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Abstract
There are several strong indications for a profound connection between musical sound and

body motion. Musical embodiment, meaning that our bodies play an important role in how

we experience and understand music, has become a well accepted concept in music cognition.

Today there are increasing numbers of new motion capture (MoCap) technologies that enable us

to incorporate the paradigm of musical embodiment into computer music. This thesis focuses

on some of the challenges involved in designing such systems. That is, how can we design

digital musical instruments that utilize MoCap systems to map motion to sound?

The first challenge encountered when wanting to use body motion for musical interaction is

to find appropriate MoCap systems. Given the wide availability of different systems, it has been

important to investigate the strengths and weaknesses of such technologies. This thesis includes

evaluations of two of the technologies available: an optical marker-based system known as

OptiTrack V100:R2; and an inertial sensor-based system known as the Xsens MVN suit.

Secondly, to make good use of the raw MoCap data from the above technologies, it is often

necessary to process them in different ways. This thesis presents a review and suggestions to-

wards best practices for processing MoCap data in real time. As a result, several novel methods

and filters that are applicable for processing MoCap data for real-time musical interaction are

presented in this thesis. The most reasonable processing approach was found to be utilizing dig-

ital filters that are designed and evaluated in the frequency domain. To determine the frequency

content of MoCap data, a frequency analysis method has been developed. An experiment that

was carried out to determine the typical frequency content of free hand motion is also presented.

Most remarkably, it has been necessary to design filters with low time delay, which is an impor-

tant feature for real-time musical interaction. To be able to design such filters, it was necessary

to develop an alternative filter design method. The resulting noise filters and differentiators are

more low-delay optimal than than those produced by the established filter design methods.

Finally, the interdisciplinary challenge of making good couplings between motion and sound

has been targeted through the Dance Jockey project. During this project, a system was devel-

oped that has enabled the use of a full-body inertial motion capture suit, the Xsens MVN suit,

in music/dance performances. To my knowledge, this is one of the first attempts to use a full

body MoCap suit for musical interaction, and the presented system has demonstrated several

hands-on solutions for how such data can be used to control sonic and musical features. The sys-

tem has been used in several public performances, and the conceptual motivation, development

details and experience of using the system are presented.
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Chapter 1

Introduction

?

raw data motion features control signals
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system

Feature 
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Action-Sound

Mapping
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Figure 1.1: A data flow diagram which illustrates how human motion can be transferred into musical

expression. The general research question of this thesis is how motion can be used to control sonic and

musical features, illustrated by the question mark.

The research presented in this dissertation is focused on technologies and methods for the use

of motion capture systems in real-time musical interaction. The underlying goal is to make

systems that “transform” human body motion into musical expressions. Figure 1.1 gives a data

flow illustration of how such a system can be built. First of all, we need a motion capture
system (MoCap) that can track our motion in real time. Then we need to extract some motion
features from the raw motion capture data that are suitable to map to control signals for the

sound engine, and finally, the sound engine is responsible for translating the control signals into

musical features or sonic events. As a result, the system maps motion to sound. Each of these

parts involves several different challenges, and some of them are targeted in this thesis. Before

I go into the details of the aims and objectives of this thesis, let us first consider the motivation

for pursuing this topic.
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1.1 Motivation

What came first, music or motion?

Most people will agree that music and motion have some profound connections. Not only is

music a result of motion when we play musical instruments, but listening to music can often lead

to spontaneous motion, e.g. tapping our fingers and feet, or even joyful dancing. Spontaneous
may be a correct term since research suggests that infants have a predisposition toward such

embodied entrainment [70]. In other words, we may have been born with a predisposition

toward moving to music. Whatever the reasons are for this spontaneous need to rock to music,

music and dance are often experienced as joyful and an important part of many social and

cultural events. Additionally, a recent review of the literature gives support to the claim that

music has a positive influence on our health [6].

There are several reasons that explain why music can be an important part of life, and this

may in part be a result of so-called musical embodiment, i.e. experience of music is intimately

linked with the experience of our body [17]. Recent studies suggest also that our experience

with action-sound couplings, based on relationships between actions, objects, and the resultant

sounds, guide the way we think about both actions and sounds [19, 27]. In this way, we can say

that music is multimodal, i.e., it is not only communicated through the auditory modality, since

when listening to music we also form mental images that are more related to other modalities,

e.g. sensations of sound-producing actions like smooth, hard, jerky, slow, etc. [18]. Today,

there are several motion capture technologies available that allow us to study the intriguing

relationship between music and motion in a quantitative way [40, 5, 56]. Yet such technologies

do not only allow us to study how we move to music; we could take it even further and use these

technologies to make new music. This is precisely the focus of this thesis.

As you might suspect, the cumbersome course of using arbitrary body motion to play a

melodic tune, will probably never surpass the simplicity of using the much more straightforward

path of buttons, knobs and interfaces like the piano keyboard. On the other hand, such motion

interfaces can provide alternative ways of making music that are closer to the paradigm of

musical embodiment. This can be beneficial for instrument design, since our body plays an

important part in how we experience and understand music. Imagine a virtual motion instrument

that enables you to express yourself, without the need for complex motoric skills and years of

practice. Such alternative musical instruments may also be beneficial for disabled people who

are not able to play traditional instruments [62]. Yet, this may be beneficial not only for the

instrumental performer, but also for the spectator.

Electronic music, i.e. music made by computers and sound synthesizers, has clearly given

rise to a vast set of new sonic possibilities. However, it is often commented that the genre typi-

cally lacks a physical presence during live performance [3]. This may simply be a manifestation

of the genre, i.e. they use computers and not acoustic instruments that require specific physical

actions on stage. Nevertheless, this has been an additional motivation for investigating how new

motion capture technologies can be used for exploring new musical expression, both privately

and for an audience, with a greater physical involvement and presence.
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1.2 The Dance Jockey project

Figure 1.2: A Dance Jockey performance at Mostra UP in Porto, Portugal. Notice the orange sensors on

different body parts which are parts of the MoCap suit used.

During this PhD project, Yago de Quay and I have worked with the Dance Jockey Project. The

main goal was to make a musical performance piece based on full body motion data, inspired

by the above ideas and motivation. To my knowledge, this was the first time someone had at-

tempted to use a full body MoCap suit, i.e. a wearable suit that tracks the motion of the main

limbs of the whole body, for real-time musical performance. Developing the Dance Jockey

system involved several challenges. First of all, it consisted of various technical details, e.g.

incorporation of the MoCap system and development of the necessary real-time software and

algorithms. Real-time is an important keyword, since low latency is seen as an important prop-

erty for achieving intimate control in musical applications [65]. Processing MoCap data with

low delay is therefore a significant focus of this thesis. Secondly, there were also high-level

design challenges, as opposed to low-level implementation details, that needed to be addressed,

e.g., how do we create good mappings between motion and sound? Such questions and chal-

lenges have been targeted in this thesis. Before formulating these questions and challenges into

the aims and objectives of this thesis, let us first briefly consider the limitations.

1.3 Interdisciplinary and limitations

The research that is presented in this thesis covers several different fields, e.g. human computer

interaction, motion capture technologies, digital signal processing, multi-objective optimization

and heuristic search. However, there are several more important fields and challenges which

would have been relevant to study, e.g. sound synthesis and music cognition. Due to the limited

time and resources, it has been necessary to select some priorities. Given my background in

computer science and technology, it has been natural to concentrate on the technical challenges.

In other words, this thesis is focused on the technical side of the targeted challenges. Let us

now consider the research objectives of this thesis.



4 Chapter 1. Introduction

1.4 Research aims and objectives

The main research objective of this thesis is to:

develop methods and technologies for using body motion for real-time musical in-
teraction

This objective can further be divided into the following sub-objectives:

• Evaluate different motion capture technologies for real-time musical interaction.

• Investigate how full body motion capture data can be used for musical performance.

• Review and study best practices for filtering MoCap data for real-time applications.

1.5 Thesis outline

This thesis is a collection of papers and thus the seven included research papers constitute

the main research contribution of the thesis. Given the brevity of the research papers, some

additional details and background are included in the following chapters. Figure 1.3 shows how

these chapters are related to our challenge, and the outline is as follows.

• Chapter 2: Digital musical instruments in a human-computer interaction view
In this chapter, inspired by the field of human-computer interaction (HCI), some aspects

of the targeted design challenge are presented which I deem important when designing

good action-sound mappings. The ideas and concepts that are presented in this section

have been the main motivation behind the work I did in the Dance Jockey project.

• Chapter 3: Motion capture
The first step in our challenge is to capture the wanted body motion. This chapter presents

a brief overview and the essential challenges of MoCap technologies, with some addi-

tional details and considerations about the MoCap systems which have been used in this

thesis.

• Chapter 4: Filtering MoCap data.

To make good use of the MoCap data, it is often necessary to process it in different

ways. In this chapter I first give some background to digital filter design and continue

by discussing best practices for noise filtering and differentiating of MoCap data. Since

the filters are intended for real-time applications, an important focus is on designing such

filters with low delay. To be able to explore and design optimal low-delay filters, it was

necessary to develop an alternative filter design method. This is the most detailed chapter

and gives additional information and background to the results given in Papers V, VI and

VII, which are significant parts of the contribution of this thesis.

I then continue by presenting an overview of the contents of the research papers, as well as

individual motivations and abstracts for each paper in Chapter 5. This chapter also lists the

Dance Jockey performances that have been performed and some software that has been made
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MoCap

system Filtering
Action-Sound

Mapping

Sound

engine

Digital musical

instrument

Chapter 2

(Chapter 2)Chapter 3 Chapter 4

Figure 1.3: Organization of the background chapters. Notice that the sound engine is not a focused part

of this thesis.

available to others. Subsequently, Chapter 6 presents a summary of this thesis and proposes

future work. Finally, the seven research papers are included at the end of the thesis. Additional

details on some of the proposed work are given in the Appendix.

The reader of this thesis is not assumed to have any special knowledge of the terminology

and methods used in this thesis. For this reason, the terminology, technologies and methods

presented in chapters 2, 3 and 4 will be presented in such a way that they are accessible without

expert knowledge.
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Chapter 2

Digital musical instruments in a
human-computer interaction view

Digital musical

instrument

good coupling? 

Figure 2.1: How can we design good couplings between motion and sound?

In this chapter I will discuss some high-level design aspects of interfaces for musical expres-

sion and relate these to existing literature. Inspired by the world of human-computer interaction
(HCI), I present a conceptual model that I believe is important for understanding a basic chal-

lenge of the interdisciplinary complexity in musical instrument design. This model suggests

that interface design should be guided by our perceptual and cognitive constraints. I raise the

question of what the main elements of intuitive control of music are and, based on the concep-

tual model, I propose a basic design rule, including a list of accompanying concepts, which I

deem important when forging a good coupling between action and sound.

2.1 Introduction

The field of human-computer interaction incorporates many challenges regarding the design

of the interaction between users and computers. HCI is often regarded as the intersection of

computer science, behavioral sciences, design and several other fields of study. The scope of

this chapter is not to review the whole field but to consider the challenge that is investigated in

this thesis in an HCI view and take inspiration from some of the established ideas.

The design challenge of this thesis can be called a digital musical instrument (DMI). More

specifically, I am interested in instruments used to transform body motion into musical expres-

sions, i.e. sound or musical features. It is evident that today’s computers can make sound,
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and with digital controllers and real-time audio software, we can control sound in real time.

Consequently, we can perform music with digital musical instruments. Every sensor that can

sense some aspects of the physical world can be used as a controller, as attested to by the many

examples found in the literature [36].

Since our problem is related to HCI, it is natural to turn to this field when wanting to analyze

and evaluate a DMI. However, as Wanderley et al. claim, “Interactive computer music can be
seen as a highly specialized field of HCI” [60]. HCI theory is not necessarily applicable when

designing a DMI, since the challenges of a DMI design are not identical to those of an HCI

design. With computers we want to work as fast and efficiently as possible, while the goal with

a DMI design is more complex than to obtain efficient and ergonomic properties [23, 29, 38].

An additional aspect is how the audience perceives the DMI design in a performance setting.

Not only are the outputted sounds important, but also how the sounds relate to the performers’

actions on stage [3].

Jacob claims that a fundamental goal of research in human-computer interaction is to in-

crease the useful bandwidth of interfaces [24]. This sounds like a reasonable goal for a DMI

design, since increasing the communications flow between the user and the instrument should

increase the connection with the instrument or the control intimacy [38]. In the following I

argue that the design should take advantage of our so-called ecological knowledge of sound, to

make a more intuitive DMI. This is the idea I pursue in this chapter.

In the next section I discuss what I see as the higher-level design constraints of a DMI. In

section 2.3 I continue by presenting a conceptual model of a DMI design, including a design

goal. Subsequently, in section 2.4, I give an example from HCI to illustrate the concept of this

design goal. In section 2.5 I continue by listing some concepts that I argue can be valuable

when designing DMI. Finally, in Section 2.6, I give a discussion of this chapter.

2.2 DMI design constraints and ecological knowledge

A relevant question when designing a DMI is to consider the general design constraints. We

can start by arguing that the user’s ability to interact with a device is constrained by the nature

of human attention, cognition, perceptual-motor skills and abilities [1], whereas a DMI design

is limited by the technology used. At first it is natural to regard our body’s action capabilities as

the major constraint. However, one should not underestimate the complexities of motor control;

just consider our vocal apparatus with its around 40 muscles and very rich output possibilities.

Such control possibilities, combined with the emerging range of new sensor and digital signal

processing technology, should allow us to make highly advanced DMIs. At the same time,

a too complicated DMI can overload our perceptual apparatus and make it difficult to master

and enjoy. The current range of available and popular instruments may provide an idea for

what a good balance between learnability and complexity is [33]. In other words, while a good

instrument is clearly not only about user-friendliness, it should be reasonable to regard a too

complicated and non-intuitive DMI design as not beneficial in terms either of its expressivity or

its mastering potential (learnability).

An advantage of acoustic instruments is that they follow the laws of physics. These laws,

or constraints, determine the instrument’s behavior which is perceived with our many different
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senses [13]. In other words, our perception has many sources of sensory information to build

a more complex model of a sonic event. Dealing with the physical world over the course of

time has made us experts at negotiating these constraints. We can more or less predict how it

will sound if we do something with a physical object [14, 16, 8]. In this way, we can say that

the control space of the object has an intuitive connection to the output space. We have an

idea of how to make that wanted sound since we have a deeper knowledge and understanding

of how the instrument works. I argue that a DMI design can benefit from mimicking some of

these constraints, so that it can benefit from our ecological knowledge, meaning accumulated

knowledge of sound and sound-making and how they are related to the physical world. Granted

that this is the case, we may now, through a conceptual model, define the terms control space
and output space.

2.3 A simple conceptual metaphor for DMI

In HCI a conceptual metaphor is often used as a high-level description of how a system works

[51]. The model should be an abstraction that outlines the most important system properties and

shows how these are related. It is possible to make these models highly complicated by trying

to incorporate every property in detail. However, the goal here is to make a simple model that

will serve a specific purpose. Inspired by a model from HCI literature [21], we can define the

following conceptual model for DMI.

Input 

(changes in the 

physical world)

Output 

(changes in the 

physical world)

Transfer 

Function

Figure 2.2: Conceptual model 1 - The technical model

Conceptual model 1: A DMI is a device that connects a physical change in the world to another

physical change in the world through a transfer function. The first is seen as the input

while the latter is seen as the output. (Figure 2.2)

The different parts of the model can be further defined as the following.

• The input possibilities are endless but we will mostly think about input initiated by users,

as what we call actions. A term known from literature is musical gestures, but since this

term includes more than the controlling actions per se, I choose to use the term action,

meaning intended motion that is meant to make or manipulate sound [28]. An added

importance for DMI in a performance setting is what the audience perceives from these

actions [39, 11, 57].

• The transfer function is the core of the DMI that maps input to output and is often referred

to as the mapping problem. Several publications discuss this important challenge but

focus mainly on the mapping between the input signal and sound, with less focus on

the perceptual and cognitive aspects of the whole design, mostly also omitting haptic

feedback from their mapping model [23, 59, 2, 9].
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• The output includes everything that comes out of this device, such as sound, tactile vibra-

tion and all the other output that can be sensed by the performer and audience. Digital

controllers often lack the physical response and haptic feedback that acoustic instruments

give. This must therefore be implemented in the design as an extra output attribute, and

is referred to as tactile, force or haptic feedback [58, 35].

Notice that haptic feedback is mostly a concern for the control aspects of the device, i.e. how

the instrument is tactually perceived by the performer, and not directly relevant for the intended

output sound. How the instrument is perceived can in many cases be more important than how

it works. We shall therefore now transform the technical model into the following perceptual
model.

Control Space Output Space

Figure 2.3: Conceptual model 2 - The perceptual model

Conceptual model 2: A DMI is a device that offers a control space and connects it to an output

space. (Figure 2.3)

• The Control Space is how the performer experiences the DMI as a control interface. This

includes the haptic feedback. The audience may also perceive some of the aspects of the

control space, but not necessarily to the same degree.

• The Output Space is how the DMI is experienced as a sound generator, perceived by both

performer and audience. We can loosely say that it consists of the intended output of the

system.

We could have included more details in the above definitions; however, as mentioned at the

beginning of this section, this model is meant to serve a specific purpose. The main point

of the above conceptual models is to incorporate the whole transfer function, including every

perceived element of the DMI. As stated by Hinckley et al. [21], an input device can not

be studied without examining the intended output, for the obvious reason that the output is a

fundamental part of the interaction. Likewise, I argue that a DMI can not be analyzed as a

musical instrument without taking account of the whole conceptual model. Others have also

stated similar ideas on DMI related to the mapping problem [23].

With the conceptual model 2, which is based on the conceptual model 1, I propose the

following simple design goal: The control space should, to some degree, match the output
space. Let us consider an example from the field of HCI to explain and illustrate the concept

behind this design goal.
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2.4 Moving a position marker on the graphical screen

poor

match

good

match

Figure 2.4: The mouse is better perceptually understood as a position marker mover than the pointing
stick on a laptop. This is because the match between control space and output space is better.

A joystick may be regarded as a two-dimensional force sensor and has often been used as a

position marker mover device, e.g. a pointing stick on a laptop. How well suited is this device

for the task of moving a marker on the graphical screen? Intuitively, some will think it is not

optimal – but why? We can claim that the control space does not match the output space well,

since the joystick is better perceptually understood as a two degrees of freedom force sensor
than a position marker mover. You will probably with little effort learn that to move the arrow

you need to push the stick in the appropriate direction. However, as you may have experienced,

accurate control of speed and moving the marker to the target position can be difficult and

frustrating.

Balakrishnan et al. list in [4] several reasons why a mouse works well with the graphical

screen. You move the mouse and get a direct corresponding movement on the screen. The

match between control and output space is better than the joystick example. To achieve this

direct bond is clearly important; however, with DMI it may be difficult to achieve because the

qualities of sound, like timbre and loudness, are more abstract than spatial position. Still, I

claim that there exist concepts that can help us to establish a good match between the control

space and the output space for DMI. This is the goal of the following section.

2.5 Connecting the control space with the output space

In this section we list several concepts which I deem important when forging a good connection

between the control space and output space.

1. Concept of effort and energy
With acoustic instruments you need to use some energy to get the wanted output and the

amount of energy is usually related to the amount of sound you get, i.e. loudness. This

is not necessarily the case for digital instruments since effortless actions can be mapped

to sound with “unlimited” loudness. It has been suggested that users find the DMI re-

sponsiveness to be better if continuous input of energy is required for making continuous

sound [23]. It has also been suggested that effort is closely related to expression [45].

2. Concept of on and off
A concern with ubiquitous computing, e.g. computer systems that continuously interpret

our actions, is whether an action is meant as a command or not. If we look at how
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a performer plays an instrument, it is clear that it involves not only sound-producing
actions, but also sound-accompanying actions, e.g., keeping track of the beat [28]. For

this reason it seems important that the DMI design should keep some of the user’s action
space free. This gives the user some space to move in without interfering with the sound-

producing actions.

3. Concept of fault tolerance
If the input device is used for strict command-based events, it should be precise like a

keyboard for text entry. Let us say that you want a pattern recognition system to recognize

different command actions and that you can achieve a 90% recognition level. If this is

intended to control important parameters you will soon get annoyed every time it does

not recognize your actions correctly. This sort of imprecise control should only be used

when accurate commands are not needed [21], i.e. such that small errors in the input or

classification lead to only small and tolerable changes in the output.

4. Concept of haptic feedback
Haptic feedback is often a physical property of acoustic instruments. This can be ar-

tificially integrated in digital controllers as haptic technology [58, 35]. However, it is

not necessarily possible to implement such feedback in virtual musical instruments, i.e.

instruments that are not based on physical controllers. An important question is what

function the haptic feedback is intended to have. Is it just to give some feedback that an

event is initiated or is it to express properties of the given state of the device?

5. Bimanual input (Two handed input)
People use both hands in an asymmetric complementary way where the left and right

hands have different tasks [21]. This is also the case when handling many traditional

acoustic instruments. An awareness of this should be beneficial when designing DMI.

6. Integral vs. separable dimensions
A computer mouse offers two integral dimensions while an Etch-a-Sketch toy offers two

separable dimensions. While you have a good isolated control of each dimension with the

Etch-a-Sketch, an isolated control of one the dimensions is more difficult with a mouse

(see Figure 2.5). It has been shown that devices whose control space matches the percep-

tual structure of the task will enhance the performance for the user [26].

7. Number of dimensions and degrees of freedom
When choosing an input device or a sensor, it will offer some number of control dimen-

sions and an associated degree of freedom. These range, for example, from simple switch

buttons that have one degree of freedom, on or off, to multidimensional continuous con-

trollers. A match between the number of dimensions in the control and output space can

be important [21].

8. Absolute versus relative movement and position
A mouse measures relative movement while some motion capture systems, i.e. the elec-

tromagnetic tracker Polhemus, measure absolute position [25]. Again the DMI design

will benefit from a choice of control space that fits the output space.
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9. Concept of responsiveness
An important property with musical instruments, which differentiates them from the field

of HCI, is the role of time [60]. A great part of the musician’s skill consists of properly

timing musical events. In other words, high temporal precision can be an important fea-

ture for musical applications. Additionally, low latency is often seen as a prerequisite for

achieving intimate control in musical interactive applications. The upper bounds for such

control have been suggested to be 10 ms for latency and 1 ms for its variations, i.e. jitter
[65]. We will return to these challenges in Chapters 3 and 4.

Figure 2.5: It is much easier to draw integral figures, e.g. diagonal lines, circles and bows, with a

Wacom tablet (left) than with an Etch-a-Sketch (right). Yet, with the latter it is much easier to draw

straight vertical and horizontal lines.

To clarify these concepts, let us briefly see how the acoustic guitar relates to them. First of

all, the guitar offers a clear relationship between the energy spent when exciting the strings and

the resulting loudness of the output (concept 1). It is obvious what excites the instrument and

not, and the guitar offers many possible sound-accompanying actions. The strings can also be

individually activated or dampened (concept 2). Furthermore, the guitar will never change the

main behavior given similar control input. Any small variations in the given input will normally

only give similar small changes in the output (concept 3). The guitar offers several layers of

haptic feedback. The strings offer both resistance force when excited and vibration feedback

after activation. The instrument body will also give feedback from its internal vibration (concept

4). The instrument offers a clear asymmetric complementary control space. Normally one hand

controls the fretboard while the other is in charge of plucking and hitting the strings (concept

5). The guitar offers good separable control of each string. On the other hand, the fretboard can

also be seen as combining the strings to one integral dimension, e.g. for barre chords (concept

6). The guitar offers further a clear perceptional image of the dimensions of the control space,

normally 6 strings and a fretboard with about 20 frets, which has a direct mapping to the tonal

output space (concept 7). All actions on the guitar affect also the guitar in a relative way, i.e.

playing the guitar while hanging up-side down will not have any direct effect on the output. In

other words, the guitar clearly defines and constrains the positional control space to its local

coordinate system (concept 8). Finally, the guitar gives an immediate response to the user’s

actions, with no latency or jitter problems (concept 9).

Most acoustic instruments follow these concepts in similar ways because of physical con-

straints and the intrinsic behavior of the acoustic materials used. However, this is not the case
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The fretboard and the strings offer a clear

perceptual image of the control space dimensions

The amount of energy spent when exciting the strings

has a clear connection to the outputted loudness

Both the guitar body and the strings offer haptic feedback.

Figure 2.6: The acoustic guitar follows all of the listed concepts.

with digital instruments, since the action-sound mapping can be arbitrarily designed. In other

words, these concepts must be explicitly incorporated in the design if we want the design to

take advantage of our ecological knowledge of sound.

2.6 Discussion

It can be argued that many of the concepts listed above are merely ways of getting a device

to become user-friendly, and that an artistic device is much more than to accomplish user-

friendly aspects. This is an important point, and the usability should not be substituted for

expressiveness and explorative qualities. In spite of this, the proposed concepts are, in my

opinion, valuable guidelines to consider, since they support two important qualities of a DMI

design, the explorative quality and the communicative quality.

The goal with usability in a wider sense is not only to make a task simpler, but to support

spontaneity and momentum [22]. And I argue that not only will a device that is familiar in

an ecological way be easier to explore, it can also increase the feeling of mastery and accom-

plishment. This can be important for the “flow feeling” of using a device, which is suggested

to be important for joy [22]. In other words, the underlying idea is to design a DMI that sup-

ports user-friendly concepts which in the end are beneficial for the explorative quality of the

instrument.

However, the concepts discussed are, in my opinion, not only beneficial for the performer,

since the intuitive instrument handling can be shared with the audience. When I observe a mu-

sical performance, I am a curious spectator. If I cannot figure out the connection between the

action and sound on stage, I easily become frustrated and bored by the performance. And it

makes sense that we find it important to understand the connection between two of the most

important modalities of a musical performance [3]. In particular, if we regard the performer’s

virtuosity as being an important factor enhancing the audience’s experience, the audience’s abil-

ity to comprehend the coupling between actions and sounds is helpful towards them perceiving

the virtuosity on stage [57].
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Several of the concepts listed above were actively used during the development of the Dance
Jockey system. Since the system can be seen as a virtual instrument based on touchless motion

and not on physical controllers, it was of great importance to build good couplings between

action and sound. If the instrument is virtual, the whole comprehension of the instrument must

come either from the sonic feedback or from the bodily experience of using the instrument. We

found that the listed concepts made it easier to be conscious of how virtual instruments could be

intuitively handled and perceived. We also found that the most interesting and successful map-

pings were made when these concepts were followed. Additionally, we wanted the spectators

to benefit from these efforts, which was partly confirmed by the informal feedback we received

after our performances. More details about the Dance Jockey system are presented in Paper IV.

Overall, it is difficult to reason that the discussed concepts of an instrument design can have

any direct negative effect; however, they should not limit the designs. The instrument designer

should indeed be free to incorporate counter-intuitive and surprising effects. The classic design

quote “Know the rules well, so you can break them effectively”, should be applicable in this

respect.

2.7 Summary

In this chapter I have argued for some design considerations that I believe are applicable when

designing digital musical instruments (DMI). I have introduced a simple conceptual model that I

argue incorporates an important aspect of DMI designs. Based on this model, I have proposed a

simple high-level design guide from which I think DMI designs can benefit. In effect, I suggest

that the control space should somehow match the output space, and I discuss some concepts

that a designer may take into consideration when attempting to connect these spaces.
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Chapter 3

Motion Capture

System usability

Quality of output data

Real-time performance

MoCap system

Figure 3.1: The task of the MoCap system is to capture motion. I have grouped what I see as the most

important performance features of a MoCap system in three categories: quality of output data, real-time
performance and system usability.

3.1 Introduction

Motion capture (MoCap) can be defined as the process of capturing motion and translating it

to the digital domain. In this thesis we are especially interested in using the captured motion

in real time for musical interaction. Since our goal is not to record the data per se, it might

have been sensible to use the term motion tracking [64]. However, because of familiarity, I will

in this thesis use the more commonly used term motion capture together with the established

abbreviation MoCap.

The goal of the current chapter is not to give a comprehensive and thorough review of Mo-

Cap technologies and how they have been used in the field of DMI, but to present the essential

challenges with MoCap and some additional details about the systems I have used in this thesis.

I start by pointing out what I see as the main performance features of a MoCap system. Then I

give a brief overview of the main technologies available before I finally present a summary and

a discussion of the MoCap technology choices I have made for this thesis.

3.2 MoCap challenges

The main goal with a MoCap system is to track or capture motion. There are systems that only

capture features of motion, for instance the distance between two objects or the acceleration of
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Figure 3.2: With a MoCap system we normally want to track the position of one or several objects.

However, we may also be interested in tracking the orientation of objects, or a whole kinematic model,

e.g. a skeleton model of a human being.

an object. These systems can give useful data in an affordable way. However, the goal with a

MoCap system is normally to capture the position, and sometimes the orientation, of objects

in space and time. It is also possible to track several chained rigid objects simultaneously. By

grouping several rigid objects together and specifying their relative position and orientation, we

can track kinematic models, e.g. a skeleton model of a human being, as illustrated in Figure

3.2.

Before we look into the details of how this can be done and the available technologies,

let us start by considering the desired MoCap performance. The quality of a MoCap system

can be evaluated in several ways. What may be an important feature for one application may

be ignorable for other applications. In the following I will point out what I see as the most

important performance features of a MoCap system. That is, how spatially accurate is the

outputted data, how good is the real-time performance, and equally important, how usable is

the MoCap system?

