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Abstract

Distributed and concurrent object-oriented systems are difficult to analyze due
to the complexity of their concurrency, communication, and synchronization mech-
anisms. The future mechanism extends the traditional method call communication
model by facilitating sharing of references to futures. By assigning method call
result values to futures, third party objects may pick up these values. This may
reduce the time spent waiting for replies in a distributed environment. However,
futures add a level of complexity to program analysis, as the program semantics
becomes more involved.

This paper presents a model for asynchronously communicating objects, where
return values from method calls are handled by futures. The model facilitates in-
variant specifications over the locally visible communication history of each object.
Compositional reasoning is supported and proved sound, as each object may be
specified and verified independently of its environment. A kernel object-oriented
language with futures inspired by the ABS modeling language is considered. A
compositional proof system for this language is presented, formulated within dy-
namic logic.

1 Introduction
Distributed systems play an essential role in society today. However, quality assurance
of distributed systems is non-trivial since they depend on unpredictable factors, such as
different processing speeds of independent components. Therefore, it is highly challeng-
ing to test such distributed systems after deployment under different relevant conditions.
These challenges motivates frameworks combining precise modeling and analysis with
suitable tool support. In particular, compositional verification systems allow the differ-
ent components to be analyzed independently from their surrounding components.
Object orientation is the leading framework for concurrent and distributed systems,
recommended by the RM-ODP [26]. However, method-based communication between
concurrent units may cause busy-waiting, as in the case of remote and synchronous
method invocation, e.g., Java RMI [3]. Concurrent objects communicating by asyn-
chronous method calls have been proposed as a promising framework to combine object-
orientation and distribution in a natural manner. Each concurrent object encapsulates
its own state and processor, and internal interference is avoided as at most one process

�This work was done in the context of the EU project FP7-231620 HATS: Highly Adaptable and
Trustworthy Software using Formal Models (http://www.hats-project.eu) and supported by the
Short Term Scientific Mission, COST Action IC0701.
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is executing on an object at a time. Asynchronous method calls allow the caller to con-
tinue with its own activity without blocking while waiting for the reply, and a method
call leads to a new process on the called object. The notion of futures [6, 23, 30, 35]
improves this setting by providing a decoupling of the process invoking a method and
the process reading the returned value. By sharing future identities, the caller enables
other objects to wait for method results. However, futures complicate program analysis
since programs become more involved compared to semantics with traditional method
calls, and in particular local reasoning is a challenge.
The execution of a distributed system can be represented by its communication history
or trace; i.e., the sequence of observable communication events between system compo-
nents [8, 25]. At any point in time the communication history abstractly captures the
system state [11, 12]. In fact, traces are used in semantics for full abstraction results
(e.g., [1, 27]). The local history of an object reflects the communication visible to that
object, i.e., between the object and its surroundings. A system may be specified by
the finite initial segments of its communication histories, and a history invariant is a
predicate which holds for all finite sequences in the set of possible histories, expressing
safety properties [5].
In this work we consider a kernel object-oriented language, where futures are used to
manage return values of method calls. Objects are concurrent and communicate asyn-
chronously. We formalize object communication by a four event operational semantics,
capturing shared futures, where each event is visible to only one object. Consequently,
the local histories of two different objects share no common events, and history invariants
can be established independently for each object. We present a dynamic logic proof sys-
tem for class verification, facilitating independent reasoning about each class. A verified
class invariant can be instantiated to each object of that class, resulting in an invariant
over the local history of the object. Modularity is achieved as the independently derived
history invariants can be composed to form global system specifications. Global history
consistency is captured by a notion of history wellformedness. The formalization of ob-
ject communication extends previous work [18] which considered concurrent objects and
asynchronous communication, but without futures.
Paper overview. Sect. 2 presents a core language with shared futures. The commu-
nication model is presented in Sect. 3, and Sect. 4 defines the operational semantics.
Sect. 5 presents the compositional reasoning system, and Sect. 6 contains related work
and concludes the paper.

2 A Core Language with Shared Futures
A future is a placeholder for the return value of a method call. Each future has a unique
identity which is generated when a method is invoked. The future is resolved upon
method termination, by placing the return value of the method in the future. Thus,
unlike the traditional method call mechanism, the callee does not send the return value
directly back to the caller. However, the caller may keep a reference to the future,
allowing the caller to fetch the future value once resolved. References to futures may be
shared between objects, e.g., by passing them as parameters. After achieving a future
reference, this means that third party objects may fetch the future value. Thus, the
future value may be fetched several times, possibly by different objects. In this manner,
shared futures provide an efficient way to distribute method call results to a number of
objects.
For the purposes of this paper, we consider a core object-oriented language with futures,
presented in Fig 1. It includes basic statements for first order futures, inspired by ABS
[24]. Class instances are concurrent, encapsulating their own state and processor. Each
method invoked on the object leads to a new process, and at most one process is executing
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Cl ::� class CprT cps�q trT w r:� es?s� s M�u class definition
M ::� T mprT xs�q trvar rT xs�s? s ; return eu method definition
T ::� C | Int | Bool | String | Void | Fut T ¡ types
v ::� x | w variables (local or field)
e ::� null | this | v | cp | fpeq pure expressions
s ::� v :� e | fr :� v!mpeq | v :� e? statements

| skip | if e then s relse ss? fi | s; s
| while e do s od | v :� new Cpeq

Figure 1: Core language syntax, with C class name, cp formal class parameter, m
method name, w fields, x method parameter or local variable, and where fr is a future
variable. We let r s� and r s? denote repeated and optional parts, respectively, and e is
a (possibly empty) expression list. Expressions e and functions f are side-effect free.

on an object at a time. Object communication is asynchronous, as there is no explicit
transfer of control between the caller and the callee. Methods are organized in classes
in a standard manner. A class C takes a list of formal parameters cp, defines fields w,
initialization block s and methodsM . There is read-only access to the parameters cp. A
method definition has the form mpxqtvar y; s; return eu, ignoring type information,
where x is the list of parameters, y an optional list of method-local variables, s is a
sequence of statements, and the value of e is returned upon termination.
A future variable fr is declared by Fut T ¡ fr, indicating that fr may refer to futures
which will eventually contain values of type T . The call statement fr :� x!mpeq invokes
the method m on object x with input values e. The identity of the generated future
is assigned to fr , and the calling process continues execution without waiting for fr to
become resolved. The query statement v :� fr? is used to fetch the value of a future.
The statement blocks until fr is resolved, and then assigns the value contained in fr to
v. The language contains additional statements for assignment, skip, conditionals, and
sequential composition.
We assume that call and query statements are well-typed. If x refers to an object where
m is defined with no input values and return type Int, the following is a well-typed
blocking method call: Fut  Int¡ fr; Int v; fr :� x!mpq; v :� fr?.
To avoid blocking, ABS provides statements for process control, including a statement
await fr?, which releases the current process as long as fr is not yet resolved. This
gives rise to more efficient computing with futures. It is possible to add a treatment of
process release statements as a straight forward extension of the present work, following
the approach of [18]. We here focus on a core language for futures, with a simple seman-
tics, avoiding specialized features such as process control. The core language ignores
ABS features that are orthogonal to shared futures, including interface encapsulation,
inheritance, local synchronous calls, and internal scheduling of processes by means of
cooperative multitasking. We refer to the report version of this paper for a treatment
of these issues [19].

