B(p*). Obviously V' # 0. Let 1t = Span(V') and k = dim(?i). Then 
1 ::::; k ::::; n. We will first proove that p* E ?i. Assume (for contradiction) that p* ~ 1t. Let 
q = proj(p*, 1t), and let l denote the line through p* and q. Then l is orthogonal to 1i and 
l n int(B(p*)) # 0. For all q1 E l we have V' C 8B(q'). Since V is finite we can find e > 0 
such that V \ V' C B(q') for all q' E Rn satisfying llq'- p*ll < e. Any q' E l n int(B(p*)) 
satisfying llq'- p*ll < e must then satisfy V C B(q'). But llq'll < liP* II for such a q'. This is the 
contradiction which proves that p* E ?i. Now, choose n linearly independent vectors v11 ••• , Vn 
in V, where v1, ... ,vk E V' and Vk+l•···,vn E V\ V'. Since p* and X(v1, ... ,vn) have the 
same inner product with each of the vectors in V' it follows that (X(vb .. . , vn)- p*)j_Jt, and 
since p* E 1t it follows that 

IIP*II 2 < IIP*II 2 +IIX(vl,···•vn)-p*ll 2 

IIX(vl, · · ·, Vn)ll 2 • 

0 

From (7) and Lemma 4 it follows that if Span(V) = Rn, then we can find linearly indepen­
dent vectors v1, ... , Vn in V such that 

(10) 

If V1 is a separable binary set and dim(Vl) = m < n, we can always find another separable 
binary set Va where dim(Va) = nand V1 C Va (simply let V2 contain an extra n- m linearly 
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independent binary vectors not in Span(Vl)). Any Vrchain will then also be a V2-chain, so 
imax(Vl) ~ imax(V2)· It follows that any upper bound of imax for separable binary sets which 
span Rn will also be an upper bound of imax for all separable binary sets. The same is also 
true for bipolar sets. 

THEOREM 5 . If V C Rn is a separable binary set then 

imax ~ n 5(n- 1t-1. 

If V C Rn is a separable bipolar set then 

. 4(n-1)n-1 
~max< n -- . - 4 

(11) 

(12) 

Proof. From the preceeding discussion we can assume that Span(V) = Rn. Let v1, ... , Vn be 
n linearly independent vectors in V. From the definition of X = X(vt. ... , vn) it follows that 

(13) 

where A is the n x n matrix with v1, ••• , Vn as row-vectors. To find an upper bound of 
IIX(vt. ... , vn)ll we use that 

1 

det(A) 
(14) 

where Cij is ( -1 )i+i times the determinant ofthe ( n -1) x ( n -1) submatrix that remains after 
the i'th row and the j'th column are deleted from A. The Cij 's are determinants of matrices 
whose rows are bounded in length by (n- 1)!, both when Vis binary and when Vis bipolar. 
The absolute values of the Cij's are then bounded by (n- 1) ";; 1

• For i = 1, ... , n we have 
ViVi ~ n, so from (10), (13) and (14) we then get 

. n5(n- 1)n-1 
~max< 2 · 

- min{ vv} det (A) 

When V is a binary set we have min{ vv} :::=: 1 and det2(A) :::=: 1, which gives the upper bound 
for binary sets. When V is a bipolar set we have min{ vv} = n. By adding the first row of A 
to each of the other rows we see that det(A) is a multiple of 2n-1, so det2(A) :::=: 4n-l and we 
get the upper bound for bipolar sets. D 

Both the bounds in Theorem 5 grow hyperexponentially in n. In the next section we show 
that this must be the case for every upper bound of imax for binary and bipolar sets. 

