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Abstract

Schizophrenia is a heterogeneous and multi-factored disease. Investigation of
the disorder could profit from statistical methods which can address multiple
putative factors and large, complex datasets. Machine learning is a branch of
statistical analysis which has specialized in developing such methods. This
dissertation contains four investigations of schizophrenia, each highlighting
a different aspect of how machine learning can address topical questions in
schizophrenia research.

The first study, “Potential genetic variants in schizophrenia: A Bayesian
analysis,” tested 36 candidate genetic loci to identify those which associated
with increased risk of schizophrenia. Genetic effect sizes are small, requiring
large samples to detect. Yet certain potentially interesting genetic variants
are rare, making collecting such samples difficult. Early selection of genes
worth further pursuit can save much wasted time and effort. Six loci were
indicated.

The second study, “Morphological correlates to cognitive dysfunction in
schizophrenia as studied with Bayesian regression,” compared a set of brain
morphological measures to identify those which best explained cognitive skill
scores. Measures included volumes of cortical, subcortical, and cerebellar
structure selected to reflect conflicting models of the morphological substrates
of cognition and cognitive deficit in schizophrenia. It found that subcorti-
cal and cerebellar structures better explained cognitive skill than cortical
structures.

The third study, “Investigating possible subtypes of schizophrenia pa-
tients and controls based on brain cortical thickness,” searched for cortical
regions which showed evidence of morphologically distinguishable subtypes.
The clinical heterogeneity of schizophrenia suggests that many disease fac-
tors may lead to morphologically distinguishable subtypes in patients. The
same method applied to a mixed sample of case and control subjects pro-
vided a non-parametric investigation of cortical thickness variation in the
disease. Morphological subtypes were not found in the patients. One third
of the cortex was found to have two distinguishable types when patients and
healthy control subjects were examined together.

The fourth study, “Grey and white matter proportional relationships in
the cerebellar vermis altered in schizophrenia,” hypothesized that propor-
tional relationships between grey and white matter tissue volumes in the
vermis would be strong in healthy control subjects and weakened in patients,
reflecting an optimum balance dictated by contrasting biological constraints
and disturbed in the disease. This was found to be the case, suggesting an
alternate model for vermis neuropathology in schizophrenia.



These studies show that machine learning can identify promising avenues
for further exploration, discern among overlapping hypotheses, elucidate the
structure of the data, and allow the formulation of novel hypotheses based
on the structure of the data.
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1 INTRODUCTION

1 Introduction

The thesis which guided this work was that machine learning techniques
could provide insight into concepts and theories highly relevant to current
understanding of schizophrenia. The use of alternative methodology was
motivated by changes in the nature of contemporary medical research and
by the complexity of the schizophrenia disorder. Machine learning provided
a solid mathematical framework and robust tools for the analysis of the data.

Medical knowledge is becoming increasingly specialized. One hundred
years ago it was possible for a person to know everything that was known
about schizophrenia. Today’s body of knowledge is too broad for a single
researcher to be well versed in every relevant aspect. It is the rare researcher
indeed who has specialist level knowledge in clinical issues, neurocognitive
testing, molecular biology, functional neuroimaging, structural neuroimaging,
and psychopharmacology. All of these fields have much to contribute to our
understanding of schizophrenia.

Along with this increase of knowledge comes an increase in the amount
of data collected from each subject. Many current research projects involve
several specializations. Subjects may be characterized across each of these.
Each domain may include numerous measures, and the measures within each
domain may contain structural relationships. Neurocognitive testing can
cover several aspects of cognition and scores may be correlated. Magnetic
Resonance Imaging (MRI) of the human brain can produce images with
100,000 or more data-points and strong spatial dependencies.

The dual trends towards increased specialization and complex datasets
generalize to many areas of current research. Schizophrenia research, how-
ever, has an additional compelling reason to adopt machine learning tech-
niques. Traditionally, medical research has been hypothesis-driven. Despite
100 years of such research, and numerous strong results, some of the most fun-
damental questions regarding schizophrenia remain unanswered [2]. While
diagnostic instruments such as structured interviews based on the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM) claim high inter-rater
reliabilities, the disease is quite heterogeneous in its manifestation. The het-
erogeneous, multi-factoral nature of schizophrenia suggests that investigation
of the disease may profit from statistical approachs which can identify pat-
terns in the data.

This has lead contemporary researchers to form large cross-domain re-
search groups, such as the Human Brain Informatics (HUBIN) project, es-
tablished in 1998 at Karolinska Institutet, Sweden. HUBIN investigates be-
havioral, brain imaging, environmental, molecular genetic, and phenotypic
data for representative schizophrenia patient populations and healthy control
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1 INTRODUCTION

subjects. HUBIN was formed to facilitate the simultaneous investigation of
multiple hypothesis possibly covering several specialties. An explicit goal of
the project was to use machine learning to explore the nature and causes of
schizophrenia.

1.1 Schizophrenia

Schizophrenia is a multifaceted disease that evades easy characterization.
The disease is not rare, with a lifetime risk commonly quoted as 1% [2, 61, 78].
This disease causes great harm, both in terms of individual suffering and cost
to society. The importance of this disease has lead to a great deal of research
effort into its nature and causes over the last 100 years. While much is
now known about the disease, the knowledge is in many ways fragmentary.
Disparate findings are common. Its etiology is not known. It is not even
certain if the disease is neurodevelopmental or neurodegenerative, a debate
which goes back to the time of Kraepelin (1919) [54].

Schizophrenia symptoms are commonly grouped along three dimensions:
positive, negative, and disorganization [61]. The term cognitive impairment
is also commonly used in place of disorganization. Positive symptoms in-
clude hallucinations, delusions, and thought disorders. Negative symptoms
include reduced volition and affect, apathy, and alogia. Disorganizational
symptoms include loosening of associations and loss of ability to maintain a
trail of though. It is not clear, however, that the three dimension model best
characterizes the different symptoms of the disease [20]. Nor is it clear that
it adequately describes the patterns of symptom co-occurrence observed in
patients [79, 80]. Symptomatic manifestation is highly heterogeneous.

Cognitive imparement is one of the main features of schizophrenia. This
can take the form of reduced attention span, reduced executive ability, and
difficulties with learning and memory [61]. While patients as a group tend to
have lower scores than healthy controls on cognitive skill tests, it is fairer to
characterize patients as having greater variance in their scores. In one study
of cognitive deficits in schizophrenia, the two highest scores on one of the
cognitive tests were attained by patients [50].