2.1 An Example
In order to illustrate the usage of futures, we consider the problem of counting the
number of occurrences of each word in a large collection of documents. We consider the
computing model MapReduce in Fig. 2. MapReduce is invented and used heavily by
Google for efficient distributed computing over large data sets [17]. It has three major
steps: Map, Shuffle and Reduce. The Map phase runs over input data, which might be
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Figure 2: MapReduce model.

a database or some files, and output key-value pairs. The input data is split in parts
so they can be processed by workers in parallel. The second step is the Shuffle phase,
which collates values with the same key together. At last, the Reduce function is called
by workers in parallel on the shuffled data distinguished by keys.
We assume two interfaces, WorkerI and MapReduceI. The interface WorkerI is imple-
mented by a class Worker shown in Listing. 1, in which the method invokeMap takes a
file and emits a list of pairs. Such that each word in the file is associated with a counting
number: ‘1’ in this example. For instance, if the content of the file is ‘I am fine’, the
output of invokeMap is ‘(I,1),(am,1),(fine,1)’. The method invokeReduce in class Worker
sums together all counts emitted for a particular word. For instance, invokeReduce takes
‘(am, (1,1))’ and outputs 2.
The interface MapReduceI is implemented by class MapReduce, shown in Listing. 2. We
here assume generic data types for sets, lists, and pairs, the latter with fst and snd to
extract the first and second element, respectively.
The input to the method mapReduce is a list of files each starts with a filename and con-
tains a list of words, i.e. the content of the file. Each file are handled by a worker in par-
allel. To achieve concurrency, for each file the object of MapReduce calls asynchronously
the method invokeMap on the assigned worker w. This is realized by the statement
fMap := w!invokeMap(filename, content). The function insertElement collects all the
futures into a set fMapResults. Next is the Shuffle phase. The function take randomly

class Worker () implements WorkerI {

List<Pair<String, Int>>
invokeMap(String filename, List<String> content) {...}

Int invokeReduce(String key, List<Int> value) {...}
...

}

class WorkerPool() implements WorkerPoolI {
WorkerI getWorker() {// provides idle workers,

// or generates new workers if needed.}
}

Listing 1: Sketch of the classes Worker and WorkerPool.
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class MapReduce(WorkerPoolI wp) implements MapReduceI {

List<Pair<String, Int>> mapReduce(
List<Pair<String, List<String>>> files) {

Set<Fut<List<Pair<String, Int>>>> fMapResults := EmptySet;
Set<Pair<String, Fut<Int>>> fReduceResults := EmptySet;
List<Pair<String, Int>> result := Nil;

// Map phase //
while (~isEmpty(files)) do

...
WorkerI w := wp.getWorker();
...
Fut<List<Pair<String, Int>>>

fMap := w!invokeMap(filename, content);
fMapResults := insertElement(fMapResults, fMap)

od;

// Shuffle phase //
while(~emptySet(fMapResults)) do

Fut<List<Pair<String, Int>>>
fMapResult := take(fMapResults);

...
List<Pair<String, Int>> mapResult := fMapResult?;
... // collates values with the same key together

od;

// Reduce phase //
while(~emptySet(keys)) do

...
WorkerI w := wp.getWorker();
Fut<Int> fReduce := w!invokeReduce(key, values);
fReduceResults := insertElement(

fReduceResults, Pair(key, fReduce)) od;
while (~emptySet(fReduceResults)) do

Pair<String, Fut<Int>> reduceResult := take(fReduceResults);
...
String key := fst(reduceResult);
Fut<Int> fValue := snd(reduceResult);
Int value := fValue?;
result := Cons(Pair(key, value), result) od;

return result;
}

}

Listing 2: The MapReduce class. Here the notation x :� o.mpeq abbreviates u :�
o!mpeq;x :� u? (for some fresh future u) to de-emphasize trivial usage of futures.
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Figure 3: A method call cycle: object o calls a method m on object o1 with future u.
The events on the left-hand side are visible to o, those in the middle are visible to o1, and
the ones on the right-hand side are visible to o2. There is an arbitrary delay between
message receiving and reaction.

extracts an element from a set. The method mapReduce waits upon each future, gets
the results from each future: mapResult := fMapResult?, and collates all the values
with the same key, i.e. word, together. For instance, ‘(I,1),(am,1),(who,1),(I,1),(am,1)’
is shuffled to ‘(I,(1,1)),(am,(1,1)),(who,(1))’. In the Reduce phase, each ‘key’ and the
corresponding values are handled by a worker in parallel. In the same way as the Map
phase for achieving concurrency, the first part of the reduce phase calls asynchronously
the method invokeReduce on the assigned worker w. This is realized by the statement
fReduce := w!invokeReduce(key, values). The function insertElement collects all the
futures into a set fReduceResults. At the very last, the method mapReduce waits upon
each future, gets the results from each future: value := fValue?, and return the number
of occurrences of each word in a large collection of files.
Here the future mechanism is exploited to make an efficient implementation, avoiding
blocking calls on the workers: The Map phase is not waiting for the workers to do
invokeMap, storing future identities only, thereby allowing many workers to start and
work concurrently. Likewise in the loop calling invokeReduce, only futures identities are
recorded. Blocking is delayed to phases where the future value information is actually
needed.

3 Observable Behaviour
In this section we describe a communication model for concurrent objects communicating
by means of asynchronous message passing and futures. The model is defined in terms
of the observable communication between objects in the system. We consider how the
execution of an object may be described by different communication events which reflect
the observable interaction between the object and its environment. The observable
behavior of a system is described by communication histories over observable events
[8, 25].

3.1 Communication Events
Since message passing is asynchronous, we consider separate events for method invoca-
tion, reacting upon a method call, resolving a future, and for fetching the value of a
future. Each event is observable to only one object, which is the one that generates the
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event. The events generated by a method call cycle is depicted in Fig. 3. The object
o calls a method m on object o1 with input values e and where u denotes the future
identity. An invocation message is sent from o to o1 when the method is invoked. This is
reflected by the invocation event xoÑ o1, u,m, ey generated by o. An invocation reaction
event xo � o1, u,m, ey is generated by o1 once the method starts execution. When the
method terminates, the object o1 generates the future event xÐ o1, u,m, ey. This event
reflects that u is resolved with return value e. The fetching event xo �, u, ey is gener-
ated by o when o fetches the value of the resolved future. Since future identities may
be passed to other objects, e.g, o2, this object may also fetch the future value, reflected
by the event xo2 �, u, ey, generated by o2. The creation of an object o1 by an object o
is reflected by the event xo new

ÝÑ o1, C, ey, where o1 is the instance of class C and e are
the actual values for the class parameters. Let type Mid include all method names, and
let Data be the supertype of all values occurring as actual parameters, including future
identities Fid and object identities Oid.

Definition 1 (Events) Let caller, callee, receiver : Oid, future : Fid, method : Mid,
class : Cls, args : ListrDatas, and result : Data. Communication events Ev include:

• Invocation events xcallerÑ callee, future,method, argsy, generated by caller.

• Invocation reaction events xcaller � callee, future,method, argsy, generated by callee.

• Future events xÐ callee, future,method, resulty, generated by callee.

• Fetching events xreceiver �, future, resulty, generated by receiver

• Creation events xcaller new
ÝÑ callee, class, argsy, generated by caller

Events may be decomposed by functions. For instance, _.result : Ev Ñ Data is well-
defined for future and fetching events, e.g., xÐ o1, u,m, ey.result � e.
For a method invocation with future u, the ordering of events depicted in Fig. 3 is de-
scribed by the following regular expression (using � for sequential composition of events)

xoÑ o1, u,m, ey � xo� o1, u,m, ey � xÐ o1, u,m, eyr�x_ �, u, eys�

for some fixed o, o1, m, e, e, and where _ denotes an arbitrary value. This implies that
the result value may be read several times, each time with the same value, namely that
given in the preceding future event.

3.2 Communication Histories
The execution of a system up to present time may be described by its history of observ-
able events, defined as a sequence. A sequence over some type T is constructed by the
empty sequence ε and the right append function _�_ : SeqrT s�T Ñ SeqrT s (where “_”
indicates an argument position). The choice of constructors gives rise to generate induc-
tive function definitions, in the style of [12]. Projection, _{_ : SeqrT s�SetrT s Ñ SeqrT s
is defined inductively by ε{s � ε and pa�xq{s � if x P s then pa{sq�x else a{s fi, for
a : SeqrT s, x : T , and s : SetrT s, restricting a to the elements in s. We use dot notation
to extract components from record-like structures, for instance xoÑ o1, f,m, ey.callee is
o1, and also lift the dot notation to sequences. For a sequence h of events, h{ Ð is the
subsequence of invocation events, and ph{ Ðq.callee is the sequence of callee elements
from these invocation events.
A communication history for a set S of objects is defined as a sequence of events gener-
ated by the objects in S. We say that a history is global if S includes all objects in the
system.
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Definition 2 (Communication histories) The communication history h of a system
of objects S is a sequence of type SeqrEvs, such that each event in h is generated by an
object in S.