3 Lower bound of imin 

Consider, as an example, a set V consisting of exactly n linearly independent vectors Vt, ••• , Vn 

in Rn. Observe that such a set must be separable. Let A be the n x n matrix with v1, ••. , Vn 

5 



as row-vectors, and let Y be the unique vector satisfying Vj Y = 1 for j = 1, ... , n, in matrix 
notation AYt = E~. Assume that v1, ... , Vn all have integer components, and let 

be the unique representation of Y as a linear combination of v~, ... , Vn· Assume that V is 
posiUve by which we mean that a1, ... , an ~ 0. Let a:(i) be a separating vector for V, reached 
by the perceptron algorithm (with a:(o) = 0) after i = imin(V) iterations. Since a:(i) then also 
have integer components, it follows that va:(i) ~ 1 for all v in V. It follows that 

imin(V) :l:(i)Y 

:l:(i)(alvl + · · · + anvn) 

( Vl:l:(i))al + · · · + ( Vn:l:(i))an 

> (v1Y)a1 + · · · + (vnY)an 

Y(a1v1 + · · · + anvn) 
yy 

11¥11 2• 

Inspired by this example, we will find binary and bipolar sets consisting of n linearly inde­
pendent vectors in Rn, where the square length of the corresponding Y -vectors grow hyper­
exponentially in n. These sets will not necessarily be positive sets, but the next lemma guar­
antees the existence of such sets. Whenever we have a set V or a matrix A as in this example, 
the corresponding Y -vector will be denoted Y(V) or Y(A). 

LEMMA 6 . Let V consist of n linearly independent vectors in Rn. If V is not a positive 
set, we can make V positive by changing sign of some of its vectors. This can be done so that 
the length of Y (V) increases. 

Proof. Let V consist of n linearly independent vectors v1, ... , Vn in Rn, and assume Y (V) = 
al vl + ... +an Vn, where for instance an < 0. Let V' = { vl, ... ' Vn-lt -vn}· We will first 
show that IIY(V')II > IIY(V)II· Let G = Span(v1, ... , Vn-1), YG = proj(Y(V), G) and YJ = 
Y(V)- YG. Now viYG.1. = 0 for j = 1, ... , n -1. Since an < 0 it follows that Vn and Y(V) lies 
on opposite sides of G, in particular vnYGl. < 0. We can then find a constant k > 0 such that 
( -Vn )( k Yg .1.) = 2. It follows that 

Y(V') Y(V) + kY1. 

YG + (1 + k)YGl.• 

so IIY(V')II > IIY(V)II since YG..lYGl.· If V' is not a positive set, we can again change sign of 
one of its vectors such that the length of the corresponding Y-vector increases. Since only a 
finite number of sets can be reached by such sign changes, this process must eventually end up 
with a positive set. D 

Changing sign of a binary vector produces a new binary vector, and binary vectors have 
integer components. It follows from the preceeding example and lemma, that if V C Rn consists 
of n linearly independent binary vectors, then there also exists another such set V, such that 
imin(V) ~ IIY(V)II 2 ~ IIY(V)W. The same holds also for bipolar vectors. 

We will now begin the construction of sets with large Y -vectors. In this construction we 
will use Hadamard matrices. A Hadamard matrix is a square matrix with orthogonal rows, and 
with components ±1. Let H1 = [-1] and define recursively 
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It is easy to show by induction that this defines a k x k Hadamard matrix Hk for every 
k = 21, l 2: 0. Observe that the first row of these matrices consist entirely of -l's, so from 
the orthogonality all other rows consist of an equal number of 1's and -1's. Observe also that 
HkH~ = kh. 

LEMMA 1 . Let k = 21, 12: 0, and define the 2k X 2k matri~ 

[ I HtJ ] 
M= H I ' 

where I = Ik, H = Hk, and J is the k x k matri~ with 1's just below the diagonal and 0 's 
elsewhere. Then M is invertible and the vector Y = Y(M) satisfies 

IIYII 2: kk. 