Brain morphological findings are inconsistent. There is general agreement
that schizophrenia is associated with pervasive brain morphological deficits,
yet the to-date most comprehensive review of MRI findings concluded that
the exact nature of these deficits is not clear [78]. The only consistent finding
in [78] was reductions of grey matter in the superior gyrus of the temporal
lobe. Even this finding is not universal. A later review of voxel-based mor-
phometry studies found superior temporal gyrus grey matter reductions in
only 57% of included studies [42]. While a number of converging lines of re-

2



1 INTRODUCTION

search strongly imply that white matter deficits characterize the disease [16],
diffusion tensor imaging has yet to detect reproducibly consistent differences
in white matter integrity in schizophrenia [47].

Nor is it known if observed morphological changes represent the disease
itself, either as cause or consequence, or merely an increased risk of dis-
ease. Both enlarged ventricles and reduced brain volumes are also found in
non-affected family members [61]. Some evidence suggests that degree of
morphological abnormality is associated with outcome. An investigation of
people with prodromal signs of schizophrenia found that subjects who devel-
oped schizophrenia had less grey matter in the right medial temporal, lateral
temporal, and inferior frontal cortex, and bilaterally in the cingulate, than
those who did not [68]. But the evidence is not conclusive. Longitudinal stud-
ies have found increased enlargement of the lateral ventricles among patients
with a poor outcome compared to patients with a better outcome [39, 53] as
well as the reverse [17]. It is also possible that some brain changes represent
the effects of antipsychotic medication [74].

Schizophrenia can be conceived as a disease of connectivity. The discon-
nectivity has been characterized as reduced neuropil [77], leading to deficit
in local connections between grey matter neurons. Disconnectivity has al-
ternately been explored in terms of large, whole brain networks. These may
take the form of oligodendroglia [40] and/or other white matter dysfunc-
tion [43], or dysfunction in hypothesized prefrontal-thalamic-cerebellar net-
works [3, 43]. Some researchers have concentrated on functional disconnec-
tivity [26], or correlation of mental activity between cortical regions, without
exploring the underlying mechanism. The disconnectivity hypothesis has
been simulated using artificial neural networks, in which it was possible to
reproduce schizophrenia-like behavior [41].

The disease has a strong genetic element. Estimates of the heritability
of the disease from twin studies range from 83% to 87% [10]. Unlike condi-
tions such as Huntington’s disease, which arises from a single, known, genetic
variant, schizophrenia seems to be attributable to combination effects from
multiple genes [33, 36]. Research has produced a long list of candidate genes,
with associations including neurotransmission (COMT, DRD) [36, 45], neu-
ronal growth (BDNF, DISC1, NRG1) [44, 76], and mylenation [32, 40]. It
may be that several different and partially distinct sets of genes each expose
a different risk factor or factors [8]. Some suspect sex-linked genes associated
with language and cerebral lateralization [14] underly the disease. Women
are less likely to be affected, and tend to have better disease outcomes than
men [61].

Several environmental factors also show association with increased risk
of disease. Possible stressors range from birth complications [9] to oxidative
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1 INTRODUCTION

stress [90]. Other evidence associates increased risk of disease with maternal
fever or infection [58]. This suggests that a stress-diathesis process underlies
the etiology.

Yet the neurodevelopmental model has some weakness. Primary among
these is the long latency of the disease. First symptoms do not generally
appear until early adulthood [58]. Treatment may to modify the course of
the illness, which can be interpreted to imply that the underlying pathology
is degenerative [54, 58]. The morphology exhibits neurodegenerative traits
such as ventricular enlargement and brain volume reductions [78]. This de-
generation could arise due to genetically influenced molecular disruption of
neural circuits [36]. The pathophysiology of many neurodegenerative disor-
ders can be traced in part to genetic variations which code for abnormal and
potentially toxic proteins [58]. We cannot yet be certain that schizophrenia
does not follow this pattern.

1.2 Machine learning

Machine learning is the science of inducing patterns from data. Data is
analyzed to identify likely models, or hypotheses, within a specified frame-
work. It can determine which out of a set of a priori plausible models are
well supported by the data. Data can alternately be analyzed to identify
its structure. This can show if further investigation is warrented to link ex-
planatory factors to observed structure. It also allows for investigations of
changes in structure between two conditions.

The roots of machine learning can be traced back to mathematicians such
as Thomas Bayes (circa 1702–1761) whose eponymous rule allows for strict
mathematical reasoning with probabilities, and Karl Pearson (1857–1936)
whose research on correlation and regression analysis was designed to find
associations in large datasets. The field grew rapidly in importance with
the advent of computers (1945–) as researchers explored the new possibilities
offered by a machine which could perform logical reasoning and numerical
calculation.

1.2.1 Model selection

Regression analysis is one of the most common methods for identifying re-
lationships between explanatory and dependent variables [12]. Covariate
(or variable) selection is the branch of statistics concerned with determining
which factors should be included in a regression model. Such problems are
well known in epidemiology, as well as many non-medical fields. For example,
an investigation of the effects of fat and alcohol consumption on breast can-

4



1 INTRODUCTION

cer risk should consider age, education, menopausal status, age at menarche,
family history of breast cancer, history of benign breast disease, and body
mass index. The investigator must also consider if these variables should be
coded as continuous or categorical variables, and if categorical, appropriate
cutoffs must be chosen [70]. Different choices of which factors to include and
how to encode them lead to a number of different models.

Bayesian analysis can be used to select covariates which appear to have
an influence on an outcome. The goal of a Bayesian analysis is to determine
the probability of each model, or model component, given the data [28].
Approaching the problem from a Bayesian point of view offers a natural way
of addressing concerns over how encoding of the data or including/deleting
covariates to/from the model affects its validity [12, 71]. Models can be
compared or combined based on their probability.

Model selection can, of course, be done using significance testing. Gen-
erally some form of stepwise regression is used, where variables are included
or excluded in the final model based on the results of F– or t–tests. Signif-
icance testing, however, is problematic in these situations, as it is based on
the false assumption that only two models are under consideration. Further,
such a process ignores model uncertainty [71]. Different selection procedures
can lead to different models. As all candidate variables should have some
theoretical justification, each of these differing models is defensible. Yet they
can lead to radically different interpretations. The advantage of a Bayesian
approach is that one has empirical grounds on which to compare these inter-
pretations [71].

