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Abstract: The idea of a bioactive surface coating that enhances bone healing and bone 

growth is a strong focus of on-going research for bone implant materials. Enamel matrix 

derivate (EMD) is well documented to support bone regeneration and activates growth of 

mesenchymal tissues. Thus, it is a prime candidate for coating of existing implant surfaces. 

The aim of this study was to show that cathodic polarization can be used for coating 

commercially available implant surfaces with an immobilized but functional and  

bio-available surface layer of EMD. After coating, XPS revealed EMD-related bindings on 

the surface while SIMS showed incorporation of EMD into the surface. The hydride layer 

of the original surface could be activated for coating in an integrated one-step process that 

did not require any pre-treatment of the surface. SEM images showed nano-spheres and 

nano-rods on coated surfaces that were EMD-related. Moreover, the surface roughness 

remained unchanged after coating, as it was shown by optical profilometry. The mass 
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peaks observed in the matrix-assisted laser desorption/ionization time-of-flight mass 

spectroscopy (MALDI-TOF MS) analysis confirmed the integrity of EMD after coating. 

Assessment of the bioavailability suggested that the modified surfaces were active for 

osteoblast like MC3M3-E1 cells in showing enhanced Coll-1 gene expression and  

ALP activity. 

Keywords: bioactive coating; coating technique; enamel matrix derivate; EMD; titanium; 

titanium-zirconium; surface modification 

 

1. Introduction 

Titanium based endosseous dental implants have shown improved clinical performance over recent 

years [1]. Although the response of bone tissue to an endosseous dental implant is governed  

by several factors, the implant’s surface morphology and surface chemistry largely influence the 

biological response to an implant [2,3]. Modifications of the surface roughness and chemistry to 

improve bone healing by machining, sand-blasting, acid-etching, or their combination, are common 

approaches for modifying the surface chemistry and for altering the surface topography and 

morphology on a micro- and nano-scale [4–9]. Blasting and etching have been shown to be successful 

in optimizing surface roughness and enhancing surface reactivity by increasing surface hydride levels 

for improved clinical performance [10–19]. Reducing environmental carbon contamination has been 

shown to further enhance the surface energy and wettability of sand-blasted and acid-etched (SBAE) 

surfaces. Such a reactive surface can be maintained by handling under protective cover gas and storage 

in saline solution [20,21]. A different approach to improve the surface by etching in hydrofluoric  

acid has shown elevated hydrogen levels and traces of fluoride on the surface [22,23]. Dental implants 

with fluoride-doped titanium dioxide have demonstrated enhanced osteoblast differentiation and bone 

growth [24–26]. 

Another, but less explored, approach in improving implant surfaces is the biochemical modification 

of the surface. A commonly used approach is the biomimetic deposition of hydroxyapatite (HA) on 

metallic surfaces [27]. Surfaces coated with HA have shown improved in vivo performance compared 

to untreated surfaces [28]. Moreover it has been shown that a HA layer may be used for incorporating 

biomolecules like proteins or antibiotics [29–32]. A variety of other successful biochemical surface 

modifications with peptides and extracellular matrix proteins and have shown that biochemically 

modified surfaces can improve bone healing compared to unmodified titanium surfaces [33,34]. As 

there is a variety of biomolecules available that promote bone healing, a surface modification by 

chemically attaching such a biomolecule to the surface of an implant directly offers a potential for 

enhancing implant performance in bone whilst maintaining the characteristics of the original implant. 

However, the challenges of making a bioactive coating bioavailable and to maintain its function 

remain [34]. 

Lyngstadaas and Ellingsen suggested using a polarization process to attach charged biomolecules to 

the surface in order to stimulate bone healing [35]. Cathodic polarization in acidic solution creates a 

hydride layer on titanium or titanium alloys that can be used as an activated surface for attaching 
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charged biomolecules [35]. A previous study, which used such a process on smooth, commercially 

pure titanium showed that cathodic reduction of titanium in acidic solutions was successfully used in 

order to create thick hydride layers on the surface [36]. Our previous study showed that cathodic 

polarization on a SBAE surface exhibited a non-linear but cyclic development of the hydride 

layer [37]. Such a cyclic hydrogen development offers the potential for attaching charged biomolecules 

to the surface even faster than on commercially pure titanium like we have shown for strontium and 

doxycycline in our previous studies [38,39]. 