Proof. Let D =I- HHtJ. Then 

1 0 0 0 0 
-k 1 0 0 0 
0 -k 1 0 0 

D 

0 0 0 1 0 
0 0 0 -k 1 

and 

1 0 0 0 0 
k 1 0 0 0 
k2 k 1 0 0 

n-1 

kk-2 kk-3 kk-4 1 0 
kk-1 kk-2 kk-3 k 1 

It is easy to check that 

M-1 = 
[I+ HtJD- 1H 

-D- 1 H 
-HtJn-1 J 

n-1 . . 

Let Y1 and Y2 denote the vectors consisting of, respectively, the first k and the last k components 
of the vector Y = Y(M). Since yt = M-1 E~k it follows that, in particular, 

Yi = D- 1(I- H)Et. 

Since the first row of H consists entirely of -1 's, and the other rows have an equal number of 
-1's and l's, we get 

so 

yt 
2 

[ 
k + 1 l 

(I -H)El = 1 , 

[ 
k + 1 l k2 + k + 1 

~k+kk-1+ .. ·+1' 
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D 

The rows of the matrix M in Lemma 7 are linearly independent since M is invertible, but 
they are neither binary nor bipolar since they have -1, 0 and !-components in the same row. 
However, the matrix M will be very useful in obtaining the matrices we want. 

THEOREM 8 . Let n = 4 · 21, l 2: 0. There ezists a separable binary set V' C Rn satisfying 

(15) 

and a separable bipolar set V" C Rn satisfying 

. ( ") (n).!!. ~min V 2: 4 2 • (16) 

Proof. Let k = ~ and let M be the 2k x 2k matrix of Lemma 7. Define M0, Mt, M~ 
and M~ to be the matrices made from M by replacing all components of the upper index 
type by components of the lower index type. The indexes -, + and 0 refer to -1, +1 and 0 
respectively, so for instance M0 is made from M by replacing all -l's in M by O's. Observe 
that M0 + Md = M and M~ + M~ = 2M. Let 

A'= [ :~ _! ] and A"= [ !i -~], 
where B is an invertible matrix consisting of O's and 1 's and with only 1 's in the last column, 
and Cis an invertible matrix consisting of -1's and 1's. For instance, we can choose B equal 
to hk except for the last column, and C equal to H2k· Observe that the rows of A' are binary 
vectors and the rows of A" are bipolar vectors. Both A' and A" are easily seen to be invertible 
since M is invertible. Consider the vector Y = Y(A'), which by definition satisfies 

Let Y1 and Y2 consist of, respectively, the first and the last 2k components of Y. Then 

(17) 

(18) 

(19) 

Adding (18) and (19) together, then dividing by 2, we get M(~Yf) = E~k· From Lemma 7 it 
follows that ~IIY1II 2: kk, so 

Let V = { v1, ... , vn} be the set consisting of the n row-vectors of A'. These vectors are linearly 
independent since A' is invertible, but V is not necessarily a positive set. However, as already 
noted, it is possible to change sign of some of the vectors in V to obtain a positive set V' which 
satisfies 

This proves the binary case. The bipolar case follows from the matrix A" in a similar way. D 
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4 A conjecture of Minsky and Papert 

In [Minsky and Papert, 1969, page 156-158], special subsets u+, u- of {0, 1}n are studied. 
These sets have the following property: 

If :z: is a vector in Rn with integer components, satisfying 

u:z: ~ 0 
u:z: < 0 

for u E u+ 
for u E u-, 

then [[:z:i[[ ~ fi, where fi is the i'th Fibonacci number: 
{fi} = {1, 1, 2, 3, 5, 8, 13, ... }. 

It follows that the maximal component of :z: must then grow exponentially inn. Maximal here 
refers to the absolute value. Minsky and Papert conjecture that this is a worst case, i.e. that 
the maximal component never has to grow faster in n than in their example. We will in this 
section show that this conjecture is false. We will show that there exist examples where the 
maximal component must grow hyperexponentially in n. 

