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“We probably could have saved ourselves, 

but we were too damned lazy to try very hard.  

…and too damn cheap” 
Kurt Vonnegut, 1991 
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Abstract 
Thin-film metal hydrides may become important solar energy materials 

in the future. This thesis demonstrates interesting material properties of 

metal hydride films, relevant for applications as semiconducting materi-

als for photovoltaic (PV) solar cells and for regulation of light using 

smart window technology.  

The work presented here has comprised an experimental study, fo-

cusing on three different materials: Magnesium hydride (MgH2), magne-

sium nickel hydride (Mg2NiH4) and yttrium hydride (YHx). Reactive 

sputter deposition was used to prepare the metal hydride film samples. 

This synthesis method is relatively uncommon for metal hydrides. Here, 

the first demonstration of reactive sputtering synthesis for YHx and 

Mg2NiH4 is given. Different challenges in forming single-phase, pure 

metal hydrides were identified: MgH2 could not be deposited without 3-

16% metallic Mg present in the films, and YHx was found to react strong-

ly to oxygen (O) during the deposition process. On the other hand, 

Mg2NiH4 films formed easily and apparently without major metallic clus-

ters and with low O content. 

Mg2NiH4 is a semiconductor with an optical band gap that is suita-

ble for PV solar cells. This study has showed that films with promising 

electrical and optical properties can be synthesized using reactive co-

sputtering of Mg and Ni. Using optical methods, the band gap for the as-

deposited samples was estimated to 1.54-1.76 eV, depending on the Mg-

Ni composition. The as-deposited films were amorphous or nano-

crystalline, but could be crystallized into the high-temperature fcc struc-
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ture of Mg2NiH4 using heat treatment at 523 K. The band gap of the crys-

talline films was 2.1-2.2 eV, depending on the composition. 

A pronounced photochromic reaction to visible and UV light was 

observed for transparent yttrium hydride (T-YHx) samples. The optical 

transmission was reduced when the samples were illuminated, and the 

original optical transmission was restored when the samples were kept 

under dark conditions. Photochromism at normal conditions had not been 

reported earlier for any metal hydride. In fact, the reactively deposited 

films of YHx presented interest at many levels: Two electronic states 

could be obtained: black, conductive YHx (B-YHx), and transparent, insu-

lating YHx (T-YHx). The T-YHx samples were found to have a surpris-

ingly high content of O, and the crystal structure of the compound dif-

fered slightly from earlier known structures in the Y-O-H system. The 

crystal structure of the T-YHx films was very similar to the known struc-

ture of YH2, but at the same time the optical and electronic properties 

resembled those known for YH3. 
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This project was initiated at the Department for Solar Energy at Institute 

for Energy Technology (IFE), led by my supervisor Dr. Smagul Kara-

zhanov, former head of department Dr. Arve Holt and researcher Dr. 

Alexander Ulyashin. A combination of experience with computer simula-

tion of materials and research of new materials and concepts for solar 

cells germinated the idea of utilizing metal hydrides in semiconductor 

electronics, especially solar cells. Project funding for an experimental 

study was granted through the NANOMAT program of the Research 

Council of Norway, and the experimental work was commenced in 2007, 

two years before I started in my Ph.D. position in 2009.  

The project was innovative, and in my work I experienced the pros 

and cons of starting up a new activity. I had one foot in the field of solar 
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vance on three feet, but this spread made me get to know a lot of interest-
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ence community. 

Contact 

Science is about collaboration and communication. I am sure that many 

important details have been lost in the writing of this thesis, and I there-

fore encourage you as a reader to contact me if you have any questions, 
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comments or ideas concerning what I have presented here. If you cannot 

reach me in any other way, please try my permanent electronic address: 

trygvetv@gmail.com.  



xi 

Acknowledgements 
I have enjoyed the three years of my Ph.D. studies at IFE. I am grateful 

for the opportunity to work these years together with a great group of 

colleagues. Countless interesting discussions about results and methods 

have been rewarding for me and my academic development. However, it 

is on a personal level my colleagues have contributed the most – during 

the long and diverting coffee breaks, the “solar beers”, social and work-

related trips to different cabins and on the travels to several conferences 

in Norway, the rest of Europe and the USA. The scientific work has been 

hard, I have spent a lot of time working alone, so, without the social mo-

tivation of my colleagues it would have been a tough time. 

I have had the pleasure of having help from as much as three su-

pervisors. They have all helped me in different ways: Dr. Smagul Kara-

zhanov, my main supervisor and a researcher at IFE Sol, has been a great 

inspiration for me with his ambitious and visionary view of science. I am 

deeply grateful for his permanent positive attitude, and for our almost 

daily scientific discussions. Dr. Charlotte Platzer-Björkman was my se-

cond supervisor. She had already worked in the metal hydride project at 

IFE Sol for half a year as a post doc. when I started in my position, and 

her experience gave me a flying start. We worked side-by-side during my 

first five months, before she went back to continue her work as a Lectur-

er at Uppsala University. Learning from her experimentalist way of 

thinking provided great help for me in my later work. I also gained from 

her sharp insight through several meetings in Uppsala, where she also 

brought me in contact with a number of world level researchers from 

Uppsala University. My third supervisor, Dr. Bjørn Hauback, from the 



xii 

Physics department of IFE, is the most experienced of my supervisors. 

He has been particularly important for me in establishing contact with 

scientists in the international metal hydride research field. I also greatly 

appreciate his contributions to my scientific papers, which he helped lift 

to a higher level through extensive feedback in the writing process. 

I would like to express my gratitude for the experimental collabora-

tions I have had with Dr. Chang Chuan You and Dr. Josefine Selj, both 

from my own department. Each of these collaborations resulted in one of 

the scientific publications included in this thesis.  

Apart from my supervisors and my colleagues at the Department 

for Solar Energy, I have enjoyed the sharing of experience with research-

ers at the Physics and Energy Systems departments at IFE. Our project 

has profited substantially from the knowledge from the metal hydride 

field that these two departments have obtained through decades of re-

search practice.  I would like to especially thank Dr. Jan Petter Mæhlen 

from Energy Systems, who took part in bi-weekly project meetings and 

participated in much of the experimental work I have presented in this 

thesis.  

Collaboration with several international research partners has con-

tributed to increased quality of the scientific work. Most importantly, I 

would like to thank the staff of the “Materials for Energy Conversion and 

Storage” group at TU Delft in the Netherlands. I thank Professor R. 

Griessen (VU Amsterdam) and Professor B. Dam (TU Delft) for interest-

ing discussions and especially Professor Dam for welcoming me in the 

laboratories of his group at TU Delft. I greatly appreciated working to-

gether with H. Schreuders, L. Mooij and Y. Pivak in experimental work 

during my stay in Delft in October 2010. Further, I would like to thank 



xiii 

Dr. F. Cousin from Laboratoire Leon Brillouin in France for his help and 

suggestions with regards to neutron reflectometry. I also thank Professor 

G. Possnert and Dr. M. Wolff at Uppsala University for help with meas-

urements of the composition of my samples.  

Finally, I would like to thank my sweet and lovable wife, Leiry. 

She has taken me through the hard times, and helped me being confident 

about my own work and results in periods of doubt. We have also had 

many interesting discussions regarding my work, even with our very dif-

ferent academic backgrounds. In an academic discussion, it is not neces-

sarily the relevance of the academic experience and the prior knowledge 

which determines the outcome, but rather the level of interest and dedica-

tion from the parts. 

 

Trygve Mongstad 

Kjeller, June 2012  

 





xv 

Contents 

 

Abstract ................................................................................................... vii 

Preface ...................................................................................................... ix 

Acknowledgements .................................................................................. xi 

Contents ................................................................................................... xv 

List of abbreviations ............................................................................... xix 

List of publications ................................................................................. xxi 

1 Introduction ........................................................................................ 1 

1.1 The challenges related to energy ................................................ 1 

1.2 Electricity from solar cells .......................................................... 4 

1.2.1 Solar cell technologies ........................................................ 6 

1.3 Energy saving with smart windows ............................................ 9 

1.4 The materials – metal hydrides ................................................. 11 

1.4.1 Magnesium hydride ........................................................... 12 

1.4.2 Magnesium nickel hydride ................................................ 13 

1.4.3 Yttrium hydride ................................................................. 16 

1.5 The synthesis method – reactive sputter  deposition ................ 18 

1.6 Metal hydrides for solar energy applications ........................... 22 

1.6.1 Semiconducting metal hydrides for solar cells ................. 22 

1.6.2 Chromogenic metal hydrides ............................................ 26 



xvi 

1.6.3 Other solar energy applications of metal hydrides ............ 28 

2 Experimental techniques .................................................................. 31 

2.1 Sample synthesis ...................................................................... 31 

2.2 Thin-film characterization ........................................................ 34 

2.2.1 Thickness and density ....................................................... 34 

2.2.2 Optical measurements ....................................................... 34 

2.2.3 Electrical measurements ................................................... 37 

2.2.4 Structural investigation ..................................................... 38 

2.2.5 Methods for compositional analysis ................................. 40 

2.2.6 Neutron and X-ray reflectometry ...................................... 43 

2.2.7 Microscopy ........................................................................ 44 

3 Reactive sputter deposition of metal hydrides ................................. 47 

3.1 General observations on process parameters and film growth . 47 

3.2 Magnesium hydride .................................................................. 52 

3.3 Magnesium nickel and magnesium nickel hydride .................. 52 

3.4 Yttrium hydride ........................................................................ 58 

4 Magnesium nickel hydride films for PV applications ..................... 71 

4.1 Structural properties ................................................................. 71 

4.2 Optical properties ..................................................................... 72 

4.3 Electrical properties .................................................................. 73 

4.4 Chemical stability under ambient conditions ........................... 75 

4.5 The prospects of Mg~2NiH~4 for PV applications .................... 76 



xvii 

5 Photochromism in yttrium hydride .................................................. 79 

5.1 Optical properties of the transparent state ................................ 79 

5.2 Properties of the photochromic reaction ................................... 80 

5.3 Smart windows based on photochromic T-YHx ....................... 85 

6 Conclusions ...................................................................................... 89 

7 Future work ...................................................................................... 93 

References ............................................................................................... 95 