In search for a candidate biomolecule which could be attached to the surface of an implant by the 

proposed polarization process, enamel matrix derivate (EMD) appeared to be a promising candidate as 

it mainly contains amelogenins, which are the major component of the enamel extracellular matrix [40]. 

Lyngstadaas et al. [41] showed the potential of EMD for use in bone regeneration and implantology. 

Promising results of EMD supporting periodontal bone regeneration and the angiogenic effect of EMD 

have been shown in various studies [42–44]. Moreover, major components in EMD have been reported 

to have bipolar properties, which are a requirement for being used in an electro-coating process [45–47]. 

Hence, this study chose to use EMD for exploring the feasibility of a bioactive surface coating by 

means of the aforementioned polarization process. 

The aim of this study was to show that a cathodic polarization process can be used for coating EMD 

onto commercially available dental implant surfaces. The secondary aim of this study was to show that 

EMD was bio-available and maintained its function after coating. 

2. Results 

2.1. Surface Chemistry 

Depth profiles acquired by SIMS (Figure 1, Table 1) revealed increased carbon layer thickness, 

total carbon and total hydrogen content for TiZr EMD and Ti EMD compared to the respective SBAE 

surfaces. In detail, total carbon was increased 7.6-fold and total hydrogen was increased 2.1-fold for  

TiZr EMD compared to TiZr SBAE, while Ti EMD showed a 22-fold increase in total carbon and a 

3.9-fold increase in hydrogen levels when compared to Ti SBAE. A similar trend was observed for the 

maximum intensity of hydrogen and carbon. 

XPS analysis revealed that pure EMD consisted mainly of carbon (C 1s) at 60.91% (Table 2), 

whereas 52.72% of this carbon was present as a carbon single bond (C–C), 20.81% as a double bond 

(C=C), and 26.47% as a single carbon-oxygen bond (C–O) (Table 3). Oxygen (O 1s) was the second 

largest component of pure EMD at 24.69%, whereas 80.62% of this oxygen was bound as organic 

oxygen and 19.38% as a carbon-oxygen single bond (not shown in the table). In addition to carbon and 

oxygen, pure EMD also showed 13.9% of nitrogen (N 1s) and traces of silica (Si 2p) and sulfur (S 2p). 

EMD-coated surfaces of both materials showed a shift in the binding state of the carbon on  

the surface towards a distribution of C–C, C=C, and C–O/C–N bonds that was comparable to the 

distribution observed for pure EMD. TiZr EMD and Ti EMD showed an increase in C=C bonds of 

circa 10 pp compared to the SBAE surface (Table 3). Moreover, the specific bonds of oxygen showed 

over 70 pp more organically bond oxygen for EMD-coated samples than for SBAE samples. While 
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TiZr EMD and Ti EMD also showed Si and N, only TiZr EMD had S on the surface as had been 

observed for pure EMD. 

Figure 1. SIMS depth profiles of the 
12

C (A); 
1
H (B) and 

18
O (C) isotopes. 

 

Table 1. SIMS depth profile analysis parameters for the 
1
H and 

12
C isotope. 

Isotope Sample Total amount (c) Maximum intensity (c/s) Layer thickness (µm) 
1H TiZr SBAE 2.65 × 107 6.05 × 107 2.26 
1H TiZr EMD 5.67 × 107 1.28 × 108 2.92 
1H Ti SBAE 5.44 × 106 1.47 × 108 1.1 
1H Ti EMD 2.10 × 107 1.07 × 108 1.3 
12C TiZr SBAE 3.61× 104 2.42 × 105 0.06 
12C TiZr EMD 2.76 × 105 5.94 × 106 0.75 
12C Ti SBAE 1.53 × 105 1.29 × 106 0.03 
12C Ti EMD 3.37 × 106 1.02 × 107 1.16 
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Table 2. XPS surface elements distribution. 