3.2.1 Data output quality - the spatial quality

The motion data we get from a MoCap system will normally have some deviation from the

original physical motion that the data is based on. This can be seen as either noise or drift, where

the former is seen as a random error, i.e. low precision, and the latter is more a continuous

deviation which can compound over time. While some applications may need very accurate

data, other applications can have other priorities. For instance, sub-millimeter resolution might

not be the main priority when looking at body motions with an amplitude in meters. Low noise,

robust and consistent data may be more important. As we will see later, there is no perfect

MoCap system that fulfills every need, and it is therefore important to prioritize to be able to

choose the most suitable MoCap systems for the required task [64].

Most MoCap systems work by sampling the sensor data, which are the basis for the data

estimation, several times per second. As attested in the literature of biomechanics [68], and also

supported by our work in Paper VII, the upper frequency content of human motion is normally

limited to about 10–26 Hz. By following the Nyquist–Shannon sampling theorem a sampling

frequency above 50–60 Hz should therefore capture the essential content of human motion

[37]. However, higher sampling rates are positive for the resolution, since the samples can be

regarded as noisy and inexact. Higher sampling rates can therefore give us increased resolution

as long as this does not influence the system performance in other ways, e.g. reduced sensor
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performance due to shorter exposure time during the sampling process. It is also reasonable to

regard most MoCap systems as having so-called white noise properties, since they are based on

sensor data which are regarded as having such noise distribution (see Section 4.5.1). Addition-

ally, as the next chapter will show, if it is necessary to filter the MoCap data in real time, higher

sampling rates lower the latency impact of the used filters. This brings us to the next important

performance feature, the tracking latency, or the real-time performance.

3.2.2 The real-time performance

Since there are robust ways of accurately timing the sampling process, the original time stamp

of the captured motion data is normally sufficiently exact. However, it takes time to process

and transmit the required MoCap data to the end application [64], and the resulting tracking
latency can be an unwanted feature for real-time musical interaction, as discussed in Section

2.5 under concept 9. An additional challenge is jitter, i.e. the variation of the latency, which

is an important feature if high temporal precision is needed. In other words, the problem with

distortion in the time domain, is normally not when the data was captured, but when the data is

received by the end application, as illustrated in Figure 3.3. Buffering can be used to minimize

the jitter problem, but this will increase the overall tracking latency [48]. Notice that such

distortion of the time domain has a negative effect on the spatiotemporal accuracy.

A contributing factor for the above problem is that commercially available computers and

network systems do not support streaming of real-time data with minimal latency and jitter

performance. Even if the MoCap system could support the delivery of data with low jitter and

latency, it would still be a problem to transmit the data with standard computer platforms like

WIFI, Bluetooth, Ethernet, etc. However, the new Ethernet AVB protocol may solve some of

these issues [48]. Another related problem is so-called frame drops, i.e. that the MoCap or

network system is not capable of sending every sampled time frame. Not only is this critical

since we can miss out on important actions, it is also problematic when differentiating the

motion data, i.e. calculating the derivative. Missing samples can result in value leaps in the
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Figure 3.3: Illustration of the time domain challenge of using MoCap data for real-time applications.

Though the original data is correctly sampled in the time domain, it takes time to process and transmit
the data to an end application. A variation in the latency results in jitter, which can be seen as a distortion

in the time domain, as shown in the lower curve (notice the distorted waveform).
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received data streams, which will result in large differentiation errors if not properly taken care

of.

In other words, though a system can offer very accurate motion data, it will not necessarily

be suitable to incorporate in a DMI design if it has poor real-time performance. In similar ways,

a high-end MoCap system may have limited use outside the lab due to other practical usability

concerns.

3.2.3 Usability and the “out of lab“ performance

The final quality of a MoCap system is not determined by the technical performance which

can be achieved in a lab, but how it works in practice for the end application. It is therefore

important to consider how the system performs for the intended use. In the following, I list

what I see as the most important usability features of a MoCap system.

• Environmental “robustness”

While a system may work perfectly in the lab, it may perform poorly in a different en-

vironment. Thus, it is important that the MoCap system performs well in the intended

environment. In other words, the sensors used must be satisfactorily immune to the given

environmental interference, e.g. stage lights, electromagnetic interference, temperature

shift.

• Tracking area.
The system needs to deliver the wanted performance for the whole of the required tracking

area. While some systems only work for very small areas due to limitations of the sensors

used, e.g. optical systems, inertial systems can work in an unlimited area.

• Obtrusiveness
It is important that the system used is not too obtrusive for the performer. A MoCap

suit can affect the performer’s ability to move if it is cumbersome to wear, e.g. a heavy

suit involving multiple cables. A large and visually distracting system can also interfere

aesthetically with the performance.

• Portability and setup time
While some systems can fit in a pocket, e.g. the Nintendo Wii Remote, other systems

may have greater transportation needs. The complexity of the system affects also the

mounting and unmounting time required. These features determine the practical sides of

touring and traveling with the system, i.e. when used for multiple locations over short

time periods.

• Number of tracked objects or subjects
Due to system limitations, e.g. processing power or network bandwidth, the tracking

performance may be heavily influenced by the number of tracked objects or subjects. It

is therefore important to use a system that supports robust tracking of the desired number

of objects or subjects.

• Reliability - robustness and stability
Finally, it is important to consider the overall reliability of the hardware and software.
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Software “bugs” and badly engineered hardware can make the system frustrating to work

with. The quality of the hardware determines not only technical features like battery

lifetime but also how solid and robust the system is in the long run, i.e. the life expectancy.

Let us now go through some of the available MoCap technologies, and how they relate to the

performance features discussed above.

3.3 Available MoCap technologies

There are several available MoCap systems on the market today, all with their different strengths

and weaknesses and intended use. There are mass-produced systems that come from the com-

puter game industry with an affordable price tag. At the other end, there are specialized high

performance systems with very high price tags, which limits their use to industry and research

institutes. However, all MoCap systems are based on sensors. The data from these sensors is

analyzed in different ways to be able to make a good estimation of the spatial properties of the

tracked object. The capture quality is therefore dependent on the quality of the sensor systems

and analysis methods used. In the following section, I will list the main available technologies.

3.3.1 Optical systems

The earliest form of motion capturing was simply using our own vision. The invention of pho-

tography and cinematography made it possible to perform more objective and precise tracking

of motion. Placing markers on the tracked objects allowed for somewhat precise manual es-

timation of properties like speed and acceleration [68]. The adaptation of the digital camera

made it possible to automate these processes on digital computers. Essentially, optical systems

rely on optical measurements of reflected or emitted light. In other words, these systems consist

of two components: light sources and optical sensors. We can divide them into two different

subcategories, marker-based and marker-less systems.

Optical marker-based systems

The optical marker-based system is today one of the most accurate MoCap systems available

and can achieve sub-millimeter resolution. It works by using digital cameras in combination

with markers that are placed on the tracked object(s). By utilizing infrared cameras and light

sources, it is possible to operate within a light spectrum that does not interfere with our own

vision. This makes the system also somewhat less prone to light pollution. It is further possible

to use either active or passive markers. Active markers emit light themselves, while the latter

work by using a light source on the cameras in combination with reflective markers (see Figure

3.4).

Using one camera, it is possible to measure how one or several markers move in the 2D view

frame of the camera. If the size of the measured marker is known, it can be used to roughly

estimate its distance from the camera. However, more accurate and precise three-dimensional

positions can be estimated by triangulation if two or more cameras can see the same marker.

Additionally, a rigid object’s orientation can be estimated if three or more markers are placed
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Figure 3.4: The two main MoCap systems that have been used during the work of this thesis are the

OptiTrack V100:R2 (left) and the Xsens MVN system (right). Notice the IR LEDs on the OptiTrack

camera which are used as the light source to light up reflective markers. The strap-on suit, on the far

right, is the Xsens suit we have used for the Dance Jockey project.

on the object. And, if the placement of the markers on the rigid bodies is done in a unique way,

it can be used to identify the objects. In this way, a system can track and identify several rigid

objects in the capture area, and can be used to track a complete kinematic model, e.g. a human

body.

Multi-camera MoCap systems need to be calibrated before use. The calibration process de-

termines the position and orientation of the cameras and is the basis of how the camera estimates

the position of the markers. It is therefore necessary to perform a new calibration if the camera

setup is accidentally distorted after the calibration process, i.e. if the position or orientation of

the cameras is accidentally changed.

The main benefit of optical marker-based systems is the possibility of very accurate posi-

tional tracking and fairly high sampling frequencies. The resolution of the camera sensors used

and the proximity to the marker determine the possible tracking resolution. These systems can

also track multiple markers and objects simultaneously, as long as the markers are visible to

the cameras. Optical occlusion, i.e. when markers are temporarily out of sight of one or sev-

eral cameras, can be seen as the system’s main drawback which can cause frame drops, marker
swap and occlusion noise. The latter noise occurs when a marker’s position is estimated with

different sets of cameras during the tracking session due to optical occlusion. This will result

in slightly different position estimates and hence noise (see Paper III). While these occlusion

problems can be fixed in post-processing software, real-time data will suffer from inconsistent

and noisy data. It is therefore important to have a good distribution of the cameras in the track-

ing area to minimize marker occlusion problems. This again demands multiple cameras, long

wires, heavy tripods and time-consuming preparations. And, though they normally work in the

infrared spectrum, they are still sensitive to light pollution since many light sources contain

infrared light.

Optical marker-less systems (Computer vision)

Computer vision-based systems are essentially marker-less optical systems that rely on digital

image processing techniques to recognize objects, position, motion, activity, features and more.

While they do not offer the same accurate positional tracking ability as marker-based systems,

they avoid the use of obtrusive and cumbersome markers. Computer vision-based systems are,

similar to optical marker-based systems, prone to optical occlusion and pollution. In spite of
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this, it is a promising technology which can potentially be very versatile and affordable. In its

simplest form, a system can consist of a web camera and some analysis software running on

the attached computer. However, these systems can also be multi-camera based. Stereo vision
is a much used approach which is based on two cameras for improved 3D estimation, similarly

to our own stereo vision capabilities (stereopsis), e.g. leap motion [63]. There are also several

systems that have more sophisticated built-in sensors to improve the estimation of different

features, e.g. Microsoft Kinect’s depth sensor [71] and the new Xbox One time-of-flight sensor
[20].

3.3.2 Inertial systems

Unlike optical systems that rely on external observation, inertial systems estimate motion with-

out the need for external references. For some applications this can be very practical since they

are not dependent on external sensors or systems, i.e. they are self-contained. Inertial sensors

are based on inertia, i.e. the resistance of any physical object to change in its current motion.

One of the most popular inertial sensors is the accelerometer. While it is possible to use an ac-

celerometer alone to do some basic motion analysis, it is not possible to perform robust spatial

estimation since the orientation is unknown. However, by combining an accelerometer with a

gyroscope, it is possible to calculate the position, orientation, and velocity of the attached object

via dead reckoning1 [64]. To combine several sensors in this way is often referred to as sensor
fusion.

Kalman filters are often used in these applications to minimize positional and orientational

estimation errors [52]. Basically, the position and orientation are estimated by integration of

angular velocity measurements from gyroscopes and double integration of accelerometer data.

Given that these sensors give noisy results, it is necessary to use some kind of noise filter to

improve the estimations. Kalman filters are so-called recursive filters that produce statistically

more optimal estimates by having knowledge of the underlying system. Nevertheless, the posi-

tion estimation of such systems drifts several meters in a short amount of time due to imperfect

sensors [64].

While inertial systems earlier had only limited use due to large and expensive sensors, the

adoption of microelectromechanical systems (MEMS) has made it possible to make very com-

pact inertial sensors [64]. These MEMS sensors, due to their affordable price, have become

standard in many consumer devices like mobile phones and computer game controllers. Such

inertial systems do not offer the same accurate tracking quality as optical marker-based systems,

and they are especially prone to positional drift. On the other hand, they offer a self-contained

MoCap technology without occlusion problems and with a theoretically infinite tracking area.

These sensors can also be sampled at high sampling rates [64]. The reduced accuracy (i.e.

drift) of MEMS sensors can be compensated somewhat by using compact reference-providing

sensors like magnetometers and GPS sensors. However, these resulting systems are no longer

strictly inertial.

It is possible to use several of these sensor systems in parallel to track the motion of a

complete kinematic model, such as a human body. The tracking quality of such systems can

1Dead reckoning is the process of calculating an object’s current position by using a previously determined

position and advancing that position based upon estimated speeds over elapsed time.
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be improved by fitting the sampled sensor data to a biomechanical model of the tracked subject

[43]. Today there are several commercially available MoCap suits that are based on inertial

sensors. I have used one of these systems, the Xsens MVN suit, shown in Figure 3.4, for the

Dance Jockey project. See Paper II for more details about this MoCap suit.

3.3.3 Other available MoCap systems

There are several other sensors that can be used to capture positional and orientational motion

properties. In the following section, I will list the main available technologies. These technolo-

gies have not been used during the work of this thesis. Therefore only a brief overview is given.

See [64] for a more detailed overview of these systems.

• Mechanical systems are based on sensors that sense mechanical motion and forces di-

rectly, e.g. potentiometers and bend sensors. This can result in affordable and effective

systems for some applications. However, as one might expect, it can easily lead to quite

obtrusive systems when used for complete tracking of the full human body. Nevertheless,

they can offer very precise and intimate control since the analysis of the sensors used is

normally straightforward.

• Magnetic systems utilize sensors that can estimate spatial properties based on either

Earth’s magnetic field or an active coil that emits a strong magnetic reference field. Given

Earth’s weak magnetic strength, the former systems are very sensitive to magnetic dis-

turbance [64]. With an active coil it is possible to achieve very good occlusion-free and

complete six-dimensional tracking, i.e. the position and the orientation of several objects

in a compact system. However, active coil systems are also prone to electromagnetic

interference and their tracking range is very limited because of the cubic decrease of

magnetic field with the distance to the source [64].

• Acoustic and radio frequency (RF) systems work by evaluating the attributes of a target

by interpreting the echoes from radio or sound waves. In this way, they can measure the

distance to one or several objects. The wavelength of the transmitted wave determines

the achievable resolution. Both systems therefore have somewhat restricted use, since

they are limited by the physics of the waves used. Acoustic systems are mainly based on

ultrasound sensors, given the short wavelengths. RF positioning systems are becoming

more viable as higher frequency RF devices (i.e. shorter wavelengths) allow greater pre-

cision than older technologies. However, both types are susceptible to interference in the

environment and none of these systems can compete with the sub-millimeter accuracy of

optical or magnetic systems. Nevertheless, they have some attributes that can be bene-

ficial for some applications; for example, RF systems can work in a large capture area

[64].

• Hybrid systems are important to mention when giving an overview of available MoCap

technologies. The essence is to use several different complementary sensors that can

together offer the required tracking resolution and performance that best facilitates the

given application. Several commercially available systems are based on this strategy,

e.g. the Wii Remote (accelerometer combined with an optical system - Sensor Bar, and
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the expansion of gyroscope functionality with the Wii Motion plus), PlayStation Move

(accelerometer, gyroscope, magnetometer and optical marker-based tracking through a

camera).

3.4 Discussion

As we have seen, there are several MoCap technologies available, and though no silver bullet
exists [64], i.e. no one technology that satisfies every need, they offer together a usable set of

tools for tracking motion with their different strengths and weaknesses. The optimal technology

is therefore dependent on the priorities of the targeted application. During the work of this

thesis, I have mainly used the optical marker-based system known as OptiTrack V100:R2, and

the already mentioned inertial sensor based suit, the Xsens MVN system. Both systems are

shown in Figure 3.4.

I soon became aware of the Xsens MVN suit’s potential as a portable, practical and robust

all-in-one system. The usability of the Xsens system had several benefits compared with the

more accurate optical marker-based systems. The portability and the fast setup time of the Xsens

MVN system made it possible to stage performances in different locations without the need for

much logistics and tedious preparation. However, most importantly, since the Xsens system

does not suffer from optical occlusion, the real-time MoCap data was much more consistent

and robust, as shown in Paper III. Though the output data is less accurate than what the optical

system typically offers, the robust real-time performance was more important during the Dance
Jockey project.

I have also seen the advantages of optical marker-based systems when it comes to accurate

data and the simplicity of doing several subsequent recordings with a limited amount of markers.

While it easily takes more than 10 minutes to put on and calibrate the Xsens MVN suit, placing

a limited amount of reflective markers on a subject can be done in seconds. It is also easier

to get volunteers for an experiment when it only involves wearing a few markers as opposed

to putting on a cumbersome suit. An additional benefit of these systems is that they output

raw non-filtered data (see Paper III). The Xsens system is based on several layers of processing

steps to make the best possible positional estimations [43]. However, these processing steps

can also distort the estimated positional data. It is difficult to take these distortions into account

in an experiment, since the proprietary processing steps are normally hidden from the user. In

my opinion, these features make the optical marker-based systems more suitable for quantitative

experiments, for instance, measuring the maximum frequency of free hand motion, as presented

in Paper VII.

On the other hand, since the Xsens MVN system is based on accelerometers, it can output

acceleration data directly based on measurements of these sensors. With optical marker-based

systems, acceleration data need to be calculated from the positional raw data through differen-

tiation. This process both adds latency and can increase the noise problems in the data, which

again demands extra noise-smoothing. The challenges with noise-smoothing and differentiation

of MoCap data are the subject of the next chapter.
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3.5 Summary

In this chapter I have given a brief overview of the challenges with motion capture technologies.

I have grouped the performance of MoCap systems into three categories, quality of the data,

real-time performance and system usability. I have further presented some of the main tech-

nologies available, and detailed some of the characteristics of the different systems. Finally, I

discussed and argued for the MoCap technology choices that have been made in this thesis.
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Figure 4.1: Important terms when wanting to design suitable MoCap filters for real-time applications.

In this chapter I present some of the basic details of digital filter theory and summarize my

work of studying best practices for filtering MoCap data for real-time applications. However,

some of the content of this chapter should be equally valuable for those that want to filter MoCap

data for post-processing purposes, i.e. when the real-time properties are not important.

4.1 Introduction

Digital signal processing (DSP) can be defined as the mathematical processing of a signal,

with the intention to improve or modify the signal in some way. The most common processing

approach in the time domain is through a method called filtering. As we have seen in the

previous chapter, many of the utilized MoCap and sensor technologies are known to possess

noise properties that may be problematic (see Paper III) [68]. It is therefore often necessary

to apply noise smoothing filters to alter these noise problems. However, noise-smoothing is

not the only interesting utilization of digital filters. We can also perform feature extraction,
i.e. transforming the MoCap data in some way that makes it more interesting and useful. In

this section I discuss appropriate methods for noise smoothing and differentiating MoCap data.
Differentiators can be used to extract velocity and acceleration data from positional MoCap

data, which, together with position, were experienced to be some of the most useful motion

features for our target application during the Dance Jockey project.

As already pointed out, low latency can be an important property for achieving intimate

control in musical applications [65]. And, as one might expect, there will always be a corre-

sponding delay penalty when employing a digital filter. There exist several established methods

for designing digital filters for noise smoothing and differentiation [37]. However, none of them
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are suitable for designing filters with minimal delay properties, as described in Paper V. Con-

sequently, it was necessary to find other ways of designing such filters. An alternative design

method was therefore developed during the work of this thesis. With this method, it is possible

to design more optimal low-delay filters than the currently available design methods can pro-

duce. The proposed design method, including a range of different low-delay filter designs, is a

significant part of the contribution of this thesis. An important focus of this section is therefore

concerned with comparing the delay performance of different filter design methods.

In the following section an introduction to digital filters is given. I then continue by present-

ing some filter analysis methods and filter design methods in Sections 4.3 and 4.4. In Section

4.5 I discuss methods for determining reasonable cutoff frequencies when filtering MoCap data.

Then in Section 4.6 I give a comparison of the delay performance between different filter design

methods, and in Section 4.7 I give some additional comparison details. Finally, in Section 4.8,

I give a discussion and summary of this chapter.

4.2 Digital filters

A common goal when applying filters is to smooth or restore data that have been distorted

with noise. There exist several methods, and they can roughly be divided into two categories:

curve fitting techniques and digital filters designed in the frequency domain. Curve fitting can be

intuitively explained as trying to graphically fit a smooth curve to noisy data. The most common

methods are polynomial fit and spline methods [68]. However, curve fitting noisy MoCap data

is known not to be optimal since human motion does not necessarily follow polynomial curves

[42, p. 235]. Digital filters that are designed and evaluated in the frequency domain are seen as

the most general method for noise smoothing and are the tools I have used in this thesis. This

should also be the most sensible choice since we need filters with causal behavior and good

real-time properties. Causal behavior indicates that the filter output depends only on past and

present inputs, i.e. a mandatory property for real-time applications.

When discussing digital systems, it is common to limit the discussion to so-called linear
time-invariant (LTI) systems, which demand that the given system needs to be linear and time
invariance, i.e. that the time does not affect the output given the same input. All filters discussed

in this thesis are LTI systems [37].

4.2.1 A digital signal

Most MoCap systems offer motion data in a digital format. This means that the output data is a

sequence of discrete values that represent a continuous physical signal. The sampling frequency

fs, given in Hertz (Hz), indicates how many times per second the signal is sampled. It is

important to band-limit the signal to half of the used sampling frequency before converting it

into a digital signal. A digital signal with a sampling rate of 100 Hz cannot contain frequencies

higher than 50 Hz, i.e. half the used sampling frequency (see the Nyquist sampling theorem
[37]). In other words, when showing the frequency content of a digital signal, it is normal to

only show this possible range, i.e. from 0 to 50 Hz, as shown in Figure 4.2. Furthermore,

since digital systems can be used with different sampling frequencies, the relation to time is not

fixed. Digital systems are therefore often specified in normalized frequency, denoted as ω. To
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Figure 4.2: Illustration of how a continuous analog signal is converted into a digital signal. With the

Fourier transform, it is possible to show the frequency content of a digital signal.

convert normalized frequency to Hertz, multiply by half of the used sampling frequency, i.e.

f = ω · fs/2.

A fundamental tool in DSP is the Fourier transform, which makes it possible to express the

frequency content of a digital time domain signal. We will primarily use the frequency domain

when designing filters, as the following section explains.

4.2.2 Noise smoothing with low-pass filters

Formally, the goal of a noise filter is to extract the desired signal from some noisy data. Typi-

cally, this is done by designing a filter with the purpose of removing the noise component while

leaving the desired signal unchanged. This is the classical purpose of low-pass filters. These

filters pass low-frequency signals while suppressing or attenuating high-frequency signals, as

illustrated in Figure 4.3. This strategy works for MoCap data since human motion mainly con-

sists of low frequency signals [68]. The passband refers to those frequencies that are passed,

i.e. wanted, while the stopband refers to the frequencies we want to filter out. To not distort the

passband, it is necessary to have a constant gain, i.e. a flat magnitude response, in the passband.

In order to maximize the noise attenuation, it is necessary to have the lowest possible gain in the

stopband. Moving average is probably the most simple and intuitive realization of a low-pass

filter. Moving average is frequently used because it is intuitive and simple to implement. While

these filters have low-pass filter properties, the magnitude response in the frequency domain is

solely specified by the order, i.e. the length, of the filter, as illustrated in Figure 4.4. As we

will see, in many cases there are more optimal filter design solutions. Notice that the magnitude
response specifies how the filter amplifies or attenuates a signal in the frequency domain.

A common way to design more sophisticated digital filters is to optimize how they perform

0 1

undistorted
signal

attenuated
noise

ω
c0 1

0

1

passband stopband
ω

c0 1

wanted
signal

unwanted
noise

ω
c

Noisy MoCap data Low-pass filter Filtered data

Figure 4.3: Illustration of the purpose of a low-pass filter in the frequency domain. By using a suitable

cutoff frequency ωc, it is possible with a low-pass filter to suppress the unwanted high-frequency noise

of the input signal while preserving, i.e. not distorting, the wanted content.
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Figure 4.4: The magnitude response properties of three moving average filters of orders 1, 3 and 9.

Moving average filters have low-pass filter properties but deviate from the ideal low-pass filter response,

in this example with a cutoff frequency of ωc = 0.4.
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Figure 4.5: The magnitude response of an ideal differentiator of degree 1 together with the magnitude

response of the finite difference and the central difference implementations (left) and an ideal low-pass
differentiator with a cutoff frequency of 0.4 (right).

in the frequency domain. This consists of determining the localization of the passband and

stopband in the frequency domain and designing an appropriate filter based on these properties.

Before we continue with presenting how such filters can be designed, let us first consider a

related filter design challenge.

4.2.3 Low-pass differentiators

Differentiators are a filter type that can be used to extract velocity and acceleration data from

position data. This is a much-used operator since most of the available MoCap systems offer

only spatial, i.e. positional and orientational, motion estimations. If a property like velocity

or acceleration is wanted, it is necessary to use differentiators to compute the derivative of the

spatial data. The frequency response of an ideal differentiator is a linear line in the frequency
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Figure 4.6: By using a low-pass differentiator, we avoid the undesirable amplification of noise in the

higher-frequency band.

domain, as illustrated in Figure 4.5 (G(ω) = ω). The interpretation of this is that lower fre-

quencies have a lower rate of change, while higher frequencies have a higher rate. (Higher

velocity and acceleration are needed to get an object to oscillate with a higher frequency while

preserving the amplitude.) The simplest digital implementation of a differentiator is the finite

difference equation, given by

y(t) =
(x(t)− x(t−Δ))

Δ
, (4.1)

where Δ denotes the time distance between samples. While this implementation follows

the ideal response for low frequency, it deviates for higher frequencies (ω > 0.4), as shown in

Figure 4.5. The central difference equation

y(t) =
(x(t+Δ)− x(t−Δ))

2Δ
(4.2)

deviates even more (from ω =∼ 0.2) and goes to 0 for ω = 1. In other words, these im-

plementations do not follow the ideal differentiator response for the whole frequency band.

However, this can actually be a wanted feature. When differentiating MoCap data, it is nor-

mal to experience an increase of noise in the differentiated data. This is due to the fact that

differentiation resembles a high-pass filter, as can be seen by the ideal differentiator curve in

Figure 4.5. That is, the low-frequency motion data in the passband are attenuated, while the

noise in the higher frequencies are amplified. As a result, we end up with having more noise

in the differentiated data, which increases the need for noise filtering [68, 15]. This is why it is

reasonable to use low-pass differentiators since they only follow the ideal differentiator curve

in the passband and avoid the undesirable amplification of noise in the higher-frequency band,

as shown in Figure 4.6. They will also provide more optimal total filter solutions than using a

low-pass filter in cascade with a differentiator operator, e.g. finite difference, as we have shown

in Paper VI. It is also possible to design a low-pass differentiator of degree 2 (or higher) which

can be used to compute the double derivative directly instead of using two differentiators in

cascade.



32 Chapter 4. Filtering MoCap data

4.2.4 Filter objectives

We have now described our two main filters, low-pass filters and low-pass differentiators, which

will be the focus of this chapter. They have several features in common. Both filters have low-

pass filter characteristics, but with different wanted passband behavior. Their two main filter

objectives are as follows:

• To minimize the passband distortion. That is, we do not want the filter to alter the desired

output, but to follow the wanted response in the passband.

• To maximize noise attenuation. That is, to reduce the amount of noise as much as possible.

There are established filter design methods that satisfy these two objectives [67]. However, as

I already have mentioned, in this thesis I am especially interested in the following additional

objective:

• To minimize the filter delay. That is, to minimize the time it takes for the signal to pass

the filter.

Let us now go through some filter theories, which will make it possible to analyze and design

more sophisticated filters than the ones presented above.

4.3 Filter analysis

The goal of the following section is to go through some of the filter theories, which is necessary

in order to be able to compare digital filters. I will explain the main difference between the

so-called FIR and IIR filters and how they can be designed. Let us start by explaining the

impulse response of a filter, which can be an intuitive approach to understanding the workings

of a digital filter.

4.3.1 The impulse response

There exist two main digital filter types: finite impulse response (FIR) filters and infinite impulse
response (IIR) filters. Before giving a formal description of these filters, notice that the impulse

response is specified to be the key difference between these two filters. The impulse response
of a filter is the given output when presented with a brief input signal called an impulse. This

response gives us a time domain view of how the filter works. For an FIR filter, the relation is

straightforward since the impulse response corresponds directly to the filter coefficients. The

moving average FIR filter, as the name suggests, works by setting the output y[n] to the average
of a subset of samples, or a window, of the input signal x[n]. Every new output y[n + 1] is

calculated by moving the window one step, i.e. one sample, further. The longer the filter, the

more samples are used in this average estimation (which also provides more noise attenuation

as shown in Figure 4.4). While the moving average can have wanted features for some condi-

tions, it is possible to use more sophisticated weighting coefficients that result in a more ideal

magnitude response, i.e. with a specified passband and stopband, as shown by the FIR design

in Figure 4.7.



4.3. Filter analysis 33

Magnitude response

 

 

 

 

normalized frequency
 

 

Moving average (n=6)

FIR design (n=6)

IIR design (n=2)

Impulse signal

time

Impulse response

time

Figure 4.7: Comparison of the impulse responses of three different low-pass filters. The magnitude

responses of these filters are shown in the middle.

However, we are not only concerned with the magnitude response when designing a filter.

The phase response can be equally important and normally is a linear phase response in the

passband wanted. A linear phase will not distort the phase of a signal. That is, a linear phase

will ensure a symmetric impulse response [54]. It is easy to ensure a linear phase for a FIR filter

since it simply involves checking if the filter coefficients are symmetric. Notice that the IIR

design in Figure 4.7 does not have a symmetric impulse response.

In Figure 4.7, we can recognize how the filters delay a signal by looking at the impulse

response. We can loosely say that the delay corresponds to how long the impulse response

takes to rise to the maximum amplitude. The delay of a symmetric FIR filter has a simple

relationship with the filter order n and is given by n/2 samples. This corresponds well with

the impulse responses of Figure 4.7 and is especially visible for the FIR design in the middle.