Paper I ................................................................................................... 109 

Paper II .................................................................................................. 117 

Paper III ................................................................................................. 125 

Paper IV................................................................................................. 133 

Paper V .................................................................................................. 139 

Paper VI................................................................................................. 149 

Paper VII ............................................................................................... 159 

 





xix 

List of abbreviations 
AFM Atomic force microscopy 

B-YHx Black yttrium hydride 

CE Common era 

DC Direct current 

DFT Density functional theory 

EDS Energy dispersive X-ray spectroscopy 

ESRF European Synchrotron Radiation Facility 

fcc Face-centered cubic 

GDP Gross domestic product 

GI-XRD Grazing incidence X-ray diffraction 

hcp Hexagonal close-packed 

IFE Institute for Energy Technology 

IPCC Intergovernmental Panel on Climate Change 

IR Infrared 

n-SLD Neutron scattering length density 

NR Neutron reflectometry 

NRA Neutron reaction analysis 

PV Photovoltaic 

RBS Rutherford back-scattering 

RF Radio frequency 

RGA Residual gas analyzer 

SEM Scanning electron microscopy 

SLD Scattering length density 

SMN Centre for Materials Science and Nanoscience 

SNBL The Swiss-Norwegian Beamline (at ESRF, Grenoble) 



xx 

TEM Transmission electron microscopy 

TU Delft Delft University of Technology 

T-YHx Transparent yttrium hydride 

UiO University of Oslo 

UV Ultraviolet 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction 

XRR X-ray reflectometry 



xxi 

List of publications 
Paper I: C. Platzer-Björkman, T. Mongstad, S. Zh. Karazhanov, J. P. 

Mæhlen, E. S. Marstein and A. Holt.  Reactive sputtering of magnesium 

hydride thin films for photovoltaic applications. Materials Research So-

ciety Symposium Proceedings 1210 (2010), 1210-Q03-15  

Paper II: C. Platzer-Björkman, T. Mongstad, J. P. Mæhlen, A. Baldi, S. 

Zh. Karazhanov and A. Holt. Deposition of magnesium hydride thin films 

using radio frequency reactive sputtering. Thin Solid Films 519 (2011), 

5949-5954. 

Paper III: T. Mongstad, C. Platzer-Björkman, S. Zh. Karazhanov, A. 

Holt, J. P. Mæhlen, B. C. Hauback. Transparent yttrium hydride films 

prepared by reactive sputtering. Journal of Alloys and Compounds S5091 

(2011), S812-S816.  

Paper IV: T. Mongstad, C. Platzer-Björkman, J. P. Mæhlen, L. P. A. 

Mooij, Y. Pivak, B. Dam, E. S. Marstein, B. C. Hauback and S. Zh. 

Karazhanov. A new thin film photochromic material: Oxygen-containing 

yttrium hydride. Solar Energy Materials and Solar Cells 95 (2011), 8-11.  

Paper V: T. Mongstad, C. C. You, A. Thøgersen, J. P. Mæhlen, C. 

Platzer-Björkman, B. C. Hauback and S. Zh. Karazhanov. MgyNi1−y(Hx) 

thin films deposited by magnetron co-sputtering. Journal of Alloys and 

Compounds 527 (2012), 76-83.  

Paper VI: J. H. Selj, T. Mongstad, B. C. Hauback and S. Zh. Kara-

zhanov, The dielectric functions and optical band gaps of thin films of 

                                                 
1 Proceedings of the 12th International Symposium on Metal-

Hydrogen Systems, Fundamentals and Applications, Moscow 2010. 



xxii 

amorphous and cubic crystalline Mg~2NiH~4. Thin Solid Films 520 

(2012), 6786-6792. 

Paper VII: T. Mongstad, C. Platzer-Björkman, J. P. Mæhlen, B. C. Hau-

back and S. Zh. Karazhanov. Surface oxide on thin films of yttrium hy-

dride studied by neutron reflectometry. Applied Physics Letters 100 

(2012), 191604. 



1 

1 Introduction 
1.1 The challenges related to energy 
We are living on a marvelous planet. During its 4.55 billion years of his-

tory it has developed from a dusty chunk of rock-covered lava into a 

splendidly diversified planet consisting of different climates, eco-systems 

and with an incredible variation in life forms. The planet will continue 

this development, and, if we could look into the future, I am certain that 

anyone of us would be astonished about what we would see. This might 

be positive or negative, but the fact is that we are now entering a situation 

where the way we live our lives within the next decades and centuries 

can have ruinous consequences for the future of our planet, its variation 

of nature and its beauty. 

We, the humanity, differ from all the other life forms on Earth in 

our extraordinary ability to develop knowledge and technology in a cu-

mulative way. Through efficient communication and collaborative effort 

we use the knowledge of our ancestors and peers as building blocks for 

our own knowledge. This has proved extremely efficient, and has fueled 

a close to exponential growth in our knowledge and technology that in 

turn has led to an incredible increase in global population, economy, re-

source consumption and atmospheric emissions (Figure 1). At certain 

points in time, this development has been so aggressive that it has caused 

grave and permanent changes in localized eco-systems, like the ecologi-

cal collapse on the Easter Island [1]. Over the last century, the human 

growth has been so strong that it has started to affect the eco-system of 

our entire planet [2].  
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Figure 1 – Human growth and the consequences in the years 1700-2005 

CE: World population (data from [3]), world average GDP per capita 

(data from [3]), total global resource consumption in Giga-tons (adapted 

from [4]) and CO2 concentration in the atmosphere (data from [5]). 

The main challenge for us who are living in the 21st century is now 

to stabilize the relation between the humanity and the planet. This means 

that we have to make a turn in our development towards more sustainable 

solutions with which the planet and humanity can co-exist for thousands 

or millions of years. If we continue on the track we are on now, the Earth 

will look totally different within a couple of centuries, with a serious re-

duction in the variety in life forms that exists today [2], [6], [7].  

Some of the most grave and global consequences of human growth 

are today related to how we extract and use energy. We need energy for 

producing food, for transportation, for housing, for well-being and enter-

tainment. This energy has since the start of the industrial revolution 

mainly been harvested from the Earth’s buried resources of fossil energy. 
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These resources are limited, and they contribute to a substantial transport 

of carbon from below the ground and into the atmosphere. The release of 

carbon in the form of carbon dioxide (CO2) and its accumulation in the 

atmosphere results in an increase in the average temperature of the sur-

face and atmosphere of the Earth. There is today broad general agree-

ment among climate-specialized scientists when it comes to the causes of 

global warming and the possible grave consequences of anthropogenic 

greenhouse gas emissions, thoroughly reviewed in the fourth assessment 

report of the Intergovernmental Panel on Climate Change (IPPC) [8], [9]. 

The problem of anthropogenic global warming is also closely connected 

to the environmental and economic consequences of the consumption and 

subsequently the depletion of the fossil fuel resources.  

There are several ways to deal with the problems related to energy 

consumption. There are two main paths: The first is to change how we 

produce energy2; we need to find sources that can provide us with a se-

cure supply for a long time without disturbing the balance of the planet 

and depleting the resources of future generations. The second is to 

change how we manage energy; we can reduce the amount of energy we 

use by calling attention to energy use and by implementing smarter solu-

tions for energy management. The subjects of this thesis are related to 

both of these paths, and might thus lead to the development of new and 

more sustainable energy technology.    

                                                 
2 Or to speak in more correct physical terms; How we convert en-

ergy. According to physical laws, it is not possible to produce energy 
“from nothing”, we can only convert it from one form to another. 
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1.2 Electricity from solar cells 
Renewable energy today covers 13.3 % of the world’s energy consump-

tion [10]. We need to achieve close to 100% coverage to secure sustaina-

ble existence of humanity. Fortunately, there is a great potential for de-

velopment for all renewable energy sources, of which solar energy repre-

sents by far the greatest potential. The sunlight that reaches the Earth 

carries close to 10 000 times the energy that the global human civiliza-

tion consumes at our current rate3.  

Solar energy can be harvested in the form of heat in solar thermal 

systems, or one can use PV solar cells to convert the solar energy into 

electricity. The latter is the most relevant for this thesis, so I will not go 

through more details on solar thermal energy. To understand the scien-

tific motivation for this work, it is important to understand the basics of 

how a solar cell works. This understanding is based on the nature of light 

and how light is absorbed in semiconductors.  I will therefore give a brief 

introduction to these two subjects, without going into details. 

Light 

The energy from the sun is irradiated to our planet in the form of elec-

tromagnetic waves – light. The energy of the light is divided in tiny 

packs of energy, called photons. The energy of each photon Eph is direct-

ly related to the wavelength λ of the electromagnetic waves through the 

relation  

                                                 
3 The human energy consumption rate is approximately 1.5 × 1013 

W, or ~2 kW per person in average. The sunlight that hits the Earth is 
equivalent to the solar energy flux (the solar constant) S = 1361 W/m2 
times the area of the cross-section of the Earth A = π R2 = π (6371 km)2: 
S × A = 1.7 × 1017 W. 



1.2 Electricity from solar cells 

5 

Eph = hν = hc/λ, 

where h is Plancks constant, ν is the frequency and c is the speed of 

light. Photon energy is generally measured in electron-volts, eV, and 

wavelength in nano-meters, nm. The photon energy, or the wavelength, 

also represents color, as demonstrated in Figure 2. A typical red laser 

pointer emits light with a wavelength of around 650 nm, corresponding 

to a photon energy of 1.9 eV. The sun radiates light containing photons 

of different energies going from the low-energy infrared (IR) to the high-

energy ultraviolet (UV).  

