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1 Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway, 2 Hormone Laboratory, Oslo University Hospital, Oslo,

Norway, 3 Faculty of Medicine, University of Oslo, Oslo, Norway

Abstract

Background: Insulin resistance and type 2 diabetes are more prevalent in people of South Asian ethnicity than in people of
Western European origin. To investigate the source of these differences, we compared insulin sensitivity, insulin secretion,
glucose and lipid metabolism in South Asian and Nordic subjects with type 2 diabetes.

Methods: Forty-three Nordic and 19 South Asian subjects with type 2 diabetes were examined with intra-venous glucose
tolerance test, euglycemic clamp including measurement of endogenous glucose production, indirect calorimetry
measuring glucose and lipid oxidation, and dual x-ray absorptiometry measuring body composition.

Results: Despite younger mean 6 SD age (49.769.4 vs 58.368.3 years, p = 0.001), subjects of South Asian ethnicity had the
same diabetes duration (9.365.5 vs 9.667.0 years, p= 0.86), significantly higher median [inter-quartile range] HbA1c (8.5 [1.6]
vs 7.3 [1.6] %, p= 0.024) and lower BMI (28.764.0 vs 33.264.7 kg/m2, p,0.001). The South Asian group exhibited
significantly higher basal endogenous glucose production (19.1 [9.1] vs 14.4 [6.8] mmol/kgFFM?min, p= 0.003). There were
no significant differences between the groups in total glucose disposal (39.1620.4 vs 39.2617.6 mmol/kgFFM?min, p= 0.99)
or first phase insulin secretion (AUC0–8 min: 220 [302] vs 124 [275] pM, p= 0.35). In South Asian subjects there was a tendency
towards positive correlations between endogenous glucose production and resting and clamp energy expenditure.

Conclusions: Subjects of South Asian ethnicity with type 2 diabetes, despite being younger and leaner, had higher basal
endogenous glucose production, indicating higher hepatic insulin resistance, and a trend towards higher use of
carbohydrates as fasting energy substrate compared to Nordic subjects. These findings may contribute to the
understanding of the observed differences in prevalence of type 2 diabetes between the ethnic groups.
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Introduction

The prevalence of type 2 diabetes (T2D) varies between

different ethnic groups, and is known to be high in South Asians

(SA) in their countries of origin, particularly in urban areas, but

also after migration to Western countries [1]. Several theories as to

why SA are especially prone to insulin resistance and T2D have

been proposed. Among these, the adipose tissue overflow

hypothesis proposes that SA have smaller superficial subcutaneous

adipose tissue compartments for fat storage compared to Western

Europeans. Hence, in situations of energy excess, fat is deposited

in the more metabolically active deep subcutaneous and visceral

adipose tissue compartments [2]. The metabolic inflexibility

theory proposes that the normal switch in energy substrate

between high lipid oxidation in the fasting state and high glucose

oxidation in the post-prandial state is impaired in T2D. This

results in accumulation of intramuscular lipids and increased

plasma glucose values [3]. A third suggested mechanism involves

the theory that SA have lower resting energy expenditure (REE)

than Western Europeans, and therefore are more prone to obesity

and insulin resistance. This theory is disputed, where some argue

that the lower REE is due to differences in body composition and

not ethnicity [4,5].

Although insulin resistance and T2D have been much studied in

the SA population during recent years, few studies have used gold

standard methods for the measurement of insulin resistance, and

to our knowledge, no previous studies have reported endogenous

glucose production (EGP) in SA T2D subjects.

In order to gain insights into possible explanations for the

differences in prevalence of T2D between the two populations, we

analysed baseline data from a vitamin D intervention trial in

subjects with T2D and Nordic (NOR) or SA origin, all living in

Oslo, Norway. Insulin sensitivity, glucose and fat oxidation, and

insulin secretion was measured. The subjects all had serum levels

of 25-hydroxyvitamin D #50 nM.
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The primary aims of this study were to: 1) Explore possible

differences in fasting and clamp hyperinsulinemic glucose metab-

olism, 2) Explore possible differences in insulin secretion, 3)

Explore possible differences in energy expenditure, and 4) Assess

possible associations between insulin sensitivity and -secretion, and

vitamin D status.

Methods

Ethics
All participants gave informed written consent prior to any

study related procedure. The study was approved by the South-

Eastern Norway Regional Committee for Medical and Health

Research Ethics, and conformed to the Declaration of Helsinki.

Subjects
Sixty-two patients with T2D and 25-hydroxyvitamin D

#50 nM, were recruited from our out-patient clinic, from general

practice, from posters in the hospital lobby and in pharmacies, and

from advertisements in local newspapers. Men and women with

T2D, from the Oslo area in Norway, above 18 years of age, of

Nordic or South Asian origin (born in a South Asian country and/

or with both parents of South Asian origin) were eligible,

regardless of type of anti-diabetic treatment. Full inclusion and

exclusion criteria are displayed in Table 1. In total, 190 patients

were screened. Sixty-two patients met with the inclusion criteria

and were recruited, and 61 patients underwent initial intra-venous

glucose tolerance tests (IVGTT) and clamp procedures. The

Nordic group consisted of 40 Norwegians, 2 Danes and 1 Swede.