We observe that the local history of a single object o is achieved by restricting S to the
single object, i.e., the history contains only elements generated by o. For a history h, we
let h{o abbreviate the projection of h to the events generated by o. Since each event is
generated by only one object, it follows that the local histories of two different objects
are disjoint.

Definition 3 (Local histories) For a global history h and an object o, the projection
h{o is the local history of o.

4 Operational Semantics
Rewriting logic [31] is a logical and semantic framework in which concurrent and dis-
tributed systems can be specified in an object-oriented style. Unbounded data structures
and user-defined data types are defined in this framework by means of equational spec-
ifications. Rewriting logic extends membership equational logic with rewrite rules, so
that in a rewrite theory, the dynamic behavior of a system is specified as a set of rules
on top of its static part, defined by a set of equations. Informally, a labeled conditional
rewrite rule is a transition l : t ÝÑ t1 if cond , where l is a label, t and t1 are terms over
typed variables and function symbols of given arities, and cond is a condition that must
hold for the transition to take place. Rewrite rules are used to specify local transitions
in a system, from a state fragment that matches the pattern t, to another state fragment
that is an instance of the pattern t1. Rules are selected nondeterministic if there are
at least two rule instantiations with left-hand sides matching overlapping fragments of
a term. Concurrent rewriting is possible if the fragments are non-overlapping. Fur-
thermore, matching is made modulo the properties of the function symbols that appear
in the rewrite rule, like associativity, commutativity, identity (ACI), which introduces
further nondeterminism. The Maude tools [9] allow simulation, state exploration, reach-
ability analysis, and LTL model checking of rewriting logic specifications. The state
of a concurrent object system is captured by a configuration, which is an ACI multiset
of units such as objects and messages, and other relevant system parts, which in our
case includes futures. Concurrency is then supported in the framework by allowing con-
current application of rules when there are non-overlapping matches of left-hand sides.
The following context rule, which is implicit in rewriting logic, describes interleaving
semantics (letting G, G1, G2 denote subconfigurations):

context rule
G1 Ñ G2

G G1 ÝÑ G G2

4.1 Operational Rules
For our purpose, a configuration is a multiset of (concurrent) objects, classes, messages,
futures, as well as a representation of the global history. We use blank-space as the
multiset constructor, allowing ACI pattern matching. Objects have the form object(Id
: o, A) where o is the unique identity of the object and A is a set of semantic attributes,
including
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Cl : c the class c of the object,
Pr : s the remaining code s of the active process,
Lvar : l the local state l of the active process, including

method parameters and the implicit future identity destiny,
Flds : a the state a of the fields, including class parameters,
Cnt : n a counter n used to generate future identities,
Mtd : m the name m of the current method.

Similarly, classes have the form

classpId : c,Par : z,Flds : a, Init : s,Mtds : q,Cnt : nq

where c is the class name, z the class parameters, a the fields, and s the initialization
code. The variable q is a multiset of method definitions of the form

pm, p, l, sq

where m is the method name, p is the list of parameters, l contains the local variables
(including default values), and s is the code. The counter n in the class is used to
generate object identities.
Messages have the form of invocation events as described above. And, a future unit is of
the form futpId : u,Val : vq where u is the future identity and v is its value. The global
history is represented by a unit histphq where h is finite sequence of events (initially
empty). Remark that a system configuration contains exactly one history. The history
is included to define the interleaving semantics upon which we derive our history-based
reasoning formalism.
The initial state of an object o of class C with actual class parameter values v is denoted
inito:Cpvq and is defined by

inito:Cpvq � objectpId : o,Cl : C,Pr : initC ,Lvar :H,Flds : a,Cnt : 0,Mtd : initq

where a is the initial state of the object fields given by rthis ÞÑ o,ParC ÞÑ v,FldsC ÞÑ
ds. Here ParC , FldsC , and initC , represent the class parameters, the fields, and the
initialization code of C, respectively. The class parameters ParC are initialized by the
actual parameters v, the fields FldsC are initialized by default values d (of the appropriate
types), and the initial code is ready to be executed with an empty local state.
A system is given by a set of self-contained classes Cl, including a class Main, with-
out class parameters, used to generate the initial object initmain:Mainpεq. The initial
configuration of a system is defined by

initCl � Cl initmain:Mainpεq histpεq

The operational rules are summarized in Fig. 4. The rules for skip, assignment, initialized
variable declarations, if- and while-statements are standard. Note that pa; lq represents
the total object state, composed by a, the state of the fields/class parameters, and l,
the state of the local variables/parameters of the method. Lookup of a variable if left
to right, i.e., l is tried before a. Expressions e without side-effects are evaluated by a
semantic function depending on the total state, i.e., evalpe, pa; lqq.
Method invocation is captured by the rule call. The generated future identity ftpo, nq
is globally unique (assuming the next function is producing locally unique values). The
future unit itself is not generated yet; it will be generated by return from the called
method.
If there is no active process in an object, denoted Pr : empty, a method call is selected
for execution by rule method. The invocation message is consumed by this rule, and
the future identity of the call is assigned to the implicit parameter destiny. Method
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skip: objectpId : o,Pr : pskip; sqq ÝÑ objectpId : o,Pr : sq

assign : objectpId : o,Pr : pv :� e; sq,Lvar : l,Flds : aq
ÝÑ
if v in Lvar then objectpId : o,Pr : s,Lvar : lrv ÞÑ evalpe, pa; lqqs,Flds : aq

else objectpId : o,Pr : s,Lvar : l,Flds : arv ÞÑ evalpe, pa; lqqsq

init : objectpId : o,Pr : pTv :� e; sq,Lvar : l,Flds : aq
ÝÑ
objectpId : o,Pr : pTv; v :� e; sq,Lvar : l,Flds : aq

if-else : objectpId : o,Pr : pif e then s1 else s2 fi; sq,Lvar : l,Flds : aq
ÝÑ
if evalpe, pa; lqq then objectpId : o,Pr : ps1; sq,Lvar : l,Flds : aq

else objectpId : o,Pr : ps2; sq,Lvar : l,Flds : aq

while : objectpId : o,Pr : pwhile e do s1 od; sq,Lvar : l,Flds : aq
ÝÑ
objectpId : o,Pr : pif e then s1;while e do s1 od fi; sq,Lvar : l,Flds : aq

new : histphq classpId : C ,Cnt : nq
objectpId : o,Pr : pv :� new Cpeq; sq,Lvar : l,Flds : aq
ÝÑ

histph � xo
new
ÝÑ obpC, nq, C, evalpe, pa; lqqyq classpId : C ,Cnt : nextpnqq

objectpId : o,Pr : pv :� obpC, nq; sq,Lvar : l,Flds : aq
initobpC,nq:Cpevalpe,pa;lqqq

call : histphq objectpId : o,Pr : pfr :� v!mpeq; sq,Lvar : l,Flds : a,Cnt : nq
ÝÑ
msg histph � msgq
objectpId : o,Pr : pfr :� ftpo, nq; sq,Lvar : l,Flds : a,Cnt : nextpnqq

method : xo1 Ñ o, u,m, vy histphq classpId : c,Mtds : pq pm, p, l, sqqq
objectpId : o,Cl : c,Pr : empty,Flds : aq
ÝÑ
histph � xo1 � o, u,m, vyq classpId : c,Mtds : pq pm, p, l, sqqq
objectpId : o,Cl : c,Pr : s,Lvar : lrp ÞÑ vsrdestiny ÞÑ us,Flds : a,Mtd : mq

return : histphq objectpId : o,Pr : return e,Lvar : l,Flds : a,Mtd : mq
ÝÑ
histph � xÐ o, evalpdestiny, lq,m, evalpe, pa; lqqyq
futpId : eval(destiny,l),Val : eval(e,(a;l))q
objectpId : o,Pr : empty,Flds : aq

query : histphq futpId : u,Val : dq objectpId : o,Pr : pv :� e?; sq,Lvar : l,Flds : aq
ÝÑ
histph � xo �, u, dyq futpId : u,Val : dq
objectpId : o,Pr : pv :� d; sq,Lvar : l,Flds : aq
if evalpe, pa; lqq � u