 
Figure 2 – A presentation of photon energy and wavelength for visible 

light of different colors. Adapted from [11]. 

Semiconductors 

A semiconductor is a material that has an electrical resistivity in between 

that of a metal and that of an insulator. Semiconductor technology consti-

tutes the core of almost all modern electronic devices, e.g. computers 

would have been impossible to produce in the way we know them with-

out semiconductors. The semiconducting material most commonly used 

in electronics is silicon (Si).  

A photon that hits a semiconductor will be absorbed in the material 

if it has more energy than what is known as the band gap energy, Eg, of 

the semiconductor. The absorbed energy of a photon will knock an elec-

tron out of its place and leave behind a “hole” in the lattice. In a solar 

cell, a configuration of different layers of semiconductors manages to 
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separate this electron from the hole and utilize the energy that it has re-

ceived in an external electric circuit. 

1.2.1 Solar cell technologies 
All solar cell technologies are based on semiconductors. An introduction 

to the different solar cell technologies is available in many books – for an 

overview I recommend the book Solar Cells: Materials, Manufacture 

and Operation by Markvart and Castaner [12].  

Silicon solar cells 

The Si wafer-based solar cell was the first solar cell technology to be 

developed with a reasonable efficiency, and is still the dominating tech-

nology in commercial solar cells. The manufacturing process starts with 

the purification of Si from quartz. High-purity Si is then cast into large 

blocks or a large single crystal is pulled from a melt, and subsequently 

cut in thin wafers of dimensions of typically 15 × 15 cm2 with a thickness 

of around 200 μm. The solar cell is produced from the wafer by going 

through a multi-step industrial process into a final solar cell. The most 

important steps are emitter doping, antireflection coating, passivation and 

metallization. A sketch of a typical Si solar cell is showed in Figure 3(a). 

Thin-film solar cells 

The most important thin-film PV technologies are copper-indium-

gallium-selenium(sulfur) (CIGS), cadmium telluride (CdTe) and amor-

phous silicon (a-Si). The production process of thin-film solar cells dif-

fers from the silicon solar cells in that all the active materials are deposit-

ed onto a substrate, in very thin layers of only a few μm. The substrate 

itself is normally not an active component in the structure. As an exam-
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ple, an outline of a typical CdTe solar cell is given in Figure 3(b). The 

thin-film technologies consume much less material than wafer-based 

solar cells because the semiconductor layers are about 100 times thinner, 

and the free choice of substrate and deposition method leaves room for 

substantial savings in the production. Therefore, the CdTe technology 

was first to cross the “magic” cost limit of 1 $/Wpeak in 2009 [13], and 

thin-film solar cells are today cheaper than Si wafer based solar cells4. 

 
Figure 3 – Outline of the cross-section of two different solar cell technol-

ogies. (a) A typical wafer-based Si solar cell and (b) a typical thin film 

CdTe solar cell. 

Challenges for the existing PV technologies 

Even though the existing technologies for solar cells have proved to be 

strong and there has been an incredible growth in the production and 

sales of solar cells over the last decade, there are some challenges for the 

                                                 
4 According to Solarbuzz Module Pricing March 2012 update, the 

lowest retail prices for multi-crystalline Si solar cell modules was 0.78 
€/Wp, comparing to 0.62 €/Wp as the lowest retail price for thin-film 
modules. Because the efficiency of thin film solar modules is generally 
lower, the cost of the total system may draw a different picture and Si 
solar cells have therefore preserved a high market share. 
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existing technologies. Wafer-based Si solar cells consume a lot of mate-

rial due to the unnecessary thick wafers, and around half of the material 

is wasted in the casting and sawing processes. For the thin-film technolo-

gies of CIGS and CdTe, the low abundance and extraction rates of the 

elements In and Te are expected to put a limit on the production of 13-38 

GWp/year for each technology within the next 10 years5 [14]. Amorphous 

silicon solar cells suffer from severe photo-degradation and other factors 

which have so far limited the attainable efficiency of this technology. 

The record efficiencies for Si, CIGS, CdTe and a-Si solar cells under 

solar illumination are currently 25.0%, 19.6%, 16.7% and 10.1%, respec-

tively [15]. The efficiencies of commercial solar modules are substantial-

ly lower than these numbers. 

Multi-junction solar cells 

The maximum theoretical efficiency of a solar cell based on a single 

semiconductor is given by the band gap of the semiconductor. This limit 

is known as the Shockley-Queisser limit [16]. Figure 4 shows the effi-

ciency limit for solar cells under sunlight illumination, as a function of 

the band gap of the light-absorbing semiconductor. Several concepts for 

going beyond this limit have been suggested and some have also been 

demonstrated. The most well-established is the multi-junction solar cell, 

also called tandem solar cell, which combines several layers of semicon-

ductors with different band gaps.  Each layer absorbs a certain wave-

length range of the sunlight. The record efficiency for multi-junction so-

lar cells, under concentrated sunlight, is currently 43.5% [15]. Such high 
                                                 
5 In 2011, the total installations of new solar cells amounted to a 

capacity of 27 GWp. With a growth rate of 30% per year, the total de-
mand for installations in 2020 will be at 300 GWp. 
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efficiency cells are however extremely costly due to high processing 

costs and expensive materials. High-efficiency multi-junction solar cells 

are today based on Ge/InGaAs/GaInP or similar material stacks.    
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Figure 4 – Solar cell efficiency limit for the solar spectrum (Air Mass 

1.5) as a function of the band gap of the light-absorbing semiconducting 

material. The band gaps of Si, CdTe and a-Mg2NiH4 have been indicated. 

Figure adapted from [17], adding the band gap of a-Mg2NiH4. 

1.3 Energy saving with smart windows 
In the EU and USA, energy consumption in buildings accounts for close 

to 40% of the total energy consumption [18]. The energy consumption in 

buildings is steadily increasing, especially in more southern countries. In 

all types of buildings and all environments, most of the energy which is 

consumed in buildings is used for heating, ventilation, cooling and indoor 

lightning.  

One way of controlling the heat transfer and natural lightning in 

buildings, and thereby reduce the energy consumption, is to deploy smart 

windows. Smart windows make use of chromogenic materials, materials 

that allow variation of the transmittance of light and IR radiation. Studies 
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have shown that smart windows based on such technologies outnumber 

the energy performance of static windows that only make use of static 

spectrally selective coatings and insulation layers [19]. It is especially in 

hot climates with high needs for cooling during daytime that smart win-

dows can save substantial amounts of energy, by reflecting or absorbing 

solar energy that would otherwise excessively heat the building. 

Different chromogenic reactions have the potential to be useful in 

smart windows:   

- Photochromism [20], changing in the optical properties as a re-

sponse to illumination. Photochromic windows would typically re-

duce the optical transmission when sunlight is shining directly on 

the window, while maintaining the view under indirect day-

lightning and in dark. The principle of a window with a photo-

chromic film applied for optical regulation is demonstrated in Fig-

ure 5.  

- Thermochromism [20], changing the optical properties as a re-

sponse to temperature. Thermochromic materials can react to hot 

conditions by reducing optical transmission, while permitting pas-

sive solar heating and visual view at low temperatures.  

- Electrochromism [21], changing the optical properties as a re-

sponse to an applied electric field. The optical properties can be 

controlled automatically or manually.  

- Gasochromism [22], an optical reaction to exposure to certain gas-

es. Gasochromic materials could in principle work similarly as the 

electrochromic materials.  

Electrochromic and gasochromic materials are the most versatile 

because they can be controlled intentionally. On the negative side for 
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electrochromic and gasochromic materials, the installation of the win-

dows is complicated because of the need for a connection to control in-

frastructure for operation, and they are little worth if not operated in the 

right manner. 

 
Figure 5 – The working principle of a double layer glass window with a 

photochromic film under (a) low and (b) high light conditions. The light 

transmission and reflection is demonstrated by the weight of the arrows. 

1.4 The materials – metal hydrides 
Metal hydrides are compounds formed by reactions of metals with hy-

drogen (H). A wide variety of metal hydrides have been demonstrated, 

comprising almost all metals and many different metal alloys. The metal 

hydrides have over the last decades received substantial attention due to 

the possibility of reversibly storing H with high density in metals. This 

could be a favorable way of storing energy in a future society where H2 

might become a common energy carrier. H2 is promising as an energy 

carrier for example for transportation, because it has approximately three 

times higher chemical energy per mass compared to gasoline [23], and 
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because water is the only combustion product. One of the challenges for 

H2 as an energy carrier is the storage, as the amount of H2 necessary for 

driving 400 km in a car would occupy around 45 m3 at atmospheric pres-

sure [23]. Hydrogen storage in metal hydrides is a solution to reduce this 

volume [24], and well-known metal hydrides have a volumetric H densi-

ty that is even higher than that of liquid H2 [23]. It is also relevant to con-

sider metal-hydride-based energy storage systems for stationary purpos-

es, especially in systems based on intermittent renewable energy sources 

like solar or wind energy [25].  

There are large variations in the physical and chemical properties 

of metal hydrides. There is also normally a large difference in the proper-

ties of the parent metal and the metal hydride. The crystal structure is 

often changed, and other material properties can be completely different. 

The strongest demonstration of the great difference in optical properties 

is the invention of the metal hydride switchable window, that was report-

ed by Huiberts et al. in 1996 [26] (See Figure 8, page 27).  

In this work, we have used reactive sputter deposition to synthesize 

films of three different types of metal hydrides: MgH2, Mg-Ni-H and 

YHx. 

1.4.1 Magnesium hydride 
Magnesium hydride, MgH2, is one of the classics among the metal hy-

drides. It is considered one of the most interesting materials for hydrogen 

storage, because of the high gravimetric capacity of 7.6 wt% H in MgH2 

and the possibility of absorbing and desorbing H reversibly [27]. Howev-

er, the problems of high operation temperature and slow kinetics has 

proved a difficult barrier to pass for hydrogen storage in MgH2 [27]. The 

problems can be circumvented by nano-structuring and adding catalytic 
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agents, and one of the currently largest commercial projects within solid-

state H2 storage is using MgH2 [28]. 