The South Asian group consisted of 11 Pakistanis, 7 Sri Lankans

(all Tamil) and 1 Indian. All but one of the South Asian

participants were first generation immigrants. One Norwegian

patient was excluded due to severe difficulties in getting

intravenous access. Table 2 shows important characteristics of

the two ethnic groups.

Anthropometrics
Height to the nearest 0.1 cm and weight to the nearest 0.1 kg

were measured with participants wearing light clothing and no

shoes. Waist circumference was assessed with a flexible tape

measure with spring scale to ensure equal traction at every

measurement, measuring at mid-point between the lowest rib

margin and the iliac crest. The body surface area was calculated

using Mostellers equation [6]. Fat mass (FM) in kg, percentage

total body fat (%TBF), percentage truncal fat (% truncal fat) and

fat free body mass (FFM) in kg were measured by dual x-ray

absorptiometry (DXA) on a Lunar Prodigy from GE Healthcare.

IVGTT and Euglycemic Clamp
To enhance comparability of examinations, all patients were

asked to stop oral antidiabetic drugs for two days, and insulin for at

least 12 hours prior to examination. Patients were also asked to

refrain from strenuous physical exercise and alcohol intake during

these two days, and to arrive fasting for at least 10 hours, from the

night before the examination.

A teflon catheter was placed in a vein at each elbow. All

infusions were given in one vein, and all blood samples were

drawn from the other vein, which was kept open by a slow infusion

of NaCl 0.9%. The arm where blood samples were taken was kept

at 37uC by a heating sleeve connected to a thermal control unit

(Swetron AB, Veddestad, Sweden), to arterialize blood samples.

We performed an IVGTT followed by a euglycemic, hyperin-

sulinemic clamp, with estimation of endogenous glucose produc-

tion (EGP) using the stable isotope dilution method. A primed

(170 mg) continuous (1.7 mg/min) infusion of [6,6-2H2] glucose

(Cambridge Isotope Laboratories, Inc., Andover, MA) was

maintained throughout the experiment. After a 2-h tracer

equilibration period, the IVGTT was performed, with a ,1-

minute intravenous bolus injection of glucose 500 mg/mL, 0.3 g/

kg body weight. Blood samples were drawn for plasma glucose

concentration as well as serum insulin and C-peptide determina-

tion at 22, 0, 2, 4, 6, 8, 10, 15 and 30 minutes after glucose bolus

injection. Immediately following the IVGTT, a euglycemic,

hyperinsulinemic clamp was performed using a modification of

the method originally described by De Fronzo et al [7]. Human

insulin (ActrapidH, Novo Nordisk, Bagsvaerd, Denmark) was

diluted in 500 mL NaCl 0.9%, to 300 mU/mL, after having first

added 2 mL of the patients own blood, to avoid insulin sticking to

the walls of the bag, and 10 mmol KCl. Insulin was infused at a

rate of 80 mU/m2?min, after an initial bolus and 10 minute

priming infusion, determined by the patients pre-clamp plasma

glucose. The infusion was maintained for 2K hours or more, until

at least 30 minutes of stable euglycemia was obtained. When

plasma glucose reached euglycemia, a variable infusion of glucose

200 mg/mL enriched with 8 mg/g glucose of [6,6-2H2]-glucose

was continually adjusted to maintain euglycemia.

Plasma glucose was regularly measured on a Presicion Xceed

glucometer (Abbott Laboratories. Abbott Park, IL), with five-

minute intervals when the patient approached euglycemia.

Control measurements at least every 30 minutes were performed

on a Y.S.I 2300 STAT analyzer (Yellow Springs Instruments Inc,

Yellow Springs, OH). At the end of the clamp, three measure-

ments of serum insulin and fluoride/oxalate-plasma for analysis of

[6,6-2H2]-glucose were taken at ten-minute intervals. The glucose

infusion rate (GIR) in mmol/kg FFM?min was established.

IVGTT Calculations of Insulin Secretion
The Acute Insulin Response to glucose (AIRg) was calculated as

the incremental area under the curve (AUC) for insulin from time

0–8 minutes and 0–30 minutes.

Endogenous Glucose Production Calculations
Calculations of endogenous glucose production (EGP) at the

end of the basal equilibration period and during clamp euglycemia

were performed. Both were steady state for plasma glucose, with

only relatively small changes in glucose concentration and tracer

enrichment over time. Thus, steady state equations, where rate of

appearance equals rate of disappearance, have been applied for

the calculation of both EGP and total glucose disposal (TGD)

[8,9]. The EGP in the basal state was calculated as follows:

EGPbasal = I((Ei/Ep(basal)) –1), where I is the rate of [6,6-2H2]-

glucose infusion (mmol/m2?min), Ei is the enrichment of the tracer

infusion in moles percent excess (mpe) and Ep(basal) is the mean

[6,6-2H2]-glucose enrichment in plasma (mpe) at the end of the

basal stabilisation period.

