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Abstract—Synchronisation is an important part of collabo-
rative music systems, and with such systems implemented on
mobile devices, the implementation of algorithms for synchroni-
sation without central control becomes increasingly important.
Decentralised synchronisation has been researched in many
areas, and some challenges are solved. However, some of the
assumptions that are often made in this research are not suit-
able for mobile musical systems. We present an implementation
of a firefly-inspired algorithm for synchronisation of musical
agents with fixed and equal tempo, and lay out the road ahead
towards synchronisation between agents with large differences
in tempo. The effect of introducing human-controlled nodes in
the network of otherwise agent-controlled nodes is examined.

Keywords-Pulse coupled oscillators, fireflies, interactive mu-
sic, synchronization

I. INTRODUCTION

Research on interactive music systems has become in-
creasingly popular with the emergence of so-called ubiq-
uitous computing. Mobile technologies allow people to
consume or perform music anywhere. While portable tech-
nologies for music playback have been widespread since the
1980s, the developments in last decade have also allowed an
increased research effort towards developing novel musical
instruments on mobile platforms. Traditionally, a distinction
has been made between the performer, creating the music,
and the perceiver, receiving the music. Musical instruments
are used by performers, and allow a high degree of control
of the musical output. Correspondingly, music players are
used by perceivers, allowing simple controls such as play,
pause, skip, and turning the volume up and down.

Active music technologies challenge the traditional dis-
tinction between musical instruments and music players. The
two may be seen as two extremes on a continuum, where
technologies along the continuum allow different degrees
of interaction with the music. Active music technologies
provide users with a higher degree of control than traditional
music players, yet not requiring the expertise of professional
performers on musical instruments. Examples of such tech-
nologies are music games [1], composition software [2],
devices that allow controlling musical parameters based on
various sensor inputs, e.g. by jogging [3], and also a large
variety of apps for mobile phones allowing people to interact
with music anywhere (e.g. [4]).

A. Collaborative active music

Our focus of research is on collaborative active music,
here referring to a group of people who are using their
mobile phones to interact with music at a level where the
degree of control is higher than traditional media players, but
still more restricted than traditional musical instruments. By
allowing users to control the devices, while at the same time
retaining some degree of control to be held by an adaptive
algorithm in the device itself, users with less musical training
are enabled to participate in a collaborative active music
experience. We have previously shown that some degree of
“musicality” can be preserved in a band made up of of non-
musicians, by applying an economics-inspired approach to
assist the circulation of solos when a group of non-musicians
are playing together [5].

We describe collaborative active music systems as a
network of nodes, where each node is a mobile device that
is controlled by a human user or by a computational agent.
To ensure maximum flexibility, allowing anyone to enter or
leave the network at any time, we require the system to
be decentralised, which means there exists no central point
of control in the network. Thus, desired global behaviour
has to emerge from the actions of and interactions between
nodes via algorithms implemented locally on each node. As
such, we specify self-awareness as a requirement for the
nodes [6], implying a need for mechanisms for analysing
the musical scenario within which the nodes are playing, and
mechanisms for adapting their musical output accordingly.

B. Synchronisation

Many challenging research topics exist in the scenario
we have laid out thus far. This particular paper addresses
the problem of decentralised synchronisation of musical
agents. Synchronisation is a so-called protomusical be-
haviour, meaning a behaviour that exhibits musical features,
such as harmonic oscillations or rhythmic patterns, but lack-
ing cultural realisation as music [7]. As such, development of
agents able to exhibit protomusical behaviours like musical
synchronisation is an important step in the development of
decentralised collaborative music systems.

In order to tackle the problems of decentralised synchro-
nisation of musical agents, we take inspiration from previous
research in computational biology and adaptive systems. We
present an effective implementation of Mirollo and Strogatz’
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firefly-inspired algorithm for synchronising the phase of
pulse-coupled oscillators implemented on mobile devices
[8]. To remove the need for any external communication pro-
tocol, all communication is done through audio. Each node is
able to output short impulsive tones through its loudspeaker,
and to obtain audio data through its microphone. The node
is required to extract tone onsets from the audio input, but
is unable to distinguish between the output from different
nodes.