From the proof of Theorem 8 we know that, for n = 4·21, l ~ 0, there exists a positive binary 
subset V of Rn, consisting of n linearly independent vectors V1, ••• , Vn, satisfying [[Y(V)[[ 2 ~ 
4(~)~. As before, Y = Y(V) denote the unique vector satisfying VjY = 1 for j = 1, ... ,n. 
Recall that Vis called positive if 

with non-negative coefficients a1, ••• , an. If the last component of Y is positive, then we change 
sign of all vectors in V. Then Y will change sign as well, and V will still be a positive set with 
the same coefficients a1, ... , an as before. Recall that V = { y+ X {1}} U {-y- X { -1} }. 
Let v++ = v+ X {1} and v-- = -v- X { -1}. Let y = Y(V) denote the unique vector 
satisfying 

It is easy to check that 

vY = 0 
vY = 1 

for v E v++ 
for v E v--. 

- 1 1 
Y = 2Y- 2(o, ... ,0,1). 

Indeed, if v E v++ then ~vY - ~v(O, •.. , 0, 1) = ~ - ~ = O, and if v E v-- then ~vY -
~v(O, ... , O, 1) = ~ + ~ = 1. Now, let :z: be a vector in Rn with integer components, satisfying 

v:z: ~ 0 
v:z: < 0 

for v E y+ X {1} 
for v E y- X {1}. (20) 

We will show that the maximal component of :z: must grow hyperexponentially in n, thereby 
disproving the conjecture of Minsky and Papert. Since :z: has integer components we have 
v:z: ~ 0 for v E v++ and v:z: ~ 1 for v E v--. We get 

mY :z:(a1v1 + · · · + anvn) 

(v1:z:)a1 + · · · + (vnro)an 

> (v1Y)a1 + · · · + (vnY)an 

Y(a1v1 + · · · + anvn) 
YY 

1 1 
(2"Y- 2(o, ... ,0,1))Y 

![[Y[[2 
2 

> 
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It follows that jj:JJjj2:: ~IJYII = !{2(~)-i') = (~)"i', which implies that the maximal component 
of :JJ must grow hyperexponentially in n. 

Remark. The inequalities (20) correspond to replacing the '>' in (1) with '2::'· It is 
straightforward to modify the perceptron algorithm to solve this type of inequalities instead. 
The lower bounds of imax in Theorem 8 would then have to be divided by 4. 

5 Boundedness Theorem 

In this section we assume that V is a finite subset of Rn and that Span(V) = Rn. The initial 
vector :JJ(o) in the perceptron algorithm can now be any vector in Rn, and V is no longer 
assumed to be separable. 

THEOREM 9 (Boundedness Theorem). Let V be a finite subset of Rn satisfying 
Span(V) = Rn, and let :JJ(o), :JJ(l)• ... be a V -chain. For 1 :S m :S n- 1 let 

llTm = min{L(vo,Span(vl, ... ,vm))} 

where the minimum is taken over all choices of linearly independent vectors vo, v1, ••• , Vm in 
V. Let Ko = O, K1 = max{JJvJJ: v E V}, and let 

Km+l = VKf + 2cos(llTm)K1Km + K,;/sin(llTm) for 1 :S m :S n - 1. 

Then, for all i, 

in particular 

if II:JJ(o)ll :S (K;- KLl)i 
if II:JJ<o>ll > (K;- x;_di, 

(21) 

(22) 

(23) 

As mentioned earlier, the Boundedness Theorem of [Block and Levin, 1970] only states the 
e:cistence of a constant Kn satisfying (23). In our version of the Boundedness Theorem we 
provide a recursive expression for Kn in terms of V. This section consists of several lemmas 
which together proves Theorem 9. 

Now let V, {Km}:::.=o' {llTm}!::.~111 and :JJ(o), :JJ(l)' ... be as in Theorem 9, with the extra 
assumption that 0 ft. V. The case 0 E V follows trivially from this case, since adding the 
0-vector to V does not change the set of vectors which can occur in V-chains. 