At the end of the euglycemic clamp, TGD was calculated as

follows: TGD= ((I ? Ei+GIR ? Em)/Ep(clamp)) – I, where GIR is the

exogenous glucose infusion rate (mmol/m2?min), Em is the

[6,6-2H2]-glucose enrichment (mpe) in the infused glucose, and

Ep(clamp) is the mean [6,6-2H2]-glucose enrichment (mpe) in the

plasma samples taken during the last 30 minutes of the clamp

euglycemia. The EGP during clamp euglycemia, EGP-

clamp =TGD – GIR. Between subject and within subject coeffi-

cients of variation for plasma glucose levels in clamp steady state

were 10.0% and 4.6% respectively.
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Table 1. Inclusion and exclusion criteria.

Inclusion criteria:

Vitamin D deficiency defined as 25-hydroxyvitamin D ,50 nM

Patients with type 2 diabetes (negative anti-GAD and anti-IA2), including drug naı̈ve subjects, subjects using oral anti-diabetic medication and subjects on insulin
treatment

HbA1c ,11% (97 mmol/mol) at inclusion

Men and women $18 years

Nordic or South Asian ethnicity (from Pakistan, India, Bangladesh or Sri Lanka)

Antihypertensive medication, lipid lowering drugs, oral contraceptives, hormone replacement therapy, multivitamin supplements and nutritional supplements are
allowed

Exclusion criteria:

Systolic Blood Pressure $160 mmHg or Diastolic Blood Pressure $90 mmHg at inclusion

Significant renal disease or chronic renal impairment, GFR,30 mL/min

Significant liver disease or ASAT or ALAT .36 upper limit of normal

Malignancy during the last five years

Hypercalcemia at inclusion or a history of kidney stone disease

Pregnant or breastfeeding women

Chronic inflammatory disease in active phase or long term (.2 weeks) use of systemic corticosteroids last 3 months

Cardiovascular disease, defined as myocardial infarction, unstable angina pectoris or stroke, during the last 6 months prior to inclusion

Anemia defined as hemoglobin below current reference limits

BMI .45 kg/m2 or bariatric surgery performed during the last five years

Drug or alcohol abuse

Mental condition (psychiatric or organic cerebral disease) rendering the subject unable to understand the nature, scope and possible consequences of the study

Any medical condition that in the judgment of the investigator would jeopardize the subject’s safety

Main inclusion and exclusion criteria. GAD: glutamic acid decarboxylase, IA2: protein tyrosine phosphatase, GFR: glomerular filtration rate, ASAT: aspartate amino
transferase, ALAT: alanine amino transferase, BMI: body mass index.
doi:10.1371/journal.pone.0083983.t001

Table 2. Description of patients.

NOR SA

n = 43 n = 19 p

Sex, males n (%) 28 (65.1%) 9 (47.4%) 0.263 b

Age, years 58.368.3 49.769.4 0.001a

Age at diabetes debut,
years

48.769.1 40.4610.4 0.002a

Diabetes duration, years 9.667.0 9.365.4 0.864a

Diabetes medication, n (%): 0.564b

Lifestyle 6 OAD or GLP-1 26 (60.5%) 10 (52.6%)

Insulin 6 OAD 17 (39.5%) 9 (47.4%)

Diabetes complications,
n (%):

20 (46.5%) 8 (42.1%) 0.788b

Cardiovascular disease 3 (7.0%) 2 (10.5%)

Nephropathy/microalb. 8 (18.6%) 2 (10.5%)

Other 17 (39.5%) 7 (36.8%)

Data are presented as number (percentage) or as mean 6 standard deviation.
p-values from aStudent’s t-test or bChi square test. OAD: oral antidiabetic agent,
GLP-1: Glucagon-like peptid 1 analogue. Microalb.: microalbuminuria. Other
complications include ophthalmopathy, neuropathy, diabetic foot, sexual
dysfunction and periodontal disease. NOR = Nordic, SA = South Asians.
doi:10.1371/journal.pone.0083983.t002

Table 3. Anthropometrical and biochemical characteristics.

NOR SA

n = 43 n = 19 p

Height, cm 173.668.8 163.468.4 ,0.001

Weight, kg 100.4 [15.0] 79.1 [15.0] ,0.001a

BMI, kg/m2 33.264.7 28.764.0 ,0.001

Waist circumference, cm 115.5 [18.0] 100 [10.6] ,0.001a

Waist/Height ratio 65.567.2 61.266.8 0.033

TBF, % 35.767.2 34.567.6 0.56

Truncal fat, % 40.565.7 40.166.6 0.82

FFM, kg 63.869.7 50.167.7 ,0.001

FM, kg 33.1 [17.1] 25.0 [10.8] ,0.001a

Fasting plasma glucose, mM 9.1 [4.5] 10.7 [6.4] 0.08a

HbA1c, % 7.3 [1.6] 8.5 [1.6] 0.024a

Fasting insulin, pM 85.5 [99.0] 68.0 [138.0] 0.67a

Fasting C-peptide, pM 1137 [785] 1012 [431] 0.049a

25(OH)vitamin D, nM 40.1610.3 31.5614.0 0.009

Data are presented as mean 6 standard deviation or median [inter-quartile
range]. NOR: Nordic, SA: South Asians, BMI: body mass index, TBF: total body fat,
FFM: fat free mass, FM: fat mass, 25(OH)vitamin D: 25-hydroxyvitamin D. p-
values are from Student’s t-test.
a = Student’s t-test after Log-transformation.
doi:10.1371/journal.pone.0083983.t003
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Indirect Calorimetry
Indirect calorimetry was performed in 38 of the 43 NOR and