II. BACKGROUND

Theoretical research on modelling the emergence of syn-
chronisation in nature via oscillators has been around since
the 1960s [9]. While most early work focused on smooth
couplings between oscillators, Mirollo and Strogatz, inspired
by the work of C.S. Peskin, argued that many oscillators
in nature are coupled by pulse-like interactions, giving the
example of certain species of fireflies which adapt their
flashing rhythms when observing flashes from other fireflies
[8]. Building on Peskin’s model to admit more dynamics,
Mirollo and Strogatz presented a pulse-coupled oscillator
model that converges towards synchrony for an arbitrary
number of oscillators.

The need for synchronisation in decentralised computing
systems has triggered the application of the pulse-coupled
oscillator approach in such systems in recent years. Research
efforts have been seen in the field of peer-to-peer networks
where peers or nodes need to synchronise their clock cycles
in order to efficiently carry out tasks that involve timely
communication with other nodes [10], and in wireless net-
works where the idea is for nodes to have synchronized sleep
schedules in order to reduce the power consumption in the
network [11]. The field of artificial intelligence, specifically
distributed robotic systems, have also found it useful to
consider the pulse-coupled oscillator framework to dealing
with synchronisation in robotic swarms [12]. Klinglmayr et
al. target the problem of robustness against faulty nodes,
e.g. nodes that become defective, or malicious intruding
nodes, that may disturb the operation of the network [13].
While the pulse-coupled oscillator framework predominantly
considers excitatory coupling, in that, the phase adjustments
at the receiving nodes push their phases forward in time,
inhibitory coupling (pushing phase backward in time) is
shown to help against faults.

A. Attributes of Pulse-Coupled Oscillators

Whether theory or applications, various attributes can
characterise the type of distributed synchronisation problem
one aims at tackling. Indeed, the pulse-coupled oscillator
framework has gained much attention at modeling and
tackling such problems with varying degrees of success.
Some of these attributes are:

• Type of coupling: the coupling between the oscillators
can vary from being a tight all-to-all (e.g. pulses sent

received by all) one, to couplings characterised by local
interactions in systems with a spatial structure with
nodes only able to communicate with local neighbour-
hoods.

• Heterogeneity: oscillators may have the same frequency
in which case they are known as identical, or there may
be heterogeneity in the frequencies with which they
oscillate.

• Communication medium for coupling: the communica-
tion of pulses may be in the form of packets on a net-
work, or may be more physically restrictive, e.g. light
or indeed sound/audio signals.

• Decentralisation: there may or may not be a single
timing source to synchronise with.

The decentralised synchronisation problem within the
musical setting that we consider in this paper, as described
in Sections I-A and I-B, can be characterised by a system
of pulse-coupled oscillators interacting locally via audio
signals, without a timing source to synchronise with, and
where the oscillators may or may not be identical.

III. PHASE ADJUSTMENT IN PULSE-COUPLED
OSCILLATORS

An oscillator i in our system is represented by its phase,
φi(t). The phase is initialised randomly (between 0 an 1),
and evolves over time (t) toward 1 at a rate of ωi(t) = dφi

dt ,
this rate is the frequency of the oscillator. When the phase of
oscillator i reaches maximum, the node “fires” by playing
a tone, and resets back to 0 before it continues to evolve
toward 1.
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Figure 1. The figure shows the phase φ of a single oscillator evolving
over time t at rate ω. The red dots indicate that the node fires.

In this section, we assume that all oscillators in the system
oscillate at the same frequency, as is also an assumption
in Mirollo and Strogatz’ work. We define a phase update
function, P (φi(t)), that describes how a node adjusts its
own phase upon receiving a fire event from another node.
Each time a node i perceives a fire event from a node j, it
immediately increases its own phase by some amount. More
precisely:

φj(t) = 1⇒

{
φj(t

+) = 0

φi(t
+) = P (φi(t)) ∀i 6= j

, (1)

where t+ denotes the time step immediately after t. The
phase update function is given by:

P (φ) = (1 + α)φ, (2)



where α is a constant denoting the coupling strength between
nodes.