Furthermore, it can be seen that though the IIR filter has a similar magnitude response as that

of the FIR filter, it delays the impulse with only about one sample compared with three samples

for the FIR filter. In essence, IIR filters offer an effective way of achieving a long impulse
response, without having to use long FIR filters. Therefore, if the goal is to minimize the filter

delay, the use of IIR filters seems reasonable since they can have a dramatically lower order

than symmetric FIR filters with similar performance [37]. Our results in Paper V and Section

4.6.2 support this claim as well. However, as you might suspect, designing IIR filters with linear

phase, i.e. symmetric impulse response, can be more challenging.

Notice that the impulse response determines and specifies how the filter works. It is therefore

possible to transform an IIR filter into a FIR filter by using the impulse response of the IIR filter

directly as the FIR filter coefficients. The more coefficients we use, the closer we get to replicate

the exact frequency response of the given IIR filter. FIR filters that are not symmetric are known

as asymmetric FIR filters. Let us now continue with presenting some filter theories, which will

enable us to perform better filter comparisons.

4.3.2 FIR and IIR filters

The output of a FIR filter is a weighted sum of the current and finite number of previous values

of the input. The operation can be described by the following equation, which defines the output
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sequence y[n] in terms of its input sequence x[n]:

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bNx[n−N ] =
N∑

k=0

bkx[n− k]. (4.3)

Here, bk are the filter coefficients and N gives the filter order.
IIR filters, as the name suggests, have an infinite impulse response that is the result of their

recursive structure. While a FIR filter only bases its output on the input signal x[n], an IIR filter

bases its output on former output values y[n] as well:

a0 · y[n] =
N∑

k=0

bkx[n− k]−
N∑

k=1

aky[n− k]. (4.4)

The goal of a filter design is to find a set of filter coefficients a and b that corresponds best to

our filter needs. The following question then arises: how are these coefficients related to filter

performance?

4.3.3 The transfer function

The most common way of analyzing a digital filter is through a mathematical analysis of the

transfer function [37]. Without going into the details, the above digital filter Equation (4.4) can

be expressed through the Z-transform [37] as the following transfer function:

H(z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · ·+ bNz

−N

a0 + a1z−1 + · · ·+ aNz−N
. (4.5)

For FIR filters, the coefficients ak will be 0 for k > 1. Notice that a0 is a gain coefficient

which is normally set to 1, as shown in Equation (4.4). While Equations (4.3) and (4.4) explain

how the filter works in the time domain, Equation (4.5) expresses how the filter works in the

frequency domain. Through this transfer function H(z), which is often rewritten as H(ejπω),

where ω denotes the normalized frequency, we have a powerful tool for filter analysis, since

it is possible to express both the magnitude response and the phase response. The magnitude

and the phase response are, respectively, the absolute value and the complex part of H(ejπω).

That is, the absolute value of the transfer function H(ejπω), often written as H(jω), gives the

magnitude gain for the normalized frequency ω.

G(ω) = |H(jω)| (4.6)

Meanwhile, the complex part gives the change in phase.

θ(ω) = arg(H(jω)) (4.7)

In other words, by inserting the different filter coefficients in the transfer function in Equa-

tion (4.5), we can calculate the frequency response and phase response. Instead of referring

to the phase delay, I will use the term group delay, which indicates how many samples cer-

tain frequencies are delayed by the filter. The group delay is found by computing the negative

derivative of the phase shift with respect to normalized frequency ω (i.e. the more it shifts, the
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more it delays, and if the shift is linear, the group delay will be constant).

τg(ω) = −dφ(ω)

dω
(4.8)

While the above results are somewhat mathematical, it is possible to show a more intuitive

relationship between the magnitude response and the transfer function by considering the roots

of the nominator and denominator polynomial in the z-plane.

4.3.4 The z-plane

A z-plane plot gives us a visualization of how the transfer function affects the magnitude re-

sponse and how the choice of different coefficients gives different results. The roots of the

numerator and the denominator of the transfer function, known respectively as the poles and

zeros, can be plotted in the z-plane, as shown in Figure 4.8. The interpretation of how the poles

and zeros affect the magnitude in the frequency domain can be found by regarding the unit cir-
cle in the z-plane. The resulting frequency response of the filter is related to how these poles

and zeros influence the unit circle, as illustrated in Figure 4.8. The zeros are responsible for

attenuating the magnitude response, while the poles are responsible for the amplification. The

closer the zeros and poles are to the unit circle, the greater the effects they have on the final

magnitude response. Notice that poles and zeros are symmetric about the real axis, which is a

requirement for a real filter.

Filter design is essentially about choosing an optimal and balanced placement of zeros and

poles that satisfies the wanted filter response the most. The number of poles and zeros corre-

spond to the filter order. Higher orders, i.e. more poles and zeros, give us more potential to

shape the wanted magnitude response. While IIR filters can move their poles around in the

z-plane, as shown in Figure 4.9, FIR filters have all their poles fixed to the origin of the z-

plane. This makes IIR filters more customizable for the same filter order, which is the essential
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Figure 4.8: A contour plot of the z-plane plot (left) and the magnitude response (right) of a moving
average filter of order 3 (b = [1 1 1 1]/4) and how they are related. Notice how the placement of the

zeros , i.e. z = −1 and z = 0 ± i, on the unit circle in the z-plane affects the magnitude response. All

three poles have a static position in the origin since this is a FIR filter.
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which results in a very flat passband response, i.e. with a low passband distortion.
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Figure 4.10: The magnitude and group delay response of a moving average filter (left) and an elliptic

IIR filter design (right). While the elliptic filter has a much better magnitude response, this comes at

the expense of a non-constant group delay. The FIR filter has a constant group delay of 1.5 samples

for the entire frequency band, while the elliptic filter will give different delays for different frequencies.

For example, a signal with a normalized frequency of 0.2 and 0.4 are delayed with about one or three

samples, respectively. On the other hand, to get a somewhat similar frequency response as that of the

elliptic filter, we need to use a symmetric FIR filter of order 15 (red dashed line in upper-left plot), which

gives a constant group delay of 7.5 samples.

difference between FIR and IIR filters. Notice the difference between Figures 4.8 and 4.9.

There are satisfactory design methods for most typical filter types if we mainly consider the

magnitude response [32]. However, as already mentioned, we are concerned with not only the

magnitude response but also how the design affects the filter delay, i.e. the group delay.
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4.3.5 The group delay τ

The group delay is a measure of how the transfer function, i.e. the filter, delays the signal as a

function of the frequency. The typical group delay difference between an FIR filter and an IIR

filter is shown in Figure 4.10. A non-constant group delay in the passband will lead to a phase

distortion, i.e. different frequency parts of the signal get unevenly delayed. This is known as

the group delay error, which is also known as nonlinear phase. If no phase distortion is wanted

in the passband, the group delay needs to be constant in the whole passband. And if low filter

delay is wanted, the group delay needs to be low in the passband. The group delay of a digital

filter is given in samples, i.e. sample periods. In other words, a group delay of τ = 2 samples for

a system that has a sampling frequency of 100 Hz, yields a time latency of τ ·fs = 2 · 1
100

= 0.02

seconds (or 20 milliseconds).

4.3.6 Summary of the analysis: The filter objectives

We have now gone through the main important objectives of a digital filter design. First of all,

we want the filter to follow some specific magnitude response, either a classic low-pass filter

configuration with a certain cutoff frequency or similar low-pass characteristics that follow the

ideal differentiator curve. At the same time, low delay is required, which mandates a low group

delay in the passband. Finally, we are also interested in a constant group delay, i.e. low phase

distortion. To summarize, we want the following:

1. Low passband distortion, i.e. a passband that follows the wanted magnitude response in

the passband.

2. High stopband attenuation, i.e. high noise suppression.

3. Low group delay, i.e. low latency.

4. Constant group delay, or linear phase.

In this section, we have gathered the needed mathematical expressions, i.e. Equations (4.6) and

(4.8), to formulate our filter design challenge. We can rewrite the above objectives into the

following error functions:

err1 = max(|H(ejπω)| − f(ω)) ω ∈ [0, ωc]

err2 =
∫
ω
|H(ejπω)|2 ω ∈ [ωc, 1]

err3 = max τ(ω) ω ∈ [0, ωc]

err4 = max τ(ω)−min τ(ω) ω ∈ [0, ωc]

, (4.9)

where ωc represents the cutoff frequency and f(ω) gives the wanted magnitude response in

the passband. The latter was either 1, ω or ω2 which corresponds to low-pass filters or low-pass

differentiators of degree 1 or 2, respectively. These error functions serve two purposes: First of

all, they allow us to use automatic design processes by using different optimization algorithms

to find the wanted filter behavior. Second, they allow us to make proper comparisons between

different filter designs. The latter is the goal of Section 4.6.2. Let us now first go through some

of the possible filter design methods.
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4.4 Filter design methods

There are several ways of designing digital filters, and the different methods offer different

unique trade-offs between the different filter objectives. For brevity, I will not give a full review

of the existing range of filter design methods but only mention the most important methods that

are relevant for this thesis. Let us start with the design of symmetric FIR filters.

4.4.1 Established symmetric FIR filter design

The design of symmetric FIR filters is a linear problem and there exist different general solutions

for most FIR design problems, e.g. the least square method and the Parks-McClellan method

[41, 30]. While the latter solves the filter design problem in the frequency domain in a max-
min fashion, the former gives a least mean square solution. The least mean square method is

therefore preferable if we want to maximize the noise suppression if the given noise has a white

noise distribution [32].

There are other filter design methods that can produce symmetric FIR low-pass filters. One

example is Savitzky-Golay filters [47]. This filter design method works by choosing a set of filter

coefficients that are equivalent to fitting the data to a polynomial around a single input point, i.e.

they perform a local polynomial regression. By choosing the correct polynomial order and filter
length, it is possible to design filters that preserve the shape and height of waveform peaks. This

gives an interesting time domain approach to digital filter design, and the resulting filters can

have similar performance to the filter design methods mentioned above. However, the relation

to the frequency domain properties is cumbersome. If the frequency domain properties of the

data are known, the above standard FIR filter design methods are both more convenient to use

and give more filter design possibilities than polynomial fit approaches [47]. Additionally, it is

not likely that the polynomial fit approach has any beneficial aspects for filtering MoCap data

since human motion does not necessarily follow polynomial curves [42, p. 235]. A comparison

between Savitzky-Golay filters with the least mean square method is given in Section 4.7.2.

There are also some examples of asymmetric FIR designs, which can give filters with re-

duced group delay compared with symmetric filters [50]. The design of such filters is a non-

linear problem, and there exists no general optimal design method. My results in Paper V also

indicate that IIR filters have more low-delay potential than asymmetric FIR filters for a similar

computational cost. A low-delay comparison between IIR filters and asymmetric FIR filters is

given in Section 4.7.3.

4.4.2 Established IIR filter design methods

Symmetric FIR filters have a fixed group delay of n/2, where n is the given filter order. In other

words, their constant group delay comes at the expense of a fairly high filter delay compared

with IIR filters with similar performance, as we have seen in Figure 4.7. It is therefore relevant

to consider IIR filters if high-performance digital filters with low delay are wanted. However,

the design of IIR filters is, unlike symmetric FIR filters, a nonlinear problem, and there exist

no general optimal design methods. There are different construction methods that can give

optimal solutions for some special cases. The most known classical IIR filter methods are
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called Butterworth, Bessel1, Chebychev and elliptic (or Cauer)[67]. They are very useful for

standard filter types. However, one typically has little control over the group delay responses

[32]. It is therefore necessary to use alternative design methods if more control is needed over

the group delay specifications, e.g. if low group delay is wanted.

4.4.3 Designing low-pass differentiators

To cascade a standard low-pass filter with some suitable differentiator operator is the most

straightforward approach to designing low-pass differentiators. However, this is not necessarily

an optimal way, as we have shown in Paper VI. The above general symmetric FIR design meth-

ods can design low-pass differentiators with selectable passband and stopband regions [49].

The firls method in MATLAB, an implementation of the least square method, offers such func-

tionality. It is also possible to use the Savitzky-Golay method to make low-pass differentiators.

However, as explained in Section 4.4.1, this method is limited and cumbersome to use compared

with the above general FIR design methods.

I have not found any tools that can design FIR or IIR low-pass differentiators of degree
2 with customizable frequency specifications. Using low-pass differentiators of degree 2 is a
more optimal approach than using a cascade of two low-pass differentiators since we can make

a more balanced filter implementation by spreading out the poles and zeros in the z-plane. If

we use a cascade of two low-pass differentiators of degree 1, each pole and zero is duplicated

in the z-plane. The general designs of IIR low-pass differentiators of degree 2 that I proposed

in Paper VII may be the first presented in the literature.

4.4.4 Filter design through optimization ()

There are several filter design methods in the literature that use different optimization techniques

to design alternative IIR filters, given the limitations of the above classical IIR filter designs

[10, 55, 50, 46, 7, 32, 34, 61]. These methods typically involve prescribing a desired magnitude

and group delay response and transforming the nonlinear IIR filter design problem into a series

of linear mathematical programming problems, which then are solved by different numerical

methods. However, a common problem with these methods is that the linearization process

restricts the designs in different ways [31]. In Paper V, they were also found to not be suitable

for our task of minimal delay, since they typically were found to be limited to a lower group

delay of ∼ n/2 [34].

4.4.5 Proposed alternative filter design method: UR IIR designs

Since I wanted to explore filter designs with a minimal amount of group delay, it was necessary

to find an alternative and unrestricted filter design approach. The approach I used was to regard

filter design as a multi-objective optimization problem [12], which was solved using an unbiased
metaheuristic search algorithm [44]. The main idea behind this method was to let an algorithm

1Bessel is a filter construction method known from the analog world that has a maximally flat group delay

response. Bessel filters are seldom used in the digital domain since it is possible to use symmetric FIR filters that

have a constant group delay.
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find the best possible distribution of poles and zeros directly in the z-plane that optimized a

weighted problem based on the filter objectives given in Section 4.3.6.

The proposed method was capable of successfully designing nearly optimal filters with ar-
bitrary specifications, including IIR low-pass filters with minimal group delay and IIR low-pass

differentiators, as shown in Papers V and VI. In other words, the method was shown to satisfac-

torily explore unrestricted filters with the wanted trade-off between group delay and the other

filter objectives given in Section 4.3.6. Additionally, the method was useful in uncovering the

potential of different filter design methods. The method has, given the nature of the heuristic ap-

proach, a high computational cost and does not work for high IIR filter orders (> 6). However,

as we have shown in Paper VI, it was capable of designing more optimal filters than currently

available elsewhere. This and the fact that the method finds designs similar to elliptic designs

when magnitude optimal filters are wanted (Paper V) have given credibility to the proposed

design method.

The main difference between alternative filter design methods found in the literature and the

proposed method is that the latter approach is not based on linearization of the nonlinear filter

design problem, which is known to restrict the possible set of solutions [31]. In the following,

I will therefore refer to the proposed designs in this thesis as unrestricted IIR filters, or UR IIR
filters. For more details about the design method, see the appendix of this thesis.

4.5 The optimal cutoff frequency when filtering MoCap data

Up to now, I have discussed digital filters and how to design them. Yet I have not discussed

how to determine the specifications of the filters, i.e. the requirements of the filter objectives

specified in Section 4.3.6. Most of the filter properties are application specific, and it is therefore

difficult to discuss these properties in a general way. For instance, the delay specification may

be very important for some applications (e.g. rhythmic tasks where high temporal accuracy

is wanted), while higher noise attenuation may be more important for other applications (e.g.

smooth continuous control tasks when the MoCap data is very noisy). In other words, the given

application determines how we should trade off the different filter objectives when designing the

most suitable filter. Nevertheless, during the work of this thesis, there was one important filter

design challenge of a more general character that caught my attention. If it is reasonable to use

the frequency domain approach as a way to separate the motion data from the noise, what is then

a sensible cutoff frequency value? Before I discuss ways to determine the frequency content of

motion data, let us start by considering the typical noise properties of MoCap systems, i.e. what

do we want to filter out?

4.5.1 MoCap noise

There can be many sources of noise in a MoCap system: it can be sensor noise, wobbling

markers, electrical interference, quantization noise and more, dependent on the MoCap system

used [69]. This noise can be seen as errors, i.e. deviations from the original motion. By

adapting suitable filters, we can get better-quality MoCap data since we, in effect, minimize

the errors. As already mentioned, sensors, including most MoCap technologies, are known

to have white noise properties [66, 69]. This type of noise is evenly distributed in the whole
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Figure 4.11: The figure shows the dilemma with white noise. It may be necessary to compromise pass-

band distortion by lowering the cutoff frequency inside the passband, to get the desired noise suppression.

frequency band, as illustrated in Figure 4.11. There are exceptions, but this is probably the

most reasonable MoCap noise generalization we can make. For simplicity, I will therefore in

the following regard the MoCap noise as being white. Consequently, our goal is to attenuate as

much as possible of the frequency band that is not part of the wanted signal band, i.e. passband.

If it is mandatory to not distort the wanted signal, we need to choose a cutoff frequency that is

just outside the passband. However, if we need higher noise suppression than what is possible

with the latter conservative choice, we need to compromise signal distortion by lowering the

cutoff frequency inside the passband, as illustrated in Figure 4.11. The determination of the

optimal cutoff frequency will then be based on the required noise attenuation and how much the

frequency cutoff can be lowered inside the passband without excessively distorting the desired

signals.

4.5.2 Methods for estimating optimal cutoff frequency

To be able to estimate reasonable cutoff frequencies, I have mainly used two techniques: power
spectral density (PSD) estimation and a method known as residual analysis. Both methods

offer a similar view of the frequency content of some given MoCap data. The PSD method

gives a frequency spectrum view of the data in power, e.g. decibels (dB), while the residual

method gives the root mean square (RMS) distance between the raw and filtered data when

using different cutoff frequencies. The latter method was found in Paper VII to be a more

robust method. It was also experienced as a more intuitive tool since RMS distance is easier

to interpret than power in dB. For instance, if the RMS distance is relatively small for a given

cutoff frequency, e.g. < 1 mm for large body motion, it can be seen as neglectable. A reasonable

cutoff frequency should first be considered when the deviation starts to become problematic for

the application. Additionally, I recommend comparing the actual raw data with the filtered data

to get a good visualization of how the filters affect the MoCap data. A general implementation

of the residual analysis method, specifically made to give a frequency analysis of some recorded
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Figure 4.12: The performance of different symmetric low-pass FIR filters of order 4 with a frequency

cutoff of ωc = 0.2. These filters were produced by the firls method in MATLAB.

MoCap data, is given in Section 5.3.2.

If we want to filter real-time data, it is necessary to determine such an optimal frequency

cutoff beforehand. This was the purpose of an experiment we conducted in Paper VII, where we

wanted to find the typical frequency properties for free hand motion. Based on this experiment,

we proposed to use cutoff frequencies between 5 and 15 Hz when filtering free hand motion,

depending on the type of motion and the needed noise attenuation.

4.6 Low-delay comparison of filter design methods

As shown above, there is a wide range of available filter design methods. When trying to find

a suitable filter for a specific application, it is therefore necessary to compare them in a way

that makes us capable of choosing the appropriate filter. The purpose of this section is to give

a comparison between the low-delay performance of the different filter design methods, based

on the error functions given in Section 4.3.6.

4.6.1 Comparison method

A straightforward way of showing the performance of a set of filters is to plot the noise atten-
uation and passband distortion for each filter design in one graph. Each dot in the graphs then

corresponds to a specific filter design. A good illustration of how this strategy works is to plot

the possible set of filters that the symmetric least mean square FIR filter design method can

produce (the firls method in MATLAB). With this method, it is possible to specify the wanted

trade-off between the passband distortion and noise attenuation. A good visualization of the

possible set of filters that this method can produce can be made by plotting the resulting filter

performance for a wide range of different weights, as shown in Figure 4.12. Additionally, this

plotting method provides a good way of comparing different filter designs. If we find filters

that are closer to an ideal filter, i.e. below the line consisting of firls designs, then this implies
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Figure 4.13: Illustration of how the comparison graphs are built. Notice how the four filter performance

objectives for the given filter design (left) are reflected in the comparison graph (right) by the three red

points.

that we have found better filters, i.e. with a better magnitude performance, than the firls filters

method can produce. Likewise, filters that are found to be above this line are inferior filters.

To be able to compare filters thoroughly, we need to use all relevant filter performance

criteria. In the following, I will use the four filter objectives specified in Section 4.3.6. In order

to visualize the performance involved in these four objectives, it is necessary to use several

subgraphs. As long as the sub graphs share the same x-axis and every filter has their unique

x-axis values, it is possible to identify the same solution among the graphs since every solution

is connected if you draw a vertical line between the graphs. The x-axis can be chosen in a

way that best identifies the most important performance properties. In the following I have

chosen to use the noise attenuation gain as the x-axis, since it can be seen as the most important

objective. Additionally, since the group delay performance is represented in error functions

3 and 4, I have found it reasonable to plot both objectives in one y-axis. That is, instead of

plotting the maximum group delay and the group delay error in separate axes, I have chosen to

plot the maximum and minimum group delay in one axis. The difference, or height, between

the maximum and the minimum then reflects the group delay error, as shown in the example

of Figure 4.13. In this plot, it is also possible to mark the mean group delay error to show an

overall trend value. In the following, the mean group delay values will be marked as black

circles.

4.6.2 Low-delay comparison of filters

I have chosen to compare filters that have a maximum group delay of about two samples in the

passband (±0.02). I found this delay limitation to be a sensible comparison value. First of all,

this group delay value was found to produce usable filters with a somewhat balanced trade-off

between the different filter objectives. Second, this allows us to use symmetric FIR filters of
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Figure 4.14: Comparison of performance of different low-pass filters of order 4, which have a maximum

group delay of roughly two samples in the passband. The normalized cutoff frequency is ωc = 0.2
and wc = 0.4. The UR IIR designs, designed by the method proposed in this thesis, have more ideal

magnitude response. The performance gain comes at the expense of some group delay error compared

with symmetric FIR filters. The double arrow reflects the potential noise attenuation gain of using the

proposed IIR filter as opposed to the optimal symmetric FIR filters.

order 4, which makes it possible to design low-pass differentiators of degree 1 and 2. I have

likewise chosen to compare their performance with IIR filters of order 4. As I have shown in

[53], there is not much to gain by increasing the IIR filter order above 4 for this group delay

specification. The delay of two samples, which yields a time delay of 20 milliseconds for a

100 Hz MoCap system, may also be in a sensible latency penalty region for real-time musical

applications. Notice that a group delay constraint of two samples, may not offer sufficient noise

attenuation. If more noise attenuation is needed, it is either necessary to increase the filter delay

or to lower the frequency cutoff inside the passband.

Low-pass filters

Figure 4.14 compares the performance of different low-pass filters where the group delay in

the passband is limited to about two samples with a normalized cutoff frequency of 0.2 and

0.4. As can be seen in these plots, all IIR filters have better magnitude response, i.e. they

are closer to the ideal response, than the symmetric FIR filters. Among the classical IIR filter

design methods, Chebychev 2 and elliptic have the best combination of passband distortion

and stopband attenuation performance. However, the proposed UR IIR filter design method

was able to design a range of filters with even better magnitude response. Notice that, unlike

our unrestricted design approach (UR IIR), the classical IIR filter design methods offer only

one solution each given the group delay restriction of τ = 2. This was expected since these

methods restrict how the poles and zeros are positioned in the z-plane [37] and was also the

main reason for developing the unrestricted filter design approach.

While the set of symmetric FIR filters have a constant group delay of two samples, the
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Figure 4.15: Comparison of the performance of different fourth-order low-pass differentiators with a

maximum group delay of roughly two samples in the passband, with a frequency cutoff of ωc = 0.2
(left) and 0.4 (right). The UR IIR designs have a far better magnitude response than the symmetric FIR

filters, on the expense of some group delay error. The double arrow reflects the potential noise attenuation

gain, 7 dB, of using a UR IIR design compared with symmetric FIR filter with the same passband error.

different IIR filters give different group delay errors. It is possible, with the UR IIR approach,

to design a wide range of IIR filters with different group delay error specifications.

Low-pass differentiators of degree 1

When we now continue to compare low-pass differentiators, I continue to compare UR IIR

filters against symmetric firls designs since they are a good reference (linear phase alternative

to IIR filters). I have not included the classical IIR design methods since they give suboptimal

designs, as we have shown in Paper VI. To my knowledge, there exist no established IIR design

methods that can design non-cascaded low-pass differentiators with customizable passband and

stopband.

Figure 4.15 compares the performance of different low-pass differentiators with the same

limitation of the group delay value, max(τ) < 2± 0.02. The UR IIR filter designs show similar

performance gain as the low-pass filters above. However, the potential stopband attenuation

gain compared with the firls design is even greater than for the low-pass filters above. The

group delay error performance is also better, i.e. lower, than for the above low-pass filters.

Low-pass differentiators of degree 2

Figure 4.16 contains a comparison plot of the performance of different low-pass differentiators

of degree 2, with a limited group delay value of two samples. Again, the magnitude perfor-

mance of the UR IIR filter designs is better than that of symmetric FIR filters2. Notice also

2Since the firls routine does not support the design of low-pass differentiators of degree 2 directly, I have in the

above comparison added an extra zero at dc (ω = 0). This seems to give optimal solutions for the relatively simple
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Figure 4.16: Comparison of the performance of different fourth-order low-pass differentiators of degree

2, for cutoff frequencies of 0.2 and 0.4. The UR IIR filter designs have a large magnitude performance

gain with moderate group delay errors.

the additional improvement of the group delay error compared with low-pass differentiators of
degree 1 above.

Summary of comparison of low delay filters

Overall, based on the comparison plots above and similar plots for other cutoff frequencies,

the UR IIR filters, which were produced by the proposed filter design method, have the best
magnitude performance at the expense of some group delay error. Notice also that it is possible

to design UR IIR filters with lower passband distortion than what is achievable with the firls
method. The best performance gain, compared with the firls method, is also achieved for filters

with low passband distortion. An interesting observation, among the UR IIR solutions, is the

gradual increase of the mean group delay value with increasing stopband attenuation. This

shows a clear trade-off relationship between these two objectives, which coincides with our

results in Paper V. Notice also that the group delay error is highly connected to the width of the

passband, giving larger group delay errors for wider passbands. It is possible to design UR IIR

filters with very low group delay error. However, for large cutoff frequencies (ωc = 0.4), such

filters have a rather poor passband distortion performance and give little improvement compared

with the symmetric FIR solutions.

Some of the UR IIR solution sets show some inconsistency in how their performances de-

velop in the comparison plots. Some of the solutions are also partly grouped in clusters. This is

probably because of the limitation of how the poles and zeros can be distributed in the z-plane

and the restriction in the used search algorithm.

Table 4.1 summarizes the performance gain potential of using the proposed UR IIR filters

compared with symmetric FIR filters. This table is based on the same comparison method that

design problem (it is only necessary to determine the position of one pair of zeros).
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Table 4.1: Potential noise attenuation gain in dB of UR IIR filter design compared with optimal sym-

metric FIR designs (all of order 4).

Normalized cutoff 0.1 0.2 0.3 0.4 0.5

Low-pass filters 8 dB 8 dB 8 dB 6 dB 5 dB
Low-pass diff. of degree 1 10 dB 10 dB 9 dB 7 dB 6 dB
Low-pass diff. of degree 2 16 dB 15 dB 13 dB 12 dB 10 dB

was performed in Figures 4.14, 4.15 and 4.16. As we can see, the highest performance gain is

reached for low-pass differentiators of degree 2 with low cutoff frequencies. This is the same

table that was presented in Paper VII. To get the same magnitude performance with symmetric

FIR filters, it is necessary to use higher-order filters with higher delay penalties, as shown in

Figure 4.17.

Probably the most important observation is that the UR IIR approach offers some very in-

teresting and effective designs of low-pass differentiators with little group delay error. The best

performance gain is achieved for low-pass differentiators of degree 2 with low cutoff frequen-

cies (ω <∼ 0.2). One example of such a design is shown in Figure 4.18.

However, using the more magnitude-optimal UR IIR filters normally involves some group

delay error. It is important then to consider what impact a moderate amount of group delay

has on our applications. While it is common to try to obtain constant group delay to ensure an

undistorted phase, it is possible to imagine cases when this is not of highest importance, e.g.

when the low delay performance is more important. (One such example is given in Section

4.7.1.) This will vary for different applications, but some group delay error has a minimal

negative effect based on my experience. This is also reasonable, given that human motion lies,

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

pa
ss

ba
nd

 e
rr

or

Low−pass filters ωc = 0.4

mean stopband attenuation

firls
UR IIR

firls 3x delay

firls 2x delay

firls 4x delay

firls 1x delay

Figure 4.17: Comparison between UR IIR low-pass filters with higher-order firls filters. Notice that it

is necessary to use firls filters with between two to four times the delay, i.e. 4 to 8 samples delay, to

get the same magnitude performance as the proposed UR IIR designs. Notice also that for a very low

passband error, it is necessary to use even-higher order firls filters. However, for large passband errors,

less performance is gained with using the UR IIR filters. Similar results were found for different filter

specifications.
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Figure 4.18: Example of a UR IIR design of a low-pass differentiator of degree 2 with a cutoff frequency

of ωc = 0.3. Notice the placement of the two zeros inside the unit circle, which is typical for low-delay

designs. The two zeros on the x-axis at ω = 0 are necessary to get the wanted magnitude response of a

differentiator of degree 2, i.e. G(ω) = ω2. See the appendix for a complete specification of the proposed

filters.

for the most part, in the lower part of the frequency spectrum, as shown in Paper VII.