LEMMA 10 . Let Co, C1, ... , Cn be constants which satisfy Co = O, C1 2:: max{JJvJJ : v E V}, 
and 

for 1 :S m :S n - 1. (24) 

Let 
T3 = n {y ERn: yz :S (c;- C!)i where m = dim(V.,)}. 

zesn.-l 

Then all V -chains starting in T3 will remain in T3. 

Proof of Theorem 9 assuming Lemma 10. Observe that the constants in Lemma 10 
satisfy C0 < C1 < · · · < Cn. For z E sn-l and m = dim(V.,) we have 0 :S m :S n- 1, so 
(c;- CL1)i :S (c;- C!)i :S Cn and 

(25) 
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To prove the first part of (22), assume that ll:z:(o)ll ::::; (K~- K~_ 1 )t and choose Cj = Kj for 
all 0::::; j::::; n. With these choices of {Cj}j=0 , the conditions in Lemma 10 are satisfied. From 
(25) it follows that :ll(o) E B and from Lemma 10 we get :ll(i) E B, so ll:z:(i)ll ::::; Cn = Kn. To 

prove the second part of (22), assume that ll:z:(o)ll > (K~ - K~_ 1 )t and choose Cj = Kj for 
j = 0, 1, ... , n-1 and Cn = (ll:z:(o)ll +K~_dt. The conditions in Lemma 10 are again satisfied, 

and ll:z:(o)ll = (C~- C~_ 1)t so :ll(o) E B. It follows that ll:z:(i)ll ::::; Cn = (li:z:(o)ll 2 + K~_ 1)t, 
thereby proving the second part of (22). Since Kn- 1 < Kn, the inequality (23) follows directly 
from (22). D 

We will prove Lemma 10 by showing that B satisfies the conditions in the following lemma. 
Recall that for v in V and p in v.L, the V-line z; is the line through p parallel to v, i.e. 
z; = {p + rv : r E R}. 

LEMMA 11 . If B is a convez subset of Rn and 

(p+v¢B) => (l;nB=0) (26) 

for every v -line z; I then all v -chains starting in B will remain in B. 

Proof. Let B C Rn be as described and let :z: and :z: + v be two subsequent vectors in a V -chain 
where :z: E B. Then v E V, rov ::::; 0 and we must prove that :z: + v E B. Let p be the unique 
vector in v.L which satisfies :z: E z;. Then :z:, p, :z: + v and p + v all lie on the V-line z;. Since 
:z: E z; n B we know from ( 26) that p + v E B. Since B is convex, the line segment [ :z:, p + v] is 
contained in B. Since :z:v ::::; (:z: + v)v ::::; (p+ v)v it follows that :ll + v E [:z:,p+ v] C B. D 

Since B is an intersection of convex sets it follows that B itself is a convex set. It remains 
to prove that (26) is satisfied for B = B. If y E Rn \ B then there exists a vector z in sn-1 

satisfying yz > (C~- c,;)t, where m = dim(l'z). In this case we say that y is removed by z. 
The set B thus consists of all vectors y in Rn which are not removed by any vector in sn- 1. 

Observe that if v.lz, then either z does not remove any vectors on the V-line z;, or z removes 
all vectors on z;. We will prove that if p + v ¢ B, then p +vis removed by a vector z in sn-1 

satisfying v.lz, i.e. by a vector in sn-1 nv.L. We will need the following inequalities and couple 
of lemmas to prove this. 

For 1 ::::; m::::; n- 1 we easily obtain from (24) the following inequalities 

> 

> 

We also have, for 1 ::::; m ::::; n - 1, that 

cos(Wm)Cl + Cm 
sin(Wm) 

C1 + cos(wm)Cm 
sin(Wm) 

To prove (29) let Cm denote the righthandside of (24) and define Ym : (Cm, oo) --+ R by 

Ym(t) = (t2 - C!)t- cos(Wm)(t2 - Cf)t- sin(Wm)C1. 