Mirollo and Strogatz’ evidence for synchronisation of
pulse-coupled oscillators assumes that communication be-
tween nodes is done by infinitely short impulses without
transmission delay. Since our system is communicating
through audio, it will inevitably contain delays. To cope
with this, a refractory period, tref, is introduced immediately
after each firefly has fired [14], [15]. During this period
the oscillator is prevented from from adjusting its phase.
The process of synchronising the phase of two oscillators is
illustrated in Figure 2.
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Figure 2. Synchronisation of two pulse-coupled oscillators with equal
frequency using Mirollo-Strogatz algorithm and a refractory period.

A. Implementation

Our system has been prototyped in the graphical program-
ming environment Max,1 where each node is represented
by a single Max patch that is able to send and receive
audio signals from a common channel. By opening several
instances of this patch, we simulate several fireflies within
audible range of each other. The Max patch contains four
main elements.

1) A listener, detecting onsets in the input audio stream.
2) An oscillator, oscillating between 0 and 1 with a given

frequency and phase.
3) A phase-adjustment patch, adjusting the phase of the

oscillator.
4) A synthesiser, generating short, impulsive sounds

when the oscillator reaches maximum.
A flowchart of the system is displayed in Figure 3.

In the prototyping stage, Andrew Robertson’s
aubioonset∼ object for Max, based on the aubio library
by Paul Brossier, has been used for onset detection. Upon
perceived activations from other fireflies, the listener
initiates calculation of phase adjustment of the oscillator,

1http://www.cycling74.com
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Figure 3. Schematic overview of the structure of the firefly Max patch.

and the oscillator phase is updated accordingly. The
synthesiser is based on FM synthesis, set to output a
random note from a pentatonic scale (C4, D4, E4, G4, A4).
The use of a pentatonic scale ensures a certain degree of
harmony between the tones, even when tones are selected
randomly. An impulsive dynamic envelope (rise-time 6 ms,
decay-time 300 ms) is used to allow easy onset detection.
In addition to the functional elements, a visualisation of
each node has been created, showing a drawing of a firefly
whose tail lights up upon firing.

Figure 4. Screen shot from a setup in Max with 12 fireflies synchronising.

We have implemented part of the synchronisation system
in PureData2 (PD), which enables the algorithm to be run
on other operating systems that those able to install Max.
We use the iOS application MobMuPlat [16] to run the PD
patch on iOS devices. The MobMuPlat application is only
able to run components from the most basic distribution of
PD (known as PD vanilla), which complicates the process
of porting the system from Max. A video of the PD patch
running on six iOS devices is available online.3

B. Experiments and results

A simple test was set up to evaluate the time needed
for the system to synchronise for various α-values and
various number of nodes. All nodes were set to fire at
1 Hz, and their phases were randomised at the start of
each test run. The refractory period was set to 50 ms. We
measured the time from the start until when the overall

2http://puredata.info
3http://vimeo.com/67205605

http://www.cycling74.com
http://puredata.info
http://vimeo.com/67205605


system reached a state with all nodes firing within a 50
ms window three times in a row as shown in Figure 5.
To minimize variations in synchronisation times caused by
differences in the initial state of the system, 30 runs were
carried out for each parameter settings for each number of
nodes. Figure 6 shows the synchronisation times for three
different parameter settings. The overall best results (shown
in the middle) were found for α = 0.1, where the system
would quite often reach a synchronised state within ∼10
seconds, even when as many as 30 nodes were involved. A
lower value for α drastically increased the times needed to
synchronise as shown in the top plot in Figure 6. The bottom
plot shows synchronisation times for α = 0.2, where the
synchronisation times increased with the number of nodes.
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Figure 5. The algorithm parameters were evaluated by measuring the time
from the initial state to the time when all nodes fired within a 50 ms period
three times in a row.
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Figure 6. The figure shows the times needed to synchronise for a varying
number of nodes using three different parameter settings.