The electronic band gap of MgH2 is reported to be 5.6 eV [29], 

which means that it should be insulating and transparent to visible light. 

Transparent films have indeed been obtained when hydrogenating Pd-

capped Mg [29], but in-situ deposition by activated reactive evaporation 

was reported to give films that only were partly transparent for visible 

light [30]. This discrepancy was explained by the presence of approxi-

mately 10% of metallic Mg in the reactively deposited film [30]. 

Table I summarizes the structural, thermodynamic and electrical 

properties expected for the Mg-based compounds that are considered 

relevant for the current work. 

1.4.2 Magnesium nickel hydride 
Magnesium nickel hydride (Mg2NiH4) is another well-known metal hy-

dride. It is considered for hydrogen storage because it can store 3.6 wt% 

H reversibly and the hydrogenation-dehydrogenation reactions are faster 

and can be operated at lower temperatures than MgH2 [27]. Still, the hy-

dride in its pure form is considered too stable to be useful in reversible 

hydrogen storage applications. In 2001, Richardson et al. demonstrated 

that this hydride also could be suitable for application in smart windows 

[31]. 
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Table I – Key parameters at standard conditions of relevant Mg-based 

compounds 

 Magnesium Magnesium 

hydride 

Magnesium 

oxide 

Magnesium 

hydroxide 

Formula Mg MgH2 MgO Mg(OH)2 

Crystal struc-

ture 

Hexagonal 

P63/mmc 

a = 3.21 Å 

c = 5.21 Å 

[32] 

Tetragonal 

P42/mnm 

a = 4.52 Å 

c = 3.02 Å 

[33] 

Cubic 

Fm-3m 

a = 4.21 Å 

[34] 

Trigonal 

P3m1 

a = 3.14 Å 

c = 4.77 Å 

[34] 

Formation 

enthalpy 

[kJ/mole Mg] 

0 -75 [35] -602 [35] -925 [35] 

Electronic 

state, Eg 

Metallic Insulating, 

5.6 eV [29] 

Insulating, 

7.8 eV [36] 

Insulating, 

6 eV [37] 

 

Crystalline Mg2NiH4 is found in two different structures: The low-

temperature (LT) structure is monoclinic [38]. It is often divided into two 

categories, the LT1 and the LT2. The LT2 phase is a modification of the 

LT1 phase with micro-twinning or stacking faults [38]. It is a minor 

change in the structure, but there is a large difference in optical and elec-

trical properties of the two phases [39]. If the hydride is heated up to 

temperatures above 237 ºC, it undergoes a transition to the HT structure. 

The HT structure is face centered cubic with a lattice parameter of 6.507 

Å [40]. Powder samples that are cooled from the HT structure go to the 

micro-twinned LT2 structure below the transition temperature. The LT1 

structure is only obtained for samples that have been hydrogenated and 

kept below the transition temperature. 
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Thin films of Mg2NiH4 are found to behave slightly different struc-

turally. If synthesized below the transition temperature they exhibit an 

amorphous structure. Both in-situ deposited films [41] and ex-situ hydro-

genated films [42] are found to be amorphous. Thin-film samples hydro-

genated above the transition temperature exhibit a HT cubic structure, 

and they remain in the HT structure also after cooling to room tempera-

ture [39]. 

There are various reports of the band gap of Mg2NiH4, as discussed 

in Paper VI, but most of the reports are close to the original report of 1.68 

eV which was claimed for both the HT and the LT phase by Lupu in 

1987 [43]. Paper VI in this thesis discusses the band gap of the two thin-

film phases of Mg2NiH4 in more detail, and it seems clear that the band 

gaps of both the crystalline phases and also the amorphous thin-film state 

are in the range 1.5 – 2.2 eV.  

In the discussion of the results in this thesis, it is useful to use the 

following abbreviations for the various forms of magnesium nickel hy-

dride: 

- Mg2NiH4: The stoichiometric compound of magnesium nickel hy-

dride with 2.0 Mg and 4.0 H per Ni. 

- Mg~2NiH~4: Magnesium nickel hydride with any composition 

yielding a semiconductor with a band gap of 1.5-2.2 eV. 

- Mg-Ni-H: Any combination of Mg, Ni and H. 

- a-Mg2NiH4: Amorphous thin-film Mg2NiH4. 

- c-Mg2NiH4: Crystalline fcc thin-film Mg2NiH4. 

Table II summarizes the structural, thermodynamic and electrical 

properties expected for the Mg-Ni-based compounds that are considered 

relevant for the current work. 
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Table II - Key parameters at standard conditions of relevant Mg-Ni-based 

compounds* 

 Nickel Magnesium 

nickel 

LT-magnesium 

nickel hydride 

HT-magnesium 

nickel hydride 

Formula Ni Mg2Ni Mg2NiH4  Mg2NiH4  

Crystal struc-

ture 

Cubic 

Fm-3m 

a = 3.52 Å 

[32] 

Hexagonal 

P6222 

a = 5.19 Å 

c = 13.21 Å 

[44] 

Monoclinic 

C2/c 

a = 14.34 Å 

b = 6.40 Å 

c = 6.48 Å 

β = 113.52º  

[45] 

Cubic 

Fm-3m 

a = 6.51 Å 

[40] 

Formation 

enthalpy 

[kJ/mole Ni] 

0 -52 [46] -52 (2Mg + Ni) + 

-128 (Mg2Ni + 

2H2) [47] 

 

Electronic 

state, Eg 

Metallic Metallic Semiconducting, 

1.7 eV [43] 

Semiconducting, 

2.2 eV [39] 

*For magnesium, see Table I. 

1.4.3 Yttrium hydride 
Yttrium hydride is most well-known from the invention of the metal hy-

dride-based switchable window [26] (see Figure 8, page 27). It is gener-

ally considered to belong to the class of the rare-earth metal hydrides 

[48]. At room temperature and atmospheric pressure, two phases of yttri-

um hydride can be obtained: The dihydride (YH2) and the trihydride 

(YH3). Whereas the Y metal as well as YH2 is conductive and non-

transparent, YH3 is a semiconductor with a band gap of 2.6 eV and there-

fore partly transparent to visible light [26]. When prepared in thin-film 

form capped by a thin layer of Pd, the H can be loaded and unloaded re-
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versibly and the optical state of the YHx film can be controlled by regu-

lating the H2 pressure in the environment of the sample. 

During the H loading process, YHx films go through two structural 

transitions. Y metal has a hcp lattice, YH2 has a fcc lattice and YH3 has a 

hcp lattice again. Through this loading process, also the optical and elec-

trical properties are dramatically changed. The structural, optical and 

electrical properties have been analyzed to great detail in a paper of van 

Gogh et al. [49].  The very similar hydride of La does not demonstrate 

such a structural change when going from LaH2 to LaH3, although the 

optical and electrical change corresponds to what is observed for Y. It 

has also been shown that Y films doped with quantities of Mg ([Mg]/[Y] 

≥ 0.1) demonstrate an optical change without the fcc-hcp structural tran-

sition [50]. It therefore appears that the optical transition is not necessari-

ly related to the structural transition in YHx. 

In the discussion of the results on yttrium hydride, it proves useful 

to define the following terms: 

- YHx: Yttrium hydride. Any combination of Y and H. In the discus-

sion this also includes combinations where O is incorporated. 

- B-YHx: Black YHx. Yttrium hydride samples that are in the low-

reflective and metallic state that is typically observed for YH2.  

- T-YHx: Transparent YHx. Yttrium hydride samples with a band gap 

close to 2.6 eV. The amount of O incorporated in the sample can be 

substantial6, but the crystal structure and optical and electrical 

properties resemble that of YH3 rather than that of Y2O3 or 

Y(OH)3.  

                                                 
6 In Paper IV, this type of sample is referred to as «oxygen-

containing yttrium hydride».  
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Table III summarizes the structural, thermodynamic and electrical 

properties obtained from literature for the Y-based compounds that are 

considered relevant for the current work. 

Table III - Key parameters at standard conditions of relevant Y-based 

compounds 

 Yttrium Yttrium 

dihydride 

Yttrium  

trihydride 

Yttrium 

oxide 

Yttrium  

hydroxide 

Formula Y YH2  YH3  Y2O3 Y(OH)3 

Crystal 

structure 

Hexago-

nal 

P63/mmc 
a = 3.65 Å 

c = 5.73 Å 

[51] 

Cubic 

Fm-3m 
a = 5.21 Å 

[48] 

Hexagonal 

P63/mmc 
a = 3.67 Å 

[48] 

Cubic 

Ia3 
a = 10.60 Å 

[52] 

Hexagonal 

P63/m 
a = 6.25 Å 

c = 3.54 Å 

[53] 

Formation 

enthalpy 

[kJ/mole Y] 

0 -228 [48]  -228 (Y + H2) 

+ -40 (Y + 

½H2) [54] 

-953 [35] -1472.3 [55] 

Electronic 

state, Eg 

Metallic Metallic Semiconduct-

ing, 2.6 eV 

[49] 

Insulating, 

5.6 eV [56] 

Semiconduct-

ing, 3.05 eV 

[57] 

1.5 The synthesis method – reactive sputter  deposi-
tion 

Magnetron sputter deposition is a method that is widely applied in mate-

rials science and industry for deposition of a range of different thin films. 

The method is suitable for large area deposition and can be incorporated 

in industrial production lines. The chamber in a magnetron sputter is dur-

ing deposition filled with argon gas at low pressures, typically 0.1-10 Pa. 
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When a certain electric field is applied over the gas, it will ionize and 

form a plasma. The charged Ar+ ions will then be accelerated by the 

electric field and collide with the surface of the target sputter away atoms 

from the target which can be deposited on an opposite surface. 