14 of the 19 SA patients, using a Jaeger Oxycon Pro (Erich Jaeger,

Viasys Healthcare, Germany) computerized flow-through canopy

gas analyzer system. After a 10-minute adaptation period, expired

and inspired air was continuously sampled and analyzed for O2

and CO2 content during a 30 minute steady state period at the end

of the basal tracer equilibration period and at the end of the

euglycemic clamp. Whole body substrate oxidation was estimated

from the mean values of VO2 and VCO2 measured, and from

measurement of urinary nitrogen (urea). Average basal and insulin

stimulated glucose and lipid oxidation rates were calculated using

Frayn’s equations [10]. Non-oxidative glucose metabolism was

calculated as the difference between total body glucose disposal (as

determined by the euglycemic clamp with tracer dilution method)

and the rate of glucose oxidation (as determined by indirect

calorimetry).

Blood Samples
Full blood glucose was measured by glucose oxidase method

(YSI 2300, Yellow Springs, OH), and plasma glucose was

calculated (full blood glucose61.119). HbA1c was measured by

HPLC on a Tosoh G7 analyser (Tosoh Corp., Tokyo, Japan),

serum insulin and C-peptide were measured using an immuno-

fluorometric assay (DELFIA) from Perkin Elmer Life Sciences

(Wallac Oy, Turku, Finland), 25-hydroxyvitamin D was measured

on a radioimmunoassay (RIA) kit from DiaSorin (Stillwater, MN).

[6,6-2H2]-glucose was measured by LC-MS/MS, via turbulent

flow chromatography (Cohesive technologies RXT1, Franklin,

MA) combined with tandem mass spectrometry (Sciex API3000,

Applied Biosystems, Foster City, CA) as previously described [11],

at the Clinical Metabolomics Core Facility, (Rigshospitalet,

Copenhagen, Denmark). Urinary urea was measured by enzy-

matic-kinetic UV assay on a Roche Modular P analyser.

Statistical Analysis
Data are presented as mean 6 standard deviation or median

[inter-quartile range] unless otherwise specified. We analyzed non-

normally distributed data log-transformed, or using non-paramet-

ric methods, as appropriate. Student’s t tests or Mann Whitney U

tests were used for comparison of continuous variables between

groups, and paired samples t-tests were used for within groups

analysis of change. For comparison of categorical data between

patient groups, the Chi square test for independence was used.

Spearman’s correlation coefficients (rs) were used. One–way

between-groups ANCOVA was performed, with preliminary

checks to ensure no violation of the assumptions of normality,

linearity, homogeneity of variances and homogeneity of regression

slopes. Multiple linear regression analyses were performed, with

log-transformation of parameters when needed, to ensure no

violation of the assumptions of normality, linearity and homosce-

dasticity. In regression analyses NOR=1 and SA=2. A two-sided

p-value ,0.05 was deemed significant, and uncorrected p-values

are presented. Bonferroni-Holm corrections were performed,

showing that p-values ,0.01 remained ,0.05 after correction.

Statistical analyses were performed with SPSS 19.0 for windows

(SPSS Inc., Chicago, IL).

Results

General Description
Anthropometric and biochemical characteristics by ethnic

group are presented in Table 3. The SA subjects were significantly

shorter and leaner than the NOR subjects, but had a higher

median HbA1c, whereas median fasting C-peptide was signifi-

cantly higher in the NOR group. Despite a higher waist

circumference and waist-to-height ratio in the NOR subjects,

the SA still had similar percentage total and truncal fat to the

NOR group. Adjusting for sex and/or age did not change these

results (data not shown).

Endogenous Glucose Production
EGPbasal was significantly higher in the SA than the NOR

group, as shown in Table 4 and Figure 1A. This difference

remained significant after adjustment for possible confounders,

including sex, age, height, weight, BMI, %TBF, FFM, HbA1c,

fasting C-peptide, or fasting plasma glucose (data not shown).

During clamp hyperinsulinemia the EGP was reduced, the ethnic

difference in endogenous glucose production (EGPclamp) was

attenuated, and no longer significant.