In an interactive music system, autonomous synchronisa-
tion is useful for allowing agent-controlled nodes to adjust
to the rhythm of human users, or to assist human users who
find it difficult to follow the rhythm. A second experiment

was set up to evaluate the ability of agent-controlled nodes
to adjust to a human user. We allowed a user to override the
internally controlled firing of a node by using a shoe with
internal force sensing resistors. By tapping his foot out of
phase with the rest of the nodes, the other nodes started to
adapt to his rhythm. Figure 7 shows how the nodes in the
esperiment adjusted within just a few seconds.
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Figure 7. The figure shows the interaction between four nodes when one
of them is controlled using the wearable sensor. Each vertical line denotes
the firing of a firefly. The firings of fireflies 2, 3 and 4 are in black and the
firings of the first firefly are marked in red extended across the entire range
of fireflies to facilitate assessment of the degree of synchrony. The phase
of node 1 is overridden twice by tapping while wearing the sensor shoe.
This is deliberately done out of phase. Notice how nodes 2-4 adjust to the
phase of the first node within a few seconds. In this example α = 0.1.

IV. THE CHALLENGE: FREQUENCY ADJUSTMENT IN
PULSE-COUPLED OSCILLATORS

The approach presented above assumes the frequencies of
all the nodes to be fixed and equal. When this assumption
is not made, the problem becomes more relevant to a
real musical application, since human users may find it
difficult to keep a steady beat. At the same time, a system
with different frequencies is also much more complex.
Consequently, the approach from phase synchronisation is
not directly applicable in frequency synchronisation. We
are working on this challenge and would like to propose
some guidelines that may act as a roadmap towards solving
frequency synchronisation in decentralised interactive music
systems. Significant differences in starting frequency can
be allowed if certain considerations are made regarding the
synchronisation objective and the function used to update
the frequency of each node, as will be discussed below.

A. Harmonic Synchrony
Some publications (e.g. [15]) using pulse-coupled oscil-

lators allow the nodes to have slightly different frequencies,
since minor differences in frequency will be overridden by
phase adjustments. However, in our musical system, we
would prefer the possibility of having a large deviation in
starting frequencies. When listening to music people do not
necessarily agree on a common pulse; while some people
may entrain to one tempo, others might find the double or
half of this tempo to be more natural [17]. This is a good
reason for modifying the synchronisation goal in interactive
music systems.

To illustrate the challenge, Figure 8 shows three oscillators
with large differences in frequency. In the figure, the fre-
quencies of node 2 and 3, respectively, are close to half and



double that of node 1. A normal synchronisation objective
would be for all of the nodes to fire at the same time. Such
an objective, here called strict synchrony, would require all
of the nodes to converge toward the same frequency. In cases
like the one in Figure 8, it might be a more suitable approach
to allow the frequencies of nodes to be integer multiples of
the node with the lowest frequency. This would allow nodes
to obtain a state of what we call harmonic synchrony.
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Figure 8. Three nodes with large differences in frequency. In this case,
harmonic synchrony may be a more suitable objective than strict synchrony.

B. Bi-directional frequency adjustment

The phase update function presented in Section III causes
positive phase jumps when a fire event is received. The use
of only positive phase jumps is possible because φ resets
to 0 as soon as it reaches 1. The frequency update function
cannot rely solely on positive phase jumps, since this would
cause nodes to increase the frequency uncontrollably and
eventually reach an unstable state. For this reason, the fre-
quency update function must be able to cause both positive
and negative adjustment of the frequency. We suggest using
a function that is positive when φ < 0.5 and negative when
φ > 0.5. Or in other words, if a node is less than half-way
through its cycle when a fire event is received, it should
increase its frequency to “catch up” with the firing node.
For example, by using the factor ρ calculated as follows:

ρ = sin(2πφ(t)) (3)

C. Self-awareness

To strengthen the nodes in the system that are the most
synchronised with the rest of the group, a well-synchronised
node should make less adjustments to its own frequency
compared with a poorly synchronised node. For this to be
possible, a node should be self-aware, here understood as
being able to assess its own level of synchrony with the
other nodes.