Notice that the comparison above only relates to the theoretical group delay of the given

filters. We have not included the computational cost of using the different filter types. However,

the cost of running low-order FIR and IIR filters is, in most cases, ignorable given the low

sampling frequency of most MoCap systems. In other words, the amount of group delay is

much more important than the computational cost of running such filters. A related concern

is how asymmetric FIR filters compare with the found IIR filters, which is targeted in Section

4.7.3.

4.7 Additional filter comparisons

4.7.1 Time domain view of differentiators

In this chapter, we have mainly focused on how the filters perform in the frequency domain.

However, the filters’ behavior in the time domain can be equally important. As discussed in

Section 4.3.1, the impulse response reflects how a filter works in the time domain. To be able

to low-pass filtering a digital signal, it is necessary to use some filter coefficients that smooth

out the noise. The downside of this is that the impulse response will in a similar manner be

smoothed out. In other words, the cost of using a low-pass filter can be a trade-off with the

resolution in the time domain. The impulse response can, in other words, be a valuable tool to

examine the time domain properties of a low-pass filter.

To get a similar response of low-pass differentiators, the impulse response is not necessarily

correct, since the impulse response will show both the differentiator process together with the

low-pass filter process. It is therefore necessary to use the integral of impulse response, i.e. the

step response. Likewise, to see a similar response of a differentiator of degree 2, it is necessary

to use the double integral of the impulse response, i.e. the ramp response, as shown in Figure

4.19. Limb collisions, e.g. a hand clap, can be interpreted as objects having a constant velocity
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that are brought to a sudden stop by a collision, which resembles a ramp response in reverse.

In other words, the ramp response shows how the positional data of an ideal collision is treated

by a double differentiator, i.e. what we get for acceleration data. In the Dance Jockey project,

we actively used such limb collisions and their acceleration data to trigger samples and musical

features. Maximizing the recognition rate of such collisions is therefore a relevant challenge.

In Figure 4.20, the absolute ramp responses of four different double differentiators are

shown. While using two finite difference equations in cascade gives the ideal ramp response

in the time domain, it offers little noise suppression. By cascading this filter with a moving

average filter of order 2 (length 3), we get some more noise suppression. However, the energy

of the collision is equally spread out in three samples, which is not necessarily good if we want

to detect the collision among noisy data. A similar effect was discovered in Paper VII. Since

a collision can be regarded as having a flat spectrum, it is necessary to include some of the

frequency band to be able to detect collision among noisy data. In other words, using moving

average filters can easily remove too much of the energy of a collision, making it harder to

detect the collision among noisy data.

The absolute ramp response of the low-pass differentiator design with the firls method gives

a much more easily detectable spike. The absolute ramp response of the UR IIR low-pass
differentiator of degree 2 has a similar spike and delay as the firls design, yet with more noise

suppression. Additionally, the UR IIR filter has a much lower passband distortion than the firls
design, which is not reflected by the ramp response. The improved performance of the UR IIR
filter design is at the expense of some group delay error, which is reflected by the extra tail in

the ramp response (bottom-left graph in Figure 4.20). However, such a group delay error does

not necessarily have any negative impact on the recognition of a limb collision, as shown by the

bottom-right graph in Figure 4.20. Indeed, in this example, the UR IIR low-pass differentiator

gives the best ratio between the peak collision value and peak noise value, which relates to the

most easily detectable collision.

impulse
signal

step
signal

ramp
signal

noise filter

differentiator

double
differentiator

impulse response

step response

ramp response

Figure 4.19: Illustration of the how the impulse, step and ramp responses give a similar time domain

view of low-pass filters and low-pass differentiators of degrees 1 and 2, respectively. The blue lines

correspond to the non-smoothed versions of the filters, i.e. no filter or finite difference equations, while

the red lines correspond to the proposed UR IIR filter designs. The step and ramp responses take away

the derivative processing element of the differentiators and show only the remaining low-pass filter co-

efficients. Notice how similar the different responses are since they have similar low-pass configurations

with a normalized cutoff of around ωc = 0.3.
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Figure 4.20: Absolute ramp response for different double differentiators, without noise (left) and with

noise (right). Notice that the UR IIR design has the best noise suppression and that group delay error is

not problematic if the task is to recognize a collision peak among noisy data. All differentiators were fed

with an identical noisy ramp signal. The horizontal stippled line gives half of the maximum value in the

current graph and reflects how good the differentiators are to distinguish a collision from the surrounding

noise, similar to the concept of signal-to-noise ratio. Notice that the three lower filters have similar filter

delays.
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Savitzky-Golay method. Notice that since these symmetric FIR filters are of the same order, they have
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4.7. Additional filter comparisons 51

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.05

0.1

0.15

0.2

0.25

pa
ss

ba
nd

 e
rr

or
Low−pass filters ωc = 0.2

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
1

1.5

2

2.5

gr
ou

p 
de

la
y 

(s
am

pl
es

)

mean stopband attenuation

firls order 4
Asymmetric FIR order 8
UR IIR order 4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

pa
ss

ba
nd

 e
rr

or

Low−pass filters ωc = 0.4

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−1

−0.5

0

0.5

1

1.5

2

gr
ou

p 
de

la
y 

(s
am

pl
es

)

mean stopband attenuation

firls order 4
Asymmetric FIR order 8
UR IIR order 4

Figure 4.22: Comparison between UR IIR filters of order 4 and (unrestricted) asymmetric FIR filters of

order 8, all with a maximum group delay of roughly two samples and a frequency cutoff of ωc = 0.2 and

0.4. The firls solutions in red are given as reference.

4.7.2 Savitzky-Golay versus the least square method

We can use the same comparison method from Section 4.6.1 to compare the least square method
(firls) with the Savitzky-Golay method. This is done in Figure 4.21. The Savitzky-Golay method

can only produce three different filters when the filter order is set to be 6, and the first is equiv-

alent to a moving average filter. While some of the Savitzky-Golay filters have similar perfor-

mance as the firls designs, the firls method gives much more design possibilities [47], as shown

in Figure 4.21. The extra design possibilities for the same filter order should be beneficial for

most applications. Additionally, it is much easier to design suitable firls filters if the frequency

properties of the wanted filter is known.

4.7.3 Asymmetric FIR versus UR IIR filters

Figure 4.22 shows a comparison plot between UR IIR filters of order 4 and asymmetric FIR fil-

ters of order 8, both with an upper group delay restriction of two samples. The asymmetric FIR
filters were found by our alternative filter design method, i.e. the filters cannot be guaranteed

to be optimal. Yet the found filters should give a good indication of the expected performance

of using asymmetric FIR filters for this task, especially given the consistent results. Notice that

asymmetric FIR filters do not have constant group delay.

As shown in Figure 4.22, the found UR IIR filters of order 4 are more optimal than the found

unrestricted asymmetric FIR filters of order 8. The UR IIR filters have better combination of

low-passband distortion and high noise attenuation. IIR filters of order 4 and FIR filters of order

8 can be said to have similar degrees of computational cost.3 These results coincide with our

3From Equations (4.3) and (4.4) we can deduce that FIR filters need n additions and n + 1 multiplications,

while IIR filters need 2n additions and 2(n+ 1) multiplications, where n is the given filter order. In other words,

IIR filters demand twice as many operations as FIR filters of the same order do.
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Figure 4.23: Comparison of the maximum noise suppression of filters of order 4 when only demanding

G(0) = 1. All filters have a group delay of two samples for ω = 0. The impulse responses of each filter

are also given (right). Notice the long impulse response of the UR IIR filter, which gives the extra noise

attenuation.

results from Paper V. According to my experience, it is necessary to use asymmetric FIR filters

of an order between 20 and 30 to copy the performance of UR IIR filters of order 4 proposed in

Paper VII. This is not surprising given the recursive structure of IIR filters, which makes them

more effective in producing long impulse responses. In other words, UR IIR filters seem to be

more low-delay optimal than using asymmetric FIR filters with a similar computational cost.

4.7.4 Reducing random noise

The moving average filter is actually optimal for one thing, which is reducing random noise

while retaining a sharp step response [54]. This is reasonable given the structure of moving

average filters. If the noise is random, none of the input points are special. In other words, there

is little sense weighting some of the points more or less in order to get more noise suppression.

Nevertheless, if we do not need a sharp step response, it is possible to gain some more noise

suppression by using the firls method or UR IIR filters, as shown in Figure 4.23. While there

is not much to gain, the firls method with the same filter order gives 0.49 dB additional noise

attenuation. An UR IIR filter design of order 4, designed by the proposed filter design method,

gives another 1.06 dB noise attenuation improvement with no ripples in the stopband, which

may be beneficial for some applications. Notice that the UR IIR filter design is not achievable

with the established filter design methods since the zeros need to be inside the unit circle. The

specification of these filters is given in the appendix. According to the given results in this

chapter, it seems that UR IIR filters always give a better magnitude response when the group

delay is restricted, on the expense on some group delay error.

4.8 Discussion and summary

The goal of this chapter has been to review and suggest some best practices for filtering MoCap

data for real-time applications. To target these challenges, I have given some backgrounds to

digital filters, filter analysis and filter design methods. Given the convincing results from our
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experiment of finding the optimal cutoff frequency for filtering free hand motion in Paper VII,

I recommend regarding MoCap data in the frequency domain since it seems to be an effective

way of separating the motion and noise. A polynomial fit approach does not seem to provide

any advantages for general MoCap data.

Using symmetric FIR filters is a sensible choice for post-processing use, especially given the

constant group delay error and the good availability of different design methods. Furthermore,

I recommend using the least square method, e.g. the firls method in MATLAB, since it gives

optimal symmetric FIR noise filters when the given noise is random or white.

When differentiating MoCap data, I recommend using low-pass differentiators since they

avoid the undesirable amplification of the noise in the higher frequencies. Such low-pass differ-

entiators can be designed with the above recommended symmetric FIR design method (firls).

However, symmetric FIR filters are not necessarily optimal if the lowest filter delay is needed.

No publications that directly targeted the topic of best practices for designing filters with

minimal group delay, i.e. low latency, were found. IIR filters seemed like a sensible approach

since it is known that the recursive approach offers an effective way of achieving a long impulse
response without having to use long FIR filters. In spite of this, the established IIR filter design

methods were not found to be suitable for designing optimal low-delay filters. I have there-

fore proposed an alternative filter design method based on multi-objective optimization, which

enables more optimal designs of low delay filters than the established methods can produce,

as presented in Paper V. I have referred to these designs as unrestricted IIR (UR IIR) filters.

With this method, I could also design UR IIR low-pass differentiators, which were favorable

compared with designs given in the literature, as presented in Paper VI.

To be able to compare the delay performance of different filter design methods, I have shown

how these filter design methods compare when the group delay was limited to a maximum of

two samples. According to the results presented , there is a lot to gain compared with symmetric

FIR filters on the cost of some group delay error. The greatest potential was shown among low-

pass differentiators of degree 1 and 2. Compared with optimal symmetric FIR filters, they give

a noise attenuation increase between 5 and 16 dB with similar delay, or up to two and four times

the delay reduction for similar magnitude properties. Such delay savings can be important for

achieving good responsiveness in musical applications.

Finally, in the end of this chapter, I have given some additional filter design comparisons.

The results indicate that UR IIR filters are more low-delay optimal than asymmetric FIR filters

for a similar computational cost. Additionally, it is shown how the ramp response can give a

valuable time domain view of how low-pass differentiators of degree 2 process limb collisions.
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Chapter 5

Research Contribution

In the following I will give a summary of the papers included in this thesis. The overall content

of the included papers is outlined in Section 5.1. An overview of performed Dance Jockey

performances and some software that have been made available to others then follow.

5.1 Overview of the included papers

MoCap

system Filtering
Action-Sound

Mapping

Sound

engine

Paper I

Paper II

Paper III

Paper V

Paper VI

Paper VII

Paper I

Paper IV

Figure 5.1: How the included papers relate to the challenges targeted in this thesis.

The research conducted in this thesis can be divided into two main parts. In the first part,

which includes Paper I to Paper IV, I did research on how to use MoCap technologies for real-

time musical interactions and their suitability for such tasks. During this period, I also worked

with the Dance Jockey project, where we used the Xsens MVN suit for musical interaction, with

which we had several public performances. The period ends with Paper IV, which presents the

details of the development of the Dance Jockey system.

During the work of this thesis, I have studied best practices in filtering MoCap data for real-

time applications. Since the literature didn’t present satisfying answers, an investigation was

undertaken. The main result of this work is presented in the last three papers. In Paper V, I

presented work that dealt with optimal designs of low-delay filters, and in Paper VI, I presented

work that dealt with optimal designs of IIR low-pass differentiators. Finally, in Paper VII, I

summarized my work concerning best practices for filtering real-time data and applied it to the

application targeted in this thesis. Let us now take a closer look at the content and motivation

of each of the individual papers.
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5.2 Papers

5.2.1 Paper I

Using IR Optical Marker Based Motion Capture for Exploring Musical Interaction

This work started with a curiosity of how motion capture technologies could be used for musical

interaction. It was therefore relevant to investigate what others had done before and to consider

some of the possibilities these technologies had to offer. Since infrared marker based MoCap

systems appeared to be one of the best performance systems available, I was interested to see

how people had used such systems in the field of musical interaction. In this paper, I also

reviewed and tried to conceptualize how such MoCap data could be used to control sound and

sonic features. Little work involving the use of full-body MoCap data for real-time musical

interaction was found.

Abstract

The paper presents a conceptual overview of how optical infrared marker based motion capture

systems (IrMoCap) can be used in musical interaction. First we present a review of related work

of using IrMoCap for musical control. This is followed by a discussion of possible features

which can be exploited. Finally, the question of mapping movement features to sound features

is presented and discussed.

5.2.2 Paper II

OSC Implementation and Evaluation of the Xsens MVN Suit

In the beginning of summer 2010, I started to work with a MoCap system known as the Xsens
MVN suit. I saw it as especially relevant to develop a robust implementation of the Open Sound

Control (OSC) protocol to be able to easily integrate it with different applications and sound

engines. During this work, I gained experience on how to use the suit for musical interaction

and discovered some problems with the Xsens system. This led me to develop new versions

of the OSC implementation to bypass the problems and incorporate new features. Another

important subject was to try to quantify the positional tracking performance and the real-time

performance of this MoCap system to better understand its strengths and weaknesses when used

for controlling sonic and musical features.

Abstract

The paper presents research about implementing a full body inertial motion capture system,

the Xsens MVN suit, for musical interaction. Three different approaches for streaming real

time and prerecorded motion capture data with Open Sound Control have been implemented.

Furthermore, we present technical performance details and our experience with the motion

capture system in realistic practice.
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5.2.3 Paper III

Comparing Inertial and Optical MoCap Technologies for Synthesis Control

In Paper II, I gave an evaluation of the performance of the Xsens MVN suit. However, there

were several other MoCap systems available and it was of interest to understand more about

the difference between them. Kristian Nymoen and I therefore started a systematic testing of

two such systems; the NaturalPoint OptiTrack, an optical marker based system, and the already

mentioned Xsens MVN suit. We performed several simultaneous recordings with both systems

to get a clearer image of the strengths and weaknesses of these systems. Additionally, to get

a user’s view of the compared technologies, we recruited a musician that was given certain

musical-related tasks that he needed to perform with both systems. The recordings done from

these tasks and the verbal feedback from the musician were then used in the comparison.

The importance of identifying the real-time performance of such systems was one of the

most important points learned during this work. Though the OptiTrack is superior when it

comes to accurate positional data, we identified several reasons why Xsens was more suitable

as a real-time device and a more robust system when used on stage. For instance, the Xsens

system has no occlusion problems and hence offers more consistent and smooth real-time data.

Additionally, the Xsens system offers acceleration data directly with little noise problems. We

also identified occlusion noise, which is a prominent problem with optical marker-based sys-

tems. While occlusion noise only contributes to positional displacement of spikes up to about

1 millimeter, such errors get heavily amplified when differentiated and were found problem-

atic in our experiments. These discoveries contributed to my motivation for investigating best

practices for filtering MoCap data.

Abstract

This paper compares the use of two different technologies for controlling sound synthesis in

real time: the infrared marker-based motion capture system OptiTrack and Xsens MVN, an

inertial sensor-based motion capture suit. We present various quantitative comparisons between

the data from the two systems and results from an experiment where a musician performed

simple musical tasks with the two systems. Both systems are found to have their strengths and

weaknesses, which we will present and discuss.

5.2.4 Paper IV

Developing the Dance Jockey System for Musical Interaction with the Xsens MVN Suit

In the end of the summer of 2010 I started the Dance Jockey project with Yago de Quay, who

at that time was a visiting researcher in our lab. The project was based on my OSC imple-

mentation of the Xsens MVN suit. The main motivation behind this project was to use full

body motion for musical interaction, where all aspects of the performance should be controlled

solely through the Xsens MVN suit. Our goal was to develop a performance piece in which

properties of the output sound would match properties of the performed actions. In this way,

we wanted to obtain a more physically engaging, communicative, and audience-friendly instru-

ment choreography, as an alternative to the typical laptop performance with which electronic
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music is often associated. After only a few weeks of work, we had our first performance at the

Department of Musicology in Oslo, Norway. Since we got positive feedback from the audience

and found the work exiting, we continued working with the project, which resulted in several

public performances in Norway and Portugal. Later, in 2011, our performance was accepted as

a part of the concert program of NIME, a conference dedicated to new interfaces for musical

expressions. After occasionally working with the Dance Jockey project for over a year, it was

time to document the details and our experience of developing the Dance Jockey system, which

resulted in this paper.

Abstract

In this paper we present the Dance Jockey System, a system developed for using a full body

inertial motion capture suit (Xsens MVN) in music/dance performances. We present different

strategies for extracting relevant postures and actions from the continuous data, and how these

postures and actions can be used to control sonic and musical features. The system has been

used in several public performances, and we believe it has great potential for further exploration.

However, to overcome the current practical and technical challenges when working with the

system, it is important to further refine tools and software in order to facilitate making of new

performance pieces.

5.2.5 Paper V

Digital IIR Filters with Minimal Group Delay for Real-Time Applications

When dealing with filters and real-time applications, there is especially one important challenge

that I wanted to target: which digital filters minimize the delay they introduce to the system?

I suspected that IIR filters would have the best potential for such low-delay designs since they

are known to give more effective filter designs given their recursive structure. Yet I could

not find any work that answered my questions. This eventually led me to the implementation

of an alternative filter design method based on multi-objective optimization combined with a

metaheuristic search algorithm. With this method, I was able to design more optimal low-

delay filters than currently achievable with the established filter design methods. The method

was also able to uncover the potential of using different filter design methods for low-delay

designs. This made it possible to present a thorough low-delay comparison between different

filter design methods. Additionally, the experimental results suggested a linear relationship

between stopband attenuation and the filter delay, giving an upper bound for the achievable

noise attenuation for a given delay.

Abstract

In this paper we examine the potential for designing digital (IIR) filters with minimal group

delay, which are relevant for real-time applications. By formulating filter design as a multi-

objective optimization problem and approaching it with an unbiased metaheuristic search algo-

rithm, we have established relationships between filter delay and other filter objectives. These
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relationships are presented as non-inferior surfaces for different filter orders and design ap-

proaches. We present possible designs that are realizable with (1) classical IIR design construc-

tions, and (2) unconstrained global search for filter orders between 2 and 5. Elliptical (Cauer)

filters are found as to have the highest potential for low group delay among the classical con-

structions. However, as one might expect, unconstrained IIR search discovers more optimal

filters, but is limited to filter orders of 5. Currently, there exists no established method that

can construct similar IIR filters with a group delay below n/2, where n is the given filter order.

Finally, we present some unconstrained filter examples that we claim are nearly optimal.

5.2.6 Paper VI

Designing Digital IIR Low-Pass Differentiators with Multi-objective Optimization

Best practices for differentiating MoCap data was another filter design challenge I was con-

cerned with. Such operators are frequently used to compute velocity and acceleration data from

positional MoCap data. In our labs, we were using the finite difference equation in combination

with different low-pass filters to manage the increased noise problem that the former created.

However, I suspected that there were more optimal solutions to our differentiation needs. I soon

discovered so-called low-pass differentiators that avoid the undesirable amplification of noise

in the higher-frequency band, which is characteristic of MoCap data. This is in general a more

optimal approach than using a cascade of a differentiator operator and a low-pass filter. Yet I

could not find any established design methods for designing IIR low-pass differentiators. For-

tunately, since such low-pass differentiators can be seen as a filter in the frequency domain, I

could use a similar filter design method that I had been developing for Paper V to design low-

pass differentiators with arbitrary specifications. It was encouraging that the proposed design

method found IIR low-pass differentiators that compared favorably with designs given in the

literature, which gave credibility to the developed design method.

Abstract

In this paper we examine the possibility of designing IIR low-pass differentiators by approach-

ing it as a weighted multi-objective optimization problem and solving it with an unbiased meta-

heuristic search algorithm. By collecting several solutions with different sets of weights we

are able to make a thorough comparison of different design strategies. We present possible

designs that are realizable with (1) cascading classical IIR low-pass filters with appropriate

operators, and (2) non-cascaded general IIR differentiator designs. Elliptical filters are found

to be the most magnitude-optimal among the first type. However, the non-cascaded approach

found more optimal IIR differentiators at the expense of a more complicated search. Finally, we

present some non-cascaded general designs that compare favorably with the available designs

given in literature, and which we reason are nearly optimal.



60 Chapter 5. Research Contribution

5.2.7 Paper VII

Filtering Motion Capture Data for Real-Time Applications

After working extensively with developing new tools for designing low-pass filters and low-pass

differentiators, it was time to apply the gained knowledge to MoCap data and the applications

targeted in this thesis. My main goal was to propose a range of filters suitable for real-time Mo-

Cap applications. To be able to design such specific filters, it was necessary to find the typical

frequency content of MoCap data that we wanted to filter. The solution I found was to conduct

an experiment to find the typical frequency content of free hand motion. The experiments’ re-

sults showed that it is a useful approach to separate the motion from noisy MoCap data in the

frequency domain. Then based on these results, I could start designing a range of filters suitable

for real-time MoCap applications. In addition to presenting low-delay IIR low-pass filters and

IIR low-pass differentiators, I also presented IIR low-pass differentiators of degree 2. It is more

optimal to use the latter design than to use two differentiators in cascade. Once again, I could

use the proposed alternative filter design method to design the wanted novel filters. I have not

found general designs of IIR low-pass differentiators of degree 2 in the literature, so these may

be the first presented. Given the large amount of work behind these results, it was necessary

to skip several details when writing Paper VII. Some additional details are therefore given in

Chapter 4 of this thesis.

Abstract

In this paper we present some custom designed filters for real-time motion capture applications.

Our target application is motion controllers, i.e. systems that interpret hand motion for musical

interaction. In earlier research we found effective methods to design nearly optimal filters for

real-time applications. However, to be able to design suitable filters for our target application,

it is necessary to establish the typical frequency content of the motion capture data we want to

filter. This will again allow us to determine a reasonable cutoff frequency for the filters. We

have therefore conducted an experiment in which we recorded the hand motion of 20 subjects.

The frequency spectra of these data together with a method similar to the residual analysis

method were then used to determine reasonable cutoff frequencies. Based on this experiment,

we propose three cutoff frequencies for different scenarios and filtering needs: 5, 10 and 15

Hz, which correspond to heavy, medium and light filtering, respectively. Finally, we propose

a range of real-time filters applicable to motion controllers. In particular, low-pass filters and

low-pass differentiators of degrees one and two, which in our experience are the most useful

filters for our target application.

5.3 Additional contributions

5.3.1 Dance Jockey performances

We have performed several public Dance Jockey concerts during the period 2010–2011. These

concerts are listed below in chronological order. Several of the performances are documented
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with videos on our project page.1

• Department of Musicology, Oslo, Norway (August 25, 2010)

• Gabler (dance club venue ), Oslo, Norway (Video N.A.)

• VERDIKT Conference, Oslo, Norway (November 1, 2010)

• Mostra UP, Porto, Portugal, (March 18-19, 2011) (two concerts)

• NIME Conference 2011, Chateau Neuf, Oslo, Norway (June 1 , 2011)

• Idefestivalen, Oslo, Norway (September 17, 2011)

5.3.2 Software and tools made available

Various software and tools have been developed during the work of this thesis. In the following

section, I will present a subset of these, which I see as relevant to others. The software is

available on the software web page of fourMs labs, if not otherwise stated.2

Frequency analysis of MoCap data with the residual analysis

Figure 5.2: Residual analysis plot of a MoCap recording of hand motion.

In Paper VII, we performed an experiment to determine the frequency properties of free hand

motion. To analyze the data, we implemented a general form of the residual analysis to be

able to determine the frequency content of MoCap data (or similar data). The method consists

of low-pass filtering the data with different cutoff frequencies and calculating the residual, i.e.

what is left over when we subtract the filtered data from the raw data. As long as the filter is

only attenuating noise, the residual should be rather small. However, when the filter starts to

attenuate the desired signal, the residual will become larger. By performing this analysis for

several cutoff frequencies and plotting the resulting residuals, we get an overall picture of their

impact. This plot can then serve as a basis for determining a reasonable cutoff frequency. The

function is written in MATLAB and should work for most MATLAB versions.

1http://www.fourms.uio.no/projects/sma/subprojects/dancejockey/
2http://www.fourms.uio.no/downloads/
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Max IIR MoCap filter patch

Figure 5.3: Screen shot from the help patch.

A range of near-optimal low-delay IIR filters, proposed in Paper VII, are embedded in a Max

patch for easy access. All filters have a group delay of two samples or less and have, to my

knowledge, better low-delay performance than what currently established filter design methods

can create. The filters, consisting of low-pass filters and low-pass differentiators of degrees 1

and 2, are specified with different normalized cutoff frequencies. To choose a suitable cutoff

frequency, see the guidelines in Paper VII or use the above proposed residual analysis method.

The specification of the proposed filters is given in the appendix.

OSC implementation of the Xsens MVN suit

During the work of Paper II, I developed three different OSC implementations of the Xsens

MVN suit. The first one was a simple JavaScript for Max which had several limitations. Yet

the implementation is straightforward and can still be useful for some applications (Xsens MVN
datagram unpacker). The final and preferable implementation, as discussed in Paper II, was

based on the Xsens Software Development Kit (SDK). Due to copyright issues, this implemen-

tation cannot be published. However, users that have their own Xsens SDK license can get this

implementation on demand.
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Chapter 6

Summary and Conclusion

This chapter gives a summary of this thesis. Then a conclusion is given, and a direction for

possible future work is suggested.

6.1 Summary

The primary research objective of this thesis was to develop methods and technologies for using
body motion for real-time musical interaction. The work consisted of (1) doing quantitative

evaluation of MoCap technologies , (2) developing the Dance Jockey system and (3) study-

ing best practices for filtering real-time MoCap data. These three subcategories coincide with

the subobjectives that were presented as the aim for this thesis in Section 1.4. It is therefore

reasonable to divide the summary of this thesis into these three subcategories.

6.1.1 Evaluation of motion capture technologies

When using MoCap data to control sonic and musical features, it is obvious that the quality of

the MoCap system can influence the performance. It has therefore been important to evaluate

the performance of available MoCap systems. The evaluation that was undertaken in Paper

III has shown that the two evaluated systems had their different strengths and weaknesses.

Additionally, my brief review of the available MoCap system in Chapter 3 indicates the same

tendency. There is no single MoCap technology that will fulfill every need. Instead, every

available technology offers its different properties with strengths and weaknesses. In order

to make reasonable MoCap technology choices, it is therefore necessary to regard the needed

performance for the intended application. In this respect, I have found it useful to group the

MoCap performance in three main categories:

Data quality. The term data quality is used to refer to the spatial accuracy and precision of the

MoCap data output. Our evaluation in Paper III has shown that OptiTrack, an optical

marker-based system, offers the most accurate data with the least amount of drift and

noise compared with the Xsens MVN suit. However, we have also shown in Paper III that

such a multicamera optical marker-based system suffers not only from marker drop-out

but also from camera occlusion noise.
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Real-time performance. The tracking latency and jitter performance of the two evaluated Mo-

Cap systems were presented in Papers II and III. Such properties are important for real-

time applications. Low latency is not the only important factor for control intimacy;

jitter, a distortion of the time domain, can be equally important if high temporal precision

is needed [65]. Additionally, it is important that the chosen MoCap system is able to

deliver good quality and consistent MoCap data in real time. Extra filtering is necessary

if the data is too noisy. Such filters will add latency and processing costs, as described in

Chapter 4. The used network technology, which is responsible for delivering the MoCap

data to the end application, is an additional real-time performance concern since it can

contribute with latency, jitter, and even data frame dropouts (e.g. due to data loss in a

wireless link).

System usability. It is important to consider the usability and what I have called the “out of lab”

performance. Though the system works perfectly in the lab or in a specific environment,

it may show surprisingly bad performance when used in a different environment or for

a different task. This was found to be one of the biggest differences between the two

MoCap systems compared.

In the experiment in Paper VII and for the Dance Jockey project, I chose to use two different

MoCap systems. In both cases, the technology choices were based on how the MoCap technol-

ogy fit the intended task. Good data quality was my main priority for the frequency experiment

in Paper VII. During an experiment in a lab, it is possible to have some control of the environ-

ment. We could therefore minimize marker occlusion problems by carefully choosing a camera

setup that fit the experiment. During this experiment we could also abandon recordings with

corrupted data, e.g. marker drop outs. These factors made it reasonable to choose the OptiTrack

system for this experiment.

