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Structure of the thesis

This thesis is organized in two parts. The first part is an introductory part,
which can be seen as background material for the second part containing
the papers with the main results of this thesis. The first part is structured
as follows. First we give a motivation for the study of noise in qubits and
a brief introduction to quantum physics and quantum computing. Later
we move on to more specific background material such as theories of noise
in qubits, the microscopic origin of the noise and further material that is
directly related to the papers.

The second part consists of the published papers, which independently
form a self contained presentation of the main results obtained in this thesis.
I also give a summary of the papers where I discuss the motivation behind
each paper and some prospects for further research.
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Introduction
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Chapter 1

Background

In this section I will briefly give some background information for the work
done in this thesis. First we give a motivation for the work and a brief
outline of quantum mechanics, the fundamental theory used throughout
this thesis. Secondly we move into the subject of quantum computing and
the physics of quantum bits.

In this section I have attempted to write in a way so that those with-
out much previous knowledge of physics should be able to learn at least
something from it. Still parts of this chapter contains material which is
hardly readable without a background on the level of a university degree in
physics, this is of course a major problem encountered in the presentation
of modern physics.

I will not give a formal introduction to the theory of quantum mechanics,
for that I refer the reader to standard textbooks. Rather, I will in this
section attempt to illustrate the basic features of quantum mechanics that
are relevant to this thesis: the superposition principle, entanglement and
decoherence, by use of the double slit experiment with single particles. This
particular experiment is chosen both because of its beauty, its thought
provoking character and its ability to illustrate the essence of quantum
mechanics.

Here we will not go into any detailed description of quantum computing.
What is relevant to this thesis is the physics of the basic building block,
the qubit. In order to illustrate the basic mechanisms behind a qubit I here
choose a flux qubit. In principle we could choose any qubit design, but
since parts of the papers are focused on superconducting qubits this is a
natural choice. I choose to use the flux qubit rather than the charge or the
phase qubit as an example since the concept of a superposition of current
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Chapter 1. Background

states through a loop is to me more intriguing than the superposition of an
extra Cooper pair on a superconducting grain.

1.1 Motivation

In this thesis we study the subject of noise and decoherence in quantum
devices, in particular in quantum bits or qubits. There are two main mo-
tivations behind why research in this field is interesting in itself and might
potentially be beneficial for society.

Firstly, it is crucial in the quest for the ambitious goal of constructing a
quantum computer, a computer who could solve certain tasks dramatically
faster than ordinary classical computers. The fundamental unit in any
quantum computer is the qubit, the quantum analogue of the classical bit.
Many research groups and companies all over the world are at present time
working with almost equally many different physical designs for qubits and
ways to make them operate together, with the goal of finally realizing a
design which can be scaled up to make a real quantum computer.

By far the largest and most fundamental problem encountered in the
design of qubits and other quantum devices is decoherence, the inevitable
loss of quantum properties in the device due to interaction with its envi-
ronment. When the quantum behavior of a qubit is lost, it can not be used
for quantum computing. Understanding decoherence in qubits is therefore
extremely important in order to improve the design of qubits and other
quantum devices. This can be achieved by improving the protection and
shielding of the qubit from its noisy environment, and by development of
other countermeasures which can potentially reduce the rate and the impact
of decoherence in qubits.

Secondly, the study of qubits and other mesoscopic quantum devices
might shed light on maybe the greatest fundamental problem in modern
physics, the border between the quantum and the classical realm. For soon
a full century our theoretical description of nature has been divided in
two parts, with a fuzzy boundary. On one hand we have classical physics,
which includes mechanics, electromagnetism and the general theory of rel-
ativity. These theories describe the familiar macroscopic realm, from the
motion of planets, stars and galaxies to the working of the familiar objects
and machines we surround ourself with in our everyday life. On the other
hand quantum mechanics, and its generalization quantum field theory, de-
scribes the microscopic properties of atoms, electrons and even more exotic
particles, the emission and absorptions of light and is also required to un-
derstand a long list of macroscopic properties of solids such as the behavior
of semiconductors and superconductors.
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1.2 A brief introduction to quantum mechanics

Both theories, the quantum and the classical, describes the properties
of the physical world with astounding precision within their area of valid-
ity. Unfortunately the two theories are incompatible. The linear dynamics
of quantum mechanics cannot be used to derive the classical world, while
classical mechanics fails in describing experiments such as the double slit ex-
periment with single particles, and the violation of Bell’s inequalities [1, 2].
In quantum mechanics one circumvents this problem by postulating the
nonlinear collapse of the quantum wavefunction in the moment of measure-
ment of the quantum state. The collapse takes place when a quantum state
is measured by a classical apparatus [3, 4], an object outside of the theory
of quantum mechanics. But why is the measurement apparatus, which is
itself built up of atoms, not described by the same quantum theory as de-
scribes it constituents to such a high degree of precision? Quantum theory
itself has no clear answer. We cannot predict from the theory what makes
an object classical. The border between the two theories is therefore not
well defined and quantum mechanics is not a self-contained theory since it
depends on notions outside the theory itself.

Mesoscopic quantum devices, such as e.g. superconducting qubits, are
devices whose size and nature lies very close to the fuzzy border between the
quantum and the classical. Therefore, in addition to tremendous techno-
logical prospects, research on qubits and other mesoscopic quantum devices
might lead to increased understanding, through empirical input, of the bor-
derline between the two realms. It is tempting to believe that the search for
coherent manipulation and measurement of mesoscopic, and may be even
larger quantum devices, might eventually lead to a greater understanding
of quantum theory and perhaps lead to hints useful for the development
of corrections to quantum theory. The ultimate, but may be unachievable
goal, would be to create a unified theory which contains both classical and
quantum physics as limiting cases. Attempts to develop such theories has
already been made, see e.g. Ref. [5] for a review, however the testing of
these theories require control of coherent superpositions of quantum object
of mass or size much larger than what is currently achieved. The main is-
sue in designing such experiments is again the decoherence of the quantum
states due to environments.

1.2 A brief introduction to quantum mechan-

ics

In this section I will attempt to illustrate the basic notions of quantum
mechanics that are essential to this thesis. We start with the double slit
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Chapter 1. Background

experiment, which in my opinion covers the most fundamental features
of the theory. Then we will briefly describe the basic formalism used to
describe decoherence.

1.2.1 The double slit experiment

The double slit experiment with single particles is said to capture the
essence of quantum mechanics. In a classical double slit experiment, a

Figure 1.1: A double slit experiment. Plane waves are incident from below
on a wall with two small slits. The diffracted waves originating from each
of the two slits interfere. The resulting measured intensity, at the detector
screen (e.g. a photographic plate), shows a typical interference pattern.
The amplitude at each point on the detector is determined by the relative
difference in the distance traveled from the two slits to the particular point
of interest on the detector.

plane wave is incident on a impenetrable wall, with two small slits, see
Fig. 1.1. The diffracted waves from each slit interfere with each other, just
like classical waves on water. Theoretically, we describe the propagating
wave pattern after the slits, the distribution of wave amplitudes in space
and time, by adding together (or superposing) the diffraction pattern orig-
inating from each of the slits in isolation. More formally, we denote the
amplitude of the wave originating from slit 1 and 2 at time t and position r
by ψ1(r, t) and ψ2(r, t), respectively. Such that ψ1(r, t) describes the wave
pattern on the water if we close slit 2. Then the total wave amplitude is
simply the sum of the waves from each source ψtot(r, t) = ψ1(r, t)+ψ2(r, t).
This is the superposition principle, the response at a single point due to
two different sources is the sum of the responses which would have been
caused by each source individually.
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1.2 A brief introduction to quantum mechanics

The beautiful nature and richness of the classic double slit experiment
is indeed fascinating, but should not be a mystery. We encounter similar
phenomena in our everyday life, water waves, sound waves and light all
behave according to the superposition principle. The real mystery is en-
countered if we use a single particle source, a source where the intensity
of photons, electrons, neutrons or even large molecules [6] can be tuned
sufficiently low such that only a few particles each second is measured at
the detector screen, and the probability to measure two particles at the
same time is negligibly small. The particles arrive one by one at the detec-
tor screen, but their density sums up to an interference pattern identical
to that formed by classical waves, see Fig. 1.2. It seems like each particle
moves through both slits at the same time, as a wave interfering with itself,
before ending up as a single point particle on the detector screen. Quoting
Richard Feynman: [on the double slit experiment] A phenomenon which is
impossible, absolutely impossible, to explain in any classical way, and which
has in it the heart of quantum mechanics. In reality, it contains the only
mystery [of quantum mechanics] [7].

Figure 1.2: The build-up of the interference pattern in a single particle
double slit experiment with electrons. A. Tanamura et al., Am. J. Phys.
57 117 (1989)

Quantum mechanics explains the double slit experiment in the following
way: In order to obtain the interference pattern, we need a source emitting
particles in such a way that it is impossible, even in principle, to tell the
exact direction of the emitted particle. Such a source is not that hard to
obtain, a photon emitted by an atom will e.g. according to quantum me-
chanics in general be emitted continuously as a spherical wave, and if we
neglect the intensity of the wave in all directions except those two corre-
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Chapter 1. Background

sponding to the two slits of the double-slit experiment we are required to
describe the state of the particle incident on the slits as a superposition of a
particle incident on the right and the left slit, respectively. We might write
this state formally as

|ψ〉 =
1√
2

(|ψL〉 + |ψR〉) , (1.1)

where |ψL〉 is the state of a single particle incident on the left slit and
|ψR〉 denotes the particle state incident on the right slit. The situation is
illustrated in Fig. 1.3 a).

The states |ψR〉 and |ψL〉 is here written in the so called bra-ket notation.
This is a general notation we use to describe quantum states, without the
need to refer to a specific basis. If we want we can re express the state in
a specific basis. As an example we can re express the general state |ψR〉
in the position basis, which means that we specify the amplitude of the
wavefunction at each point in space and time

|ψR〉 → ψ(r, t).

The state can be expressed in any basis, which is the quantum mechanical
equivalent to expressing classical mechanics in an arbitrary set of coordi-
nates. For particles the most commonly used bases are the position basis
and the momentum basis. In the following we will express the state of the
system passing the left and the right slit, respectively by the amplitude of
the wavefunction as a function of the position on the detector screen which
can be related to the angle of diffraction at the slits θ, see Fig. 1.3.

To describe the interference pattern theoretically, we need to compute
the intensity I(θ) at each point on the detector. A position r on the detector
screen can be related to an angle θ in spherical coordinates, see Fig. 1.3
a) for a illustration. The intensity distribution is computed by adding
together the amplitudes of the wavefunctions for particles traveling through
either the left or the right slit independently, according to the superposition
principle. Assuming that the distance from the slits to the detector is much
larger than the distance between the slits, we can write

I(θ) ∝ |ψL(θ) + ψR(θ)|2 = |ψL(θ)|2 + |ψR(θ)|2 + ψ∗
L(θ)ψR(θ) + ψ∗

R(θ)ψL(θ)

= A(θ) cos2
(
πδ sin θ

λ

)
, (1.2)

where ψL(θ) and ψR(θ) is the particle wavefunction at the detector due to
particles going through the left and the right slit, respectively, A(θ) is a
modulating function determined by the degree of diffraction at each slit, δ
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1.2 A brief introduction to quantum mechanics

is the distance between the two slits and λ is the de Broglie wavelength of
the particle.

The interference pattern is due to the coherence term ψ∗
L(θ)ψR(θ) +

ψ∗
R(θ)ψL(θ). The size of this term at a given angle θ depends on the phase

difference between the waves originating from each slit. In analogy with
classical waves, the phase of the wavefunction ψR/L(r, t) oscillates in space
and time and the relative phase difference between the waves from the left
and the right slit depends on the difference in distance traveled from the slit.
At some points the two wavefunctions will interfere destructively resulting
in zero particle density, while at other points they interfere constructively
giving a higher measured particle density than expected by simple addition
of the individual densities originating from each of the slits.

The visibility of the interference pattern in the double slit experiment
is due to the quantum coherence of the particles emergent from the source,
this means that the phase information of each particle needs to be conserved
and unperturbed while it travels from the source to the detector. Let us
now assume that there exists other particles between the source and the
double slit, we might call them electrons, which might potentially interact
with the particle emitted from the source (we might call those neutrons).

This situation is illustrated in Fig. 1.3 b), where an electron is moving
in proximity to the left slit. We might assume that if the trajectory of the
electron is in sufficiently close proximity to that of the neutron emitted from
the source, the two will interact and the electron is scattered due to the
interaction. In quantum mechanical notation we might denote the outgoing
state of the unperturbed electron by |e0〉 and the state of the scattered
particle by |e1〉. We might denote the overlap between these two states by
α = | 〈e1|e0〉 | ≤ 1. We have that α = 1 if the two states are identical, i.e. if
the interaction does not disturb the trajectory of the electron at all. If the
two states are orthogonal (in Hilbert space, a mathematical construction
which allows us to treat quantum states as points in a special vector space
and make use of the familiar geometrical concepts of vector algebra) we
have that α = 0, note that the scattered trajectories are not required to be
orthogonal in real space in order to make the states |e1〉 and |e0〉 orthogonal.
In fact only a small deviation in the trajectory is sufficient to make the two
states orthogonal if the momentum of the incoming electron was sharply
defined.

Since the two particles interact, we can no longer write down the state
of the neutron impending on the double slit as a single isolated object, like
we did in Eq. (1.1). If the neutron passes the left slit, the state of the
electron will be perturbed from |e0〉 to |e1〉, while if the neutron passes the
right slit, or does not pass at all, the state of the electron is unchanged. We

9



Chapter 1. Background

| | > | >= +L Rψ >

RL

Single particle source

θ

θI(  )

RL

Single particle source

θ

θI(  )

Particle close
to the left slit

| | >= Lψ > | e > + | |R> e 01 >| e1>
| e 0>

Figure 1.3: a) A single particle double slit experiment. b) The same experi-
ment with decoherence. A single particle source emits particles uniformly in
all directions. Parts of the outgoing wave incident on the slits is diffracted
and passes through to the detector screen at the bottom. The wavefunction
after the double slit can formally be written as a superposition of a particle
traveling through the left and the right slit |ψ〉 = 1/

√
2 (|ψL〉 + |ψR〉). The

particle intensity I(θ) at the detector screen is shown at the bottom of each
figure. In b) the particle emitted from the source interacts and becomes en-
tangled with another particle in the vicinity of the left slit, the interaction
leads to loss of coherence and therefore reduced visibility of the interference
pattern.

might write the state of the composite system as

∣∣ψn+e
〉

=
1√
2

(|ψL〉 |e1〉 + |ψR〉 |e0〉) , (1.3)

where |ψn+e〉 now denotes the state of the two particle system. Such a
composite state, where we are in principle unable to specify the state of
each individual particle without referring to other degrees of freedom, is
called an entangled state. The neutron and the electron became entangled
due to the interaction that might potentially have taken place at the left
slit.

We might now try to find out whether the interference pattern of the
neutron emerging from the source is affected by the electron. The inter-
ference pattern was calculated in Eq. (1.2) by taking the square of the
wavefunctions describing the particle passing through the left or the right
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1.2 A brief introduction to quantum mechanics

slit according to the superposition principle,

I(θ) ∝ |ψL(θ) + ψR(θ)|2 = |ψL(θ)|2 + |ψR(θ)|2 + ψ∗
L(θ)ψR(θ) + ψ∗

R(θ)ψL(θ).
(1.4)

The situation is, however, altered due to the electron at the left slit, even
if the electron is nowhere near the detector where the neutron is measured.
In order to find the intensity distribution at the detector screen, we need
to use the composite wavefunction when we compute the inner product

I(θ) ∝ ∣∣ψn+e(θ)
∣∣2 =

1

2
(ψn∗

L (θ) 〈e1| + ψn∗
R (θ) 〈e0|) (ψn

L(θ) |e1〉 + ψn
R(θ) |e0〉)

=
1

2

[
|ψn

L(θ)|2 〈e1|e1〉 + |ψn
R(θ)|2 〈e0|e0〉 + (ψn∗

L (θ)ψn
R(θ) + ψn∗

R (θ)ψn
L(θ)) 〈e1|e0〉

]

=
1

2

[
|ψn

L(θ)|2 + |ψn
R(θ)|2 +

(
ψn∗

L (θ)ψn
R(θ) + ψn∗

R (θ)ψn
L(θ)

)
α
]
. (1.5)

The visibility of the interference term is here reduced by the overlap factor
α = | 〈e1|e0〉 | due to the interaction with the electron at the left slit. The
situation is illustrated in Fig. 1.3 b). We say that the coherence of the
neutron passing the double slit is reduced due to the interaction with the
phonon.

The degradation of coherence due to interaction with uncontrolled de-
grees of freedom is called decoherence, and is a central concept throughout
this thesis. Due to interaction, the quantum properties of the neutron in the
double slit experiment is seemingly lost. The intensity pattern of Fig. 1.3
b) is consistent with a classical “particle” passing either the left or the right
slit. The lesson can be phrased as follows: if there is in principle a possi-
bility to find out which path the particle took through the double slit, by a
measurement of another physical quantity, then the particle will behave as
it took either the left or the right path through the the setup, rather than
a coherent superposition of all possible paths at the same time.

The decoherence in quantum bits, which is the main topic of this thesis,
is exactly the same concept and is qualitatively identical to decoherence
in the double slit experiment. In a qubit, which is a quantum system
where the dynamics is restricted to two distinct states |0〉 and |1〉, the basic
states might couple to other degrees of freedom in the environment. If
the interaction is such that the dynamical evolution of the environment is
different conditioned upon the state of the qubit, any coherent superposition
of the qubit states is degraded in the same way as the particle in the double
slit experiment. As an isolated system, the qubit might be prepared in a
superposition of |0〉 and |1〉, after interaction with the environment the
coherence decays until the state of the qubit is the classical combination of
either |0〉 or |1〉.
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Chapter 1. Background

1.3 Decoherence, general formalism

In this section we will describe the formalism of decoherence used in later
chapters and in paper 2, 3 and 4.

As we have seen, decoherence is the inevitable loss of quantum coherence
in a system due to entanglement with other degrees of freedom. Suppose
we have a quantum system, system A, initially prepared in the pure state∣∣φA(0)

〉
= ci(0) |i〉, where |i〉 are the eigenvectors of an operator Ô, i.e.

the possible states we can obtain as outcomes of a measurement of this
observable. If system A interacts with another system, B, the latter will
evolve in time conditioned upon the state of the former. Since quantum
mechanics is a linear theory, the unitary evolution of the composite system
can be written schematically as

∣∣φA(0)
〉 ∣∣φB(0)

〉
=
∑

i

ci(0) |i〉 ∣∣φB(0)
〉 t→

∑
i

ci(t) |i〉
∣∣φB

i (t)
〉
, (1.6)

where
∣∣φB

i (t)
〉

is the state of system B at time t conditioned upon that
system A was initially in the state |i〉. If we now form the reduced density
matrix for system A (see App. A.1),

ρA = TrB (ρAB) =
∑
ij

ci(t)cj(t)
∗ |i〉 〈j| 〈φB

j (t)|φB
i (t)

〉
, (1.7)

we find that the coherence between two given states i and j of system
A, is given by the overlap element

〈
φB

j (t)|φB
i (t)

〉
, between the states of

system B conditioned upon that system A was initially in state |i〉 and
|j〉, respectively. For two interacting systems A and B the dynamics of
B will in general depend on the state of A such that

∣∣φB
i (t)

〉
and

∣∣φB
j (t)

〉
might take different trajectories in the Hilbert space of system B. If the
two trajectories are distinct the distance between them will typically vary in
time. The overlap element

〈
φB

j (t)|φB
i (t)

〉
will therefore oscillate as function

of time and the coherence of system A will typically decay initially, but
might still be recovered at later times. In principle system A might still be
used as a qubit if one knows the details of the coherence oscillations and the
other system B does not disturb the state of A in an uncontrolled fashion.

Let us now move to a more practical example where the quantum system
A is initially prepared in a superposition state and is weakly coupled to an
environment E with a large number of degrees of freedom ε1..εN . System
B is then replaced by a general environment composed of a large number of
subsystems. In similar fashion as in the previous example, the entanglement
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1.3 Decoherence, general formalism

dynamics of the composite state can in general be written as

∑
i

ci |si〉 |e0〉 t→
∑

i

ci |si〉 |ei〉 , (1.8)

where |si〉 is a complete set of basis states for system A and |e0〉 is the initial
state of the environment. The set of basis states that is robust against the
perturbation induced by the environment is also called pointer states [8, 9].
The reduced density matrix of system A is

ρA = TrE(ρ) =
∑
ij

ci(t)cj(t)
∗ |si〉 〈sj| 〈ei|ej〉 . (1.9)

We can not necessarily assume from the outset that the states |ei〉 are
mutually orthogonal such that 〈ei|ej〉 = 0. However, we can decompose the
state of the environment |ei〉 = |ε1i〉⊗|ε2i〉⊗...⊗|εNi〉 in the large number of
degrees of freedom composing it. Since in general the coupling between the
system and the environment will result in slightly different trajectories for
each subsystem of the environment, we get 〈εi|εj〉 = α < 1. Even if a typical
system in the environment is very weakly perturbed by the presence of the
system S and α is close to 1 the total environmental states will therefore
rapidly approach orthogonality if the number of subsystems N is large
〈ei|ej〉 ≈ αN ≈ 0. Still, since the full dynamics is unitary, recurrences of
coherence will take place if we wait sufficiently long time. The time between
recurrences will however for all practical purposes become infinitely long for
a large environment, composed of maybe N ≈ 1023 degrees of freedom, or
even more. In addition, realistic environments can usually not be considered
to be closed. In open systems, which we will discuss in more detail later, the
information about the system is irreversibly lost to a thermal bath which
rapidly forgets any information about the state of the system.

As a side note, we show in fact in paper 2, that the time between recur-
rences of coherence in a quantum two level system coupled to an environ-
ment is much higher in an environment with frustrated internal interaction,
than in a noninteracting, or ordered one. Such an environment is therefore
especially dangerous if our objective is to preserve the coherence of the
central quantum system, and in qubit engineering this is indeed the goal of
primary importance.
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Chapter 1. Background

1.4 Quantum computing and the quantum bit

A quantum computer is a machine that would exploit the full complexity
of the many-particle quantum wavefunction in order to solve a computa-
tional problem. It would take advantage of the additional information in
a quantum state due to quantum entanglement and make use of the su-
perposition principle. The two principles that make quantum mechanics
fundamentally different from classical physics. The context for the devel-
opment of the quantum computer may be clarified by comparison with
a more familiar quantum technology: the laser [10]. Humans knew very
well how to make light long before they invented the laser. Since ancient
times we have mastered technologies such as the fire and ways to take ad-
vantage of and reflect the sunlight. Later we have seen inventions such
as the lightbulb, now in all different shapes for specific applications and
more modern examples such as light emitting diodes controlled by electric
fields. These light sources all has one common property in common, they
are all incoherent, meaning that the electromagnetic light waves is emitted
at random times and from random origins within the source. The outgoing
light from these sources is therefore a statistical mixture of light with an
uncontrolled, or at best, uniform distribution of phases. In a laser however,
the light quanta are all generated in phase, we call it coherent emission.
This is a quantum mechanical effect, and the coherent light have different
properties from light emitted from classical light sources. These properties
are useful for thousands of applications, from laser cooling to eye surgery,
most of which were not imagined by the first laser physicists. Still, lasers
does not replace conventional light sources such as lamps. In the same way
a quantum computer will not be a faster, bigger or smaller version of an
ordinary computer. It will rather be a different kind, engineered to control
coherent quantum mechanical waves for future applications which may not
necessarily be evident at present time.

1.4.1 The quantum bit: The quantum engineers ver-

sion of Schrödinger’s cat

The basic building block of the quantum computer is the quantum bit, or
qubit.

In a classical computer, the basic unit of information is the bit (short-
hand for binary digit). In order to store information an ordinary computer
uses a register composed of many classical bits, where each bit is a phys-
ical system that can be in two distinct states, 0 or 1, e.g. two positions
of an electrical switch, two distinct levels of current or voltage or two di-
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1.4 Quantum computing and the quantum bit

rections of magnetization or polarization. In analogy with this, the qubit
is a quantum mechanical system which has two basis states, e.g. |0〉 and
|1〉. However, since the qubit is now quantum mechanical the superposition
principle applies and the qubit can in general be in either the state |0〉 or
|1〉 or in a superposition the basis states α |0〉 + β |1〉, where α and β are
complex numbers. In classical physics the cat of Schrödinger is either dead
or alive. In quantum mechanics it is either dead or alive or in general a
combination of dead and alive at the same time. Qubits can in principle
be realized by all coherent systems where the dynamics is restricted to two
energy levels. We will come back to different realizations of qubits in the
later chapters.

1.4.2 A concrete example: The superconductor based

flux qubit

The flux qubit is a superconducting qubit, where the fundamental units
are a superconducting ring, typically fabricated on a lengthscale of 100nm,
containing at least one Josephson junction. The Josephson junction is an
insulating barrier preventing any classical currents to pass through, but
allowing quantum mechanical tunneling of charge across the barrier. The
flux qubit is illustrated in Fig. 1.4.

A superconductor is a conductor where the electrons have condensed
into a single macroscopic state, a coherent phase of matter described by the
quantum mechanical wavefunction ψ(r, t), where r is the spatial variable,
and t is time. The phase transition from the normal to the superconducting
state takes place at a material specific critical temperature Tc, where the
normal electron and hole-like excitations are separated from the supercon-
ducting condensate of Cooper-pairs [11], by an energy gap Δs(T ), favoring
the superconducting phase. The Cooper pairs are the “particles” of the su-
perconducting phase with twice the charge of the electron, they can “split”
into two normal electrons if an energy Δs(T ) is provided, but for temper-
atures much below the critical temperature kBT 
 ΔS(T ) excitations to
the normal phase are exponentially blocked.

The macroscopic superconducting wavefunction ψ(r, t) leads to two phe-
nomena of quantum nature which are essential for the construction of the
qubit. In the flux qubit, the first phenomenon is flux quantization, the re-
quirement that the magnetic flux through the superconducting ring should
be an integer number times the basic flux quantum Φ0 = h

2e , where h is
Planck’s constant and e is the electron charge. The magnetic flux induced
by the current is proportional to the current passing through the loop, and
limits the possible current states in the loop. The flux quantization arises
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Chapter 1. Background

Figure 1.4: The flux qubit. To the left: Schematic visualization of the
physics of a flux qubit acting as a quantum mechanical spin. The upper
part shows a superconducting ring separated by two Josephson junctions
in parallel. Circulating current in the ring gives rise to flux inside the
loop encoding two low energy states that can exist in a superposition. In
this design one has the possibility to control the external flux bias in the
main loop Φ1 and in the secondary loop at the Josephson junctions Φ2. The
bottom left figure shows the double well potential as a function of Φ1. When
the bias flux is equal to half a flux quantum, the two states, |↓〉 and |↑〉,
corresponding to current flowing clockwise and anti-clockwise around the
loop, respectively, have similar energy. This point is called the degeneracy
point. The height of the barrier is controlled by Φ2. Right figure: Electron
microscope image of a real flux qubit. The superconducting loop separated
by Josephson junctions is in the lower part of the figure. The upper part is
circuits used for read out of the qubit state. The left figure is taken from G.
Rose et al., Nature 473,194198 (2011), while the right figure is taken from
M. J. Biercuk Nature Physics 7, 525526 (2011)

from the criterion that the wavefunction ψ(r, t) should be single valued at
all points on the loop. The phase φ(r, t) of the wavefunction |ψ(r, t)|eiφ(r,t)

can in general vary as a function of the coordinates of the loop (the current
is in fact proportional to the gradient of the phase). Single valuedness of
the wavefunction require that the phase can only increment by an integer
number of 2π after a full revolution around the loop.

The second phenomenon is Josephson tunneling. The Josephson junc-
tion typically consists of two superconductors separated by an insulating
barrier of thickness 2−3nm, through which Cooper pairs can tunnel coher-
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1.4 Quantum computing and the quantum bit

ently. The supercurrent through the barrier

I = I0 sinφ (1.10)

varies as a function of the phase difference φ between the superconducting
wavefunctions on each side of the barrier. In the presence of a potential
difference V across the barrier, the phase difference evolve as

�φ̇ = 2eV. (1.11)

In principle one could make a qubit from a simple LC circuit, composed
of a capacitor and a inductor in series. For a dissipationless superconductor
the Hamiltonian of the LC circuit is simply

H =
q2

2C
+
φ2

2L
, (1.12)

where q is the charge on the capacitor of capacitance C and φ is the flux
through the loop which has inductance L.

The potential of this LC circuit as a function of the flux φ through the
loop can be recognized as the harmonic oscillator potential, where all energy
levels are equally spaced. Since qubit operations require us to manipulate
the two lowest energy levels by resonant pulses without exciting higher
levels, this circuit does not make a suitable qubit, a resonant pulse would
trigger excitations to arbitrary high energy states. To make a controllable
qubit we need a nonlinear element in order to break the harmonicity of the
LC Hamiltonian given by Eq. (1.12).

The full Hamiltonian of the flux qubit with a Josephson junction reads

H =
q2

2CJ
+
φ2

2L
− EJ cos

[
2e

�
(φ− φext)

]
, (1.13)

where q is now the charge on the Josephson barrier andCJ is its capacitance,
φ is the flux through the superconducting loop, φext is the external flux
imposed through the loop and the last term is the energy stored in the
Josephson junction

U =

∫
I(t)V (t)dt =

�I0
2e

∫
sinφdφ = −EJ cosφ (1.14)

where I(t) and V (t) is given by Eqs. (1.10) and (1.11).
The potential landscape of Eq. (1.13) is a double well potential as a

function of the flux coordinate, see the bottom left picture of Fig. 1.4,
where the localized states in each well is named |↓〉 and |↑〉. These two
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Figure 1.5: a) Double-well potential for the superconducting loop with a
Josephson junction with Hamiltonian given by Eq. (1.13). b) The local-
ized wave functions |ψL〉, |ψL〉 corresponding to the ground states in the
potentials VL and VR, respectively.

states differ by a single flux quantum passing through the loop. If the loop
is biased by half a flux quantum φext = Φ0/2 the two states are degenerate.

The two states |↓〉 and |↑〉 might be assumed to be the ground states
|ψL〉 and |ψR〉 of single well potentials VL and VR of Fig. 1.5, where V is the
effective double-well potential. We might now represent the Hamiltonian,
Eq. (1.13), in the basis of the localized wavefunctions |ψL〉 and |ψR〉. In
this representation the Hamiltonian matrix becomes

H =

∣∣∣∣ 〈ψR|H |ψR〉 〈ψR|H |ψL〉
〈ψL|H |ψR〉 〈ψL|H |ψL〉

∣∣∣∣ . (1.15)

If the extension of each localized wavefunction into the barrier is small, the
terms 〈ψR|H |ψR〉 and 〈ψL|H |ψL〉 can be approximated by the effective
single well potentials 〈ψR|VR |ψR〉 = ER and 〈ψL|VL |ψL〉 = EL, where
ER,L is the energy of the right and left well respectively. For wells of
roughly similar shape, only the relative energy difference of the two wells
ER − EL = Δ is important.

Furthermore, if we write for the tunneling splitting element 2 〈ψL|H |ψR〉 =
Δ0, the Hamiltonian, Eq. (1.13), can be expressed in the form

H =
1

2

∣∣∣∣ Δ Δ0

Δ0 −Δ

∣∣∣∣ =
1

2
(Δσz + Δ0σx) , (1.16)
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in the basis of the localized states |ψL〉 = |↓〉 and |ψR〉 = |↑〉, where σz =(
1 0
0 −1

)
and σx =

(
0 1
1 0

)
are Pauli matrices. This is the qubit

Hamiltonian in the spin- 1
2 formalism, since it is exactly similar to that

of a spin- 1
2 particle in an external magnetic field. In all the papers in

this thesis, we always write Hamiltonians in the spin- 1
2 representation even

though the physical system is not necessarily a spin- 1
2 particle. The system

we consider is usually, but not necessarily, thought to be a Josephson qubit
which Hamiltonian resembles that of Eq. (1.13).

1.4.3 Challenges to overcome

The greatest challenge to overcome in order to construct a working quantum
computer is the decay of coherent superpositions of qubit states, or deco-
herence [12]. In order to avoid decoherence, the fundamental constituents
of the quantum computer, the qubits, the gates and the wiring, need to be
isolated from their environment, the rest of the universe. Any interaction
between these fundamental units and other degrees of freedom will disturb
the fragile quantum states encoded in the computer, resulting in leakage of
information from the quantum computer to the environment.

It may seem like the slow decay of the wavefunctions due to decoher-
ence will eventually lead to loss of the quantum information encoded in the
qubits. The situation, however, is not that depressing, due to the existence
of various techniques under the common name of quantum error correction.
For a introductory review of quantum error correction see Ref. [13], while
experimental realizations of this technique can be found in Refs. [14, 15, 16].
Errors in quantum computers that are beneath a critical threshold can be
corrected by use of various techniques usually based on redundancy. The
simplest example is simply based on storing multiple copies of the same
information [12]. The main requirement for quantum computing is then
that there must be possible to carry out multiple operations between the
elements of the computer, the qubits, before the coherence of the wavefunc-
tion has decayed beneath the threshold for error correction.

Originally DiVincenzo [17, 18] stated a set of criteria required for the
physical implementation of a fault-tolerant quantum computer. Ten years
later a slightly revised set of criteria was formulated by O’Brien et al. [10].
We will here briefly list the main requirements.

A scalable physical system with well characterized qubits: We
need well characterized qubits, i.e. physical systems of which the self Hamil-
tonian is known to a good precision, and where the dynamics is constrained
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to the lowest two energy levels. In addition the computer must operate in
a Hilbert space whose dimensions can grow exponentially without an expo-
nential cost in other resources, such as space, time or energy. This point
includes not only the qubits, but all the necessary components required for
fabrication, including the technology used for manipulation, control and
error correction.

Initialization: One needs to be able to initialize the qubits used as
registers to an initial pure state. This is usually done either by cooling
to the ground state, provided that the temperature is sufficiently low, or
by a projection measurement. These two mechanisms are actually not too
different from each other as one might see a projection measurement as
some sort of cooling.

Universal logic: We need a universal set of quantum logic gates by
which we can carry out unitary operations on the qubits, usually one or two
at a time. An universal set of gates, is an elementary set of gates, such that
any unitary operation on the Hilbert space of the quantum computer can be
reduced to a finite sequence of gate operations [19]. In principle, however,
quantum computers need not be made with gates. In adiabatic quantum
computation, one defines the answer to a quantum mechanical problem as
the ground state of a Hamiltonian. The physical system represented by the
specific Hamiltonian is realized by choosing a specific set of couplings in a
qubit network. The problem is then solved by adiabatically evolving the
system to the ground state by slowly turning on the interactions [20].

Long relevant decoherence times, much longer than the gate
operation time: The problem of preserving the coherence of the qubits
is the most fundamental problem in quantum computing since interaction
with environments can never, even in principle be reduced to zero. The
works in this thesis is devoted to this problem, which therefore does not
need further mentioning here.

Correctability and readout: It must be possible to extract the en-
tropy of the computer in order to maintain the purity of its quantum state.
To achieve this we need error correction protocols, and a possibility to cor-
rect errors before the purity of the quantum state is reduced beyond the
threshold where error correction is impossible. If this is achieved the com-
puter can in principle run accurately for infinite time. In addition we require
the ability to read out, or measure, the state of the qubits. The measure-
ment has to be sufficiently reliable, the outcomes of the measurement need
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to accurately reflect the state of the qubit, see Ref. [21] for an example in
a superconducting qubit. In addition, it should be fast on the timescale
of the decoherence time of the qubits, and if many measurements is re-
quired as in a quantum error correction protocol, the measurements should
preferably not add noise to the state of the qubit. Such measurements are
called quantum non-demolition measurements [22], and also initializes the
system into the measured state. One does not strictly need non demolition
measurements, since multiple copies of the qubit information in a single
basis can be constructed, but it is desirable in order to avoid storage of
additional information.