1.2.2 Exploring structure

Machine learning also offers tools for describing the variance of the data. One
can test for the presence of clusters, which can reveal patterns that might not
otherwise be obvious. Observing the nature of the clusters found in the data
allows researchers to formulate more realistic models. Cluster-based models
of symptom patterns in schizophrenia provide better fit to observed patient
data than factor-based models [79, 80].

Cluster analysis allows the researcher to test for the existence of dis-
tinct groups in the data without having to specify a priori what causes the
groupings. This is useful when many options are a priori reasonable. The
heterogeneous nature of schizophrenia, for example, suggests several factors
which could be associated with altered brain morphology. Two immediate
possibilities include symptom profiles [57, 73] and medication effects [74]. In-
teractions between these two factors are also possible. Gender, though once
suspected to be a factor, now appears to be less likely to affect morphological
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changes in schizophrenia [62]. The presence of distinct subgroups of patients
based on brain morphology could explain some of the discrepant findings in
the literature.

Observing the patterns of correlation in the data can suggest novel link-
ages between elements. The study of correlations in fMRI time series inspired
the concept of functional (dis)connectivity in schizophrenia [26], which has
become a central paradigm of fMRI investigations into many areas. Correla-
tions between regional brain volumes have been used to support the concept
of dysfunctional fronto-temporal inter connections in schizophrenia [59, 60].

Clustering and correlation are linked. One of the primary clustering al-
gorithms, k-means, has been shown to correspond with one of the primary
algorithms for identifying sources of variance, principle component analy-
sis [19]. Karl Pearson’s influence on this science is witnessed by the common
use of his test for correlation. The underlying concept of PCA was laid out
by Pearson in 1901 [69].

It could be argued if correlation is machine learning or standard signifi-
cance testing. Correlation is one of the most fundamental tests of association
between two variables. It is commonly used in single-hypothesis investiga-
tions. Robert Fisher, however, was of the opinion that correlation was for
exploratory analysis, not establishing hypothesis [25].

1.2.3 Other uses of machine learning

The examples of machine learning just given would fall into the category
of unsupervised learning. Unsupervised learning, as just discussed, infers a
model or models from the data. The other main branch of machine learning is
supervised learning. Supervised learning creates or optimizes a model based
on known input/output pairs. Often the goal is for the machine to learn to
correctly classify inputs.

Researchers have recently begun to use supervised learning in place of sig-
nificance tests. A classifier is trained to distinguish between two conditions,
say case and control subjects, based on certain measures. If the classifier
can then correctly classify new subjects with better than random chance, it
is presumed that a difference exists between the two conditions [31]. The
elegance of the approach is that the actual difference between the two groups
does not need to be specified by the researcher. Specifying the exact dif-
ference can be very difficult when analyzing high-dimensional and highly
structured data, such as an MR image. A telling example comes from an
study of vision. A classifier was trained to distinguish the orientation of a
visual stimulus based on the fMRI signal from the voxels of the visual cortex.
It attained an accuracy of 80%, showing that real difference existed between
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the different conditions. The difference, however, was invisible to voxel-wise
t-tests statistics [37].
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2 AIMS

2 Aims

The overriding aim of this dissertation was to demonstrate that a machine
learning based statistical approach could provide insight into some of the
complexities of schizophrenia. The four included studies were selected to
highlight different aspects of how machine learning could contribute to our
understanding of the disease. The first study identified promising directions
for future research. The second study searched across several biological mod-
els to identify the most likely explanation for the data. The third study tested
for the presence of distinct subgroups in the data without a priori reference
to factors which might explain such groups. The fourth study explored struc-
tural relationships in the data, and tested if these relationships were altered
in schizophrenia.

The studies themselves aimed to investigate specific aspects of the disease.
Each of the four included studies addressed a clinically relevant issue in
schizophrenia research. The specific aims of each study, along with a brief
motivation, are elaborated below.

2.1 Specific aims

The aim of the first study was to identify single-nucleotide polymorphisms
(SNPs) in coding regions of candidate genes which showed an association
with increased risk of disease. Schizophrenia has a strong hereditary com-
ponent [10]. While many promising candidate genes have been suggested
(e.g. [8, 36, 40, 44, 45, 76]), the actual genes involved are not known. Ge-
netic investigations face several hurdles. Effect sizes tend to be small. Large
samples are necessary to demonstrate significant effect. The rarity of some
of the potentially relevant genotypes makes gathering large samples difficult.
Identify SNPs of interest early in the research project can spare much wasted
effort.

The aim of the second study was to identify relationships between brain
structure volumes and cognitive performance, and differences in such rela-
tionships in patients with schizophrenia. Several models attempt to explain
relationships between cognitive deficits and brain morphological changes ob-
served in schizophrenia. These include less gray matter in the brain cerebral
cortex [78], alterations in hypothesized neural circuitry involving the basal
ganglia [78], and alteration in cerebellar structures and related neural cir-
cuitry [3]. Brain structures suggested by each of these theories were included
in this study. Generally grey matter volumes of each structure were used,
with the exceptions of the ventricles (cerebral-spinal fluid) and corpus callo-
sum (a white matter structure).
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2 AIMS

The aim of the third study was to search the cerebral cortex for locations
where subject cortical thickness might exhibit subtypes. As discussed in the
introduction (sec 1.1), schizophrenia is a highly heterogeneous disease. This
suggests the possibility that patients could subtype based on cortical thick-
ness measures. Symptom differences [57, 73] and medication differences [74].
are only two possible dimensions which could associate with morphologically-
based patient subtypes. Along with this intrinsic interest, finding evidence
for subtypes could help explain the many discrepancies in studies of cortical
grey mater differences between patients and healthy controls. By further
including control subjects, such analysis provided a non-parametric investi-
gation of disease-related cortical thickness variation. This provided valuable
contrast with existing studies of cortical thickness variation in schizophrenia
([49, 63, 64, 88]) which all make strong assumptions regarding the data.

The aim of the fourth study was to test for proportional relationships be-
tween anatomical and tissue class divisions of the cerebral vermis in healthy
control subjects, and to test if smaller vermis volumes reported in schizophre-
nia reflected disruption of these proportional relationships. It has been the-
orized that the vermis is involved in coordinating cognitive processes [75].
Associations between the vermis and some elements of cognition were found
in study II of this dissertation [50]. Irregularities in hypothesized cerebellar-
thalamic-cortical circuitry may underlie some of the symptoms of schizophre-
nia [3]. The vermis may be smaller in patients with schizophrenia than in
healthy controls [66], though this finding is not universal [81]. An alternate
possibility rests on the assumption that functional and biological constraints
dictate optimal proportional relationships between morphological features.
This possibility has been extensively explored in the mammalian isocor-
tex [11, 46, 65] and specifically with reference to human intelligence [51],
but not previously in the cerebellum. If the base assumption is true, then
disruption of these scaling relationships could better describe vermian ab-
normalities in schizophrenia.