Element 
Pure EMD  

(%) 

TiZr SBAE  

(%) 

TiZr EMD  

(%) 

Ti SBAE  

(%) 

Ti EMD  

(%) 

O 1s 24.69 53.79 19.58 54.24 23.64 

C 1s 60.91 20.74 62.55 22.74 56.66 

F 1s – 0.78 – 1.29 0.87 

Ti 2p – 19.45 1.91 21.73 2.91 

N 1s 13.90 – 12.63 – 8.64 

Cl 2p – 1.55 0.59 – 0.69 

Na KLL – 0.78 1.27 – 5.76 

Si 2p 0.15 – 0.92 – 0.83 

S 2p 0.36 – 0.17 – – 

Zr 3d – 2.90 0.37 – – 

Table 3. XPS specific bindings of the surface oxygen and carbon. 

Element Assignment 

Pure EMD TiZr SBAE TiZr EMD Ti SBAE Ti EMD 

Position 

(eV) 

Conc.  

(at%) 

Position 

(eV) 

Conc.  

(at%) 

Position 

(eV) 

Conc.  

(at%) 

Position 

(eV) 

Conc.  

(at%) 

Position 

(eV) 

Conc.  

(at%) 

O 1s Organic O 531.16 80.62 531.11 35.35 531.44 85.00 531.19 35.71 531.43 89.04 

O 1s TiO2 – – 529.94 64.65 529.24 15.00 529.97 64.30 529.09 10.96 

C 1s C–C, CHx 284.75 52.72 284.71 56.95 284.69 47.94 284.69 59.17 284.73 51.31 

C 1s C=C 287.92 20.81 288.63 10.35 287.83 20.94 288.81 14.38 288.05 25.65 

C 1s C–O, C–N 286.05 26.47 286.10 32.70 285.95 31.12 286.10 26.44 285.93 23.04 

2.2. Surface Morphology 

Comparison of TiZr EMD against TiZr SBAE by SEM showed changes to the topography for  

the micro- and nano-topography. Although the micro-topography of SBAE and the coated samples 

(Figure 2A,C) revealed similar nano-nodules and small spherical structures on the surface, only the 

EMD coated sample presented additional larger spherical structures that were not visible for the SBAE 

sample. At larger magnifications (Figure 2B,D) these larger spherical structures, ranging from 70 nm 

to 650 nm in diameter, appeared to be attached to the surface and showed interconnections to each 

other. Although, these spherical structures appeared to attach preferably to the peaks of the surface, 

they were visible on the side faces of the surface peaks as well. The polarization process did not show 

any other changes to the surface’s topography as the edges and peaks appeared to have the same 

morphology after polarization as they had prior to polarization. Ti SBAE revealed a similar  

micro-topography of the surface as it was observed for TiZr SBAE (Figure 2A,E), however the 

surfaces differed at the nano-level (Figure 2B,F). While TiZr SBAE exhibited nano-nodules and 

spherical structures, none of the two could be observed for Ti SBAE. By contrast, Ti EMD (Figure 2G) 

showed spherical microstructures that were of the same size as the spherical structures observed for 

TiZr EMD at larger magnification (Figure 2H). The structures appeared to preferably cover the peaks 

and edges of EMD-coated surfaces. Apart from the spherical structures described, there were no other 

changes of the surface topography observed. 
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Figure 2. SEM images of (A,B) TiZr SBAE; (C,D) TiZr EMD; (E,F) Ti SBAE  

and (G,H) Ti EMD. 

 

Assessment of the surface micro-topography by optical imaging profilometry only revealed 

significant changes (p = 0.013) against the original SBAE surface for the Sa of TiZr EMD (Table 4). 