In isolation each of these challenges are possible to overcome. For exam-
ple, long coherence times can be easily achieved in trapped ions or atoms,
or for nuclear spins. In these systems however, gates and scalability is the
major issue. One core problem in the design of a quantum computer is that
the different basic criteria above tend to be in conflict. Those parts of the
system necessary to achieve rapid measurement must be turned strongly
’on’ for error correction and read-out, but need to be strongly ’off’ to pre-
serve the the coherence of the qubits [17]. The central challenge in building
a quantum computer is maintaining simultaneously the abilities to control
the qubits, to measure them and to preserve their strong isolation from
uncontrolled parts of the environment.
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Chapter 2

Noise in qubits

In this chapter we will describe the relevant general concepts and termi-
nology used in the study of noise in qubits, with emphasis on solids state
qubits and in particular superconductor based devices. We will also give a
brief overview of basic theory used to describe the noise.

A qubit might in general interact with every degree of freedom in its
environment. The atoms, the molecules, the electrons and the nuclear
spins, but also with collective degrees of freedom such as exitons, polarons,
phonons and with the degrees of freedom of the electromagnetic field which
are photons.

For specific physical realizations of qubits, however, some degrees of
freedom are much more of a problem for the decoherence of the qubit than
others. Usually the most important noise sources are those who couple
most strongly to the qubit, but other factors such as the nature of the
coupling and the frequency of the noise they generate is in many cases
equally important.

In order to improve the coherence time of qubits it is crucial to know the
nature of the most major noise sources in order to develop countermeasures
such as better isolation from the most dangerous noise sources or protocols
to minimize the impact of the noise on the qubit, such as e.g. dynamical
decoupling, or control at the optimal point [23, 24, 25, 26, 27, 28].
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Chapter 2. Noise in qubits

2.1 Decoherence, relaxation, dephasing and

the nature of the coupling to the envi-

ronment

Before we proceed, it is useful to discuss different mechanisms of noise in
qubits. Previously, in Sec. 1.3, we discussed the general idea of decoherence
of a system due to entanglement with its environment and found that the
entanglement in general reduces the coherence of the system. This is a
crude picture of decoherence. If we want to construct a real qubit we need
more information. On which timescale does the qubit decohere? What is
the functional time dependence of the degree of coherence? Do some states
decay faster than others? Those are questions that might be essential in
constructing a qubit. In principle all qubits will eventually decohere, if we
wait long enough, but if the decay of coherence is sufficiently slow, we might
potentially correct the error by application of quantum error correction
before the information is irreversibly lost [29, 30, 15, 12].

2.1.1 Relaxation and dephasing

The nature of the coupling to the environment is important for the qualita-
tive features of the decoherence process. Consider for instance the following
Hamiltonian for a qubit coupled to the environment through e.g. the charge
on a Cooper pair box

H̄ =
1

2
[(Δτz + Δ0τx) + ντzX ] +Hbath, (2.1)

where τα are the Pauli matrices and the charge on the Cooper pair box
is given by τz , ν is the qubit-environment coupling parameter, X is an
operator of the environment sensitive to the qubit charge and Hbath is the
Hamiltonian of the environment.

Diagonalized in the eigenbasis of the qubit, the Hamiltonian, Eq. 2.1,
becomes

H =
1

2
[Eσz + ν (σzX cos θ + σxX sin θ)] +Hbath, (2.2)

where E =
√

Δ2 + Δ2
0, θ = tan−1

(
Δ0

Δ

)
and σα are the Pauli matrices in

the energy eigenbasis of the qubit. We denote the eigenstates of σz by |+〉
and |−〉.

Without the coupling to the environment, the dynamics of the qubit
is trivial. An arbitrary quantum state |ψ〉 = α |+〉 + β |−〉 will simply
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the environment

pick up a phase due to the energy splitting of the qubit, such that |ψ(t)〉 =

αe
−iEt
2� |+〉+βe iEt

2� |−〉. Visualized on the Bloch-sphere, see Section A.2, the
qubit state will precess around the z-axis, equivalent with a spin- 1

2 particle
in a magnetic field. Environments coupling to the qubit in the eigenbasis
of its intrinsic Hamiltonian give rise to what we call pure dephasing of the
qubit. In our specific Hamiltonian given by Eq. (2.2), the qubit-environment
interaction term proportional to cos θ commutes with the intrinsic qubit
Hamiltonian, [E/2σz, ν cos θσz ] = 0, such that no transitions between the
eigenstates of the qubit is induced by this term. This term give rise to decay
of coherence in the qubit on a timescale Tφ, and is also called longitudinal
noise, due to its action parallel to the axis of the intrinsic Hamiltonian of the
qubit. Since no transitions between the eigenstates occur, pure dephasing
processes can not account for energy transfer between the qubit and its
environment.

The effects of pure dephasing is easily explainable in the classical pic-
ture, where X = ξ(t) models classical fluctuations in an environmental
variable coupling to the qubit. The wavefunction of the qubit will pick up
an additional component to its phase due to the fluctuations in X and the
solution of the Schrödinger equation is

|ψ(t)〉 = αei(φ(t)+δφ(t)) |+〉 + βe−i(φ(t)+δφ(t)) |−〉 , (2.3)

where φ(t) = iEt
�

and δφ(t) =
ν cos θ

R t
0

ξ(t′)dt′

2�
. The wavefunction has picked

up a contribution to its relative phase δφ(t) = −ν cos θ
∫ t

0
ξ(t′)dt′. Averaged

over the individual realizations stochastic fluctuation process ξ(t) one finds
a decay of the phase coherence of the qubitD(t) = 〈eiδφ(t)〉. In the quantum
picture the loss of coherence is due to the decay of the overlap between the
two bath states |E+(t)〉 and |E+(t)〉 produced by the entangling dynamics
due to the qubit being in the state |+〉 or |−〉, as explained in Sec. 1.3. For
a more detailed description of the two pictures, see e.g. Ref. [31].

Interaction terms that couple to the qubit in the transverse direction
to its own Hamiltonian will induce transitions between the eigenstates of
the qubit. In the presence of transverse noise, such as the term ν sin θσzX
of Eq. (2.2), the occupation number in each of the qubit states is not con-
served, i.e. the size of the coefficients α and β can change in time. This term
determines the characteristic time T1 in which the qubit relaxes towards the
thermal equilibrium state of the environment and is also called the spin-
lattice relaxation time. The other characteristic one often encounter in the
qubit literature is the dephasing time T2, describing the timescale at which
the phase information of the qubit decays.

Visualized on the Bloch sphere, see Fig. 3.2.1 where γ1 = 1/T1 and γ2 =
1/T2 and the z-axis denotes the population level of the energy eigenstates
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of the qubit, the transverse noise is responsible for relaxation parallel to
the z-axis while the decay in the equatorial plane takes place on a timescale
given by [32]

1

T2
=

1

2T1
+

1

Tφ
.

Thus the decay perpendicular to the z-axis has a component both from the
pure dephasing term and from the relaxation term. Note that these expres-
sions are derived based on the assumption that the qubit couples weakly to
the environment such that a perturbative approach can be applied. If the
qubit is strongly coupled, i.e. in resonance with some degrees of freedom of
the environment [33], the time evolution is governed by a complex interplay
between both the longitudinal and the transverse coupling and will require
more detailed treatment.

In the weak coupling limit, under the additional assumption of a Gaus-
sian correlated noise, one finds that the the relaxation rate of the qubit is
given by [34]

1

T1
= ν cos2 θS(E),

where S(E) is the noise spectrum of the environment at the eigenfrequency
of the qubit. We also have that

1

Tφ
= ν

sin2 θ

2
S(0), (2.4)

i.e. the pure dephasing rate is proportional to the noise spectrum of the
environment at zero frequency. These formulas are only exact in the limit
of infinite observation times t, for finite t a distribution of frequencies are
relevant to the decoherence, which is intuitively more reasonable. For pure
dephasing noise in the Gaussian approximation we have [35]

1

Tφ
= 2ν sin2 θ

∞∫
−∞

sin2 (ωt/2)

ω2
S(ω)dω.

The message we can remember is, however, that the most important con-
tribution to pure dephasing noise origins from the low frequency part of the
noise spectrum, while the most important contribution to transverse noise
origins from frequencies close to resonance with the qubit. This knowledge
was used in paper 1. Typically, at least in solid state qubits, one finds that
the pure dephasing time is shorter than the relaxation time, and is therefore
the most important limiting factor preserving qubit coherence.
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the environment

2.1.2 Quantum noise vs classical noise

In the literature one often makes the distinction between classical noise
and quantum noise. Sometimes there might be some confusion related to
these concept. Here we will briefly clarify what we mean by quantum and
classical noise.

In classical physics, the study of a noisy time dependent quantity usually
involves its spectral density S(ω), which is given by the autocorrelation
function of the noisy quantity we are interested in. The study of quantum
noise in the perturbative limit, the limit where the coupling between the
noise source and e.g. the qubit is sufficiently small in order to be treated
by perturbation theory, is analogous to the classical case in that we might
define the quantum spectral density by the two time correlation function

Sxx(ω) =

∞∫
−∞

dteiωt 〈x̂(t)x̂(0)〉 , (2.5)

where x̂(t) is a operator representing the physical quantity giving rise to
noise in the qubit.

The fundamental difference between quantum and classical noise is due
to the fact that the quantum operator x̂(t) may not necessarily commute
with itself at different times. The correlator 〈x̂(t)x̂(0)〉 is therefore in gen-
eral complex in the quantum case, while classically it is of course always
real. Classically the spectral density is always symmetric, S(ω) = S(−ω).
Quantum mechanically, however, since the correlator is now allowed to be
complex, the spectral density is no longer necessarily symmetric in fre-
quency, meaning that |S(ω) − S(−ω)| ≥ 0.

For a quantum system subject to quantum noise from a noise source in
thermal equilibrium, one finds from a simple golden rule calculation that
the rate for transitions between the eigenstates of a qubit with frequency
ω01 =

√
Δ2 + Δ2

0/� is given by the spectral density of the noise source,
Γ01 ∝ S(−ω01) and Γ10 ∝ S(ω01), where Γ01 is the transition rate from the
ground state to the first excited state and vice versa for Γ10. Since the two
rates are required to satisfy detailed balance the quantum noise the positive
and negative frequency part of the quantum noise spectrum need to satisfy
S(ω01) = eβ�ω01S(−ω01). The quantum noise spectra is therefore in general
asymmetric and the degree of asymmetry depends on the temperature of
the noise source.

If the Hamiltonian describing the interaction between the quantum sys-
tem and the noise source commutes with the Hamiltonian of the quantum
system itself, then the noise source cannot induce direct transitions between
the eigenstates of the system. It may, however, disturb the eigenfrequencies
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of the system and thereby its relative phases, giving rise to pure dephasing
in the qubit. In this case one finds [36] that the pure dephasing rate is given
strictly by the symmetric in frequency part of the noise spectrum, i.e. by
S(−ω01) + S(ω01). Therefore the quantum behavior of the noise source is
not important for the pure dephasing rate 1/Tφ of the qubit, but might be
essential if we want to find the relaxation time T1.

2.2 A brief outline of general theories describ-

ing noise in qubits

Textbooks in physics tend to describe ideal situations, where the physi-
cal system is isolated. For these systems we can, at least in some cases,
write down the equations of motion for a the few degrees of freedom in-
volved and find analytical solutions for the dynamics under appropriate
physical assumptions about the system. In general, however, the systems
we encounter in nature are not isolated, they always interact with their
environment.

In classical physics the environmental interaction is usually unproblem-
atic. When discussing the forces of a rigid body, or the acceleration of a car,
the small details of the environment are usually unimportant compared to
major mechanical forces, or can be treated by collective parameters such as
temperature, wind resistance etc. In quantum physics however, the role of
the environment is much more special and subtle. When a quantum system
interact with an environment it looses its quantum coherence and behaves
like a classical system for all practical purposes [37, 38]. Even though can-
didates for qubits are among the best protected quantum systems against
environmental noise that we hope to technologically take advantage of, they
are still open quantum systems and has to be described as such [39].

2.2.1 Open systems

A closed quantum system decoupled from its surrounding environment is
described by unitary time evolution. In general, and open system is a
quantum system S which is coupled to another quantum system E called
the environment. It can therefore be thought to be a subsystem of the
combined system S+E, which, in turn, might be considered to be a closed
system governed by Hamiltonian dynamics. The total Hamiltonian for this
system can be denoted

H = HS +HE +HSE , (2.6)
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where HS , HE are the internal Hamiltonian of the system and the envi-
ronment, respectively, and HSE describes the interaction between the two
systems. The environment might also be a reservoir, an environment with
an infinite number of degrees of freedom. A heath-bath or bath is a reser-
voir in thermal equilibrium. The dynamics of the total system is given by
the von Neumann equation

ρ̇(t) = − i

�
[H(t), ρ(t)] (2.7)

and the reduced density matrix of the system is obtained by the tracing
over the degrees of freedom of the environment ρs = TrE{ρ}. In practice,
however, unless the environment consist of only a few degrees of freedom,
solving the exact dynamics of the total system is far too complicated. Nei-
ther are we interested in the exact details of the environmental dynamics.
Therefore, when treating open systems, one generally use effective mod-
els where the action of the environment on the system is captured by a
simplified model.

2.2.2 Spin-boson model and the Master equation

Traditionally, since one did not understand the details of the sources of
decoherence in qubits, one described the environment as an ensemble of
harmonic oscillators. The standard models for the harmonic oscillator bath,
one develop is based on the models of Caldeira and Leggett [40, 41], and
Feynman and Vernon [42]. For a review of the spin-boson models, where
a quantum two-level system is coupled to a dissipative environment , see
Ref. [43].

These models are usually solved by use of the Master equation, where
one makes approximations in order to obtain an effective equation for the
dynamics of the reduced density matrix of the system, without explicity
keeping track of the details of the environment.

The most commonly used Master equations for the reduced density ma-
trix of the system ρS are on the form

ρ̇S(t) = L̂[ρS(t)] = − i

�
[H ′

S(t), ρS(t)] + D̂[ρS(t)], (2.8)

where L and D are superoperators acting on ρS . [39] Here the first term of
the right hand side is the unitary part of the equation and the nonunitary
part D̂[ρS(t)] is due to decoherence. An explicit derivation of the mas-
ter equation for the system studied in paper 1 is given in Appendix B.2.
Generally, the Hamiltonian entering the unitary part of the equation is not
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identical to the unperturbed free Hamiltonian HS of system S since the en-
vironment is perturbing the free Hamiltonian, leading to a renormalization
of the energy levels of S.

To obtain the Master equation on the form given by Eq. (2.8), one makes
use of two approximations, commonly referred to as the Born-Markov ap-
proximation. If one assume that the correlation time τc of the environment
is much shorter than the timescale for intrinsic dynamics of the qubit 1/ωq,
any self-correlation within the environment created by the coupling to the
system will decay rapidly compared to the timescale over which the state
of the system varies noticeably. This approximation, where memory effects
in the environment is neglected is called the Markov approximation. Fur-
thermore, if the coupling to the environment is sufficiently weak and the
environment is a reservoir that is not altered statistically by the interaction
with the environment, one might assume that the density matrix of the
composite system is a product state at all times

ρ(t) ≈ ρS(t) ⊗ ρE , (2.9)

where ρE is constant in time.

2.3 Noise in solid state devices and qubits

Noise is present in every real solid state material and is therefore an in-
trinsic problem encountered in all kinds of devices based on solids. As an
example, the voltage drop V (t) across a resistor of resistance R is found
to fluctuate as a function of time even if the applied current is constant in
time (I(t) =const.). The obvious explanation for this voltage fluctuations
is the thermal agitation of the charge carriers in the conductor, but also
other sources might potentially contribute to the noise. In this section we
will briefly describe the main mechanisms which gives rise to noise in solid
state materials.

2.3.1 Johnson-Nyquist noise

Already in 1927 Johnson studied the intrinsic voltage fluctuations in a range
of materials which was not limited to solids [44]. Johnson simply studied
the intrinsic fluctuations in the voltage across the materials in equilibrium
at zero bias current, in addition he measured the resistance of each sample
material. It was found that the voltage fluctuations were proportional to
the resistance of the material.

The results of Johnson were first interpreted by Nyquist by use of
thermodynamic arguments [45], and have later been generalized in the
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fluctuation-dissipation theorem [46] which states that the thermal fluctua-
tions in equilibrium can be related to the dissipation in a non-equilibrium
situation.

In an electrical circuit, such as the simple resistor considered above, the
voltage fluctuations at zero bias current (I(t) = 0) can be described by its
spectral density [47],

SV (ω) =

√
2

π

∞∫
0

CV (τ) cos (ωτ) dτ,

CV (τ) = 〈V (τ)V (0)〉 − 〈V 〉2 . (2.10)

The Johnson-Nyquist formula SV (ω) = 4kBTR(ω) states that the voltage
fluctuations at frequency ω in equilibrium can be related to the dissipa-
tion at the same frequency R(ω). This is special case of the fluctuation
dissipation theorem applied to an electrical circuit.

In most conductors one finds that resistance is approximately frequency
independent for a wide range of frequencies, R(ω) = R(0) for ω < 1010Hz [47].
The Johnson-Nyquist formula therefore gives that this thermal noise is fre-
quency independent (white noise) except at very high frequencies.

The Johnson-Nyquist noise is theoretically well understood and is un-
avoidable in any dissipative material, i.e. not in superconductors below the
critical temperature. However, the magnitude of Johnson-Nyquist noise
can in principle be reduced arbitrarily by reducing the temperature. At
the temperatures (T < 1K) used in mesoscopic quantum devices such as
qubits, Johnson-Nyquist noise is typically not the major issue.

2.3.2 Shot noise

Shot noise, also called counting noise, is intrinsic to all measurements which
involves discrete quanta. Since measurements of currents or voltages in-
evitably involves the build up of electric charges, the discreteness of the
electric charge will lead to finite current pulses at the electrodes used to
measure a given sample.

Shot noise is encountered in all transport measurements, but is most
important in quantum transport such as e.g. transport through tunneling
barriers, quantum point contacts and quantum dots [48]. This is due to the
fact that the relative importance of shot noise in a current measurement
depends of the size of the current. At the low currents, which is typically
used in quantum devices, the shot noise due to the finiteness of the electric
charge can make a significant fluctuation is the total current.
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Since the state of a qubit, e.g. the presence of a electron in a quantum
dot, is typically measured by its influence on the current through a conduc-
tor interacting with the quantum dot, shot noise is important also in qubits.
The discreteness of the charge through the same conductor, might also lead
to fluctuations in the energy level of the quantum dot, and therefore to
dephasing.

Shot noise is quite easily distinguished from Johnson-Nyquist noise
since the former is temperature and frequency independent [48], while the
Johnson-Nyquist noise is proportional to the temperature.

2.3.3 Low frequency noise: 1/f noise

1/f -noise (or flicker noise) refers to noise with a frequency power spectrum
inversely proportional to the frequency S(f) ∝ 1/f . Such a noise spectrum
has been observed in a wide range of very different materials [47] and was
for a long time, a fundamental problem in condensed matter physics. The
physical origin of 1/f noise is still in many cases not understood in detail,
one does not believe that there is a single universal source of 1/f -noise
explaining this noise in all systems where it is observed.

Noise with a 1/f spectral density is especially important in qubits due to
the fact that the pure dephasing rate of the qubit is determined by the low
frequency tail of the power spectrum, see Eq. (2.4). 1/f -noise is therefore
in many cases considered to be the most important issue in extending the
coherence time in solid state qubits.

A wide range of different mechanisms, which we will not discuss here,
have been considered in order to theoretically explain the observed 1/f
noise [47, 49]. To a large extent, however, one agrees that 1/f noise is in
many materials well described by an appropriate distribution of activated
random processes, each with a Lorentzian spectrum

S(ω) ∝ τ

1 + ω2τ2
, (2.11)

where τ = 1/γ is the characteristic time of the random process.
Following Dutta and Horn, if the distribution of characteristic times is

D(τ) ∝ 1/τ in a range τ1 ≤ τ ≤ τ2 then the integrated spectral density will
have the observed frequency dependence

S(ω) ∝
∫

τ

1 + ω2τ2
D(τ)dτ ∝ 1

ω
, (2.12)

for τ−1
2 ≤ ω ≤ τ−1

1 . This idea was originally presented already in 1939 by
M. Surdin, see Ref. [50].
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For thermally activated random processes τ = τ0e
E/kt, where E is

the activation energy for a given transition, the appropriate distribution
of characteristic times is obtained if the energy distribution is uniform,
D(E) = const. for kT ln(τ1/τ0) ≤ E ≤ kT ln(τ2/τ0).

The physical origins of the Lorentzian random process is well motivated
in amourpous solids, or any material with amorphous regions such as surface
oxide layers. In amorphous solids measurements of the heat capacity has
indicated the presence of tunneling two level systems with the appropriate
distribution of energy splittings D(E) [49]. Other tunneling mechanisms
has also been proposed, such as tunneling between the conduction band and
impurity levels, however these effects can not explain the 1/f noise observed
in metals. In many qubit design, especially those based on superconductors
and Josephson junctions, the main source of decoherence is usually thought
to origin from two level systems in the amorphous substrates and oxide
layers used to fabricate the device. The next section will largely be devoted
to this specific noise source.
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Chapter 3

Decoherence due to

quantum or classical two

level systems

As mentioned in the previous chapter, a major source of noise in solid state
electronic devices, and superconducting qubits in particular, are thought to
origin from fluctuating two level systems.

Two level systems (TLSs) are systems which can classically exist in two
distinct states. Examples of two level systems are systems where a current
or voltage is allowed to switch between two set levels, a charge configuration
tunneling between two metastable states and the spin degree of freedom of
an electron or proton. The systems with switching current or voltage levels
are usually examples of classical TLSs or fluctuators, while the electron spin
usually needs to be treated quantum mechanically, as a degree of freedom
described by a quantum state vector in a two-dimensional Hilbert space.
The quantum TLS can exist in all possible complex superpositions of the
two chosen basis states, making the problem more challenging than its
classical counterpart.

In between these two extremes, the classical and the quantum TLS, we
find a spectrum of systems which behaves more or less quantum mechani-
cally depending on the interaction with its own environment, just like the
qubit itself. In paper 4, we show that the quantum model for the TLS
can often be reduced to an equivalent classical model that might simplify
further analysis of the problem.

Decoherence of qubits due to other two level systems is relevant in all the
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works presented in this thesis, especially to the papers 1, 2 and 4 where the
noise source is explicitly assumed to be TLSs. In paper 3 we do not make
any explicit assumptions about the nature of the noise, since the treatment
is relevant for general noise. Still the most relevant origin of the noise is
fluctuating TLSs.

In this text we will often refer to a qubit which interact with other TLSs.
This might cause some confusion since the qubit is of course also a TLS.
When referring to a TLS in this context we mean TLSs in the environment
of the qubit. The qubit or quantum device is always explicitly referred to
as the qubit or the central system.

3.1 The classical and the quantum theory for

the two level system: The microscopic

origin of the two level system

The microscopic source of decoherence in solid state qubits vary in different
physical realizations of the qubits and in many realizations the microscopic
origin of the noise is still debated in the literature. There are, however, ex-
periments which convincingly shows direct signs of TLSs in the Josephson
junction coupling to the superconducting qubit [51, 52, 53]. In addition,
for example in GaAs double quantum dots, the major source of both pure
dephasing and relaxation is thought to be due to the hyperfine interaction
between nuclear spins in the material and the electron spin occupying the
quantum dot [54, 55, 56, 57]. In these systems the microscopic understand-
ing of the noise sources has lead to countermeasures such as polarizing the
spin bath [58, 59] and optical quantum measurements which prepares the
spin environment in favorable states [60]. However, there is usually multiple
sources of decoherence, and phonons are also argued to be important [61]
in GaAs quantum dots. These phonons couple indirectly to the electron
in the quantum dot through the orbital degree of freedom of the electron,
which again couple to the spin due to the spin-orbit interaction [62, 63].

While some strong experimental data convincingly points in the direc-
tion of TLSs as an important noise source, other sources of noise might
still be important. The microscopic origin of the noise is often guessed
based on knowledge of the materials used to fabricate the qubit, e.g. of
the amorphous substrate in the Josephson junction of the superconductor
based qubits [64]. But information from the decoherence of the qubit itself
can also be used in order to gain information about the nature of the noise
sources. In this sense the qubit is used as a spectrometer, measuring the
characteristics of its environment [36, 65]. For illustrating the nature of the
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noise sources in qubits, we move to an example relevant in all superconduc-
tor based qubits, and in particular for the charge qubit.

3.1.1 Microscopic origin of the fluctuating two level

system in glasses, an example

Figure 3.1: Two dimensional cut through the structure of SiO2 in the amor-
phous phase. The atoms in positions A and B can tunnel between two
energetically favorable positions in an effective energy landscape which re-
sembles a double well potential(see Fig. 3.2). The potential energy of the
atom in each of the wells are close, but correspond to spatially separated
positions. The tunneling between the two minima can potentially lead to
noise and decoherence of a qubit in the vicinity of the material. Figure is
taken from Galperin et al. Advances in Physics Vol. 38 No. 6 p. 669-737
(1989)

Empirically one often finds a noise in qubits and other single particle
tunneling devices, which has a distribution of spectral frequencies resem-
bling a 1/f -spectrum [66, 67, 68, 69, 70, 51], or see Refs. [47, 49, 71] for
reviews. The 1/f -spectrum points in the direction of an ensemble of TLSs
with an 1/γ distribution of relaxation rates as the source of this noise [71].
In superconductor based qubits, an important source of decoherence is be-
lieved to be the tunneling of microscopic charges, such as electrons from
the conduction band to impurity levels, giving rise to fluctuations in the
Josephson energy of the junction. In addition, fluctuations in the critical
current are thought to be due to atomic defects in the oxide barrier of
the tunnel junction, see Fig. 3.1. The core features of these defects can
be modeled by fluctuating TLSs, switching between two metastable states.
Signatures of these TLSs have been observed in avoided level crossings
in the spectroscopy of the qubit, suggesting a TLS in resonance with the
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qubit, located in the tunnel junction [51, 52, 53]. Furthermore, ensembles
of charged TLSs are thought to be located in the amorphous substrate used
to fabricate the qubit and in the oxide layer covering electrodes [72].

Δ

Δ0

Figure 3.2: A double well potential for a tunneling system describing the
2D projection of the effective potential landscape typically encountered in
amorphous solids used in qubit fabrication such as the one shown in Fig. 3.1.
A particle experiencing this effective potential can quantum mechanically
tunnel between the two energy minima of which are separated by a energy
barrier of height Δ0. The energy difference between the minima is given by
Δ.

The theory describing these fluctuating TLSs was developed a long time
ago in order to describe the heat capacity of glasses such as vitreous sil-
ica [73, 74, 75, 76]. In insulating crystals the heat capacity was already
well known, described by the Debye theory where the low temperature be-
haviour is determined by acoustic phonons and has a ∝ T 3 temperature
dependence. In silica, on the other hand, there were empirical evidence of
temperature dependence proportional to T . In addition other data of the
low temperature thermal behaviour was also not in correspondence with
the theory, such as the conductivity and sound velocity [77, 78, 79]. The
model of TLSs in glasses was used by Phillips and Anderson et al. in
order to explain the discrepancy [74, 75]. The model of decoherence by
TLSs was developed even earlier in order to describe spectral diffusion in
glasses in relation to spin resonance, where resonant spins are disturbed by
other, non-resonant spins which can be modelled by the classical fluctuator
model [80, 81]. In the following we will describe the physics behind the
model for the TLSs encountered in glasses.

In a perfect crystal, each atom is constrained by symmetry to occupy
a single potential minimum. Defects, however, might be represented as in-
terstitial or substitutional impurity atoms or molecules moving in a multi-
minima effective potential provided by its neighbours, e.g. a double well
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potential as shown in Fig. 3.2. At sufficiently low temperatures the dynam-
ics is restricted to the lowest energy states. If the potential is such that
there is two potential minima reasonably close in energy, Δ ∼ kT , but also
significantly lower than any other minima, then the dynamics is restricted
to the states where the particle exists in either of the potential minima,
or in the quantum analogue, a superposition of the two. The number of
defects contributing at small temperatures is only a small fraction of the
total, most defects are essentially immobile below the glass transition tem-
perature [73]. If such a defect is charged, the tunneling between the minima
of the potential well will give rise to noise in the electric field acting on the
qubit. And even if no charge is associated with the defect, the tunneling
might give rise to a deformation potential which might alter the energy
levels of the qubit and therefore lead to dephasing.

3.1.2 The origin of the Hamiltonian used to describe

the TLS

Knowing the microscopic origin of our model, we might think of it simply
as a single charged particle in a potential, e.g., the double well potential of
Fig. 3.2. This model can be mapped to Hamiltonian

H =
1

2
(Δσz + Δ0σx) , (3.1)

where σα are the Pauli matrices along the component α, Δ and Δ0 are the
energy splitting and the tunneling element, respectively. [73] The model is
equivalent to that of a spin particle in a magnetic field. The energy splitting
and the tunneling element can be calculated from the specific shape of the
potential. If the tunneling element is small, then the energy splitting Δ
can be found from the double well potential as shown in Fig. 3.2. The
tunneling element is given by the overlap element, 〈ψL|H |ψR〉, between the
wavefunctions localized in the right and left well. It is roughly given by
the height of the potential barrier, as shown in Fig. 3.2, but in general it
needs to be calculated from the specific shape of the potential. However,
in practice we are seldom interested in the exact details of the TLS. In
order to reduce the noise in qubits by countermeasures, it is important to
identify what kind of systems are responsible for the noise, their number,
their rough parameter distribution and perhaps most importantly, where
they are located. To the best of my knowledge, it is usually difficult to
justify detailed first principles calculation of parameters based on models
of real materials.

The configurational defect, or for us, the TLS, does in general interact
with its environment. Lattice vibrations, which quantized modes are called
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phonons, might disturb the shape of the potential and the energy splitting
of the two wells. Phonons, and other (quasi-)particles might also entangle
with the positional degree of freedom of the particle in the well, and might
cause resonant transitions between the eigenstates of H . Depending on
the strenght and nature of the environmental interaction, the particle will
behave to a larger or smaller extent as an effective classical fluctuator,
switching between its two lowest metastable states. If the environmental
interaction is weak, however, the TLS is governed by its HamiltonianH and
behaves like a coherent quantum system, much like the qubit itself. There
is, however, no sharp transition between the quantum and the classical
regime, in paper 4 we discuss this transition in further detail.

3.1.3 Quantum model for the decoherence of the qubit

by TLSs

A general quantum model of a qubit interacting with an ensemble of TLSs
again interacting with their own environment can be cast in the form

H = Hq +Hf +Hi +He +Hfe,

Hq =
1

2

∑
i

Λiτi, Hf =
1

2

∑
i

Δiσi,

Hi =
1

2

∑
ij

ξiτiσj He =
∑

i

ωiÎi,

Hfe =
∑
ij

νijσi Îj , (3.2)

where q, f and e denote the qubit, the TLS and the environment, respec-
tively, τi and σi are Pauli matrices acting in the Hilbert space of the qubit,
and the TLS, respectively, and Îi are a complete set of generators in the
Hilbert spece of the environment. Generally this model is not analyticaly
tractable, and if the total number of degrees of freedom is greater than
∼ 20 it is not even solvable directly by numerical techniques in the most
powerful of present days computers.

Depending on what we are interested in, the model is often simplified.
In this thesis we are mainly interested in the pure dephasing of the qubit.
When the qubit is subject to pure dephasing, the environment can only
alter the energy levels of the qubit, no relaxation processes are allowed.
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The Hamiltonian, Eq. (3.2), can then be simplified to the following one

H = Hq +Hf +Hi +He +Hfe,

Hq =
1

2
Eτz , Hf =

1

2
(Δσz + Δ0σx) ,

Hi =
1

2
ξτzσz, (3.3)

where the interaction Hamiltonian Hi commutes with the self-Hamiltonian
Hq for the qubit, [Hq, Hi] = 0. One should then in principle also specify the
Hamiltonian for the environment He and the TLS-environment interaction
Hfe. This is, however, not always done in practice. In place one construct
effective models for the TLS, where the action of the environment on the
TLS is captured by a smaller set of parameters, such as the temperature of
the bath, the effective relaxation time T1 and the pure dephasing time T2

of the TLS. We will come back to one of these effective phenomenological
models when we later discuss the Bloch-Redfield model.

3.1.4 Qubit decoherence by a set of classical fluctua-

tors

In the quantum models for decoherence of qubits, decoherence is due to
entanglement between the qubit and its environment. The entanglement
results in the disappearance of coherence in the reduced density matrix for
the qubit after the degrees of freedom of the bath is traced out. In many
cases, however, as discussed in paper 4, one can neglect the transfer of
quantum information from the qubit to the bath and consider the qubit
subject to random classical external fields. In order to describe the noise
acting on qubits due to fluctuations in glasses, one conventionally make
use of the random telegraph noise model, where the external field switches
randomly between two positions [82, 83, 84, 35, 71]. Telegraph noise is also
called burst noise, or popcorn noise due to its abrupt nature. The model is
also used for describing noise in semiconductor devices, such as MOSFETS,
p-n junctions, tunnel junctions and SETs [85, 86, 87, 88].

The telegraph noise model can be described by the following Hamilto-
nian for the qubit

Hi =
1

2
(B + νi(t)g) · �σ, (3.4)

where σx,y,z, are the Pauli matrices acting in the Hilbert space of the qubit
and B and g are vectors describing the self-Hamiltonian (external field) of
the qubit and the effective noise field due to the fluctuator, respectively.
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Conventionally one chooses the coordinate frame such that B = Bẑ.The
component of g parallell to B is responsible for pure dephasing of the qubit,
while the perpendicular component give rise to relaxation. The noise field
(or fluctuator) switches randomly between the states νi(t) = ±1, with rates
given by Γ−+ and Γ+−, where Γ+−dt gives the probability for switching
from the state νi(t) = +1 to νi(t) = −1 in the time interval dt, and vice
versa for Γ−+. The solution for the decoherence of the qubit, can then
be inferred after solving the coupled Master equations for the occupation
probabilities p±(t) as a function of time, and averaging over the initial
conditions for the fluctuator. [35]

If the two rates, Γ−+ and Γ+−, are identical, we have a symmetric
telegraph process, that is the conventional model due to its simplicity. In
paper 4, however, we use the non-symmetric version [89] of classical tele-
graph noise, in order to capture the effect of temperature. In this model,
the rates are calculated by the appropriate Boltzmann weights.

3.1.5 Fundamental differences between the quantum

and the classical models

As shown in paper 4, the quantum and the classical models for the TLS
applied to the qubit decoherence problem, can give very similar decoher-
ence rates for the qubits, as long as the decoherence rate of the TLS is large
compared to its coupling strength to the qubit. The models, however, are
qualitatively different. In the classical model, the presence of a single tele-
graph fluctuator, or a set of fluctuators simultaneously acting on the qubit,
can never give rise to decoherence of the qubit. The fluctuator(s) simply
give rise to a noisy external field in which the qubit will precess coherently,
and the purity of the qubit state is conserved. Only after averaging over
many realizations of the time evolution of the precessing qubit, one might
obtain a density matrix for the qubit where the purity of the state has
decayed.

In the quantum model, Eq. (3.2), no averaging is required, the loss of
coherence in the qubit is solely due to the entanglement with its environ-
ment. We can make an analogy by the following picture: Imagine that our
entire system (universe) is enclosed in a box. In the quantum model the
picture is straightforward, we have a single box, containing the qubit, and
its environment. When we turn on the interaction between the two, they
evolve in time, depending on the state of each other and entangle. The
purity of the composite system contained in the box is conserved, while
the coherence of the qubit has decayed due to the entangling interaction.
On the other hand, in the classical model, we need an ensemble of boxes,

42



3.2 TLSs subject to external driving and the Bloch-Redfield equation

each containing a qubit and a classical fluctuator. The fluctuator switches
randomly, and the particular realization of the random walk is different
in each box. The individual noise process in each box is in addition not
dependent on the state of the qubit, there is no back-action in the classical
model. The qubit evolve coherently and in general differently in each box.
We then calculate the ensemble average over all boxes in order to obtain
a statistical density matrix for the qubit. This density matrix is compared
with the one obtained in the quantum model.