9



3 MATERIALS AND METHODS

3 Materials and methods

3.1 Subjects

The subject material for this work was gathered as part of the Human Brain
Informatics (HUBIN) project [5, 34], at Karolinska Institutet, Stockholm,
Sweden, between 1999 and 2003. The full subject set included approximately
220 unrelated individuals evenly divided between patients with schizophre-
nia and healthy controls. Patients were recruited from outpatient psychi-
atric clinics in the Stockholm region. They were individuals with a stable,
chronic diagnosis. All fulfilled DSM–III–R or DSM–IV criteria for a diagno-
sis of schizophrenia or schizoaffective disorder. Control subjects were drawn
from a register of the general population or recruited from hospital staff.
These individuals did not meet diagnostic criteria for any psychiatric disor-
der according to DSM–IV, and had no psychotic disorder among first-degree
relatives.

Care was taken to match both age and gender across groups. Diagnosis or
lack thereof was determined by structured clinical interviews conducted by
a trained psychiatrist and, in the case of the patients, by review of hospital
case notes [21, 84]. All subjects were healthy according to a clinical interview,
physical examination, and biochemical screening. Exclusion criteria included
a history of head trauma with loss of consciousness for more than five minutes,
or somatic disorders affecting brain function.

After receiving a complete description of the study, all subjects gave writ-
ten informed consent to participate. The study was approved by the Research
Ethics Committee at Karolinska Institutet and the Swedish Data Inspection
Board (“Datainspektionen”).

3.2 Brain measures

Both T1– and T2–weighted Magnetic Resonance images (MRI) were acquired
from each subject, under the following parameters. T1: 1.5 mm coronal
slices, no gap, flip angle=35 degrees, TR=24 msec, TE=6.0 msec, number
of excitations=2, field of view=24 cm, acquisition matrix=256x192. T2:
2.0 mm coronal slices, no gap, TR=6000 msec, TE=84 msec, number of
excitations=2, field of view=24 cm, acquisition matrix=256x192. Scans were
acquired using a 1.5 Tesla GE Signa (GE, Milwaukee, Wis, USA) system at
the Magnetic Resonance Research Center, Karolinska Hospital, Stockholm,
Sweden. The same instrument was used for all scan acquisitions. All scans
were inspected by a neuroradiologist and found to be free of pathological
defects.
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3 MATERIALS AND METHODS

3.2.1 Image analysis I

Regional and subcortical brain structure volumes used in studies II and IV
were ascertained using the BRAINS1 software package [4], following pub-
lished laboratory manuals. An affine transformation was used to align the
MR images to Talairach space [82]. Talairach boxes were assigned to specific
regions corresponding to the frontal, occipital, parietal, and temporal lobes,
and to the subcortical region. The tissue composition of each voxel was as-
certained using multi-spectral discriminant analysis [35]. Artificial neural
networks were used to automatically trace the intracranial volume and some
subcortical structures [56]. Tracings were manually corrected. A number
of regions (corpus callosum, caudate, putamen, hippocampus, cerebellum,
the posterior superior, posterior inferior, and anterior vermis, and cerebellar
tonsil) were manually delineated.

The quantitative analysis was performed blinded with regard to the two
diagnostic categories by two specialists in psychiatry with at least one year of
postdoctoral training. Test-retest reliability of the automatic segmentation
has been ascertained [35], as has operator and inter-operator reliability of
the manual tracing [1, 67]. The intra-class correlation coefficient (ICC) from
ten scans investigated for intracranial volume, total grey matter, total white
matter, and total cerebral-spinal fluid (CSF) ranged between 0.996 and 0.998.
ICCs for test-retest of 11 different subjects rescanned after one month seg-
mented by one operator were greater than 0.98 for total grey matter, white
matter, and CSF classes. Manually delineated vermis regions displayed ICCs
greater than 0.95 [66].

Study II used grey matter tissue volumes for all structures except the
following three. For the ventricles, the volume of CSF in the central and
lateral cavities was measured. For the corpus callosum, the white matter
tissue volume contained in the three (1 mm thick) mid-sagittal slices of the
structure was used. The total intracranial volume included all tissues inside
the cranium. All measures were the sum of measurements taken from both
hemispheres. This eliminated issues regarding the placement of the separat-
ing plane when considering small midline structures. Study IV used grey and
white matter tissue volumes from the vermis.

3.2.2 Image analysis II

Cerebral cortex thickness measures used in study III were calculated from the
T1–weighted images using the FreeSurfer2 software version 1.2 [15, 22, 23].

1http://www.psychiatry.uiowa.edu/mhcrc/IPLpages/BRAINS.htm
2http://surfer.nmr.mgh.harvard.edu/
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3 MATERIALS AND METHODS

This method of estimating cortical thickness uses both intensity and continu-
ity information from the entire MRI volume in segmentation and deformation
procedures to construct representations of the gray/white matter boundary
and pial surface. FreeSurfer calculates the distance between the grey/white
matter boundary and the pial surface at numerous points (vertices) across
the cortical mantle [22]. The maps produced are not restricted to voxel reso-
lution of the original images and are thus capable of detecting sub millimeter
differences between groups. The method has been validated by both histo-
logical [72] and manual measurements [49]. FreeSurfer version 3.0 was used
to automatically parcellate the cortical mantle into discrete structures based
on major gyral folding patterns [18, 24]. Cortical grey matter volumes within
these structures was automatically measured. The parcellation and volumet-
ric measures used the cortical surfaces generated with FreeSurfer version 1.2
as just described.

Topological defects in the automatically determined gray/white matter
boundary were manually fixed by laboratory technicians who were instructed
and supervised by senior researchers at the Institute of Psychology, UiO,
Oslo, Norway. All analyses were performed blinded to subject identity.