Figure 4: Operational rules, using the standard rewriting logic convention that irrele-
vant attributes may be omitted in a rule. Variables are denoted by single characters
(the uniform naming convention is left implicit), pa; lq represents the total object state,
and arv ÞÑ ds is the state a updated by binding the variable v to the data value d.
The eval function evaluates an expression in a given state, and in is used for testing do-
main membership. In rule call, msg denotes xoÑ evalpv, pa; lqq, ftpo, nq,m, evalpe, pa; lqqy
where ftpo, nq is the generated future identity. In rule new, obpC, nq is the generated
object identity.

execution is completed by rule return, and a future value is fetched by rule query. A
query can only succeed if the appropriate future unit is generated. A future unit appears
in the configuration when resolved by rule return, which means that a query statement
blocks until the future is resolved. Remark that rule query does not remove the future
unit from the configuration, which allows several processes to fetch the value of the same
future.
In the rule new, the new object gets a unique identity obpC, nq, given by that of the
generating object and a counter, the actual class parameters are evaluated, and the ini-
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tialization is performed. The given language fragment may be extended with constructs
for inter object process control and suspension, e.g., by using the ABS approach of [18].

4.2 Semantic Properties
Semantic properties are stated by means of notions of validity. We define global validity
(denoted |ù) and local validity with respect to a class C (denoted |ùC). A global object
system initiated by a configuration initCl is said to satisfy a global invariant property
Iphq, if the global history h of any reachable configuration G satisfies Iphq:

Cl |ù Iphq � @G . initCl ÝÑ
� G^G.hist � hñ Iphq

where ÝÑ� denotes the transitive and reflexive extension of the transition relation, lifted
to configurations, and where G.hist extracts the history of the configuration G.
Similarly, an object system initiated by a configuration initCl is said to satisfy a C-local
invariant property Iphq if every object o of class C in any reachable configuration G
satisfies Iph{oq, i.e., the projection from global history to the object o:

Cl |ùC Iphq � @G, o . initCl ÝÑ
� G^G.hist � h^o P G.obj^Gros.class � C ñ Iph{oq

where G.obj extracts the object identities from the objects in the configuration G.
We next provide notions of global and local wellformedness for global histories. We
first introduce some notation and functions used in defining wellformed histories. For
sequences a and b, let a ew x denote that x is the last element of a, agreepaq denote that
all elements (if any) are equal, and a ¤ b denote that a is a prefix of b. Let rx1, x2, . . . , xis
denote the sequence of x1, x2, . . . , xi for i ¡ 0 (allowing repeated parts r...s�). Functions
for event decomposition are lifted to sequences in the standard way, ignoring events for
which the decomposition is not defined, e.g., _.result : SeqrEvs Ñ SeqrDatas.
Functions may extract information from the history. In particular, we define oid :
SeqrEvs Ñ SetrObjs extracting all object identities occurring in a history, as follows:

oidpεq � tmainu oidph � γq � oidphq Y oidpγq
oidpxoÑ o1, u,m, peqyq � to, o1u Y oidpeq oidpxo1 � o, u,m, eyq � to, o1u Y oidpeq
oidpxÐ o, u,m, eyq � tou Y oidpeq oidpxo�, u, eyq � tou Y oidpeq
oidpxo new

ÝÑ o1, C, eyq � to, o1u Y oidpeq

where γ : Ev, and oidpeq returns the set of object identifiers occurring in the expression
list e. The function fid : SeqrEvs Ñ SetrFids extracts future identities from a history:

fidpεq � H fidph � γq � fidphq Y fidpγq
fidpxoÑ o1, u,m, eyq � tuu fidpxo1 � o, u,m, eyq � tuu Y fidpeq
fidpxÐ o, u,m, eyq � H fidpxo�, u, eyq � fidpeq
fidpxo new

ÝÑ o1, C, eyq � fidpeq

where γ : Ev, and fidpeq returns the set of future identities occurring in the expression
list e. For a global history h, the function fidphq returns all future identities on h,
and for a local history h{o, the function fidph{oq returns the futures generated by o or
received as parameters. At last, h{u abbreviates the projection of history h to the set
tγ | γ.future � uu, i.e., all events with future u.

Definition 4 (Wellformed histories) Let h : SeqrEvs be a history of a global object
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system S. The wellformedness predicate wf : SeqrEvs Ñ Bool is defined by:

wfpεq � true
wfph � xoÑ o1, u,m, eyq � wfphq ^ o � null^ u R fidphq Y fidpeq
wfph � xo1 � o, u,m, eyq � wfphq ^ o � null ^ h{u � rxo1 Ñ o, u,m, eys
wfph � xÐ o, u,m, eyq � wfphq ^ h{u ew x_ � o, u,m,_y
wfph � xo�, u, eyq � wfphq ^ u P fidph{oq ^ agreeppph{uq.resultq � eq
wfph � xo new

ÝÑ o1, C, eyq � wfphq ^ o � null^ o1 � null^ o1 R oidphq Y oidpeq

It follows directly that a wellformed global history satisfies the communication order
pictured in Fig. 3, i.e.,

@u . Do, o1,m, e, e .
h{u ¤ rxo1 Ñ o, u,m, ey, xo1 � o, u,m, ey, xÐ o, u,m, ey, rx_ �, u, eys�s

Also, it ensures the uniqueness of object identifiers and future identities. We can prove
that the operational semantics guarantees wellformedness:

Lemma 1 The global history h of a global object system S obtained by the given oper-
ational semantics, is wellformed, i.e., |ù wfphq where wfphq is strengthened by the two
conditions fidphq � ph{ Ñq.future and oidphq � null � ph{

new
ÝÑq.callee.

The two conditions ensure that a history may not refer to object and future identities
before generated by creation and invocation events, respectively. This lemma follows by
induction over the number of rule applications.
Wellformedness of a local history for an object o, denoted wfophq, is defined as in Def. 4,
except that the last conjunct of the case xo1 � o, u,m, ey only holds for self calls, i.e.,
where o and o1 are equal. For local wellformedness, the conjunct is therefore weakened
to o � o1 ñ h{u � rxo1 Ñ o, u,m, eys. If h is a wellformed global history, it follows
immediately that each projection h{o is locally wellformed, i.e.,

wfphq ñ wfoph{oq

5 Program Verification
The communication history abstractly captures the system state at any point in time
[11, 12]. Partial correctness properties of a system may thereby be specified by finite
initial segments of its communication histories. A history invariant is a predicate over
the communication history, which holds for all finite sequences in the (prefix-closed) set of
possible histories, expressing safety properties [5]. In this section we present a framework
for compositional reasoning about object systems, establishing an invariant over the
global history from invariants over the local histories of each object. Since the local
object histories are disjoint with our four event semantics, it is possible to reason locally
about each object. In particular, the history updates of the operational semantics affect
the local history of the active object only, and can be treated simply as an assignment to
the local history. The local history is not effected by the environment, and interference-
free reasoning is then possible. Correspondingly, the reasoning framework consists of
two parts: A proof system for local (class-based) reasoning, and a rule for composition
of object specifications.
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invoc
$ @u . tH :� H � xthis Ñ v, u,m, ey|| fr :� uu rssφ

$ rfr :� v!mpeq; ssφ

fetch
$ @v1 . tH :� H � xthis �, e, v1y|| v :� v1u prssφ^ Dw . Ipw,Hqq

$ rv :� e?; ssφ

new
$ @v1 . tH :� H � xthis new

ÝÑ v1, C, ey|| v :� v1u rssφ

$ rv :� new Cpeq; ssφ

Figure 5: Dynamic logic rules for method invocation, future query and object creation.
Ipw,Hq is the class invariant.