The classical model is therefore not in a strict sense a limiting case of
the quantum model, but is a qualitatively different model. In the limit
when the systems responsible for the decoherence of the qubit is decohered
by their own environment at a rate much faster than their entanglement
rate with the qubit, the two models predict similar density matrices for the
qubit. Therefore, whether we simply lack control over classical fluctuating
environments and the qubit is actually coherently precessing in each indi-
vidual qubit experiments, as described in the classical model, or if the qubit
is interacting with other quantum systems, is impossible to tell, since its
density matrix in any case might be identical. Likely, both processes usu-
ally take place, with different strengths in different materials and designs
used for qubit realizations.

3.2 TLSs subject to external driving and the

Bloch-Redfield equation

As mentioned in the preceeding section, it is generally not useful to solve
complicated quantum models, such as Eq. (3.2), where one keep track of
the detailed state of the evironment in a very large Hilbert space. Such
problems scale with the dimensionality of the Hilbert space, i.e. by 2L,
where L is the number of degrees of freedom in the composite system.
Even for a modest size environment, L = 10, this problem is numerically
costly (with an exception for a simulation by use of a hypotetical quantum
computer). In this situation one might save time and money by applying the
classical telegraph model. A problem with the classical model is, however,
that it can not straightforwardly be applied if the TLSs are subject to
external driving, or TLSs that are coupled strongly to the qubit relative to
the coupling to its own environment. In this case we need to make another
approach, such as the Bloch-Redfield approximation.
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3.2.1 The Bloch-Redfield equation

The Bloch-Redfield equation is a phenomenological equation for the treat-
ment of quantum systems subject to environments in thermal equilibrium.
Rather than specifying the details of the environment, Bloch and Redfield
constructed a model where its effect on the quantum system is taken into
account by a small set of parameters. This model was originally developed
in the field of magnetic resonance, where the resonance lines of magnetic
spins are broadened due to environmental decoherence. [90, 91, 32]

The equation of motion for the density matrix of an isolated quantum
system, e.g. a nuclear spin subject to an external magnetic field, is given
by the von Neumann equation

ρ̇αα′ =
i

�
〈α|[ρ,H0]|α′〉, (3.5)

where, e.g., for a spin in a magnetic field B, the Hamiltonian takes the
form H0 = B · σ, and α index the states of the TLS |±〉 in the eigenbasis
of σz . If the spin interacts with the rest of the world, we might, rather
than incorporating additional degrees of freedom in our model, as we did in
Eq. (3.2), add additional terms to the von Neumann equation in order to
incorporate the effective action of the environment. The resulting Bloch-
Redfield equation is

ρ̇αα′ =
i

�
〈α|[ρ,H0]|α′〉 −

∑
β,β′

Rαα′,ββ′(ρββ′ − ρeq
ββ′(T )), (3.6)

where the rates R−−,++ = R++,−− = γ1, R−+,−+ = R+−,+− = γ2 and
all other components of R vanishes. The matrix elements ρeq

ββ′(T ) gives
us the density matrix of the spin in thermal equilibrium, in the absence
of external driving. This equilibrium matrix determines the state which
the quantum system relaxes towards due to interaction with the thermal
bath. In their equation, Bloch and Redfield captured the complex action
of the environment by only three parameters, γ1, γ2 and T . The relaxation
rate γ1 = 1/T1 determines the rate of relaxation towards equilibrium in the
energy eigenbasis of ρ, while γ2 = 1/T2 determines the rate of decay of the
off-diagonal elements of ρ or the decoherence rate. The rates are visualized
on the Bloch-sphere in Fig. 3.2.1.

The relaxation rates γ1 and γ2 can in principle be derived from e.g.
the Born-Markov master equation. In Appendix B.2 we derive the rates in
external driving assuming that the TLS is coupled to a bath of harmonic
oscillators. Thus, if we know the nature of the environment of our TLSs,
we can in principle derive the decay rates, γ1 and γ2, and use them as in-
put in the Bloch-Redfield equations. In practice, however, our information
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γ

γ2

1

φ

++ρ

ρeq

ρ

Figure 3.3: Relaxation and dephasing on the Bloch sphere. The quantum
system, with density matrix ρ will relax towards its equilibrium value ρeq

with the rates γ1 = 1/T1 and γ2 = 1/T2. The equilibrium level is deter-
mined by the temperature of the reservoir. The rate γ1 determines the
rate of relaxation along the z-axis, while the pure decoherence rate γ2 de-
termines the rate of decay perpendicular to the z-axis. Note that that in
the absence of energy relaxation γ1 = 0, the occupation probability of the
upper level ρ++, is conserved in time. In external driving, the motion of
the density matrix on the Bloch-sphere might be extremely complex, but
the action of γ1 and γ2 stays the same.

about the environment is usually lacking, instead the rates γ1 and γ2 can
be inferred from experiments, such as the decay of Ramsey fringes [92, 93],
free induction decay and the decay of Rabi oscillations [94]. In fact the
master equation approach is not fully compatible with that of Bloch and
Redfield since the former is a homogeneous set of equations while the lat-
ter is inhomogeneous. Therefore the Bloch-Redfield equations cannot be
derived from first principles. In the Bloch-Redfield approach, the decay
towards the equilibrium state ρeq is added phenomenologically by use of a
inhomogeneous term.

3.2.2 The statistical nature of the Bloch-Redfield equa-

tion, and two time correlation functions

The major problem encountered in paper 1, where we attempt to find the
decoherence of the qubit due to TLSs subject to external driving, was to
find a consistent way to evaluate the two-time correlation function of the
TLS. If we know the two-time correlation function of the TLS we can find
the corresponding spectral density. The spectral density is the input we
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Chapter 3. Decoherence due to quantum or classical two level systems

need to find the decoherence of the qubit in the lowest order perturbation
theory, which is valid for weak coupling between the TLS and the qubit.

Evaluating the two-time correlation function 〈Â(t2)Â(t1)〉 of a measur-
able Â(t) acting on an open quantum system is indeed not trivial, since the
reduced density matrix of the system at time t2 is not only dependent on
the reduced density matrix at time t1, but also on the detailed state of the
environment, see Appendix B.1 for details. In this project, we wanted to
evaluate the two-time correlation function, without having to worry about
the exact details of the environment. Our tool is the Bloch-Redfield equa-
tion, which have some special properties that are important to keep in
mind when evaluating statistical quantities. The Bloch-Redfield equation

ρ

t 1 t 2
t

0

1

ρ
++

(t )1 ρ( t)|ρ(t1)

Figure 3.4: Statistical picture relevant for the interpretation of the Bloch-
Redfield equation. The solution of the Bloch-Redfield equation with initial
condition ρ(t1) is the ensemble average of all the individual open systems
which reduced density matrices was equal to ρ(t1) at time t1, their evolution
history, and the detailed state of their environment is very different. If we
imagine thermal equilibrium to be composed of a set of individual systems
with different fluctuating trajectories of which the ensemble average equals
the equilibrium density matrix ρeq, then the solution of the Bloch-Redfield
equation with initial condition ρ(t1) is equivalent to picking out those sys-
tems that was in the state ρ(t1) at time t1 from the thermal equilibrium
ensemble and taking the average of all the trajectories at times t > t1 for
this subset.

does not treat a single open quantum system. Rather it is a statistical
description of the relaxation towards equilibrium of an ensemble of systems
which is initially disturbed from equilibrium by the same amount, to the
state ρ(0). [95, 96] The individual systems, however, might have different
time evolutions before and after the initial state.

In paper 1 we did not do a fully rigorous ensemble average over the initial
states at time t1 in order to evaluate the two-time correlation functions of
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3.2 TLSs subject to external driving and the Bloch-Redfield equation

type 〈Â(t2)Â(t1)〉, in place we made a classical approximation. Rigorously,
we should average over the detailed distribution p(ρ(t1)) of density matrices
at t1. However, by use of the Bloch-Redfield equation we can only know
the ensemble average, i.e. the ensemble averaged density matrix. Thus
we made a ’classical’ approximation, where we averaged over two states
on opposing sides of the Bloch-sphere with weights in accordance with the
stationary solution of the Bloch-Redfield equation. The stationary state
might lie outside the z-axis for a driven system, which was adjusted for by
a coordinate transform, see App. B in paper 1 for details. To the best of my
knowledge a method to extract the detailed distribution of the individual
density matrices for a open quantum system has not been developed and
might be a interesting teoretical future project.

3.2.3 Two level systems subject to pulsed driving

A considerable amount of time and effort in my Ph.D. work was focused
on TLSs subject to pulsed driving. Which is relevant in most real qubit
experiments, since the qubit is controlled by use of external pulses. Each
control pulse, does not only act on the qubit itself, but of course also on
its environment. Especially if the major noise source of the qubit is other
TLSs with electric or magnetic moment, systems particularly sensitive to
external fields.

Unfortunatly no treatable analytic expression for the noise on a qubit
due to TLSs driven by pulses was obtained during the work on this thesis.
However, some results was obtained regarding the saturation of these TLSs
that might give insight to the effect of pulsed driving on environmental
fluctuators.

In Appendix B.3 we derive general expressions for the saturation level of
a TLS subject to external AC pulses, the saturation level is the occupation
level in the upper state of the TLS after an infinite sequence of pulses.
Generally the occupation level is different at different times in the pulse
sequence. In Fig. 3.5 we plot the occupation number in the upper state
of the TLS, in steady state (i.e. after an infinite sequence of pulses), and
compare with the saturation level for continuous driving at the same average
intensity. We find that special combinations of field intensity and pulse
length does not saturate the TLS, instead it rotates the spins an integer
number of full periods, such that it is close to the ground state at the end
of the pulse. This situation corresponds to the periodic decrease in steady
state occupation level in the upper energy level shown in the plot. If the
inverse relaxation rate 1/γ is large compared with the pulse length, the
TLS will only weakly decay between the pulses, while in the opposite limit,
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Figure 3.5: The saturation level in steady state for pulsed driving as a
function of the driving strength η = Eac·p

E for two different relaxation rates
a) γ = 1.25 · 106 b) γ = 1.25 · 107. The black colored graph shows the
saturation level right after the end of the pulse, while the blue graph is the
saturation level right before the start of the pulse. For comparision we plot
the saturation level for continuous driving with the same average intensity
as for the pulse sequence, red graph. The parameters are as given in the
article by John Martinis et. al. for a charge qubit [97]: Δ0/� = 10GHz,
dipole moment p = 3.7D and electric field EAC = 3 · 103V/m. The lenght
of the pulses is tp = 108 and the time between each pulse tf = 10 · tp. The
thermal equilibrium level is ρeq

++ = 0.

the spins will relax to the thermal equilibrium level before the start of the
next pulse.

3.3 Decoherence due to correlated two level

systems

Until now, we have been concerned with the decoherence of a qubit due
to TLSs that are again coupled to their own individual environments. In
a real material, however, the TLSs communicate with each other, directly
through electromagnetic or strain fields, or indirectly through other degrees
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of freedom in the environment. The environments which is responsible for
the decoherence of each TLS, might in many realizations be a common bath
for multiple TLSs. Such conditions will result in correlations between the
different TLSs responsible for the decoherence of the central qubit.

Due to the wastly increased complexity introduced by correlations, in-
vestigations of qubit decoherence due to correlated environments has been
subject to relatively little research compared to the problem of uncorre-
lated environments. One might ask whether correlations between different
sources of noise is at all important. Correlations should, of course, alter
the dynamics of the noise sources, but does it really matter to the qubit
whether its environments communicate or not? Furthermore, is the noise
sources responsible for decoherence in qubits typically correlated, or are the
coupling sufficiently weak making the commonly used formalism of individ-
ual TLSs in individual environments a very good model for all practical
purposes?

3.3.1 Are the TLSs responsible for decoherence in qubits

correlated?

In order for correlations to be important in a system of TLSs, the decoher-
ence and relaxation of each TLS due to environments that are not directly
coupled to the qubit or other TLSs is required to be weak compared to the
interaction internally among the TLSs. If the decoherence of a TLSs due
to an external bath is dominant, potential correlations between the TLSs
will rapidly decay due to the dissipative interaction with the bath.

Until now, not much effort have been made in order to understand the
importance of correlations in solid state qubit environments. What have
been done is entirely theoretical modeling of qubit decoherence in different
realizations of correlated baths, by use of the mean field approximation
for the bath. [98, 99, 100, 101] Whether interactions among the bath spins
coupld be important or not in physical realizations of qubits are largely
unknown, and are at best, guesses, such as “The effect of environmental
self-interaction is almost certainly of importance in the solid state” [102].
Interaction is, however, assumed to be weak in several environments that
are thought to be responsible for the decoherence of solid state qubits,
such as e.g. TLSs in glasses and nuclear spins in C13 atoms interacting
with vacancy centers in diamond, [103, 104]. In these systems weak cor-
relations certainly exists, but is not dominant compared to i.e interactions
with phonons for TLSs in amorphous solids. In different qubit designs,
such as nuclear spins interacting with electrons in semiconductor quantum
dots [105, 106, 107, 108, 109], the exhange between nuclear spins mediated
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by the central electron in the dot might be relatively strong, but ferromag-
netic. We will later see that ferromagnetic environments are less dangerous
with respect to decoherence compared to systems with frustrated couplings.

Superconducting flux qubits, and quantum intereference devices are the
only systems known to the author where strongly interacting systems are
suggested to be a major source of decoherence. [110, 111] In these systems
metal-induced gap states, states on the metal-insulator insulator interface
that might be localized due to disorder at the interface, [112] are thought to
interact strongly with each other by competing interactions, giving rise to a
frustrated environment acting on the qubit. In addition there might poten-
tially be other important correlated environments, yet to be discovered. It
might furthermore be advantageous for engineering purposes to know the
effect of frustrated environments on qubit decoherence such that potential
designs, where, e.g., the material is thought to contain glassy systems that
could couple to the qubit, can be compared aganst other materials based
on existing theory.

3.3.2 Frustrated environments and spin-glasses

In paper 2 we investigate the mechanisms behind the decoherence of a qubit
coupled to an interacting spin system that we can tune between a spin-
glass and a ferromagnet. A spin-glass is a magnetic system composed of
interacting spins, with frustrated interactions. A spin glass stays in contrast
to a ferromagnet, where the interaction between each spin in the sample
favors all spins to align in the same direction. As an example, consider a
Heisenberg Hamiltonian of the form

H =
∑
ij

Ωα
ijσ

α
i σ

α
j − Jz

ijσ
z
i σ

z
j (3.7)

where i, j denote individual spins in the sample, σα
i are the Pauli matrices

along the α direction, and Ωα
ij and Jz

ij denote the coupling between pairs
of spin particles. If e.g. Jz

ij = 1 and Ωα
ij = 0 for all pairs i, j the system is a

ferromagnet. At zero temperature this system has two degenerate ground
states where all spins are aligned in the z direction, and there is a distinct
gap to the first exited state. This system is a permanent magnet below a
critical temperature Tc.

We might now introduce frustrated couplings to the model. Frustrated
couplings in a spin system means that the couplings between the spins works
against each other, favoring different orientation of the spin. In a system
with many competing interactions, no particular orientation will usually
be much more favorable than any other, as opposed to the ferromagnet.
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Figure 3.6: Three spin- 1
2 particles in a triangle configuration. The coupling

is Ising type with Jz
12 = −1 and Jz

13 = Jz
23 = 1. The setup is an example

of a frustrated spin system, there is no way to arrange the spins in order
to completely satisfy all the internal couplings. In the situation where we
have already placed spin 1 and 2 as illustrated in the figure, there is no
obvious choise for the direction of the third spin.

The nature of frustrated interactions is illustrated for a simple model with
only three spins in a triangle configuration in Fig. 3.6. The frustrated part
of the interaction might be introduced to the model defined by Eq. (3.7),
by adding a random element to the coupling between the spins. Explicitly
we might introduce Ωij ∈ [−Ω,Ω] in Eq. (3.7), such that for each pair of
spins, the coupling is randomly picked in the interval [−Ω,Ω]. In general
we will for nonzero Ω have many competing interactions, and for Ω � J
the ground state of Eq. (3.7) will be completely disordered, with vanishing
net magnetization in the absence of external fields.

Spin-glass behaviour was first identified in noble metals (e.g. Ag, Au,
Cu) weakly diluted by transition metal ions, such as Fe or Mn, other known
spin glass materials are disordered magnetic metals, such as amorphous
FeZr and partially disordered magnetic insulators such as EuxSr1−xS. [113]
However, in principle many disordered strongly interacting magnetic sys-
tem are candidates that could have a spin-glass phase. As explained, a
spin glass has a largely random-looking mixture of ferromagnetic and anti-
ferromagnetic interactions. Analytical solutions for the spin glass model, is
known for the infinite range Sherrington-Kirkpatrick model, [114] which is
the Ising version of Eq. (3.7) with Jij = 0. This model was solved analyti-
cally by Parisi, [115, 116, 117] in the limit of a infinite system.

The Parisi solution has some details which is interesting to us. The
topology of the set of states in the spin-glass, can be described based on
the “Hamming distance” D, [118] where D is the fraction of spins needed
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Figure 3.7: The bifurcating hierarchical three of a spin glass. The spin
states are represented by the end points of the lowest branches. The Ham-
ming distance D between two states is represented by the height of the
highest vertex in the lowest path connecting two states. The state overlap
q us greatest between states with smallest D. The barrier height between
two states is assumed to be a increasing function of D. Thus, on the time
scale of a given experiment only a part of the hierarchy, e.g. the part shown
in thick lines, will be explored.

to reorient in order to convert one state to another. With this metric, the
distances between the low-lying states of the system can be represented
by a hierarchical three, see Fig. 3.7. The distance between two states is
represented by a three on which the states are the end points. Spaces on
which the metric D have this representation is called ultrametric. Since the
distance D between two states is proportional to the number of spin-flips
it follows that the overlap between two states q is inversely related to D.

For us what is important is that in a spin glass, the number of states
close to the ground state are very large, but the overlap between any two
randomly picked such states are in general extremely small. In paper 2 we
develop a picture where the decoherence of the central spin is related the
overlap between the environmental state in the presence and in the absence
of the central spin. In a spin glass, with many competing interactions,
even a small perturbation might alter the detailed structure of the three
(Fig. A.1), and its end states, such that the time evolution of the glass might
be altered completely by the presence of the single spin. In a ferromagnet,
however, or any ordered material, this is not the case. A small perturbation
is not sufficient to break the symmetry of the ferromagnetic ground state.

As a side note it is worth mentioning that the spectrum of fluctuations
in the magnetic moment SM (f) should obey a SM (f) ∝ 1/f law if one
assume that the characteristic time τ for transitions between the states
depends exponentially on the barrier height for spin flips and that these
barriers have a reasonably broad distribution. [118] Since a noise spectrum
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proportional to 1/f is typically observed in mesoscopic circuits, spin-glasses
should not be excluded as major candidates responsible for decoherence in
physical realizations of solid state qubits.
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Appendix A

Concepts and formalism

A.1 The density matrix

Density matrices are used in order to treat statistical mixtures of pure
quantum states. The general density matrix written in terms of the basis
functions |ψi〉 is

ρ =
∑

i

pi |ψi〉 〈ψi| , (A.1)

where pi is the non-negative probability to find the system in the state
|ψi〉. Since the probabilities pi should add up to one, the density matrix of
a physical system is required to have Tr(ρ) = 1. Furthermore, the density
matrix is positive definite (meaning that all the eigenvalues are positive),
and Hermitian.

Systems where all the coefficients pi are zero exept one are said to be in
a pure state. If we know the state of a single isolated quantum system it is
in a pure state, but we might also use the same terminology when referring
to an ensemble of systems where each copy of the system in that ensemble
is in the same state.

We use the term mixed state to denote single systems for which we do
not know the exact quantum state, or equivalently an ensemble of systems
with a distribution of pure states described by pi. However, the density
matrix of a mixed system does not capture all the information about the
system. In general, different ensembles of pure states might correspond to
the same density operator. The non-uniqueness of ρ implies that we cannot
infer the probabilities pi in an arbitrary basis from the density matrix.
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The formalism of density matrices was introduced early in the develop-
ment of quantum mechanics by Landau [119] and von Neumann [120] to
describe the statistical state of a quantum system. A description in terms
of density matrices is needed in order to treat the nonunitary dynamics of
open quantum systems, or any interacting quantum system where we are
only interested in a subsystem of the full system.

Expectation values of any operator Â of the system can be evaluated if
the density matrix is known, by the trace formula

〈A〉 = Tr(ρA) =
∑

i

pi 〈ψi|A |ψi〉 . (A.2)

The density matrix therefore captures all possible information about out-
comes of measurements on the same system.

The time evolution of the density matrix is described by the von Neu-
mann equation

i�
∂ρ

∂t
= [H, ρ], (A.3)

where H is the Hamiltonian of the system. The von Neumann equation is
a direct generalization of the Scrödinger equation to statistical ensembles,
and the two equations are physically fully equivalent describing unitary
quantum evolution.

In order to describe non-unitary dynamics in open quantum systems one
adds dissipative terms to the right hand side of Eq. A.3. There are several
more or less rigorous ways to do this. Rigorous derivations usually involves
an averaging procedure, see e.g. Ref. [40] or Ref. [32], but at some point
one has to break time reversal symmetry. Dissipative terms can therefore
not be derived from quantum mechanics alone and has to be introduced
phenomenologically at some point in the derivation.

A.1.1 Reduced density matrices

Reduced density matrices refer to the density matrix of a subsystem of a
larger system. If the different subsystems are entangeled with each other,
we can not specify the quantum state any of these subsystems without
referring to the other systems. In order to speak about subsystems it is
therefore convinient to introduce reduced density matrices.

To illustrate the concept, we consider two quantum systems (e.g., two
qubits), prepared in the EPR-state

|ψ〉 =
1√
2

(|1〉1 |0〉2 − |0〉1 |1〉2) ,
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where the subscripts 1 and 2 denote qubit 1 and qubit 2, respectively. Each
qubit can be in two possible states, |0〉 and |1〉. The reduced density matrix
of system 1 is defined by tracing over the degrees of freedom of system 2:

ρ1 = Tr2 |ψ〉 〈ψ| = 2 〈1|ψ〉 〈ψ| 1〉2 + 2 〈0|ψ〉 〈ψ| 0〉2. (A.4)

For any local observable A = A1⊗I2 acting only on qubit 1, the expectation
value can be found by use of the trace rule applied to the reduced density
matrix of system 1:

〈A〉 = Tr(ρA) = Tr(ρ1A1).

The expectation values of all local observables of a system is known as long
as we know its reduced density matrix.

We note that for the two qubit system prepared in the EPR-state, the
reduced density matrix of system 1 is diagonal. The reduced density matrix
would be exactly the same if system 1 was prepared in an equal statistical
mixture of |0〉1 and |1〉1. This implies that measurements of observables
on system 1 alone cannot in general discriminate between pure and mixed
states. Thus we can view density matrices as a mathematical tool for
determining the probability distribution of possible measurements on the
system without the need of specifying its exact state.

A.2 The Bloch sphere

The Bloch sphere, is a geometrical construction that can be used used
to parameterize and visualize the density matrix of both pure and mixed
quantum systems. Even though the construction is commonly referred to
as the Bloch sphere, mixed states will lie in the interior of the sphere. It
is therefore also called the Bloch ball. The Bloch sphere was developed
by Felix Bloch in order to study of nuclear induction, i.e. the precession
of nuclear spins subject to a magnetic field [121], and is a well known
concept used in the field of magnetic resonance. The advantage of the
Bloch sphere is that it allows us to relate the evolution of a quantum state
to the precession of a classical magnetic moment in a magnetic field. For the
Bloch equations of motion of the classical magnetic moment in a external
field, or its quantum spin- 1

2 equivalent, see Ref. [32].

The density matrix of a two level quantum system can be parameterized
in the following way

ρ =
1

2
(I + α · σ) , (A.5)
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Figure A.1: The Bloch sphere. The density matrix ρ of a quantum system
can be visualized on the Bloch sphere when parametrized by use of the
Bloch vector ρ = 1

2 (I + α · σ). The density matrix is drawn on the Bloch
sphere according to its overlaps α with the three different Pauli matrices.

where α ∈ R
3 is called the Bloch vector, or the coherence vector of the

system.
In paper 1 we make use of a different parametrization of the density

matrix, which is useful for systems driven by an external field in order to
obtain differential equations which are not explicitly time dependent. In
that paper we make use of the rotating wave approximation, where one
neglect rapidly oscillating terms which enter the Hamiltonian of the TLS in
the interaction picture. When the rotating wave approximation works, i.e.
when the detuning between the driving field and the TLS eigenfrequency
is small, a parameterization of the density matrix which follows the driving
frequency is useful. In paper 1 the following parameterization is used,

ρ =

(
n f∗e−iΩt

feiΩt 1 − n

)
,

where n = ρ++ and f = e−iΩtρ−+. This parameterization can be visualized
on the Bloch sphere in the reference frame rotating by frequency Ω by the
following simple relations:

α1 = Re f, α2 = Im f α3 = 2(n− 1/2). (A.6)

The geometric concept of the Bloch sphere can in principle be extended
to quantum systems of arbitrarily many degrees of freedom. In paper 3 we
make use of a 4-level Bloch sphere construction in order to study the effect
of correlated noise in two coupled qubits.
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Derivations and

complementary material

relevant for the first paper

B.1 Two time correlation functions

In order to find the noise spectrum of a quantum system, it is necessary to
first find the two time correlation function of the operator of interest. In
this section we will show that extracting the two time correlation function
from knowledge of the reduced density matrix of the system alone is not
possible without further assumptions.

Assume that we want to know the two time correlation function of an
operator A acting on a system S (e.g. in order to find perturbatively by
use of the noise spectrum, the action of this system on another quantum
system such as the qubit). In our case our system is not a isolated one but
interacting with its environment E.

Before we move to two time correlation functions, we note that finding
the expectation value of a single system operator is straightforward

〈A〉 = 〈AS ⊗ IE〉 = trS⊗E(Aρtot) = trS [A trE(ρtot)] = trs(AρS) (B.1)

where ρtot ∈ S ⊗ E is the composite density matrix of the system and the
environment. The time evolution of the composite system is given by the
von Neumann equation

ρ̇tot = [H, ρtot], H = HS +HE +HSE . (B.2)
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Our goal is to calculate two time correlation functions by referring only to
the reduced density matrix of the system ρS that we have calculated by use
of the non-homogeneous Bloch-Redfield equations of the form ρ̇S = LρS + l
where L is a general Lindblad super-operator, and l is a non-homogeneous
term which determines the equilibrium density matrix.

Proceeding, we attempt to calculate the two time correlation function
for two quantum operators acting on the system at two different times (for
us it is sufficient to consider two identical operators). The expression in the
Heisenberg picture is

〈A(t1)A(t2)〉 = trSE [ρtot(0)A(t1)A(t2)] (B.3)

where

ρtot(0) = eiHt1tρtot(t1)e
−iHt1

A(t1) = eiHt1A(0)e−iHt1 . (B.4)

Now we can write out the correlation function Eq.(B.3) by inserting the
expressions given by Eq. (B.4). We get the following expression for the two
time correlation function

〈A(t1)A(t2)〉 = trSE

[
eiHt1ρtot(t1)A(0)eiHt(t2−t1)A(0)e−iHt2

]

= trSE

[
A(0)e−iH(t2−t1)ρtot(t1)A(0)eiHt(t2−t1)

]

= trS

{
A(0)trE

[
e−iH(t2−t1)ρtot(t1)A(0)eiHt(t2−t1)

]}
(B.5)

where we have used the cyclic property of the trace, and the fact that the
operator A act only on the system part of the total Hilbert space. From
Eq. B.5 we see that in principle the full dynamics of the composite system
ρtot, given by H is required in order to extract the correlation function.

Since the quantity we need is given by the second trace of Eq. B.5, our
only hope is to simplify this expression by appropriate assumptions. If we
define τ = t2 − t1 and the following operator

ζρtot(t1)A(0)(τ) = e−iH(τ)ρtot(t1)A(0)eiHt(τ) (B.6)

such that ζ(0) = ρtot(t1)A(0). It is clear that ζ(τ) satisfy the von Neumann
equation similarly to ρtot, such that

d

dτ
ζ(τ) = −i[H, ζ(τ)]. (B.7)

What we are seeking is an equation of motion for

υρtot(t1)A(0)(τ) = trE [ζρtot(t1)A(0)(τ)] = trE

[
e−iH(t2−t1)ρtot(t1)A(0)eiHt(t2−t1)

]
.

(B.8)
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But if we assume that ζ(τ) factorizes (i.e ζ(τ) = ξ(τ) ⊗ R0), where
R0 is the the equivalent of the reservoir state in thermal equilibrium, then
our equations are completely analogous to our starting equations for deriv-
ing the Master equation for ρ. Thus we can in principle derive a Master
equation for υ of the form

d

dτ
υρtot(t1)A(0)(τ) = Lυρtot(t1)A(0)

(τ). (B.9)

This equation might then be used together with Eq. B.5 in order to find
an explicit expression for the two time correlation function. The disadvan-
tage of such an approach is that we need to know when we can neglect the
entanglement dynamics between the system and the environment and use
the assumption of factorization. We have not been able to apply this ap-
proach in the derivation of the two-time correlation function of the driven
TLS. In paper 1 we finally used a Bloch-Redfield approach together with a
semi-classical assumption in order to find the noise spectrum of the TLSs
in external driving.

B.2 Decoherence due to an ensemble of os-

cillators using the Born-Markov Master

equation

In this chapter we will show how to derive the rates we use as input in the
Bloch-Redfield equation for a TLS in an external AC field amd subject to
an environment of harmonic oscillators (e.g. phonons).

B.2.1 The model

Assume we have a system (S) interacting with its environment (E). The
Hamiltonian of the composite system can be written in general form

H = HS +HE +HSE , (B.10)

where Hs and HE is the Hamiltonians for S and E respectively, and HSE

is the interaction part. We want information about the system S without
requiring detailed information about the composite system S⊗E. Let χ(t)
be the density operator for S ⊗ E. The reduced density operator for the
system S is then ρ(t) = trE [χ(t)].

We can calculate the expectation value of any operator Ô in the Schrödinger
picture from the knowledge of ρ(t) alone, and not of the full χ(t):

〈Ô〉 = trS⊗E [Ôχ(t)] = trS [Ô trR(χ(t))] = trS [Ôρ(t)]. (B.11)

63



Chapter B. Derivations and complementary material relevant for the first

paper

Our objective is to obtain an equation for ρ(t) where the properties of E
enter only as parameters.

B.2.2 Exact von Neumann equation

We start with the von Neumann equation for our composite system

χ̇ =
1

i�
[H,χ] (B.12)

We then make a transform to the interaction picture, separating the mo-
tion generated by HS + HE from that generated by the interaction HSE .
Defining

χ̃(t) = e(i/�)(HS+HR)tχ(t)e−(i/�)(HS+HR)t

and differentiating, by use of the Schrödinger equation, we obtain

˙̃χ(t) =
i

�
(HS +HR)χ̃− i

�
χ̃(HS +HR) + e(i/�)(HS+HR)t ˙χ(t)e−(i/�)(HS+HR)t

=
1

i�
[H̃SE(t), χ̃], (B.13)

where
H̃SE(t) = e(i/�)(HS+HR)tHSEe

−(i/�)(HS+HR)t

.
We proceed by integrating Eq.(B.13) giving

χ̃(t) = χ(0) +
1

i�

∫ t

0

dt′[H̃SE(t′), χ̃(t′)],

and then substitute this integrated expression for χ̃(t) inside the commu-
tator in Eq.(B.13). We obtain

˙̃χ(t) =
1

i�
[H̃SE(t), χ(0)] − 1

�2

∫ t

0

dt′[H̃SE(t), [H̃SE(t′), χ̃(t′)]]. (B.14)

So far the expression is exact, we have simply rewritten Eq.(B.12) to a form
which is more suitable for later approximations.

B.2.3 Born and Markov approximations

We assume that the interaction HSE is turned on at t = 0 and that no
correlations between the system and the environment exists at this initial
time. Then χ(0) = χ̃(0) = ρ(0)R0, where R0 is the initial density operator
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of the environment. Then, by tracing over the environmental degrees of
freedom in Eq.(B.14) we obtain the master equation

˙̃ρ(t) = − 1

�2

∫ t

0

dt′ trR{[H̃SE(t), [H̃SE(t′), χ̃(t′)]]}, (B.15)

where we have omitted the term 1
i� trE{[H̃SE(t), χ(0)]} by the assumption

that trE{H̃SE(t)R0} = 0. Furthermore, by assuming that the coupling
HSE between S and E is weak and that E is a large system which is
approximately unaffected by its coupling to S, we write

χ̃(t) = ρ̃(t)R0. (B.16)

The assumption that the composite system maintains a product state dur-
ing time evolution is called the Born approximation. The Born approxima-
tion states that the system and environment is uncorrelated at all times, a
rather strong approximation.

The master equation Eq.(B.15) can now be written

˙̃ρ(t) = − 1

�2

∫ t

0

dt′ trR{[H̃SE(t), [H̃SE(t′), ρ̃(t′)R0]]}. (B.17)

The above equation is still nonlocal in time, since the derivative of the den-
sity matrix depends on itself at earlier times. However, by assuming that
the reservoir correlation time is small compared to the time scale of signifi-
cant change in the state of the system, we can replace ρ̃(t′) by ρ̃(t). This is
equivalent to the assumption that the environmental operators coupling to
the system is delta correlated. The assumption that the correlation time of
the environment is approaching zero, i.e., that the state of the environment
only depends on the temperature, but not on its history, is a Markovian
assumption for the bath. Thus we obtain our Born-Markov master equation

˙̃ρ(t) = − 1

�2

∫ t

0

dt′TrR{[H̃SE(t), [H̃SE(t′), ρ̃(t)R0]]}. (B.18)

To make this equation more explicit, we assume that we can write the
interaction Hamiltonian in the diagonal form H̃SE(t) =

∑
α S̃α(t) ⊗ Ẽα(t),

where S̃α(t) are the operators acting in the Hilbert space of the system
which couples to the environment and Ẽα(t) are the corresponding opera-
tors acting in the environment. Thus we can write Eq.(B.17) as

˙̃ρ(t) = − 1

�2

∫ t

0

dt′
∑
αβ

TrR{[S̃α(t) ⊗ Ẽα(t), [S̃β(t′) ⊗ Ẽβ(t′), ρ̃(t′)R0]]}.

(B.19)
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We now define the environment self-correlation functions

Cαβ(t, t′) = TrE[Ẽα(t)Ẽβ(t′)R0] = 〈Eα(t)Eβ(t′)〉R0 . (B.20)

Assuming that the environment is in a stationary state we can write
Cαβ(t, t′) = TrE [Eα(t − t′)EβρE ] = Cαβ(t − t′). Using this definition and
writing out the double commutator Eq. (B.19) becomes

˙̃ρ(t) = − 1

�2

∫ t

0

dt′
∑
αβ

{Cαβ(t− t′)[S̃α(t)S̃β(t′)ρ̃(t′) − S̃β(t′)ρ̃(t′)S̃α(t′)]

+ Cβα(t′ − t)[ρ̃(t′)S̃β(t′)S̃α(t) − S̃α(t)ρ̃(t′)S̃β(t′)]}. (B.21)

It is now very explicit that if the self-correlation functions Cαβ(t− t′) can
be approximated by delta functions, then we can safely replace ρ̃(t′) by ρ̃(t)
If we also do the substitution τ = t− t′ we can write our master equation
as

˙̃ρ(t) = − 1

�2

∫ t

0

dt′
∑
αβ

{Cαβ(τ)[S̃α(t)S̃β(t− τ)ρ̃(t) − S̃β(t− τ)ρ̃(t)S̃α(t)]

+ Cβα(−τ)[ρ̃(t)S̃β(t− τ)S̃α(t) − S̃α(t)ρ̃(t)S̃β(t− τ)]}. (B.22)

We have now obtained a local in time master equation depending only on
the reduced density matrix of the system itself.