(27) 

(28) 

(29) 

It is easy to show that when Cm+1 = Cm we get equality in (27) and (28). These equalities in 
turn imply equality in (29), so Ym(Cm) = 0. Now, 

11 



so g:n(t) > 0 when t > Cm, i.e. Ym(t) is a strictly increasing function. Since Cm+1 2: Cm (~) Cm 
we get Ym(Cm+d 2: Ym(Cm) 2: O, and (29) follows. From (24) we have C1 < sin(Wn-1)Cn and 
from (28) we have C1::::; (C!+1 - C!)t for 1 S m S n- 1, in particular C1 S (c;- c;_I)t. 
These last inequalities will be used without further notice. We will also need the following two 
lemmas. 

LEMMA 12 . If v E VI p E vj_ I and p+ v ~ Bl then p + v is removed by a vector z in sn-1 

satisfying p + v E Span(V.:, z). 

Proof. Since p + v ~ B there exists a vector z' in sn-1 satisfying (p + v )z' > ( c; - c;.,) t, 
where m' = dim(Vz' ). If m' = n- 1 then Span(V.:', z') = Rn and the proof is finished. Assume 
that m' s n- 2. Let z11 = proj(z', Span(Vz,, p+ v)). Since (p + v)z' > 0 it follows that z11 =F 0. 
Let z = z" /liz" II and m = dim(l'z). Since z.lSpan(Vz') it follows that m 2: m'. Since liz' II = 1 
thenllz"lls1and(p+v)z 2: (p+v)z" = (p+v)z' > (c;-c;.,)t 2: (c;-c.;)tsop+v 
is removed by z. Since z E Span(l'z,,p+ v), but neither p+ v nor z is in Span(V.:,), it follows 
thatp+v E Span(V.:,,z) CSpan(Vz,z). D 

LEMMA 13 . If v E V 1 p E vj_ 1 liP+ vii S Cn 1 z E sn-1 1 v ./-z1 p + v E Span(V.:, z) 1 and 
p + v E Span(V.:, v) 1 then p + v is not removed by z. 

Proof. Assume that all seven conditions in Lemma 13 are satisfied, and let m = dim(V.:). If 
m = 0 then 

(p+v)z S llp+vll S Cn = (c;-c;.)t, 

sop+ vis not removed by z. Assume that m 2: 1, which also implies that n 2: 2. If IIPII = 0 
then 

(p+v)z = vz s llvll s C1 s (C!+1 -C!)t s (c; -C!)t, 

so p + v is not removed by z. Assume that IIPII > 0. If p + v E Span(V.:) then (p + v )z = 0 and 
p+v is not removed by z. Assume that p+v ~ Span(l'z). Let a= L(v,Span(l'z)). Observe 
that a 2: Wm 2: Wn-1· It follows that 

(p+ v)z cos(L(p, z))IIPIIIIzll + cos(L(v, z))llvllllzll 
(a) 
< cos(a)(c; -llvll2)t + sin(a)llvll 
(b) 
< cos(a)(c;- ci)t + sin(a)C1 
(c) 
< cos(Wm)(c;- ci)t + sin(wm)C1 
(d) 
< (c;- c;.)t. 

(a): Since p + v E Span(V.:, z), p + v E Span(Vz, v) and p + v ~ Span(V.:) it follows that 
Span(V.:,z) = Span(V.:,v), in particular v E Span(V.:,z). Then L(v,Span(V.:)) = L(v,zl_) 
so a = L(v,zl_) = L(v1_,z). Since p E vl_ and p =F 0 we get a = L(v1_,z) s L(p,z) and 

cos(a) 2: cos(L(p,z)). Since lip+ viiS Cn we have IIPII = (llp+vll2 -llvll 2)t S (c; -llvll 2)t. 
We also have I cos(L(v, z))l = sin(L(v, zl_)) = sin( a), and llzll = 1. 