For the Dance Jockey project, the Xsens suit was considered to be the most suitable system.

Controlling the tracking environment is problematic when using a MoCap system for several

performances on different distinct locations. We, therefore, needed a more environmental robust

MoCap system. The real-time performance was also of high priority since this was a real-time

application. Even though the OptiTrack system had some lower latency and jitter performance,

the real-time data from the Xsens system was more consistent and robust. Additionally, the

usability of the Xsens MVN system fit the task better. It was both easier to transport and set up.

Finally, the data quality was found to be good enough for the intended tasks.

6.1.2 Developing the Dance Jockey system

Using full-body MoCap data for controlling sonic and musical features has shown to involve

several challenges. The work was often experienced as frustrating since so many steps with

experimenting and development were necessary to arrive at satisfactory performance levels. At

the same time, it has also shown to offer many possibilities, and the system presented has given

several hands-on solutions for how full-body MoCap data can be used to control sonic and

musical features. Our most important discoveries are listed in the following.

Transition between states. Using full-body MoCap data for musical interaction was of special

interest since it provided possibilities for using the body as a whole as the basis for musi-
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cal interaction. Since our motivation was to build strong visible couplings between action

and sound, we wanted to make a full-length performance piece in which all aspects of the

performance were controlled solely by the Xsens MVN suit. In order to achieve this and,

at the same time, also offer some varied content, we implemented a finite-state machine

in the system. In this way, the performer could navigate between states that contained

different action-sound mappings. The transitions and states were also used as active com-

ponents of the performances, i.e. composition.

Ecological knowledge. Using full-body MoCap data offers many possibilities for controlling

sonic and musical features. However, it can be difficult to determine how the MoCap

data can be used to make good couplings between sound and motion. Here, we found it

useful to consider our perceptual and cognitive constraints and our ecological knowledge
of sound, meaning accumulated knowledge of sound and sound making and how they are

related to the physical world. Taking inspiration from such ideas and the listed concepts

in Section 2.5 was found fruitful since it guided our mappings to become more intuitive

and easy to explore. We also found such mappings to give the most interesting couplings

between motion and sound. This strategy became the main motivation behind most of the

action-sound mappings we developed during the Dance Jockey project. We believe the

audience could also gain from this strategy since such intuitive mappings should have an

additional communicative value.

The gap of execution. Developing the Dance Jockey system demanded much work. Not only

did it involve many mathematical and computational details, but there were also many

possibilities to explore. When we wanted to try out an idea, it took days with develop-

ment before we were able to try it out. Efficient tools are essential when attempting to

compose and practice performances that employ full-body MoCap technology. Through

developing our own tools and software while working with performance-related and tech-

nical aspects of the system, we were able to decrease the so-called gap of execution, or the

gap between an idea and its realization. Such tools and software are, in my opinion, im-

portant for the creativity and spontaneity during composing and practicing performance

pieces with full-body MoCap technologies.

6.1.3 Filtering real-time MoCap data

Processing MoCap data is essentially digital signal processing, and the most common process-

ing approach in the time domain is filtering. As we have seen in this thesis, it is often necessary

to process MoCap data in different ways before we can use them. Filtering real-time MoCap

data has therefore been an important subject for this thesis, and the suggested best practices for

filtering MoCap data for real-time applications are an important part of the contribution of this

thesis. The work has consisted of developing tools, method and a range of filters applicable for

real-time MoCap data. The following points summarize my findings:

MoCap data in the frequency domain. When wanting to filter MoCap data, it seems reasonable

to regard MoCap data in the frequency domain, given the convincing results from the

frequency experiment presented in Paper VII. The filter design methods based on the time
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domain, such as Savitzky-Golay and other polynomial fit based approaches, do not offer

the same customizability as the filter design methods based on the frequency domain.

Polynomial fit approaches are only adjustable by the given polynomial order and the

given filter lengths (see Section 4.7.2). It is also known that human motion does not

necessarily follow polynomial curves [42]. In other words, I recommend applying filters

that are designed and evaluated in the frequency domain since it seems to be the most

effective approach for filtering MoCap data. Additionally, there are a large number of

available DSP tools that function by specifying the desired frequency response.

Frequency analysis of MoCap data. To be able to design good application specific filters, it is

necessary to determine the frequency content of the data that needs to be filtered. This

was the goal of the experiment we presented in Paper VII. More specifically, we wanted to

determine the typical frequency properties of free hand motion. To be able to analyze the

collected MoCap recordings from the experiment, a general form of the residual analysis
was developed (presented in Section 5.3.2). This method was found to be the most intu-

itive and robust for analyzing the frequency properties of recorded MoCap data. Based

on this experiment, we have in Paper VII proposed to use a cutoff frequency between 5

and 15 Hz when filtering free hand motion.

Symmetric FIR filters: The least square method. Symmetric FIR filters are a sensible choice for

post-processing of MoCap data, given their constant group delay error, i.e. linear phase,

and the good availability of design methods. Since MoCap data can be considered to

contain so-called white noise, I recommend using the least square method, e.g. the firls
method in MATLAB, since it gives optimal symmetric FIR filters for such noise problems.

However, if the filters are intended for real-time applications, the delay properties of the

used filter become important. Unfortunately, symmetric FIR filters are not optimal if the

lowest filter delay is wanted.

Proposed alternative filter design approach. As presented in Papers V and VI, the established

filter design methods were found inadequate to design the wanted low-delay filters and

low-pass differentiators. I have therefore in this thesis approached filter design with a

heuristic method to be able to explore novel designs. Instead of trying to solve the nonlin-

ear problem of IIR filter design analytically, I have used an alternative approach based on

having a computer algorithm freely explore filter design following some heuristics. Defin-

ing the filter design problems as a multi-objective optimization problem has enabled me

to consider trade-offs between conflicting objectives, which is a prominent challenge in

filter design. And indeed, the proposed heuristic method found more optimal filters than

the currently established methods can produce, as shown in Papers V, VI and Section 4.6

of this thesis.

Optimal low-delay filters. In this thesis, I have addressed the challenge of designing optimal dig-

ital filters with low delay, since I was unable to find research that targeted such challenges

directly. The presented results in Paper V show that unrestricted IIR (UR IIR) filters, de-

signed with the above proposed filter design method, offer the best combination of low

delay and high noise attenuation. Such filters should be applicable for a wide range of

real-time applications, e.g. computer games that use MoCap controllers. According to my
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results in Section 4.7.3 and Paper V, asymmetric FIR filters can offer similar low-delay

performance, although with higher filter order and greater computational cost. Given the

experimental results in Paper V, it is also suggested that noise attenuation is linearly re-

lated with the filter delay. In other words, it is not possible to design filters with very low

delay and large noise attenuation. However, by using the developed alternative design

approach, we can custom-design filters with the wanted trade-off between the different

filter design properties. In this way, it is possible to design the best possible filter for the

given application.

Optimal low-pass differentiators. Most of the available MoCap system offers only spatial, i.e.

positional and orientational, motion estimations. If properties like velocity or acceler-

ation are wanted, it is necessary to use differentiators to compute the derivative of the

spatial data. As we have shown in Paper III, MoCap systems are known to have dif-

ferent problematic noise properties. Though the noise only consists of submillimeter

spikes, it gets heavily amplified in the differentiator process since the differentiator acts

as a high-pass filter (see Section 4.2.3). Given this effect, I recommended to use so-

called low-pass differentiators since they avoid the undesirable amplification of noise in

the higher-frequency band. However, there are no established methods that offer such

customizable design of IIR low-pass differentiators. In this thesis, I have therefore used

the proposed alternative design method to design UR IIR low-pass differentiators. As

shown in Paper VI, the presented UR IIR low-pass differentiators are shown to compare

favorably with existing designs in literature.

Additionally, I have presented novel designs of IIR low-pass differentiators of degree 2
with reduced delay in Paper VII. Using such differentiators is more optimal than using

two low-pass differentiators of degree 1 in cascade. To my knowledge, such designs have

not been presented before in the literature.

A range of proposed low-delay filters. Finally, in Paper VII, based on the above methods and

results, we have presented a range of low-delay filters, including low-pass filters and

low-pass differentiators of degrees 1 and 2, which, in my experience, are the most useful

filters for our target application. All filters have a group delay of 2 samples or less and

have better low-delay performance than what currently established filter design methods

can create. Compared with optimal symmetric FIR filters, they give a noise attenuation

increase between 5 and 16 dB with similar delay or up to two to four times the delay

reduction for similar magnitude properties. The proposed low-pass differentiators were

especially found to offer a favorable combination of low passband error, high noise sup-

pression and low group delay error. The specifications of these filters are given in the

appendix of this thesis. Additionally, the proposed IIR filters are embedded in a MAX

patch to provide easy access for non-engineers. The patch is presented in Section 5.3.2.
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6.2 Conclusion

This PhD project has been concerned with the development of methods and technologies for

using body motions for real-time musical interaction. This has included the evaluation of Mo-

Cap technologies, the development of the Dance Jockey system, and finally, the study of best

practices for filtering MoCap data for real-time applications. The following points conclude the

research:

• There are an increasing number of available MoCap technologies and two of the available

systems have been evaluated in this thesis. According to the results, it is shown that both

technologies provide their strengths and weaknesses. Since different applications will

have different MoCap performance requirements, it is important to identify the needed

performance criteria to be able to choose the best MoCap technology for the given task.

The system known as Xsens MVN suit was found to be the most suitable system for

real-time musical performances. This system was used for the Dance Jockey project.

• The development of the Dance Jockey system has shown many possibilities. However,

many challenges were also encountered in the cumbersome course of using full body Mo-

Cap data for controlling sound and musical features. We have striven to achieve intuitive

control concepts and tried to create a good match between action and sound through in-

spiration of our ecological knowledge of sound. Given the restricted time and resources,

the Dance Jockey project has only been able to touch on the surfaces of the possibilities.

However, the presented Dance Jockey system has given several hands-on solutions for

how full-body MoCap data can be used to control sonic and musical features. The so-

called gap of execution, or the gap between an idea and its realization, was identified as

one of the biggest challenges during the creative process of composing and developing

the performance pieces.

• To study best practices for filtering MoCap data for real-time applications, several meth-

ods and tools have been developed during the work of this thesis. First of all, the devel-

oped alternative filter design method has made it possible to design more optimal low-
delay noise filters and more optimal low-pass differentiators than currently available. To

be able to design application-specific filters, it was necessary to establish the frequency

content of the MoCap data that we wanted to filter. In order to study this, we conducted

an experiment and developed a tool to determine the generic frequency properties of free

hand motion. Finally, based on the above methods and results, we have proposed a range

of novel filters applicable for real-time musical interaction with MoCap systems. These

filters are more optimal than the currently established design methods can produce. The

filters are also applicable for other real-time applications that need the best possible filters

with the lowest delay, e.g. computer games using MoCap controllers.

It can be concluded that this thesis has gathered knowledge about MoCap technologies, devel-

oped and demonstrated musical interaction with a full body MoCap, and studied and suggested

best practices for filtering of MoCap data for real-time applications.
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6.3 Future work

Given the broad goal that is targeted in this thesis, many challenges remain. First of all, it is

necessary to conduct more quantitative evaluations of established and emerging MoCap tech-

nologies, e.g. new systems like Leap Motion and the Xbox One Kinect. Such evaluations are

important to understand more of the strengths and weaknesses of the available system and how

they can be used in musical applications. Affordable systems are of special interest since they

are available for a larger community.

The Dance Jockey project has only touched on the many possibilities of how full body

MoCap technologies can be used for musical interaction. What I see as the most prominent

challenge is the so-called gap of execution. In this respect, I think it would be effective to

establish a user-friendly real-time MoCap toolbox, which should consist of a range of powerful

tools and methods for the effective processing of full-body MoCap data in real-time. The filters

and filtering tools proposed in this thesis should be applicable for such a toolbox.

Extracting motion features from MoCap data is essentially digital signal processing (DSP),

and according to my results, it is reasonable to regard MoCap data in the frequency domain.

When wanting to process MoCap data, we can therefore use the waste number of already avail-

able and effective frequency-based DSP tools. In this respect, it would be interesting to inves-

tigate how the established DSP techniques could be applicable for extracting motion features,

e.g. can band-pass filters and filter banks be of interest for us?

I have not been able to thoroughly test the range of filters presented in this thesis, and

it is still necessary to understand more of the importance of the different filter features. For

instance, it is possible to get higher noise attenuation by relaxing the group delay objective in

the upper part of the passband. If the consequences of the different filter features are better

understood, we can design filters that optimize the actual wanted filter performance. Finally, to

make unrestricted IIR filter design with arbitrary specification readily available for designers,

it is necessary to make a more computationally effective and user-friendly version of the filter

design method I have proposed in this thesis.
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ABSTRACT
The paper presents a conceptual overview of how optical
infrared marker based motion capture systems (IrMoCap)
can be used in musical interaction. First we present a review
of related work of using IrMoCap for musical control. This
is followed by a discussion of possible features which can
be exploited. Finally, the question of mapping movement
features to sound features is presented and discussed.

1. INTRODUCTION
Motion capture (MoCap) is a term often used to describe
the process of recording human body movement and storing
it in the digital domain. Many different disciplines make use
of MoCap systems, and they can briefly be divided into two
groups: analysis and synthesis. The first approach (anal-
ysis) is typically found in fields working on bio-mechanical
research questions, e.g. medicine, rehabilitation and sports
science. The second approach (synthesis) can be found in
the entertainment sector, where MoCap systems are used to
create lifelike animations in movies and computer games.
Many different MoCap technologies exist [1], and we will

here choose to split them into two different groups: opti-
cal and non-optical systems. Among the non-optical sys-
tems, one of the most affordable solutions is that of iner-
tial sensor systems, based on sensors such as gyroscopes,
accelerometers and magnetometers. While each such sen-
sor outputs relevant movement data in themselves, MoCap
systems based on such sensors typically perform sensor fu-
sion on the raw data. Sensor fusion means that data from
the individual sensors are combined such that it is possible
to integrate the data to calculate position (and sometimes
orientation) with fairly little drift. On the positive side,
such systems are often portable and flexible, and provide
good value for money. Unfortunately, they often provide
poorer spatial accuracy and precision than optical systems,
and have problems with the measured position drifting over
time.
Mechanical MoCap systems are based on directly track-

ing the angles of body joints through the use of flex sensors.
Such systems are often flexible and durable, and have been
used for many creative applications.
Magnetic systems calculate both 3D position and 3D ori-
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entation based on moving a coil in an electromagnetic field.
They often give precise and reliable data, but have a com-
parably small capture volume. Another big drawback is the
susceptibility to magnetic and electrical interference.
While they have many positive sides, inertial, mechanical

and magnetic systems share one problem: they usually rely
on fairly large sensors that have to be attached with cables
to the computer. Exactly this is what makes optical MoCap
systems preferable in many contexts, since they provide for
a non-obtrusive and flexible solution.
Optical systems can be divided into visualmarkerless sys-

tems and marker based systems. Both these techniques
rely on computer vision techniques for extracting move-
ment features and tracking body parts. Although mark-
erless computer vision techniques are in rapid development,
the marker based solutions still make for more accurate, pre-
cise and fast tracking. Optical MoCap has been particularly
popular for creative applications, due to the low cost, flexi-
bility and availability of relevant tools, e.g. Max/MSP/Jitter
and EyesWeb [3].
The technique which is often referred to as state of the

art in the world of MoCap, is what could be called opti-
cal infrared marker based motion capture (IrMoCap). This
is based on a group of cameras, typically no less than 6,
surrounding the person(s)/object(s) to be tracked. The
cameras emit infrared light which is bounced off reflective
markers attached on the body of the person being observed
and captured by the cameras. Through triangulation tech-
niques the system calculates the absolute position in space,
with submillimeter resolution and at speeds above 500 Hz.
By combining multiple markers it is possible to uniquely
identify certain objects, something which may also be ac-
complished using active markers that emit their own light.
We have experience with all of the above mentioned Mo-

Cap solutions, and see that they all have positive and neg-
ative effects. In our current research, however, we have
decided to focus our attention on IrMoCap, since this is the
technique which currently provides for the most precise, ac-
curate and fast MoCap solution. On the negative side they
are expensive and requires a controlled lab setting to work
properly. This is because the system needs to be calibrated
thoroughly and is sensitive to light pollution. Despite these
drawbacks, we believe that the knowledge and experience
gained from using such systems may be transferred to other
more accessible and affordable MoCap technologies in the
future.
Our main research goal is to explore the control poten-

tial of human body movement in musical applications. By
combining high quality MoCap data with advanced ma-
chine learning techniques, we try to explore multidimen-
sional mappings between motion features and sound fea-
tures. Here we are interested in exploring everything from
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direct control, like playing an instrument, to more indirect
control, i.e. controlling more global features in the sound
and musical structures. We want, in other words, to ex-
plore the possibilities of using new technologies to increase
the connection between human motion and musical expres-
sion.

2. RELATED WORK
We have only found a few studies that have been published
on using IrMoCap systems in musical interaction, and we
have chosen to separate this into two categories: non-real-
time and real-time.

2.1 Non-real-time control
Dobrian et al. describes a system where data recorded with
an IrMoCap system can be mapped to MIDI signals [5].
Their software makes it possible to choose which marker
and its associated motion feature that should be mapped.
The motion features include marker position, velocity, ac-
celeration, and distance and between markers (in one, two
or three dimensions). In addition to linear mappings, the
software also allows for reversed, exponential, logarithmic
mappings.
An important point that Dobrian et al. reflects upon, is

that performing on a ‘touchless’ instrument both provides
a challenge, but also opens for interesting musical explo-
rations. We also share their interest in trying to develop
strategies for keeping multidimensionality (e.g. data from
30 3D markers) throughout the mapping process.
One of the challenges when working with IrMoCap is the

massive amounts of data that has be to handled, e.g. 30x3
marker values for each recorded frame. Bevilacqua et al. re-
port on developing techniques for segmentation of the move-
ment stream and what they call ‘gestural segmentation’ in
[2]. Here they describe some of the numerical problems of
computing velocity and acceleration from noisy data and
point out that filtering is important, but that it also adds
latency to the system. They experimented with using prin-
cipal component analysis (PCA) for feature extraction, and
using the output for controlling MIDI systems and signal
processing.

2.2 Real-time interaction
The first example we have found of using IrMoCap in real-
time musical applications is a project by Qian et al., in
which they used “a number of static human body gestures
(poses) to drive the interactive system” [21]. They divided
the body into 10 rigid ‘objects,’ and used angular relations
as features for the pattern recognition classification. This
was used to control granular and additive sound synthesis,
where pitch material were selected through a simple genetic
algorithm. Unfortunately, we have not been able to find
any video examples of their performance to evaluate the
approach.
Other examples of real-time applications include Wool-

ford’s use of IrMoCap to visualize and sonify body motion in
installations [25], and Downie’s experimentation in a stage
setting [7]. We see that many research groups get access to
and set up projects around IrMoCap technologies, one ex-
ample being the Embodied Generative Music project at IEM
in Graz [9]. They have been experimenting with an instal-
lation where you prerecorded music is ‘laid out’ in physical
space, and where it is possible to explore the “tactile” feel-
ing of sound in space.

2.3 Sonification
A related but still different approach is that of Kapur et
al., where the goal is to build the necessary infrastructure

to study the use of sonification for understanding human
motion [17]. They are interested in studying how the musi-
cian’s posture and movement during performance affect the
sound produced, as well as the emotional content of the per-
formance. They also hope that studying sonification of Ir-
MoCap data can aid individuals with motor disorders. The
study did not involve real-time examples but used recorded
data of people performing music (tabla and violin), dancers
acting out different emotions, and individuals having im-
pairments in sensory motor coordination. The sonifications
consist of mapping marker positions to control sinusoidal os-
cillators, FM synthesis, phase vocoders and physical models
of instruments.
In the same direction we find work related to sonifica-

tion of IrMoCap data from musicians’ ‘ancillary gestures’,
with the aim of providing an alternative perspective when
analyzing movements of musicians [23, 11]. This was also
done by Larkin et al. in a project where IrMoCap data of
string performers were sonified, intended as an interactive
feedback to the performer [18]. Vogt et al. have a simi-
lar approach with applications in physiotherapy and other
training contexts [24].

3. MOTION EXTRACTION
Our research goal is to study the capabilities of IrMoCap
in the context of musical expression. The challenge then
is to develop solutions for extracting meaningful informa-
tion from the continuous stream of data, and map these to
relevant features in the musical sound. This is both a ques-
tion about making an interpretation of the data, but also a
technical challenge when it comes to handling marker occlu-
sion problems, data noise, latency and computational and
numerical challenges.
In the context of optical MoCap, Camurri et al. [4] have

suggested a four-layer framework that can be useful for our
application:

• Layer 1: Physical signals
• Layer 2: Low-level features
• Layer 3: Mid-level features
• Layer 4: Concepts and structures
Separating between the different layers may help to struc-

ture some of the challenges, both conceptual and technolog-
ical, and will form the basis for our thinking about IrMoCap
data processing in the following sections.

3.1 Marker and Object Data
The first and second layers in the model of Camurri are
related to the physical signals and low-level features, and is
related to the output we get from a IrMoCap system: 3D
positions of the markers that the cameras can see. These
markers, passive or active, can be placed directly on the
human body or placed on objects that can be moved in the
space.
In addition to tracking the position of an object, it is also

possible to find the angular orientation of an object by plac-
ing 3 or more markers on the object’s surface. Here we are
experimenting with having many objects, all with unique
marker constellations, so that it is possible to uniquely iden-
tify all the objects. This will make it possible to play with
all these objects in the motion capture area simultaneously.

3.2 Mapping Markers to a Kinematic Model
Instead of dealing with a vast amount of isolated mark-
ers and/or 6D objects, we are also exploring techniques for
grouping them together and study how they move in rela-
tion to each other. This can be accomplished by defining
one or more kinematic models, e.g. of the human body.
But it can also be possible to define kinematic models for
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other types of composite systems, e.g. a movable sculpture.
Defining a kinematic model can be done by representing the
data as several connected solid objects with the respected
joint angles between adjacent solid body parts [21]. A ben-
efit of such an approach is that it helps in decreasing the
dimensions of the data set, and can provide us with more
meaningful data.

3.3 Manipulation of Parameters
There are endless possibilities for manipulation of the above
mentioned parameters: change the scale of axes, invert sig-
nals etc. It is also possible to extract different relationships
between markers, e.g. relative distance and angles between
points. Further on, it is possible to perform numerical cal-
culation on the output streams to obtain properties like
velocity, acceleration, jerk etc. All of these, however, are
only numerical approximations, and noise from the data
will propagate through the computations and possibly be
amplified by the numerical algorithms [5]. These numerical
computations should therefore be done with care. Filtering
is a possible solution to get less noisy results, but a filter
and other computations will at the same time add latency
to the system.

3.4 Spatial aspects
Moving towards mid-level features, there are many ques-
tions when it comes to how to extract meaningful informa-
tion from the continuous data sets. One approach here is to
look at spatial aspects of the data. A kinematic model of
the human body can be a good starting point for extracting
information about specific body postures and placement of
the body in space. Information about different body pos-
tures can for example be mapped to different sound features,
and it may be possible to morph between discrete postures.

3.5 Temporal Aspects
Instead of (or addition to) the spatial aspects, we can work
with temporal aspects. Placement of sonic objects in time is
an underlying feature in the development of musical struc-
tures, so we need to find solutions for identifying, represent-
ing and utilizing temporal features from MoCap data. Here
it can help to think about a three-level model of temporal-
ity: sub-chunk, chunk and supra-chunk [10]. Here the chunk
level represents a time span of approximately 1-5 seconds,
a time span which fits well with our working memory. The
chunk level also (not coincidentally) happen to cover the
time span of human actions, speech and music phrasing. In
this model of time, the sub-chunk level is related to short
sensations, while the supra-chunk level can be thought of
as made up of a series of chunks. If we think about the
continuous stream of MoCap data as the sub-chunk level,
then segmentation of this stream into action segments that
fall within the range of 1-5 seconds would correspond to the
chunk level.

3.6 Pattern Recognition
As mentioned above, pattern recognition techniques have
been used for mapping motion to sound [2, 21]. The typical
goal here would be to recognize various types of expressive
features from body movement and map these to relevant
sounds. Here the dimensionality of the feature space is
important for the robustness of recognition rates [8]. For
example using 30 3D marker streams directly as features
to the classifier can be problematic. This can be solved by
reducing the dimensionality in the spatial and/or temporal
domains, as mentioned above. Also, standard dimensional-
ity reduction techniques from the field of pattern recogni-
tion can be used to find the features that work best.

An important conceptual question is how pattern recogni-
tion algorithms can support our goals. Using pattern recog-
nition can certainly give us more options for the mapping
to musical features, but how can it be used in an interest-
ing way? We believe it is important that the final artistic
results should be something new that we cannot do with tra-
ditional techniques. Simple one-to-one mappings, and trig-
ger based systems would not do justice to the richness and
complexity afforded by the IrMoCap system. The artistic
result can end up just being a demonstration of technology
with (hopefully) more than 90% correct recognition rate.
An added challenge is that we are not good at reproducing
our action precisely [19].

4. MAPPING MOTION TO SOUND
After evaluating some of the challenges when it comes to
retrieving, processing and exploring data from an IrMoCap
system in the previous section, we will here look at some
of the challenges when it comes to mapping such data to
sound features. This is a broad field and we will only touch
on some of its complexity.

4.1 Sound-producing actions
Looking at the sound-producing actions used when perform-
ing a musical instrument, they can typically be divided into
two groups: excitation and modification actions [15]. We
can further distinguish between two types of excitations:
discrete (e.g. triggers) or continuous excitation (e.g. bow-
ing).
The raw data from an IrMoCap system is a continu-

ous stream of numbers, so if we want to trigger signals we
need to identify discrete actions through segmentation. The
question, then, is whether using such a system for trigging
predefined sounds is particularly interesting, or whether we
might be better off by using an extra controller with simple
buttons. This touches some of the challenges when it comes
to designing connections between motion and musical fea-
tures; to be effective the mapping should somehow match
our mental model of what we want to control [22]. At the
same time, several studies have shown that users find more
complex and composite mappings more musically challeng-
ing and interesting [12, 16].

4.2 Touchless Actions
We can define touchless action as an action ‘in the air’ and
where we cannot use the haptic and tactile response of a
normal physical controller to guide us. In a musical con-
text this implies a virtual relationship between sound and
action since the relationship between the two is not bound
by physical laws like we find in acoustic instruments [14].
When designing control interfaces for normal desktop com-

puters, the design goals are rather straight forward. The in-
terfaces should be ergonomic and effective, properties which
are relatively easy to measure. Musical interfaces, on the
other hand, have the extra requirement of being artistically
interesting to use, a quality which is hard to evaluate and
determine [16]. One design aspect which is especially impor-
tant for virtual instruments is how the instrument’s func-
tionality can be understood mentally [22]. If the instrument
is virtual, our whole comprehension of the instrument must
either come from the sonic feedback or from our bodily ex-
perience of using the instrument. It seems plausible that the
understanding of the connection between action and sound
is a crucial point for the playability of a virtual instrument,
but equally so for the audience watching the performance
[6].
If we want to use touchless action as the basis for con-

trolling musical features, it may be relevant to consider to
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what degree we are conscious about our own body and its
motion. If we use physical properties of tracked motion we
need to take into account how these properties are under-
stood by the users. For example so called naive physics,
the untrained human perception of basic physical phenom-
ena, can differ from what the data tells us [13]. Therefore,
when using features like acceleration it is not certain that
the user’s understanding of these features reflects the nu-
merical values.
A question connected to the potential of using touchless

actions as control data is how many dimensions our actions
consist of. Or maybe more important, how many dimen-
sions are we able to exploit as control data? It may be
appropriate to study the informational theoretical content.
What is the needed sampling rate and how many bits per
second are our touchless actions able to communicate?
Several groups of people are trained in touchless action.

Dancers are experts in doing technically difficult actions,
hearing impaired are experts in sign language and all of
us use body language in our everyday life. To be able to
exploit touchless action in a musical setting is certainly an
interesting idea. But probably new paradigms are needed
to map these actions to meaningful musical features. Until
then it may be a good idea to design virtual instruments
by mimicking aspects of our physical world so that we can
take advantage of our established ecological experience of
living in the world [19, 13].

4.3 Mapping to Sound Features
Let us briefly look at some possibilities when it comes to
translating various types of motion and action features to
sonic and musical features. A simple example is to map
absolute marker position to the pitch of a sound. This may
seem like a trivial task, but involves many different possi-
bilities: should it be continuous control of pitch or in steps?
How does pitch space relate to physical space? What types
of pitch resolution and scales should be used? Instead of us-
ing absolute marker position to control sound features, it is
also possible to look at the relative distance or angular po-
sition between two or more markers. These and many other
similar questions will be the subject of some of our system-
atic studies of relationships between motion and sound in
the coming years.

4.4 Spatialization
Another approach we are going to investigate in future stud-
ies include that of spatialization, i.e. placement of sound
in space. The addition of a 32 channel speaker system in
our motion capture lab provides the opportunity to explore
control of sound through position and motion of the body
in space. This may include moving sound sources around
in the space, but also studying more complex relationships
between physical and sonic space.
One approach to start such exploration may be to start by

randomly setting up mappings between motion and sound
features, much in the same way as the video to sound soni-
fication suggested by Pelletier [20]. Instead of using optical
flow we can let the marker displacement be sonified with
additive or granular synthesis, something which may hope-
fully result in a rich combined motion and sound experience.
Here marker occlusion and noise will also not be so problem-
atic as long as a high percentage of the markers is properly
tracked.