We might proceed by carrying out a transformation back to the Scrdinger
picture. By use of the following expression

ρ̇(t) = − i

�
[HS , ρ(t)] + e−iHSt ˙̃ρ(t)eiHSt, (B.23)

and insertion of Eq.(B.19) we obtain

ρ̇(t) = −i[HS, ρ(t)]−
∫ t

0

dt′
∑
αβ

{Cαβ(τ)[Sα, Sβ(−τ)ρ(t)]+Cβα(−τ)[ρ(t)Sβ(−τ), Sα]}.

(B.24)

B.2.4 Explicit model of a TLS subject to a harmonic

oscillator bath

We are now interested in looking at how the rates T1 and T2 entering the
Bloch Redfield equations can be derived and especially which basis they act
in. In order to model a two level system acting as environment for a qubit,
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but that is also itself interacting with environmental degrees of freedom, we
consider a Hamiltonian model where the environmental bosons couples to
the position basis of the two level fluctuators.

H = HS +HE +HSE

HS =
1

2
(Δσz + Δ0σx)

HE =
∑

i

(
1

2mi
p2

i +
1

2
miω

2
i q

2
i )

HSE = σz ⊗
∑

i

ciqi = σz ⊗ Ê. (B.25)

where qi and pi are position and momentum operators of bosonic harmonic
oscillators modeling the phonon environment of the two level system. We
now make a transformation to the energy eigenbasis of the fluctuator

HS =
E

2
σz

HE =
∑

i

(
1

2mi
p2

i +
1

2
miω

2
i q

2
i )

HSE = (
Δ

E
σz +

Δ0

E
σx) ⊗

∑
i

ciqi = σz ⊗ E. (B.26)

Our goal is to solve the master equation explicitly for the Hamiltonian
above. First we want to determine the self correlation functions. Since
the system environment coupling HSE is such that each system operator
couples to the same environment operator we can drop the indices on the
self correlation function (each index correspond to the same environment
operator E =

∑
i

ciqi. We thus find

C(τ) = 〈E(τ)E〉 =
∑
ij

〈cjqj(τ)ciqi〉 = c2i 〈qi(τ)qi〉, (B.27)

where we have assumed that the different oscillators of the environment is
uncorrelated (i.e, not interacting). Writing the position operators in terms

of bosonic ladder operators qi =
√

1
2miωi

(ai + a†i ), or in the interaction

picture qi(τ) =
√

1
2miωi

(aie
−iωiτ +a†ie

iωiτ ), we can calculate the correlation

function

〈qi(τ)qi〉 =
1

2miωi

{
〈aia

†
i 〉e−iωiτ + 〈a†iai〉eiωiτ

}
, (B.28)
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where Ni = 〈a†iai〉 is the mean occupation number of the ith oscillator.
Under the assumption that the environment is in thermal equilibrium we
have Ni(T ) = 1

eω/kB T −1
. Thus we can write for the oscillator correlation

function:

〈qi(τ)qi〉 = 1
2miωi

{
(1 +Ni(T ))e−iωiτ +Ni(T )eiωiτ

}
= 1

2miωi
{(1 + 2Ni(T )) cos(ωiτ) − i sin(ωiτ)}

= 1
2miωi

{
coth

(
ωi

2kBT

)
cos(ωiτ) − i sin(ωiτ)

}
. (B.29)

Inserting Eq. B.67 into Eq. B.27. We can now express the full environ-
ment self correlation function as

C(τ) =
∑

i

c2i
2miωi

{
coth

(
ωi

2kBT

)
cos(ωiτ) − i sin(ωiτ)

}
= ϑ(τ) − iη(τ),

(B.30)
where

ϑ(τ) =
∑

i

c2i
2miωi

coth

(
ωi

2kBT

)
cos(ωiτ) (B.31)

=

∫ ∞

0

dωJ(ω) coth

(
ω

2kBT

)
cos(ωiτ) (B.32)

and

η(τ) =
∑

i

c2i
2miωi

sin(ωiτ) (B.33)

=

∫ ∞

0

dωJ(ω) sin(ωτ). (B.34)

The functions ϑ(τ) and η(τ) are called the noise kernel and the dissipa-
tion kernel, respectively. The spectral function entering the expressions is

defined by J(ω) =
∑
i

c2
i

2miωi
δ(ω − ωi).

We can now re-express our master equation Eq.(B.24) in terms of these
new functions, inserting the explicit operators from our Hamiltonian. Our
final equation takes the form

ρ̇(t) = − i

�
[HS , ρ(t)]

−
∑
αβ

∫ t

0

dτ{ϑ(τ)[σα, [σβ(−τ), ρ(t)]] − iη(τ)[σα, {σβ(−τ), ρ(t)}+]}.

(B.35)
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B.2.5 The equations of motion

We are now ready to find the equations of motion of our two level system
using the parameters of our model Hamiltonian Eq.(B.26). In order to
calculate the commutators of Eq.(B.35) we have to find the time evolution
of the operators σα in the Heisenberg picture. We have

σz(t) = e
iHSt

� σze
−iHSt

� = σz (B.36)

and
σx(t) = e

iEtσz
2� σze

−iEtσz
2� , (B.37)

and by use of the Baker-Hausdorf lemma we obtain

σx(t) = σx + (it)[HS , σx] − (it)2

2!
[HS , [HS , σx]] − (it)3

3!
[HS , [HS , [HS , σx]]]].

(B.38)
Inserting for HS we find

σx(−τ) = σx cos(ωτ) + σy sin(ωτ) (B.39)

If we parametrize the density matrix by use of the Bloch vector m as
follows

ρ(t) =
1

2
(I +mxσx +myσy +mzσz), (B.40)

we can express the commutators and the anticommutators on the simple
form:

[σz, ρ] = iσymx − iσxmy

([σx, ρ] = iσzmy cos(ωτ) − iσymz cos(ωτ)

− iσzmx sin(ωτ) + iσxmz sin(ωτ)

{σz, ρ}+ = σz +mz

{σx, ρ}+ = σx +mz (B.41)

and the double commutators are

[σz , [σz , ρ]] = 2σxmx + 2σymy

[σx, [σz , ρ]] = −2σzmx

[σx, [σx, ρ]] = 2σymy cos(ωτ) + 2σzmz cos(ωτ) − 2σymx sin(ωτ)

[σz, [σx, ρ]] = −2σxmz cos(ωτ) − 2σymz sin(ωτ)

[σz , {σz, ρ}+] = 0

[σx, {σz, ρ}+] = −2iσy

[σx, {σx, ρ}+] = 0

[σz, {σx, ρ}+] = 2iσy (B.42)
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We can now insert this expression into our master equation Eq.(B.35),
where we have introduced the frequency ω = E

�
. On component form the

equations of motion for the density matrix is then

ṁx(t) = mx(t)
Δ2

E2
A−my(t)ω +mz(t)

ΔΔ0

E2
Ac

ṁy(t) = mx(t)(ω − ΔΔ0

E2
As) +my(t)(

Δ2

E2
A+

Δ2
0

E2
Ac) −mz(t)

ΔΔ0

E2
As

ṁz(t) = −mx(t)
ΔΔ0

E2
+mz(t)

Δ2
0

E2
Ac, (B.43)

where we have introduced

A = 2

∫ ∞

0

∫ ∞

0

dω′dτJ(ω′) cosh

(
ω′

2kbT

)
cos(ω′τ) (B.44)

Ac = 2

∫ ∞

0

∫ ∞

0

dω′dτJ(ω′) cosh

(
ω′

2kbT

)
cos(ω′τ) cos(ωτ) (B.45)

As = 2

∫ ∞

0

∫ ∞

0

dω′dτJ(ω′) cosh

(
ω′

2kbT

)
cos(ω′τ) sin(ωτ) (B.46)

we can write our equations of motion on the final simple matrix form

�̇m(t) =

⎡
⎢⎣

Δ2

E2A −ω + ΔΔ0

E2 As
ΔΔ0

E2 Ac

ω − ΔΔ0

E2 As
Δ2

E2A+
Δ2

0

E2Ac
ΔΔ0

E2 As

ΔΔ0

E2 Ac 0
Δ2

0

E2Ac

⎤
⎥⎦ · �m(t). (B.47)

Our fluctuator coupled to the environment by the interaction term
HSE = 1

E (Δσz + Δ0σx) ⊗ Ê As we can see from Eq. B.47, the σz term
in the environment coupling is alone responsible for the decoherence in
the x-y plane while the σx term is responsibele for decoherence in the y-
z plane on the Bloch sphere (i.e., this term causes relaxation along the z
axis, meaning energy decay). But we also see cross terms depending on the
presence of both terms in the fluctuator environment coupling. However,
if we assume that the TLS operators in which couples to the environment
each couple to independent environmental degrees of freedom, then these
cross-terms vanishes. We find that by making this assumption we get decay
rates which resembles the 1/T1 and 1/T2 of the Bloch Redfield equations.
However, the equations themselves are different. We can se from the above
Master equation is homogeneous, while the Bloch-Redfield equation is non-
homogeneous. We can therefore not derive the Bloch-Redfield equation
direcly from the master equation.
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B.3 Two level system subject to a pulsed driv-

ing field

We will in this section derive the solution of the Bloch-Redfield equation
for a TLS subject to pulsed driving. We consider a TLS interacting with
a general environment responsible for relaxation and pure dephasing. We
assume weak coupling to the qubit, so that it can be neglected when solving
the equations of motion for the TLS.

The Hamiltonian in the rotating wave approximation is as in paper 3:

HRWA =
1

2
Eσz − ηΔ0

2

(
e−iΩt|+〉〈−| + eiΩt|−〉〈+|) . (B.48)

With the above Hamiltonian the explicit Bloch-Redfield equations are

dρ++

dt
=
iηΔ0

2�

(
e−iΩtρ−+ − eiΩtρ+−

)− 1

T1

(
ρ++ − ρeq

++

)
dρ−+

dt
=
iE

�
ρ−+ +

iηΔ0

2�
eiΩt(2ρ++ − 1) − 1

T2
ρ−+. (B.49)

In order to avoid the explicit time dependence we make the transformation
n = ρ++ − ρeq

++, f = e−iΩtρ−+ and f∗ = eiΩtρ+−. We also introduce
the Rabi frequency A = ηΔ0/� and the deviation from resonance z =
E/�−Ω. As in the paper we assume symmetric coupling to the environment,
1/T1 = 1/T2 = γ. This approximation is not valid in general, but is a fair
approximation in many solid state systems. A general inequality T2 ≤ 2T1

can be derived from the master equation.
The above equations of motion, Eq. (B.49), can be cast in the following

form

ṅ = −A Im f − γn

Im ḟ = A(n+ neq − 1

2
) − γ Im f + zRe f

Re ḟ = −z Im f − γ Re f. (B.50)

We solve the equations by Laplace transformation (using the shorthand
notation Re f = r, Im f = i)

sN − n0 = −AI − γN

sI − io = A(N +
neq − 1/2

s
) − γI + zR

sR − r0 = −zI + γR, (B.51)
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where N , R and I are the Laplace transforms of n, r and i, respectively.

By algebraic manipulations we obtain

N =
n0((s+ γ)2 + z2) − zAr0

(s+ γ)((s+ γ)2 + z2 +A2)
− Ai0

(s+ γ)2 + z2 +A2

− −A2(neq − 1/2)

s((s+ γ)2 + z2 +A)

I =
i0(s+ γ) + zr0 +An0

(s+ γ)2 + z2 +A2
− −A(neq − 1/2)(s+ γ)

s((s+ γ)2 + z2 +A)

R =
−zA( n0

s+γ +
neq−1/2

s ) − zi0

(s+ γ)2 + z2 +A2
+

r0((s+ γ)2 +A2)

(s+ γ)((s+ γ)2 +A2 + z2)
. (B.52)

These equations can be transformed back by the inverse Laplace transform.

We now look at the solution during and after a single driving pulse.
We call the time of the pulse tp and the time of free evolution after the
pulse tf Using that the time evolution in the absence of the driving field is
simply n(tf ) = n0e

−γtf and f(tf) = f0e
(−γ+iz)tf , we obtain the following

time evolution when considering a single pulse of time tp followed by a
successive free evolution lasting a time tf ,

n(tp + tf ) =
n0e

−γ(tp+tf )

z2 +A2
(A2 cos(

√
z2 +A2tp) + z2)

− A√
A2 + z2

i0e
−γ(tp+tf ) sin(

√
z2 +A2tp)

− zAr0
A2 + z2

e−γ(tp+tf )

(
1 − cos(

√
z2 +A2tp)

)

− A2(neq − 1/2)

γ2 + z2 +A2
e−γtf

[
1 − e−γtp

(
cos(

√
z2 + A2tp)

+
γ√

z2 +A2
sin(

√
z2 +A2tp)

)]
(B.53)

72



B.3 Two level system subject to a pulsed driving field

The evolution of the real part of the density matrix element f is

r(tp + tf ) = cos(ztf )
{e−γ(tp+tf )

z2 + A2
[−zAn0(1 − cos(

√
z2 +A2tp)) + r0(A

2 + z2 cos(
√
A2 + z2tp))]

− zi0√
z2 +A2

e−γ(tp+tf ) sin(
√
z2 +A2tp)

− zA(neq − 1/2)

γ2 + z2 +A2
e−γtf [1 − e−γtp(cos(

√
z2 +A2tp) +

γ√
z2 +A2

sin(
√
z2 +A2tp))]

}

− sin(ztf)
{e−γ(tp+tf )

√
z2 + A2

[An0 sin(
√
z2 +A2tp) + zr0 sin(

√
A2 + z2tp)]

+ i0e
−γ(tp+tf ) sin(

√
z2 +A2tp)

+
γA(neq − 1/2)

γ2 + z2 +A2
e−γtf [1 − e−γtp(cos(

√
z2 +A2tp) −

√
z2 +A2

γ
sin(

√
z2 +A2tp))]

}
.

(B.54)

And for the imaginary part we obtain

i(tp + tf ) = cos(ztf )
{e−γ(tp+tf )

√
z2 +A2

[An0 sin(
√
z2 +A2tp) + zr0 sin(

√
A2 + z2tp)]

+ i0e
−γ(tp+tf ) sin(

√
z2 +A2tp)

+
γA(neq − 1/2)

γ2 + z2 +A2
e−γtf [1 − e−γtp(cos(

√
z2 +A2tp) −

√
z2 +A2

γ
sin(

√
z2 +A2tp))]

}

+ sin(ztf)
{e−γ(tp+tf )

z2 +A2
[−zAn0(1 − cos(

√
z2 +A2tp)) + r0(A

2 + z2 cos(
√
A2 + z2tp))]

− zi0√
z2 +A2

e−γ(tp+tf ) sin(
√
z2 +A2tp)

− zA(neq − 1/2)

γ2 + z2 +A2
e−γtf [1 − e−γtp(cos(

√
z2 +A2tp) +

γ√
z2 +A2

sin(
√
z2 +A2tp))]

}
.

(B.55)

In the limit tf → 0, the solution reduce to the expression given in Eqs. (8)
and (9) in paper 1.

B.3.1 Derivation for pulses, for general T1 and T2, as-

suming resonance

In this section we are interested in the saturation level of the density ma-
trix for a driven TLS, in general the driving might be pulsed. We here
want to loosen the assumption that the decoherence is symmetric, i.e. that
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γ = 1/T1 = 1/T2. This makes solution much more complicated, but we
can obtain a solution if we assume that the driving is resonant with the
eigenfrequency of the TLS, ω = Ω.

The equations of motion we consider is identical to Eq. B.49, where we
set the detuning to zero, z = 0 We find the following set of eigenvectors
(here we use the notation N = ηΔ0

�
)

λ1 =
−1

T2
, x1 =

⎡
⎣ 0

1
0

⎤
⎦

λ2 = − 1

T1
− 1

2T2
+ φ, x2 =

⎡
⎣ − 1

T1
+ 1

2T2
+ φ

0
N

⎤
⎦

λ3 = − 1

T1
− 1

2T2
− φ, x3 =

⎡
⎣ − 1

T1
+ 1

2T2
− φ

0
N

⎤
⎦ , (B.56)

where φ =
√

( 1
2T2

− 1
T1

)2 −N2.

The homogeneous solution is

yh = c1e
λ1t�x1 + c2e

λ2t�x2 + c3e
λ3t�x3 (B.57)

and the particular solution is

yp =

⎡
⎢⎢⎣

1
2 +

ρeq
++−1/2

1+ I
Ic

0

T2N
ρeq
++−1/2

1+ I
Ic

⎤
⎥⎥⎦

where the saturation level of the density matrix is denoted I/Ic = T1T2

2 N2.

We also introduce A = − 1
T1

+ 1
2T2

+
√

( 1
2T2

− 1
T1

)2 −N2 and B = − 1
T1

+

1
2T2

−
√

( 1
2T2

− 1
T1

)2 −N2. The general solution of the Bloch-Redfield equa-

tions transformed back to the non-rotating reference system can now be

74



B.3 Two level system subject to a pulsed driving field

written

ρ++(t) = Ac2e
λ2t +Bc3e

λ3t +
1

2
+

ρeq
++

1 + I/Ic
,

Re ρ−+(t) = c1e
λ1t cos(Ωt) −N

(
c2e

λ2t + c3e
λ3t + T2

ρeq
++

1 + I/Ic

)
sin(Ωt),

Im ρ−+(t) = c1e
λ1t sin(Ωt) +N

(
c2e

λ2t + c3e
λ3t + T2

ρeq
++

1 + I/Ic

)
cos(Ωt).

(B.58)

We need to determine the coefficients c1, c2 and c3 in order to solve
the initial value problem. In the following we also introduce the notation

R =
ρeq
++

1+I/Ic . The initial values are

ρ++(0) = Ac2 +Bc3 +
1

2
+R = z,

Re ρ−+(0) = c1 = x,

Im ρ−+(0) = N(c2 + c3 + 1/2 + T2R) = y, (B.59)

and by inverting the equations we obtain

c1 = x,

c2 = (z − yB

N
− 1

2
−R(1 − T2B))

1

B −A
,

c3 = (z − yA

N
− 1

2
−R(1 − T2A))

1

A−B
. (B.60)

We can then write down the final solution in the presence of external
field

ρ++(tp) = eλ2tp
A

A−B
[z − yB

N
− 1

2
−R(1 − T2B)]

+ eλ3tp
B

B −A
[z − yA

N
− 1

2
−R(1 − T2A)] +

1

2
+R,

Re ρ−+(tp) = xeλ1tp cos(Ωtp) −
{
eλ2tp

N

A−B
[z − yB

N
− 1

2
−R(1 − T2B)]

+ eλ3tp
N

B −A
[z − yA

N
− 1

2
−R(1 − T2A)] + T2NR

}
sin(Ωtp),

Im ρ−+(tp) = xeλ1tp sin(Ωtp) +
{
eλ2tp

N

A−B
[z − yB

N
− 1

2
−R(1 − T2B)]

+ eλ3tp
N

B −A
[z − yA

N
− 1

2
−R(1 − T2A)] + T2NR

}
cos(Ωtp).

(B.61)
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The solution of the Bloch-Redfield equations Eq. (B.49) in the absence
of external field is far more trivial.

ρ++(tf ) = ze
−2tf

T1 + ρeq
++(1 − e

−2tf
T1 ),

Re ρ−+(tf ) = xe
−tf
T2 cos(ωtf ) − ye

−tf
T2 sin(ωtf ),

Im ρ−+(tf ) = xe
−tf
T2 sin(ωtf ) + ye

−tf
T2 cos(ωtf ). (B.62)

Since we are mainly interested in saturation of the qubit rather than the
transient behavior, we want to find the steady state solution of the two-level
system density matrix when subjected to a infinite sequence of pulses. We
write the time evolution of the density matrix as follows

ρ(t = tp + tf ) = P (tf )M(tp)ρ+ P (tf )m(tp) + p(tf ) = Uρ+ u.

Since we have already found the time evolution of ρ we can read off the
matrices M and P directly

M(tp) =

⎡
⎢⎢⎣

Aeλ2tp−Beλ3tp

A−B 0 −AB(eλ2tp−eλ3tp )
N(A−B)

−N sin(Ωtp)(eλ2tp−eλ3tp )
(A−B) cos(Ωtp)e

λ1tp − sin(Ωtp)(Aeλ2tp−Beλ3tp )
(A−B)

−N cos(Ωtp)(eλ2tp−eλ3tp )
(A−B) sin(Ωtp)e

λ1tp − cos(Ωtp)(Aeλ2tp−Beλ3tp )
(A−B)

⎤
⎥⎥⎦

(B.63)

and

m(tp) =

⎡
⎢⎣

Aeλ2tp (− 1
2−R(1−T2B)+Beλ3tp (− 1

2−R(1−T2A)

A−B ) + 1
2 +R

−N sin(Ωtp)
A−B [eλ2tp(− 1

2 −R(1 − T2B)) + eλ3tp(− 1
2 −R(1 − T2A)) + T2R]

N cos(Ωtp)
A−B [eλ2tp(− 1

2 −R(1 − T2B)) + eλ3tp(− 1
2 −R(1 − T2A)) + T2R]

⎤
⎥⎦ .

(B.64)

In the absence of the driving field we have

P (tf ) =

⎡
⎢⎢⎣
e

−2tf
T1 0 0

0 cos(ωtf )e
−tf
T2 − sin(ωtf )e

−tf
T2

0 sin(ωtf )e
−tf
T2 cos(ωtf )e

−tf
T2

⎤
⎥⎥⎦ (B.65)

and

p(tf ) =

⎡
⎢⎣ ρeq

++(1 − e
2tf
T1

0
0.

⎤
⎥⎦ (B.66)
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We are now looking for the full time evolution of a infinite sequence of
pulses. The density matrix ρ after the n-th combined pulse-free evolution
sequence is

ρn+1 = PMρn + Pm+ p.

By substituting ρn = un + c we get

un+1 + c = PMun + PMc+ Pm+ p.

If we then choose

c = (1 − PM)−1(Pm+ p), (B.67)

we obtain that

ρn = c+ un = c+ (PM)nu0.

In practice we have a damped system for the parameter interval we are
interested in and thus (PM)n goes to zero for large n.

It remains to compute U = PM and Pm+ p (we write ω = Ω since our
calculation already assumes resonance). We get

U(tf + tp) =

⎡
⎢⎢⎢⎣

e
−2tf

T1
Aeλ2tp+Beλ3tp

A−B 0 −e
−2tf

T1
AB(eλ2tp−eλ3tp )

N(A−B)

−e
−tf
T2

N sin(Ω(tp+tf ))(eλ2tp−eλ3tp )
(A−B) e

−tf
T2 cos(Ω(tp + tf ))eλ1tp −e

−tf
T2

sin(Ω(tp+tf ))(Aeλ2tp−Beλ3tp )
(A−B)

−e
−tf
T2

N cos(Ω(tp+tf ))(eλ2tp−eλ3tp )
(A−B) e

−tf
T2 sin(Ω(tp + tf ))eλ1tp −e

−tf
T2

cos(Ω(tp+tf ))(Aeλ2tp−Beλ3tp )
(A−B)

⎤
⎥⎥⎥⎦

(B.68)

and

P (tf )m(tp) + p(tf ) =

⎡
⎢⎢⎣

e
−2tf

T1 [
Aeλ2tp (− 1

2−R(1−T2B)+Beλ3tp (− 1
2−R(1−T2B)

A−B ) + 1
2 + R] + ρeq

++(1 − e
2tf
T1 )

−e
−tf
T2

N sin(Ω(tp+tf ))
A−B [eλ2tp(− 1

2 −R(1 − T2B)) +Beλ3tp(− 1
2 −R(1 − T2A)) + T2R]

−e
−tf
T2

N cos(Ω(tp+tf))
A−B [eλ2tp(− 1

2 −R(1 − T2B)) +Beλ3tp(− 1
2 −R(1 − T2A)) + T2R]

⎤
⎥⎥⎦ .

(B.69)

We have finally obtained all the expressions we need in order to find the
saturation level of the TLS in steady state, given by

ρ(t→ ∞) = c,

where c is given by Eq. (B.67).
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B.3.2 Realistic pulses: averaging over the length of the

pulse

In the preceeding analysis of this section, we assumed a fixed time tp for
the driving pulse. The fixed pulse time give rise to sharp resonance dips in
the saturation level of the TLS as a function of the driving strength η, see
Fig. 3.5. For realistic pulse generators we expect that we are not able to
generate perfectly sharp square pulses. To account for the finite rise time
and the randomness in the onset of the square pulse we might average over
a distribution of pulses of slightly different lengths tp.

The simplest assumption for the distribution of pulse lengths is the
Gaussian distribution

f(t) = e−
(t−t̄p)2

2σ2 , (B.70)

where t̄p is the mean pulse length and σ is the standard deviation in the
length of the pulse.

By use of the Gaussian distribution, Eq. (B.70), we can compute the
ensemble averaged versions of the propagators during the pulse given by
Eqs. (B.63) and (B.64). We define the ensemble average by

〈U(tp)〉tp
=

∞∫
−∞

dtpe
−(tp−t̄p)2

2σ2 U(tp)

∞∫
−∞

dtpe
−(tp−t̄p)2

2σ2

(B.71)

and obtain the following expressions for the pulse length averaged propa-
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gators:

〈M11(tp)〉tp
=
Ae

σ2λ2
2

2 +λ2t̄p −Be
σ2λ2

3
2 +λ3t̄p

A−B
,

〈M12(tp)〉tp
= 0,

〈M13(tp)〉tp
= −AB(e

σ2λ2
2

2 +λ2t̄p − e
σ2λ2

3
2 +λ3 t̄p)

N(A−B)
,

〈M21(tp)〉tp
= −

N

[
sin(Ω(t̄p + λ2σ

2))e
σ2λ2

2
2 +λ2 t̄p − sin(Ω(t̄p + λ3σ

2))e
σ2λ2

3
2 +λ3t̄p

]

(A−B)
,

〈M22(tp)〉tp
= cos(Ω(t̄p + λ1σ

2))e
σ2λ2

1
2 +λ1 t̄p ,

〈M23(tp)〉tp
= −A sin(Ω(t̄p + λ2σ

2))e
σ2λ2

2
2 +λ2 t̄p −B sin(Ω(t̄p + λ3σ

2))e
σ2λ2

3
2 +λ3 t̄p

(A−B)
,

〈M31(tp)〉tp
= −

N

[
cos(Ω(t̄p + λ2σ

2))e
σ2λ2

2
2 +λ2t̄p − cos(Ω(t̄p + λ3σ

2))e
σ2λ2

3
2 +λ3 t̄p

]

(A−B)
,

〈M32(tp)〉tp
= sin(Ω(t̄p + λ1σ

2))e
σ2λ2

1
2 +λ1t̄p ,

〈M33(tp)〉tp
= −A cos(Ω(t̄p + λ2σ

2))e
σ2λ2

2
2 +λ2 t̄p −B cos(Ω(t̄p + λ3σ

2))e
σ2λ2

3
2 +λ3t̄p

(A−B)
.

(B.72)

and

〈m1(tp)〉tp
=
Ae

σ2λ2
2

2 +λ2 t̄p(− 1
2 −R(1 − T2B) +Be

σ2λ2
3

2 +λ3 t̄p(− 1
2 −R(1 − T2A)

A−B
) +

1

2
+R,

〈m2(tp)〉tp
= − N

A−B
[sin(Ω(t̄p + λ2σ

2)e
σ2λ2

2
2 +λ2tp(−1

2
−R(1 − T2B))

+ sin(Ω(t̄p + λ3σ
2)e

σ2λ2
3

2 +λ2tp(−1

2
−R(1 − T2A)) + T2R],

〈m3(tp)〉tp
=

N

A−B
[cos(Ω(t̄p + λ2σ

2)e
σ2λ2

2
2 +λ2tp(−1

2
−R(1 − T2B))

+ cos(Ω(t̄p + λ3σ
2)e

σ2λ2
3

2 +λ2tp(−1

2
−R(1 − T2A)) + T2R].

(B.73)

From these expressions we can compute the averaged expressions for
the quantities U(tf + tp) and P (tf )m(tp)+p(tf ) of Eqs. (B.68) and (B.69).
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0 0.005 0.010 0.015 0.020
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η

ρ ++
σ=0.5tp σ=0.1tp

σ=0

Figure B.1: The saturation level of the TLS in steady state for pulsed driv-
ing as a function of the driving strength η = Eac·p

E for relaxation rates
γ = 1.25 · 106. The solid graphs shows the saturation level of the TLS in
steady state at the onset of the next pulse for different Gaussian distri-
butions of pulse lengths. The saturation level for continuous driving with
the same average intensity as for the pulse sequence is plotted for com-
parision, red dashed graph. The standard deviation in the distribution,
Eq. (B.70), is a) blue graph: σ = 0, b) green graph: σ = 0.1tp and c)
black graphσ = 0.5tp. The parameters are as given in the article by John
Martinis et. al. for a charge qubit [97]: Δ0/� = 10GHz, dipole moment
p = 3.7D and electric field EAC = 3 · 103V/m. The average lenght of the
pulses is t̄p = 108 and the time between each pulse tf = 10 ·tp. The thermal
equilibrium level is ρeq

++ = 0.

The expression, Eq. (B.67), then gives us the density matrix in steady
state ρ(t→ ∞) averaged over the length of the pulses. As an example, the
saturation level in steady state for three different values of σ is plotted in
Fig. B.1. We see that the sharp resonance peaks are smeared out as the
pulse length becomes less sharp. However, the results are not significantly
altered until σ is of the order of a few percent of tp which could in principle
be avoided by a state of the art pulse generator.
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Complementary

derivations for the third

paper

In this chapter we will give supplementary derivations, that were not given
explicitly in the paper.

C.1 The time evolution operator

The time evolution operator is defined by

U = e−
i
�

H0t = Se−
i
�

DtS−1,

where S is the eigenvector matrix of H0 and D is the eigenvalue matrix.
With

S =

⎛
⎜⎜⎝

η− + η+ η+ − η− −γ+ − γ− γ+ − γ−
η− − η+ η+ + η− +γ+ − γ− γ+ + γ−
η− − η+ η+ + η− −γ+ + γ− −γ+ − γ−
η− + η+ η+ − η− +γ+ + γ− −γ+ + γ−

⎞
⎟⎟⎠ , (C.1)

e−
i
�

Dt =

⎛
⎜⎜⎝

e−
i
�
Ωt 0 0 0

0 e
i
�
Ωt 0 0

0 0 e−
i
�

εt 0

0 0 0 e
i
�

εt

⎞
⎟⎟⎠ (C.2)
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and S−1 = ST , we obtain for the matrix elements of U :

U11 = (η2
+ + η2

−)
cos Ωt

2
− iη+η− sin Ωt+ (γ2

+ + γ2
−)

cosΩt

2
− iγ+γ− sin Ωt

U12 = i(η2
+ − η2

−)
sin Ωt

2
+ (γ2

+ − γ2
−)

sin Ωt

2

U13 = i(η2
+ − η2

−)
sin Ωt

2
− (γ2

+ − γ2
−)

sin Ωt

2

U14 = (η2
+ + η2

−)
cos Ωt

2
− iη+η− sin Ωt− (γ2

+ + γ2
−)

cosΩt

2
+ iγ+γ− sin Ωt

U22 = (η2
+ + η2

−)
cos Ωt

2
+ iη+η− sin Ωt+ (γ2

+ + γ2
−)

cosΩt

2
+ iγ+γ− sin Ωt

U23 = (η2
+ + η2

−)
cos Ωt

2
+ iη+η− sin Ωt− (γ2

+ + γ2
−)

cosΩt

2
− iγ+γ− sin Ωt

U24 = i(η2
+ − η2

−)
sin Ωt

2
− (γ2

+ − γ2
−)

sin Ωt

2

U33 = (η2
+ + η2

−)
cos Ωt

2
+ iη+η− sin Ωt− (γ2

+ + γ2
−)

cosΩt

2
+ iγ+γ− sin Ωt

U34 = i(η2
+ − η2

−)
sin Ωt

2
+ (γ2

+ − γ2
−)

sin Ωt

2

U33 = (η2
+ + η2

−)
cos Ωt

2
− iη+η− sin Ωt− (γ2

+ + γ2
−)

cosΩt

2
− iγ+γ− sin Ωt.

(C.3)

Here we have given the upper triangle of the symmetric matrix U , and used
� = 1 units.

C.2 Solutions for the Bloch vector in the sta-

tionary path approximation

In the stationary path approximation we have tabulated the decay of the
Bloch vector for different initial states. The table can be found on page 4
in the third paper and is computed by use of the formula

α15(t) =

√
3

2
−
√√√√3

2
−

14∑
i=1

α2
i (t) ≈

√
1

6

14∑
i=1

α2
i (t). (C.4)

The decay of the mean square of the different components is in the paper
only given for the initial state |ψ0〉 = |01〉− |10〉. Here we give the solutions
for the components for the last three tabulated initial states.
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For the initial state |ψ〉 = |01〉 + |10〉 we have

〈
α2

9(t)
〉

=
〈
α2

13(t)
〉

=

〈
σξ2

〉
8

[1 − cosω−

ω−t
+

1 − cosω+t

ω+

]2
〈
α2

10(t)
〉

=
〈
α2

14(t)
〉

=

〈
σξ2

〉
8

[sinω−t

ω−

− sinω+t

ω+

]2
〈
α2

11(t)
〉

=

〈
δξ2

〉
4

[1 − cosω−t

ω−

− 1 − cosω+t

ω+

]2
〈
α2

12(t)
〉

=

〈
δξ2

〉
4

[sinω−t

ω−

+
sinω+t

ω+

]2
. (C.5)

We observe that the Bloch vector in this case diffusion is enhanced along
the λ9, λ10, λ13 and λ14 components if the noise is correlated.While it is
diminished for anticorrelated noise, in contrast to what was found for the
initial state |ψ〉 = |01〉 − |10〉, where the noise vanished for all components
in the presence of fully correlated noise.

For the initial state |ψ〉 = |00〉 + |11〉 we get

〈
α2

9(t)
〉

=
〈
α2

11(t)
〉

=

〈
δξ2

〉
8

[1 − cosω−t

ω−

+
1 − cosω+t

ω+

]2
〈
α2

10(t)
〉

=
〈
α2

12(t)
〉

=

〈
δξ2

〉
8

[sinω−t

ω−

− sinω+t

ω+

]2
〈
α2

13(t)
〉

=

〈
σξ2

〉
4

[1 − cosω−t

ω−

− 1 − cosω+t

ω+

]2
〈
α2

14(t)
〉

=

〈
σξ2

〉
4

[sinω−t

ω−

+
sinω+t

ω+

]2
, (C.6)

while for the state |ψ〉 = |00〉 − |11〉 we find

〈
α2

9(t)
〉

=
〈
α2

10(t)
〉

=

〈
σξ2

〉
8

[1 − cosω−t

ω−

+
1 − cosω+t

ω+

]2
〈
α2

10(t)
〉

=
〈
α2

12(t)
〉

=

〈
σξ2

〉
8

[sinω−t

ω−

− sinω+t

ω+

]2
〈
α2

13(t)
〉

=

〈
σξ2

〉
4

[1 − cosω−t

ω−

− 1 − cosω+t

ω+

]2
〈
α2

14(t)
〉

=

〈
σξ2

〉
4

[sinω−t

ω−

+
sinω+t

ω+

]2
. (C.7)
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It is evident that for fully anticorrelated noise 〈σξ2〉 = 0, the noise vanishes
along all directions.

C.3 Solution for intermediate times

In the article we give only parts of the derivation of our expression for Γ
and only for the initial state |ψ0〉 = |01〉.