3.3 Neurocognitive measures

Neuropsychological testing consisted of a standardized battery of neurocog-
nitive tests covering 6 functional domains. All tests were administrated in a
standardized order by a trained psychologist. Care was taken not to induce
undue stress or fatigue in the patients. Verbal learning was assessed using the
Rey Auditory Verbal Learning Test (RAVLT) series [52]. Vigilance was mea-
sured using a 150-item version of the Continuous Performance Test Identical
pairs (CPT) [13]. Visuo-motor speed was measured by the Trail Making Test
Form A and Form B (TMTA/TMTB) [52]. Working memory was assessed
with the Letter-Number Sequencing (LNS) subtest from the WAIS-III [87].
Vocabulary, a rough premorbid functional indicator, was measured using the
Vocabulary subtest of the WAIS-R [86]. Executive function was measured
using the 64-card version of the Wisconsin Card Sorting Test (WCST) [38].

3.4 Genetic measures

Thirty candidate genes with putative association with schizophrenia were se-
lected for analysis. Genes were selected if either they or their coded protein
were associated with schizophrenia in previous independent research efforts.
Thirty-six SNPs were selected on these 30 genes which met the following
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criteria: located in the coding region of the gene, having a minor allele fre-
quency of at least 5% in the general population, and reported by two groups
as being associated with schizophrenia.

Genetic data was gathered by pyrosequencing of venous blood [27, 44].
Pyrosequencing used published polymerase chain reaction (PCR) primer se-
quences when they were available, otherwise new PCR primers were designed.
Pyrosequencing followed the protocol specified by the manufacturer of the
equipment (Pyrosequencing AB, Uppsala, Sweden), and was performed at
Karolinska Institutet.

3.5 Bayesian covariate selection

Study I identified promising SNPs by evaluating the likely range of each
regression coefficient in logit models expressing risk of schizophrenia as a
function of SNP allele genotype. The true value of these coefficients cannot
be known without infinite data, but a Bayesian analysis can fully describe
the probability distribution capturing the uncertainty regarding their true
value [28]. This allowed the calculation of an interval which was 95% likely
to contain the true value, the 95% credible interval. If this interval excluded
zero, then the associated variable was selected. The motivation for this
criteria is that if a variable does have a true effect, that effect should be in
one direction. When the data does not provide enough evidence to determine
the direction of effect, then the effect is assumed to be non-existent or too
small to meaningfully contribute to the model [28].

The data was not sufficient to allow testing of all SNPs in one model.
They were instead tested in groups of three, rotating over different choices
of which three were included in the model. The credible interval was deter-
mined via Markov Chain Monte Carlo (MCMC) carried out using the BUGS3

engine [30].
Study II identified morphological measures associated with cognitive skill

by comparing the probability of different linear regression models, given the
data. The dependent variable was cognitive performance in one of 6 domains,
many of which had multivariate measures. Independent variables were vol-
umetric measures of 16 cortical and subcortical brain structures, as well as
age, gender, and diagnosis.

Bayes’ theorem shows that the probability of a model given the data is
proportional to the probability of the data given the model scaled by the
probability of the model. Covariate selection can be made by searching the
space of all possible models which contain the factors of a priori interest. A

3http://www.mrc-bsu.cam.ac.uk/bugs/
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covariate which appears in many highly probable models is likely to have an
effect. The model space here consisted of all possible linear combinations
of the independent variables, and interactions between the morphological
measures and diagnosis. The model space was searched using a simulated
annealing algorithm using a Bayesian decision-theoretic motivated heuristic
to drive convergence to the most likely model [7].

3.6 Cluster analysis

Cluster analysis was used in study III to explore the structure of the corti-
cal thickness measures. The primary goal of the analysis was to determine
the number of clusters which optimally described the between-subject vari-
ation in the cortical thickness measurements. This was done by comparing
the penalized error associated with different numbers of clusters.The opti-
mal number of clusters was computed independently at numerous densely
sampled cortical locations.

For each given number of clusters, the data was partitioned using the
Llyod’s k-means algorithm [55]. In k-means, the investigator decides a priori
on the number of clusters k to be identified. Each datum is assigned to the
nearest cluster center. These assignments are used to re-estimate the true
cluster centers, data are reassigned, and centers re-estimated. The processes
iterates until convergence, at which point the between-cluster variance has
been maximized and within-cluster variance has been minimized. While the
classification does assume a number of clusters, it does not assume that the
clusters represent known distinctions such as patient/control.

The optimal number of clusters was determined by finding the number of
clusters which minimizes the sum of within-cluster variances. As using more
clusters automatically lowers this sum (within-cluster variance is zero when
each datum is its own cluster), a penalty was added based on the number of
clusters used. The penalty used was a derivative of the Bayesian Information
Criteria, as it is asymptotically consistent [48].

The clustering procedure was carried out in a vertex-based morphometry
context. Vertex-based morphometry applies a statistical test at each vertex
of brain cortical maps. The goal of such an investigation is to describe cortical
regions based on the results of the test.

Study III first tested a group of 96 patients to identify cortical regions
which contained distinct subtypes based on cortical thickness. It was sus-
pected a priori that subtypes, if indicated, would associate with different
symptom profiles. Subtypes unique to the disease were not indicated by the
analysis. The cluster analysis was repeated on a mixed sample containing the
same 96 patients and 106 healthy controls. This provided a non-parametric
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investigation of case/control differences in cortical thickness. Associations
between clusters in the data and diagnosis were tested by contingency ta-
bles. This was followed up by significance testing for group differences in
cortical grey matter volumes for those cortical structures which the cluster
analysis found to be bimodal.

3.7 Correlation

Study IV tested the strength of scale relationships between tissue class vol-
umes in the cerebellar vermis. Correlations between grey and white mat-
ter tissue volumes were tested both within and between three anatomically
defined regions, the the posterior superior, posterior inferior, and anterior
vermis. Strong correlations were interpreted as evidence of structural rela-
tionships. The study further tested if the cross-correlation matrix differed
between patients and controls using the Box-M test.

The study used Benjamini and Hochbergs False Discovery Rate (FDR) [6]
to control for multiple comparisons. FDR provides weak control against type
I error, in that the expected proportion of false positives is kept below a
user-defined threshold. It is useful in situations where the main hypothesis
is established by a large number of supporting hypothesis, and where con-
clusions regarding the main hypothesis would not be invalidated if some of
the reportedly true supporting hypothesis were false. FDR has proved to be
a very popular approach to multiple comparison issues in a number of mass
hypothesis testing fields, including genetics [83] and neuroimaging [29].
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4 Summary of studies

Study I

H Hall, G Lawyer, A Sillén, EG Jönsson, I Agartz, L Terenius, S Arnborg.
Potential genetic variants in schizophrenia: A Bayesian analysis. The World
Journal of Biological Psychiatry 8(1):12–22, 2007.