EGPclamp was detectable in all patients, ranging from 3.4% to

90.6% of the total glucose disposal rate (TGD), with a median of

25.8%. In an effort to find predictors of EGPclamp variation, we

performed simple correlations between EGPclamp and parameters

which could influence EGPclamp. The following parameters

correlated to EGPclamp with a p-value ,0.1: diabetes duration,

fasting plasma glucose (FPG), se-insulin at end of clamp, fasting se-

C-peptide and HbA1c (Table 5). We then performed an all subsets

multiple regression analysis, using logEGPclamp as dependent

variable. Log FPG was the only significant parameter to remain,

with an unstandardized beta = 0.78, p = 0.003 and an R2 of only

0.15. The separate correlation coefficients in the ethnic subgroups

showed differences: FPG and most of the other parameters

correlated significantly to EGPclamp only in the NOR group. The

correlation between GIR and EGPclamp was neither significant in

the total patient group nor in the two separate ethnic subgroups.

The correlation between TGD and EGPclamp was significant in the

SA subgroup but not the NOR subgroup.

Table 4. Endogenous glucose production, insulin sensitivity
and insulin secretion.

NOR
n = 41

SA
n = 18 p

EGPbasal mmol/kg
FFM?min

14.4 [6.8] 19.1 [9.1] 0.003

EGPclamp mmol/kg
FFM?min

8.9 [6.7] 10.8 [10.4] 0.216

EGPclamp % % of TGD 24.9 [24.3] 38.7 [27.7] 0.107

GIR mmol/kg
FFM?min

28.9615.8 24.7614.6 0.343

TGD mmol/kg
FFM?min

39.2617.6 39.1620.4 0.990

Se-insulinend clamp pM 1290 [425] 1270 [1087] 0.889

AIRg 0–8 min AUC 0–8 min 124 [275] 220 [302] 0.352

AIRg 0–30 min AUC 0–30 min 1003 [1505] 852 [1452] 0.383

LogAIRg 0–8 min LogAUC 0–8 min 2.1560.52 2.3460.44 0.201

LogAIRg 0–30 min LogAUC 0–30 min 3.0660.36 2.9860.32 0.425

Data are presented as mean 6 standard deviation or median [inter-quartile
range]. p-values from Student’s t-tests or Mann-Whitney U tests as appropriate.
NOR: Nordic, SA: South Asians, EGP: endogenous glucose production, FFM: fat
free mass, TGD: total glucose disposal, GIR: glucose infusion rate, AIRg: acute
insulin response to glucose, AUC: area under the curve (from 0–8 minutes and
0–30 minutes of the intra-venous glucose tolerance test). For LogAIRg 0–8 min

n = 36 NOR and 16 SA, and for LogAIRg0–30 min n = 40 NOR and 17 SA.
doi:10.1371/journal.pone.0083983.t004
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Insulin Sensitivity
There was no significant ethnic difference in insulin sensitivity

expressed as the TGD in mmol/kgFFM?min (Table 4, Figure 1A).

After adjusting TGD for log EGPclamp (beta = 28.4, p = 0.001) and

log waist circumference (beta =2114.7, p = 0.028), in a multiple

regression analysis, ethnicity came closer to significance (be-

ta =29.1, p = 0.111). Further adjusting for age (p = 0.84) or sex

(p = 0.97) was not significant.

Insulin Secretion
All but seven of the 60 subjects where an IVGTT was

performed had some preserved first phase insulin secretion,

(increased incremental AUC0–8), and two thirds of the patients

displayed an AUC0–8.100 pM. Insulin secretion (AIRg) did not

differ significantly between the two ethnicities (Table 4, Figure 1B).

After adjusting for HbA1c in a multiple regression analysis to

account for possible glucose toxicity, there was a non-significant

trend towards higher insulin secretion in the SA group

(beta = 0.30, p = 0.052, model significance: p = 0.030). LogAUC0–

8 was the dependent variable and ethnicity and log HbA1c

(beta =22.27, p = 0.02) were independent variables. Further

adjusting for age (p = 0.39) and sex (p = 0.51) was not statistically

significant. When measured as the AUC0–30, insulin secretion did

not differ between the two ethnic groups, neither before nor after

adjustment for HbA1c, age and/or sex. A longitudinal analysis of

AUC for insulin during the total 30 minutes of IVGTT did not

show any significant ethnic difference either (Figure 1B).

Glucose and Fat Oxidation and Non-oxidative Glucose
Metabolism
Figure 2 displays glucose and fat metabolism in peripheral

tissues in the basal fasting and the hyperinsulinemic clamp state,

measured by indirect calorimetry. Figure 2A demonstrates that

higher endogenous glucose production in SA leads to increases in

both oxidative and non-oxidative metabolism in peripheral tissues.

This figure also demonstrates the higher non-oxidative than

oxidative metabolism in the basal state in both ethnic groups, and

that non-oxidative glucose metabolism increases more than

oxidative in the clamp hyperinsulinemic state in both ethnicities.

Basal fat oxidation measured per kg fat free body mass was

similar in the two ethnic groups (Table 6, Figure 2B). Fat oxidation

decreased during clamp hyperinsulinemia, as glucose metabolism

increased. These changes were similar in the two groups.