The Sa was 0.08 µm less rough for TiZr EMD than for TiZr SBAE. There appeared to be a general 
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difference between the two materials, regardless of the surface treatment, as Sa, Ssk and Sci revealed 

higher values for TiZr, and Sku and Sdr revealed higher values for Ti. 

Table 4. Mean surface topography parameters with standard deviation assessed by optical 

imaging profilometry. Only TiZr EMD showed a significant difference (* p < 0.05) for  

Sa compared to TiZr SBAE. 

Sample Sa (µm) Ssk Sku Sci Sdr (%) 

TiZr SBAE 2.074 ± 0.08 −0.142 ± 0.07 2.920 ± 0.14 1.530 ± 0.03 58.19 ± 2.14 

TiZr EMD 1.904 ± 0.06 * −0.146 ± 0.09 2.939 ± 0.05 1.528 ± 0.03 58.78 ± 5.06 

Ti SBAE 1.861 ± 0.12 −0.195 ± 0.35 3.800 ± 1.07 1.433 ± 0.09 70.51 ± 4.94 

Ti EMD 1.816 ± 0.04 −0.359 ± 0.13 3.641 ± 0.81 1.448 ± 0.05 72.51 ± 3.21 

2.3. Assessment of EMD’s Integrity 

The matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) 

spectrum of pure EMD in 0.1% acetic acid revealed a very intense peak in the 5 kDa region and a less 

intense peak at 16.9 kDa (Figure 3A). Matrix-assisted laser desorption/ionization in source decay 

(MALDI-ISD) of pure EMD revealed fragments with the sequence YEVLTPLKWYQNM (Figure 4). 

TiZr EMD showed a major peak at 5179 Da (~620 a.u.) (Figure 3B). This peak was surrounded by 

peaks with a mass difference of 16 Da. Ti EMD showed its major peak at 5180 Da (~330 a.u.) (Figure 

3C). As has been observed for TiZr EMD, this peak was also surrounded by peaks with a mass 

difference of 16 Da and 17 Da. Moreover, Ti EMD also revealed a peak at 16.9 kDa. 

Figure 3. MALDI spectra of (A) pure EMD; (B) TiZr EMD and (C) Ti EMD. All graphs 

include an enlarged version of the region between 5000 and 5400 m/z. 

 Molecular weight (m/z)
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Figure 3. Cont. 

 

Figure 4. MALDI-ISD of EMD revealed fragments with the sequence 

YEVLTPLKWYQNM corresponding to the amino acid stretch 33–45. 
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2.4. EMD Bioavailability Assessment 

Electro-coated TiZr EMD displayed statistically significant differences (p < 0.05) for the expression 

of Coll-1 mRNA levels (Figure 5A) and alkaline phosphatase (ALP) activity (Figure 5B) compared to 

TiZr SBAE. Like for TiZr EMD, ALP activity was significantly different for Ti EMD compared to Ti 

SBAE. By contrast, the expression of Coll-1 mRNA levels of Ti EMD was not significantly higher 

compared to Ti SBAE, although higher gene expression was observed. The pol groups did not expose 

any significant differences in gene expression compared to TiZr SBAE. 

Figure 5. Coll-1 relative mRNA levels (A) and ALP activity for polarized only and EMD 

coated groups were displayed as box plots of the median values (Q2) with 5, 25 (Q1),  

75 (Q3) and 95 percentiles (n = 6). Student’s t-test revealed significant (* p ≤ 0.05) 

differences in Coll-I relative mRNA levels between TiZr EMD and TiZr SBAE. ALP 

activity revealed significant differences between TiZr EMD and TiZr SBAE and between 

Ti EMD and Ti SBAE. 