Objective. Identify, from a set of 36 candidate single nucleotide poly-
morphisms (SNPs), those which were associated with an increased risk of
schizophrenia.
Methods. Subjects included 103 patients with schizophrenia and 89 healthy
control subjects. Thirty-six candidate SNPs, covering thirty genes, were
selected which met the following three criteria: located in the coding part
of the gene, reported to be associated with schizophrenia by at least two
research groups, and with a minor allele frequency of at least 5% in the
general population. Polymerase chain reaction primers applied to venous
blood were used to determine subject genotypes. Logit linear models were
used to represent the relationship between genotype and risk of disease. The
credible intervals of the regression coefficients were determined using Markov
Chain Monte Carlo; alleles whose regression coefficients were 95% likely to
be non-zero were indicated. For contrast, standard significance testing in the
form of Fisher’s exact test for allele comparisons and a Chi-square test for
genotype testing was applied to each SNP indicated by the above analysis.
Results. The confidence intervals indicated that the following genes showed
association with increased risk of schizophrenia: BDNF, DRD2, NPY, NRG1,
RELN, and SYN. The significance testing returned the following p-values,
for allele and genotype comparisons respectively: BDNF p=0.26, p=0.20;
DRD2 p=0.13, p=0.37; NPY p=0.43, p=0.78; NRG1 p=0.27, p=0.69; RELN
p=0.22, p=0.21; SYN3 p=0.50, p=0.50.
Conclusion. A Bayesian approach was able to identify genes possibly in-
volved in the etiology of schizophrenia, whereas a significance-testing based
approach did not have sufficient power to indicate these genes.
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Study II

G Lawyer, H Nyman, I Agartz, S Arnborg, EG Jönsson, G Sedvall, H Hall.
Morphological correlates to cognitive dysfunction in schizophrenia as studied
with Bayesian regression. BMC Psychiatry 6:31, 2006

Objective. Identify brain structures whose volumes associated with cog-
nitive performance, and if such associations differed between controls and
patients with schizophrenia.
Methods. Seventy-one patients with schizophrenia and 65 healthy control
subjects were characterized by neuropsychological tests covering six func-
tional domains. Measures of sixteen brain morphological structures were
taken using semi-automatic and fully manual tracing of MRI images, with the
full set of measures completed on thirty of the patients and twenty controls.
Group differences were calculated. A Bayesian decision-theoretic method
identified those morphological features which best explained neuropsycho-
logical test scores in the context of a multivariate response linear model with
interactions.
Results. Patients performed significantly worse on all neuropsychological
tests except executive function. The most prominent morphological observa-
tions were enlarged ventricles, reduced posterior superior vermis gray matter
(GM) volumes, and increased putamen GM volumes in the patients. The
corpus callosum was associated with verbal learning. Putamen GM volumes
were associated with verbal learning, vigilance, and, to a lesser extent ex-
ecutive function, while caudate GM volumes were associated with working
memory. Cerebellar vermis GM volumes were associated with vigilance, exec-
utive function, and, less strongly, visuo-motor speed. Those neuropsycholog-
ical tests which were strongly associated to ventricular volume (visuo-motor
speed, vocabulary, and executive function) showed only weak association to
diagnosis, possibly because ventricular volume acted as a proxy for diag-
nosis. Diagnosis was strongly associated with the other neuropsychological
tests, implying that the morphological associations for these tasks reflected
morphological effects and not merely group volumetric differences. Inter-
action effects were rarely found, indicating that volumetric relationships to
neuropsychological performance were similar for both patients and controls.
Conclusion. Subcortical and cerebellar structure volumes associated with
cognitive skill while cortical volumes did not. The finding that a morpholog-
ical indicator of diagnosis (ventricular volume) provided more explanatory
power than diagnosis itself for visuo-motor speed, vocabulary, and execu-
tive function suggests that volumetric abnormalities in the disease are more
important for cognition than non-morphological features.
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Study III

G Lawyer, R Nesv̊ag, K Varnäs, A Frigessi, I Agartz. Investigating possi-
ble subtypes of schizophrenia patients and controls based on brain cortical
thickness. Psychiatry Research: Neuroimaging [in press].

Objective. The clinical heterogeneity of schizophrenia suggests the possibil-
ity of patient subtypes based on localized variation in brain cortical thickness.
Similarly, searching for cortical locations which subtype based on thickness
in a mixed sample of patients and controls provides a non-parametric inves-
tigation of the cortical deficiencies known to exist in the disease.
Methods. Cortical thickness maps, generated from MR images of 96 pa-
tients with schizophrenia and 106 controls, were co-registered and corrected
for age-related thinning. At multiple map locations, the number of subtypes
best explaining cortical thickness in the patients, the controls, and both com-
bined, was measured as the number of clusters with the lowest penalized error
criteria score. Clusters were determined using Lloyd’s k-means. Relation-
ships between subject cluster membership and possible explanatory factors
were measured using contingency tables. Grey matter volumes of bimodal
regions in the combined subject group were measured, and the significance
of group differences was determined using a Student’s t test.
Results. Both patients and controls, considered independently, were pre-
dominantly homogeneous in cortical thickness. The few bimodal regions
were similar in both groups. The combined subjects’ cortical thickness was
bimodal over 34% of the cortical mantle and otherwise unimodal. Further
probing of these bimodal regions showed that subjects tending to belong to
thinner modes were significantly more likely to be patients, and grey matter
volumes of most bimodal regions were significantly smaller in patients.
Conclusion. The study found no subtypes specific to patients. It further
found that the patients had distinctively thinner cortex than controls in large
areas of the frontal and temporal lobes, and some regions of the parietal lobe.
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Study IV

G Lawyer, R Nesv̊ag, K Varnäs, G Okugawa, I Agartz. Grey and white mat-
ter proportional relationships in the cerebellar vermis altered in schizophre-
nia. In manuscript.