Basal and Clamp Energy Expenditure
The mean, unadjusted resting energy expenditure (REE) in kJ/

day, estimated by indirect calorimetry, was higher in the NOR

than in the SA patients (Table 6). However, after adjustment for

FFM, FM, age and sex in a one-way ANCOVA analysis, the

ethnic difference was attenuated, and no longer significant

(p = 0.51), with adjusted mean (SEM) values of 7155 (121) kJ/

day in NOR and 6954 (239) kJ/day in SA patients.

REE correlated highly with basal fat oxidation (rs = 0.48,

p = 0.002 in NOR and 0.64, p = 0.014 in SA patients), but not

with basal glucose oxidation (rs =20.06, p = 0.73, and 20.10,

p = 0.75, respectively), or non-oxidative glucose metabolism

(rs =20.16, p = 0.36, and rs = 0.40, p = 0.16 respectively), although

SAs showed a stronger correlation between REE and non-

oxidative glucose metabolism than the NOR group.

The positive correlation between REE and EGPbasal tended to

be stronger in SA (rs = 0.53, p = 0.051), compared to the NOR

subjects (rs =20.18, p = 0.28). The correlation between EEclamp

and EGPclamp was also stronger in SA (rs =0.50, p = 0.082), than in

NOR subjects (rs =20.06, p = 0.74). Energy expenditure increased

significantly during clamp (EEclamp) in the NOR patients

(p = 0.003), but not in the SA patients (p = 0.28). The respiratory

quotient (RQ) increased significantly from basal to clamp value in

both NOR (p,0.001) and SA subjects (p = 0.008) (Table 6). This

change (DRQ) was similar in the two groups.

Relation between Insulin Sensitivity, Insulin Secretion
and Vitamin D
Median serum 25-hydroxyvitamin D in the SA group was

significantly lower than in the NOR group (table 3). We found no

significant correlations between 25-hydroxyvitamin D levels and

insulin sensitivity or insulin secretion, neither in the two ethnic

groups examined separately, nor in the total cohort.

Discussion

In this study we examined ethnic differences in glucose and fat

metabolism and energy expenditure in basal and clamp hyperin-

sulinemic conditions in subjects with T2D, of SA or NOR

ethnicity, living in Oslo, Norway. We found evidence of ethnic

differences in fasting endogenous glucose production, and

Figure 1. Glucose delivery and insulin secretion during basal and clamp conditions. A) Median [inter-quartile range] values of basal and
clamp glucose delivery per kg fat free mass (FFM), both from endogenous glucose production and exogenous glucose infusion. p-values from Mann-
Whitney U tests. B) Mean (standard error of mean) serum insulin levels during the 30-minute intra-venous glucose tolerance test. NOR = Nordic,
SA = South Asians.
doi:10.1371/journal.pone.0083983.g001

Table 5. Correlations to endogenous glucose production
during clamp.

Total
patients NOR SA

n = 57 n = 39 n = 18

Diabetes duration rs 0.251 0.343 20.058

p 0.059 0.033 0.819

Fasting plasma glucose rs 0.420 0.524 0.057

p 0.001 0.001 0.823

Serum insulin at end of clamp rs 20.295 20.187 20.387

p 0.026 0.254 0.113

Fasting serum C-peptide rs 20.272 20.320 20.034

p 0.040 0.047 0.926

HbA1c rs 0.335 0.338 0.101

p 0.011 0.035 0.689

Exogenous glucose infusion rate rs 20.035 20.116 0.228

p 0.798 0.480 0.363

Total glucose disposal rs 0.318 0.156 0.591

p 0.016 0.342 0.010

Data are presented as Spearman’s correlation coefficients (rs) with
corresponding p-values. Significant correlations in bold. NOR: Nordic, SA: South
Asians.
doi:10.1371/journal.pone.0083983.t005
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indications of possible differences in the choice of substrates for

energy expenditure both in basal and clamp conditions.

The concept of ethnicity and ethnic groups is complex,

consisting of both socio-cultural and biological components that

are not clearly defined [12]. The term South Asian ethnicity is

often used, although the South Asian region is diverse, with several

countries (Pakistan, India, Bangladesh and Sri Lanka), and

differences in culture, religion and diet. In diabetes research,

using the term South Asian can nonetheless be justified, in view of

the fact that the high prevalence of diabetes and increased insulin

resistance is present in the whole region [13], particularly in urban

areas, and also after migration to Western countries [1].

This study shows a significantly higher fasting EGP in SA

compared to NOR patients, which was not explained by any of the

examined possible confounding factors. During clamp hyperinsu-

linemia the EGP was lowered, and the ethnic difference was

attenuated. Even so, EGPclamp was still not negligible, and

constituted almost 40% of TGD in SA and 25% in NOR patients.

Hyperinsulinemia during clamp is often said to suppress EGP

almost entirely [14,15], and euglycemic clamp studies are still

frequently performed without the measurement of endogenous

glucose production [16,17]. However, several authors have

demonstrated that EGPclamp persists [18–20]. We here present

further evidence that EGPclamp can be substantial in type 2

diabetic patients, even with serum insulin concentrations during

clamp as high as 1000–1500 pM. This finding underscores the

importance of controlling for hepatic glucose production during

clamp studies.