Here we will go through the solution for the initial state |ψ0〉 = |01〉 −
|10〉:

The transformation

ρ = S−1ρ′S, V ′′(t) = S−1V ′(t)S, (C.8)

to the frame where the initial state lies on the south pole of the Bloch
sphere along the λ15 axis is carried out by the transformation matrix

S =
1√
2

⎛
⎜⎜⎝

√
2 0 0 0

0 −1 0 −1
0 −1 0 1

0 0
√

2 0

⎞
⎟⎟⎠ . (C.9)

By use of this transform and the equation

α̇i(t) ≈ fij15βj(t)m15(0), (C.10)

we obtain the following equations of motions along the 6-dimensional tan-
gent subspace of the Bloch sphere.

84
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α̇9(t) = Im
V ′

12 − V ′
13√

2
=
ξ1(t)√

2
[λ1 sinω−t+ λ2 sinω+t]

− ξ2(t)√
2

[λ2 sinω−t+ λ1 sinω+t]

α̇10(t) = Re
V ′

12 − V ′
13√

2
=
ξ1(t)√

2
[−(μ1− + μ2−)(cosω−t+ cosω+t)]

+
ξ2(t)√

2
[−(μ1− − μ2−)(cosω−t+ cosω+t)]

α̇11(t) = ImV ′
23 = (ξ1(t) − ξ2(t))[(μ1+ + μ2+) sinω−t+ (μ1+ − μ2+) sinω+t]

α̇12(t) = Re(V ′
33 − V ′

22) = ξ1(t)[−(η−γ− + η+γ+)2 cosω−t− (η−γ+ − η+γ−)2 cosω+t]

+ ξ2(t)[−(η−γ+ + η+γ−)2 cosω−t+ (η−γ− − η+γ+)2 cosω+t]

α̇13(t) = Im
V ′

12 − V ′
13√

2
=
ξ1(t)√

2
[λ1 sinω−t+ λ2 sinω+t]

− ξ2(t)√
2

[λ2 sinω−t+ λ1 sinω+t]

α̇14(t) = Re
V ′

12 − V ′
13√

2
=
ξ1(t)√

2
[−(μ1− + μ2−)(cosω−t+ cosω+t)]

+
ξ2(t)√

2
[−(μ1− − μ2−)(cosω−t+ cosω+t)]. (C.11)

For the mean square of the components we obtain

〈α2
9(t)〉 =

1

2

t∫
0

dt1

t∫
0

dt2〈ξ1(t1)ξ1(t2)〉[λ2
1 sinω−t1 sinω−t2

+ λ2
2 sinω+t1 sinω+t2 + λ1λ2(sinω−t1 sinω+t2 + sinω+t1 sinω−t2)]

+ 〈ξ2(t1)ξ2(t2)〉[λ2
1 sinω−t1 sinω−t2

+ λ2
2 sinω+t1 sinω+t2 + λ1λ2(sinω−t1 sinω+t2 + sinω+t1 sinω−t2)]

− 〈ξ1(t1)ξ2(t2)〉[λ1λ2(sinω−t1 sinω−t2 + sinω+t1 sinω+t2) + λ2
1 sinω−t1 sinω+t2

+ λ2
2 sinω+t1 sinω−t2]

− 〈ξ2(t1)ξ1(t2)〉[λ1λ2(sinω−t1 sinω−t2 + sinω+t1 sinω+t2) + λ2
2 sinω−t1 sinω+t2

+ λ2
1 sinω+t1 sinω−t2], (C.12)

and by use of time translation invariance, the transformation τ = t2 − t1
and T = (t1 + t2)/2, and by assuming that the correlation time is much
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shorter than the observation time t� τc we get

〈α2
9(t)〉 =

1

4

t∫
0

dT

∞∫
−∞

dτ〈ξ1(τ)ξ1(0)〉[λ2
1(cosω−τ − cosω−2T ) + λ2

2(cosω+τ − cosω+2T )

+ λ1λ2(− cos(Ωτ + 2εT )− cos(ετ + 2ΩT ) + cos(Ωτ − 2εT ) + cos(ετ − 2ΩT ))]

+ 〈ξ2(τ)ξ2(0)〉[λ2
2(cosω−τ − cosω−2T ) + λ2

1(cosω+τ − cosω+2T )

+ λ1λ2(− cos(Ωτ + 2εT )− cos(ετ + 2ΩT ) + cos(Ωτ − 2εT ) + cos(ετ − 2ΩT ))]

− 2〈ξ1(τ)ξ2(0)〉[λ1λ2(cosω−τ − cosω−2T + cosω+τ − cosω+2T )

+ λ2
1(− cos(Ωτ + 2εT )− cos(ετ + 2ΩT )) + λ2

2(cos(Ωτ − 2εT ) + cos(ετ − 2ΩT ))].
(C.13)

As long as we observe over a time much longer than the oscillation
frequencies of the two qubit-system t � max{Ω−1, ε−1ω−1

± }, the terms
that oscillates in T can be neglected. Carrying out the integrals we obtain
the final expression

〈α2
9(t)〉 =

t

4

[
λ2

1(S11(ω−) + S22(ω+)) + λ2
2(S11(ω+) + S22(ω−))

− 2λ1λ2(S12(ω−) + S12(ω+))
]
, (C.14)

where

Sij(ω) =

∞∫
−∞

dτ〈ξi(τ)ξj(0)〉 cos(τ). (C.15)

For the five other components we get the following expression by a
similar derivation.

〈α2
10(t)〉 =

t

4

[
(μ1− + μ2−)2(S11(ω−) + S11(ω+)) + (μ1− − μ2−)2(S22(ω−) + S22(ω+))

− 2(μ2
1− − μ2

2−)(S12(ω−) + S12(ω+))
]

〈α2
11(t)〉 =

t

4

[
(μ1+ + μ2+)2(S11(ω−) + S22(ω−) − 2S12(ω−)) + (μ1+ − μ2+)2(S11(ω+) + S22(ω+) − 2S12(ω+))

]

〈α2
12(t)〉 =

t

4

[
(η−γ− + η+γ+)4S11(ω−) + (η−γ+ − η+γ−)4S11(ω+)

+ (η−γ+ + η+γ−)4S22(ω−) + (η−γ− − η+γ+)4S22(ω+)

− 2(η−γ+ + η+γ−)2(η−γ− + η+γ+)2S12(ω−) − 2(η−γ+ − η+γ−)2(η−γ− − η+γ+)2S12(ω+)
]

〈α2
13(t)〉 = 〈α2

9(t)〉
〈α2

14(t)〉 = 〈α2
10(t)〉. (C.16)
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C.3 Solution for intermediate times

We observe that the diffusion along the components, 〈α2
12(t)〉 and 〈α2

13(t)〉,
is reduced in the presence of correlated noise sources. The component along
λ12 vanishes strictly for fully correlated noise, while the component along
λ13 vanishes if and only if the two qubits are at the co-resonance points.
The diffusion along the four other components are reduced in the presence
of anticorrelated noise sources, and enhances in the presence of correlated
sources.

For the initial state |ψ0〉 = |00〉, the differential equations in the six
directions is:

α̇9 = (ξ1(t) − ξ2(t))
[
(μ2+ + μ1+) sinω−t

+ (μ2+ − μ1+) sinω+t
]

α̇10 = 0

α̇11 = ξ1(t)
[
λ1 sinω−t+ λ2 sinω+t

]
α̇12 = ξ1(t)

[
(μ1− + μ2−)(cosω−t− cosω−t)

]
α̇13 = ξ2(t)

[
λ2 sinω−t+ λ1 sinω+t

]
α̇14 = ξ2(t)

[
(μ1− − μ2−)(− cosω−t+ cosω+t)

]
. (C.17)

Already from this expression we see that only one out of the six direc-
tions available for dephasing motion is sensitive to correlations in the noise.
The other components are only dependent on one of the noise sources. In
this initial state, the noise along the λ10 component vanishes regardless of
correlations.
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Hanson M P and Gossard A C 2008 Phys. Rev. Lett. 100(4) 046803

[64] Phillips A G 1981 Amorphous Solids (Springer-Verlag)

[65] Shnirman A, Schn G, Martin I and Makhlin Y 2011 Josephson qubits
as probes of 1/f noise CFN Lectures on Functional Nanostructures
- Volume 2 (Lecture Notes in Physics vol 820) ed Vojta M, Rthig C
and Schn G (Springer Berlin / Heidelberg) pp 75–85 ISBN 978-3-642-
14375-5

92



BIBLIOGRAPHY

[66] Zorin A B, Ahlers F J, Niemeyer J, Weimann T, Wolf H, Krupenin
V A and Lotkhov S V 1996 Phys. Rev. B 53(20) 13682–13687

[67] Nakamura Y, Pashkin Y A, Yamamoto T and Tsai J S 2002 Phys.
Rev. Lett. 88(4) 047901

[68] de Sousa R, Whaley K B, Hecht T, von Delft J and Wilhelm F K
2009 Phys. Rev. B 80(9) 094515

[69] Van Harlingen D J, Robertson T L, Plourde B L T, Reichardt P A,
Crane T A and Clarke J 2004 Phys. Rev. B 70(6) 064517

[70] Wellstood F C, Urbina C and Clarke J 2004 Applied Physics Letters
85 5296–5298

[71] Kogan S 1996 Electronic noise and fluctuations in solids (Cambridge
Univ. Press)

[72] Bergli J, Galperin Y M and Altshuler B L 2009 New Journal of
Physics 11 025002

[73] Phillips W A 1987 Reports on Progress in Physics 50 1657

[74] Phillips W A 1972 Journal of Low Temperature Physics 7(3) 351–360
ISSN 0022-2291

[75] Anderson P W, I H B and M V C 1972 Philosophical Magazine 25(1)
1–9

[76] Anderson A C 1986 Phys. Rev. B 34(2) 1317–1318

[77] Jones D P, Thomas N and Phillips W A 1978 Philosophical Magazine
Part B 38 271–288

[78] Vacher R and Pelous J 1976 Phys. Rev. B 14(2) 823–828

[79] Zaitlin M P and Anderson A C 1975 Phys. Rev. B 12(10) 4475–4486

[80] Klauder J R and Anderson P W 1962 Phys. Rev. 125(3) 912–932

[81] Black J L and Halperin B I 1977 Phys. Rev. B 16(6) 2879–2895

[82] Paladino E, Faoro L, Falci G and Fazio R 2002 Phys. Rev. Lett. 88(22)
228304

[83] Itakura T and Tokura Y 2003 Phys. Rev. B 67(19) 195320

93



BIBLIOGRAPHY

[84] Galperin Y M, Altshuler B L and Shantsev D V 2004 Low-frequency
noise as a source of dephasing of a qubit Fundamental Problems of
Mesoscopic Physics (NATO Science Series vol 154) (Springer Nether-
lands) pp 141–165

[85] Galperin Y M and Gurevich V L 1991 Phys. Rev. B 43(16) 12900–
12905

[86] Lundin N I and Galperin Y M 2001 Phys. Rev. B 63(9) 094505

[87] Ralls K S, Skocpol W J, Jackel L D, Howard R E, Fetter L A, Epworth
R W and Tennant D M 1984 Phys. Rev. Lett. 52(3) 228–231

[88] Hung K, Ko P, Hu C and Cheng Y 1990 Electron Device Letters,
IEEE 11 90 –92 ISSN 0741-3106

[89] Jung Y, Barkai E and Silbey R J 2002 Chemical Physics 284 181 –
194 ISSN 0301-0104

[90] Wangsness R K and Bloch F 1953 Phys. Rev. 89 728–739

[91] Redfield A G 1957 IBM J.Res. Dev. 1

[92] Ramsey N F 1950 Phys. Rev. 78(6) 695–699

[93] Metcalfe M, Boaknin E, Manucharyan V, Vijay R, Siddiqi I, Rigetti
C, Frunzio L, Schoelkopf R J and Devoret M H 2007 Phys. Rev. B
76(17) 174516

[94] Ithier G, Collin E, Joyez P, Meeson P J, Vion D, Esteve D, Chiarello
F, Shnirman A, Makhlin Y, Schriefl J and Schön G 2005 Phys. Rev.
B 72(13) 134519

[95] Lax M 1960 Rev. Mod. Phys. 32 25–64

[96] Lax M 1963 Phys. Rev. 129 2342–2348

[97] Constantin M, Yu C C and Martinis J M 2009 Phys. Rev. B 79 094520

[98] Winograd E A, Rozenberg M J and Chitra R 2009 Phys. Rev. B
80(21) 214429

[99] Camalet S and Chitra R 2007 Phys. Rev. B 75(9) 094434

[100] Paganelli S, de Pasquale F and Giampaolo S M 2002 Phys. Rev. A
66(5) 052317

[101] Camalet S and Chitra R 2007 Phys. Rev. Lett. 99(26) 267202

94



BIBLIOGRAPHY

[102] Tessieri L and Wilkie J 2003 Journal of Physics A: Mathematical and
General 36 12305

[103] Gaebel T, MDomhan, Popa I, Wittmann C, Neumann P, Jelezko F,
Rabeau J R, Stavrias N, Greentree A D, Prawer S, Meijer J, Twamley
J, Hemmer P R and Wrachtrup J 2006 Nature Physics 2 408–413

[104] Hanson R, Dobrovitski V V, Feiguin A E, Gywat O and Awschalom
D D 2008 Science 320 352–355

[105] Ladd T D, Press D, De Greve K, McMahon P L, Friess B, Schneider
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Summary of the papers

In this section I will give a brief summary, as well as the motivation behind
the research leading up to each of the papers of this thesis. The common
theme in the papers is the study of qubits, or other quantum systems, inter-
acting with noisy environments which leads to decoherence in the quantum
system. This is a central problem in the field of quantum computing specif-
ically and in mesoscale and nanoscale physics in general.

Paper 1

In paper 1 we study the effects of an external AC driving field acting on
the two level systems (TLSs) that are thought to be the main contributors
to decoherence in many different designs of qubits. This study is motivated
by both experimental and theoretical indications that fluctuating TLS in
the amorphous substrate used to fabricate superconducting qubits are the
major source of dephasing noise in these qubits. Reducing the impact of
the noise produced by these sources has the potential to significantly extend
the coherence time of the qubit. External driving og the qubit itself is
already used in order to control and manipulate the qubit state. Part of the
motivation behind this work is to understand how these control pulses alter
the noise produced by the environmental TLSs in the substrate. Additional
material where we study the effect of sequences of driving pulses on the
environmental TLSs can be found in Appendix B. The other motivation is
the prospect of using additional external driving fields which only affect the
environment of the qubit, in order to reduce the impact of environmental
noise on the qubit. This can be done by applying a driving field which is
sufficiently detuned from the qubit frequency in order to avoid significant
impact on the qubit.

There are two main results in this paper. First we show how external
driving saturates the near resonant environmental TLS and how it shifts the
noise spectrum of a single environmental TLS from low to high frequencies.
The shift in the spectrum has the potential to reduce the dephasing noise
on the qubit. Secondly, we study the effect of driving on a realistic ensemble
of TLSs present in the substrate. We find that driving at high frequencies
will have little impact or increase the environmental noise on the qubit,
while driving at low frequencies has the potential to shift the spectrum of
the part of the ensemble which is responsible fot the major negative impact
on the qubit away from the low frequency region to frequencies that has
less impact of the qubit. This seems to be a promising method to reduce
dephasing noise in qubits and could seemingly relatively easily be tested in
a future experiment.

99



While the work of this paper is directed towards applications for su-
perconducting qubits, it is in principle equally relevant for all qubits or
quantum devices where the primary decoherence mechanism is due to envi-
ronmental TLSs. A natural extension of this paper would be to study the
effect of the driven TLSs on the qubit beyond the perturbative limit used
here. This is important in order to understand the influence on the qubit
from TLSs which due to the driving has their frequency spectrum shifted
towards the qubit frequency.

Paper 2

In Paper 2 we study the mechanisms behind the enhanced decoherence
found for environments which has frustrated competing interactions. The
motivation behind the work leading to this paper was a series of theoretical
papers showing rapid and much more stable loss of coherence for a central
quantum system if it was coupled to a frustrated environment compared
to an environment without competing interactions, e.g. a ferromagnetic
or antiferromagnetic environment or an environment without any internal
interaction. We wanted to understand the mechanism which led to this
enhanced decoherence due to frustration.

In order to study the effect of frustration we create a model where a
central spin interacts with a spin environment, where we can continuously
tune the degree of frustration in the internal coupling of the environment.
In agreement with previous works, we find the efficiency of decoherence to
be strongest for the frustrated environment. An explanation of this fact in
terms of the energy level statistics of the environment is given and supported
by numerical calculations, according to which stronger level repulsion leads
to more decoherence. We also discuss the possibility of enhancing the co-
herence time of the qubit by applying an external magnetic field, which
acts by reducing the degree of frustration in the spin environment.

In this paper we contribute theoretical insight on the mechanisms be-
hind decoherence in the little studied field of a central spin subject to an
environment with frustrated couplings. This is a general work, which in
principle apply to any two level system subject to an environment of inter-
acting quantum systems. The to my knowlegde only present day relevant
application of theory on this field is in flux qubits, where a major source
of decoherence is thought to origin from surface states which might po-
tentially have frustrated coupling, see reference [22] in the paper. The
nature of the internal couplings of the decoherence inducing environments
of qubits and other quantum devices is, however, in many cases relatively
poorly understood. Since it is now clear that mutually competing internal
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environment couplings might drastically increase the decoherence rate of
the central quantum system, it is likely that quantum engineers could use
this knowledge when designing coherent quantum devices and qubits in or-
der to avoid selecting materials containing systems which could potentially
act as frustrated environments for the device.

Paper 3

In paper 3 we study the effects of correlated noise in coupled qubits. In order
to construct a working quantum computer one require both coherent qubits
and a way to make them interact and carry out computations. We might
assume that in order to have a large number of qubits and gates on a chip,
their spatial separation has to be small. For such a system it is likely that
parts of the noisy environments might be shared between different qubits
resulting in correlated noise in the quantum computer. Such correlated
noise acting on two or more qubits might have very different properties
with respect to decoherence compared to uncorrelated noise. This fact has
already been known for some time due to the general algebraic theory of
decoherence free subspaces, a theory determining the subspaces of a general
multi-qubit Hamiltonian which are immune to correlated noise. In this work
we are interested in the effect of correlated noise acting multi-qubit systems
not necessarily prepared in its potential decoherence free subspace(s).

Most physicist working on quantum computing would likely agree that
in order to establish large scale quantum computing one require efficient
ways to correct unavoidable errors. The so called “threshold” theorem in
quantum computing states that, once the error rate per qubit per gate is
below a certain value, estimated as 10−4 - 10−6, indefinitely long quan-
tum computation becomes feasible, see [M. I. Dyakonov, Future Trends in
Microelectronics. Up the Nano Creek. p. 4-18 (2007)]. However, this
threshold has been questioned in the same above mentioned paper due to
the presence of correlated errors in the quantum computer. With this in
mind, the author even questions if a large scale quantum computer is at all
realizeable. The present work can be looked at as a small first step on the
road of answering this question.

In order to study the effects of correlation it is likely that essential insight
might be gained from the study of the simplest case of two coupled qubits.
In this work we develop a geometric approach based on a generalized Bloch-
vector construction where we can study analytically the effect of correlations
in the noise sources on the decoherence rate of the coupled qubits. We find
that the degree of correlation or anticorrelation in the noise acting on the
two qubits can enhance or reduce the decoherence rate to a large extent if
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the two qubit Hamiltonian has a high degree of symmetry. In the absence
of symmetry in the Hamiltonian, the effect of correlations are weak. It is
likely, however, that qubits fabricated on the same chip used for quantum
computing applications will be based on the same design, which depending
on the realization of the gates might result in multi qubit Hamiltonians
with high degree of symmetry.

Our results show that correlations between the noise sources might be
both beneficial and detrimental based on the protocol used to carry out
computations. If one encode the computer be use of basis states that are
in decoherence free subspaces, or parts of the Hilbert space which is weakly
influenced by correlated noise the coherence time might be dramatically
extended relative to the same system subject to uncorrelated sources. Other
basis states will show the opposite behavior. This knowlege might have
several applications in qubit, gate and protocol design as one progresses
towards the next goal in the quantum computing programme, to make
several coherent qubits which can communicate together to solve complex
computational problems.

Paper 4

In this paper we study the difference in the decoherence rate of a qubit
coupled to either a quantum two level system again coupled to its own en-
vironment or a classical fluctuator modeled by a random telegraph process.
This study is motivated by the fact that decoherence in qubits due to two
level fluctuators is often theoretically described by use of a model where the
qubit is subject to classical random telegraph noise. We belive that this
model is valid if the TLSs in the qubits environment are decohered by their
own environment on a timescale that is much faster than the timescale of
the decoherence of the qubit itself. In this situation the TLSs should behave
classically and be treatable by the telegraph noise model. However, it is
important to have a clear understanding of the limits of this model. Previ-
ously this limit was investigated in Refs. [28] and [29] in the paper. In these
studies it was found that the classical and the quantum model converged
in the limit of high temperatures. The problem with the previously studied
models was that their model did not allow to study separately the effect of
the decoherence rate, the relaxation rate and the temperature of the TLS
since they were all included in the same parameter, the temperature. In
our work we constructed a model for the quantum TLS where all the en-
vironmental parameters could be varied independently. Our results shows
that the difference between the quantum and the classical model depends
on the ratio between the qubit-TLS coupling and the decoherence rate of

102



the TLS in its pointer state basis. The basis which is stable with respect
to interaction with the environment.

The model we study is obtained from the study of TLSs in amorphous
glasses, which is relevant for most realizations of solid state qubits. The
result, that it is the decoherence rate in the pointer basis of a quantum
system which limits the replacement of a full quantum model by a sim-
pler classical one, might potentially extend to more general environments,
however this require further research in order to be confirmed.

This paper emerged as a result of the master thesis of Henry J. Wold.
My contribution to this paper was to analyze and interpret the results of
Wold, to reproduce the numerical results and to write the paper itself.
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Effects of external driving on the coherence time of a Josephson junction qubit in a bath
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We study the effect of external driving on the two-level systems (TLSs) assumed to be a major obstacle in
increasing the coherence time of solid-state Josephson junction qubits. We find, by use of a Bloch-Redfield
approach, that external driving has two major effects on the TLS. The first is increased fluctuations between
the two states of the TLS; the significance of this effect compared to thermal fluctuations depends on the
energy splitting of the TLS compared to temperature. The second effect is a reduction in the intensity of the
noise spectrum at low frequencies, and at the same time an increase in intensity around the renormalized Rabi
frequency of the TLS and the driving frequency and at beatings between these two frequencies. Finally, we study
the ensemble-averaged noise spectrum for a typical distribution of TLSs known to give origin to 1/f noise. We
find that strong driving leads to reduced noise at low frequencies, and therefore to an increased dephasing time
T

Q

2 of the qubit. However, this effect is exponentially suppressed when the driving frequency is large compared
to temperature, as we typically find for Josephson qubits. We suggest that external driving at frequencies much
lower than the qubit frequency might be used in order to enhance the the qubit coherence time.

DOI: 10.1103/PhysRevB.84.245416 PACS number(s): 85.25.Cp, 03.67.Lx, 03.65.Yz, 74.78.−w

I. INTRODUCTION

The most fundamental problem that has to be overcome
in order to produce a quantum computer is the isolation
of its basic elements, the quantum bits (qubits), from its
environment. Entanglement with uncontrollable degrees of
freedom is responsible for the decay of coherent superpositions
of qubit states. The result is irreversible loss of the quantum
information required for operation of the device. Supercon-
ducting qubits based on the Josephson junction are leading
candidates in the design of a quantum computer. They have low
losses, are easily controllable by microwave pulses, and can be
fabricated by use of established integrated circuit technology.
Recent progress in extending the decoherence time of the
qubits has been achieved by identification of the sources of
noise and their respective natures. This knowledge has lead to
the development of countermeasures such as better isolation,
as well as protocols to minimize the negative impact of the
noise; see, e.g., Refs. 1–3, or Ref. 4 for a review of earlier
results.
Bistable two-level systems (TLSs) existing in the tunneling

junction and in the amorphous substrate used to fabricate
the qubit are thought to be the most important source of
decoherence in Josephson junction qubits;5–11 see also Ref. 12
for a review. These TLSs are assumed to give rise to the
observed 1/f noise spectra in Josephson qubits. It is known
that control and manipulation of Josephson qubits by use of
microwave pulses unavoidably leads to driving of TLSs in the
vicinity of the qubit. While different theories of 1/f noise and
their consequences have been studied in great detail, the effect
of driving has with one exception been neglected.
Recently, the influence of external driving on the noise

spectra of such TLSs was investigated in Ref. 13. In Ref. 13
Constantin et al. calculated the saturation of a TLS in external
driving. However, they did not take into account the effect of
driving on the dynamics of the TLS. It was found that the

noise at low frequencies was unchanged by driving, while the
noise at high frequencies was weakly reduced. In this paper we
calculate the noise spectra from a single TLS and an ensemble
of driven TLSs, taking also into account the effect of driving on
dynamics of the TLS.We obtain results that differ qualitatively
from those obtained in Ref. 13.
The picture we arrive at is the following: In a general

environment, e.g., a disordered substrate, there will be TLSs
with a wide distribution of energy splittings E and relaxation
rates γ . Given a driving field of frequency�, we can divide the
fluctuators into two groups: those who are far from resonance
and very weakly perturbed by the driving field (group I),
and those who are close to resonance with the driving field
(group II). We find that the TLSs belonging to group II are
strongly affected by the driving provided that the driving
amplitude is large compared to the relaxation rate of the TLSs.
The response to the driving can roughly be described by two
effects. The first is saturation of the fluctuators. A two-level
fluctuator with large energy splitting compared to temperature,
E � kBT , will in the absence of driving be frozen in the
ground state, with a very small probability of switching to
the exited state. By driving this fluctuator with a frequency
close to resonance, the probability of excitation will increase
and by increasing the driving intensity the probability for the
fluctuator to be found in the upper state versus the lower
state will eventually be similar; thus the TLS is saturated.
A driven fluctuator will thus fluctuate (much) more rapidly
between its upper and lower state. Therefore the noise from this
fluctuator will increase. The second effect caused by driving
is a reduction of the noise spectrum,

S0(ω) ∝ γ

γ 2 + ω2

1

cosh2(E/2kBT )
, (1)

at frequencies centered around ω = 0, and at the same time
increased noise at higher frequencies. The driving results in
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HÅKON BROX, JOAKIM BERGLI, AND YURI M. GALPERIN PHYSICAL REVIEW B 84, 245416 (2011)

several new peaks in the noise spectrum. Most pronounced are
the peaks centered at the renormalized Rabi frequency A′, at
the driving frequency �, and at beatings between these two
frequencies. We find that the net effect of strong driving is a
suppressed noise spectrum at low frequencies.
A typical substrate used for fabrication of qubits is often

assumed to contain TLSs with a distribution of relaxation
rates ∝1/γ and a smooth distribution of energy splittings,
which can be approximated as uniform.6,12,14 This distribution
is known to give rise to 1/f noise at low frequencies.15 For
such an ensemble of fluctuators, the low-frequency noise is
strongly dominated by the fluctuators with small relaxation
rates. Driving at high frequencies resonant with the energy
splitting of the qubit, h̄� ≈ EQ where EQ > kBT (the energy
splitting needs to be large compared to temperature, in order to
avoid thermal transitions between its eigenstates), will result in
a significant response only from the fluctuators near resonance
with the driving field. In the absence of driving, this subset
of fluctuators (group II) are frozen out and contribute only
marginally to the ensemble-averaged noise spectra, which
are dominated by the fluctuators with small energy splittings,
E � kBT . Thus suppression of the low-frequency noise from
group II by strong driving only weakly influences the full
ensemble-produced noise spectra at low frequencies, but
strongly increases the noise at higher frequencies.
However, our results show that while external driving at

qubit frequency for typical ensembles of fluctuators will not
have significant impact on the low-frequency noise, external
low-frequency driving might significantly suppress it. Driving
at low frequencies will effect the fluctuators that contribute
most strongly to the dephasing-producing noise felt by the
qubit (i.e., those with small energy splitting, E). These TLSs
are only weakly influenced by the saturation effect since
their ratio E/kBT is low and correspondingly the population
level in the upper state is already high in the absence of
driving. Therefore, the net effect of driving on the low-E
fluctuators is almost entirely a shift in the frequency spectra
from low to high frequencies. To us this seems like a promising
method to reduce pure dephasing noise and thereby increase
T

Q
2 for the qubit. It is, however, important to note that the
high-frequency noise will be increased, specifically around
the Rabi frequency of the driven fluctuators as well as around
the driving frequency. One should therefore make sure that
these frequencies lie sufficiently far from the eigenfrequency
of the qubit in order to avoid decreasing T

Q
1 . In this paper we

will focus on the low-frequency noise; the noise at frequencies
close to the qubit splitting need to be treated separately (see
Refs. 16–18).
The rest of this paper is divided into the following sections.

In Sec. II we will describe our model of a TLS in an external
field and the assumptions behind it. Thereafter in Sec. III
we will derive an expression for the noise spectrum from a
single TLS and look at different limiting cases. In Sec. IV
we will derive an expression for the ensemble-averaged noise
in the case of strong driving, for a particular distribution of
TLS parameters P (E,γ ) ∝ 1/γ . In Sec. V we will discuss
the effect of the driven TLSs on the central qubit. Finally, the
results will be discussed in Sec. VI.

II. MODEL

In this section we will study the dynamics of TLSs
(fluctuators) subject to an external ac electric field, Eac,
and a thermal environment. The nature of the two-level
systems we are interested in can, e.g., be considered to
be bistable fluctuators tunneling between distinct charge
configurations, leading to charge noise in the qubit. These
charge fluctuators might be attributed to tunneling of charges
between either localized impurity states, between localized
impurity states and metallic electrodes, or between different
charge configurations in a dielectric material.10,19 We model
the charge configurations associated with each state of a given
TLS by its effective dipole moment p. In order to capture the
action of the environment (e.g., thermal phonons) responsible
for relaxation and decoherence of the TLS, we apply the
Bloch-Redfield approach.20–22 We assume that the interaction
between different TLSs is weak compared to the coupling to
the thermal bath, such that eventual correlations between the
TLSs are neglected. Furthermore we assume that the TLSs
couple sufficiently weakly to the qubit compared to other
degrees of freedom in the environment that neglect of the
qubit is justified when studying the dynamics of the TLS. This
allows us to use a perturbative approach when treating the
effect of the TLS(s) on the qubit.

A. Hamiltonian

Our Hamiltonian for the TLSs closely follows that of
Ref. 13. A fluctuator, e.g., a particle in a double well
potential with associated dipole moment p, can be modeled
as a two-level system with tunneling matrix element �0 and
asymmetry energy �. The Hamiltonian of this TLS in an
applied electric field Eac is then H̄ (t) = H̄0 + H̄1(t), where
H̄0 = 1

2 (�τz + �0τx) and H̄1(t) = −τzpEac(t). Here τx,z are
the Pauli matrices and Eac(t) = Eac cos�t is an ac electric
field of angular frequency � coupling to the electric dipole
moment of the TLS. Furthermore, the TLS interacts with the
qubit through H̄F−Q and couples to the environment through
H̄F−env.
By diagonalization of H̄0, the Hamiltonian in the energy

eigenbasis becomes

H = H0 + H1(t)+ HF−Q + HF−env,

H0 = 1

2
Eσz,

(2)
H1(t) = −η(�σz + �0σx) cos�t,

HF−Q = vμz ⊗ τz = vμz ⊗
(

�

E
σz + �0

E
σx

)
,

where E =
√

�2 + �2
0 and η = pEac/E. The matrices μz

and σx,z are Pauli matrices acting in the eigenbasis of the
qubit and the TLS, respectively and v is the qubit-fluctuator
coupling parameter. The TLS-qubit coupling will be neglected
when treating the dynamics of the TLS, assuming it is weak
compared to other terms. But it is, of course, important with
regard to the decoherence of the qubit. We note that the
situation when the qubit and the TLS have very close splittings
is an exception. Then the interaction is strong. See, e.g.,
Refs. 16–18.
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Rather than specifying the explicit nature of the coupling to
the environment, HF−env, we make use of the Bloch-Redfield
equation, where the environment enters as damping terms,
seeking to relax the density matrix toward its thermal equi-
librium value. The Bloch-Redfield equations for the density
matrix elements of the two-level system in the eigenbasis of
H0 are20

ρ̇αα′ = i

h̄
〈α|[ρ,H ]|α′〉 +

∑
β,β ′

Rαα′,ββ ′
(
ρββ ′ − ρ

eq
ββ ′
)
. (3)

The rates R−−,++ = R++,−− ≡ T −1
1 and R−+,−+ =

R+−,+− ≡ T −1
2 can be derived from perturbation theory,20

and the equilibrium density matrix, ρ
eq
β,β ′ (T ), is introduced

phenomenologically in order to achieve relaxation toward
thermal equilibrium.
By use of the rotating wave approximation, we can simplify

the first two terms of our Hamiltonian, Eq. (2), obtaining

HRWA = 1

2
Eσz − η�0

2
(e−i�t |+〉〈−| + ei�t |−〉〈+|). (4)

Inserting into the Bloch-Redfield equation Eq. (3) we find that
the time evolution of the elements of the density matrix is
governed by the following set of differential equations:

dρ++
dt

= iη�0

2h̄
(e−i�tρ−+ − ei�tρ+−)− 1

T1
(ρ++ − ρ

eq
++),

(5)
dρ−+
dt

= iE

h̄
ρ−+ + iη�0

2h̄
ei�t (2ρ++ − 1)− 1

T2
ρ−+ .

Here we note that ρ+− = ρ
†
−+ and ρ−− = 1− ρ++. To avoid

the explicit time dependence we make the transformation
f = e−i�tρ−+ and f ∗ = ei�tρ+−. We also introduce the
Rabi frequency A = η�0/h̄ and the deviation from resonance
z = E/h̄ − �. Furthermore we make the approximation for
the relaxation rates γ = 1/T1 = 1/T2. While not valid in
general, this approximation is believed to be valid when the
decoherence is isotropic.23 The general relationship T2 � 2T1
can be derived from the master equation approach.20,24 Thus
by making this simplifying assumption, asymmetry of the
relaxation behavior of the TLS is left out. However, we believe
that these details are not of crucial importance for the results
derived concerning the qubit’s decoherence due to the TLSs.

III. SINGLE TLS

In this section wewill first solve the equations of motion for
a single TLS and then proceed to find its noise spectrum. This
wewill analyze laterwhenwe study the influence of the TLS(s)
on the qubit. Using the notations N = ρ++, Re f = R, and
Im f = I , one can cast the Bloch-Redfield equation, Eq. (5),
in the form

Ṅ = −AI − γ (N − Neq),

İ = A(N − 1/2)− γ I + zR , (6)

Ṙ = −zI − γR .

The solution of Eqs. (6) can be written as⎛
⎝N (t)

R(t)

I (t)

⎞
⎠ = �(t)

⎛
⎜⎝

N0

R0

I0

⎞
⎟⎠+ κ, (7)

where N0, R0, and I0 are the initial values of N , R, and I ,
respectively. The solution of the homogeneous part of the
equation is given by

� = e−γ t

⎛
⎜⎜⎝

A2 cosA′t+z2

A′2
zA(cosA′t−1)

A′2 −A sinA′t
A′

zA(cosA′t−1)
A′2 cosA′t − z sinA′t

A′
A sinA′t

A′
z sinA′t

A′ cosA′t

⎞
⎟⎟⎠ , (8)

where A′ = √
A2 + z2 is the renormalized Rabi frequency.