 

3. Discussion 

3.1. EMD Bioavailability Assessment of the Coated Surfaces 

TiZr EMD exhibited earlier proliferation than TiZr SBAE, concluding from the significantly 

increased expression of Coll-1 and ALP activity based on the temporal expression presented by 

Quarles et al. [48] and Monjo et al. [49]. Likewise, Ti EMD tended towards earlier cell proliferation 

than Ti SBAE, based on significantly higher ALP activity and a trend towards increased expression of 

Coll-1, although this difference was not statistically significant. As TiZr pol and Ti pol did not  

show any significant differences to the performance of the respective SBAE group, the enhanced cell 
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proliferation was linked to the EMD-coating of the surface and confirmed that EMD was not only  

bio-available but also maintained its function. The findings presented for EMD-coated surfaces agreed 

with the results reported by Reseland et al. [50], who also showed increased Coll-1 levels and ALP 

activity for primary human osteoblasts incubated with EMD. A different study by Rubert et al. [51] 

has also shown increased Coll-1 mRNA levels after 14 days for MC3T3-E1 cells incubated with EMD.  

A recent in vitro study using rat calvarial osteoblasts by Miron et al. [43] assessed a titanium SLA
®

 

surface (Straumann, Basel, Switzerland), similar to the Ti SBAE surface used in this study, that was 

coated with EMD by a dipping procedure. Their study showed enhanced cell proliferation and cell 

differentiation for EMD-modified Ti SLA
®
. Miron et al. [43] concluded that EMD accelerated 

differentiation by promoting mature phenotypes earlier than Ti alone. 

3.2. Confirmation of EMD’s Integrity after Coating 

As EMD consists of a multitude of components of different size and mass, MALDI was used to 

analyze the individual fractions of an EMD-coated surface in order to confirm the integrity of the 

coating. The MALDI spectra of TiZr EMD and Ti EMD showed peaks in the region of 5 kDa and  

16 kDa comparable to the peaks found for pure EMD. The minor differences in peak mass observed 

were not unusual when comparing it to the results of other authors [52,53]. Mumulidu et al. [52] 

reported a similar range for the 5 kDa peak of EMD when analyzing this peak specifically. They 

concluded that the mass variation observed for this peak might be a result of the small amount of the 

sample itself [52]. Moreover, this study showed the major peak in the 5 kDa region to be surrounded 

by peaks with a mass difference of +16 Da that were corresponding to oxidation. The peak found at 

16.9 kDa for pure EMD was also observed for TiZr EMD and Ti EMD. Riksen et al. [54] showed a 

peak at 16.6 kDa for two different amelogenin fractions separated from EMD by size-exclusion  

high-performance liquid chromatography. As Riksen et al. [54] used 0.05% acetic acid for dissolving 

EMD, the pH should have been slightly higher than for the 0.1% acetic acid solution used in this study. 

Cohen et al. [55] described a pH dependency of the mass peak of a MALDI measurement when using 

a HCCA matrix like it was used in this study. While pure EMD was dissolved in 0.1% acetic acid at 

pH 3.1, the ACN+TFA solution used for detaching EMD from the coated coins had a pH of 1.8. It was 

believed that the results obtained by Riksen et al. [54] were measured at a pH that was different to the 

pH used for the samples of this study. Hence, an influence of the different pH values of the single 

samples could not be excluded. Even though EMD consists of a multitude of components of different 

size and weight, a successful coating with EMD was supported by MALDI as the fractions found on 

EMD coated surfaces largely corresponded with the fractions observed for pure EMD. 

The peaks observed in the MALDI spectrum of pure EMD in the 5 kDa and 16 kDa region 

concurred with the peaks that have previously been reported in the literature [40,52–54]. Moreover, 

sequencing of pure EMD MALDI-ISD revealed fragments with the sequence YEVLTPLKWYQNM 

that were corresponding to the amino acid stretch 33–45. Considering the detected molecular mass at 

5158 Da and the determined sequence, this molecule corresponded to amelogenin, which is the major 

component of EMD, sequence stretch 17–59 without the signal peptide and with an additional mass of 