5.1 Local Reasoning
Pre- and postconditions to method definitions are in our setting used to establish a class
invariant. The class invariant must hold after initialization of all class instances and
must be maintained by all methods, serving as a contract for the different methods:
A method implements its part of the contract by ensuring that the invariant holds
upon termination, assuming that it holds when the method starts execution. A class
invariant establishes a relationship between the internal state and the observable behavior
of class instances. The internal state reflects the values of the fields, and the observable
behavior is expressed as potential communication histories. A user-provided invariant
Ipw,Hq for a class C is a predicate over the fields w, the read-only parameters cp and
this, in addition to the local history H which is a sequence of events generated by this.
The proof system for class-based verification is formulated within dynamic logic as used
by the KeY framework [7], facilitating class invariant verification by considering each
method independently. The dynamic logic formulation suggests that the proof system
is suitable for an implementation in the KeY framework.
Dynamic logic provides a structured way to describe program behavior by an integration
of programs and assertions within a single language. The formula ψ ñ rssφ express
partial correctness properties: if statement s is executed in a state where ψ holds and
the execution terminates, then φ holds in the final state. The formula is verified by a
symbolic execution of s, where state modifications are handled by the update mechanism
[7]. A dynamic formula rs1; ssφ is equal to rs1srssφ, where rssφ is the precondition of
s. A dynamic formula rv :� e; ssφ, i.e., where an assignment is the first statement,
reduces to tv :� eurssφ, where tv :� eu is an update. We assume that expressions e can
be evaluated within the assertion language. Updates can only be applied on formulas
without programs, which means that updates on a formula rssφ are accumulated and
delayed until the symbolic execution of s is complete. Update application tv :� tue,
on an expression e, evaluates to the substitution evt , replacing all free occurrences of v
in e by t. The parallel update tv1 :� e1||...||vn :� enu, for disjoint variables v1, ..., vn,
represents an accumulated update, and the application of a parallel update leads to a
simultaneous substitution. For an update U, we have Upφ1 ^ φ2q � Uφ1 ^ Uφ2. A
sequent ψ1, ..., ψn $ φ1, ..., φm contains assumptions ψ1, ..., ψn, and formulas φ1, ..., φm
to be proved. The sequent is valid if at least one formula φi follows from the assumptions,
and it can be interpreted as ψ1 ^ ...^ ψn ñ φ1 _ ..._ φm.
In order to verify a class invariant Ipw,Hq, we must prove that the invariant is established
by the initialization code and maintained by all method definitions in C, assuming
wellformedness of the local history. For a method definition mpxqts; return eu in C,
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skip rskip; ssφ � rssφ

assign rv :� e; ssφ � tv :� eu rssφ

declInit rT v � e; ssφ � rv1 :� e; svv1sφ

decINoInit rT v; ssφ � rv1 :� defaultT ; svv1sφ

ifElse rif b then s1 else s2 fi; ssφ � if b then rs1; ssφ else rs2; ssφ

while rwhile b do s1 od; ssφ � if b then pDw . Ipw,Hqq^
prs1; while b do s1 od; ssφq else rssφ

Figure 6: Semantical definitions for standard ABS statements. Here φ is the postcondi-
tion, s is the remaining program yet to be executed, primes denote fresh variables, svv1 is
s with all (free) occurrences of v replaced by v1, and defaultT is the default value defined
for type T .

this amounts to a proof of the sequent:

$ pwfthispHq ^ Ipw,Hq ñ rH :� H � xcaller � this, destiny,m, xy;
s; H :� H � xÐ this, destiny,m, eyspwfthispHq ñ Ipw,Hqq

Here, the method body is extended with a statement for extending the history with the
invocation reaction event, and the return statement is treated as a history extension.
Dynamic logic rules for method invocation, future query, and object creation, can be
found in Fig. 5. When invoking a method, the update in the premise of rule invoc
captures the history extension and the generation of a fresh future identity u. Similarly,
the update in rule fetch captures the history extension and the assignment of a fresh
value to v, where the wellformedness assumptions ensure that all values received from
the same future are equal. The update in the premise of rule new captures the history
extension and the generation of a fresh object identity v1, and the universal quantifier
reflects non-determinism. The prime is needed here since v may occur in e. The query
rule insists that the class invariant holds for local history, ignoring the field values of
the current state, as discussed in the soundness proof. Assignments are analyzed as
explained above, and rules for skip and conditionals are standard. We refer to Din et
al. for further details [19].
The rules for the rest of the ABS statements can be defined as substitution rules in-
troduced in Fig. 6. For instance, rskip; ssφ can be rewritten to rssφ. In rule declInit
and declNoInit v1 is needed since the postcondition may talk about a field with the same
name v. If-statements without an else-branch are as usual.

5.2 Soundness
The reasoning system for statements in dynamic logic is sound if any provable property
is valid, i.e.,

$ ψ ñ rssφñ |ù ψ ñ rssφ

Validity of a dynamic logic formula, denoted |ù ψ ñ rssφ, is defined by means of the
operational semantics. We base the semantics on the operational semantics above, as
given by unlabeled transitions of the form G1 Ñ G2.
Note that each rule is local to one object, and we write G1

o:s
ÝÝÑ G2 to indicate an

execution involving only object o such that exactly the statement (list) s has been
executed by o. And we write G1

o:s
Ñ G2 if o executes s while other objects may execute.
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Definition 5 (Explicit execution step)

G1

o:s
Ñ G2 � G1 ÝÑ

� G2 ^G1ros.Pr � s;G2ros.Pr

G1
o:s
ÝÝÑ G2 � G1

o:s
Ñ G2 ^ @o1 . o1 �� oñ G1ro

1s � G2ro
1s

expressing one or more transitions from the configuration G1 to G2 such that o executes
s, with or without, respectively, interleaved execution by other objects. The notation
Gros denotes the object o of the configuration G.
We consider pre- and postconditions over local states and the local history. Such an
assertion can be evaluated in a state defining values for attributes (of the appropriate
class), parameters and local variables (of the method) and the local history. We let
rrψ

o:s
ÝÝÑ φssG,o express that if the condition ψ holds for object o before execution of s by

the object in configuration G, then φ holds for o after the execution. As above, we let
o:s
ÝÝÑ express local execution by o, and

o:s
Ñ execution by o interleaved with other objects:

Definition 6 (Validity of pre/post-conditions over execution steps)

rrψ
o:s
ÝÝÑ φssG,o � @G1, z .wfpG1.histq ^G

o:s
ÝÝÑ G1 ^ locpG, oqrψs ñ locpG1, oqrφs

rrψ
o:s
Ñ φssG,o � @G1, z .wfpG1.histq ^G

o:s
Ñ G1 ^ locpG, oqrψs ñ locpG1, oqrφs

where z is the list of auxiliary variables in ψ and/or φ, not bound by G nor G1. Here
locpG, oq denotes the local state of object o, as derived from the global state G. The
function loc : Config� OidÑ State is defined by

locpG, oq � pGros.Flds;Gros.Lvarq � rH ÞÑ pG.histq{os

where the resulting H ranges over local histories (i.e., in the alphabet of o), and where
this is bound to o in G as explained earlier. Thus the extraction is made by taking the
state of object o and adding the history localized to o. We let locpG, oqrψs denote the
value of ψ in state locpG, oq.
It follows that local reasoning suffices for local pre/post-conditions, in the sense that
when reasoning about one object in our system, one may ignore the activity of other
objects.

Lemma 2 rrψ
o:s
ÝÝÑ φssG,o is the same as rrψ

o:s
Ñ φssG,o

The lemma follows by induction on the length of executions, and the fact that locpG, oq
for any G is not affected by execution steps by other objects than o, since remote access
to fields is not allowed in our language and since h{o only contains events generated by
o.
In our setting, we may understand a sequent by means of the o:s

ÝÝÑ relation, letting a
dynamic logic subformula depend on a given pre-configuration G and object o.