(b): The derivative of the preceeding expression with respect to llvll is positive for 0 S llvll S 
sin(a)Cn, and llvll S C1 < sin(Wn-dCn S sin(a)Cn (remember n 2: 2 and a 2: Wm 2: Wn-d· 

(c): Define h: (0,11'/2]- R by h(1) = cos(1)(c;- c?)t + sin(1)C1. We must show that 
h(a) S h(wm)· We have h'(l) = - sin(T)(c;- cnt + cos(T)C1. Since 

h'(l)(- sin(T)(c;- ci)t - cos(T)C!) = sin2(1)c;- cf, 
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and C1 < sin{'P'n-1)C,. it follows that h'('y) S 0 when 'Y 2:: 'P'n-1· We have a 2:: 'P'm 2:: '¥,._1, 
so when 'Y decreases from a to Wm it follows that h(-y) increases from h(a) to h{'P'm), i.e. 
h(a) S h{'P'm)· 

{d): Consider the function Ym defined after {29). Since Ym is an increasing function, 
Ym{Cm+1) 2:: 0, and C,. 2:: Cm+1• it follows that Ym(C,.) 2:: 0. This proves {d). D 

We are now ready to prove that {26) is satisfied for B = 13. Let v E V, p E v.L, and assume 
that p+v fl_13. Then liP+ vll2:: {c;- c;_1)i, and since llvll S C1 S {c;- c;_1)i it follows 
that IIPII > 0. We will prove that p + v is removed by a vector from sn-1 n v.L. Consider first 
the case where liP+ vii > C,.. Let z = p/IIPII and m = dim(l'z). Then v..Lz and m 2:: 1. We 
have 

so in this case is p + v removed by a vector z in sn- 1 n v.L, hence z; n 13 = 0. Consider now 
the case where liP+ vii S Cn. From Lemma 12 it follows that p+ vis removed by a vector z in 
sn-1 satisfying p + v E Span(l'z, z). If v ..Lz the proof is finished. Assume that v .f-z. Six of the 
seven conditions in Lemma 13 are now satisfied, but the conclusion is false. It follows that the 
remaining condition must be false, i.e. p + v fl. Span(l'z, v). Let again m = dim(l'z). It follows 
that n 2:: m + 2, son 2:: 2 and m:::; n- 2. Let 

z = (p + v)- proj(p + v, Span(l'z, v)). 

Since p+v fl. Span(Vz, v) it follows that z f O, so z/llzll E sn-1 nv.L. We will show that p+v is 
removed by z/llzll· Since z..LSpan(l'z, v) it follows that dim{V.z) 2:: dim(l'z) + 1 = m + 1. Since 
p + v E Span(l'z, z), we have p + v = rz + y for some r E Randy E Span(l'z). We have 

(p + v) ll!ll ~ [ llrzll 2 -llproj(rz, Span(l'z, v))ll 2]i 

~ [ {c;- C!) -llproj(rz, Span(l'z, v))II2Ji 

c,;; [{C2-C2)-( l{rz)vl )2]i 
n m llvll sin('P'm) 

~ [{C2 _ C2) _ (C1 + ~os('P'm)Cm )2]t 
n m sm('P'm) 

(e) 2 2 l. 
> (C,. -Cm+1)•. 