We suggest the use of an error-measure for a node to
assess its own level of synchrony. Each time a node detects a
fire event from another node, it calculates a value, ε ∈ [0, 1],
which is at its highest value when φ = 0.5, and lowest value

when φ is equal to 0 or 1. If we let

ε = sin(πφ(t))2, (4)

with the special case that ε = 0 if a fire event is perceived
within the refractory period, we can use ε(n) as a discrete
function of the n-th fire event received by a node. Self-
synchrony-assessment of node, s, may then be calculated
by applying a running median filter to ε(n):

s = median{ε(n), ε(n− 1), ..., ε(n−m)}, (5)

where m+1 is the length of the median filter. Thus, s takes
a high value when the node is out of phase with the past
received fire events, and a low value when the node is in
phase with the past perceived fire events. The effect of using
s as a factor in the frequency update function is that nodes
with a high level of synchrony make smaller changes in
frequency.

To update the frequency of a node, we specify the discrete
function H(n) for the n-th perceived fire event:

H(n) = ρ(n)s(n), (6)

where ρ(n) and s(n) are discrete functions of the fire events
perceived by a node. Note that H (as opposed to P from
section III) does not output a new value for ω, but rather
a value between -1 and 1 indicating whether ω should be
decreased or increased.

D. The Reachback Firefly Algoritm

In section III, phase adjustment was done immediately
whenever a node received a fire event from another node.
With the suggested function, H , for frequency adjustment,
immediate changes in frequency might potentially cause a
bias towards increase in frequency, since the time period
when φ > 0.5 gets shorter if a fire event is received before
φ reaches 0.5. To prevent this bias, we suggest a variation
of the reachback firefly algorithm (RFA) [18]. Originally
designed for phase updates with the purpose of preventing
“deafness” in a firefly system, the concept of RFA is useful
also in frequency updates. RFA specifies a system which,
rather than making immediate phase jumps upon received
fire events, collects the received fire events and applies
the total phase jump at the beginning of its next cycle.
Figure 9 illustrates application of RFA in the frequency
update function.

We may summarise the considerations provided above in
the following frequency update function:

φi(t) = 1⇒


F (n) = β ·

y−1∑
x=0

H(n− x)
y

ωi(t
+) = ωi(t) · 2F (n)

, (7)

where β ∈ [0, 1] is a constant denoting the coupling strength
between the nodes, and y is the number of received fire
events during the latest oscillator period. This function



allows ωi(t+) values in the range 1
2ωi(t) to 2ωi(t). The

extreme values occur only when φ = 0.25 or 0.75 and
β = s = 1.
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Figure 9. The top figure displays how the frequency adjustment of a node
may be biased towards positive values when received fire events causes
immediate frequency adjutments. The bottom figure shows how a variant
of the reachback firefly algorithm may be used to tackle this problem. The
algorithm collects values from the H function during its entire preiod, and
adjusts the frequency at the end of the period by the mean of these values.

We believe these considerations may act as a roadmap
towards solving the problem of frequency synchronisation
in collaborative interactive music systems.

V. CONCLUSIONS AND FUTURE WORK

We have presented an implementation of a variant of
the Mirollo-Strogatz algorithm for phase-synchronisation of
pulse-coupled oscillators running in iOS aimed at interactive
and collaborative musical systems. In most of the tested
cases, the implementation obtained a state of synchrony
within 10 seconds, regardless of the number of nodes (up
to 30 simultaneous nodes were tested). When introducing
an out-of-sync human-controlled node to the group, the
group quickly synchronised to the beat of the human-
controlled node. Further, we have presented the challenge
of decentralised frequency synchronisation in such systems,
and a roadmap towards a potential solution. We suggest a
redefinition of the synchrony objective, by allowing nodes
to fire at frequencies that are integer multiples of other
nodes, and to incorporate self-assessment within a node of
the degree of synchrony with other nodes.
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