80 Da within sequence stretch 17–32 [40,53]. This mass difference indicated towards a phosphorylation. 

Notably, serine-32 has been identified to be phosphorylated in bovine amelogenin [53]. 
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3.3. Chemical Confirmation of an Effective Surface Coating with EMD 

The increased carbon layer thickness and total carbon content for TiZr EMD and Ti EMD observed 

by SIMS suggested an incorporation of EMD into the surface. Detailed analysis of the coated surfaces 

by XPS showed a shift in the carbon binding state on the outer surface towards a binding state 

distribution of C–C, C=C, and C–O/C–N bonds that was comparable to the distribution observed for 

pure EMD. Moreover, surface oxygen was significantly decreased for EMD-coated samples while  

the oxygen binding state was shifted from Ti-bond oxygen towards organically bound oxygen,  

which correlated with the binding state of pure EMD, which has about 80% organically bound oxygen. 

In addition, EMD related nitrogen, silicon, and sulfur that have not been detected on the initial SBAE 

surfaces could be observed for EMD-coated surfaces. The decrease in Ti and Zr levels on the surface 

for EMD-coated samples indicated that the surface was masked by the EMD-coating like it has been 

described by Morra et al. [56] for a different surface coating. 

The presence of fluoride on SBAE and EMD surfaces was not intended and was believed to have 

derived from handling of the samples with PTFE covers during blasting, etching and polarization. The 

presence of Na and Cl was believed to be a result of the storage of the SBAE samples in saline solution. 

Even though the SBAE samples were washed in reverse osmosis deionized water in an ultrasonic bath, 

for 5 min, prior to examination or polarization, an adhesion of NaCl to the respective surface remained 

possible and was most likely the source of these trace elements. The results observed for the SBAE 

surfaces were in accordance with previous studies on similar surfaces [56,57]. 

The hydride layer created by this process was proposed to be the linking element between the metal 

surface and the biomolecule. Therefore, the hydrogen depth profile was of particular interest. The 

results of this study showed increased hydrogen maximum hydrogen intensity, total hydrogen content, 

and layer thickness of the EMD-coated samples when compared to the corresponding SBAE samples. 

This was in agreement with the coating mechanism that has been suggested by Lyngstadaas and 

Ellingsen [35]. 

3.4. Visual Confirmation of Effective Surface Coating with EMD 

The results of the SEM analysis showed large interconnected spherical structures for TiZr EMD and 

Ti EMD that were not present on the respective SBAE surface. Interestingly, the structures observed 

for EMD-coated samples were different to the structures observed in our previous study that used the 

same polarization process without any biomolecules on the same SBAE materials [37]. While the 

structures observed for polarized SBAE surfaces in our previous study were shaped differently, they 

also seemed to have grown from inside the material towards the outer surface. By contrast, the spheres 

observed for EMD-coated samples in this study appeared to have been attached on top of the material 

from the surroundings. The masking effect of titanium and zirconium respectively previously described 

supported this observation. Such an attachment would be in concordance with the attachment of EMD 

to the surface as it was suggested. Moreover, Gestrelius et al. [58,59] showed EMD precipitated from 

aqueous solution to form spheres or short rods that were comparable to the structures observed for 

EMD-coated samples in this study. Thus, the spheres and short rods seen on the surface of EMD 

coated samples in the SEM images of this study were interpreted to be EMD. 



Materials 2014, 7 2221 

 

Analysis of the surface roughness parameters by optical imaging profilometry did not reveal 

significant changes after EMD-coating except for the Sa of TiZr EMD. Even though the change was 

statistically significant, the actual Sa of TiZr EMD was midway between the Sa of TiZr SBAE and  

Ti SBAE. The observed trend towards generally different surfaces for TiZr and Ti has been reported  

in previous studies [10,57]. It has been shown in in vivo studies that TiZr SBAE performed equally 

well if not better than Ti SBAE [60–62]. Moreover, Sa values between 1.16 and 3 µm have been shown 

to optimal for titanium endosseous dental implants with a surface comparable to the SBAE  

surface [63–65]. Hence, the surface topography created during EMD-coating should not have a negative 

effect on the performance of the surface but an effect may only be expected from the coating itself. 