5. CONCLUSION
Infrared optical marker based motion capture technology is
currently the state of art of motion capture systems, and

despite some limitations, we believe such systems may pro-
vide for interesting and inspirational exploration of what
other motion capture technologies can be used for. This
paper has provided a review of some related work, and has
covered some of the challenges related to using such sys-
tems in musical interaction. Much research still remains
to make good musical use of such technologies. Here we
believe it is reasonable to start by mimicking the already
known physical world.
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ABSTRACT
The paper presents research about implementing a full body
inertial motion capture system, the Xsens MVN suit, for
musical interaction. Three different approaches for stream-
ing real time and prerecorded motion capture data with
Open Sound Control have been implemented. Furthermore,
we present technical performance details and our experience
with the motion capture system in realistic practice.

1. INTRODUCTION
Motion Capture, or MoCap, is a term used to describe the
process of recording movement and translating it to the dig-
ital domain. It is used in several disciplines, especially for
bio-mechanical studies in sports and health and for making
lifelike natural animations in movies and computer games.
There exist several technologies for motion capture [1]. The
most accurate and fastest technology is probably the so-
called infra-red optical marker based motion capture sys-
tems (IrMoCap)[11].
Inertial MoCap systems are based on sensors like ac-

celerometers, gyroscopes and magnetometers, and perform
sensor fusion to combine their output data to produce a
more drift free position and orientation estimation. In our
latest research we have used a commercially available full
body inertial MoCap system, the Xsens MVN1 suit [9]. This
system is characterized by having a quick setup time and
being portable, wireless, moderately unobtrusive, and, in
our experience, a relatively robust system for on-stage per-
formances. IrMoCap systems on the other hand have a
higher resolution in both time an space, but lack these stage-
friendly properties. See [2] for a comparison of Xsens MVN
and an IrMoCap system for clinical gait analysis.
Our main research goal is to explore the control poten-

tial of human body movement in musical applications. New
MoCap technologies and advanced computer systems bring
new possibilities of how to connect human actions with mu-
sical expressions. We want to explore these possibilities and
see how we can increase the connection between the human
body’s motion and musical expression; not only focusing on

1Xsens MVN (MVN is a name not an abbreviation) is a
motion capture system designed for the human body and is
not a generic motion capture device.
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Figure 1: The Xsens suit and possible data flow
when using it for musical interaction.

the performer, but also on how the audience perceives the
performance.
To our knowledge, we are among the first to use a full

body inertial sensor based motion capture suit in a musical
setting, and hence little related work exists. Lympouridis
et. al. has used the inertial system Orient-2/-3 for sonifi-
cation of gestures and created a framework for “bringing
together dancers, composers and musicians” [6][5]. Meas et.
al have used 5 inertial (Xsens) sensors to quantify the rela-
tion between sound stimuli and bodily response of subjects
[7]. An upper body mechanical system has briefly been ex-
amined by [3]. See [11] for a review of related work in the
area of IrMoCap for musical interaction.
In the next section, we will give a brief overview of the

Xsens MVN technology. Then in section 3 we will report on
three Open Sound Control implementations for the Xsens
system and discuss some of our reflections. In section 4
we will give our evaluation and experience with the Xsens
MVN system, before we propose a technology independent
real time MoCap toolbox in section 5.

2. THE XSENS MVN TECHNOLOGY
The Xsens MVN technology can be divided into two parts.
First, the sensor and communication hardware are respon-
sible for collecting and transmitting the raw sensor data.
Second, these data are treated by the Xsens MVN software
engine, which interprets and reconstructs the data to full
body motion while trying to minimize drift.

2.1 The Xsens MVN Suit (Hardware)
The Xsens MVN suit consists of 17 inertial MTx sensors,
which are attached to key areas of the human body [9].
Each sensor consists of a 3D gyroscope, 3D accelerometer
and magnetometer. The raw signals from the sensors are
connected to a pair of Bluetooth 2.0 based wireless trans-
mitters, which transmit the raw motion capture data to a
pair of wireless receivers. The total weight of the suit is ap-
proximately 1.9 kg and the whole system comes in a suitcase
with the total weight of 11 kg.

2.2 The Xsens MVN engine (Software)
The data from the Xsens MVN suit is fed to the MVN soft-
ware engine that uses sensor fusion algorithms to produce
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absolute orientation values, which are used to transform the
3D linear accelerations to global coordinates. These in turn
are translated to a human body model which implements
joint constraints to minimize integration drift [9].
The Xsens MVN system outputs information about body

motion by expressing body postures sampled at a rate up
to 120Hz. The postures are modelled by 23 body segments
interconnected with 22 joints [9]. The Xsens company offers
two possibilities of using the MVN fusion engine: the Win-
dows based Xsens MVN Studio and a software development
kit called Xsens MVN SDK.

2.3 How to use the System
There are three main suit configurations; full body, upper
body or lower body. When the suit is properly configured,
calibration is needed to initialize the position and orienta-
tion of the different body segments. When we are satisfied
with the calibration the system can be used to stream the
motion data to other applications in real-time or perform
recordings for later playback and analysis.
How precise one needs to perform the calibration may

vary. We have found that so-called N-pose and T-pose cali-
brations are the most important. A hand touch calibration
is recommended if a good relative position performance be-
tween the left and right hand is wanted. Recalibration can
be necessary when the system is used over a longer period
of time. It is also possible to input body measurements of
the tracked subject to the MVN engine, but we have not in-
vestigated if this extra calibration step improves the quality
of data for our use.
In our experience, setting up the system can easily be

done in less than 15 minutes compared to several hours for
IrMoCap systems [2].

2.4 Xsens MVN for Musical Interaction
A typical model for using the Xsens suit for musical appli-
cation is shown in Figure 1. In most cases, motion data
from the Xsens system must be processed before it can be
used as control data for the sound engine. The complexity
of this stage can vary from simple scaling of position data
to more complex pattern recognition algorithms that look
for mid/higher-level cues in the data. We will refer to this
stage as cooking the motion capture data.
The main challenges of using the Xsens suit for musi-

cal interaction fall into two interconnected groups. Firstly,
the purely technical challenges, such as minimizing latency,
managing network protocols and handling data. Secondly,
the more artistic challenges involving questions like how to
make an aesthetically pleasing connection between action
and sound. This paper will mainly cover the technical chal-
lenges.

3. IMPLEMENTATION
To be able to use the Xsens MVN system for musical in-
teraction, we need a way to communicate the data that the
system senses to our musical applications. It was natural to
implement the OSC standard since the Xsens MVN system
offers motion data which is not easily related to MIDI sig-
nals. OSC messages are also potentially easier to interpret
since these can be written in a human readable form.

3.1 Latency and Architecture Consideration
Low and stable latency is an important concern for real-
time musical control [12]. This is therefore an important is-
sue to consider when designing our system. Unfortunately,
running software and sending OSC messages over normal
computer networks offers inadequate support for synchro-
nization mechanisms, since standard operating systems do

not support this without dedicated hardware [10]. In our
experience, to get low latency from the Xsens system, the
software needs to run on a fast computer that is not over-
loaded with other demanding tasks. But how can we further
minimize the latency?

3.1.1 Distribution of the Computational Load
From Figure 1 we can identify three main computationally
demanding tasks that the data need to traverse before end-
ing up as sound. If these tasks are especially demanding, it
may be beneficial to distribute these computational loads to
different computers. In this way we can prevent a computer
from suffering too much from computational load, which
can lead to a dramatic increase of latency and jitter. This
is possible with fast network links and a software architec-
ture that supports the distribution of computational loads.
However, it comes at the cost of extra network overhead,
so one needs to check if the extra cost does not exceed the
benefits.

3.1.2 The Needed Communication Bandwidth
The amount of data sent through a network will partly be
related to the experienced network latency. For instance, we
should try to keep the size of the OSC bundles lower than
the maximum network buffer size,2 if the lowest possible
network latency is wanted. If not, the bundle will be divided
into several packages [10]. To achieve this, it is necessary
to restrict the amount of data sent. If a large variety of
data is needed, we can create a dynamic system that turns
different data streams on when needed.

3.2 OSC Implementations
There are two options for using the Xsens MVNmotion data
in real time, either we can use the Xsens Studio’s UDP net-
work stream, or make a dedicated application with the SDK.
The implementation must also support a way to effectively
cook the data. We begun using the UDP network stream
since this approach was the easiest way to start using the
system.

3.2.1 MVN Network Stream Unpacker in Max/MSP
A MXJ Java datagram unpacker was made for Max/MSP,
but the implementation was shown to be too slow for real
time applications. Though a dedicated Max external (in
C++) would probably be faster, this architecture was not
chosen for further development since Max/MSP does not,
in our opinion, offer an effective data cooking environment.

3.2.2 Standalone Datagram Unpacker and Cooker
We wanted to continue using the Xsens Studio’s UDP net-
work stream, but with a more powerful data cooking envi-
ronment. This was accomplished by implementing a stan-
dalone UDP datagram unpacking application. The pro-
gramming language C++ was chosen since this is a fast
and powerful computational environment. With this imple-
mentation we can either cook the data with self produced
code or available libraries. Both raw and cooked data can
then be sent as OSC messages for further cooking elsewhere
or to the final sound engine.

3.2.3 Xsens MVN SDK Implementation
The Xsens MVN software development kit offers more data
directly from the MVN engine compared to the UDP net-
work stream. In addition to position, we get: positional and
angular acceleration, positional and angular velocity and in-
formation about the sensor’s magnetic disturbance. Every

2Most Ethernet network cards support 1500 bytes. Those
supporting Jumbo frames can support up to 9000 bytes.

Proceedings of the International Conference on New Interfaces for Musical Expression, 30 May - 1 June 2011, Oslo, Norway

301

90 OSC Implementation and Evaluation of the Xsens MVN suit.



0 1 2 3 4 5 6
0

50

100

150

200

m
/s

2

Magnitude of acceleration of right hand

Time (s)

Second derivative of the position data
Acceleration data from Xsens MVN SDK

Figure 2: Difference between the second derivative
of the position data versus the acceleration data ob-
tained directly from MVN engine (SDK).

time frame is also marked with a time stamp that can be
useful for analysis and synchronizing. Another benefit is
that we have more control since we are directly commu-
nicating with the MVN engine and not listening for UDP
packages. The drawback with the SDK is that we lose the
benefit of using the user friendly MVN Studio and its GUI.
We implemented a terminal application with the SDK,

that supports the basic Xsens features (calibration, play-
back, etc.). Since the application is getting data directly
from the MVN engine we can save network overhead by
cooking them in the same application before sending them
as OSC messages. We also implemented a function that
can send the motion data in the same data format as the
Network UDP Datagram stream. This stream can then be
opened by MVN Studio to get real-time visual feedback of
the MoCap data.

3.2.4 Discussion
Since the solution presented in 3.2.2 offered a fast environ-
ment for data cooking, and let us use the user friendly MVN
Studio, we have mainly used this approach in our work. We
later discovered that the network stream offered by MVN
Studio suffers from frame loss when driven in live mode,
which affects both solutions presented in 3.2.1 and 3.2.2.
Because of this we plan to focus on our SDK implemen-
tation in the future. An added advantage is that we no
longer need to differentiate the segments positional data to
be able to get properties like velocity and acceleration, since
the SDK offers this directly from the MVN Engine. These
data, especially the acceleration, seems to be of a higher
quality since they are computed directly on the basis of the
Xsens sensors and not differentiated from estimated posi-
tion data as shown in Figure 2.3

3.3 Cooking Full Body MoCap Data
The Xsens MVN offers a wide range of different data to
our system. If we use the network stream from the MVN
Studio, each frame contains information about the position
and orientation of 23 body segments. This yields in total
138 floating points numbers at a rate of 120Hz. Even more
data will be available if one instead uses the MVN SDK as
the source. Also different transformations and combinations
of the data can be of interest, such as calculating distances
or angles between body limbs.
Furthermore, we can differentiate all the above mentioned

data to get properties like velocity, acceleration and jerk.
Also, filters can be implemented to get smoother data or
to emphasize certain properties. In addition, features like
quantity of motion or “energy” can be computed. And with
pattern recognition techniques we have the potential to rec-
ognize even higher level features [8].
We are currently investigating the possibilities that the

3The systems that tries to minimize positional drift proba-
bly contributes to a mismatch between differentiated posi-
tional data and the velocity and acceleration data from the
MVN engine.

Xsens MVN suit provides for musical interaction, but the
mapping discussion is out of scope for this paper. Neverthe-
less, we believe it is important to be aware of the character-
istics of the data we are basing our action-sound mappings
on. We will therefore present technical performance details
of the Xsens MVN system in the following section.

4. PERFORMANCE
4.1 Latency in a Sound Producing Setup
To be able to measure the typical expected latency in a
setup like that of Figure 1 we performed a simple experi-
ment with an audio recorder. One laptop was running our
SDK implementation and sent OSC messages containing the
acceleration of the hands. A patch in Max/MSP was made
that would trigger a simple impulse response if the hands’
acceleration had a high peak, which is a typical sign of two
hands colliding to a sudden stop. The time difference be-
tween the acoustic hand clap and the triggered sound should
then indicate the typical expected latency for the setup.
The Max/MSP patch was in experiment 1 running on the

same laptop4 as the SDK. In experiment 2 the patch was
run on a separate Mac laptop5 and received OSC messages
through a direct Gbit Ethernet link. Experiment 3 was
identical to 2 except that the Mac was replaced with a sim-
ilar Windows based laptop. All experiments used the same
firewire soundcard, Edirol FA-101. The results are given in
Table 1 and are based on 30 measurements each which was
manually examined in audio software. The standard devia-
tion is included as an indication of the jitter performance.
We can conclude that experiment 2 has the fastest sound
output response while experiments 1 and 3 indicate that
the Ethernet link did not contribute to a large amount of
latency.
The Xsens MVN system offers a direct USB connection

as an option for the Bluetooth wireless link. We used this
option in experiment 4, which was in other ways identical
to experiment 2. The results indicate that the direct USB
connection is around 10-15 milliseconds faster and has a
lower jitter performance than the Bluetooth link.
The upper boundary for “intimate control” has been sug-

gested to be 10ms for latency and 1ms for its variations
(jitter) [12]. If we compare the boundary with our results,
we see that overall latencies are too large and that the jit-
ter performance is even worse. However, in our experience,
the system is still usable in many cases dependent on the
designed action-sound mappings.

Table 1: Statistical results of the measured action
to sound latency, in milliseconds.

Experiment min mean max std. dev.
1 Same Win laptop 54 66.7 107 12.8
2 OSC to Mac 41 52.2 83 8.4
3 OSC to Win 56 68 105 9.8
4 OSC to Mac - USB 28 37.2 56 6.9

4.2 Frame Loss in the Network Stream
We discovered that the Xsens MVN Studio’s (version 2.6
and 3.0) network stream is not able to send all frames when
running at 120Hz in real time mode on our computer.3 At
this rate it is skipping 10 to 40 percent of the frames. This
does not need to be a significant problem if one use “time
independent” analysis, that is analysis that does not look at
the history of the data. But if we perform differential calcu-
lations on the Xsens data streams, there will be large jumps

4Dell Windows 7.0 Intel i5 based laptop with 4GB RAM
5MacBook Pro 10.6.6, 2.66 GHz Duo with 4GB RAM
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Figure 3: Plots of the captured horizontal (left) and
vertical (right) position of the head.

in differentiated values during lost frames, hence noise. This
was partly dealt with in the implementation described in
3.2.2. Whenever frames are detected as missing, the soft-
ware will perform an interpolation. However, frame loss is
still a major problem since we are not getting all the mo-
tion capture data and can lose important details in the data
stream. For instance, if a trigger algorithm is listening for
some sudden action, a couple of lost frames can make the
event unrecognisable.

4.3 Positional Drift
The sensors in the Xsens MVN suit can only observe relative
motion and calculate position through integration. This in-
troduces drift. To be able to observe this drift we conducted
a simple test by letting a subject walk along a rectangular
path (around 6x7 meters) four times. Figure 3 shows a
horizontal positional drift of about 2 meters during the 90
second long capture session. We can therefore conclude that
Xsens MVN is not an ideal MoCap system if absolute hori-
zontal position is needed.6 The lack of drift in the vertical
direction however, as can be seen in the right plot in Figure
3, is expected since the MVN engine maps the data to a
human body model and assumes a fixed floor level.

4.4 Floor Level
If the motion capture area consists of different floor levels,
like small elevated areas, the MVN engine will match the
sensed raw data from the suit against the floor height where
the suit was calibrated. This can be adjusted for in the post
processing, but the real-time data will suffer from artifacts
during floor level changes.

4.5 Magnetic Disturbance
The magnetic disturbance is critical during the calibration
process but does not, to our experience, alter the motion
tracking quality dramatically. During a concert we expe-
rienced significant magnetic disturbance, probably because
of the large amount of electrical equipment on stage. But
this did not influence the quality of MoCap data in such a
way that it altered our performance.

4.6 Wireless Link Performance
Xsens specifies a maximum range up to 150 meters in an
open field [13]. In our experience the wireless connection
can easily cover an area with a radius of more than 50 meters
in open air. Such a large area cannot be practically covered
using IrMoCap systems.
We have performed concerts in three different venues.7

During the two first concerts we experienced no problems
with the wireless connection. During the third performance
we wanted to test the wireless connection by increasing the
distance between the Xsens suit and the receivers to about
20 meters. The wireless link also had an added challenge
since the concert was held in a conference venue where we

6The product MVN MotionGrid will improve this drift.
7First concert: www.youtube.com/watch?v=m1OffxIArrAi

expected constant WIFI traffic. This setup resulted in prob-
lems with the connection and added latency. The distance
should therefore probably be minimized when performing
in venues with considerable wireless radio traffic.

4.7 Final Performance Discussion
We believe that the Xsens MVN suit, in spite of its short-
comings in latency, jitter and positional drift, offers useful
data quality for musical settings. However, the reported
performance issues should be taken into account when de-
signing action-sound couplings. We have not been able to
determine whether the Xsens MVN system preserves the
motion qualities we are most interested in compared to
other MoCap systems, nor how their performance compares
in real life settings. To be able to answer more of these
questions we are planning systematic experiments compar-
ing Xsens MVN with other MoCap technologies.

5. FUTURE WORK
In Section 3.3 we briefly mentioned the vast amount of
data that is available for action-sound mappings. Not only
are there many possibilities to investigate, it also involves
many mathematical and computational details. However,
the challenges associated with the cooking of full body Mo-
Cap data are not specific to the Xsens MVN system. Other
motion capture systems like IrMoCap systems offer similar
data. It should therefore be profitable to make one cooking
system that can be used for several MoCap technologies.
The main idea is to gather effective and fast code for

real time analysis of motion capture data; not only algo-
rithms but also knowledge and experience about how to use
them. Our implementation is currently specialized for the
the Xsens MVN suit. Future research includes incorporat-
ing this implementation with other motion capture tech-
nologies and develop a real time motion capture toolbox.
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ABSTRACT

This paper compares the use of two different technolo-

gies for controlling sound synthesis in real time: the in-

frared marker-based motion capture system OptiTrack and

Xsens MVN, an inertial sensor-based motion capture suit.

We present various quantitative comparisons between the

data from the two systems and results from an experiment

where a musician performed simple musical tasks with the

two systems. Both systems are found to have their strengths

and weaknesses, which we will present and discuss.

1. INTRODUCTION

Motion capture (MoCap) has become increasingly popu-

lar among music researchers, composers and performers

[1]. There is a wide range of different MoCap technolo-

gies and manufacturers, and yet few comparative studies

between the technologies have been published. Where one

motion capture technology may outperform another in a

sterilized laboratory setup, this may not be the case if the

technologies are used in a different environment. Optical

motion capture systems can suffer from optical occlusion,

electromagnetic systems can suffer from magnetic distur-

bance, and so forth. Similarly, even though one motion

capture system may be better than another at making accu-

rate MoCap recordings and preparing the motion capture

for offline analysis, the system may not be as good if the

task is to do accurate motion capture in real time, to be

used for example in controlling a sound synthesizer.

In this paper we compare the real-time performance of

two motion capture systems (Figure 1) based on different

technologies: Xsens MVN which is based on inertial sen-

sors, and OptiTrack which is an infrared marker-based mo-

tion capture system (IrMoCap). Some of our remarks are

also relevant to other motion capture systems than the ones

discussed here, though the results and discussions are di-

rected only toward OptiTrack and Xsens.

We will return to a description of these technologies in

section 3. In the next section we will give a brief overview

of related work. Section 4 will present results from com-

parisons between the two motion capture systems, which

are then discussed in section 5.

Copyright: c©2011 Skogstad et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. The NaturalPoint OptiTrack system (left) and

the Xsens MVN system (right).

2. RELATED WORK AND BACKGROUND

Motion capture technologies have been used in musical

contexts for a long time, and during the 00’s we saw several

examples of using various motion capture technologies for

real-time control of sound. This includes electromagnetic

motion capture [2], video-based motion capture [3], opti-

cal marker-based motion capture [4] and inertial motion

capture [5], to mention a few.

Several researchers have reported on differences between

motion capture technologies. Most of these reports, how-

ever, have been related to offline analysis for medical or

animation purposes. Cloete et al. [6] have compared the

kinematic reliability of the Xsens MVN suit with an IrMo-

Cap system during routine gait studies. They conclude that

the Xsens MVN system is comparable to IrMoCap systems

but with shortcomings in some angle measurements. They

also point out several practical advantages with the Xsens

suit, like its wireless capabilities and quick set-up time.

Another experiment by Thies et al. [7] found comparable

acceleration values from two Xsens sensors and an IrMo-

Cap system, and showed that calculating acceleration from

the IrMoCap position data introduced noise. One of the

conclusions from this experiment was that filtering meth-

ods need to be investigated further.

Miranda and Wanderley have pointed out some strengths

and weaknesses with electromagnetic and optical motion

capture systems [1]: Electromagnetic systems are able to

track objects, even if it is not within the direct line of sight

of external cameras. On the other hand, these systems need

cables which may be obtrusive. Optical systems are su-

perior to many other systems in terms of sampling rate,

since they may track markers at sampling rates of more

than 1000 Hz, and systems using passive markers have no

need for obtrusive cables. Still, these systems need a direct

line of sight between markers and cameras, and a passive
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marker system may not be able to uniquely identify each

marker.

Possibilities, strengths and weaknesses for real-time mo-

tion capture in musical contexts are discussed individually

for IrMoCap and full-body inertial sensor systems in [8]

and [9]. In this paper we will compare the real-time abili-

ties of the two technologies.

2.1 Initial remarks on requirements when using
MoCap for real-time control of music

A musical instrument is normally controlled with excita-

tion and modification actions [10]. We can further dis-

tinguish between two types of excitations: discrete (i.e.

trigger), or continuous (like bowing a string instrument).

Dobrian [11] identifies two types of control data: triggers

and streams of discrete data representing a sampling of a

continuous phenomenon. Following these remarks, we are

looking for a system able to robustly trigger sound events

with good temporal accuracy, and to continuously control

a system with good spatial accuracy and little noise. Con-

sequently, we have chosen to emphasize three properties:

spatial accuracy, temporal accuracy and system robustness.

We will come back to measurements and discussion of

these properties in sections 4 and 5.

3. TECHNOLOGIES

3.1 NaturalPoint OptiTrack

NaturalPoint OptiTrack is an optical infrared marker-based

motion capture system (IrMoCap). This technology uses

several cameras, equipped with infrared light-emitting diodes.

The infrared light from the cameras is reflected by reflec-

tive markers and captured by each camera as 2D point-

display images. By combining several of these 2D images

the system calculates the 3D position of all the markers

within the capture space. A calibration process is needed

beforehand to determine the position of the cameras in re-

lationship to each other, and in relationship to a global co-

ordinate system defined by the user.

By using a combination of several markers in a specific

pattern, the software can identify rigid bodies or skeletons.

A rigid body refers to an object that will not deform. By

putting at least 3 markers on the rigid body in a unique

and non-symmetric pattern, the motion capture system is

able to recognize the object and determine its position and

orientation. A skeleton is a combination of rigid bodies

and/or markers, and rules for how they relate to each other.

In a human skeleton model, such a rule may be that the

bottom of the right thigh is connected to the top of the right

calf, and that they can only rotate around a single axis. In

the NaturalPoint motion capture software (Arena), there

exist 2 predefined skeleton models for the human body. It

is not possible to set up user-defined skeletons.

3.2 The Xsens MVN

The Xsens MVN technology can be divided into two parts:

(1) the sensor and communication hardware that are re-

sponsible for collecting and transmitting the raw sensor

data, and (2) the Xsens MVN software engine, which in-

terprets and reconstructs the data to full body motion while

trying to minimize positional drift.

The Xsens MVN suit [12] consists of 17 inertial MTx

sensors, which are attached to key areas of the human body.

Each sensor consists of 3D gyroscopes, accelerometers and

magnetometers. The raw signals from the sensors are con-

nected to a pair of Bluetooth 2.0-based wireless transmit-

ters, which again transmit the raw motion capture data to a

pair of wireless receivers.

The data from the Xsens MVN suit is fed to the MVN

software engine that uses sensor fusion algorithms to pro-

duce absolute orientation values, which are used to trans-

form the 3D linear accelerations to global coordinates. These

in turn are translated to a human body model which imple-

ments joint constraints to minimize integration drift. The

Xsens MVN system outputs information about body mo-

tion by expressing body postures sampled at a rate up to

120Hz. The postures are modeled by 23 body segments

interconnected with 22 joints.

4. MEASUREMENTS

We carried out two recording sessions to compare the Op-

tiTrack and Xsens systems. In the first session, a series of

simple measurements were performed recording the data

with both Xsens and OptiTrack simultaneously. These record-

ings were made to get an indication of the differences be-

tween the data from the systems. In the second session

(Section 4.5), a musician was given some simple musical

tasks, using the two MoCap systems separately to control

a sound synthesizer.

4.1 Data comparison

Our focus is on comparing real-time data. Therefore, rather

than using the built-in offline recording functionality in the

two systems, data was streamed in real-time to a separate

computer where it was time-stamped and recorded. This

allows us to compare the quality of the data as it would

appear to a synthesizer on a separate computer. Two termi-

nal applications for translating the native motion capture

data to Open Sound Control and sending it to the remote

computer via UDP were used.

We have chosen to base our plots on the unfiltered data re-

ceived from the motion capture systems. This might differ

from how a MoCap system would be used in a real world

application, where filtering would also be applied. Using

unfiltered data rather than filtered data gives an indication

of how much pre-processing is necessary before the data

can be used for a musical application.

The Xsens suit was put on in full-body configuration. For

OptiTrack, a 34-marker skeleton was used. This skeleton

model is one of the predefined ones in the Arena software.

Markers were placed outside the Xsens suit, which made

it necessary to adjust the position of some of the markers

slightly, but this did not alter the stability of the OptiTrack

system.

Both systems were carefully calibrated, but it was diffi-

cult to align their global coordinate systems perfectly. This
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is because OptiTrack uses a so-called L-frame on the floor

to determine the global coordinate system, whereas Xsens

uses the position of the person wearing the suit during the

calibration to determine the origin of the global coordinate

system. For this reason, we get a bias in the data from one

system compared to the other. To compensate for this, the

data has been adjusted so that the mean value of the data

from the two systems more or less coincide. This allows

us to observe general tendencies in the data.

4.2 Positional accuracy and drift

When comparing the Xsens and the OptiTrack systems there

is one immediately evident difference. OptiTrack mea-

sures absolute position, while the sensors in the Xsens MVN

suit can only observe relative motion. With Xsens, we are

bound to experience some positional drift even though the

system has several methods to keep it to a minimum [9].

4.2.1 Positional accuracy - still study

Figure 2 shows the position of the left foot of a person sit-

ting in a chair without moving for 80 seconds. The upper

plot shows the horizontal (XY) position and the lower plot

shows vertical position (Z) over time. In the plot it is ev-

ident that Xsens suffers from positional drift, even though

the person is sitting with the feet stationary on the floor.

Xsens reports a continuous change of data, with a total drift

of more than 0.2 m during the 80 seconds capture session.

Equivalent plots of other limbs show similar drift, hence

there is little relative drift between body limbs.

This measurement shows that OptiTrack is better at pro-

viding accurate and precise position data in this type of

clinical setup. However, for the vertical axis, we do not

observe any major drift, but the Xsens data is still noisier

than the OptiTrack data.

4.2.2 Positional accuracy - walking path

The left plot in Figure 3 displays the horizontal (XY) po-

sition of the head of a person walking along a rectangular

path in a large motion capture area recorded with Xsens.

The plot shows a horizontal positional drift of about 2 me-

ters during the 90 seconds capture session. Xsens shows
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Figure 2. Horizontal and vertical plots of a stationary foot.
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Figure 3. Recording of the horizontal (left) and vertical

(right) position of the head.

no drift in the vertical direction (Z), as can be seen in the

right plot. This is expected since the MVN engine maps

the data to a human body model and assumes a fixed floor

level. Because of the major horizontal drift we can con-

clude that Xsens MVN is not an ideal MoCap system if

absolute horizontal position is needed.

4.2.3 Camera occlusion noise

The spatial resolution of an IrMoCap system mainly re-

lies on the quality of the cameras and the calibration. The

cameras have a certain resolution and field of view, which

means that the spatial resolution of a marker is higher close

to the camera than far away from the camera. The calibra-

tion quality determines how well the motion capture sys-

tem copes with the transitions that happen when a marker

becomes visible to a different combination of cameras. With

a “perfect” calibration, there might not be a visible ef-

fect, but in a real situation we experience a clearly visible

change in the data whenever one or more cameras fail to

see the marker, as shown in Figure 4. When a marker is

occluded from a camera, the 3D calculation will be based

on a different set of 2D images.
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Figure 4. OptiTrack: Magnitude of the distance from the

mean position of a stationary marker. The disturbances in

the last part of the measurement is caused when a person

moves around the marker, and thus blocks the marker in

one or more cameras at a time. FrameRate 100 Hz

4.2.4 Xsens floor level change

If the motion capture area consists of different floor lev-

els, like small elevated areas, the Xsens MVN engine will

match the sensed raw data from the suit against the floor

height where the suit was calibrated. This can be adjusted

in post-processing, but real-time data will suffer from arti-

facts during floor level changes, as shown in Figure 5.