(a): (p+v)n1Jr = JMT = llzll = [ll(p+v)-proj(p+v,Span(l'z,v))IIJi 

= [llrz-proj(rz,Span(l'z,v))W]t = [llrzii 2 -IIProj(rz,Span(l'z,v))II2Ji. 
(b): p + v is removed by z so (p + v)z > (c; - C!)!, (p + v)z = (rz + y)z = r, and 

llrzll2 = r2. 
(c): Let e = v- proj(v, Span(l'z)). It follows that e E Span(l'z, v) and e..LSpan(l'z). Since 

also z..LSpan(l'z) then 

. . (rz)e e l(rz)el 
llproJ(rz, Span(l'z, v))ll = llproJ(rz, Span(e))ll = II Tell( M )II = ~· 

Now, llell = llv- proj(v, Span(l'z))ll = llvll sin(L(v, Span(l'z))) 2:: llvll sin('P'm), so 
llproj(rz,Span(l'z,v))lls 11 ~~~~"'. 
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(d): We have 

where (p + v)R = llvll ~ c1. u y =Po then 

IIYII = (lip+vW- iirzW)! < (c:- (c;- C!))i = Cm, 

and then v 
IYn;rrl = IIYIII cos(L(v, y))i < Cm cos(Wm), 

which holds also if y = 0. We get 1(~~~~~1 < C1 + cos(Wm)Cm. 

(e): Follows from (28). This is in fact the inequality which tells us how to choose Cm+1 as 
a function of C1, Cm, and Wm. 

This ends the proof that (26) is satisfied for B = B. This means that Lemma 10 now is 
proved, and thereby Theorem 9. 

COROLLARY 14 . We have, for all i, 

where 
ifn = 1 
ifn ~ 2 and w1 = 7r/2 
ifn ~ 2 and w1 < 7r/2. 

(30) 

Proof. Since K 1 = max{llvll : v E V} it follows from (23) that it is sufficient to show that 
Kn ~ K1 e. If n = 1 then Kn = K1 so this case is trivial. Let n ~ 2. If l¥1 = 1rj2 then 
necessarily l¥1 = l¥2 = · · · = Wn_1 = 1rj2, so by repeated use of (21) we get Kn = K1Vn· 
Assume that l¥1 < 1rj2. From (21) it follows that 

for 1 < m < n -1 

By repeated use of this inequality we get 

n-1 
Kn ~ K1(2 + sin(w!) + sin(wl) sin(l¥2) + · · · + sin(wl) sin(l¥2) · · · sin(Wn-2))/ II sin(wi) 

j=1 

n-1 
< K1(1 + 1 + sin(wl) + sin2(wl) + sin3 (wl) +···)/II sin(wi) 

i=l 

n-1 

< K1( 1 _ si~(wl))/ }1. sin(l¥3) 

D 

It follows from a result in [Minsky and Papert, 1969) called the Cycling Theorem, that for 
any c > 0 there exists a number N = N(c, V) such that ii:z:(i)li ~ ii:z:(o)ll + c for all i, when 
ii:z:(o)ll ~ N. From Theorem 9 we get a more detailed picture. 
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COROLLARY 15 For any e > 0 we have ll:z:(i)ll :::; lla:(o)ll + e, for all i, when lla:(o)ll 2: 
N(e, V), where 

fore E (0, Kn- (K;- K;_di) 
fore E [Kn- (K;- K;_ 1)i, Kn) 
fore E [Kn, oo). 

Proof. It follows from (22) that if ll:z:(o)ll:::; (K;- K;_ 1)i then 

Let 

when ll:z:(o)ll :::; (K; - K;_d 
when lla:(o)ll > (K; - K;_ 1) 

(31) 

Then ll:z:(i)ll :::; ll:z:(o)ll + f(lla:(o)ll) for any :Z:(o)· The function f(-) is strictly decreasing and 
f(O) = Kn. Fore 2: Kn we have ll:z:(i)ll:::; ll:z:(o)ll +e for arbitrary :Z:(o)· For 0 < e < Kn we have 
ll:z:(i)ll:::; ll:z:(o)ll + e when lla:(o)ll2: f- 1(e), and that gives us (31). D 

In Theorem 9 we assume that Span(V) = Rn. In the case where m = dim(Span(V)) < n, 
it is straightforward to show that ll:z:(i)ll :::; ll:z:(o)ll + Km, by using that Span(V) is isomorpfic 
to Rm. 
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