When a gas that is capable of reacting with the sputtered atoms 

from the target is added to the Ar gas in the deposition chamber it is 

called reactive sputtering. Addition of a reactive gas during the deposi-

tion can give substantial changes to the chemical and physical processes 

in the chamber. A review of the reactive sputtering process and a few 

commonly deposited materials is given in the book “Reactive sputter 

deposition” edited by Depla and Mahieu [58]. The most well-known ex-

ample of reactive sputtering is the addition of O2 gas to the chamber in 

order to obtain metal oxide films from metallic targets. This way, for 

example stoichiometric films of Al2O3 can be obtained by sputtering 

from an Al target [59]. Reactive sputtering with H2 is less common, but is 

routinely applied for example in deposition of hydrogenated amorphous 

silicon and microcrystalline silicon [60] and has been demonstrated for 

several metal hydrides (see page 21). 

Metal hydrides can be synthesized in a range of different ways. The 

most common synthesis techniques produce powders of metal hydrides. 

Thin-film metal hydrides have received comparatively little attention. 

The standard synthesis method for thin-film metal hydrides is by hydro-

genation of Pd-capped metal films, as demonstrated in Figure 6(a). This 

method was suggested by Pick et al. in 1979 [61]. Also uncovered metal 

films can be hydrogenated, but might require high temperatures and long 

loading times. Long loading times have indeed been found necessary to 

form Mg2NiH4 films in this way [39], [42]. On the other hand, rare-earth 



Chapter 1: Introduction 

20 

dihydrides form readily even when no H2 gas is intentionally added, as 

observed for early studies of thin-film deposition of rare-earth elements 

[62] and more recently under deposition of Y using pulsed laser deposi-

tion (PLD) [63].  

In this work we preferred to avoid the Pd cap because of two rea-

sons. Firstly it complicates electrical and optical measurements because 

of the high electrical conductivity and high optical opacity of Pd, and 

secondly because Pd is a precious metal that should be avoided in the 

context of low-cost solar energy technology. 

 

 
Figure 6 – Conceptual drawings demonstrating synthesis methods for 

metal hydride films. (a) The commonly applied synthesis method of hy-

drogenation of Pd-capped metallic films. (b) Single step formation of 

metal hydride films by reactive sputter deposition. 

There are mainly two methods for in-situ deposition of metal hy-

drides avoiding the Pd cap layer: reactive evaporation and reactive sput-
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tering. Reactive evaporation is the deposition of metals from a metallic 

evaporation cell in a reactive gas atmosphere. Under activated reactive 

evaporation, a source of atomic H [64] is used to increase the reaction 

rate with H. Activated reactive evaporation has been demonstrated for 

MgH2 [30] and Mg2NiH4 [41], whereas reactive evaporation with molec-

ular H2 has been demonstrated for TiH2 [65] and single-crystalline YH2 

films grown on W(110) substrates [66].  

The concept of direct in-situ formation of metal hydride films by 

reactive sputter deposition is demonstrated in Figure 6(b). Reactive sput-

ter deposition to achieve direct growth of metal hydride films in-situ has 

been relatively little explored. The earliest reports of reactive sputter 

deposition of metal hydrides was in the 1990’s, for TiHx [67–69] and LiH 

[70]. More recently there have been reports of reactive sputter deposition 

of GdMgH5 [71], NaAlH4 [72], CaH2 [73] and NaH [73]. There have also 

been recent reports of reactive sputter deposition of MgH2 [74], [75]. 

ErH3 films have been synthesized by a similar technique, reactive ion 

beam sputter deposition, using a plasma source to generate atomic H 

[76]. Reactive sputter deposition of Mg2NiH4 or YHx had not been re-

ported of before the publication of Paper V and Paper III in this thesis. 

In the reports of reactive sputter deposition of metal hydrides, a H2 

mixing ratio of 10-50% in the Ar process gas is generally used to obtain 

growth of hydride films. O contamination of films is a common issue 

with films deposited by this method, reported for TiHx [68], LiH [70] and 

MgHx [75] films. Another issue is the presence of metallic particles in the 

hydride matrix of the films, specifically observed for MgHx [74], [75] 

and NaAlH4 [72]. It has also been reported that stoichiometric TiH2 films 

are difficult to obtain [69]. 
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1.6 Metal hydrides for solar energy applications 
Several applications of metal hydride films with regards to solar energy 

have been suggested, but no technological application has yet been com-

mercialized. The exception is the use of PV solar panels to charge nickel-

metal hydride batteries, which cannot be considered relevant in the con-

text of this thesis.  

1.6.1 Semiconducting metal hydrides for solar cells 
Since the discovery of the metal hydrides, it has been known that the 

electrical properties of a metal hydride generally are very different from 

that of the metal itself. Many of the metal hydrides are now known to be 

semiconducting. However, it was not until in 2007 that hydride-based 

semiconductor electronics was suggested [77–79]. Semiconductors are 

the core of modern electronics and many different classes of semicon-

ducting compounds7 have been developed for different purposes, but 

metal hydride semiconductors had received little attention. There might 

be many reasons for that, the most important may be that metal hydrides 

are generally found to be chemically unstable under normal conditions 

and thus difficult to work with.  

For pure metal hydrides in powder form, one can have an idea 

about the electrical properties just by visual observation. Hydride pow-

ders with white appearance are insulators. Yellow, orange, red or brown 

powders are semiconducting with a band gap in the visible range of light. 

Black or silvery powders are metallic or low-band gap semiconductors.  

Insulating or semiconducting metal hydrides can be called non-

metallic, which sounds contradicting, but here “non-metallic” refers to 

                                                 
7 Comprising oxides, nitrides, sulfides, etc. See e.g. the book “Ox-

ide and nitride semiconductors” (2009) by Yao and Hong. 
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the electronic state and not to the chemical composition of the com-

pound. There is a long list of hydrides that are non-metallic. Karazhanov 

et al. has given a survey that demonstrate the band gap found by density 

functional theory (DFT) for 72 such hydrides [80], which may be candi-

dates for so-called hydride electronics. Considering all possible alloys 

that form hydrides, the complete list of non-metallic hydrides is probably 

substantially longer. Several non-metallic metal hydrides are probably 

not even thought of yet.  

The idea of hydride electronics is to use semiconducting metal hy-

drides as the active layer in semiconducting electronics. In a PV solar 

cell, this would mean to use films of semiconducting metal hydrides e.g. 

as light absorbing materials that generate electricity through separation of 

excited electron-hole pairs. Figure 7 gives a simple demonstration such a 

structure.  

 
Figure 7 – A concept sketch of a metal-hydride based solar cell. 

Requirements for PV materials 

A material for PV solar cells has to be semiconducting with a band gap 

close to 1.4 eV (see Figure 4), it has to have suitable electrical transport 

characteristics and it should be stable in operation in a PV device under 

realistic conditions for more than 20 years. Depending on the type of 

device, it should also be possible to control the doping of the material by 

incorporating controlled levels of impurities acting as p- or n-type dop-

ing. Regarding these requirements, there is relatively little information 
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available in the literature concerning metal hydrides. Generally, the most 

well-known of these parameters are the band gap and the chemical stabil-

ity in vacuum. Based on the available information in literature, we there-

fore decided to work on Mg2NiH4. This hydride has a band gap within 

the range that is interesting for solar cells, and the chemical stability is 

reasonably high. DFT studies earlier performed in our group had also 

showed that the electronic band structure of Mg2NiH4 is similar to that of 

Si [81], which was considered promising with regards to the electronic 

transport mechanisms. However, there might well be metal hydrides that 

are semiconducting and have even more suitable characteristics than 

Mg2NiH4, but are rarely discussed because of low relevance for hydrogen 

storage and smart windows. For example the closely related hydrides 

Mg2CoH5 and Mg2FeH6 have demonstrated optical properties  [82] which 

suggest that the band gaps of these hydrides are within the range that is 

interesting for solar cells. 

There is relatively little information available on the electrical 

properties of semiconducting metal hydrides. However, the invention of 

the metal-hydride based smart window spurred some attention on electri-

cal properties of thin-film metal hydrides that are relevant for PV appli-

cations. In addition to band gap estimations by optical methods, the elec-

trical conduction mechanisms of YHx [83] and Mg2NiHx [84] films have 

been investigated by measurements of the Hall effect. n-type conductivi-

ty was reported for both these hydrides, where H vacancies appear to act 

as electron donors. Interestingly, an early report on the conductivity 

mechanisms in CeHx reported of p-type conductivity [85]. 
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Why metal hydrides for solar cells? 

Many materials are already demonstrated to work well in PV applica-

tions. However, as already mentioned, there are some concerns with the 

commercial PV technologies of today. For thin-film solar cells there is an 

issue with the limited availability of the constituent elements In and Te. 

Si, on the other hand, is abundantly available in the Earth’s crust and 

there is no practical limitation on the extraction rate. However, wafer-

based Si solar cells are at present priced higher than thin-film solar mod-

ules. So, if low-cost thin-film solar cells with high efficiency could be 

manufactured from abundantly available materials based on e.g. Mg, Ni 

and H, that would present very high interest for future developments in 

solar cells for electricity generation.  

In a longer perspective, it is probable that more sophisticated tech-

nologies with higher efficiency will emerge on the solar cell market. The 

most promising technology is the multi-junction solar cell [86], which 

depends on having suitable materials with different band gaps. If reason-

able solar cell efficiencies in metal-hydride based solar cells can be 

demonstrated, the wide range of band gaps available within the class of 

metal hydrides might open up new opportunities of such high-efficiency 

technologies. It is also demonstrated that the band gap of metal hydrides 

can be engineered by controlling stoichiometry and crystal structure: For 

Y-La trihydride alloys, the band gap can be controlled by the La:Y ratio, 

going from 1.9 eV for pure LaH3 to 2.6 eV for pure YH3 [49]. For 

Mg2NiH4, the band gap is determined by the crystal structure, the crystal 

structure can be controlled by synthesis temperature [39], [42] and, for 

powder samples, by mechanical pressure [87]. The band gap of Mg2NiH4 
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can also be controlled by the Mg:Ni ratio, for which band gap tuning 

from 1.5 eV to 2.0 eV has been reported earlier [88]. 