4.3 Acceleration and velocity data

In our experience, velocity and acceleration are highly us-

able motion features for controlling sound. High peaks

in absolute acceleration can be used for triggering events,

while velocity can be used for continuous excitation.
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Figure 5. Recording of the vertical position of the left foot

of a person, stepping onto an elevated area (around 0.25 m

high). When the user plants his left foot on the object, the

Xsens MVN engine will eventually map the stationary foot

to floor level (18 to 19 s).

A difference between the two MoCap systems is that the

Xsens system can offer velocity and acceleration data di-

rectly from the MVN engine [9]. When using the Opti-

Track system we need to differentiate position data to es-

timate velocity and acceleration. If the positional data is

noisy, the noise will be increased by differentiation (act

as an high-pass filter), as we can see from Figure 6. The

noise resulting from optical occlusion (see Section 4.2.3)

is probably the cause for some of OptiTrack’s positional

noise.

Even though the Xsens position data is less accurate, it

does offer smoother velocity and, in particular, accelera-

tion data directly. We can use filters to smooth the data

from the OptiTrack system; however, this will introduce a

system delay, and hence increased latency.
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Figure 6. Velocity and acceleration data quality compari-

son (OptiTrack in black and Xsens in red).

4.4 Action-to-sound: latency and jitter

Low and stable latency is an important concern for real-
time musical control [13], particularly if we want to use the

system for triggering temporally accurate musical events.

By action-to-sound latency we mean the time between the

sound-producing action and the sonic reaction from the

synthesizer.

To be able to measure the typical expected latency in a

setup like that in Figure 7 we performed a simple experi-

ment with an audio recorder. One computer was running

one of the MoCap systems and sent OSC messages con-

taining the MoCap information about the user’s hands. A

patch in Max/MSP was made that registered hand claps

MoCap

System

Action-

Sound

Mapping

Sound

Synthesis

Figure 7. The acoustic hand clap and the triggered sound

were recorded to measure latency of the systems.

based on MoCap data and triggered a click sound for each

clap. The time difference between the acoustic hand clap

and the triggered sound should indicate the typical expected

latency for the setup.

Both MoCap systems were run on the same PC 1 . The

sound-producing Max/MSP patch was run on a separate

Mac laptop 2 and received OSC messages from the Mo-

Cap systems through a direct Gbit Ethernet link. All ex-

periments used the same firewire connected sound card,

Edirol FA-101, as output source. The hand claps and the

click output from the Max patch was recorded with a mi-

crophone. Statistical results from the time delays between

hand claps and corresponding click sound in the recorded

audio files are given in Table 1. The values are based on

30 claps each. In this experiment, OptiTrack had a faster

sound output response and a lower standard deviation than

Xsens. The standard deviation is included as an indica-

tion of the jitter performance of the MoCap systems, since

lower standard deviation indicates higher temporal preci-

sion.

Higher Xsens latency and jitter values are probably partly

due to its use of Bluetooth wireless links. The Xsens MVN

system also offers a direct USB connection option. We

performed the same latency test with this option; and the

results indicate that the connection is around 10-15 mil-

liseconds faster, and has a lower jitter performance, than

the Bluetooth link.

The upper bounds for “intimate control” have been sug-

gested to be 10ms for latency and 1ms for its variations

(jitter) [13]. If we compare the bounds with our results, we

see that both systems have relatively large latencies. How-

ever, in our experience, a latency of 50ms is still usable in

many cases. The high jitter properties of the Xsens system

are probably the most problematic, especially when one

wants high temporal accuracy.

min mean max std. dev.

OptiTrack 34 42.5 56 5.0

Xsens Bluetooth 41 52.2 83 8.4

Xsens USB 28 37.2 56 6.9

Table 1. Statistical results of the measured action-to-sound

latency, in milliseconds.

4.5 Synthesizer control

In a second experiment, a musician was asked to perform

simple music-related tasks with the two motion capture

1 Intel 2.93 GHz i7 with 8GB RAM running Win 7
2 MacBook Pro 10.6.6, 2.66 GHz Duo with 8GB RAM
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systems. Three different control mappings to a sound syn-

thesizer were prepared:

• Controlling pitch with the distance between the hands

• Triggering an impulsive sound based on high accel-

eration values

• Exciting a sustained sound based on the velocity of

the hand

For the pitch mapping, the task was to match the pitch of

one synthesizer to the pitch of another synthesizer moving

in the simple melodic pattern displayed in Figure 8, which

was repeated several times. This task was used to evaluate

the use of position data from the two systems as the control

data.

For the triggering mapping, the task was to follow a pulse

by clapping the hands together. This task was given to eval-

uate acceleration data from the two systems as the control

data, and to see if the action-to-sound latency and jitter

would make it difficult to trigger events on time.

The excitation mapping was used to follow the loudness

of a synthesizer, which alternated between ”on” and ”off”

with a period of 1 second. This task was used to evaluate

velocity data as control data.

The reference sound (the sound that the musician was

supposed to follow) and the controlled sound (the sound

that was controlled by the musician) were played through

two different loudspeakers. The two sounds were also made

with different timbral qualities so that it would be easy to

distinguish them from each other. The musician was given

some time to practice before each session. To get the best

possible accuracy, both systems were used at their highest

sampling rates for this experiment: Xsens at 120 Hz, and

OptiTrack at 100 Hz.

⁄@@ (! ) (! ) (! ) (! )
Figure 8. The simple melody in the pitch-following task.

This was repeated for several iterations.

4.5.1 Pitch-following results

We found no significant difference between the performances

with the two systems in the pitch-following task. Figure 9

displays an excerpt of the experiment, which shows how

the participant performed with both Xsens and OptiTrack.

The participant found this task to be difficult, but not more

difficult for one system than the other. Also, the data shows

no significant difference in the performances with the two

systems. This indicates that the quality of relative position

values (between markers/limbs) is equally good in the two

systems for this kind of task.

4.5.2 Triggering results

Table 2 shows the results of the latency between the ref-

erence sound and the controlled sound for the triggering

test. They are based on 40 hand claps for each of the two
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Figure 9. There was no significant difference between the

two systems for the pitch-following task.
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Figure 10. The major difference between the two systems

in the continuous onset task was the noisy data from the

OptiTrack system, which made it difficult to be quiet be-

tween the onsets. Apart from this, there was no big differ-

ence between the two systems.

MoCap systems. As we can see, the mean latency value is

almost equal for Xsens and OptiTrack. Xsens has a higher

standard deviation, which may indicate that the Xsens jit-

ter shown in Table 1 makes it difficult for the user to make

a steady trigger pulse.

min mean max std. dev.

OptiTrack 18.5 45.2 77.1 13.8

Xsens 2.6 44,7 96.3 28.3

Table 2. Statistical results, in milliseconds, of the mea-

sured time differences between reference signal and con-

trol signal.

4.5.3 Continuous onset results

For the continuous onset task, where the loudness of the

sound was controlled by the absolute velocity of the right

hand, we also observed a time delay between the onset of

the reference tone and the onset of the sound played by our

performer. This delay was present for both systems. In

this task, the OptiTrack system suffered from noise, which

was introduced when calculating the absolute velocity of

the unfiltered OptiTrack data, as described in Section 4.3

(see Figure 10). The musician said that this made it more

difficult to be quiet between the reference tones, and that

this task was easier to perform with the Xsens system.
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5. DISCUSSION

We have seen several positive and negative aspects with

the quantitative measurements of the two technologies. In

this section we will summarize our experiences of working

with the two systems in a music-related context.

The main assets of the Xsens suit is its portability and

wireless capabilities. The total weight of the suit is approx-

imately 1.9 kg and the whole system comes in a suitcase

with the total weight of 11 kg. Comparably, one could ar-

gue that a 8-camera OptiTrack setup could be portable, but

this system requires tripods, which makes it more trouble-

some to transport and set up. OptiTrack is also wireless, in

the sense that the user only wears reflective markers with

no cables, but the capture area is restricted to the volume

that is covered by the cameras, whereas Xsens can easily

cover an area with a radius of more than 50 meters. When

designing a system for real-time musical interaction based

on OptiTrack, possible marker dropouts due to optical oc-

clusion or a marker being moved out of the capture area

must be taken into account. For Xsens, we have not experi-

enced complete dropouts like this, but the Bluetooth link is

vulnerable in areas with heavy wireless radio traffic, which

may lead to data loss. Nevertheless, we consider Xsens to

be the more robust system for on-stage performances.

OptiTrack has the benefit of costing less than most other

motion capture technologies with equivalent resolution in

time and space. The full Xsens suit is not comfortable to

wear for a longer time period, whereas OptiTrack markers

impose no or little discomfort. On the other hand, Opti-

Track markers can fall off when tape is used to attach them.

Also, OptiTrack’s own solution for hand markers, where a

plastic structure is attached to the wrist with Velcro, tends

to wobble a lot, causing very noisy data for high accelera-

tion movement, something we experienced when we set up

the hand clapping tests. Xsens has a similar problem with

the foot attachments of its sensors, which seems to cause

positional artifacts.

Sections 4.2 to 4.5 show a number of differences between

Xsens and OptiTrack. In summary, OptiTrack offers a

higher positional precision than Xsens without significant

drift, and seemingly also lower latency and jitter. Xsens

delivers smoother data, particularly for acceleration and

velocity. Our musician subject performed equally well in

most of the musical tasks. However, the noisy OptiTrack

data introduced some difficulties in the continuous onset

task, and also made it challenging to develop a robust al-

gorithm for the triggering task. Furthermore, Xsens jitter

made the triggering task more difficult for the musician.

6. CONCLUSIONS

Both OptiTrack and Xsens offer useful MoCap data for

musical interaction. They have some shared and some in-

dividual weaknesses, and in the end it is not the clinical

data that matters, but the intended usage. If high positional

precision is required, OptiTrack is preferable over Xsens,

but if acceleration values are more important, Xsens pro-

vide less noisy data without occlusion problems. Overall,

we find Xsens to be the most robust and stage-friendly Mo-

Cap system for real-time synthesis control.
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ABSTRACT
In this paper we present the Dance Jockey System, a system
developed for using a full body inertial motion capture suit
(Xsens MVN) in music/dance performances. We present
different strategies for extracting relevant postures and ac-
tions from the continuous data, and how these postures and
actions can be used to control sonic and musical features.
The system has been used in several public performances,
and we believe it has great potential for further exploration.
However, to overcome the current practical and technical
challenges when working with the system, it is important
to further refine tools and software in order to facilitate
making of new performance pieces.

1. INTRODUCTION
The Dance Jockey system is based on the Xsens MVN suit,
a commercially available full body motion capture system.
The suit consists of 17 inertial sensors that are attached to
a pre-defined set of points on the human body. Each sensor
consists of an accelerometer, a gyroscope, and a magne-
tometer. The raw data streams from these sensors are com-
bined in the Xsens MVN system to produce an estimation
of how the body moves [9].
In previous research we have shown that the Xsens MVN

system is well suited for exploring full body musical interac-
tion [9, 10]. The system offers robust motion tracking of the
body, which is important in live performance settings. In
[9] we presented the Open Sound Control implementation
and the technical experience of using the Xsens MVN sys-
tem. In this paper we will outline in more detail about how
we used the Xsens MVN suit to control sonic and musical
features in the Dance Jockey project (Figure 1).
The motivation for the Dance Jockey project came from

our wish of using the full body for musical interaction. As is
often commented on, performing with computers allows for
many new and exciting sonic possibilities, but many times
with a weak or missing connection between the actions of
the performer and the output sound [1]. To overcome this
problem of missing or unnatural action-sound couplings [6],
we are trying to develop pieces in which properties of the
output sound match properties of the performed actions.
With Xsens MVN motion capture (MoCap) system we are
able to measure, with some limitation, the physical proper-
ties of our bodies’ actions. It should therefore be possible

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’12, May 21 – 23, 2012, University of Michigan, Ann Arbor.
Copyright remains with the author(s).

Figure 1: A Dance Jockey performance at Mostra
UP in Porto, Portugal. Note the orange sensors on
different body parts and the two wireless transmit-
ters on the back of the performer.

to use this data to create physical relationships between
actions and sounds. The challenge, however, is to extract
relevant features from the continuous motion capture data
stream and turn these features into meaningful sound.
The name Dance Jockey is a word play on the well-known

term Disc Jockey, or DJ. With this name we wanted to re-
flect that instead of using discs to perform music, we were
using dance or full body motion as the basis for the perfor-
mance. The name is also a reference to how we may think
of the performer more as a DJ/turntablist than a musician:
the performer does not play an instrument with direct con-
trol of all sonic/musical features, he is more triggering and
influencing various types of sonic material through his body.
The developed Dance Jockey System has been used in sev-

eral public performances over the last years, many of which
are documented on our project web page.1 This paper will
mainly focus on the system itself, and we will therefore not
present and discuss the performances.
We will start by presenting the main structure of the

Dance Jockey System, followed by an overview of differ-
ent feature extraction methods that have been developed,
and how they have been used to control sonic and musical
features.

2. THE DANCE JOCKEY SYSTEM
The system on which we have based our Dance Jockey
project can be divided into four main parts, as illustrated in
Figure 2. Let us briefly look at the concept of sound excita-
tion before presenting the features used to extract control
signals.

1http://www.fourms.uio.no/projects/dancejockey/

Paper IV 103



Feature

extractions

FeaturesMoCap Data

Action-

sound

Mappings

Sound

engine

Control Signals

Figure 2: The dataflow of our Dance Jockey system

2.1 Sound Excitation
Most acoustic instruments are controlled with sound-producing
actions that can be further broken into excitation and modi-
fication actions [7]. We can further distinguish between two
types of excitations and modifications: discrete (e.g. trig-
gering a sound object), or continuous (e.g. bowing a string
instrument). This terminology can be seen as similar to
what Dobrian identifies as control signals: triggers and con-
tinuous streams of discrete data [3]. These control signals
should also be sufficient to control other musical features
like tempo, skipping to the next section of the performance,
changing synthesizer settings etc. Accordingly, we want to
use the Xsens MVN data both for continuous control and
to extract trigger signals.

2.2 Features Used for Extracting Control
Signals

The Xsens MVN system outputs data about body motion
by expressing body postures sampled at a rate of up to
120Hz. The postures are modeled by 23 body segments
interconnected with 22 joints. Each posture sample consist
of the position and the orientation of these segments. In
addition, we get each segments’ positional and orientational
velocity, and positional and orientational acceleration. (The
latter data are of relatively good quality as documented in
[9].) All data is given in some global coordinate system, e.g.
the stage.
There were three main properties we looked for when

searching for suitable features from the above data; the fea-
tures should be (1) robust and usable as consistent control
data, (2) usable as visual cues for the audience, and (3) user-
friendly for the artist. The features are difficult to evaluate
without considering how they are mapped to musical pa-
rameters. It is therefore important to include the typical
use of the features in the following subsections. We have
not tried to make a complete list of all available features;
instead, we will present those that we found useful. The
features are summarized in Table 1 and several examples
are illustrated in Figure 3.

2.2.1 Position data
We could, in theory, use the segments’ global positions for
both continuous control and extracting triggers by placing
virtual positional thresholds on the stage (Figure 3e). But,
we did not use the global position directly since the Xsens
MVN horizontal position data exhibits drift, as documented
in [9]. The vertical position, however, is much more consis-
tent and could therefore be used directly as a feature. The
latter can also be seen as a global feature since, for example,
1 meter above floor level will stay the same in all parts of
the stage (Figure 3a).
The possibility of using global positions for sound spa-

tialization is interesting. However, using global horizontal
position for other types of sound excitation is somewhat
problematic. We wanted actions in one area of the stage
to result in the same output in other areas of the stage.
In order to achieve this, we transformed global positions to
the local coordinate system of the performer (pelvis). A

a b c

e f g h

d
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Figure 3: Illustration of some of the different fea-
tures we have used: (a) vertical height of a hand,
(b) distance between hands, (c) spanned distance
between main body limbs, (d) elbow angle, (e) vir-
tual trigger area, activated when the hand passes
through this area, (f) virtual trigger areas that are
always relative to the performer (g) absolute speed
of hand, and (h) thresholding acceleration to recog-
nize a hand clap.

specified action would then result in the same output in
all areas of the stage, regardless of the orientation or posi-
tion of the performer. This technique is also immune to the
Xsens positional drift problem to a large extent. We used
this approach when placing virtual ”wind chimes” around
the performer, who was able to trigger chimes by touching
these virtual positions without worrying about standing in
the correct position on the stage (Figure 3f).

2.2.2 Velocity - Continuous Excitation
We found the positional velocity of body limbs, especially
the absolute velocity, i.e. the magnitude of velocity in all
3 dimensions, to be especially useful for continuous excita-
tions (follows what Hunt et. al. discovered in [5]). This can
also be mapped in an intuitive way with the performer’s
physical effort: the faster/larger the movement, the louder
the sound. A benefit of using absolute velocity is its global
nature: it is based on total velocity of the moving limb and
is independent of the direction or location of the motion.
We used this feature mostly for continuous control, for in-
stance controlling amplitude or filters (Figure 3g).

2.2.3 Acceleration - Triggers
We found thresholding acceleration values to be especially
suitable for extracting trigger signals, which is also men-
tioned by Bevilacqua et. al. in [2]. For example, the per-
former was able to trigger sound samples via abrupt rota-
tions of his hand by thresholding the rotational acceleration
data. We also used the performer’s hip rotations to trigger
samples. In this way we were able to synchronize sounds
with apparent dance actions.
One of the challenges of using acceleration for extracting

triggers is that sudden motion in one part of the body of-
ten spread to other parts of the body. As a consequence,
it was difficult to isolate different triggers from each other,
e.g. separating a kick from a sudden hip movement when
only thresholding the segments’ acceleration values. We
overcame this by specifying extra conditions for the differ-
ent trigger algorithms that needed to be separated. For
instance, to be able to safely trigger a hand clap we added
the condition that the hands needed to be no more than 20
cm from each other (Figure 3h). In this way we were able
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to avoid other abrupt hand movement resulting in “hand
clap” triggers. In similar ways we can make appropriate
conditions for other trigger algorithms, such that they only
trigger by the specified body action. This is one of the ben-
efits of using a full body MoCap system (compared to using
single accelerometers).

2.2.4 Quantity of motion (QoM)
By summing up the speeds of different body limbs we can
compute the performer’s total quantity of motion. To save
computational power, we can add up the speed of only a
subset of the main limbs, like head, feet and hands. This
gives similar results. We connected this feature to loud-
ness and other effort-related associations in the sound out-
put, and we believe it is an interesting higher-level motion
feature. However, the performer found this feature to be
difficult to consciously control (low repeatability), and we
therefore found it as having only limited use for extracting
control signals.

2.2.5 Relative position between body segments
The Xsens MVN system outputs data which is mapped to
a human body model. We find this model to be quite con-
sistent and stable and therefore an interesting source for
extracting control signals. It does not suffer from optical
occlusion like infra-red optical marker based motion cap-
ture systems or have other major noise sources [9]. We do
however experience some limited drift between limbs, but if
this drift is taken into account the relations between differ-
ent body parts can in our experience be quite robust and
useful. (This property also applies for subsections 2.2.6 and
2.2.7.)
As a simple example, we used the distance between the

performer’s hands to reflect a physical space that the per-
former could manipulate, which again was used to make
a physical relationship with the output sound (Figure 3b).
Another feature that we used was the spanned distance of
the 5 main body extremities: head, hands and feet. We
used this distance for continuous excitation and modifica-
tion, and found it useful to excite sound in a visually dra-
matic way (Figure 3c).

2.2.6 Orientations - Joint Angles
We did not use the segments orientation data directly. In-
stead, we used them to calculate the angles between differ-
ent segments to extract joint angles, e.g. elbows and knees
(Figure 3d). We believe that joint angles are more useful
features than using the global orientation of single body
limbs, since they tell more about the body pose. These an-
gles are also relative to the performer’s body. We used them
to continuously excite or modify sound(s), and thresholded
them to extract trigger signals.

2.2.7 Pose classifier
We developed a simple recognition algorithm based on an
idea that different body poses could control some aspects
of the sounds, besides also being valuable visual cues for
communicating with the audience. We picked out five key
pose features: the two elbow angles, hand distance, and
both hand heights. Together these features spanned a pose
space in five dimensions. We then stored the corresponding
features of a set of 9 poses (the one we wanted to use as
”cues” or ”control poses”). These poses then had a corre-
sponding point in the pose space. Finally, we implemented
a Nearest Neighbor Classifier [4] to classify poses to the one
of the stored poses that was closest, see Figure 4 for an
illustration.
An advantage of this classifier was the high recognition

Feature Used to control
Vertical position Extensively for cont. and cond.
Relative positions Trigger samples and cont.
Velocity (mag) For cont., good “effort” relationship
Acceleration Trig. sounds and state changes
QoM Difficult for the performer to use
Relative body pos. For cont. excitation and modification
Joint angles Mostly for cond., some cont.
Poses Notes, chords and states triggers

Table 1: Summary of how we used the different
extracted features. There are three main uses of
features, (1) continuous excitation o modification
(cont.), (2) thresholded for use as trigger signals
(trig.) and (3) as conditions for other triggers
(cond.).

rate, which in practice was 100%. This made it useful for
exciting important musical features like notes and chords.
However, the performer had problems with timing the pose
changes correctly. To overcome this we implemented a sys-
tem where a metronome was responsible for triggering the
pose changes. In this way the performer only needed to be
in the right pose at the right time. We also implemented
functionality that looked after certain sequences of poses,
which we used to extract trigger signals. Additionally, we
used the distance, or how close the current posture is to
the stored poses, to continuously morph between different
sounds or timbres.
For some of the poses the quality of the suit calibration

[9] could, to some degree, affect the resulting classification.
We used a maximum of 9 different stored poses at one time.
Furthermore, the recognition rate would probably decrease
if we increased the amount of used poses. However, with a
well selected set of pose features, it should be possible to
use an extensive set of poses.

3. CONTROLLING SOUND AND MUSICAL
FEATURES

3.1 The sound engine
All the sounds for the performance were generated and ma-
nipulated in Ableton Live 8 via MIDI and Open Sound Con-
trol (OSC). Ableton Live 8 does not accept OSC messages,
so a third-party extension called LiveOSC was used to han-
dle OSC data. However, we experienced considerable la-
tency with the OSC messages, so time-critical events like
synth notes, sound clips, and effects manipulation, had to
be operated via MIDI.
The performance was organized in states, each containing
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Figure 4: A simplified two-dimensional illustration
of the pose classifier. The two pose features hand
height and hand distance spans the pose space (right
plot). Every pose will have a corresponding point in
the pose space. We classify a pose to the one from
the stored set that are closest.
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sound effects, synths and other sound generating devices.
As the performance progressed, we moved sequentially from
one state to the next. A state could have various internal
operations that affected Ableton Live 8, such as muting,
raising volume, altering tempo, playing a clip, and so on.
In the following Section we present how the states were
controlled.

3.2 Transition between states
Our initial idea was to make a full-length performance piece
in which all aspects of the performance were controlled
solely by the Xsens MVN suit. For us, this meant that the
performer needed to be, as much as possible, in full control
of the whole performance. Therefore we needed to get rid
of the invisible control center or the typical “guy behind the
laptop”-setting [8].
At the same time we wanted the performance to have

some varied content. We soon discovered that it was chal-
lenging to design a single instrument, or one synthesizer
state, that would be interesting enough to listen to and
watch for a whole performance. The performer needed to
be able to change between different mappings. Our solution
was to implement a so-called finite-state machine. This is
a mathematical abstraction used to design sequential com-
puter logic, which consists of a finite set of states, tran-
sitions between these states, and conditions for when the
transitions should occur. To be able to go from one state to
another the performer needed to perform predefined tran-
sition actions. Hence, the performer starts in one state,
and when he/she feels that the part is finished, he/she can
trigger the transition to the next state.

4. DISCUSSION
In the following we briefly discuss some of the thoughts we
have had during the implementation of the Dance Jockey
system.

4.1 Composing Dance Jockey
A challenge with composing and choreographing a perfor-
mance for the Xsens MVN system was to decide to what de-
gree the performance should be a musical concert controlled
by a full body MoCap system, or a sonification of a dance
piece [1]. We ended up with something in between. De-
signing action-sound mappings and making a performance
around them turned the whole process into a creative one.
We also had to find a way to balance composition with

improvisation. Some parts needed to be specified in detail,
while others were left open. Specifically, parts featuring
continuous sound excitation were particularly suitable for
improvisation, and we found them to be especially impor-
tant for establishing“expressive”action-sound relationships.
The difference between a good and a bad concert was for
us mostly determined by whether the performer was able
to use these expressive parts to communicate with the au-
dience.

4.2 The gap of execution
The process of composing and investigating action-sound
mappings with the Xsens MVN suit takes a lot of time and
energy. The suit is fairly quick to put on, but it is not com-
fortable to wear for several hours. It also involves many
tiresome details, like calibration routines and changing bat-
teries. While we were fully capable of performing concerts
with the equipment, the time-consuming details and the ob-
trusiveness of the suit makes it tiresome to practice, com-
pose and be creative.
Efficient tools are essential when attempting to compose

and practice performances that employ full body MoCap

technology. Through developing own tools and software
while working with performance-related and technical as-
pects of the system, we have decreased the so-called gap of
execution, or the gap between an idea - and its realization.
Overcoming most of the technical challenges now enables
us to focus on the artistic process. In this way our contin-
ued work on the Xsens performance will not be strangled
by the many burdensome practicalities and obstacles that
this technology and setup easily evokes.

4.3 Future research
We have seen a great number of possibilities that the Xsens
MVN system offers for musical interaction, and feel that we
have only touched the surface of these possibilities. There-
fore, in the future we hope to get time and resources to make
more thoroughly produced performances. We are currently
working with more advanced action-sound mappings using
physical models and granular synthesis, in order to build
stronger perceptual connections between the MoCap data
and sound output.
We also need to base our progression on more formal feed-

back. Up to now we have based our impressions on the
feedback from audience members after concerts. This has
not been sufficient to answer the questions we wanted to ad-
dress, like: “Could you follow the action-sound mappings?”
or “Did you enjoy the action-sound couplings or were they
too evident/boring?”For that reason, in the future we would
like to hand out questionnaires (likert scale, open ended
questions, etc.) to get more formal feedback.
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ABSTRACT
In this paper we present some custom designed filters for
real-time motion capture applications. Our target applica-
tion is motion controllers, i.e. systems that interpret hand
motion for musical interaction. In earlier research we found
effective methods to design nearly optimal filters for real-
time applications. However, to be able to design suitable
filters for our target application, it is necessary to estab-
lish the typical frequency content of the motion capture
data we want to filter. This will again allow us to deter-
mine a reasonable cutoff frequency for the filters. We have
therefore conducted an experiment in which we recorded the
hand motion of 20 subjects. The frequency spectra of these
data together with a method similar to the residual analy-
sis method were then used to determine reasonable cutoff
frequencies. Based on this experiment, we propose three
cutoff frequencies for different scenarios and filtering needs:
5, 10 and 15 Hz, which correspond to heavy, medium and
light filtering, respectively. Finally, we propose a range of
real-time filters applicable to motion controllers. In partic-
ular, low-pass filters and low-pass differentiators of degrees
one and two, which in our experience are the most useful
filters for our target application.

1. INTRODUCTION
Motion capture (MoCap) and sensor technologies are of-
ten used for real-time interactive musical applications, e.g.
game controllers like Wii Remote, PlayStation Move, Kinect,
and other controllers like mobile phones and novel inter-
faces for desktop computers. The increased availability of
new and improved MoCap technologies together with algo-
rithms that interpret user motion as control data, make it
increasingly affordable and feasible to use it for musical in-
teraction. We refer to such interfaces as motion controllers
(also known as gesture controllers) [6]. However, many Mo-
Cap and sensor technologies give noisy results, therefore
making it necessary to apply noise removal filters [13, 18].
Low latency is a prerequisite for achieving intimate con-

trol in musical interactive applications [15]. And, as one
might expect, there will always be a corresponding delay
penalty when employing a digital filter. More specifically,
this delay performance is given as the group delay and is
measured in samples, or sampling periods. This further im-
plies that the given time delay of a filter is proportional to
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Figure 1: There is an intrinsic delay penalty when
employing digital filters on MoCap data.

the sampling rate of the MoCap system in use [7]. Since
most MoCap systems have a relatively low sampling rate,
normally between 30 and 200 Hz, this implies that the given
group delay of the filter is critical for the total amount of
delay. The goal of the current paper has been to develop fil-
ters that are optimized for motion controllers and that also
minimize the latency they add to the musical applications
(Figure 1).
In our previous work we found methods to design nearly

optimal digital filters with low group delay [11]. However, to
be able to design application specific filters, it is necessary to
determine the frequency properties of the data to be filtered.
We have therefore conducted an experiment to determine
these properties for musical application based on free-hand
motion in the air.
In the next section we give a brief introduction to digital

filters. Then, in section 3, we present the experiment and
how to determine reasonable frequency properties of human
MoCap data. Based on these results, a range of nearly op-
timal filters for the target application is presented, together
with some evaluations in section 4, before the results are
discussed in section 5.