The particular solution is given by

κ =

⎛
⎜⎜⎜⎝
Neq + A2(Neq− 1

2 )
γ 2+A′2

[
e−γ t
(
cosA′t + γ sinA′t

A′
)− 1]

zA(Neq− 1
2 )

γ 2+A′2
[
e−γ t
(
cosA′t + γ sinA′t

A′
)− 1]

γA(Neq− 1
2 )

γ 2+A′2
[
1− e−γ t

(
cosA′t − A′ sinA′t

γ

)]

⎞
⎟⎟⎟⎠ . (9)

We note that by setting t → ∞ in Eq. (9) it is possible to
directly read out the steady-state solution.

A. Noise spectrum from a single TLS

Given the above-specified qubit-TLS coupling, Eq. (2),
the TLS is only responsible for pure dephasing of the qubit
(T2 processes) and cannot induce transitions between the
eigenstates of the μz operator. The dynamics of the TLS leads
to uncontrolled fluctuations in the energy splitting of the qubit,
leading to an uncertainty in its phase. Alternatively, it leads
to entanglement both directly to the fluctuators and indirectly
to the environment of the fluctuators. In this article we will
analyze the effect of the fluctuators on the qubit through the
two-time correlation function of the operator responsible for
the noise in the qubit energy splitting.25 We define it as

G(t1,t2) = 〈[q(t2)− q̄(t2)] [q(t1)− q̄(t1)]〉
=
∑

j

〈q(t2)− q̄(t2)〉|qj (t1)−q̄(t1)

× [qj (t1)− q̄(t1)]P [qj (t1)− q̄(t1)]. (10)

Here qj (t) is a realization of a measurement at time t of the
operator vτz, giving the variation in the qubit’s energy splitting
due to its interaction with a TLS, while q̄(t) = 〈q(t)〉 =∑

j qj (t)P [qj (t)] is the ensemble average of q(t), and P [q(t)]
is the probability distribution of q at time t . TheBloch-Redfield
equations, Eq. (6), give the average time evolution of an
ensemble of systems with the same initial condition, averaged
over the details of the uncontrolled decoherence processes.
Thus we find that 〈q(t)〉|qj

is simply the solution of the
Bloch-Redfield equations, given the initial value qj . More
explicitly, we find the following expression:

〈q(t)〉|qj
= 2v

E
{�N (t)− �0[R(t) cos�t − I (t) sin�t]},

(11)
where the initial condition qj is written in terms of the
initial values N0, R0, and I0. The corresponding expression
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for q̄(t) is

q̄(t) = 2v

E
[�Nss − �0 (Rss cos�t − Iss sin�t)] , (12)

where Nss, Rss, and Iss are the steady-state limits for N (t),
R(t), and I (t), respectively, obtained from Eq. (7) at t → ∞.
Thus we find that the correlator defined by Eq. (10) depends

on the phase of the driving field at both t1 and t2. In a
qubit experiment, where t1 and t2 are the initialization and
measurement time, respectively, we assume that we do not
have sufficient control over the phase of the driving field at
initialization time and therefore average over the initial phase
of the driving field. The details of this procedure are given in
Appendix A.
The details of the procedure used to calculate the two-

time correlation function, Eq. (10), by use of the Bloch-
Redfield formalism are described in detail in Appendix B.
The full procedure includes a coordinate transform, and in the
following we give an outline of the procedure. First we find
the density matrix in the steady state that we might visualize
as a point within the Bloch sphere. Next, we note that in
an external field the steady-state solution can in general lie
anywhere in the Bloch sphere and not necessarily along the z

axis. Therefore, it is necessary to transform to the coordinate
system where the steady-state solution lies along the z axis.
The angles defining this transform are given by the steady-state
solution of Eqs. (6)–(8) and are illustrated in Fig. 1. The angles
θ and φ are defined by the relations

tan θ =
√

R2ss + I 2ss

1− 2Nss
, tanφ = Rss

Iss
. (13)

The details of this transform and its application to the
evaluation of the two-time correlation function is described
in Appendix B. Since the off-diagonal elements of the density
matrix vanish in this choice of basis, we are allowed to use
the states |−′〉 and |+′〉 in the rotated basis as initial states,
weighted by the mean population levels obtained from the
density matrix in the steady state, that gives us P [q].

.θ

ϕ

R

I

N

N’

FIG. 1. The coordinate transform used in order to diagonalize the
density matrix. Here N , R, and I are the parameters determining the
density matrix in the energy eigenbasis of the TLS, while N ′, R′,
and I ′ denote the same parameters in the rotated frame defined by
Eqs. (13). The frame is defined such that the off-diagonal elements
of the density matrix vanish in steady state; i.e., R′

ss = I ′
ss = 0. In

external driving, the steady-state values of the off-diagonal elements
of the density matrix are in general nonzero. The transform is used in
order to make use of the average procedure described in Appendix B.
In the absence of driving the two frames coincide.

In the absence of external driving the density matrix in the
equilibrium will always lie along the z axis and the ensemble
average of R and I vanishes. Thus we do not require the
coordinate transform. In this particular case, after introducing
τ = t2 − t1, the explicit expression for the two-time correlation
function given by Eq. (10) is

G(t1,t2) = 4�2v2

E2
〈[N (t2)− Neq][N (t1)− Neq]〉

= 4�2v2

E2
λ11(τ )Neq(1− Neq). (14)

Here λ11(τ ) denotes the 11 elements of�(τ ) given by Eq. (8).
The dependence of N (t2) on the initial values R(t1) and I (t1)
vanish in the absence of external driving. We can therefore in
this simple case write the propagator�(τ ) as a scalar function
λ11(τ ).
In the general case, when driving is included, we find

G(t1,t2) ∝ f (τ,A,γ,z)N ′
ss(1− N ′

ss). (15)

Here f (τ,A,γ,z) describes the dynamics of the densitymatrix,
while N ′

ss is the population of the upper level in the rotated
frame, illustrated in Fig. 1. We have

N ′
ss(1− N ′

ss) = Nss(1− Nss)+ g(A,γ,z) (Nss − 1/2)2 ,

(16)
where g(A,γ,z) describes the details of steady-state den-
sity matrix [g(A,γ,z) = 0 if Rss = Iss = 0]. See Eqs. (B7)
and (B8) for details.
From the correlation function, Eq. (10), we can compute

the contribution of a single TLS to the noise spectrum acting
on the qubit. The spectrum is given by the expression

S(ω) =
√
2

π

∫ ∞

−∞
eiωτG(|τ |,0) dτ, (17)

where we took into account that the correlation function
G(t1,t2) is translation invariant after the averaging procedure
described in Appendix B. We note that the irreversible Bloch-
Redfield equations require the measurement time to succeed
the preparation time; therefore we need the absolute value
of |τ | in the definition. From the full spectrum at arbitrary
frequency, given by Eq. (C1) in Appendix C, we obtain in the
limit � > γ the following expression for S(ω):

S(ω) = 8

√
2

π

(
v�

EA′

)2
N ′
ss(1− N ′

ss)

{
a1L(ω)

+
∑
±

[
a2L(ω ± A′)± a3

ω ± A′

γ
L(ω ± A′)

]}
, (18)

where L(ω) = γ /(γ 2 + ω2),

a1 = z2 cos2 θ − zA sin θ cos θ cosφ,

a2 = A2 cos2 θ + zA sin θ cos θ sinφ,

a3 = AA′ sin θ cos θ cosφ.

In this limit, the spectrum only contains peaks at zero
frequency ω = 0 and at the Rabi frequency A′.
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B. Low-frequency noise

In the remaining part of this article we are interested in the
noise at low frequency and how it is changed by the external
driving. The reason behind this focus is that the noise at low
frequencies has been identified as the dominant source of pure
dephasing in Josephson junction qubits. It is known that for
the Gaussian noise and diagonal qubit fluctuator coupling, the
off-diagonal elements of the qubit density matrix relax (in the
case of the free induction decay) at a rate (see, e.g., Ref. 12)

1

T
Q
2

∝
∫ ∞

−∞

sin2(ωt/2)

ω2
S(ω) dω. (19)

For long measurement times this distribution becomes narrow,
such that the pure dephasing rate of the qubit is given by
1/T

Q
2 = πS(0) when t → ∞. However, for realistic measure-

ments with finite measurement times, the dephasing rate is
determined by the noise spectrum in a finite domain of low
frequencies centered at ω = 0. In the following, we will first
derive expressions for the low-frequency contribution to S(ω)
due to a single TLS in the absence of external driving (A → 0)
and in the case of strong driving (A � γ ). These expressions
will later be used to derive the low-frequency noise spectrum
for a specific distribution of driven TLSs.
From Eq. (18) we find a crossover from a regime where the

driving contributes as a weak perturbative effect to a regime
strongly dependent on the driving; the crossover takes place
around A ≈ |z|, given that A � γ . We proceed by deriving
the limiting expressions in the resonant region |z| � A and in
the off-resonant region |z| � A. Using the expression Neq =
(eE/kT + 1)−1 and Eq. (18) we get in the off-resonant regime
|z| � A

S
(or)
A�γ (ω) ≈

√
8

π

(
v�

E

)2
L(ω)

cosh2(E/2kT )

×
[(
1− 5A2

4z2

)
+ 7A2

4z2
sinh2

E

2kT

]
. (20)

As follows from the above expression, the driving only
weakly [∝(A/z)2 � 1] affects the fluctuators that are far from
resonance.
The corresponding leading contribution to the noise spec-

trum in the resonant regime |z| < A is

S
(res)
A�γ (ω) ≈ 5

√
2

π

(
v�

E

)2
γ

A2
(21)

for ω < A and γ,A < �. From the full spectrum Eq. (C1),
together with Eq. (16) for the population of the density matrix,
we can identify two main effects of external driving on the
TLS noise spectra. The first effect is the altered equilibrium
population of the density matrix due to driving. We can, by
use of Eq. (9), express the occupation of the density matrix in
steady state by

Nss = 1

2
+ Neq − 1/2
1+ (A2/γ )L(z) , (22)

as previously found in Ref. 13.
External driving results in saturation of the steady-state

density matrix when A ≈ γ for |z| � γ and when A ≈ |z|
for |z| � γ . This saturation contributes to the increased
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FIG. 2. (Color online) Noise spectrum induced by a single TLS
for A = 0 (solid line), 5× 106 Hz (dashed line), and 5× 107 Hz
(dash-dotted line). We see that with this choice of parameters, driving
reduces the noise at zero frequency but enhances the noise at higher
frequencies. The peak at the renormalized Rabi frequency, A′, is
the most pronounced. Peaks at higher frequencies are suppressed as
long as A � �. The parameters used in the figure are T = 0.2 K,
� = E/h̄ = 1010 Hz, γ = 5× 106 s−1, and γ0 = 107 s−1.

fluctuation rate between the upper and lower level of the TLS,
see Fig. 2, and therefore this effect contributes to a higher
intensity of the noise at all frequencies (which was not found
in Ref. 13). This is especially true for TLSs where the energy
splitting is large compared to temperature, meaning that the
noise is very weak in thermal equilibrium since the system
spends almost all its time in the ground state (see Fig. 3). There
is, however, another very pronounced effect, not caught by the
model of Ref. 13. The full noise spectrum of the driven TLS
Eq. (C1) is composed of several peaks. At low frequencies
the most pronounced are the one centered around ω = 0
and the two peaks centered around the renormalized Rabi
frequency, ω = ±A′; see Fig. 2. From the last term of Eq. (18)
we see that the intensity around the ω ≈ 0 peak is reduced
when the Rabi frequencyA becomes comparable in magnitude
to the deviation from resonance z. Thus we have a shift in
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FIG. 3. (Color online) Noise spectrum induced by a single TLS,
with the same parameters as used in Fig. 2, but at lower temperature
T = 0.05 K. At this temperature, the noise is weak in the absence of
the driving (solid line) since the fluctuator is frozen in its ground
state, Neq ≈ 0.01. Here the main effect of driving with strength
A = 5× 106 Hz (dashed) is to increase the probability of excitation
leading to increased noise at all frequencies. When the strength of the
driving isA = 5× 107 Hz (dash-dotted) the noise spectrum is shifted
sufficiently away from ω = 0 toward ω = A′ such that the effect of
increased fluctuations is offset by the shift in the spectrum. Thus the
noise at ω = 0 is reduced.
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the intensity from low frequencies to frequencies around the
Rabi frequency. This shift might be beneficial in reducing
the low-frequency noise responsible for pure dephasing of
the qubit.11 In a simplified picture the total noise at a given
frequency as a response to external driving can therefore
be regarded as a result of two competing mechanisms, the
increased fluctuations due to increased population in the upper
level of the TLS, and the shift in the spectrum from low to
high frequencies. At sufficiently strong driving this shift leads
to a reduction in the low-frequency (ω � γ ) contribution to
the noise spectrum from a TLS with E � kT as

S(ω � γ )(res)A�γ

S(ω � γ )0
= 5γ 2

2A2
. (23)

IV. ENSEMBLE OF TLSs

In this section we will analyze the noise from an ensemble
of the fluctuators studied in the preceding section. Our purpose
is to roughly estimate the effect of external driving on
the noise spectrum for a realistic Josephson junction qubit
experiment. We will more specifically assume the following
distribution of the TLS parameters. First, we note again that
our calculations are based on the assumption that the dynamics
of the fluctuators are independent of the state of the qubit.
Furthermore, we assume in the following that the strength
of the fluctuator-qubit coupling v is uncorrelated with the
relaxation rate γ and the energy E. Assuming that �0 is
an exponential function of an almost uniformly distributed
parameter, such as tunnel barrier height,12,26,27 the distribution
of the TLS parameters becomes

P (�,�0) = PTLS/�0, (24)

where PTLS is proportional to the density of states per unit
energy and volume. This distribution is already widely used
in models of decoherence in qubits, where it is known to give
origin to the 1/ω dependence of the noise spectrum at low
frequencies.
Since in the following it is more convenient to workwith the

relaxation rate γ and the unperturbed fluctuator energy E, we
recast Eq. (24) by use of the relationship γ = γ0(E)(�0/E)2,
where γ0(E) is the maximum relaxation rate for a fluctuator
of energy E, obtaining

P (E,γ ) = PTLS

γ
√
1− γ /γ0(E)

, (25)

for γ ∈ [γmin,γ0(E)]. The distribution has to be cut at the
relaxation rate γmin of the slowest fluctuator. However, we
find that the noise spectra at frequencies ω � γmin, and
therefore measurements carried out with the measurement
time τ = 1/ω � 1/γmin, are not sensitive to the cutoff. The
maximal relaxation rate γ0 is a power-law function of the
energy E. Since in the following we restrict ourselves to
order-of-magnitude estimates we will replace γ0(E) by a
constant rate, γ0 ≈ γ0(kT ). Our calculations (see Appendix D)
show that using this assumption the noise spectrum depends
only weakly on γ0.

Before we proceed to evaluation of ensemble integrals it is
convenient to introduce a new variable

a = A/
√

γ = Eacp/h̄
√

γ0. (26)

This variable is independent of γ and can be treated like a
constant when integrating over distributions of TLSs.
If we assume that the qubit-fluctuator coupling v is uncor-

related with γ and E, and by using that the single fluctuator
spectrum is∝v2, we can express the ensemble-averaged noise
spectrum by

S̄a(ω) = 〈v2〉
∫ Emax

0

∫ γ0

γmin

Sa(ω,E,γ )P (E,γ ) dγ dE. (27)

Here we have introduced the notation 〈v2〉 = ∫ vmax
vmin

v2P (v)dv,
where P (v) is the distribution of the qubit-fluctuator coupling
v. By use of the given distribution of TLSs, Eq. (25), and
the expression for the noise in zero driving, Eq. (20), we can
evaluate the ensemble-averaged noise in the case of no driving
(a = 0). The detailed calculation is given in Appendix D. Us-
ing the relationship�2/E2 = 1− γ /γ0 between the relaxation
rates and the fluctuator potential parameters12 we find that the
averaged spectral density is given by

S̄0(ω) ≈
√
8

π
〈v2〉kT PTLS

{
ω−1, γmin < ω < γ0,

γ −1
min, ω � γmin.

(28)

We conclude that without driving we obtain noise ∝1/ω for
the interval γmin < ω < γ0 that turns over to a constant value
for ω < γmin.
Next we proceed to strong driving, which we have defined

by a2 > γ0. In order to evaluate the noise in this regime we
split the domain of integration into two parts (see Fig. 4): the
resonant domain a2γ > z2 (group II), where the fluctuators are
strongly affected by the external fieldEac, and the off-resonant
domain a2γ < z2 (group I), where the fluctuators only weakly
respond to the driving field. We approximate the full integral
by using the asymptotic limits given by the undriven noise
spectra, Eq. (20), in the off-resonant domain, while the strong
driving limit is given by Eq. (21). The total ensemble-averaged

γ

III I

z =A

min

γ0

Ω E

2

γ

2

FIG. 4. The full TLS parameter domain. The TLSs inside the
parabola (� − E/h̄)2 � A2, group II, are resonant with the applied
field. For driving frequencies � > kT/h̄ the major contribution to
noise originates from low-E fluctuators belonging to group I outside
the resonant sector. The contribution to the noise due to these
fluctuators is not changed significantly by driving at frequenciesmuch
higher than their energy splittings E.
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noise spectra for frequencies in the interval γmin < ω < γ0 is
(see Appendix D for details of derivation)

S̄a2>γ (ω) ≈
√
8

π
〈v2〉PTLS

(
kBT

ω
− 4h̄a

cosh2 h̄�
2kT

1√
ω

)
(29)

for h̄a
√

ω � kT and
√

γ0 < a < �/
√

γ0. Again, at ω � γmin
the frequency ω in this expression should be replaced by γmin.
From this result, we find a correction to the 1/ω noise.

This correction, being ∝ω−1/2, is due to suppression of the
noise from TLSs that are close to resonance with the driving
field �. The driving therefore leads to a reduction in the noise
at intermediate and low frequencies. The derivation of the
expressions Eqs. (29) and a similar one forω � γmin are a good
approximation only as long as a � kT /h̄

√
γmin. As long as this

criterion holds, we find that the correction term is small relative
to the first term, even if the ratio h̄�/kT is small and the term
cosh2(h̄�/2kT ) approaches unity. If, however, we increase
a beyond this inequality, we expect that the correction term
will increase until it approaches the first term in magnitude.
The physics is as follows. When we increase a we increase
the number of fluctuators belonging to group II, at the cost
of group I by increasing the width of the parabola z2 = A2

in Fig. 4 until all fluctuators are resonant with the field. Thus
the number of fluctuators responding to the driving field is
increased and since each fluctuator within the resonant sector
will have its noise spectrum shifted toward higher frequencies,
the noise at low frequencies will be reduced until it approaches
zero for very large fields.

V. DECOHERENCE OF THE QUBIT

In this section we will describe the decoherence of the qubit
due to the driven TLSs in its environment.Wewill illustrate the
effect from driven TLSs by use of an example with a specific
but motivated distribution of TLS parameters. We will still
assume that the qubit couples diagonally to the TLSs. The
coupling was previously specified to be HF−Q = viμz ⊗ τz.
Given this coupling the TLSs only have a pure dephasing
effect due to renormalization of the qubit level splitting, and
direct transitions between the levels of the qubit (T1 processes)
cannot be induced by our two-level fluctuators.
Above we have assumed that the TLSs-qubit coupling vi

is not correlated with γ and E. However, one has to keep in
mind that different distributions of vi might have significant
impact upon the dephasing of the qubit. For in-depth treatment
of different ensembles of fluctuators, as well as non-Gaussian
noise statistics, we refer to Refs. 10,12,28, and 29. Since we
are in this paper primarily interested in the effect of external
driving, we assume that all fluctuators couple to the qubit with
the same strength v.
In the standardGaussian approximation, the pure dephasing

time T2 for long times t is approximately given by T −1
2 =

πS(0), where S(0) is the noise spectrum at zero frequency.12

Using this formula, together with Eq. (D10) for the noise at
frequencies ω < γmin, we obtain the following expression for
the dephasing time of the qubit:

1

T2
≈

√
8π〈v2〉PTLS

(
kBT

γmin
− 4h̄a√

γmin cosh2 h̄�
2kT

)
, (30)

valid for h̄a
√

γmin � kT and
√

γ0 < a < �/
√

γ0.

From this expression we see that if h̄� > kT , then the
function cosh2(h̄�/2kT ) ≈ eh̄�/kT . We find in this case that
the relative reduction in the noise spectrum due to driving
is h̄a

√
γmin/kT eh̄�/kT . Thus the correction is exponentially

suppressed at low temperatures. However, we notice that
if the driving frequency is reduced, i.e., if one introduce
a driving field at a frequency h̄� � kBT much lower than
the qubit frequency, the hyperbolic function approaches
unity, cosh2(h̄�/2kT ) ≈ 1. In this regime the derivation (see
Appendix D for details) is no longer limited by the inequality
h̄a

√
γmin � kT . Thus the relative correction h̄a

√
γmin/kT

might become significant, and the driving might significantly
reduce the noise at zero frequency.

VI. DISCUSSION

Our main result in this paper is that for Josephson junction
qubits where the dominant noise source is TLSs interacting
with the qubit, external driving has two main effects. The first
is increased fluctuations of the TLS, contributing to increased
noise at all frequencies. This effect is significant if the energy
splitting of the fluctuator is small compared to temperature.
The second effect is a reduction in the noise spectrum at
low frequencies and at the same time increased noise at high
frequencies, especially at the renormalized Rabi frequencyA′.
For a typical ensemble of fluctuators characterized by the

distribution P (�,�0) ∝ 1/�0 we find that external driving at
high frequencies (e.g., the qubit frequency) leads to reduced
noise spectra at low to intermediate frequencies, which again
results in an enhanced qubit dephasing time T

Q
2 . For a typical

distribution of TLSs, P (E,γ ) ∝ 1/γ , the effect is weak since
the driving only reduces the noise from TLSs with energy
splittings close to resonance with the driving field (group II).
For driving fields h̄� > kT , the resonant fluctuators (group
II) contribute only weakly to the noise also in the absence
of driving. In this case, both the driven and the undriven
noise spectra at low frequencies are strongly dominated by
TLSs (group I) with low energy splittings E � kT and long
relaxation times T1 = 1/γ � ω−1.
However, by driving at a lower frequency h̄� � kT , the

resonant group (group II) is shifted from fluctuators close
to the qubit frequency to fluctuators at lower frequencies
that contribute more strongly to the dephasing noise on the
qubit. In this case we expect a strong reduction of the low
frequency noise. From Eq. (20) (with A = 0) we see that
every fluctuator with energy splitting less than temperature
h̄E � kT gives a contribution of similar magnitude to the
noise spectrum in the absence of driving. And from Eq. (21)
we see that each fluctuator contributes equally to the noise
spectrum in strong driving (A > γ ). Therefore the frequency
of driving is not important as long as the frequency is
less than temperature h̄� � kT . Thus we find a transition
from weak to strong suppression of the low-frequency noise
at h̄� ≈ kT ; further reduction of � will not contribute
significantly to further reduction of low-frequency noise,
assuming a uniform distribution of fluctuator splittings E.
It is also important to note that our treatment has limited
applicability due to the rotating wave approximation. The
RWA is a good approximation as long as � > A, and outside
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this domain of applicability we are not able to make strong
predictions.
An important side effect of external driving of the TLSs

that we can identify in Eq. (C1) is increased high-frequency
noise around the renormalized Rabi frequency A′, the driving
frequency �, and at beatings between these two frequencies.
In experiments where the relaxation time T

Q
1 is an important

limiting factor in preserving the coherence of the qubit,
and if the qubit fluctuator coupling is not assumed to be
strictly diagonal, we expect that the increased high-frequency
noise due to external driving will be counterproductive
and one should take measures in order to make sure that
the high-frequency peaks do not overlap with the qubit
frequency.

APPENDIX A: AVERAGING OVER THE PHASE
OF THE DRIVING FIELD

The expression for the correlation function in the time
domain, Eq. (10), can be written out explicitly by use of
Eqs. (11) and (12). We obtain

G(t1,t2) = 〈F (t2)F (t1)〉,
(A1)

F (t) ≡ �δN(t)− �0 [δR(t) cos�t − δI (t) sin�t] .

Here we have introduced the notations δN (t) = N (t)− Nss,
δR(t) = R(t)− Rss, and δI (t) = I (t)− Iss. This expression
depends explicitly on the exact phase of the driving field,
Eac, at times t2 and t1. In the following we assume that the
phase of the field is random at the start of the pulse. This is
typically the case if the rise time of the signal is long compared
to the oscillation period 2π/� of the signal. In order to
average over repeated experiments with a random distribution
of the phase of the field, we replace �t1 by �t1 + β, where
we assume that β is uniformly distributed on the interval
β ∈ [0,2π]. With this assumption only products of sines and
cosines contribute, while single terms vanish after averaging
over the phase β. After this averaging procedure we find that
the expression for the two-time correlation function Eq. (A2) is
reduced to

G(t,t + τ )

= (4v2/E2)
〈
�2δN (t + τ )δN (t)

+ (�2
0/2
) {δR(t + τ ) [δR(t) cos�τ + δI (t) sin�τ ]

+ δI (t + τ ) [δR(t) sin�τ − δI (t) cos�τ ]} 〉, (A2)

where the cross terms of Eq. (A2) proportional to ��0 have
canceled due to averaging over repeated experiments with
random distribution of the initial phase of the driving field.

APPENDIX B: COORDINATE TRANSFORMATION AND
AVERAGING OVER INITIAL CONDITIONS

The Bloch-Redfield equations are equations of motion for
the average of an ensemble of TLSs, where the individual
members of the ensemble differ by details of the environment.
By use of the Bloch-Redfield equations we avoid dealing with
these details that we do not have control over. In place we
get an equation of motion for the mean density matrix. While
this method greatly simplifies the dynamics, since we are no
longer required to keep track of fine details of the environment,
the cost is loss of information about the time evolution of
individual systems. Therefore the Bloch-Redfield equations
cannot be used to calculate two-time correlation functions in
a straightforward way.30,31 The procedure we use in order to
evaluate the two-time correlation function is the following. In
general the two-time correlation function can be expressed as

〈A(t1)A(t2)〉 =
∑
j,k

ak(t2)ζ (ak(t2)|aj (t1))aj (t1)ξ (aj (t1)).

Here A(t) and a(t) are an observable and a particular
realization of this observable, respectively; ζ (ak(t2)|aj (t1)) is
the conditional probability distribution for observing the value
ak(t2) at time t2 conditioned upon that the value aj (t1) was
observed at t1. And the ξ (aj (t1)) is simply the probability
distribution for observing the value aj (t1) at time t1. We
might then realize that

∑
k ak(t2)ζ (ak(t2)|aj (t1)) = 〈A(t2)〉|aj (t1)

is simply the solution of the Bloch-Redfield equation given
the initial value aj (t1). The two-time correlation function thus
reduces to

〈A(t1)A(t2)〉 =∑
j

〈A(t2)〉|aj (t1)aj (t1)ξ (aj (t1)). (B1)

We note that this is a classical approximation, where we have
not taken into account the fact that the commutator [A(t),A(t ′)]
might in general be finite. We are, however, interested in
the pure dephasing rate, 1/T2 − 2/T1, due to the so-called
adiabatic noise, which does not produce real transitions; see,
e.g., the discussion in Ref. 32. This noise is determined by the
low-frequency tail of the noise spectrum, where h̄ω is much
less than both the temperature and the energy splittings of
the qubit and fluctuator. Therefore, the adiabatic noise can be
considered as classical and characterized by the symmetric
part of the correlation function 〈A(t1)A(t2)〉.
If we nowmove to our specific problem of a driven TLS in a

dissipative environment, the two-time correlation function we
require, Eq. (10), does only contain terms with the deviation
of the observable quantity from its steady-state value. From
the explicit solutions of the Bloch-Redfield equations, Eqs. (8)
and (9), we see that the time evolution of the deviation from the
steady state is translation invariant, linear, and homogeneous.
Therefore, we can write

〈q(t2)− q̄(t2)〉|qj (t1)−q̄(t1)

= (2d/E){[�λ11(τ )− �0(λ21(τ ) cos�τ − λ31(τ ) sin�τ )][Nj (t1)− Nss]+ [�λ12(τ )

−�0(λ22(τ ) cos�τ − λ32(τ ) sin�τ )][Rj (t1)− Rss]+ [�λ13(τ )− �0(λ23(τ ) cos�τ − λ33(τ ) sin�τ )][Ij (t1)− Iss]}.
(B2)
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Here τ = t2 − t1 and λαβ(τ ) are the elements of �(τ ) given
by Eq (8). This expression can be inserted directly into
our general formula given by Eq. (B1). Unfortunately we
still require the distribution function ξ (Nj (t1)), and similarly,
the distribution of I and R. The distribution functions
cannot be extracted from the Bloch-Redfield equations.31

To make up for our lack of information, we make the
following approximation. Assuming that a measurement of
the TLS in the eigenbasis of H0 will give either the outcome
Nj=0 = 0 or Nj=1 = 1 with the mean value Nss, we find
that ∑

j

Nj ξ (Nj ) = N0ξ (N0)+ N1ξ (N1) = Nss,

(B3)∑
j

N2
j ξ (Nj ) = N2

0 ξ (N0)+ N2
1 ξ (N1) = Nss.

In addition, with this choice of initial values, the initial values
of the off-diagonal density matrix elements are always zero.
We note that this choice of initial values only make sense if
the steady-state density matrix lies on the axis between the
points Nj=0 = 0 or Nj=1 = 1. In order to apply the method,
we are therefore required to transform to the coordinate system
where the steady-state value of ρ lies on the z axis of the Bloch
sphere.

1. Coordinate transformation

The summation procedure derived above, Eq. (B3), works
nicely as long as the assumptions behind the derivation of the

Bloch-Redfield equations (the Born-Markov approximations)
are fulfilled,20,21 as well as the time translation invariance.
However, the summation procedure can only be applied if the
steady state of the density matrix lies along the z axis of the
relevant measurement operator. With driving, we see that the
density matrix will in general be driven away from the z axis,
such that a summation over the eigenstates |+〉 and |−〉 of
the H0 operator given by Eq. (2) cannot possibly give the true
average density matrix in steady state. However, we can do
proper averaging by transforming to a new coordinate system
where N ′

++ denotes the occupation along the z′ axis in this
new choice of coordinates. After this transformation the Bloch
vector of the steady-state density matrix Nss is a point on this
axis. By this choice of axes the density matrix is diagonal. The
coordinate transformation is given as

(N − 1/2) = (N ′ − 1/2) cos θ,
(B4)

R = N ′ sin θ sinφ, I = N ′ sin θ cosφ.

We note that R′
ss = 0 and I ′

ss = 0 since we have defined N ′
ss

to lie on the z′ axis in the new coordinate system. When we
insert the explicit steady-state expressions into Eq. (13), the
dependence on the equilibrium value Neq vanishes, and the
expressions reduce to

tan θ = a2γ (z2 + γ 2)

4(γ 2 + z2 + 2a2γ )2 , tanφ = z

γ
. (B5)

Inserting into our expression for the correlation function
Eq. (A2) we obtain the following formula:

G(t1,t2) = (2v2/E2)
〈
2�2δN (t1)[λ11(τ )δN (t1)+ λ12(τ )δR(t1)+ λ13(τ )δI (t1)]+ �2

0{[λ21(τ )δN (t1)+ λ22(τ )δR(t1)

+ λ23(τ )δI (t1)][δR(t1) cos�τ + δI (t1) sin�τ ]+ [λ31(τ )δN (t1)+ λ32(τ )δR(t1)+ λ33(τ )δI (t1)]

× [δR(t1) cos�τ + δI (t1) sin�τ ]}〉. (B6)

We can now by use of Eq. (B4) move to the frame where the density matrix lies along the z axis. By use of the summation
formulas given by Eqs. (B1) and (B3), and inserting the explicit expressions for the elements of�(τ ), given by Eq. (8), we obtain
the following expression for the correlation function:

G(τ,0) = (2v/EA′)2N ′
ss(1− N ′

ss)

{
�2[(A2 cosA′τ + z2) cos2 θ − zA(1− cosA′τ ) cos θ sin θ sinφ

+AA′ sinA′τ cos θ sin θ cosφ]+ �2
0

2

[
A′2 sin2 θ cosφ cosA′τ cos�τ (cosφ − sinφ)+ AA′ cos θ sin θ sinA′τ

× (sinφ sin�τ − cosφ cos�τ )+ z

A′ sin
2 θ sinA′τ sin�τ + A2

A′2 sin
2 θ sinφ(cosφ sin�τ − sinφ cos�τ )

+ z2 sin2 θ sinφ sinA′τ (cosφ sin�τ − sinφ cos�τ )− zA cos θ sin θ (cosφ sin�τ + sinφ cos�τ )

+ zA cos θ sin θ cosA′τ (cosφ sin�τ − sinφ cos�τ )

]}
. (B7)

Here

N ′
ss(1− N ′

ss) = Nss(1− Nss)+
(

Nss − 1

2

)2
sin2 θ − R2ss

4
sin2 θ sin2 φ − I 2ss

4
sin2 θ cos2 φ

−
(

Nss − 1

2

)
Rss cos θ sin θ sinφ −

(
Nss − 1

2

)
Iss cos(θ ) sin θ cosφ − IssRss

2
sin2 θ cosφ sinφ. (B8)

Equation (B7) is our final expression for the two-time correlation function for a single fluctuator. We note that the correlation
function has become fully translation invariant after the averaging procedure. The Fourier spectrum is computed in Appendix C.
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APPENDIX C: SPECTRAL DENSITY S(ω) AT ARBITRARY FREQUENCY

In this Appendix we give the full spectral density from a single TLS. The full spectrum is given by the Fourier transform with
respect to τ = t2 − t1 of Eq. (B7). Thus we calculate S(ω) = √

2/π
∫∞
−∞ eiωτG(|τ |,0)dτ . Carrying out the transform we obtain

the result

S(ω) = 8

√
2

π

(
v

EA′

)2
N ′
ss(1− N ′

ss)

(
�2

{
(A2 cos2 θ + zA sin θ cos θ sinφ)[L(ω + A′)+ L(ω − A′)]

+AA′ sin θ cos θ cosφ

[
A′ + ω

γ
L(ω + A′)+ A′ − ω

γ
L(ω − A′)

]
+ (z2 cos2 θ − zA sin θ cos θ sinφ)L(ω)

}

+ �2
0

4
sin θ

{
b1−[L(ω + A′ + �)+ L(ω − A′ − �)]+ b1+[L(ω + A′ − �)+ L(ω − A′ + �)]

+ b2+

[
A′ + � + ω

γ
L(ω + A′ + �)+ A′ + � − ω

γ
L(ω − A′ − �)

]

+ b2−

[
A′ − � + ω

γ
L(ω + A′ − �)+ −A′ + � + ω

γ
L(ω − A′ + �)

]

+ 2b3
{
sinφ[L(ω + �)+ L(ω − �)]+ cosφ

[
� + ω

γ
L(ω + �)+ � − ω

γ
L(ω − �)

]}})
, (C1)

b1± = [A′2 sin θ cosφ(cosφ − sinφ)± AA′ cos θ (1+ cosφ)+ z sin θ + z2 sin θ sinφ + Az cos θ ](cosφ + sinφ),

b2± = [−AA′ cos θ cosφ ± z2 sin θ sinφ ± Az cos θ ](cosφ + sinφ), (C2)

b3 = A2 sin θ sinφ − Az cos θ.

From Eq. (C1), we see that without driving (and the same
for off-resonant driving), we have a single peak

S(ω) ∝ z2 cos2 θ − zA sin θ cos θ cosφ

A2 + z2

γ

γ 2 + ω2

that is reduced as the driving increases (i.e., when the Rabi
frequency A approaches z). When the driving is strong,
the intensity is shifted from the single peak at ω = 0 to
a large number of peaks. Most prominent are the peaks at
the renormalized Rabi frequency, ω = A′, but there are also
peaks at the driving frequency and at sums and differences
betweenA′ and�. The noise at ω ≈ � has not been discussed
in this paper but might be important for qubit operation if
the driving field is the manipulating pulses used to control
the qubit. This noise is then close to resonance with the
qubit.