Measuring EGP via the isotope tracer dilution method is both

time consuming and costly. In an attempt to find predictors for the

estimation of EGPclamp from variables that are easier to measure,

we looked at a group of variables which correlated with EGPclamp.

Only FPG remained significantly related to EGPclamp in regression

analyses, and it explained only 15% of EGPclamp variation in the

whole patient group. When looking at the correlations in the

separate ethnic subgroups, most variables only correlated signif-

icantly in the NOR group. The exogenous glucose infusion rate

did not correlate to EGPclamp at all. In the SA group, the only

significant correlation was between EGPclamp and TGD, merely

reflecting the high percentage of EGPclamp in TGD in this group.

We therefore suggest that measuring EGPclamp, in addition to the

exogenous glucose infusion rate, is essential for correct estimation

of total glucose disposal rate.

Some ethnic groups residing in tropical climates, including

SA, have previously been shown to have lower REE than

Westerners [21], however, several authors have advocated the

need for adjusting REE for fat free mass (FFM) and fat mass

(FM), as well as age and sex [4,22]. The lower REE in SA is in

this way shown to be due to differences in body composition

and not due to ethnicity per se. We find it to be the case also

in our study. Our two ethnic groups display clear differences in

body composition, and adjusting for these differences, mainly

FFM, attenuates the ethnic difference seen in REE. This,

however brings us back to the complex concept and definition

of ethnicity, whence it can also be argued that lower FFM is an

ethnic characteristic of South Asians. This has been described in

other studies [23,24].

In basal, resting conditions, energy production is for the most

part derived from lipids, and less from carbohydrates [25]. This

is also reflected in our study, by the highly significant

correlation between REE and fat oxidation in both ethnicities.

In the SA subgroup, however, there is also a near-significant

correlation between REE and EGPbasal. This could signify

increased use of carbohydrates as energy substrate in the fasting

state in SA, to such an extent that it becomes important for the

total REE. However, we did not find any ethnic differences in

basal RQ or in DRQ from fasting to clamp hyperinsulinemic

conditions, that would have clearly indicated an ethnic

Figure 2. Glucose and fat metabolism in Nordic and South Asian subjects with type 2 diabetes. A) Glucose metabolism per kg fat free
mass (FFM). Median [inter-quartile range] values of basal and clamp glucose delivery, both from non-oxidative glucose metabolism (NOGM) and
oxidative glucose metabolism (OGM) B) Fat oxidation per kg fat free mass (FFM). Mean (standard error of mean) values in basal and clamp conditions.
NOR = Nordic, SA = South Asians. Comparisons beween ethnic groups are Student’s t-tests or Mann-Whitney U tests as appropriate. Comparisons
between basal and clamp values are paired samples t-tests, after log-transformation where appropriate.
doi:10.1371/journal.pone.0083983.g002

Table 6. Basal and Clamp Indirect Calorimetry.

NOR
n = 38

SA
n = 14 p

Basal glucose oxidation mmol/kg FFM?min 6.564.5 8.564.0 0.151

Basal non-oxidative glucose consumption mmol/kg FFM?min 9.065.9 12.069.1 0.167

Basal fat oxidation mg/kgFFM?min 1.2460.37 1.1860.36 0.572

Clamp glucose oxidation mmol/kg FFM?min 12.764.6 14.266.7 0.331

Clamp non-oxidative glucose consumption mmol/kg FFM?min 26.3 [17.6] 26.6 [29.5] 0.897

Clamp fat oxidation mg/kgFFM?min 0.8960.38 0.8160.50 0.557

REE kJ/day 746561202 610461214 0.001

EEclamp kJ/day 775061315 626361139 ,0.001

RQbasal 0.7960.05 0.8060.04 0.201

RQclamp 0.8460.05 0.8660.06 0.440

DRQ 0.05260.035 0.05360.062 0.994

Data are presented as mean 6 standard deviation or median [inter-quartile range]. p-values from Student’s t-tests or Mann-Whitney U tests as appropriate. NOR: Nordic,
SA: South Asians, FFM: fat free mass, REE: resting energy expenditure, EEclamp: energy expenditure during clamp, RQ: respiratory quotient, DRQ: change in respiratory
quotient from basal to clamp conditions.
doi:10.1371/journal.pone.0083983.t006
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difference in metabolic flexibility. The values of basal RQ and

DRQ in our subjects were comparable to the group with

diabetes in the recently published study by van de Weijer [26].

In that study, they also demonstrated that insulin stimulated

RQ is mainly dependent on glucose disposal rates, which in our

study are similar in the two groups.

Our NOR participants are significantly more obese than the

SA, which could in part explain why there is no obvious ethnic

difference in TGD. After adjustment for difference in waist

circumference, as well as the endogenous glucose production, the

ethnic difference in TGD came closer to significance.

In our study we found a non-significant trend towards higher

both oxidative and non-oxidative glucose metabolism in SA

compared to NOR subjects in the basal, post-absorptive state.