4. Experimental Section 

4.1. Samples 

This study used coin-shaped samples made of grade IV commercially pure titanium (Ti) and a 

titanium-zirconium alloy (TiZr) containing 13% to 17% zirconium with a grit-blasted and acid-etched 

(SBAE) surface with a diameter of 4.39 mm and a height of 2 mm. Detailed information about the 

samples have been described in our previous study [10] and in other studies [13,20]. The setup used for 

cathodic polarization was the same as it has been described in our previous study [37]. Polarization 

was performed in 200 mL of a 2 M buffer solution mixed of acetic acid and sodium acetate at pH 5.  

20 mg of dry stored EMD (Institut Straumann AG, Basel, Switzerland) were dissolved in 2 mL  

of 0.1% acetic acid at 4 °C and added to the buffer for final EMD-concentration of 0.01 mg/mL. The 

buffer was kept at 21 °C over the course of the whole process. After processing, all samples were  

air-dried in a laminar flow cabin for 30 min and packed in Eppendorf tubes. The coating of TiZr SBAE 

with EMD (TiZr EMD) was done for 60 min while the output current was set to 0.49 mA/cm
2
.  

Ti SBAE was coated with EMD (Ti EMD) for 60 min at a current density of 1.65 mA/cm
2
. A control 

group that was cathodically polarized without addition of EMD to the buffer (TiZr pol; Ti pol) was 

added to the cell study to assess the effect of the polarization independently of EMD coating. The 

parameters were chosen for the particular materials based on the results of our previous study that 

showed a promising development of the hydride levels for attaching charged biomolecules for those 

settings [37]. 

4.2. Chemical Characterization 

TiZr SBAE samples and EMD-coated samples were analyzed by SIMS in order to demonstrate 

EMD incorporation into the surface by assessment of the 
12

C isotope’s depth profile, as EMD consists 

to a large part of carbon. Lamolle et al. [9] used this method to show the incorporation of fluorine into 

the surface of titanium after etching in hydrofluoric acid. Furthermore, depth profiles of the 
1
H and 

18
O 

isotopes were obtained. Analysis was performed on an IMS 7f (Cameca, Paris, France) magnetic sector 

SIMS using the same parameters that have been described in our previous study [10]. 

Analysis of the surface by XPS was used to detect changes in the surface chemistry and binding 

states after polarization with EMD. The XPS analysis was carried out on an Axis Ultra
DLD

 XP 

spectrometer (Kratos Analytical Limited, Manchester, UK). Detail spectra were recorded for O 1s and 
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C 1s. The energy shift due to surface charging was below 1 eV based on the C 1s peak position relative 

to the established BEs, therefore the experiment was performed without charge compensation. All 

other settings of the instrument were the same that have been described in our previous study [10]. 

Peaks were interpreted according to Moulder and Chastain [66], and Cai et al. [67]. 

4.3. Surface Morphology 

All SEM images in this study were taken on a Quanta 200 FEG (FEI Hillsboro, OR, USA)  

field-emission SEM. Its Schottky field emission gun (FEG) allowed high spatial resolution. All 

samples were sputtered with platinum for one minute prior to imaging and mounted on the sample 

holder with conductive carbon tape. 

A PLµ 2300 (Sensofar-Tech S.L., Terrassa, Spain) blue light laser profilometer and interferometer 

using a 50× EPI (Nikon, Tokyo, Japan) confocal objective was used for assessing the surface topography. 

The following surface parameters were analyzed: average roughness (Sa), skewness of the height 

distribution (Ssk), kurtosis of the height distribution (Sku), core fluid retention index (Sci), and 

developed interfacial area ratio (Sdr). 