Objective. Scaling relationships between morphological features have been
shown in the mammalian isocortex. This study sought to establish scale
relationships between grey and white matter tissue volumes in the cerebral
vermis, and if the tissue reductions observed in schizophrenia preserved or
disrupted these relationships.
Methods. Fifty-two chronic, stable, medicated patients (33 men, 19 women)
with established diagnosis of schizophrenia (n=43) or schizoaffective disorder
(n=9) according to DSM-III and DSM-IV criteria, recruited from outpatient
clinics in the Stockholm region of Sweden, were compared with 55 age and
gender matched healthy individuals (37 men, 18 women). The cerebellar
vermis was divided into three regions, the anterior superior (lobules I–V),
posterior superior (lobules VI–VII) and posterior inferior (lobules VIII–X).
Regions were determined by manual tracing of structural MR images. Grey
and white matter tissue volumes were measured for each region. Cross-
correlations of the volumes were computed separately for patients and for
controls, as were ratios of grey to white matter volumes within and across
the three regions. Difference between the control and patient correlation
matrices was measured using the Box M test. The individual correlations
in the matrices were compared. Differences in the mean and variance of the
ratios were assessed using t- and F-tests.
Results. The two correlation matrices were different (p=0.005). Fourteen
of fifteen measured correlations were significant in the controls, while eight
of fifteen were significant in the patients. Patients had significantly larger
variance in all but one of the nine tissue class ratios. The means of the grey
to white matter ratios were significantly higher in patients for five of the
ratios.
Conclusion. Grey and white matter volumes within and across regions were
strongly inter-related in healthy controls. These relationships were weakened
in schizophrenia.
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5 Results and comments

The studies included in this dissertation were selected to highlight differ-
ent aspects of how machine learning can contribute to our knowledge of
schizophrenia. The unifying focus of these studies was the use of alternative
approaches, not biological findings. Each study’s contribution, as well as
possible improvements and follow-ups, is therefore addressed individually.

5.1 Study I

Study I was able to identify 6 SNPs from a field of 36 candidates which showed
association with increased risk of schizophrenia using Bayesian methods. The
six SNPs indicated lay on the following genes: BDNF, DRD2, NPY, NRG1,
RELN, and SYN. Standard significance testing of these 6 SNPs did not show
an association to increased risk in the same data.

Brain-derived neurotrophic factor (BDNF) regulates survival, differenti-
ation, morphology, and synaptic remodeling of neurons. Analysis of a su-
perset of the subjects from study I did not find associations between BDNF
SNPs and diagnosis, but a meta-analysis of over 6000 subjects did find some
associations between the BDNF gene and risk of disease [44]. BDNF has
been shown to have a weak association with cortical thickness variations in
patients with schizophrenia, though at a different SNP than that tested in
Study I [85].

Many antipsychotic medications target the dopamine system, strongly
suggesting that the dopamine D2 Receptor Gene (DRD2) is involved in the
pathophysiology of schizophrenia. The analysis of a superset of the subjects
from study I found a strongly significant (p=0.002) association between the
DRD2 SNP indicated in study I and risk of schizophrenia [45]. The finding
was supported by a meta-analysis of more than 9000 subjects.

Neuregulin (NRG1) is also believed to be involved in susceptibility to
schizophrenia. The gene codes a number of proteins involved in neurotrans-
mitters as well as neuronal migration and development [76]. A preliminary
analysis of a superset of the subjects from study I showed a significant rela-
tionship between NRG1 and risk of schizophrenia (unpublished results).

Schizophrenia is thought to involve multiple genes, and/or result from a
combination of genetic and extra-genetic causes. If true, the effect of any one
SNP on odds ratios would tend to be quite small. Detection would require
large samples to establish statistical significance. This is indeed the case.
Individual studies have primarily negative findings, while meta-analysis of
thousands of individuals are occasionally able to find associations [45]. Very
large samples, however, carry a risk that inconsequential differences in odds
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ratios are declared significant. Inference of biological causation must then be
very cautious and treated with some skepticism

Study I treated genetic variation across SNPs as independent. Strictly
speaking, the assumption of independence might not have been warranted.
Certain SNP alleles are known to inherit together, in what are known as
haplotypes [91]. It is unlikely that the various SNPs tested in the study
formed haplotypes as they lay, for the most part, on different genes. This,
however, was never tested nor discussed in the manuscript.

5.2 Study II

Study II identified brain structures whose volumes were predictive of cogni-
tive skills. Verbal learning, as measured by the RAVL tests, was strongly
associated with corpus callosum white matter volume and putamen grey
matter volume. Vigilance, as measured by the CPT test, was strongly asso-
ciated with putamen and vermis grey matter volumes. Visuo-motor speed,
as measured by the TMT tests was weakly associated with vermis grey mat-
ter volumes. Working memory, as measured by the LNS test, was strongly
associated with caudate grey matter volume Vocabulary, as measured by the
WAIS-R vocabulary subtest, was weakly associated with vermis grey mat-
ter volumes. Executive ability, as measured by the WCST test, was strongly
associated with the temporal lobe and the vermis. Interactions between mor-
phological measures and diagnosis were rare, and never strongly predictive
of cognitive scores.

In general, subcortical and cerebellar structure volumes proved more pre-
dictive of cognitive skill than cortical volumes. This provides evidence in
favor of hypotheses claiming that the cognitive disruption characteristic of
schizophrenia can be explained by alterations in these non-cortical structures.
The lack of interaction with diagnosis suggests that the volumetric/cognitive
relationships are not altered in the patients. This is especially intriguing, as
both the volumes and the cognitive test scores differed between the two sub-
ject groups. One should not speculate too wildly, however, as putamen and
caudate volumes are altered by many typical antipsychotic medications [74].

One potential weakness mentioned in the discussion of this study was
that the measures of cortical grey matter were gross. It is not certain, how-
ever, that finer-scale measures would have proved advantageous. Several
other investigations have observed relationships between global grey matter
and cognitive performance, but not regional measures of grey matter [89].
Nonetheless, we have since tested for relationships between each of the cog-
nitive domains and localized cortical thickness with a 1 mm sampling interval.
Results from this analysis were primarily negative, with the exception of lim-
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ited associations for the WAIS-R and WCST. This suggests that a finer-scale
demarcation of the cortex in study II would have only slightly changed the
results. Given that the further analysis had generally weak or negative find-
ings, it is unlikely that the general conclusion of study II would have changed
had finer cortical structure definitions been used.

A weakness not addressed in the study was if cortical volumes were the
most appropriate measure. It has been suggested that correlation between
cortical grey matter measures is more predictive of intelligence than the raw
measures themselves [89]. A study of brain development in healthy adoles-
cents found an increasing correlation with age between the left Brodmann
Area (BA) 44 and its counterparts in the language network and frontal lobe
circuits [51]. BA 44 is believed to be involved in language and speech process-
ing. The same study found that subjects with higher scores on standardized
IQ test had stronger correlations between BA 44 and the ventro and dor-
solateral prefrontal cortex, the lateral parietal lobes, and the right anterior
cingulate than those with lower scores. A study spanning two publications
found that schizophrenia patients had abnormal patterns of correlation be-
tween cortical grey matter volumes [59, 60].