APPENDIX D: DERIVATION OF THE
ENSEMBLE-AVERAGED NOISE FOR STRONG DRIVING

In this section we will derive the ensemble-averaged spec-
trum of the low-frequency noise induced by strongly driven
TLSs (i.e., a2 � γ0) for the distribution of TLS parameters
given by Eq. (25). In order to evaluate the integral over the
TLS parameters we make the following approximation. The
full parameter domain γ ⊗ E ∈ [γmin,γ0]⊗ [0,∞] is split in
two sectors. In the first sector the TLSs are in resonance with
the driving field defined by the criteria a2γ > z2 (group II).
The second one contains the TLSs that are out of resonance
(group I, defined by a2γ < z2). The domains of integration are

specified in Fig. 5. For the fluctuators belonging to the resonant
sector we use the expression for the noise spectrum in resonant
strong driving given by Eq. (21), while in the off-resonant
sector we use the expression for fluctuators out of resonance
given by Eq. (20). Our strategy to evaluate the noise spectra
is to first compute the ensemble-averaged noise spectrum in
the absence of driving over the full domain, then subtract the
contribution to the undriven spectrum from fluctuators that lie
in the resonant sector, and finally add the contribution from the
resonant fluctuators in group II. Therefore, the noise spectrum
can be represented as

S̄a2>γ (ω) = S̄0(ω)− S̄
(res)
0 (ω)+ S̄

(res)
a2>γ

(ω). (D1)

Here the superscript denotes the resonant sector.

γ

ω

γ0

γmin

EΩ

z =A2 2

Β

Α

FIG. 5. The domains of integration.
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We start by evaluating the spectrum in the absence of
driving, by use of Eqs. (20) and (25). Similar calculation,
without driving, is also done in Refs. 11 and 12. We get

S̄0(ω) =
√
8

π
〈v2〉
∫ ∞

0

∫ γ0

γmin

PTLS

√
1− γ

γ0

(γ 2 + ω2) cosh2 E
2kT

dEdγ.

(D2)

For γmin � ω � γ0 the integral over γ can be estimated as

∫ ω

γmin

dγ

ω2
+
∫ γ0

ω

1− γ

2γ0

γ 2
dγ ≈ 2

ω
− γmin

ω2
− 1

γ0
− 1

2γ0
ln

γ0

ω
,

while the energy integral is
∫∞
0 dE cosh−2( E

2kT
) = 2kT .

Therefore

S̄0(ω) = A
(
2

ω
− γmin

ω2
− 1

γ0
− 1

2γ0
ln

γ0

ω

)
,

whereA = √
8/π〈v2〉PTLSkT . For very low frequencies ω <

γmin we get

S̄a=0(ω) ≈ A
(
1

γmin
− 1

γ0
− 1

2γ0
ln

γ0

γmin

)
. (D3)

Next we proceed to calculate the contribution from the
resonant sector in the absence of driving. The integral we
need to evaluate is similar to that of Eq. (D2), but the
integration should be performed over the TLSs from group
II. The integration domain is restricted by the parabola
z2 � a2γ .
Assuming first that γmin < ω < γ0, we evaluate the integral

by use of asymptotic expressions for the integrand in the
different regions of Fig. 5. More precisely we use 1

γ 2+ω2
≈ 1

ω2

in sector A of Fig. 5, and 1
γ 2+ω2

≈ 1
γ 2
in sector B. Further-

more we make the approximation cosh2 E
2kT

≈ cosh2 h̄�
2kBT

=
const for all fluctuators inside the resonant sector. If we
write E = h̄(� − z), we find that since z2 � a2γ0 inside
the resonant sector, the approximation is good as long as
h̄z

kBT
� h̄a

√
γ0

kT
� 1. However, the major contribution to the

integral comes from γ � ω, such that we can narrow our
inequality to h̄z

kT
� h̄a

√
ω

kT
� 1. By use of the approximations

described above, we find that the total contribution from the
resonant sector in the absence of driving, in the frequency
interval γmin < ω < γ0, is

S̄
(res)
0 = A 2h̄a

kT cosh2 h̄�
2kT

(
8

3
√

ω
− 3√

γ0
− 2γ 3/2min

3ω2
+

√
ω

γ0

)
.

(D4)

For ω < γmin, the calculations are similar, but somewhat
simpler. The result is

S̄
(res)
0 = A 2h̄a

kT cosh2 h̄�
2kT

(
2√
γmin

− 3√
γ0

+
√

γmin

γ0

)
.

(D5)
Finally, we proceed to the resonant sector in strong external

driving, a2 > γ :

S̄
(res)
a2>γ

(ω) = 5A
2a2kT

∫∫
group II

√
1− γ

γ0

γ
dγ dE, (D6)

where we have used the expression for the resonant spec-
trum in strong driving given by Eq. (21). This integral
is evaluated similarly to the corresponding integral for the
same region in the absence of driving. After using asymp-
totic expressions in the different regions of Fig. 5, we
find

S̄
(res)
a2>γ

(ω) ≈ 25Ah̄
√

γ0

16akT
(D7)

for the total contribution from the resonant sector in the
external field. This expression is valid for ω < γ0.
We have now computed the three contributions to the total

ensemble-averaged noise spectrum given by Eq. (D1). For
γmin < ω < γ0 the full spectrum is given by

S̄a2>γ (ω) ≈ A
[(
2

ω
− γmin

ω2
− 1

γ0
− 1

2γ0
ln

γ0

ω

)

+ 25h̄
√

γ0

4akT
− 2h̄a

kT cosh2 h̄�
2kT

(
8

3
√

ω

− 3√
γ0

− 2γ 3/2min

3ω2
+

√
ω

γ0

)]
. (D8)

Within the limits of the inequality used for the eval-
uation of the integrals, h̄a

√
ω � kBT , and by using

that a >
√

ω, we see that the second term originat-
ing from the driven resonant sector is negligible com-
pared to the undriven 1/ω term. Thus we are left
with

S̄a2>γ (ω) ≈ A
[(
2

ω
− γmin

ω2
− 1

γ0

(
1+ ln

√
γ0

ω

))

− 2h̄a

kT cosh2 h̄�
2kT

(
8

3
√

ω
− 3√

γ0
−2γ

3/2
min

3ω2
+

√
ω

γ0

)]
.

(D9)

For frequenciesω < γmin the contributions to the ensemble-
averaged spectrum is given by Eqs. (D3), (D5), and (D7),
giving

S̄a2>γ (ω) ≈ A
[(

1

γmin
− 1

γ0
− 1

2γ0
ln

γ0

γmin

)

− 2h̄a

kT cosh2 h̄�
2kT

(
2√
γmin

− 3√
γ0

+
√

γmin

γ0

)]
.

(D10)
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Håkon Brox,1 Joakim Bergli,1 and Yuri M. Galperin1,2,3
1Department of Physics, University of Oslo, PO Box 1048 Blindern, 0316 Oslo, Norway

2Centre for Advanced Study, Drammensveien 78, 0271, Oslo, Norway
3A. F. Ioffe Physico-Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg, Russia

(Received 3 February 2012; published 17 May 2012)

We study the decoherence of a central spin 1/2 due to a closed environment composed of spin-1/2 particles.
It is known that a frustrated spin environment, such as a spin glass, is much more efficient for decoherence
of the central spin than a similar-size environment without frustration. We construct a Hamiltonian where the
degree of frustration is parametrized by a single parameter κ . By use of this model we find that the environment
can be classified by two distinct regimes with respect to the strength of level repulsion. These regimes behave
qualitatively different with respect to decoherence of the central spin and might explain the strong enhancement
of decoherence observed for frustrated environments.

DOI: 10.1103/PhysRevA.85.052117 PACS number(s): 03.65.Yz, 75.10.Jm, 75.10.Nr, 03.67.−a

I. INTRODUCTION

Quantum decoherence, where coherence in a quantum
system is reduced due to interaction with its environment is
a fundamental concept of physics. Testing of theories that
go beyond unitary quantum mechanics [1–3] requires deep
understanding and control of the decoherence process in order
to distinguish the breakdown of unitarity predicted in these
theories from decoherence. Decoherence is also a fundamental
problem in the branch of nanoscience, where one seeks to
use and manipulate quantum states for applications. Coherent
manipulation and storage of quantum information are required
in order to construct a working quantum computer and rely on
reducing decohering interaction between its basic elements,
the qubits, and their environment.
Recently, there has been increased experimental interest

in electronic spin systems, where the most prominent source
of decoherence is thought to be electronic or, in samples
with high purity, nuclear spins. These systems are nitrogen-
vacancy centers in diamond [4,5], semiconductor quantum
dots [6–9], and large-spin magnetic molecules [10,11]. In
addition, fluctuating two level defects are thought to be the
major source of decoherence in solid state Josephson junction
qubits (see Ref. [12] for a review). The coherence of a single
spin interacting with a spin bath has been studied extensively
in the limit of a noninteracting bath [13]. Decoherence due
to interacting spins have also been studied recently in the
weak-coupling limit [14] and it was found that the coherence
of the central spin decays rapidly when the environment is
close to a phase transition [15].
Decoherence, relaxation, and thermalization of a central

system coupled to a closed, finite-size spin bath environment
has been investigated in Refs. [16–21]. In Refs. [16,17],
decoherence of a two-spin system was studied, and a large
enhancement of decoherence was found for frustrated spin
environments, the main conclusion being “For the models
under consideration, the efficiency of the decoherence de-
creases drastically in the following order: spin glass, frustrated
antiferromagnet, bipartite antiferromagnet, one-dimensional
ring with nearest- neighbor antiferromagnetic interactions”
[16]. A similar study found that the same was true also
with regards to relaxation towards the ground state of the

central system. Namely, frustrated environments are more
efficient in relaxing the central system compared to an
ordered environment [18]. Frustrated spin systems have been
suggested to exist as localized electron states on the surface of
superconducting quantum interference devices (SQUIDs) and
flux qubits [22], where they are thought to be a major source
of magnetic flux noise.
However, a detailed understanding of the physics behind

the importance of a frustrated environment is still lacking. In
this work we construct a model where we can continuously
tune the degree of frustration in the environment by a single
parameter κ , confirming that frustrated environments reduce
the coherence of the central spin much more efficiently
compared to an environment with a low degree of frustration,
as previously found in Refs. [16,17]. Using this model we
study the structure of the eigenvalues of the Hamiltonian of
the environment, HE, in the presence of a central spin.
We find that we can explain the mechanism behind the

efficiency of the frustrated environment by the structure of
the eigenvalues of HE. The role of quantum chaos in the
decoherence process has recently been subject to debate,where
one line of reasoning claims that integrability enhances deco-
herence in the weak-coupling limit [23,24], while other works
find the opposite behavior (see, e.g., Refs. [19,25]). Our results
support the latter group: decoherence is enhanced by quantum
chaos. The frustrated environment can be characterized by a
Wigner-like distribution of eigenvalues and therefore has large
repulsion between energy levels. The presence of an external
object, like a central qubit, will therefore result in themixing of
a large fraction of the eigenvectors of the unperturbed system.
In an ordered environment, however, the level repulsion is
very weak, and coupling to the central spin will only alter the
set of eigenvectors of the environment slightly, preserving the
coherence of the central spin.
The link between the response of the eigenvectors ofHE to

an external perturbation, and the decoherence of a central spin
is found as follows: The initial state of the complete system is

|�(t = 0)〉 = (1/
√
2)(|↑〉S + |↓〉S)⊗ |ψ0〉E, (1)

where the subscripts S andE denote the central system and the
environment, respectively, and we have for simplicity assumed

052117-11050-2947/2012/85(5)/052117(8) ©2012 American Physical Society
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the central system to be in an initial symmetric superposition.
The state |↑〉 means that the system is in the eigenstate of the
operator Sz with eigenvalue+1/2 and |ψ0〉E is the initial state
of the environment. If the system and environment are coupled,
the state of the system influences the dynamic evolution of the
environment, and we can write the linear time evolution of the
composite system as

(|↑〉S + |↓〉S)|ψ0〉E → |↑〉S |ψ(t)↑〉E + |↓〉S |ψ(t)↓〉E, (2)

where |ψ(t)↑〉E denotes the time evolution of the environment
conditioned upon the initial state of the central system being
| ↑〉S . For now we assume that the system-environment cou-
pling HSE commutes with Sz, so that transitions between the
levels of the central system is prohibited. We will characterize
the decoherence by the off-diagonal matrix element of the
density matrix,

ρS
↑↓ = 〈ψ(t)↓|ψ(t)↑〉. (3)

Let us expand the state of the environment in the set of
eigenstates,

|ψ(t)↑〉 =
∑

n

〈n↑|ψ0〉|n↑〉eiE
↑
n t , (4)

where |n↑〉 and E
↑
n denote the eigenstates and eigenvalues of

the environment conditioned upon that the central spin points
up, and similarly in the case where the central spin points down
(throughout the paper we put h̄ = 1). Then the time evolution
of the off-diagonal element of the density matrix is given by
the expression

ρS
↑↓(t) =

∑
n,m

〈n↑|ψ0〉〈ψ0|n↓〉〈n↑|m↓〉 exp [i(E↑
n − E↓

m)t].

(5)

Thus ρS
↑↓ is determined by the magnitude of the overlap

elements, unless the levels are degenerate. For degenerate
states the corresponding phase factors of the overlap with each
eigenstate of the degenerate level oscillatewith the same phase.
The analysis is simplified if we assume that only the upper

state of the central system couples to the environment, and
that the environment is prepared in its ground state. In this
case Eq. (5) simplifies to

ρS
↑↓(t) =

∑
n

|〈n↑|0〉|2 exp [i(E↑
n − E↓

m)t], (6)

and the picture is more transparent.
Evolution of ρS

↑↓ is then determined by quantum beatings
between the overlap contributions oscillating at frequencies
(E↑

n − E0); that is, by the differences between eigenvalues of
HE and the eigenvalues of the environment in the presence
of the central spin. In the following we will investigate this
further by numerical study of an explicit model.
The paper is organized as follows: In Sec. II we describe

our model of a central spin 1/2 interacting with a spin
environment with a tuneable degree of frustration. In Sec. III A
we study the different regimes of decoherence of our model,
while in Sec. III B we explain the physical mechanism behind
the enhancement of decoherence by frustration in detail.
Furthermore, in Sec. III C we describe the sensitivity to the
initial state and in Sec. III D we suggest a method to reduce the

negative impact from frustrated environments on coherence.
Finally, the resultswill be discussed in Sec. IV andwe conclude
in Sec. V.

II. MODEL

We model a central spin 1/2 interacting with a spin
environment by the Hamiltonian

H = HS + HSE + HE,

HSE = 1

2

∑
i

�i

(
Sz − 1

2

)
sz
i , (7)

HE =
∑
i,j,α

�
′α
ij sα

i sα
j ,

where HS , HSE, and HE are the Hamiltonians for the central
spin, the spin-environment coupling, and the environment,
respectively, S is the operator of the central spin, while si

are the operators of the environmental spins. We set both the
energy splitting and the tunneling element of the central system
to zero. The parameters �i and �

′α
ij specify the coupling

strength along the α axis between the central spin and the
environment and the intra-environment coupling, respectively.
The parameters �i are chosen randomly in the interval
[−�,�].
In order to study the importance of frustration we specify

HE as

HE = −�
∑
i,j,α

[
(1− κ)sz

i s
z
j + κ�ij s

α
i sα

j

]
, (8)

where �ij is a random number in the interval [−�,�].
The degree of disorder is then parametrized by κ ∈ [0,1].
In this model we can continuously tune our environment
by the parameter κ from a perfect ferromagnet (κ = 0) to
a highly frustrated spin glass (κ = 1). In the following, all the
energies will be measured in the units of �; therefore � = 1.
Correspondingly, time is measured in units of �−1.
The simulation procedure is the following: We select a set

of model parameters. Then we compute the eigenstates and
eigenvalues ofH by numerical diagonalization. The composite
system is prepared in the state (1) where |ψ0〉 is the initial
state of the environment and the central spin is prepared in a
superposition of eigenstates of Sz. Unless otherwise stated, the
initial state of the environment is always the ground state in
the absence of coupling, |ψ0〉E = |0〉E. In general, the initial
state is therefore a complicated superposition of eigenstates of
the composite system H .
Decoherence in this model is solely due to entanglement

between the central system and the environment. In general,
the state evolves according to the Schrödinger equation into
an entangled state as in Eq. (2). The reduced density matrix of
the system is obtained by tracing over the degrees of freedom
of the environment: ρS(t) = TrE{�(t)}.

III. RESULTS

Using the simulation procedure described above we can
study the dynamics of the reduced density matrix of the central
system. The time evolution of the off-diagonal element of
the density matrix for different values of the environment
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FIG. 1. (Color online) Time evolution of off-diagonal density
matrix element |ρS

↑↓(t)| for N = 9 spins in the environment and
different values for the disorder parameter κ , ranging from 1 for the
spin-glass phase (κ = 1.0, blue dashed line) to 4 for the ferromagnetic
phase (κ = 0.1, dashed-dotted black line). Other arrangements are
frustrated ferromagnet κ = 0.5 (2, solid red line) and, for comparison,
we plot the time evolution for the completely disconnected bath with
Heisenberg-like HSE and κ = 1, � = 0.0 (3, green crosses). In this
configuration there are no correlations between the different systems
in the environment. The strength of the system-environment coupling
is � = 3.0.

parameters is shown in Fig. 1. We find that, in general, a
higher degree of frustration, controlled by the parameter κ ,
results in a stronger and more robust decay of ρS

↑↓. The initial
evolution is similar and Gaussian in time for all values of κ;
however, for smaller κ we find rapid revivals of coherence in
the central system.
From Fig. 1 we see that it is useful to distinguish between

the initial decoherence and the efficiency of decoherence. We
define the initial decoherence as the evolution of coherence in
the central system in the characteristic time during which ρS

↑↓
decays by a factor e and the efficiency of decoherence as the
mean value of the off-diagonal elements of the density matrix
over a period that is large compared with the dynamics of the
environment.
From Fig. 1 we thus find that initially |ρS

↑↓| decays
following the Gaussian law, ρS

↑↓ ∝ e−(t/t∗)2 , with practically κ-
independent decay time t∗. The efficiency of the decoherence
is, however, much higher for the frustrated environment
κ = 1.0. If the efficiency of decoherence is low, as for the
ferromagnetic environment, the errormight be corrected by use
of quantum error correction [26]. In fact, we show in Fig. 1
that a completely disconnected bath, � = 0, gives stronger
decoherence than the ferromagnetic bath.
The picture we obtain is the following: The decoherence

of the central spin is dependent on the sensitivity of the
environment to the state of the central system. The response
of the environment to an external system is closely related
to the sensitivity of the Hamiltonian of the environment to
a small perturbation. The latter can, in turn, be related to
the so-called Loschmidt echo defined as the overlap between
the two states evolving from the same initial wave function
under the influence of two distinct Hamiltonians, the unper-
turbed H0, and a perturbed H� = H0 + � (see Ref. [27] for
details). Therefore, in most cases, the Loschmidt echo of the
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FIG. 2. Correlation between |ρS
↑↓(t)|avg and the largest overlap

element between the ground state of HE and the set of eigenstates
{|n↑〉} of the environment in the presence of HSE. We see that the
size of the largest overlap element is strongly correlated with the
decoherence |ρS

↑↓(t)|avg, which is defined by the average of ρ12(t) over
the interval t ∈ [200,300] (i.e., after the initial rapid decoherence
has taken place). We call this the efficiency of decoherence [18].
The details of averaging do not matter as long as t is much larger than
the initial decay time, and the averaging interval is much larger than
the correlation length of the oscillations. The statistics are obtained by
sampling over the parameter range� ∈ [0,1],� ∈ [0,3]. The number
of spins in the environment is 7.

environment and the efficiency of the decay of the off-diagonal
elements of ρS will be strongly correlated, even though there
are exceptions [28]. Thus our analysis applies to the purity of
the central system as well as to the sensitivity to perturbations
of the environment.
The sensitivity of the state of the environment to a

perturbation (in our case, to a flip of the central spin) and,
therefore, the efficiency of decoherence can be characterized
by overlaps between the initial state of the environment, |0〉E,
and the set of eigenstates of the environment in the presence
of the perturbation, {|n↑〉}. We find that the largest of the
overlap elements serves as a very good indicator for the
decoherence of the central spin. We measure the efficiency of
the environment by the modulus of the off-diagonal element
of the reduced density matrix |ρ12|avg, averaged over the
interval t ∈ [200,300], which is long compared to the typical
oscillation periods in |ρS

↑↓(t)| (cf. Fig. 1). The relationship
between |ρ12|avg and the largest overlap element is plotted in
Fig. 2. The fact that the largest overlap element correlates
so well with the decoherence suggests that the probability
of finding degenerate eigenstates among the states with the
largest overlap element is relatively small and that the detailed
distribution of overlapping vectors {|n↑〉} is less important.
In the rest of the article we will use numerical simulations

to clarify the difference with respect to decoherence of a
central system interacting with a ferromagnetic or a frustrated
environment. In view of the strong correlation demonstrated
in Fig. 2 we will use maxn |〈n↑|0〉E|2 as a measure of the
efficiency of the decoherence.

A. Decoherence in terms of overlap with initial state

We decompose the initial state of the environment in the
eigenstates ofHE and use the ground state |ψ0〉E = |0〉E as the

052117-3
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initial state. In Ref. [17], decoherence was studied both using
the ground state as initial state and a random superposition of
eigenstates corresponding to “infinite temperature.” We will
focus first on the ground state and address a more complicated
initial state in Sec. III C. In the absence of disorder, κ = 0, the
ground state of HE will be the ferromagnetic state where all
spins point in the same direction |↑↑ . . . ↑〉E, or in general
a linear combination of the two degenerate ground states.
In order to avoid the exact degeneracy, we use a small
static symmetry breaking field acting on a single spin in the
environment.
In the ferromagnetic phase, if the strength of the system-

environment coupling is weaker than the intra-environment
coupling, � � N�, the presence of the central spin will
not alter the ground state significantly. Therefore, the overlap
between the ground state of the isolated environment with the
ground state of the perturbed environment, 〈0|0↑〉E, will be
very close to one [i.e., the magnitude of all the terms of Eq. (6)
will be close to zero except for the term 〈0|0↑〉E, where |0↑〉E
is the ground state of the environment given the perturbation].
Thus, the ground state will still be ferromagnetic in the
presence of the central spin, which will therefore not entangle
sufficiently with its environment, preserving the coherence. In
Fig. 3 we show numerical simulations for different values
of frustration in the environment. As long as the disorder
parameter κ is small, the largest overlap element between
the unperturbed ground state of the environment |0〉E and
the set of eigenstates {|n↑〉} when the system-environment
coupling HSE is turned on, is very close to one. The ground
state is ferromagnetic and the interaction with the central spin
is insufficient to break the ferromagnetic order.
If we now increase the disorder parameter κ , the ground

state of the environment will be only slightly altered, until
the frustration in HE given by κ , together with the frustrated
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FIG. 3. Largest overlap element plotted versus disorder strength
κ . For small values of κ the ferromagnetic ground state is strongly
favored energetically and the perturbation represented by the central
spin is not able to significantly alter the ground state. Close to κ = 0.5
we find a “phase transition” to a more disordered state. In this regime
the coupling to the central spin is sufficient to alter the ground state
of the environment. For κ ≈ 1.0 the set of eigenstates are completely
altered in the presence of the central spin, and the overlap with the
original set is typically very small. The number of environmental
spins is N = 9, � = 3.0 and the same seed is used in generating the
distributions of �ij and �i for each value of κ (solid line), while the
crosses correspond to a random seed for each value of κ .
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FIG. 4. (Color online) Largest overlap element computed accord-
ing to Eq. (6), plotted versus the perturbation strength�, for different
values of the disorder parameter κ . The numbered curves correspond
to the following values of κ: 1 is for spin glass κ = 1.0 (dashed
blue line), 2 is for κ = 0.8 (solid red line), 3 is for κ = 0.6 (green
crosses), 4 is for κ = 0.4 (brown stars), 5 is for κ = 0.2 (dash-dotted
black line). The environment is prepared in the ground state of HE.
The number of environmental spins is N = 9, and the same seed is
used for each value of �.

Ising-type system-environment coupling HSE, becomes
large enough to break the ferromagnetic order. This “phase
transition” is evident from Fig. 3, where in these particular
simulations it takes place at about κ ≈ 0.5, but the value is in
general dependent on the size of the system, and the strength
and nature of HSE. The physics during and after the phase
transition will be addressed in more detail in Sec. III B.We can
make a rough estimate as follows: A single spin is in general
subject to two competing interaction effects, the ferromagnetic
interaction (1− κ)�N and the spin-glass interaction ∝κ .
Assuming that the latter is random it should be of magnitude
κ�

√
N + �. The transition between the ferromagnetic and

the spin-glass phase should therefore take place at

κ�
√

N + � ≈ (1− κ)�N. (9)

If we insert the parameters from Fig. 3 we find the critical
value κ = 0.5. Summarized, if the total frustration induced
together by κ and HSE is insufficient to break the ordered
ground state, both |0〉E and |0↑〉E will have a large overlap
with one of the states |↑↑ . . . ↑〉E or |↓↓ . . . ↓〉E, according
to Eq. (6) and, in this regime, the coherence of the central
system will be preserved.
In Fig. 4 we follow the largest overlap element

maxn |〈n↑|0〉E|2 as a function of the strength of the system-
environment coupling �, keeping κ constant. In each of the
simulations HSE is random and Ising like. We find that, for
small values of κ , the strength of the random, frustrated
system-environment coupling HSE needs to be sufficiently
large in order to break the ferromagnetic interaction, in
accordance with Eq. (9). Indeed, using Eq. (9) we predict
the following values for the critical �:

κ 0.2 0.4 0.6 0.8 1

� 6.6 4.2 1.8 −0.6 −3.0
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which agrees surprisinglywell with Fig. 4. Until ferromagnetic
order is destroyed by HSE the ground state of the perturbed
system is very close to parallel with the unperturbed ground
state, 〈0↑|0〉E ≈ 1. For larger values of �, we find strong
oscillations in the size of the overlap element as a function
of �. This effect does not take place for κ � 0.8. In this
regime the oscillations are less pronounced and the decay of
the overlap element takes place for smaller values of �. This
regime is characterized by a highly frustrated ground state
in the absence of HSE. The presence of the central spin only
alters microscopic details of the ground state, not its qualitative
features.
In summary, an environment with frustrated interactions

induces more effective decoherence than an unfrustrated
environment. This effect can be quantified by the strength
of a perturbation (here HSE) which alters the set of eigen-
states {|n〉E}. If the environment is dominated by frustrated
interactions, the set of eigenstates {|n↑〉E} in the presence
of the perturbation HSE will, in general, be very different
from {|n〉E}. We can think of this process as follows: In an
environment with a large number of opposing interactions and
a large set of almost-degenerate low-energy states, the presence
of a central spin will in general cause a rotation of a subset
of the eigenvectors {|n〉E}. If there is a rotation and given that
the subset contains the ground state |0〉E, the maximal overlap
element maxn |〈n↑|0〉E|2 and therefore the coherence of the
central spin will decay. We will discuss the detailed physics
behind this process in more detail in Sec. III B.

B. Decoherence in terms of avoided level crossings

In order to gain a deeper understanding of the differences
between the ordered and the frustrated environment with
respect to dephasing of the central spin, we study in detail
the behavior of the eigenvalues. We use the same model as
defined previously by Eq. (8) and an Ising-like random HSE.
Then we perform simulations where we gradually increase
the coupling parameter � for different values of the disorder
parameter κ .
In Fig. 5 (top), we plot the 20 lowest eigenvalues against

the coupling strength �. The disorder parameter is set to
κ = 0.1 and the environment is therefore dominated by the
ferromagnetic interaction. In the absence of perturbation
we have two almost-degenerate eigenvalues, the gap to the
third-lowest state is large. For small values of � the overlap
between the ground state |0〉E ofHE and the ground state of the
perturbed environment |0↑〉E is very close to one: 〈0↑|0〉E ≈ 1.
At � ≈ 0.2 there is an avoided level crossing between the
two lowest levels. Close to the avoided level crossing, the
eigenvectors of the two states evolve rapidly in Hilbert space
and end up switching directions [29]. Thus, after the level
crossing the first-excited state overlaps completely with what
was the the ground state before the level crossing took place
〈1↑|0〉 ≈ 1. The overlap with the the ground state of HE is,
however, still very close to one as long as only two states
take part in the crossing. The eigenvector corresponding to a
large overlap with the original ground state has simply been
swapped with its neighbor and the coherence of the central
system is conserved according to Eq. (6).
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FIG. 5. (Color online) The 20 lowest eigenvalues plotted against
the perturbation strength � for different values of frustration in the
environment. κ = 0.1 (top), 0.5 (middle), 1.0 (bottom). The overlap
with the ground state of the unperturbed HamiltonianHE is indicated
by the color tone. A large overlap element increase the darkness of the
corresponding eigenvalue (color bar is shown in upper figure). The
bottom plot shows the largest overlap element between the ground
state ofHE and the eigenstates ofHE in the presence of the interaction
HSE,maxn |〈n′|0〉|2. The number of spins in the environment isN = 8.

When the disorder of HE increases, the picture becomes
more complex. In Fig. 5 (middle) we plot the 20 lowest
eigenvalues against�, butwe use a higher degree of disorder in
the environment (κ = 0.5). Since the environment has a larger
contribution from frustrated couplings in HE, the spacing
between the energy levels is more uniform due to the level-
repulsion effect [30]. In this particular case, the energy of the
original ground state |0〉E is shifted upward by the perturbation.
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The energy of this state can be tracked by the dark line,
highlighting the eigenvalues corresponding to eigenvectors
with large overlap element with the original ground state.
In Fig. 5 (middle) we can compare the eigenvalues with
the maximal overlap element. We find that the reduction in
the maximal overlap element correspond to values of�where
avoided level crossings take place. For large values of �

the levels are closer, and we find avoided crossings where
three or more levels are involved. Thus the overlap element is
split between several states. The maximal overlap element is
therefore reduced at these values of �.
Having developed the sufficient understanding, we are now

also able to explain the oscillatory behavior during the “phase
transition” in Fig. 3. In the region of the transition (κ ≈ 0.5),
more levels are present close to the ground state, and the
repulsion width increases with κ . When the ground state gets
close enough to the first-excited state to feel repulsion, the
corresponding eigenvectors begin rotating in the subspace they
span. The overlap element is initially reduced and transferred
to the first-excited state. Eventually, the first-excited state will
be the closest in Hilbert space to the original ground state |0〉,
explaining the sharp cusps of Fig. 3. When κ is increased even
more, the picture grows more complex as several levels are
involved.
In Fig. 5 (bottom)we have reduced the ferromagnetic part of

HE to zero (κ = 1.0). In this spin-glass phase the effect of level
repulsion is strongly pronounced. The space between levels at
which the eigenvectors start to repel each other is related to
the size of the off-diagonal elements of the Hamiltonian in the
basis of the perturbation (in this particular case—the coupling
to the central spin in the Sz

i eigenbasis) [31]. When κ is large,
the off-diagonal elements in the Hamiltonian (7) are larger
than the average level spacing. This means that avoided
crossings take place continuously as the parameter � is
increased. In the parameter range where the distance between
levels is smaller than the width of repulsion, the eigenvectors
will, in general, evolve with � in the Hilbert space spanned
by the eigenvectors of the repelling levels.
Thus, we find a crossover between two regimes. In the

weak-repulsion regime, the repulsion width is smaller than
the typical distance between levels. In this regime we will
have few and pronounced avoided crossings; the crossings
will typically involve only two levels and the probability of
multilevel crossings is strongly suppressed. Each two level
avoided crossingwill result in a swap between the eigenvectors
involved, but does not reduce the largest overlap element after
the crossing has taken place. The overlap element is reduced
only during the crossing, still the coherence of the central
system is only slightly altered, due to the levels approaching
degeneracy. In the second regime, we have strong level
repulsion. In this regime, the repulsion width is of the same
order or larger than the typical distance between levels such
that each level is, for a large range of �, repelled by more
than one level at the same time. When the repulsion width is
much larger than the average level splitting, a large fraction of
the levels become connected in the sense that the effect of an
interaction between two levels will again influence the next
levels by a domino-like effect, until eventually the spacing
between to adjacent levels are larger than the repulsion
width. The corresponding eigenvectors will then evolve
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FIG. 6. (Color online) Level-spacing distribution different de-
grees of disorder. The curve labeled 1 (solid blue line) is for spin
glass, κ = 1, 2 is for intermediate frustration (red dashed line),
κ = 0.5, 3 is for the ferromagnetic phase (black dashed-dotted line),
κ = 0.25. For comparisonwe also plot theWigner-Dyson distribution
P (s) = (sπ/2)e−s2π/4 (curve 4, thin solid gray line). The number of
spins in the environment is N = 10.

continuously in the Hilbert space spanned by this cluster of
levels.
The energy levels of a system where the repulsion width is

larger than the level splitting is expected to be characterized
by a distribution of energy levels following Wigner-Dyson
statistics [31]. In Fig. 6 we plot the level-spacing distribution
of HE for different values of the disorder parameter κ . For
large values of κ we find that the distribution is consistent with
the Wigner-Dyson distribution, implying that the repulsion
width is larger than the average splitting. At the same time,
for small values of κ , where we have a ferromagnet, we
find a special distribution of eigenvalues with two (almost)
degenerate ground states (i.e., |↑↑ . . . ↑〉E and |↓↓ . . . ↓〉E)
and the next levels having a high degree of degeneracy. Each of
the two ground states correspond to the bottom of a potential
well, excited states belonging to different wells cannot be
connected by flipping of two spins. The statistics obtained in
Fig. 6 is therefore sorted by magnetization; the level statistics
for each potential well of HE is treated separately.
In summary, we find aweak-repulsion regime, whenHE has

a low degree of disorder. In this regime the overlap element,
〈n↑|0〉E, between the original ground state and the set of
eigenstates of the Hamiltonian in the presence of the central
spin is conserved even if we make the coupling to the central
spin strong. In the second regime, when HE has high degree
of disorder, we have strong repulsion between large clusters
of states. In this regime, the set of eigenvectors of HE is very
sensitive to the presence of the central spin. The largest overlap
element 〈n↑|0〉E is therefore rapidly reduced as the coupling
to the central spin is increased.

C. Initial state of environment

In Ref. [17], the importance of the initial state of the
environment was studied. More efficient and stable deco-
herence was found for an initial state corresponding to
infinite temperature; however, no detailed explanation of this
observation was given. If the initial state of the environment
is no longer the ground state, but a linear combination of
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FIG. 7. (Color online) Largest overlap element plotted versus the
disorder strength κ: The curve labeled 1 is for low temperature T =
0.01 (black stars), 2 is for intermediate temperature T = 0.10 (red
circles), and 3 is for high temperature T = 1.00 (blue squares). The
coupling to the central spin is� = 2.0 and the number of spins in the
environment is N = 9.

eigenstates from the set {|n〉E} such that |ψ0〉E =∑i ci |i〉E,
where |i〉E ∈ {|n〉E}, Eq. (6) has to be replaced by

ρS
↑↓ =

∑
n,i

|ci〈n↑|i〉E|2ei(E′
n−Ei )t . (10)

For finite temperature the overlaps are distributed over a
number of eigenstates according to their Boltzmann weight,
e−E/(kT ). The coherence of the central spin, however, is con-
served (|ρS

↑↓| = 1) as long as the perturbation introduced by the
central spin does not alter the eigenvalues of the environment.
If there is a significant perturbation, the coherence is reduced
by an additional factor given by the square of the largest
amplitude of the expansion |ψ0〉E =∑i ci |i〉. The effect is
shown in Fig. 7.