Definition 7 (Validity of dynamic logic sequents)

|ù ψ1, ..., ψn $ φ1, ..., φm � @G, o .wfpG.histq ñ rrψ1 ^ ...^ ψn ñ φ1 _ ..._ φmssG,o

rrrssφssG,o � rrtrue
o:s
ÝÝÑ φssG,o

rressG,o � locpG, oqres
rrU rssφssG,o � rrrU 1; ssφssG,o

rrψ ^ φssG,o � rrψssG,o ^ rrφssG,o,
rrψ _ φssG,o � rrψssG,o _ rrφssG,o

rrψ ñ φssG,o � rrψssG,o ñ rrφssG,o
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where e is a formula without the dynamic logic operators, and the equations for updates
are as given earlier. U 1 is the sequentialized version of the parallel update U introducing
temporary variables if needed. For instance the sequentialized version of x :� y||y :� x
is x0 :� x;x :� y; y :� x0. It follows from the definition that

rrψ ñ rssφssG,o � rrψ
o:s
ÝÝÑ φssG,o

Here o is the executing object and the object on which ψ and φ are interpreted. Thus the
formula is valid if for any object o executing s, the postcondition holds in the poststate,
provided the precondition holds in the prestate. In dynamic logic the prestate given
by G and o is fixed for the whole sequent, and therefore the meaning of the individual
operators is given in the context of G and o.
We verify an invariant Ipw,Hq for a class C by showing that Ipw,Hq is established by
the initialization of C, i.e. initC , and is maintained by all methods in C, assuming local
wellfomedness. The rule is:

class

$ Dw . Ipw,H � γq ñ Dw . Ipw,Hq
$ H � εñ rinitCspwfthispHq ñ Ipw,Hqq
$ pwfthispHq ^ Ipw,Hqq ñ rbodyC,mspwfthispHq ñ Ipw,Hqq, for all methods m in C

$C Dw . Ipw,Hq

where bodyC,m denotes the body s of method m of C augmented with effects on the
local history reflecting the start and end of the method, namely

H :� H � xcaller � this, destiny,m, xy; s; H :� H � xÐ this, destiny,m, ey

Lemma 3 Reasoning about statements is sound:

$ ψ ñ rssφñ |ù ψ ñ rssφ

Theorem 1 The proof system for reasoning about classes is sound:

$C IpHq ñ|ùC IpHq

Proof of lemma 3. We focus on the rules for statements involving futures and object
generation, and consider therefore the rules invoc, fetch and new, as given in figure 5.
The axioms given in figure 6 represent standard statements not involving futures, and
we omit the soundness proof of these.

Asynchronous method call statement
We prove that the invoc rule preserves validity. The validity of the conclusion is |ù
rfr :� v!mpeq; ssφ. Consider now a given G and o, and let φ1 denote rssφ. According to
Definition. 7, the validity can be written as

wfpG.histq ñ rrtrue
o:fr:�v!mpeq
ÝÝÝÝÝÝÝÝÑ φ1ssG,o

which by Definition. 6 is

@G1, z .wfpG.histq ^ wfpG1.histq ^G
o:fr:�v!mpeq
ÝÝÝÝÝÝÝÝÑ G1 ñ locpG1, oqrφ1s

By the operational semantics of call and assign, we have that G1 is G with msg and
G1.hist � G.hist � msg, where msg denotes xo Ñ locpG, oqrvs, ftpo, nq,m, locpG, oqresy,
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and such that the object stateG1ros.l is pGros.lqrfr ÞÑ ftpo, nqs if fr P Gros.l, and otherwise
G1ros.a is pGros.aqrfr ÞÑ ftpo, nqs. Here n is the counter value of Gros (same as in G1ros).
Other parts of the object state are unchanged.
Thus locpG1, oqrφ1s can be reduced to locpG, oqrφ1 fr,H

ftpo,nq,H�xthisÑv,ftpo,nq,m,eys

since locpG, oqrxthisÑ v, ftpo, nq,m, eys � msg, and it suffices to prove

@z .wfpG.histq ñ locpG, oqrφ1
fr,H
ftpo,nq,H�xthisÑv,ftpo,nq,m,eys

The validity of the premise is

|ù @u . tH :� H � xthisÑ v, u,m, ey|| fr :� uu φ1

which by Definition 7 is

@z, u .wfpG.histq ñ locpG, oqrφ1
fr,H
u,H�xthisÑv,u,m,eys

Clearly this is sufficient to ensure validity of the conclusion, since the universal quantifier
on u covers the value given by ftpo, nq.

Query statement
We prove that the fetch rule preserves validity. The validity of the conclusion is |ù
rv :� e?; ssφ. Consider now a given G and o, and let φ1 denote rssφ. According to
Definition. 7, the validity can be written as

wfpG.histq ñ rrtrue
o:v:�e?
ÝÝÝÝÝÑ φ1ssG,o

which by Definition. 6 is

@G1, z .wfpG.histq ^ wfpG1.histq ^G
o:v:�e?
ÝÝÝÝÝÑ G1 ñ locpG1, oqrφ1s

By the operational semantics of query and assign, we have that G1 is G with msg and
G1.hist � G.hist�msg, where msg denotes xo �, locpG, oqres, dy and such that the object
state G1ros.l is pGros.lqrv ÞÑ ds if v P Gros.l, and otherwise G1ros.a is pGros.aqrv ÞÑ ds.
Other parts of the object state are unchanged.
Thus locpG1, oqrφ1s can be reduced to locpG, oqrφ1 v,H

d,H�xthis�,e,dys

since locpG, oqrxthis �, e, dys � msg, and it suffices to prove

@z .wfpG.histq ñ locpG, oqrφ1
v,H
d,H�xthis�,e,dys

The validity of the premise is

|ù @v1 . tH :� H � xthis �, e, v1y|| v :� v1u pφ1 ^ Dw . Ipw,Hqq

which by Definition 7 is

@z, v1 .wfpG.histq ñ locpG, oqrpφ1 ^ Dw . Ipw,Hqq v,H
v1,H�xthis�,e,v1ys

Clearly this is sufficient to ensure validity of the conclusion, since the universal quantifier
on v1 covers the value given by d. Note that the invariant is not required here. But it
will be needed later to prove soundness of the class rule.
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Object creation statement
We prove that the new rule preserves validity. The validity of the conclusion is |ù rv :�
new Cpeq; ssφ. Consider now a given G and o, and let φ1 denote rssφ. According to
Definition. 7, the validity can be written as

wfpG.histq ñ rrtrue
o:v:�new Cpeq
ÝÝÝÝÝÝÝÝÝÑ φ1ssG,o

which by Definition. 6 is

@G1, z .wfpG.histq ^ wfpG1.histq ^G
o:v:�new Cpeq
ÝÝÝÝÝÝÝÝÝÑ G1 ñ locpG1, oqrφ1s

By the operational semantics of new and assign, we have that G1 is G with msg and
G1.hist � G.hist � msg, where msg denotes xo new

ÝÑ obpC, nq, C, locpG, oqresy and such
that the object state G1ros.l is pGros.lqrv ÞÑ obpC, nqs if v P Gros.l, and otherwise G1ros.a
is pGros.aqrv ÞÑ obpC, nqs. Here n is the counter value of GrCs (same as in G1rCs). Other
parts of the object state are unchanged.
Thus locpG1, oqrφ1s can be reduced to locpG, oqrφ1 v,H

obpC,nq,H�xthisnew
ÝÑobpC,nq,C,ey

s

since locpG, oqrxthis new
ÝÑ obpC, nq, C, eys � msg, and it suffices to prove

@z .wfpG.histq ñ locpG, oqrφ1
v,H
obpC,nq,H�xthisnew

ÝÑobpC,nq,C,ey
s

The validity of the premise is

|ù @v1 . tH :� H � xthis new
ÝÑ v1, C, ey|| v :� v1u φ1

which by Definition 7 is

@z, v1 .wfpG.histq ñ locpG, oqrφ1
v,H
v1,H�xthisnew

ÝÑv1,C,ey
s

Clearly this is sufficient to ensure validity of the conclusion, since the universal quantifier
on v1 covers the value given by obpC, nq.