Surface passivation of Si 

In Si solar cells, H is known to be able to passivate electronically active 

defects and impurities in the bulk of a Si crystal [89]. H also plays a role 

in chemical passivation of the interface of the Si wafer with the surround-

ing materials as e.g. SiO2 [90]. Good passivation provides longer life-

time of excited charge carriers, a solution to one of the main challenges 

for Si solar cells [91]. Therefore, it might be beneficial to combine Si 

with metal hydrides as pure passivation layers. The abundance of H in 

metal hydrides might also be beneficial in applications where one com-

bine Si with other semiconductors, as in multi-junction or hetero-junction 

solar cells. 

1.6.2 Chromogenic metal hydrides 
In 1996, Huiberts et al. reported a fascinating optical transition in Pd-

capped Y and La films that were exposed to H2 gas [26]. The H2 gas dis-

sociated at the surface of the catalyzing Pd cap-layer, and diffused into 

the Y or La film which when going from dihydride to trihydride went 

through a metal-insulator transition. The visual appearances of the three 

optical states are displayed in Figure 8. The optical state of the film could 

be controlled and varied from metallic reflecting to transparent by varia-

tion of the H2 pressure in the surrounding container. In the following 

years, substantial work on the properties of YHx and LaHx films and the 

electronic structure of the compounds was done by many research 

groups.  
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Figure 8 – The H2-induced optical transition of Pd-capped YHx films: (a) 

The reflecting metallic Y film prior to hydrogenation, (b) the dihydride 

state (c) the transparent trihydride state. Pictures from Huiberts et al., 

1996 [26]. 

In 2001, Richardson et al. demonstrated that the optical switching 

could also be obtained with Mg-Ni films capped by Pd [31]. This was 

considered an advantage as Mg and Ni are more abundant elements than 

the rare earths, and it extended the material choice for further develop-

ment of the metal-hydride-based smart windows.  

The gasochromic reaction with H2 gas being unpractical for com-

mercial applications, solid-state alternatives were later developed. All-

solid-state smart window devices have been demonstrated both for rare-

earth-based hydrides [71] and Mg-Ni hydrides [92]. Presently, the metal-

hydride smart window research gravitates around the group of K. Yoshi-

mura at AIST in Japan, where they are developing new alloys [93], [94] 

and testing the materials under realistic conditions [95], [96]. There is 

also current interest in utilizing the optical switching of metal hydrides in 

optical H2 sensors [97], [98]. 
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Photochromism in yttrium hydride  

In a high-pressure experiment reported in 2007, Ohmura et al. reported 

on the observation of a photochromic reaction in transparent YHx sam-

ples at high pressures [99].  The effect was seen at pressure of 5.8 GPa 

(57000 × atmospheric pressure), and a coexistence of fcc and hcp YHx 

was observed at this pressure. No photochromic effect was observed for 

the pure hcp YHx at lower pressures. The light used to trigger the photo-

chromic reaction was a laser with a wavelength of 488 nm, and a few 

seconds of illumination was sufficient to cause a pronounced change in 

the optical properties of the sample. The intensity of the laser at the sam-

ple was estimated to 105 W/cm2, corresponding to one million times the 

typical intensity of solar illumination. They reported of a 0.11% lattice 

contraction of the fcc phase during the photochromic reaction. 

A relevant finding, which was not directly presented as a photo-

chromic effect, was the persistent photoconductivity as a result of UV 

illumination that was observed and reported by Hoekstra et al. [100]. 

They reported that UV illumination at temperatures < 1 K increased the 

electric conductivity of hcp YHx samples, and the increased conductivity 

persisted at temperatures of up to 200 K. 

1.6.3 Other solar energy applications of metal hydrides 
This thesis focuses on the development of metal hydrides for solar energy 

applications in smart windows and PV solar cells, but there have been 

some other suggestions that are worth to mention in the context of metal 

hydrides and solar energy: 

- Smart solar collectors: For many metal hydride film systems, three 

main optical states exist: Reflective for low H content, optically ab-

sorbing and black in appearance for intermediate H content and 
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transparent for high H content. In a paper published by Borsa et al. 

in 2006, it was suggested to take advantage of the reflective to 

black switching in Mg-Ti-H films with low and intermediate H 

content in order to regulate the temperature in solar thermal collec-

tors [101]. Such a regulation mechanism could allow the use of ma-

terials with low heat stability such as plastics in the solar collector. 

- Energy storage: It is obviously relevant to deploy metal hydrides in 

energy storage for PV solar cells using Ni-MH batteries and even-

tually metal-hydride-based H2 storage. As mentioned earlier, this is 

not considered relevant for this thesis. More relevant is the report 

of Licht et al. from 1999, of a highly inventive concept of combin-

ing a AlGaAs/Si/metal hydride multi-junction solar cell with an in-

tegrated metal hydride energy storage layer [102], [103]. A sche-

matic representation of the device is presented in Figure 9. Such a 

device would be able to deliver electricity even under dark condi-

tions, depending on the energy deposited in the metal hydride layer. 

An overall conversion efficiency of 18.2 % was reported for this 

type of device. 

- Transparent conducting films: Transparent conducting films are 

used as transparent electrodes in an increasing number of techno-

logical applications such as displays and thin-film PV solar cells. It 

has been suggested that wide band gap metal hydrides could have a 

potential as transparent conducting films, and the case of Si-doped 

AlH3 has been studied in a DFT simulation study [78]. A transpar-

ent conducting material based on Mg(OH)2 with large amounts of 

C has been reported recently in an experimental study [104]. This 
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material is possibly the first non-oxide transparent conducting 

compound that has been demonstrated [105]. 

 
Figure 9 – Schematic representation of the AlGaAs/Si/metal hydride 

multijunction solar cell synthesized by Licht et al. Figure obtained from 

[102]. 
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2 Experimental techniques 
The work reported in this thesis is based on a set of experiments per-

formed at IFE and other institutes and universities.  

2.1 Sample synthesis 
The samples were synthesized at IFE using a Leybold Optics A550V7, a 

large, in-line sputtering system. The system is optimized for industrial 

production on large area substrates, with high deposition rates and high 

throughput.  

Metallic targets of Y, Mg and Ni were used for the deposition of 

metal hydride films. The purity of the targets was 99.99%, 99.5% and 

99.8%, respectively. The targets had surface area of 600 × 125 mm2. The 

distance from the targets to the substrate was 116 mm. 

The sputtering system had four target positions, of which three 

were DC power operated and one was RF power operated. Figure 10 

shows a picture and an outline of the system. The RF gun and one of the 

DC guns were situated beside each other, and could be put at an angle to 

enhance co-sputtering. In all experiments, the Mg target was operated 

from the RF power position, the Ni target from the DC power co-

sputtering position and the Y target was operated with pulsed DC power. 

A pulse frequency of 70 kHz (T = 14.2 μs) with a reverse cycle of 4 μs 

was used. The power used on the targets was in the range 100-1000 W. 

The average power density on the target at 1000 W was 1.3 W/cm2. The 

typical deposition rate for metallic films was ~50 nm/min for 1000W 

target power. 

The purity of gases used was 99.999% for Ar and 99.9999% for H2. 

The base pressure of the chamber was 10-4 Pa, and the depositions were 
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done at pressures of 0.1 to 1 Pa. Total gas flow rates of 200 sccm were 

used in all depositions, with gas mixtures going from pure Ar up to 50% 

(flow rate) H2. 100 sccm H2 means a molecular flow of 8.91 × 10-3 

mole/min. This is in the same range of magnitude as the total molar dep-

osition rate. For Y, a deposition rate of 50 nm/min over a 600 × 125 mm2 

surface gives a total molar deposition rate of 1.88 × 10-4 mole/min. 

In most cases, it was chosen to operate the substrate carrier in sta-

tionary mode. The alternative is oscillating carrier mode, with the sub-

strate carrier moving back and forth (as demonstrated with double-

pointed arrow in Figure 10(b)) in front of the targets. Oscillating carrier 

is preferred when uniform thickness is important and is used to avoid 

gradients in the chemical composition under co-sputtering. Stationary 

mode was selected because it reduces the material consumption and it 

provides better understanding of how the material parameters vary over 

the deposition zone.  

Under co-sputtering, the RF and DC targets on the left side of Fig-

ure 10(b) were operated simultaneously. The targets were set at an angle 

against each other as indicated, to enhance the co-deposition. The center-

to-center distance between the targets was 210 mm. The power applied to 

each target could be adjusted independently to adjust the chemical com-

position of the deposited film.  
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(a) 

 (b) 

Figure 10 – The sputtering system used. (a) A photo of the system with 

one of the target loading doors open [106]. (b) A bird’s-eye view of the 

system and its main parts. 

Generally, glass substrates (Menzel-Gläser microscope slides, 

76×26×1 mm3) were used for deposition of the film samples. The sub-

strates were pre-cleaned by 15 minutes ultrasound bath in de-ionized 

water and then blow-dried by pressurized N2 gas. Pre-cleaning of the 

glass with acetone and methanol was also done, but no substantial differ-

ence in the film quality was observed as a result of this. The glass sub-

strates were used for optical, electrical and structural (XRD) measure-

ments. Fused quartz substrates (Suprasil, 10×10×1 mm3) were used for 

better optical measurements in the UV range, because of the high optical 

absorption in normal glass for wavelengths below 300 nm. Mono-

crystalline silicon substrates were used for optical measurements, TEM 
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and neutron reflectometry. For the RBS characterization, glassy carbon 

substrates (SIGRADUR G plates) were utilized. 