D. Enhancement of coherence by external magnetic field

As a consequence of the preceding analysis we find that the
presence of an external magnetic field, Hext, might enhance
the coherence of the central system (see Fig. 8). The magnetic
field will polarize the spins in the environment, resulting in a
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FIG. 8. Largest overlap element |〈n↑|ψ0〉E|2 plotted versus ex-
ternal magnetic field H . The disorder parameter is κ = 1.0, the
coupling to the central spin is � = √

N and the number of spins
in the environment is N = 9.

larger overlap element between the ground state |ψ0〉E of the
unperturbed environmentHE and the set of eigenstates {|n↑〉E}
in the presence of the central spin. When the magnetic field
is sufficiently strong to break the frustration in the ground
state |0〉E (i.e., when the magnitude of the external field is
of the same order as the coupling between the spins in the
environment), Hext �

√
N�, the presence of the central spin

will not significantly alter the magnetized ground state of the
environment unless the coupling to the environment is strong
compared to the external field. Thus, if the spin environment
of the central system is disordered, magnetization is beneficial
to the coherence of the central system. This procedure has
already been applied experimentally (see Refs. [5,10]).

IV. DISCUSSION

In this article, we have considered the special casewhere the
central spin is coupled diagonally to its environment. Then no
transitions can take place between the eigenstates of the central
system and the decoherence is entirely due to renormalization
of its energy splitting (pure dephasing). This choice of coupling
simplifies the treatment since the effect of the central spin upon
the environment can be treated as a static perturbation. If we
loosen this restriction and also include real transitions between
the eigenstates (T1 processes) the central system will partici-
pate in the complex many-body dynamics of the total system.
However, if the number of spins in the environment is large,
the fine details of the coupling, HSE, should not result in qual-
itatively different behavior of the environment with respect to
level repulsion. The microscopic details of the dynamics will,
of course, strongly depend on the exact nature of the coupling.
Therefore, we believe that the central spin will preserve its
coherence much longer in the ordered environment, compared
to a frustrated environment also in the presence of nondiagonal
system-environment coupling HSE. The numerical analysis in
Refs. [17,18] supports this hypothesis.
We considered an arrangement where the central system

coupled to each spin in the environment. In the presence of
a very large environment, where the connectivity between the
subsystems is limited, this approximation might fail. As an
example, the central spin might couple to only a few spins of
the environment.However, even if the central spin couples only
to few spins, in the presence of a ferromagnetic environment
this might be sufficient for coupling to collective modes of
excitation (i.e., spin waves).
Since we treat a closed quantum system, we do not expect

details of our analysis to carry on to realistic open systems.
In the thermodynamic limit we expect that the environment
will be damped, forgetting interactions with the central spin at
times earlier than the correlation time. However, the analysis
should be relevant to systems where the effective temperature
is much less than the typical splitting between states in the
environment.
We found it useful, in light of the correlations shown in

Fig. 2, to discuss the decoherence of the central spin in terms
of the overlap elements between the ground state of HE and
the eigenstates {|n↑〉} of the environment in the presence of the
central spin. However, the largest overlap element of Eq. (6)
does not necessarily give the whole picture. The coherence of
the central spin may differ from what was predicted by the
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HÅKON BROX, JOAKIM BERGLI, AND YURI M. GALPERIN PHYSICAL REVIEW A 85, 052117 (2012)

overlap element due to the phase factor exp [i(E↑
n − E

↓
m)t]. If

the ground state ofHE is degenerate due to symmetry, and the
central system is unable to break this symmetry, then coherence
will persist in the central system even if the overlap with the
ground state of HE is split between several degenerate states.
If the degeneracy is not exact, coherence might still decay
extremely slowly if the difference |E↑

n − E
↓
m| of the states

overlapping with |ψ0〉E is small.

V. CONCLUSION

In conclusion, we have analyzed the efficiency of decoher-
ence using the overlap elements, 〈n↑|0〉E, between the ground
state of the isolated environment and the set of eigenstates
of the environment in the presence of the central spin. It
was shown that the square of the largest overlap element,
maxn |〈n↑|ψ0〉|2, is a very good indicator for the efficiency of
decoherence. The size of the largest overlap element tends
to be much larger for an environment with no competing
interactions than for an environment with many frustrated
couplings. The underlyingmechanismbehind this effect can be
explained by the statistics of the eigenvalues of HE. Coupling

to an external object (e.g., a central spin) results in avoided
level crossings between the levels of the environment. In
the absence of frustration, the level repulsion is weak and
the avoided crossings will take place in a short interval
in the coupling parameter to the external object, �. The
eigenvectors corresponding to the involved levels will simply
switch, and the overlap element remains unaltered. In thisweak
repulsion regime,multilevel crossings are strongly suppressed.
In the opposite regime, characterized by strong level repulsion,
eigenvalues within large fractions of Hilbert space are subject
to mutual level repulsion. In this strong-repulsion regime the
corresponding eigenvectors will rapidly mix when increasing
�, resulting in very efficient decoherence of the central object.
We have shown that a external magnetic field can transfer

the environment from the strong- to the weak-repulsion regime
provided it is stronger than the frustrated couplings present,
thereby enhancing the coherence of the central spin. Thus,
it should be possible to enhance the coherence time of a
central spin in the presence of a spin-glass–like environment
by applying an external magnetizing field that is of the
same magnitude or larger than the internal coupling in the
environment.
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Yamamoto, Phys. Rev. Lett. 105, 107401 (2010).

[7] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and
L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

[8] W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004).
[9] O. Tsyplyatyev and D. Loss, Phys. Rev. Lett. 106, 106803
(2011).

[10] S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D.
Awschalom, Phys. Rev. Lett. 101, 047601 (2008).

[11] S. Takahashi, I. S. Tupitsyn, J. van Tol, C. C. Beedle, D. N.
Hendrickson, and P. C. E. Stamp, Nature (London) 476, 76
(2011).

[12] J. Bergli, Y. M. Galperin, and B. L. Altshuler, New J. Phys. 11,
025002 (2009).

[13] N. V. Prokof’ev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669
(2000).

[14] S. Camalet and R. Chitra, Phys. Rev. B 75, 094434 (2007).
[15] S. Camalet and R. Chitra, Phys. Rev. Lett. 99, 267202 (2007).
[16] S. Yuan, M. Katsnelson, and H. De Raedt, JETP Lett. 84, 99

(2006).

[17] S. Yuan, M. I. Katsnelson, and H. De Raedt, Phys. Rev. B 77,
184301 (2008).

[18] S. Yuan, M. I. Katsnelson, and H. De Raedt, Phys. Rev. A 75,
052109 (2007).

[19] J. Lages, V. V. Dobrovitski, M. I. Katsnelson, H. A. De Raedt,
and B. N. Harmon, Phys. Rev. E 72, 026225 (2005).

[20] A. Melikidze, V. V. Dobrovitski, H. A. De Raedt, M. I.
Katsnelson, and B. N. Harmon, Phys. Rev. B 70, 014435
(2004).

[21] S. Yuan, M. I. Katsnelson, and H. D. Raedt, J. Phys. Soc. Jpn.
78, 094003 (2009).

[22] S. K. Choi, D.-H. Lee, S. G. Louie, and J. Clarke, Phys. Rev.
Lett. 103, 197001 (2009).

[23] R. Alicki, e-print arXiv:quant-ph/0205173v1.
[24] T. Prosen and M. Znidaric, J. Phys. A 35, 1455 (2002).
[25] W. Zurek, Nature (London) 412, 712 (2001).
[26] M.A.Nielsen and I. L. U. P. Chuang,Quantum Computation and

Quantum Information (CambridgeUniversity Press, Cambridge,
2000).

[27] F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H. Zurek,
Phys. Rev. Lett. 91, 210403 (2003).

[28] B. Casabone, I. Garcı́a-Mata, and D. A. Wisniacki, Europhys.
Lett. 89, 50009 (2010).

[29] J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppner,
Phys. Rev. A 23, 3107 (1981).

[30] M. L. Mehta, Random Matrices (Academic, New York,
1991).

[31] T. C. Hsu and J. C. Angle’s d’Auriac, Phys. Rev. B 47, 14291
(1993).

052117-8



3





4





PHYSICAL REVIEW B 86, 205404 (2012)

Decoherence of a qubit due to either a quantum fluctuator, or classical telegraph noise
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We study the domain of applicability of the classical telegraph noise model in the study of decoherence in qubits.
We investigate the decoherence of a qubit coupled to either a quantum fluctuator, a quantum two-level system
(TLS) again coupled to an environment, or to a classical fluctuator modeled by random telegraph noise. In order to
do this, we construct a model for the quantum fluctuator where we can adjust the temperature of its environment,
and the decoherence rate independently. The model has a well-defined classical limit at any temperature and this
corresponds to the appropriate random telegraph process, which is symmetric at high temperatures and becomes
asymmetric at low temperatures. We find that the difference in the qubit decoherence rates predicted by the
two models depends on the ratio between the qubit-fluctuator coupling and the decoherence rate in the pointer
basis of the fluctuator. This is then the relevant parameter, which determines whether the fluctuator, has to be
treated quantum mechanically or can be replaced by a classical telegraph process. We also compare the mutual
information between the qubit and the fluctuator in the classical and the quantum model.
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I. INTRODUCTION

The interaction between a quantum system and its environ-
ments leads to loss of quantum coherence, or decoherence, in
the system. Understanding decoherence is crucial for grasping
the boundary between quantum and classical physics.1–4

It is also essential for testing theories describing quantum
measurements.5–8

From an engineering point of view, the decay of coherence
in quantum bit devices (qubits) is the most important obstacle
for constructing a working quantum computer. Solid state
qubits are leading candidates in the projects of designing
quantum circuits, where the coherence times of the qubits are
required to be sufficiently long to allow for manipulations and
transfer of information by logical gates. The most important
source of decoherence in many realizations of solid state
qubits are believed to be bistable fluctuators— two-level
systems (TLSs), present as tunneling states in the amorphous
substrate9,10 used to fabricate the qubit, or in the tunneling
junction in superconductor-based devices.11–18

These fluctuators are quantum-mechanical systems that
are, in turn, coupled to their own environments, which
are conventionally considered as uncorrelated thermal baths.
Usually, one does not worry about the fine details of the
environment of the fluctuators, but rather uses simplified
models. The most popular is the Bloch-Redfield approach,19

where the environment is taken into account by introduction of
the relaxation and decoherence rates of the fluctuators. If the
fluctuators couple more strongly to their own environment than
to the qubit, they are usually treated classically. This means that
the dynamical description of the quantum fluctuator is replaced
by a classical dynamics of a fluctuating system, which switches
randomly between its two metastable states according to a
random telegraph process (RTP).20,21 This approach is often
referred to as the spin-fluctuator model.11,18,22 In many cases,
however, the decoherence of the qubit is determined by only
a few fluctuators that are more strongly coupled to the qubit
than others.23–27 In such cases, one might question the validity

of the classical model. From a practical point of view, it is
therefore important to know when such a simplified classical
description can replace the full quantum mechanical one. It is
also of more fundamental interest in view of the decoherence
approach to the quantum-classical transition.1–4

In this paper, we will develop a simple model allowing
to show when a quantum system can in practice be replaced
by a classical one, in the sense that interference effects can
no longer be observed due to the entanglement with the
environment. However, we believe that this is only a question
of a system becoming in practice classical, i.e., when we can
use a classical model to calculate a physical property of a
quantum system. It does not directly shed any light on the
fundamental limitations of quantum mechanics, in particular,
the measurement problem, where one can discuss deviations
from linear quantum mechanics, see Ref. 5 for a discussion.

Previously, the boundary between quantum and classical
regime for the fluctuator has been explored in a model where
the qubit is coupled to an impurity state, and an electron can
tunnel between this state and an electron reservoir (metal).28,29

The same model has also been used in order to study the effect
of Coulomb interaction between the charged impurities and
the reservoir electrons.30

The qubit dephasing rate calculated in the quantum model
was found to converge to the classical result in the high-
temperature limit. In the study by Abel and Marquardt,29

a threshold for strong coupling between the qubit and the
fluctuator was defined by the onset of visibility oscillations
in the qubit as a function of the ratio between the coupling
to the qubit and the reservoir. The threshold for visibility
oscillations was found for higher values of the qubit coupling
in the quantum model compared to the classical model, the
thresholds finally converge at high T/γ , where γ is the
fluctuator-reservoir coupling. Thus both in the decoherence
rate and in the visibility oscillations the classical limit is
recovered at high temperature. In this model, the temperature
plays a dual role: it affects both the energy relaxation rate
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of the fluctuator, which maps to the switching rate of the
RTP, and it affects the dephasing rate of the fluctuator.
The usefulness of separation of the two effects is seen by the
fact that it is perfectly possible to consider finite-temperature
classical fluctuators by using an asymetric RTP.31,32 This is
never obtained in any limit of the model discussed in Refs. 28
and 29.

The subsequent considerations are based on the following
qualitative picture: the dephasing of the qubit is caused by the
generation of entanglement between the qubit and the envi-
ronment. If the qubit and the fluctuator are strongly coupled,
then they behave as a combined four-level quantum system
and the quantum nature of the fluctuator will be important. In
such a situation, one cannot replace it by a classical RTP. On
the other hand, if the fluctuator is sufficiently strongly coupled
to the environment, it means that the information about its
state is continuously transferred to the environment and this
prevents any quantum interference to take place. From this,
we can guess that the relevant quantity determining whether
the fluctuator can be considered either classical or quantum
is the ratio of the qubit-fluctuator coupling (which determines
the rate of entanglement generation between the qubit and the
fluctuator) and the fluctuator dephasing rate.

The goal of this paper is to study the applicability of
the classical model for qubit decoherence due to a quantum
fluctuator. In order to achieve this, we study a model where the
dephasing rate of the fluctuator can be varied independently
of the temperature, so that the classical limit can be taken at
any temperature and correspond to the proper assymetric RTP.
By use of a model borrowed from the study of fluctuators in
glasses, but where we allow for more freedom in the choise
of parameters than we find in typical glasses, we compare the
pure decoherence rate of the qubit subject to either a quantum
fluctuator, in turn coupled to its environment, or a classical
fluctuatur, modeled by random telegraph noise. Our model
allows us to separate the effects of temperature, coupling to
the bath, and decoherence rate of the fluctuator. We find that
the difference in the qubit decoherence rate predicted by the
quantum model and the classical one depends on the ratio,
ξ/γ̄2, where ξ is the qubit-fluctuator coupling strength and γ̄2

is the decoherence rate of the fluctuator in the pointer basis.

II. MODEL

A. Quantum model for the fluctuator

We start by describing the quantum-mechanical model for
the fluctuator. The model we use for the fluctuator originates
in the study of tunneling states in glasses, i.e., a particle, or
a group of particles that can be approximated by a single
configurational coordinate in a double-well potential.33 It gives
rise to a potential on the qubit that depends on its position in
the double well.

Following Refs. 9, 10, and 33, the Hamiltonian for the
coupled qubit fluctuator is split into the Hamiltonians Hq for
the qubit, Hf for the fluctuator, Hi for the qubit-fluctuator
interaction, He for the environment and Hf e for the fluctuator-
environment interaction:

H = Hq + Hf + Hi + He + Hf e, Hq = Eqτz,

Hf = (1/2)(�σz + �0σx), Hi = (1/2) ξτzσz, (1)

where the Pauli matrices τα and σα are operators in the
Hilbert spaces of the qubit and the quantum fluctuator,
respectively.

The energy splitting � and the tunnel amplitude �0 can be
calculated from the shape of the double-well potential.33 The
energy of the qubit depends on the position of the particle in the
double well (we will in the following refer to the eigenstates
of σz as the position basis) and the coupling strength is given
by ξ . In this work, we will assume the simplified case where
the qubit does not directly interact with the environment and
therefore has no intrinsic dynamics in the absence of the
fluctuator. Furthermore, we consider a model where the qubit
is subject to pure dephasing, [Hq,Hi] = 0, there is no energy
relaxation of the qubit in this model and the decoherence of
the qubit is therefore insensitive to the qubit energy splitting
Eq . When energy relaxation is present, coherent beatings
between the qubit and resonant fluctuators are observed.23,34

In this strong coupling regime, the fluctuator has to be
treated as a quantum system. Our present work concentrates
solely on nonresonant fluctuators, which are typically modeled
classically.

The double-well potential is, in general, perturbed by
electromagnetic and strain fields modifying the asymmetry
energy �, while perturbations of the barrier height can usually
be ignored.35–37 In our model, we therefore assume that the
environment couples to the fluctuator in the position basis,
i.e., the eigenbasis of σz. Rather than formally specifying He

and Hf e we take the freedom to consider two kinds of inter-
action between the fluctuator and the external environment,
resonant and nonresonant. We will later in addition also use
parameters for the fluctuator-environment coupling that are
outside what we typically encounter in glasses. This is done
in order to have more freedom to tune the parameters that
are relevant to study the domain of applicability of the RTP
model.

The resonant phonons creates a strain field uik that modifies
the double-well potential of the TLS as follows:

� = �(0) + λikuik, �0 = const,

where �(0) is the energy splitting in the absence of the strain
field and λik is the deformation potential of the fluctuator. In
the energy basis of the fluctuator, this interaction creates two
terms:

⎛
⎝ �√

�2 + �2
0

σ̃z + �0√
�2 + �2

0

σ̃x

⎞
⎠ λikuik,

where σ̃z and σ̃x act in the energy eigenbasis of the fluctuator.
The first term will give rise to pure dephasing of the

fluctuator, while the second gives rise to relaxation. We will in
the following assume that the rate of resonant phonons is small
compared to the nonresonant ones, and that the contribution
to pure dephasing given by the first term can be neglected.
Resonant interaction, e.g., phonons with frequency close to
the eigenfrequency of the fluctuator, are therefore responsible
for direct transitions between the eigenstates of the fluctuator,
|ψg〉 and |ψe〉.
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We model this interaction by use of the generalized
measurement operators defined for a small time step �t as38

M1(�t) =
√

γab(T )�t I ⊗ σx |ψg〉〈ψg|,
M2(�t) =

√
γem(T )�t I ⊗ σx |ψe〉〈ψe|, (2)

M3(�t) =
√

1 − M
†
1M1 − M

†
2M2 .

Here, I is the identity matrix in the Hilbert space of the
qubit and the matrices σx |ψg(e)〉〈ψg(e)| “measures” whether
the fluctuator is in the ground (excited) state, projects the
fluctuator onto this state and flips it. The rates for absorbtion
and emission are

γab(T ) = γ1N (E) = γ1

eE/T − 1
,

(3)
γem(T ) = γ1[N (E) + 1] = γ1

1 − e−E/T
.

Here, T is the temperature, N (E) = (eE/T − 1)−1 is the Planck
distribution, and E = √

�2 + �2
0 is the energy splitting of

the fluctuator. The nonresonant interaction does not cause
transitions between the eigenstates of the fluctuator. However,
we might assume that, in general, the state of a phonon
interacting with the fluctuator is perturbed by the interaction,
and that the perturbation depends on the position of the system
in the double well. These are assumed to be low-frequency
phonons h̄ω � E, which does not significantly alter the level
splitting of the fluctuator. Schematically, we can write

|ψi〉
∣∣φph

0

〉 t→ |ψi〉
∣∣φph

i

〉
, (4)

where i ∈ {0,1} index the state of the fluctuator in the position
basis, |φph

0 〉 is the initial state of the phonon and |φph
i 〉 is the

state of the phonon after the interaction, conditioned upon
that the fluctuator was initially in the state indexed by i. The
interaction (4) results in entanglement between the phonon
and the fluctuator, reducing the coherence of the latter. The
rate of decoherence due to nonresonant phonons depends on
the overlap element α = 〈φph

0 |φph
1 〉 and on the rate of phonons

interacting with the system. We model this interaction by the
single parameter γ2, which is responsible for the decay rate of
the off-diagonal density matrix elements of the fluctuator in
the position basis.

In this model, we effectively adjust the nature of Hf e by
the ratio �0/�. Therefore the equilibrium density matrix of
the fluctuator will not necessarily lie along the z axis of the
Bloch sphere. The equilibrium density matrix is determined
by the rate γ2 due to nonresonant phonons responsible for
decay perpendicular to the z axis on the Bloch sphere and by
relaxation to the thermal level along the z′ axis in the eigenbasis
of the fluctuator induced at the rate γ1 by resonant phonons.

Note also that differences in the qubit decoherence between
the quantum and the classical model is not observed when the
z′ axis is parallel with the z axis. The situation is illustrated
in Fig. 1. We define the decoherence rate of the fluctuator, γ̄2,
by the rate at which the off-diagonal density matrix elements
decay in the basis where the density matrix is diagonal in
equilibrium.

The time evolution in the quantum model is obtained by
numerical integration of the von Neumann equation for the
Hamiltonian given by Eq. (1), with two modifications. We add

eq
ρ

γ2

‘pointer’ basis

z′

z

FIG. 1. The Bloch sphere for the fluctuator coupled to both
nonresonant and resonant phonons. The nonresonant phonons are
responsible for decay perpendicular to the z axis, the eigenbasis of
σz, while the resonant phonons are responsible for relaxation parallell
to the z′ axis, which is the eigenbasis of the fluctuator. We define the
pointer basis by the basis in which the equilibrium density matrix ρeq

is diagonal. The rate of decay perpendicular to this axis is denoted
by γ̄2.

a damping term γ2 to our differential equation:

ρ̇αα′ = i〈α|[ρ,H ]|α′〉 − �αα′ραα′ , (5)

where ρ is the density matrix of the system composed of the
qubit and the fluctuator and � = γ2I ⊗ σx , which determines
the decay of the off-diagonal density matrix elements of the
fluctuator in the eigenbasis of σz. In addition, the fluctuator
absorbs and emits phonons at the rates γab(T ) and γem(T ).
The absorption and emission of phonons is implemented as
follows: for each time step �t , we make a transformation to
the eigenbasis of the fluctuator,

ρ̄ = R(θ )ρR†(θ ), (6)

using the rotation matrix

R(θ ) = I ⊗
(

cos θ
2 sin θ

2

− sin θ
2 cos θ

2

)
, θ ≡ arctan

(
�0

�

)
.

The density matrix is then updated according to the rates of
absorption and emission as

ρ̄ ′ = M1ρ̄M
†
1 + M2ρ̄M

†
2 + M3ρ̄M

†
3, (7)

before we make the inverse transform ρ ′ = R†(θ )ρ̄ ′R(θ ), back
to the position basis. Here, ρ ′ is the density matrix after the
(potential) interaction with the resonant phonons.

B. Classical telegraph noise

Pure dephasing of the qubit by a classical telegraph noise
can be described by the interaction Hamiltonian

Hi = (1/2)ξ (t)τz, (8)

where ξ (t) = ±ξ is the position of the fluctuator at time t . For
details on this model see, e.g., Ref. 39 and references therein.
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The probability for the fluctuator to switch from the state ξ−
to ξ+, and from ξ+ to ξ− in the interval dt is given by �−+dt

and �+−dt , respectively. To describe finite temperature, we
will consider the situation where the flipping rates �−+ and
�+− of the fluctuator are, in general, not identical, but the
states are symmetric ξ− = −ξ+. The situation with asymmetric
switching rates was previously studied in Refs. 31 and 32. The
equilibrium average is given by

〈ξ〉 = ξ (peq
+ − p

eq
− ) = ξ (�−+ − �+−)/�, (9)

where

� = �−+ + �+−, (10)

and p±(t) is the probability for the fluctuator to be found in
the state ξ±. The relaxation towards equilibrium is exponential
with rate �.

The decoherence of the qubit is obtained by averaging over
the realizations and initial conditions of the noise process
ξ (t). For a given realization of ξ (t), the Schrödinger equation
yields a superposition of the eigenstates of the qubit with a
contribution to the relative phase φ(t) = ∫ t

0 ξ (t ′)dt ′. Averaged
over the realizations of the stochastic process ξ (t), we obtain
the qubit coherence D(t) = 〈eiφ(t)〉. Here, we will use the
transfer matrix method developed by Joynt et al.,40 where
we obtain directly the ensemble averaged Bloch vector of the
qubit.

The state of the qubit-fluctuator system can be stored in the
six-dimensional vector

�q(t) = �m+(t) ⊗
(

1
0

)
p+(t) + �m−(t) ⊗

(
0
1

)
p−(t), (11)

where �m± is the Bloch vector of the qubit conditioned upon
the state ξ± of the fluctuator. The propagator for �q averaged
over the individual realizations of the RTP can be expressed
as A(t) = e−Bt , where

B = I3 ⊗ V − i
ξ

2
Lz ⊗ υz, V =

(
�+− −�−+

−�+− �−+

)
,

while I3 and Lz are generators of the SO3 group and υZ is the
Pauli matrix. A direct advantage of this approach is that the
qubit state conditioned upon whether the fluctuator is in
the state ξ±, ρ±

q follows directly from �q.

III. RESULTS

In order to compare the decoherence of the qubit subject to
either the quantum fluctuator, or the classical telegraph noise,
we calculate similar relaxation rates towards the equilibrium
level in the two models. First, we choose a set of parameters,
�, �0, γ1, γ2, and T for the quantum model and prepare the
fluctuator in the initial state |ψ1〉. At this preliminary stage,
we are not interested in the qubit and consider the fluctuator
and its environment decoupled from the qubit. We compute
numerically the equilibrium occupation probabilities p

eq
0 and

p
eq
1 of the quantum fluctuator in the position basis as well as the

relaxation rate �. Note that both the equilibrium occupations
and the relaxation rate are, in general, complicated functions of
all the parameters in our model. In this work, we always restrict
ourselves to the regime where the fluctuator is overdamped
�,�0 � γ2, i.e., the decoherence rate is sufficiently large such

that coherent oscillations are not observed in the fluctuator. In
this regime, the decay of the fluctuator towards its equilibrium
value can be fitted to a simple exponential. Beyond this regime,
the fluctuator behave as a quantum system, and can therefore
not be modeled by the classical telegraph process. Note also
that since the states |ψi〉 are not eigenstates of the Hamiltonian,
the occupation numbers p

eq
i are not given by the Boltzmann

weights at the bath temperature.
The decoherence rate is expressed through the rates �±∓

and the equilibrium occupancy 〈ξ〉 with the help of Eqs. (9)
and (10). The qubit decoherence rate is, in general, a sum
over multiple rates. For symmetric telegraph noise and pure
dephasing, the decay of coherence in the qubit D(t) is given
by39

D(t) = e−�t/2

2μ
[(μ + 1)e�μt/2 + (μ − 1)e−�μt/2], (12)

where μ ≡
√

1 − (2ξ/�)2. However, in the regime where the
coupling to the qubit is weak compared to the damping of the
fluctuator, � > ξ , the long-time behavior of the decoherence
is strongly dominated by a single rate,

�c
q = �(1 − μ)/2.

We finally compute the decoherence rate �
q
q of the qubit

when it is coupled to the same quantum fluctuator from which
we calculated the relaxation rate and equilibrium occupations
previously, but this time the initial state of the fluctuator is
the thermal equilibrium state. The decoherence rate of the
qubit is calculated by numerical simulation of the coupled
qubit-fluctuator density matrix ρ(t) from which we can find
the qubit density matrix by tracing out the degrees of freedom
of the quantum fluctuator. From the qubit density matrix,
ρq(t) = Trf [ρ(t)], we find the coherence |ρq

↑↓(t)|, where ↑
and ↓ denote the eigenstates of the qubit. Finally, the long-time
behavior of |ρq

↑↓(t)| is fitted to the exponential function e−�
q
q t .

Note that the initially |ρq

↑↓(t)| might have contributions from
several rates, like in the classical model (12). Note also that in
the regime where the fluctuator is near resonant with the qubit,
these two systems need to be treated as a four-level system,
and the dynamics is characterized by four distinct rates. This
regime was studied in Ref. 41 in order to characterize the effect
of coherent impurities on the qubit.

The relative difference in the decoherence rate of the qubit
due to classical telegraph noise and the quantum fluctuator is
defined as

δ�q = (�q
q − �c

q

)/
�c

q, (13)

where �
q
q and �c

q are the decoherence rate of the qubit subject
to the quantum fluctuator and to the classical telegraph noise,
respectively. This quantity is presented in Fig. 2 as a function
of the dephasing rate of the fluctuator γ2 and temperature
T . We have restricted ourselves to a parameter range where
the fluctuator does not undergo coherent oscillations. It is
evident that the relative difference in the qubit decoherence
rate is small for strong decoherence of the fluctuator, and for
high temperatures. In this case, we can safely use the simple
RTP model rather than the much more complicated quantum
model. Superimposed on the contours for δ�q , we have plotted
curves where the ratio ξ/γ̄2 is constant. We find that the
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FIG. 2. (Color online) Contour plot of the relative difference
δ�q in the decoherence rate of the qubit subject to either classical
telegraph noise, or a quantum fluctuator. In units of the fluctuator
energy splitting E, the parameters of the quantum fluctuator are
� = �0 = 1/

√
2 and γ1 = 1.0, the coupling to the qubit is ξ = 0.1.

Color coding for δ�q is shown on the right. The relaxation rate to
equilibrium along the σz axis is the same for both the quantum and
the classical fluctuator. Contours where the ratio ξ/γ̄2 is constant are
plotted for comparison (black lines).

difference between the quantum and the classical fluctuator
depends to a very good accuracy on the ratio ξ/γ̄2. Note that
we have numerically checked that the dependence of the qubit
decoherence on the parameter ξ/γ̄2 holds also in the regime
where ξ > � confirming that the RTP model can be applied
in the strong-coupling regime also in the case when the qubit
couples strongly to the fluctuator, as long as ξ � γ̄2. The
requirement � > ξ is only needed to ensure that the qubit
decoherence follows a simple exponential law.

When the qubit is put in contact with the quantum fluctuator,
the qubit and the fluctuator will in general entangle due to their
coupling. The mutual information, the information about the
state of one of the systems that can be inferred by measuring
the other, will for the quantum fluctuator have an entanglement
contribution in addition to the classical correlation.

The mutual information for the qubit-quantum fluctuator is
defined straightforwardly by the von Neumann entropy38

S(q : f ) = S(ρq) + S(ρf ) − S(ρqf ), (14)

where ρq , ρq , and ρqf are the density matrices of the qubit,
the fluctuator, and the composite system, respectively. When
we treat the qubit subject to a classical telegraph noise, we
introduce quantum states |±〉 corresponding to the states ξ± of
the RTP and use the formula

ρqf = p+ρ+
q ρf + + p−ρ−

q ρf −. (15)

Here, p± is the probability for the telegraph process to be
found in the state ξ±, ρ±

q is the density matrix of the qubit
conditioned upon that the telegraph process is in the state ξ±
and ρf ± = |±〉〈±|.

The time evolution of the mutual information for a qubit
coupled either to the quantum or the classical fluctuators is
shown in Fig. 3. The entanglement between the two systems
builds up at a rate given by the coupling ξ but is lost to
the environment at a rate given by the decoherence rate of
the quantum fluctuator, γ̄2. The increased information about
the qubit encoded in the quantum fluctuator, compared to
the classical fluctuator, increases the transfer of entropy to

0 5 10 15 20 25 30
0

0.05

0.1

Γ t

S
(q

:f) Classical

Quantum

FIG. 3. (Color online) Mutual information S(q : f ) for the qubit
coupled to the quantum fluctuator (black, dashed) and the qubit
subject to the classical spin fluctuator (blue, solid). The mutual
information is larger when both systems are treated as quantum
objects, due to quantum entanglement between the two systems.
In this simulation the parameters, in units of E, are ξ = 0.1,
� = �0 = 1/

√
2, γ1 = 1.0, γ2 = 20, and E/T = 1.0.

the environment, thus increasing the decoherence rate of the
qubit. This effect might explain the positive δ�q found for
low values of T and γ2. It has been stated, see, e.g., Refs. 42
and 43, that there exist situations where increased information
transfer decreases the decoherence rate of the qubit. However,
we are not sure that the information transfer is reduced in the
particular system discussed in Refs. 42 and 43.

Experimentally, since the composite density matrix ρqf is
required, the mutual information can only be extracted in
the case where one has access to measurement on both the
qubit and the fluctuator simultaneously. Since the fluctuator by
definition is a system of the environment outside our control,
this cannot be achieved. However, the mutual information
could potentially be studied in two coupled qubits, where
one of the qubits are subject to controlled noise and takes
the role of the fluctuator. Qubits subject to engineered noise
under the control of the experimentalist has been realized
in optically trapped 9Be+ ions,44 where also the required
quantum gates has already been implemented in a similar
systems.45

IV. DISCUSSION

In general, the dynamics of the quantum fluctuator in an
environment depends on three parameters; the relaxation rate
γ1, the dephasing rate γ2 and the temperature T determining
the equilibrium occupations. In this paper, we use a model
where the processes responsible for pure dephasing couple to
the position basis, while the relaxation processes take place in
the eigenbasis of the fluctuator. This model was used in order to
study the relevance of the classical RTP model for description
of decoherence of a qubit. If the interaction responsible for
pure dephasing processes in the fluctuator (characterized by γ2)
commutes with the qubit-fluctuator Hamiltonian, i.e., �0 = 0
in our model, then the pure dephasing rate γ2 will not have
any effect on the decoherence rate of the qubit as long as
the fluctuator is prepared in the thermal equilibrium state.
The quantum fluctuator will in this case always behave as
a classical fluctuator and can therefore straightforwardly be
modeled by the classical telegraph noise.

In general, the difference in decoherence rate δ� depends
on the ratio �0/� in addition to the ratio ξ/γ̄2. We find that δ�
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increases monotonously as a function of the ratio �0/� for
�0/� ∈ [0,π/4] and that δ� = 0 for �0/� = 0. However,
the contours of constant ξ/γ̄2 in the ln T versus γ2 plot, match
those of constant δ� for all values of �0/�.

Furthermore, we note that our results do not tell us that it
is, in principle, not possible in ad hoc fashion to construct
a classical telegraph model, e.g., a classical model with
feedback, providing the same decoherence rate for the qubit
as the quantum fluctuator, even in the regime where the
deviation δ�q between the two models are large according
to Fig. 2. We show that the decoherence rate of the qubit
differs in the two models in the case where the relaxation
rates of the classical and quantum fluctuator are identical. To
the best of our knowledge, there exist no general relationship
between the quantum fluctuator model and the classical
spin-fluctuator model. Therefore one should be careful in
applying the classical telegraph model unless one expects the
decoherence rates of the fluctuators to be much larger than
the qubit-fluctuator coupling. ξ/γ̄2 � 1. However, in systems
such as glasses this inequality is usually expected to hold, and
the quantum fluctuator can be treated effectively by random
telegraph noise,33 with an exception if the system is subject to
an external ac field.46

The pointer states of a quantum system are defined as
the pure states that are the least affected by environmental
decoherence.1,3 It is generally believed that when the dynamics
of the system is dominated by the interaction with the
environment, the pointer states are the eigenstates of the
interaction Hamiltonaian.1 On the other hand, when the system
is weakly coupled to the environment, the pointer states are
assumed to be the eigenstates of the isolated system.2 Our
model can be considered to interpolate between the two

extremes. If we define the pointer basis as the basis where the
Bloch vector of the system lies along the z axis in equilibrium,
the decoherence rate γ̄2 of the system is the rate of decay of
the off-diagonal elements of the density matrix in this basis.

As a final note we mention that our main result, that
the difference in decoherence rate of the qubit between the
quantum fluctuator model and the telegraph noise model, might
be model specific. Further work is needed in order to settle
whether or not this result is universal.

In conclusion, we have constructed a model for the quantum
fluctuator where we can study its effect on the qubit as a
function of both the temperature and its decoherence due to
its interaction with the environment. We have compared the
decoherence rate of the qubit found in this model, and in the
widely used classical telegraph noise model. We find that the
difference in the qubit decoherence rates depends on the ratio
ξ/γ̄2 between the strength of the qubit-fluctuator coupling and
decoherence rate of the fluctuator in the pointer basis. In the
limit ξ/γ̄2 � 1, the fluctuator behaves essentially classically
and the qubit decoherence rate can accurately be predicted by
the telegraph noise model. Our results validate the application
of the RTP model for the study of decoherence in qubits also
when the coupling between the qubit and the fluctuator is
strong as long as the fluctuator couples even more strongly to
its own environment.

This work is part of the master project of one of the authors
(H.J.W.) and more details can be found in his thesis.47
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