Proof of Theorem 1. The theorem follows by lemma 3 above and by proving
that if one can prove $C I 1pHq by the class rule, then |ùC I 1pHq, letting I 1pHq denote
Dw . Ipw,Hq.
Consider the rule class. We may assume that the premises of the rule are valid. By
definition, the validity of I 1pHq is

@G, o . initCl ÝÑ
� G^G.hist � H^ o P G.obj ^Gros.class � C ñ I 1pH{oq

We first prove that this holds for all C objects o in states G such that Gros.Pr � empty.
With the given operational semantics, Pr is empty for an object o when o has finished
a method, or initC , and it can only start a new method when Pr is empty. By lemma
1 we only need to consider states with a wellformed history. We need to show that the
invariant Ipw,Hq holds after the initialization and is maintained by every methods of
class C, considering any interleaved execution according to the operational semantics.
The validity of the second premise gives

@G, o .wfpG.histq ñ rrH � ε
o:initCÝÝÝÝÑ pwfthispHq ñ Ipw,HqqssG,o

which by lemma 2 is the same as

@G, o .wfpG.histq ñ rrH � ε
o:initC
Ñ pwfthispHq ñ Ipw,HqqssG,o
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which by definition is

G
o:initC
Ñ G1 ^ locpG, oqrH � εs ñ locpG1, oqrwfthispHq ñ Ipw,Hqs

for all states G1 with wellformed histories, and z. This states that the class invariant
Ipw,Hq holds after the initialization of class C, conditioned by local wellformedness. The
condition on local wellformedness follows from the global wellformedness wfpG1.histq.
The condition locpG, oqrH � εs follows by induction on the length of an execution
showing that no object can generate events before its initial code has started.
Similarly, the validity of the third premise gives that

G
o:bodyC,m

Ñ G1 ^ locpG, oqrwfthispHq ^ Ipw,Hqs ñ locpG1, oqrwfthispHq ñ Ipw,Hqs

for all states G, G1 with wellformed histories, and all o, z. This states that the class
invariant is maintained by a method m of C under the assumption of local wellformed-
ness. As before local wellformedess follows from global wellformedess. Thus Ipw,Hq,
and therefore also I 1pHq, hold for all C objects o in reachable states G with empty
Gros.Pr.
It remains to show that the invariant also holds in states G where Gros.Pr is nonempty.
By the first premise, we have that I 1 is prefix-closed with respect to the history. Thus all
states in between those where Gros.Pr is empty will also satisfy I 1. In order to ensure I 1
in case of nonterminating methods (or init), we must consider loops and other sources of
non-termination. For loops it suffices to let I 1 be required at the beginning of each loop
iteration, which we do require in the while axiom. The other source of nonterminating
methods is the query statement; however, here the proof rule fetch insists that we verify
I 1. Thus any proof of that method (or init) must establish I 1 at his point. By lemma 3
we have that I 1 is valid. We may conclude that reasoning about classes is sound.
We remark that it would be sufficient to verify I 1 for queries where the caller of the future
equals this as reasoning is local, and independent of the behavior of other objects. But
this would require notation for expressing the caller of a future (say u.caller, defined by
ftpo, nq.caller � o) in the specification (and possibly programming) language. However,
the verification cost of having I 1 in the rule for query and in the axiom for while, is not
great since one is obliged to prove Ipw,Hq at the end of the body.

5.3 Compositional Reasoning
The class invariant Ipw,Hq for some class C is a predicate over the fields w, the local
history H, as well as the formal class parameters cp and this, which are constant (read-
only) variables. History invariants ICpHq for instances of C, expressed as a predicate
over the local history, can be derived from the class invariant by hiding fields, i.e.,
Dw . Ipw,Hq.

ICpHq � Dw . Ipw,Hq

Notice that the history invariants should be prefix-closed since according to the definition
in Section 4.2 C-local invariant property must be satisfied by all reachable states. Conse-
quently, Dw . Ipw,Hq should be weakened if needed in order to obtain prefix-closedness.
Then we assume from now on that ICpHq is prefix-closed.
For an instance o of C with actual parameter values e, the object invariant Io:Cpeqphq is
defined by the class invariant applied to the local projection of the history and instan-
tiating this and the class parameters:

Io:Cpeqphq � ICph{oq
this,cp
o,e
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where IC is a prefix-closed class invariant as above, with hidden internal state w. We
consider a composition rule for a system S of objects o : Cpeq together with dynamically
generated objects by S. The history invariant ISphq for such a system is then given by
combining the history invariants of the composed objects:

ISphq � wfphq
©

po:CpeqqPSYobphq

Io:Cpeqphq

where the function ob : SeqrEvs Ñ SetrObj� Cls� ListrDatass returns the set of created
objects (each given by its object identity, associated class and class parameters) in a
history:

obpεq � tmain :Mainpεqu

obph � xo
new
ÝÑ o1, C, eyq � obphq Y to1 : Cpequ

obph � othersq � obphq

(where others matches all other events). By choosing S as tmain : Mainpεqu we may
reason about a global system by means of Itmain:Mainpεquphq.
The wellformedness property serves as a connection between the local histories. Note
that the system invariant is obtained directly from the history invariants of the composed
objects, without any restrictions on the local reasoning, since the local histories are
disjoint. This ensures compositional reasoning. The composition rule is similar to [18],
which also considers dynamically created objects.

5.4 Soundness Proof of Compositional Reasoning
The proof rule for composition is:

composition
$C ICphq, for each C in Cl

Cl $ wfphq
�

po:CpeqqPobphq

Io:Cpeqphq

Note that $C ICphq is trivial for ICphq � true, thus one may provide invariants for a
subset of the classes and using true as default invariant for the rest.

Theorem 2 The object composition rule is sound.

Proof. We show that the composition rule preserves soundness. For each class C we
may then assume |ùC ICphq which by definition is

@G, o . initCl ÝÑ
� G^G.hist � h^ o P G.obj ^Gros.class � C ñ Io:Cpeqphq

Next we prove |ù Io:Cpeqphq for all C-objects in h, i.e.,

@G . initCl ÝÑ
� G^G.hist � hñ

©

po:CpeqqPobCphq

Io:Cpeqphq

letting obCphq denote the set of all C-objects in h. This reduces to proving that each
C-object in G.hist is found in G.obj. This can be proved by induction on the length of
an execution. Finally by Lemma 1 we have |ù wfphq; and since conjunction commutes
with validity we have |ù wfphq

�
po:CpeqqPobphq

Io:Cpeqphq.
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5.5 Example
In this example we consider object systems based on the classes found in Listing. 1 and
2. Assume that the global system consists of the objects w1 : Worker , w2 : Worker ,
w3 : Worker , mr : MapReducepwpq, and m : Mainpmrq, where the only visible activity
of m is that it invokes mapReduce method on the object mr. The semantics may lead
to several global histories for this system, depending on the interleaving of the different
object activities. For convenience, below we abbreviate the method names mapReduce
to mR, invokeMap to ivM, and invokeReduce to ivR. One global history h caused by a
call to mR on mr from m is as follows:

rxmÑ mr, u1,mR, e1y, xm� mr, u1,mR, e1y,
xmr Ñ w1, u2, ivM, e2y, xmr Ñ w2, u3, ivM, e3y,
xmr � w2, u3, ivM, e3y, xmr � w1, u2, ivM, e2y,
xÐ w1, u2, ivM, e2y, xÐ w2, u3, ivM, e3y, xmr �, u2, e2y, xmr �, u3, e3y,
xmr Ñ w2, u4, ivR, e4y, xmr � w2, u4, ivR, e4y, xmr Ñ w1, u5, ivR, e5y,
xmr Ñ w3, u6, ivR, e6y, xmr � w3, u6, ivR, e6y, xÐ w2, u4, ivR, e4y,
xÐ w3, u6, ivR, e6y, xmr � w1, u5, ivR, e5y, xÐ w1, u5, ivR, e5y,
xmr �, u4, e4y, xmr �, u6, e6y, xmr �, u5, e5y, xÐ mr, u1,mR, e1ys

It follows that the Reduce phase will starts only after the Map phase has been completed.
In addition, none of the requests sent out to the workers is uncompleted when the call
to mR on mr is finished. We may derive these properties within the proof system from
the following class invariants:

IWorker pHq � H ¤ rxc� this, u1, ivM, e1y, xÐ this, u1, ivM, e1y|
xc� this, u2, ivR, e2y, xÐ this, u2, ivR, e2y .some c, u1, u2, e1, e1, e2, e2s�

IMapReducepwpqpHq � H ¤ rxc� this, d,mR, e1y, xthisÑ _,_, ivM,_ya,
xthis �,_,_ya, xthisÑ _,_, ivR,_yb, xthis �,_,_yb,

xÐ this, d,mR, e1y .some c, ds�

Here we use regular expression notation to express patterns over the history, letting
| denote choice, letting superscript b specify b repetitions of a pattern, and h ¤ p�

express that h is a prefix of a repeated pattern p where additional variables occurring
in p (after some) may change for each repetition. Notice that the class invariant of
MapReduce ensures that for each of the invocation event in xthis Ñ _,_, ivM,_ya,
there is a corresponding fetch event in xthis �,_,_ya by the same future identity.
Same approach is applied to xthis Ñ _,_, ivR,_yb and xthis �,_,_yb. These class
invariants are straightforwardly verified in the above proof system.
The corresponding object invariants for w1 : Worker , w2 : Worker , w3 : Worker and
mr : MapReducepwpq are obtained by substituting actual values for this and class pa-
rameters:

Iwi:Workerphq � h{wi ¤ rx_ � wi, u1, ivM, e1y, xÐ wi, u1, ivM, e1y|
x_ � wi, u2, ivR, e2y, xÐ wi, u2, ivR, e2y .some u1, u2, e1, e1, e2, e2s�

Imr :MapReducepwpqphq � h{mr ¤ rx_ � mr, d,mR, e1y, xmr Ñ _,_, ivM,_ya,
xmr �,_,_ya, xmr Ñ _,_, ivR,_yb, xmr �,_,_yb,

xÐ mr, d,mR, e1y .some ds�

The global invariant of a system S with the objects, w1 : Worker , w2 : Worker , w3 :
Worker , mr : MapReducepwpq and m : Mainpmrq is then

ISphq � wfphq ^ Im:Mainpmrqphq ^ Imr :MapReducepwpqphq
�

iPt1,2,3u

Iwi :Worker phq

where wellformedness allows us to relate the different object histories. From this global
invariant we may derive that the Reduce phase will starts only after the Map phase has
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been completed. Besides, none of the requests sent out to the workers is uncompleted
when the call to mR on mr is finished.
As a special case, we consider a system where the instance ofMain invokes mR only once,
i.e. Im:Mainpmrqphq � h{m ¤ rxm Ñ mr, u,mR, ey .some us. History wellformedness
then ensures that the cycles defined by the remaining invariants are repeated at most
once, and that variables in the patterns are connected, i.e., the future u in Im:Mainpmrq

is identical to the future d in Imr:MapReducepwpq. The global invariant then reduces to
the following:

ISphq � wfphq ^ h{m ¤ rxmÑ mr, u,mR, eys ^
h{w1 ¤ rxmr � w1, u1, ivM, e1y, xÐ w1, u1, ivM, e1y|
xmr � w1, u2, ivR, e2y, xÐ w1, u2, ivR, e2y .some u1, u2, e1, e1, e2, e2s� ^
h{w2 ¤ rxmr � w2, u3, ivM, e3y, xÐ w2, u3, ivM, e3y|
xmr � w2, u4, ivR, e4y, xÐ w2, u4, ivR, e4y .some u3, u4, e3, e3, e4, e4s� ^
h{w3 ¤ rxmr � w3, u5, ivM, e5y, xÐ w3, u5, ivM, e5y|
xmr � w3, u6, ivR, e6y, xÐ w3, u6, ivR, e6y .some u5, u6, e5, e5, e6, e6s� ^
h{mr ¤ rxm� mr, u,mR, ey, xmr Ñ _,_, ivM,_ya,
xmr �,_,_ya, xmr Ñ _,_, ivR,_yb, xmr �,_,_yb,
xÐ mr, u,mR, eys

This invariant allows a number of global histories, depending on the interleaving of the
activities in the different objects. The history h presented first in this section satisfies
the invariant, and represents one particular interleaving.

6 Related Work and Conclusion
Models for asynchronous communication without futures have been explored for process
calculi with buffered channels [25], for agents with message-based communication [2], for
method-based communication [32], and in particular for Java [22]. Behavioral reasoning
about distributed and object-oriented systems is challenging, due to the combination
of concurrency, compositionality, and object orientation. Moreover, the gap in rea-
soning complexity between sequential and distributed, object-oriented systems makes
tool-based verification difficult in practice. A survey of these challenges can be found
in [4]. Soundness of the parallel composition rules for shared-variable concurrency and
synchronous message passing are proved in [16]. A Hoare Logic for concurrent processes
(objects) is presented in [14]. The Hoare Logic is compositional, and soundness and
relative completeness are proven. In contrast to our work, communication is by message
passing rather than by futures, and the objects communicate through FIFO channels.
The present approach follows the line of work based on communication histories to model
object communication events in a distributed setting [8, 10, 25]. Objects are concurrent
and interact solely by method calls and futures, and remote access to object fields
are forbidden. By creating unique references for method calls, the label construct of
Creol [29] resembles futures, as callers may postpone reading result values. Verification
systems capturing Creol labels can be found in [4,21]. However, a label reference is local
to the caller, and cannot be shared with other objects. A reasoning system for futures
has been presented in [15], using a combination of global and local invariants. Futures
are treated as visible objects rather than reflected by events in histories. In contrast
to our work, global reasoning is obtained by means of global invariants, and not by
compositional rules. Thus the environment of a class must be known at verification
time.
A reasoning system for asynchronous methods in ABS without futures is presented
in [18]. We here define a five-event semantics reflected actions on shared futures and
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object creation. The semantics gives a clean separation of the activities of the different
objects, which leads to disjointness of local histories. Thus, object behavior can be
specified in terms of the observable interaction of the current object only. This is essential
for obtaining a simple reasoning system. In related approaches, e.g., [4, 21], events are
visible to more than one object. The local histories must then be updated with the
activity of other objects, resulting in more complex reasoning systems. Based on the five-
event semantics, we present a compositional reasoning system for distributed, concurrent
objects with asynchronous method calls. A class invariant defines a relation between
the inner state and the observable communication of instances, and can be verified
independently for each class. The class invariant can be instantiated for each object
of the class, resulting in a history invariant over the observable behavior of the object.
Compositional reasoning is ensured as history invariants may be combined to form global
system specifications. The composition rule is similar to [18], which is inspired by
previous approaches [33, 34]. This work is an extension of our former paper [20]. Here
we analyze a larger case study using futures, extend the language and semantics. Also,
soundness proofs for class reasoning and object composition are provided.
A result of this paper is that sound composition requires the query rule to have a con-
dition related to the invariant, not found in earlier papers. We consider here global
history invariants that are continuously satisfied, in the sense that any reachable global
configuration of an object system must satisfy the invariant. The condition on the query
rule would not be needed with a weaker notion of global history invariants stating that
the global invariant holds as long as all objects are live (not blocked). Verification-wise
the condition on the query rule, is somewhat similar to a that of a query statement
releasing the processor, as for instance the await future statement of the ABS lan-
guage. Semantically, a blocking query has the advantage that it does not change the
state, whereas a non-blocking query gives a state satisfying the local invariant. Thus
the combination of the query and processor release mechanisms will not add significant
verification complexity, and is also attractive from a programming perspective.
In order to focus on the future mechanism, this paper considers a core language with
shared futures. The report version [19] considers a richer language, including constructs
for inter-object process control and processor release. The verification system is suitable
for an implementation within the KeY framework. With support for (semi-)automatic
verification, such an implementation will be valuable when developing larger case studies.
It is also natural to investigate how our reasoning system would benefit from extending
it with rely/guarantee style reasoning [16]. Assumptions about callee behavior may, for
instance, be used to express properties of return values. More sophisticated techniques
may also be used, e.g., [13,28] adapts rely/guarantee style reasoning to history invariants.
However, such techniques requires more complex composition rules.
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