4.4. Analysis of the Biomolecules 

As EMD is almost insoluble at physiological pH and temperature, it was detached from the surface 

in a solution containing 40% acetonitrile (ACN) and 0.3% trifluoro acetic acid (TFA) at pH 2 and  

at 8 °C [40]. Samples were submerged in 1 mL of ACN+TFA and placed on a shaker for 24 h. Pure 

EMD was dissolved in acetic acid as described earlier. All samples were cleaned using a C4-ZipTip  

to remove impurities that may have created background noise during MALDI-TOF MS. 0.5 mL of  

20 mg/mL α-Cyano-4-hydroxycinnamic acid (HCCA) matrix in 0.3% TFA/acetonitrile (2:1) was 

added to each sample before spotting it onto a stainless steel MALDI plate. MALDI-TOF MS was 

performed on an ULTRAFLEX II MALDI-TOF/TOF (Bruker Daltonics, Bremen, Germany). Basic 

settings of the instrument for the spectra were as follows: ion source 1: 25 kV; ion source 2: 23.5 kV; 

lens: 6.5 kV; deflection mass 4000 Da, polarity positive. Basic setting for MALDI-in source decay 

(MALDI-ISD) were as follows: ion source 1: 25 kV; ion source 2: 21.85 kV; lens: 9.7 kV; reflector: 

26.3 kV; reflector 2: 13.85 kV; deflector mode, polarity positive. FlexControl 3.0 (Bruker Daltonics, 

Bremen, Germany) was utilized for data acquisition and FlexAnalysis 2.4 (Bruker Daltonics, Bremen, 

Germany) for further analysis. 

4.5. Bio-Availability Study 

An in vitro cell study was performed to evaluate the bioavailability of the biomolecule on the 

coated surfaces by comparing the EMD-polarized samples against the respective SBAE surface. All 

groups had a group size of six samples per group. A group that was only polarized without any EMD 

in the buffer was used as an additional control group. The murine osteoblastic cell line MC3T3-E1 was 

obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, 

Germany). All experiments were performed in the same passage of the MC3T3-E1 cells (passage 16). 

The same number of cells was cultured in parallel on plastic for all experiments and the results were 
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presented as relative to the expression of the plastic control group in percent. The detailed steps for cell 

culturing, used housekeeping genes and analytical methods for RNA isolation, real time polymerase 

chain reaction analysis and determination of ALP activity were performed as it has been described by 

Monjo et al. [49]. ALP activity and Coll-1 mRNA levels were assessed after 14 days. 

4.6. Statistical Analysis 

Data were compared by a two way ANOVA in SigmaPlot 11 (Systat Software, San José, CA, USA). 

A normality test was performed; once this was passed, all samples were compared in pairs using the 

Holm-Sidak method. ANOVA was performed on ranks when the normality test failed, using the 

Student-Newman-Keuls test or Dunn’s test for pairwise comparison. Significance levels were set to 

significant * p ≤ 0.05 and highly significant ** p ≤ 0.01. All data were displayed as arithmetic mean 

values with standard deviation when the data were distributed normally and as median values with 

interquartile range when the data were not distributed normally. The results of the cell study were 

compared by a paired student’s t-test and displayed as box plots of the median values (Q2) with the  

5, 25 (Q1), 75 (Q3), and 95 percentiles. 

5. Conclusions 

Cathodic polarization under acidic conditions can be used to coat commercial implant surfaces  

with the growth-promoting agent EMD. Moreover, the coated surfaces revealed intact EMD that was 

bio-available and maintained its function. The hydride layer of the original SBAE surfaces could be 

activated by the process as an intermediate stage of charged hydride that acted as a coupling layer  

for the biomolecule. The coating presented in this study can be applied in an integrated manner of a 

one-step process that does not require modifications or pre-treatments of the commercially available 

base material prior to coating and is gentle enough to not inactivate or degrade protein amino acid-based 

biomolecules. Although the current study only assessed Ti and TiZr with SBAE surfaces, the process 

should be transferable to other metallic materials that develop a hydride layer during cathodic 

polarization and may potentially be used for other biomolecules that ionize under acidic conditions  

as well. 
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