This suggest that had cortical grey matter measures in study II been re-
placed with correlational between these measures, the cortex may have been
more predictive of cognitive skill. Such speculation, however, leaves open the
question of what caused the correlation between grey matter structures. An
idea expressed in all of the just cited works [51, 59, 60, 89] is that the de-
creased correlation reflects disturbances in connectivity between the regions.
The corpus callosum is a major interhemispheric pathway, and the putamen,
caudate, and vermis could very well mediate inter-regional connectivity by
either directly or indirectly coordinating cortical activity.

5.3 Study III

This study searched the cortex to identify locations which contained distinct
subtypes of cortical thickness. It was found that small regions of the cortex
did exhibit subtypes in the patients. Findings were in the anterior tem-
poral cortex, the superior portion of the precentral gyrus, and the anterior
orbito-frontal cortex. These same regions, however, also exhibited subtypes
in healthy control subjects. The regions were slightly larger in the controls,
implying that the patients were the more homogeneous group. This did not
give us confidence that relationships between subtypes and disease-related
factors would have true biological meaning.

When the subject sample included both patients and controls it was found
that 35% of the cortex was bimodal. When bimodal regions were considered
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as a whole, diagnosis was significantly associated with membership in the
thinner cluster. Follow-up analysis tested for volumetric differences in 20
anatomically defined structures [18] which corresponded to bimodal regions.
Significant group differences in cortical grey matter volumes were found in
70% of the structures in the left hemisphere and 80% of the structures in the
right.

The finding of morphological subtypes in limited cortical regions in both
healthy controls and patients suggests that these regions may not fit dis-
tributional assumptions commonly made in group comparisons. There is an
increased risk for false negatives in these locations. The regions were not large
enough, however, to offer much explanation for the many discrepant findings
in studies of schizophrenia. It is more likely that discrepant findings arise
due to differences in methods, ROI definitions, and subject samples [42, 78].

An issue with cluster-based analysis is that factors underlying the clus-
tering are not always obvious. In the case of the separate subject groups, no
obvious candidate presented itself as the subtypes were not specific to the
disease. In the combined subject group, presence of disease was an obvious
potential factor. This was largely substantiated by the volumetric compari-
son of bimodal regions.

5.4 Study IV

Study IV investigated correlations between grey and white matter volumes
both within and across the posterior superior, posterior inferior, and ante-
rior vermis. These correlations were quite strong in healthy control subjects,
suggesting that a proper balance between the volumes of the different tissue
types is important to healthy vermian constitution. The correlational struc-
ture was noticeably weaker in the patients, as shown by lowed or complete
lack of significance in the correlations and increased variance in grey to white
matter tissue ratios.

In light of the fact that there is no known direct connectivity between
these three vermis regions, it is worth noting that correlations between re-
gions tended to be quite strong in the controls. Correlations between grey
matter in the posterior superior vermis and white matter in the anterior ver-
mis and in the posterior inferior vermis were significant to over four places.
The inter-regional correlation in the controls could reflect the presence of a
larger brain circuit, possibly the vermis-thalamus-cortical network hypothe-
sized by theories of cognitive dysmetria [3, 75]. Such a circuit may involve
the entire vermis and requiring vermian input balanced among the three
anatomical divisions. In the patients, the inter-regional correlations were the
most affected while the intra-region correlations were relatively spared. Con-
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tinuing the speculation just begin, this suggests that extra-vermian circuitry,
if it exists, is deficient in the patients. It is impossible to say, however, if
deficiency in neural circuitry causes aberrant vermian development or if the
causality operates in the reverse direction.

Intra-region correlation was relatively spared in the patients. This shows
that strong anatomical connectivity is associated with strong correlations be-
tween grey and white matter volumes, even in the presence of pathology. The
pathology is evidenced by significantly increased grey to white matter ratios
in two of the three vermian division, and significantly increased variance in
these ratios in all of the divisions.

A possible weakness to the study is that the tissue segmentation is has
not been validated for the vermis; this was mentioned in the manuscript. In
defense of the study, the method is well validated for cortical regions and the
strength of correlations in the control subjects suggests that it is valid also
for the vermis.

An interesting continuation would be testing for relationships between
disturbed proportions and cognitive skills. If found, this would provide strong
evidence that proper balance between tissue types is a prerequisite for proper
cognitive function. This research is a subject for a future study.
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6 Concluding remarks

The studies included here have illustrated that machine learning based statis-
tical analysis can make valid and useful contributions to medical knowledge.
The results of Study I indicated that certain genetic loci may associate with
increased risk of schizophrenia. Further investigation has confirmed these
indications. The results of Study II indicate that volumes of the corpus
callosum, putamen, caudate, and vermis better predict cognitive test scores
than cortical grey matter volumes, and that volumetric/cognitive relation-
ships are unchanged in schizophrenia. This supports speculation that sub-
cortical and vermian abnormality form an important substrate of cognitive
deficit in schizophrenia. The results of Study III showed that morphological
subtypes of patients based on regional brain cortical thickness were unlikely,
while finding that disease effects were pervasive in the cortex. This suggests
that the heterogeneity of disease symptoms is not associated with different
patterns of cortical thickness. The results of Study IV found a strong cor-
relational structure between grey and white matter tissue volumes in the
healthy vermis. It further found that that in patients with schizophrenia
this correlational structure was weakened. It is hoped that the insights from
these four studies will prove valuable to schizophrenia researchers.
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7 Summary of findings

I. The following six genes contained SNPs showed association with in-
creased risk of schizophrenia: BDNF, DRD2, NPY, NRG1, RELN,
and SYN.

II. Relationships between brain structure volumes and cognitive skill were
stronger for subcortical and cerebellar structures than for cortical struc-
tures. These relationships appeared unchanged in schizophrenia.

III. No evidence was found for patient subtypes based on brain cortical
thickness. Patients had distinctively thinner cortex than controls in
large areas of the frontal and temporal lobes, and some regions of the
parietal lobe.

IV. The cerebellar vermis of healthy subjects had strong relationships be-
tween tissue volumes in and across anatomical divisions, and these
relationships were weakened in patients with schizophrenia.
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