In addition to the depositions done with the Leybold Optics system 

at IFE, depositions were done with an AJA systems sputter deposition 

unit at TU Delft. The system had a base pressure of 10-5 Pa, and a residu-

al gas analyzer (RGA) for monitoring the gases in the chamber during 

deposition.  

2.2 Thin-film characterization 

2.2.1 Thickness and density 
The thickness of the deposited films was measured with a Tencor AS-200 

profilometer. The accuracy of the measurements was in the order of ±20 

nm. It was satisfying for the purpose of estimating deposition rates when 

films of a few hundred nm were produced. On transparent films, optical 

ellipsometry could be used for estimating the thickness more accurately. 

The density of the resulting films could be measured by direct 

weighing of the substrates before and after the deposition. The typical 

mass of a film of ~1 μm thickness deposited on a microscope slide was 2-

10 mg, and the accuracy of the scale was ~0.1 mg. 

2.2.2 Optical measurements 
The optical transmission and reflection of the films were measured with 

an Ocean Optics QE65000 diffractive spectrometer for the ultraviolet and 

visible range, and with an Ocean Optics NIRQUEST spectrometer for the 

IR range (900-1600 nm). The probe light was provided by a halogen light 

source with a deuterium lamp for enhanced signal in the UV range. The 

reflection measurements were calibrated with a specular Mg film depos-
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ited on a glass substrate and optical data for Mg [107]. The transmission 

measurements were calibrated with 100% transmission in air. All report-

ed measurements were done with the probe light hitting the sample on 

the film side of the sample. The reflected or transmitted light was collect-

ed in an integrating sphere in order to account for both diffuse scattering 

and specular reflection or transmission. 

Optical ellipsometry was also applied. A Woollam variable angle 

spectroscopic ellipsometer was used to acquire the data, and the data 

were analyzed in the J. A. Woollam WVASE32 software package. The 

ellipsometer measures the changes in polarization upon reflection on the 

sample. The data can be used to estimate thickness of one or multiple 

layers when the refractive index is known, and by careful modeling the 

refractive index can also be determined. For T-YHx, a Cauchy model was 

fitted to the ellipsometry data obtained in the wavelength range above the 

band gap (λ > 500 nm). This model could then be used to estimate the 

thickness of films by ellipsometry or by fitting of optical transmission 

data. The simple optical modeling software Optical8 was used to simulate 

the optical transmission and reflection of T-YHx samples, and it was also 

used to estimate the optical absorption, which the Cauchy model does not 

apply for. In a more thorough optical analysis of Mg-Ni-H (Paper VI), 

we used ellipsometry to adapt a general oscillator model in order to ob-

tain the dielectric functions of Mg-Ni-H films. 

In the analysis of the photochromic effect in T-YHx, a solar simula-

tor at IFE was used. This was a relevant light source to work with in rela-

tion to possible utilization of the effect in smart window technology, and 

                                                 
8 Optical is available for free download at 

http://www.raysolar.com/optical/optical.html 
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the light from the solar simulator gave a reasonably strong and fast pho-

tochromic effect on the samples. The intensity of the solar simulator was 

approximately 0.1 W/cm2, the light mainly distributed over the wave-

lengths from 400 to 1000 nm. One way of characterizing the photo-

chromic effect was to measure the optical transmission and reflection of a 

sample before and after illumination of a certain time by the solar simula-

tor. This was a fairly simple procedure, but as the relaxation is rather fast 

in the first few seconds after illumination, this method does not capture 

the most extreme state of the sample. It is also an error source that the 

sample has to be moved from the spectrometer to the solar simulator and 

back again, as small non-uniformities in thickness could give changes in 

the optical transmission and reflection due to the thin-film interference. 

Therefore, time-resolved measurements of the optical transmission under 

illumination were also performed, simultaneously measuring the electri-

cal resistivity response. These measurements were performed as demon-

strated in Figure 11. The measurements were after data collection cor-

rected for the stray light from the solar simulator. The solar simulator is a 

much stronger light source than the probe light, and the stray light strong-

ly affected the results even when care was taken to avoid the stray light. 

The results are reported in Paper IV. 
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Figure 11 – The measurement setup to do time-resolved measurements of 

optical transmission and simultaneously electrical measurements for the 

photochromic T-YHx films. 

2.2.3 Electrical measurements 
The electrical resistivity of the samples was measured by a collinear 4-

point-probe [108] with a probe spacing of 1.5875 mm, using a Keithley 

197 Autoranging Microvolt DMM multimeter. For compositional gradi-

ent Mg-Ni-H samples (Paper V) the probes were placed along the per-

pendicular direction to the gradient, so all the probes were touching the 

area with the same composition. Measurements were taken every 5 mm 

on gradient samples, corresponding to a certain difference in the compo-

sition as discussed in Paper V.  

For the photochromic T-YHx films, simultaneous measurements of 

the optical transmission and the electrical resistivity were carried out. 

These measurements were done using the setup demonstrated in Figure 

11, locating a sample for measurements of the electrical resistivity in the 

light from the solar simulator. The electrical resistivity was in this case 

measured by a two-probe configuration with two rectangular aluminum 
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pads separated by a gap of approximately 20 μm, upon which a film was 

deposited. This sample geometry was chosen because of the high resistiv-

ity of the sample (in the order of 105 Ωcm), and to allow illumination of 

the sample at the same time as it was subject to measurements.  The re-

sistance over the two pads was measured by applying a constant voltage 

of 24 V and measuring the current using a National Instruments USB 

multimeter. Although the resistivity of the material could in principle 

have been calculated from the resistance measured and the sample geom-

etry, there were too many uncertainties in the experiment for this to be 

reasonable and thus only the measured resistance over the probes is 

shown in this thesis.  

Hall measurements of Mg-Ni-H were also done, in order to esti-

mate the polarity, carrier concentration and mobility of the carriers of the 

material. A variable temperature Hall effect measurement system from 

MMR Technologies was utilized. The Hall effect results were not con-

clusive and they thus have not been presented explicitly in this thesis. 

However, a set of temperature-dependent measurements of resistivity are 

displayed in Chapter 4, as a demonstration of the data that can be ob-

tained with this method.   

2.2.4 Structural investigation 
X-ray diffraction (XRD) was done in order to determine the crystal struc-

ture of the samples and identify crystalline metal hydride and metallic 

phases. XRD was carried out using several different diffractometers. The 

first diffractometer used (in Papers I and III) was the diffractometer at 

IFE, a Bruker AXS D8 Advance instrument with a Göbel mirror mono-
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chromator and a 1D Lynxeye detector. θ – 2θ scans were performed on 

this instrument in a parallel-beam geometry. 

θ – 2θ scans are not always best suited for diffraction experiments 

on thin films. A grazing incidence diffraction experiment (GI-XRD) is 

better suited because it causes the X-ray beam to interact with a larger 

amount of the thin-film material. Thus the diffraction experiment can be 

carried out faster because of a better signal to noise ratio. Also one can 

avoid or greatly reduce the background scattering from the substrate, 

which in our case was (non-crystalline) glass. GI-XRD was performed at 

Uppsala University by using a Bruker-Siemens D5000 diffractometer 

(Paper II) and at SMN, University of Oslo, using a Bruker D8 Discover 

instrument (Paper IV and V).  

All the diffraction instruments used Cu-Kα radiation with a wave-

length of λCu-Kα = 1.5418 Å. In Paper II and III, the diffraction data has 

been analyzed by the Rietveld whole-profile refinement method [109]. 

The analysis was done using the General Structure Analysis System 

(GSAS) software9.  

In addition to XRD, electron diffraction patterns were obtained us-

ing the TEM setup described in Section 2.2.7 (data in Paper V). 

A detailed structural analysis of photochromic T-YHx comprising a 

texture analysis and a time-resolved study of the lattice under the photo-

chromic reaction was performed through a series of experiments at the 

Swiss-Norwegian Beamline (SNBL) at the European Synchrotron Radia-

tion Facility (ESRF) in Grenoble, France. The experiments were carried 

out at BM1A, using a Kuma KM6-CH multipurpose diffractometer and a 

                                                 
9 GSAS is available for free download at 

http://www.ccp14.ac.uk/solution/gsas/ 
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2D solid-state detector. Data analysis was done with the programs 

Fit2D10, Maud11 and GSAS. This work is still in progress and, apart from 

results showed in Chapter 3, a detailed report and analysis will be the 

subject of a forthcoming paper that is not included in this thesis. 

2.2.5 Methods for compositional analysis 
Several methods were pursued in order to investigate and quantify the 

chemical composition of the samples. The most important was to esti-

mate the amount of H and O in the samples, and to determine the Mg-Ni 

ratio in the Mg-Ni-H samples. 

Energy dispersive x-ray spectroscopy (EDS) 

EDS is a method for estimation of the amount of elements present in a 

sample. EDS was performed on the Mg-Ni-H samples in order to esti-

mate the Mg-Ni ratio (Paper V and VI). It was also attempted to use the 

method to estimate the O content in T-YHx samples, but the results were 

ambiguous in this case. EDS is not well suited for quantification of O and 

lighter elements. For H, there is no sensitivity at all, because the method 

depends on the excitation of inner shell electrons which H does not pos-

sess. The EDS spectra were collected in the SEM equipment described in 

Section 2.2.7, using a Noran System SIX detector and the data were ana-

lyzed in the software NSS 3.0. 