2. BACKGROUND - DIGITAL FILTERS
Our main goal when applying filters is to smooth data or to
restore signals that have been distorted with noise. There
exist several methods, and they can roughly be divided into
two categories; curve fitting techniques and digital filters.
Curve fitting can intuitively be explained as trying to graph-
ically fit a smooth curve to noisy data. The most common
methods are polynomial fit and spline methods [18]. How-
ever, curve fitting noisy MoCap data is known to be subop-
timal since human motion does not follow polynomial curves
[9]. Digital filters are seen as the most general method for
noise smoothing and is the technique we are going to adapt
in this paper, since we want a causal filter with good real-
time properties. Causal here indicates that the filter output
depends only on past and present inputs, i.e. a mandatory
property for real-time applications.

2.1 The filter objectives
Formally, the goal of a noise filter is to extract the desired
signal from some noisy data. Typically this is done by de-
signing a filter, with the purpose of removing the noise com-

Paper VII 125



0 0.2 0.4 0.6 0.8 1
−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (d

B)

Normalized Frequency

0 0.2 0.4 0.6 0.8 1
0

20

40

60

G
ro

up
 d

el
ay

 (s
am

pl
es

)

Normalized Frequency

(1) flat passband (2) high stopband attenuation

(3) low group delay (4) flat group delay

Figure 2: The frequency domain plot of an IIR low-
pass filter. The filter objectives are highlighted.

ponent while leaving the desired signal unchanged. In other
words, the main two filter objectives are:

• Maximize noise attenuation. That is, reduce the amount
of noise to maximize the signal-to-noise ratio (SNR).

• Minimize the signal distortion. That is, avoid altering
the desired signal.

There exists much theory regarding the two objectives above
[17]. However, in this paper we are especially interested in
the following additional objective:

• Minimize the filter delay. That is, to minimize the
time it takes for the signal to pass the filter.

The most common way to design a digital filter is in the
frequency domain [17]. Here the aim is to determining the
localization of the signal and the noise in the frequency do-
main, and then designing an appropriate filter based on
these properties. The passband refers to the frequencies
that are passed, i.e. wanted, while the stopband refers to
the frequencies we want to filter out. This technique works
particularly well if the signal and the noise can be effec-
tively separated in the frequency domain. However, this is
not necessarily the case for MoCap data. For instance, so-
called white noise is a common property for sensors [16],
and is evenly distributed in the whole frequency band. In
other words, not even an ideal low pass filter can suppress
all the noise since there will also be noise in the passband
[18]. In these cases we need to compromise between noise
attenuation and signal distortion. We return to this chal-
lenge in section 3.
In Figure 2 we have plotted the frequency properties of

a typical low-pass filter, which is the type we are going
to work with since human motion mainly consists of low
frequencies [18]. The figure highlights also the objectives
of filter design. Simultaneously, we want: (1) flat passband,
i.e. low signal distortion, (2) high stopband attenuation, i.e.
high noise suppression, (3) low group delay, i.e. low latency,
and (4) flat group delay, i.e. that all frequency components
of the wanted signal are similarly delayed, also known as
linear phase [7]. Let us now consider the different digital
filter types.

2.2 Digital filter types (FIR and IIR)
There exist two main digital filter types, finite impulse re-
sponse (FIR) filters and infinite impulse response (IIR) fil-
ters. Moving average is probably the most simple and in-
tuitive realization of a FIR filter [14]. While the moving

average filter have low-pass filter properties, the frequency
domain properties are solely specified by it’s length, i.e. the
order of the filter. In most cases there will exist more op-
timal FIR filter solutions [14], but moving average filters
are frequently used because they are intuitive and simple to
implement.
IIR filters, as the name suggests, have an infinite impulse

response that is the result of their recursive nature. While
a FIR filter only bases its output on the input signal, an
IIR filter bases its output on former output values as well.
In essence, IIR filters offer an effective way of achieving
a long impulse response, without having to use long FIR
filters. Therefore, if the goal is to minimize the group delay,
the use of IIR filters seems reasonable, since they can have
dramatically lower order than symmetric FIR filters with
similar performance [7]. Our results in [11] support this
claim as well.
There is one main advantage to so-called symmetric FIR

filters compared to causal IIR filters, being that they have
linear phase which implies a constant group delay [17], i.e.
all frequencies are delayed by the same amount. Symmetric
FIR filters have additionally a fixed group delay of n/2 sam-
ples where n is the given filter order. In other words, their
constant group delay comes at the expense of a fairly high
filter delay compared to IIR filters with similar performance
[11]. Furthermore, it is not certain that an IIR filter with a
moderate amount of group delay error is a big concern for
our target applications.

2.3 Low-pass differentiators (LPD)
Differentiators are a filter type that are commonly used to
extract velocity and acceleration data from position data
[13]. When differentiating MoCap data, it is normal to ex-
perience an increase of noise in the differentiated data. This
is due to the fact that differentiation acts as a high pass fil-
ter. Accordingly, the low frequency motion data in the pass-
band will be attenuated while the white noise in the higher
frequencies will be amplified. As a result, we end up with a
lower SNR value for the differentiated data, which increases
the need for filtering [18, 2]. This is why it is reasonable to
use so-called low-pass differentiators, since they avoid the
undesirable amplification of noise in the higher frequency
band. They also provide better total filter solutions than to
use a low-pass filter in cascade with a differentiator opera-
tor, as we have shown in [10]. Similarly, it is better to use
one low-pass differentiator of degree two, than to use two of
degree one in cascade

2.4 Filter design methods
The design of symmetric FIR filters is a linear problem
and there exist different general solutions for most FIR de-
sign problems, e.g. the least square method and the Parks-
McClellan method [8, 4]. The design of IIR filters is, on
the other hand, a nonlinear problem, and there are no gen-
eral optimal design methods. There are however different
construction methods, which can give optimal solutions for
some special cases. The most known classical IIR filter
methods are Butterworth, Chebychev and elliptical (Cauer)
[17]. They are very useful for standard filter types as long as
there is little restriction on the group delay responses [5, 11].
It is therefore necessary to use alternative design methods
if we need more control over the group delay specifications.
In our earlier research we presented a successful method for
designing nearly optimal IIR filters with arbitrary specifi-
cations, including low-pass filters with minimal group de-
lay [11] and IIR low-pass differentiators [10]. In that work
we regarded filter design as a multi-objective optimization
problem, which was solved using an unbiased metaheuristic
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search algorithm. Using this method we are able to custom
design nearly optimal IIR filters with the desired trade-off
between group delay and the other filter objectives given
above. For more details about this method see [10] and
[11]. However, before we can design filters for our applica-
tions, we need to determine the typical frequency properties
of the MoCap data we want to filter.

3. FREQUENCY PROPERTIES OF MOTION
As we show below, it is possible to determine reasonable
cutoff frequencies from recorded MoCap data. The best
method would be to determine the cutoff frequency before
filtering a given set of data. However, this is impossible
for real-time applications since the cutoff frequency needs
to be specified beforehand. In practice, we are forced to
use predetermined filters, and therefore need to estimate
generic frequency properties for free-hand motion. Let us
start by presenting our analysis methods before we continue
with presenting the experiment in section 3.2.

3.1 Analysis methods
Before we can begin the discussion on how to estimate a
reasonable generic cutoff frequency, we need to make some
assumptions about the noise distribution of the relevant Mo-
Cap technologies. There can be many sources of noise in a
MoCap system: it can be sensor noise, wobbling markers,
electrical interference, quantization noise and more, depen-
dent on the MoCap system used [19]. As already mentioned,
sensors are known to have white noise properties [16, 19].
Some MoCap technologies may have a different noise dis-
tribution. However, for simplicity, in this paper we assume
that the MoCap system has a white noise distribution. Con-
sequently, our goal is to attenuate as much as possible of the
frequency band that is not part of the signal band. If it is
mandatory not to distort signal, we need to choose a cutoff
frequency that is just outside the signal band. However, if
we need higher noise suppression than is possible with this
conservative choice, we need to compromise signal distortion
by lowering the cutoff frequency inside the signal band [18].
The determination of the optimal cutoff frequency will then
be based on the noise attenuation needed and how much we
can lower the cutoff frequency inside the signal band with-
out distorting the desired signals too much. To be able to
determine the latter, we used the following two methods.

3.1.1 Power spectral density (PSD) estimation
The most common method to determine the frequency con-
tent of a digital signal is to analyze the frequency spectrum,
which can be derived in different ways with the Fourier
transform. A non smoothed spectrum estimation with the
Periodogram, a classic non-parametric technique, will nor-
mally be too noisy to clearly show the trend in the data
[3]. We therefore ended up using the Welch’s method with
a Hann window of length 100 (sampling frequency of 100
Hz). This is a much used method which reduces the noise in
the spectral density estimation in exchange for reduced res-
olution in the frequency domain. However, other spectrum
estimators and windows will give similar results [3].

3.1.2 Residual analysis
While the above mentioned method offers a good basis for
making a conservative determination of the passband edge,
it does not necessarily provide us with a good basis to de-
termine a reasonable cutoff frequency. For a more hands on
approach, it is possible to visually inspect the MoCap data
when filtered with different cutoff frequencies. We can then
choose the cutoff that provides a good balance between noise
reduction and signal distortion. A more systematic version

of this technique is known as residual analysis, which is a
common method used for this task in the field of biome-
chanics [18]. The method consists of low-pass filtering the
data with different cutoff frequencies and calculating the
residual, i.e. what is left over when we subtract the filtered
data from the raw data. As long as the filter is only atten-
uating noise, the residual should be rather small. However,
when the filter starts to attenuate the desired signal, the
residual will become larger. By performing this analysis for
several cutoff frequencies, and plotting the resulting residu-
als, we get an overall picture of their impact. This plot can
then serve as the basis for determining a reasonable cutoff
frequency [18].
When computing the residual plots, care should be taken

to make sure that the applied filters have constant group
delay and are consistent with each other. This will ensure
that the change in residual is not due to difference in the
filter characteristics other than the cutoff frequency. It is
common to use the actual intended filters which are sup-
posed to be used in the final application [18]. However, our
goal is not to find the optimal filter for a given set of data,
but to find the main frequency trend of free-hand motion
among several recordings. We ended up using the window
method [7] to design the needed filters with an order of 200.
This symmetric FIR design method has a broad cutoff fre-
quency range and gives consistent filter characteristics for
different cut-off frequencies [1].

3.2 The experiment
3.2.1 Setup and recordings
The experiment consisted of recording the hand motion of
20 subjects, 4 females and 16 males in the age range of
22-47. We used an optical infrared marker based MoCap
system, OptiTrack, to record the subjects’s hand motion
at 100 Hz. The MoCap setup consisted of eight OptiTrack
V100:R2 cameras that were attached to tripods in a room
measuring about 7x8 meters. One 16 mm reflective spher-
ical marker was attached to the subject’s dominant hand,
close to the index finger, see Figure 3. Care was taken to
minimize wobbling of the marker, which can introduce ad-
ditional noise to the MoCap data. For the same reason, we
also spent time calibrating the OptiTrack system. We did
not want to perform post processing of the recorded data,
e.g. for gap filling, which could potentially have distorted
our results. Recordings with invalid or missing data were
therefore omitted. The subject’s hand motion were further
recorded in the following two takes, both 20 seconds long.

• Take 1: The subjects were asked to move their domi-
nant hand as rapid as possible in an arbitrary pattern.
The intention of these recordings was to find an upper
frequency limit for hand motion.

• Take 2 : The subjects were asked to simulate that they
were controlling some application with more articu-
lated and controlled motion. Here we wanted to ex-

Marker placement on hand MoCap system

Free-hand

motion

Figure 3: Placement of the marker (left) and an
illustration of the experiment (right).
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Figure 4: PSD estimation of the recorded data using
Welch’s method. The data is shown as statistical
results of all 20 recordings, with results from both
Take 1 (rapid) and Take 2.

amine the typical frequency content of the motion we
anticipate to see most of in our target application.

We expected the latter to result in the need for a lower cut-
off frequency than the former, which makes it possible to
remove more noise. During all recordings, the subjects were
asked to not clap their hands or make other limb collisions.
We wanted to avoid collisions since they can be problematic
to study, e.g. contain high frequency components that re-
quire higher sampling rates, and added noise problems with
wobbling markers.

3.2.2 Results and interpretations
The results of the experiment are shown in Figures 4 and 5.
As we can see from the spectral density estimates of Take
2, the mean value starts to move away from the noise floor
between 20 and 30 Hz. For Take 1, the mean value starts to
move away between 25 and 35 Hz. Furthermore, the main
frequency content for Take 2 reaches roughly up to about
5–10 Hz, while Take 1 has a wider frequency distribution.
The residual plots in Figure 5 are somewhat easier to in-

terpret since deviation in mm is more comprehensible than
power in dB. When filtering hand motion, which normally
has a displacement in the range of 200–1000 mm, a devia-
tion of 1 mm is normally not significant. We have further
seen a general trend for what the residual values indicates.
When it was below 1 mm, the filters did not severely dis-
tort the MoCap data. But when the value increased above
5 - 10 mm, the filters started to clearly distort some high
frequency parts of the MoCap data.
By using the above indicators and the statistical residual

results in Figure 5, it seems reasonable to set the lower
cutoff frequency for Take 2 to about 5 Hz, since the standard
deviation is below 5 mm at this cutoff value. A reasonable
upper frequency cutoff for Take 1, can further be set to be
between 15 and 20 Hz, since the mean value goes below
1 mm in this region. A sensible trade off between these
two outer cutoffs is in our opinion 10 Hz, since Take 2 is
below 1 mm and Take 1 is below 5 mm for this cutoff value.
Examples of how these cutoff frequencies perform can be
seen in Figure 6. Based on this experiment, we propose
the following three frequency cutoffs for filtering free-hand
motion:
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Figure 5: Statistical results of the residual analysis
of the recorded data. Take 1 (rapid motion) is in
red while take 2 is given in black.

5 Hz Heavy filtering : Fast and rapid motion may be heavily
smoothed out. However, the filtered data will contain
the main features of normal controlled hand motion.

10 Hz Medium filtering : Most features of normal and medium
rapid motion will be kept in the filtered data. How-
ever, some of the higher frequencies will be partially
distorted.

15 Hz Light filtering : All main features of both rapid and
normal motion are kept. Only the most extreme parts
of the data may be partially blurred.

We could have added a cutoff frequency at 20 Hz, since the
residual plot shows that the mean value of Take 1 decreases
below 1 mm at about 20 Hz. But we have omitted this cutoff
since we are not sure if the content that is blurred away
with the 15 Hz cutoff, is due to noise or actual motion. The
residual difference with the 20 Hz cutoff, is also minimal.
However, a cutoff frequency of 20 Hz can be used if it is
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Figure 6: Excerpts from Take 1 and Take 2. While
a 5 Hz filter cutoff works well for the Take 2 below,
the rapid motion needs a 10 Hz or a 15 Hz cutoff
frequency to follow the details in the recording.
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important to keep all details in the recordings, and noise
suppression is secondary.

3.2.3 Discussion
With this experiment we wanted to determine a generic
trend in frequency content of free-hand motion. However,
it was not straightforward to give instructions to the sub-
jects. We hesitated to give them specific tasks, since this
could lead them to do certain motion which could have influ-
enced our results. We therefore ended up giving them quite
general and open tasks, which resulted in a range of dif-
ferent interpretations and motion. However, as the results
show, there is a quite clear trend among the recordings.
We considered testing expert subjects trained in moving

at high frequencies, e.g. drummers. However, their motion
is normally an effect of collisions and special techniques to
be able to achieve high frequency. These motion were not
part of our scope. Furthermore, inspection of the recorded
data revealed that some contained position jumps that could
not have been due to human motion. The errors clearly
distorted the PSD data and raised the overall noise floor. It
is therefore important to remove these errors if one wants
valid PSD data. However, these errors had minimal impact
on the residual plots, which shows that the residual method
is a somewhat more robust analysis method.

4. PROPOSED IIR FILTERS
In our previous work we have based our sound excitation
on three main types of MoCap data: position, velocity and
acceleration [12]. We found these motion features to be
the most useful for controlling sonic and musical features.
We have therefore chosen to focus on the filter types that
extracts these motion features from raw positional MoCap
data, respectively low-pass filters and low-pass differentia-
tors of degree 1 and 2.

4.1 Proposed IIR vs. symmetric FIR filters
We have already shown in our previous work that our IIR
design method can produce better low delay filters than
currently available methods [10, 11]. As we can see from
Table 1 and Figure 8, the proposed IIR filters are signifi-
cantly better than symmetric FIR filters if low delay and
high noise attenuation are of priority, giving a potential
noise suppression gain between 5-16 dB for the relevant fil-
ter types. The presented IIR filters have a group delay of 2
samples or less. This group delay amount was found to give
a well balanced trade-off between the different filter objec-
tives. For a more thorough low-delay comparison between
different filter types, see [11]. The specification of the pro-
posed IIR filters is given on our project web page together
with a MAX/MSP implementation [1], and a subset of these
filters is given in Table 2. (To convert normalized frequency
to hertz, multiply by half the sample frequency.)

4.2 Filter evaluation
We have tested the proposed IIR filters and confirmed their
performance in MAX/MSP. It is not trivial to evaluate the
filters for general NIME use as it depends strongly on the
end application. While some applications may want to min-
imize noise to get the most robust performance, some ap-
plications may benefit artistically from MoCap noise as it
can add a desirable texture to the resulting sound synthesis.
Over-smoothing, i.e. deliberately distorting the signal, can
also be appropriate for some applications. However, it is im-
portant to use a cutoff frequency that satisfies the need for
the given task, as the following example shows. By identify-
ing high peaks in the acceleration data, we are able to detect
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Figure 7: The effects of using different cutoff fre-
quencies when extracting acceleration of a hand
clap. The collision is more easily detected if the cut-
off frequency is above 10 Hz (acceleration in m/s2).

sudden motion and limb collisions, which we have used to
trigger sonic and musical features [12]. The effect of using
a too low cutoff frequency when extracting the acceleration
data is shown in Figure 7. Not only does it attenuate more
of the white noise, it also attenuates the acceleration peak.
This is an expected effect, since a collision can be seen as
an impulse which has a flat frequency response, i.e. the en-
ergy is spread out in the whole frequency band. The more
of the frequency band that is included when differentiating,
the more the collision power will be seen in the acceleration
data.
Another important issue is what impact a moderate amount

of group delay error can have on our target application. In
our experience, there does not appear to be any dramatic
negative distortion effect if the upper frequency range has
some group delay error, as long as the main content (up to
5–10 Hz) has a fairly constant group delay. The optimized
IIR filters are further superior if high noise attenuation,
combined with low passband distortion and low group delay
are desired. In our findings, it is possible achieve up to one-
third the delay by using optimized IIR filters, as compared
to symmetric FIR filters with similar performance. A delay
of two samples, as opposed to six, yields a delay reduction
of 40 ms for a MoCap system with a sampling frequency of
100 Hz, which should be a favorable reduction for a typical
MoCap setup used for musical interaction [13]. In short, the
optimized IIR filters have much better low delay potential
than symmetric FIR filters for our target application, at the
expense of a more complicated design.
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Figure 8: Comparison between 4th order low-pass
differentiators (LPD) of degree 2 with a normalized
cutoff frequency of 0.3. If low passband distortion is
desired, the optimized IIR differentiator of degree 2,
gives a noise suppression improvement of about 13
dB (�4.5 times more noise attenuation) with similar
or better performance for the other filter objectives.
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Table 1: Potential noise attenuation gain in dB of
the proposed IIR filters compared to optimal sym-
metric FIR designs, all of order 4. While the sym-
metric FIR filters have a fixed group delay of 2 sam-
ples, the proposed IIR filters have a group delay of 2
samples or less. For some of the proposed filters we
have tolerated a moderate amount of group delay
error.

normalized cutoff 0.1 0.2 0.3 0.4 0.5
low-pass filters 8 8 8 6 5
low-pass diff. of degree 1 10 10 9 7 6
low-pass diff. of degree 2 16 15 13 12 10

5. DISCUSSION AND CONCLUSION
In this paper we have addressed the challenge of using dig-
ital filters for real-time applications, focusing on filtering
free-hand motion. To be able to design filters for such mo-
tion data, we conducted an experiment to determine the
generic frequency properties of free-hand motion. Based on
this experiment, we propose 3 different filter cutoffs; 5, 10
and 15 Hz. The 5 Hz, and partly the 10 Hz, cutoff will at-
tenuate some of the high frequency parts of rapid free-hand
motion. However, this may be necessary to get the needed
noise suppression.
Although the experiment has only considered the fre-

quency content of free-hand motion, our review of previ-
ous frequency studies in biomechanics suggests that most
human motion is reported to be close to our found cutoff
values, or more specifically between 3-26 Hz [9, 19, 20]. Our
proposed frequency cutoffs should therefore work for most
parts of the body, with some reasonable generalizations and
adjustments, by regarding the kinematics of the used limb.
Our proposed analysis method can be used if more certain
knowledge is needed [1].
Finally, we propose a set of filters for our target applica-

tions, which has lower delay than what is achievable by es-
tablished filter design methods. The main purpose of these
filters has been to present some IIR filters designed with
low group delay in mind, which is an important feature for
intimate control for musical interactions. Compared to op-
timal symmetric FIR filters, they give a noise attenuation
increase between 5-16 dB with similar delay, or up to 2-3
times the delay reduction for similar magnitude properties.
These filters and some tools are published on our project
page together with a Max/MSP implementation [1]. Since
the optimal filter depends heavily on application specific
details (e.g. sampling frequency, intended use), it is not
possible to present a complete list of filters for all different
applications and scenarios. However, our proposed set of
filters should demonstrate the potential of using our filter
design approach.
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Chapter 8

Appendix

8.1 The alternative filter design method

The alternative filter design method that has been used in this thesis is based on multi-objective
optimization combined with a heuristic search method known as random-restart hill climb.

The main idea behind this approach was to use an unbiased search method to be able to search

freely for novel solutions without restricting the search space. More work could have gone

into improving the optimization method. However, such discussion is out of the scope of this

thesis. Our main requirement of unbiasedness was met, and the chosen algorithm has, to my

experience, shown to be an effective algorithm for similar problems. Additionally, the resulting

filters were also found to give credibility to the proposed method. In the following, I present

how the filter design problem was formulated as a multi-objective optimization problem. Then

I present the search algorithm and strategies that were used to solve these problems.

8.1.1 Multi-objective optimization (MOOP)

We can informally define optimization as the task of finding the solution that either maximizes

or minimizes a problem. Since our design task consists of several objectives, given in Section

4.3.6, it is natural to regard it as a multi-objective optimization problem (MOOP) [12], which

enables us to optimize several objectives simultaneously. This is done by combining the dif-

ferent objectives into one objective function. An important point with MOOP is that there will

generally exist not a single optimal solution, but several solutions that depend on how we value

the different objectives. Different weights wi on the error functions erri are used to specify how

we value them. The weights, together with the error functions, then determine the search space,

i.e. the function we want to optimize:

minimize Err =
4∑

i=1

wierri (8.1)

If we manage to create a search algorithm that can optimize this function for different

weights, we can also determine the noninferior surface [10], i.e. the set of solutions that shows

the best trade-off between the different objectives. We can then choose the solution on the

surface that best suits our preference. These surfaces were essentially to make thorough com-
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parisons between different design methods since they give a good image of the potential of the

possible filters that the different methods can produce. This approach was used in Papers V and

VI and Section 4.6 of this thesis.

8.1.2 Search strategy

Filter design parameters (search parameters)

When searching with classical filter design methods, the filter candidates were coded with the

necessary parameters needed to determine the respective filter types. The unconstrained IIR

search space was parameterized with pole and zero positions in the z-plane of the transfer func-

tions. This made it simple to ensure stability by constraining the poles inside the unit circle

while not constraining away possible optimal solutions [32]. It could also be used to achieve a

stability margin by restricting the maximum radius of the poles. When searching after low-pass

differentiators, one or two zeros were constrained to dc (ω = 0) to get the wanted differentiator

behavior (differentiators of degree 1 or 2, respectively). To evaluate the filter candidates, we

used MATLAB to compute the error functions given in Equations (4.9), with a resolution of

100 uniformly spaced points in the frequency domain.

Search algorithm

To be able to search freely for new novel designs, we needed an unbiased optimization algo-

rithm, i.e. one that makes little assumptions about the problem being optimized, also known as

metaheuristics. Random-restart hill climbing was chosen as our search algorithm. This is an

algorithm that combines the global view of random search with the local view of hill climbing
[44]. Metaheuristics are not guaranteed to find optimal solutions. However, the chosen search

algorithm was able to explore the search space satisfactorily if the exploration rate was chosen

high enough compared with the search complexity. A pseudo-code of the used search algorithm,

which shows the main behavior, is given below. The algorithm can be tuned in several ways,

and there exist also alternative search algorithms. However, the discussion of these details is

out of the scope of this thesis.

1 b e g i n

2 r e p e a t N t i m e s / / N d e t e r m i n e s e x p l o r a t i o n r a t e

3 i n i t i a l i z e random f i l t e r

4 c l i m b e d F i l t e r = h i l l C l i m b ( random f i l t e r )

5 i f E r r ( c l i m b e d F i l t e r ) < E r r ( c u r r e n t B e s t F i l t e r )

6 c u r r e n t B e s t F i l t e r = c l i m b e d F i l t e r

7 end

8 end

9

10 f u n c t i o n h i l l C l i m b ( f i l t e r C a n d i a t e )

11 i n i t i a l i z e s t e p S i z e t o 0 . 5

12 w h i l e ( s t e p s i z e g r e a t e r t h a n 1E^8)

13 compute b e s t N e i g h b o o r F i l t e r by a d j u s t i n g each p a r a m e t e r . . .

14 o f f i l t e r C a n d i d a t e wi th +/− s t e p s i z e and check p e r f o r m a n c e

15

16 i f E r r ( b e s t N e i g b o o r F i l t e r ) < E r r ( f i l t e r C a n d i a t e )

17 f i l t e r C a n d i a t e = b e s t N e i g b o o r F i l t e r

18 e l s e

19 s t e p S i z e = s t e p s i z e / 2
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20 }

21 r e t u r n f i l t e r C a n d i a t e

22 end

23

24 f u n c t i o n E r r ( f i l t e r C o e f )

25 compute e r r 1 , e r r 2 , e r r 3 and e r r 4 based on f i l t e r C o e f ( 2 )

26 r e t u r n w1* e r r 1 + w2* e r r 2 + w3* e r r 3 + w4* e r r 4

27 end

Choosing the weights

The core problem with MOOP problems is finding the appropriate weights that give the wanted

results. It is therefore important to find a weight strategy that makes it possible to uncover the

wanted filters. In this thesis, three different weighting strategies have been used:

Adjusting w3. In Paper V, we focused on minimizing the group delay while maximizing the

stopband attenuation. We chose therefore not to incorporate the group delay error objec-

tive, i.e. w4 was set to 0 for all the presented results. Furthermore, we mainly used the

same fixed weights for objective functions err1 and err2 (w1 = w2). This was found to

be a sensible balance and is also the same as what Cortelazzo et. al. used in [10]. As a

result, we are left with only one weight that we need to adjust, the weight to our primary

objective err3 (low group delay). Thus, noninferior surfaces consisting of single lines

can now be revealed by ramping w3 from 0 to an appropriate value. A reasonable step

size for this ramp was found by experimentation to achieve a somewhat even distribution

of points in the noninferior surfaces.

Adjusting the weight ratio between w1 and w2. In Paper VI, we focused on minimizing the pass-

band error while maximizing the stopband attenuation. In other words, we wanted to find

magnitude optimal filters. We choose therefore not to incorporate the group delay objec-

tive weights; i.e. w3 and w4 were set to 0 for all the presented results. This left us with

two weights, w1 and w2. Finding the trade-off relationship between these two objectives

was then just a matter of iteratively changing the weight ratio between w1 and w2 in order

to reveal the noninferior surface.

Finding filters with a specific group delay. Section 4.6.2 gives a low-delay comparison between

different filters with an upper group delay restriction of 2 samples. To be able to find a

range of such filters, it was necessary to find a combination of weights w1, w2 and w3

that gave different combinations of passband error and stopband attenuation, but with

an upper group delay of two samples. These filters were found by employing a search

algorithm that found the right combination of weights. More specifically, the filters were

found by using different weight ratios between w1 and w2 and finding the corresponding

weight w3 that gave filters with an upper group delay of two samples.

An important difference between the above presented approach and the typically iterative op-

timization methods mentioned in Section 4.4.4 is that the above approach was not based on

prescribing a specific constant group delay value. The wanted group delay response was found

by finding the correct weights, which resulted in the wanted properties.
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8.2 Reducing random noise filters

The specifications of the given filters from Section 4.7.4 are given below.
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8.3 Proposed filters

In Paper VII, we proposed a range of filters applicable for real-time MoCap applications, both

low-pass filters and low-pass differentiators of degrees 1 and 2. The specifications of these IIR

filters are given below by the pole and zero placements in the z-plane. The MATLAB function

zp2tf can be used to convert the specifications to transfer functions. All filters have a group

delay of two samples or less and have better low-delay performance than what currently estab-

lished filter design methods can create (a noise attenuation gain between 5 and 16 dB compared

with comparable symmetric FIR filters or two to four times the delay savings). Notice that it

is more optimal to use one low-pass differentiator of degree 2 instead of using two subsequent

low-pass differentiators in cascade.
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8.3.1 Low-pass filters
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8.3.2 Low-pass differentiators of degree 1
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8.3.3 Low-pass differentiators of degree 2
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