The total EGPbasal was significantly higher. This points towards

a higher degree of hepatic insulin resistance in SA. One could

speculate that a possible higher basal oxidative glucose

metabolism in muscle, triggered by increased substrate avail-

ability from fasting hyperglycemia, leads to less use of lipids as

energy substrate, again leading to lipid accumulation and

further aggravation of the hepatic insulin resistance, as

described in the metabolic inflexibility hypothesis [3]. In post-

absorptive conditions skeletal muscle contribution to total

metabolism is modest [3]. A possible ethnic difference in

muscle metabolism could thus have been masked.

The hepatic insulin resistance could also initially have been

caused by increased lipid storage in the liver due to adipose tissue

overflow [2]. Percentage truncal fat was similar in our two ethnic

groups, although the NOR group was significantly more obese. In

a previous study we found that even though a group of Pakistani

and Norwegian subjects with T2D had similar abdominal adipose

tissue distribution, the visceral adipose tissue was more metabol-

ically active in the Pakistani subjects (Wium C, Eggesbo HB,

Ueland T et al, 2013, unpublished data). An increased supply of

NEFA from visceral adipose tissue to the liver would, in addition

to the effect of increasing the insulin resistance, constitute a source

of substrate for gluconeogenesis.

Gluconeogenesis is known to be increased in subjects with T2D,

being in large part responsible for the increased post-absorptive

EGP. When using [6,6-2H2] glucose as tracer, Cori cycling is

included in the estimation of the total glucose disposal, and has

been shown to be increased 25% in T2D in general [27]. It is

possible that the increase in non-oxidative glucose metabolism in

SA in large part corresponds to increased Cori cycling, due to

substrate availability through hyperglycemia in tissues, with lactic

acid production in muscle or other tissues by anaerobic glycolysis,

then transport back to the liver and re-use as substrate in

gluconeogenesis, creating a vicious circle.

The data in this study are baseline results from a vitamin D

intervention trial. It was therefore of interest to look for

associations between baseline 25-hydroxyvitamin D levels and

measures of insulin sensitivity and insulin secretion. We found

significantly lower median 25-hydroxyvitamin D levels in the SA

group. Could differences in vitamin D status explain some of the

ethnic differences in glucose metabolism? Several epidemiological

studies have in recent years shown a relationship between vitamin

D and diabetes [28,29], the metabolic syndrome [28], insulin

resistance [30,31], and some studies also with insulin secretion

[32]. However, in most of the published studies that report

significant associations, or an effect of vitamin D intervention, the

primary end points have been surrogate markers based on fasting

blood values, like the HOMA indices [28,33,34]. The few studies

using more sophisticated methods, like OGTT, IVGTT or clamps

have usually not been able to show similar significant relationships

[35–39]. We did not find any association between levels of 25-

hydroxyvitamin D and TGD or AIRg. The question therefore still

remains whether there is a genuine and causal relationship

between vitamin D and diabetes, and we have to await results

from randomised, controlled trials.

A strength of this study was the use of gold standard methods

such as the euglycemic clamp with tracer dilution, coupled with

indirect calorimetry. This enabled us to measure both fasting

endogenous glucose production and insulin sensitivity, as well as

carbohydrate and fat metabolism, both in the basal and

hyperinsulinemic state. To our knowledge, this has not been

reported in SA subjects with T2D previously. The patients were

included by a large variety of approaches, with wide inclusion

criteria, the main restriction being the 25-hydroxyvitamin D levels

#50 nM, with the aim of securing broad representativeness. The

following limitations must be noted: The data presented here are

cross-sectional. No efforts towards matching of the two ethnic

groups at baseline were made. The inclusion of SA patients in the

study proved challenging, hence the SA group was limited in size,

increasing the risk of Type II statistical errors. Further studies in a

larger group of patients, will therefore be necessary to confirm

some of the findings that are still uncertain in our study. We

selected only subjects with low levels of vitamin D, and our results

therefore cannot be generalized to the whole population of

subjects with T2D, although low vitamin D levels are common i

T2D. Nevertheless, we did not find any correlation between 25-

hydroxyvitamin D levels and insulin sensitivity or insulin secretion.

This is an exploratory study, and we have judged it appropriate

not to show p-values corrected for multiple testing. Bonferroni-

Holm corrections were performed, showing that p-values ,0.01

remained significant. However, due to the high risk of missing a

genuine difference that is clinically significant, we still focus on the

non-corrected tests [40]. Hence, there is also a risk of reporting p-

values ,0.05 by chance.

Conclusions

We have demonstrated higher basal EGP in SA patients with

established T2D. Clamp EGP can be substantial in patients with

established T2D, and cannot be estimated from the surrogate

markers measured. We found no ethnic difference in insulin

sensitivity or in first phase insulin secretion. Findings of near

significant correlations between REE, EEclamp and EGP in the SA

group only, might indicate increased post-absorptive glucose

metabolism in the SA group, at the expense of lipid metabolism,

but these results have to be confirmed in larger studies. Finally, we

found no indication of any relation between vitamin D and insulin

sensitivity and secretion.
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