                                                 
10 Fit2D is available for free download at 

http://www.esrf.eu/computing/scientific/FIT2D/ 
11 Maud is available for free download at 

http://www.ing.unitn.it/~maud/, and an excellent tutorial on how to use 
the program for a texture analysis using radial diffraction files can be 
found at http://merkel.zoneo.net/RDX/. 
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Rutherford back-scattering (RBS) 

RBS is a method that can be used for obtaining depth-dependent infor-

mation of the composition of a sample, well-suited for the study of thin 

films [110]. The sensitivity is low for light elements, but one can achieve 

a satisfying quantification of the elements as low in weight as O. It is for 

a thin film, however, an advantage for the sensitivity that the substrate is 

made of a lighter element than the elements present in the film. Since C 

is lighter than O, carbon substrates are chosen when O is important. RBS 

was employed to estimate the Mg-Ni ratio and the O concentration of 

Mg-Ni-H samples (Paper V and VI). It was also used on YHx samples for 

estimating the O content, but low adhesion of T-YHx to the sample put 

limitations on the measurements that could be performed, as described in 

further detail in Chapter 3. 

The RBS measurements were carried out at the Tandem Accelera-

tor Laboratory at Uppsala University. The data were analyzed in the 

SIMNRA software [111]. 

Nuclear reaction analysis (NRA) 

Depth-resolved information about the H content in a thin film can be 

obtained by nuclear reaction analysis (NRA) [112]. The method is based 

on the resonant nuclear reaction between a beam of 15N ions and the H 

atoms in the film. The reaction between 15N and 1H has a resonance at a 

kinetic energy of 6.385 MeV of the incoming 15N ions, resulting in the 

emission of an α particle and a γ ray with an energy of 4.43 MeV. The 

emission rate of γ rays depends on the amount of H in the sample and the 

stopping power of the compound, and the detection of the γ rays can 

therefore yield the H concentration of the sample. The depth resolved 
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information is obtained by variation of the energy of the 15N beam. If the 

energy is higher than the resonant energy of 6.385 MeV, the energy of 

the ions will be reduced as it traverses the sample and the resonant reac-

tion will take place deeper in the film. In the NRA results displayed in 

Paper VI, the energy was varied from 6.40 MeV to 6.64 MeV in steps of 

0.02 MeV in order to obtain depth dependent information from the sur-

face and in to a depth of approximately 100 nm in the sample. If the 

measurements are compared to that of a well-known standard, the abso-

lute concentration of H can be determined. At the point of writing this 

thesis we have not been able to do such a measurement due to the lack of 

a well-known standard, and the data displayed in Paper VI are therefore 

only a qualitative comparison between an amorphous and a crystalline 

film, and a demonstration of the depth dependence of the H content. 

The NRA measurements were performed in the setup of the Mate-

rials Physics group in the Tandem Accelerator Laboratory at Uppsala 

University. 

Thermal desorption spectroscopy 

Thermal desorption spectroscopy (TDS) is a method that is well known 

in the field of metal hydride research. It is used to obtain information on 

the chemical properties of metal hydrides and to estimate the H content 

of a sample. It is based on monitoring the pressure of a container holding 

the sample during controlled heating from room temperature and up to 

the temperature where release of the H bound in the sample takes place. 

In this way one can find the desorption temperature of the hydride and 

also the amount of H that is contained in the hydride. TDS was per-

formed on Mg-Ni-H samples, the data are presented in Paper V. The 
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TDS measurements were performed in a setup available at IFE. The set-

up was optimized for samples of a few g, whereas the thin-film samples 

we investigated had a mass of 1-5 mg. We were therefore not able to es-

tablish a quantitative measure on the H content of the sample, but the 

desorption temperatures for the samples are clearly visible in the data.  

2.2.6 Neutron and X-ray reflectometry 
Neutron reflectometry (NR) and X-ray reflectometry (XRR) are methods 

capable of determining the thickness and density of films with thickness 

in the range of 5-100 nm. The setup of a typical reflectometry experiment 

is demonstrated in Figure 12. The principles and more details about the 

methods can be found in a book edited by Daillant and Gibaud [113]. 

Whereas XRR is sensitive to the electron density12, NR is sensitive to the 

coherent neutron scattering length density (n-SLD). The n-SLD depends 

on the composition and density of the film, where the elements contribute 

with a specific scattering length. The interesting point with regards to 

metal hydride films is that H is one of the few elements that has a nega-

tive scattering length. Neutron reflectometry is therefore very sensitive to 

H. The advantage of NR and the negative scattering length of H are fur-

ther discussed in Paper VII. 

                                                 
12 Sometimes XRR is presented as a method that finds the mass 

density of a sample. This is true in the rough generalization where each 
electron corresponds to two nuclear particles (protons or neutrons), and is 
e.g. not valid for H (1 electron per 1 nuclear particle) or Y (1 electron per 
2.28 nuclear particles). 
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Figure 12 - The typical geometry of a reflectometry experiment 

NR was carried out at the EROS reflectometer [114] at the La-

boratoire Leon Brillouin13, Saclay, France. The NR data was analyzed 

with the EROS data treatment package14.  

XRR was done in the Bruker D8 Discover instrument described in 

Section 2.2.4. Analysis of XRR data was done using the GENX soft-

ware15. No XRR data are explicitly presented in this thesis. 

2.2.7 Microscopy 
The films were investigated using several different microscopy methods. 

Optical microscopy was done to study the structure of delaminated and 

laser treated samples, and the photochromic effect of T-YHx was discov-

ered using the optical microscope. However, no optical microscope im-

ages are included in this thesis.  

Electron microscopy in some form was used for characterization of 

all types of samples prepared in this work. The SEM apparatus used was 

                                                 
13 LLB has a neutron source – a nuclear reactor where the neutrons 

that are generated from the uranium fission reaction – devoted to experi-
ments for materials science. IFE has a similar neutron source, but there is 
currently no reflectometer at IFE. 

14 The software can be downloaded for free at  
http://www-llb.cea.fr/menl/softs_p.php. 
15 GENX is available for free download at 

http://genx.sourceforge.net/. 
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a Hitachi S-4800, available at IFE. Paper II displays scanning electron 

microscopy (SEM) images of the surface morphology of MgHx films, 

and a cross-section of a YHx film can be seen in Chapter 3. For Mg-Ni-H 

films, the surface morphology was too flat to yield any distinguishable 

features on the SEM images, but the apparatus was important in the 

measurement of composition, using the integrated EDS instrument (see  

Section 2.2.5). 

Transmission electron microscopy (TEM) was done on a sample of 

Mg-Ni-H for assessing the nanostructure (Paper V). The TEM was done 

at UiO, using a 200 keV JEOL 2010 F microscope.  

Atomic force microscopy (AFM) was used to determine the surface 

roughness of the YHx samples that were to be investigated by NR. An 

AFM setup from Surface Imaging Systems available at IFE was utilized. 

The AFM measurements were performed in air. 
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3 Reactive sputter deposition of metal 
hydrides 

The Papers I-II, III and V of this thesis deal with reactive sputter deposi-

tion of metal hydride films and the effect of the deposition parameters, 

for respectively MgHx, YHx and Mg-Ni-H films. In this chapter, some 

more details and general observations on the deposition process and the 

properties of the resulting films are presented and discussed. 

3.1 General observations on process parameters 
and film growth 

Operating voltage 

Two main types of electric fields are used for sputter deposition; radio-

frequency (RF) and direct-current (DC). RF sputtering is suitable for 

deposition from insulating targets, because the oscillating electric field 

does not cause electric charge to build up on the surface of the target. DC 

sputtering gives higher deposition rates and is usually preferable for dep-

osition of metals. Under reactive DC sputtering of metallic targets, puls-

ing of the DC power is generally applied. This is important if the reaction 

product of the target material and the reactive gas is insulating (as for 

example 2Al + 3/2 O2 � Al2O3), as the surface of the target can become 

covered by an insulating layer that cause arcing from the charge that is 

built up on the surface of the insulating layer. A metallic target with an 

insulating surface layer formed under reactive sputtering is called a poi-

soned target. A poisoned target also yields substantially lower deposition 

rates. A way to enhance the deposition during reactive sputtering is to 
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apply a small reverse voltage to remove the surface charge under reactive 

sputtering [115]. In this work, pulsed DC was applied under reactive 

sputtering with Y. The pulsing was observed to reduce the rate of arcing 

on the target.  

Reactive gas flow 

The H2 partial pressure was found to be important in all cases. The partial 

pressure was adjusted by the H2 flow rate relative to the Ar flow rate, 

from 0% up to 67% of the total flow rate. Our system did not have an 

RGA, so we could not directly monitor the partial pressure of H2. While 

smaller amounts of H2 added to the process gas resulted in solid solution 

of H in the metal phase, 10-20% and higher H2 levels resulted in the di-

rect growth of metal hydride films for all the compounds studied (MgHx, 

YHx and Mg-Ni-H). The exception was MgyNi1-yHx with y < 0.33, which 

did not form hydride under any of the applied sets of parameters.  

Target poisoning 

The signs of target poisoning typically observed for reactive sputter dep-

osition with O2 are arcing, decrease in the deposition rate and changes in 

the cathode voltage. The cathode voltage is normally monitored from the 

control unit of a sputtering machine. The change in cathode voltage dur-

ing reactive sputtering depends on the ion induced secondary electron 

emission, and can be positive or negative for depending on the metal and 

the reactive gas [116]. Figure 13(a) demonstrates data obtained for the 

development of the cathode voltage for reactive sputter deposition of Al 

with O2 as a reactive gas, with a pronounced fall in the cathode voltage at 

a flow of 16% reactive O2. There is also a hysteresis: the poisoned state 

of the target persists to lower O2 partial pressures when the reactive gas 
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flow is reduced. This is typical for reactive sputtering of e.g. Al, Mg and 

Y in O2, while some other metals, e.g. the noble metals Au and Pt, give a 

smaller and positive change in the cathode voltage under similar condi-

tions [116]. For reactive sputtering of Y with H2 gas, there is a slight in-

crease in the cathode voltage at 13 % H2 (Figure 13(b)), and there is a 

corresponding reduction in the deposition rate at the same flow rate 

(Figure 13(c)). This change might be related to a poisoned state of the 

target, but since the change is quite small and gradual, it may be ques-

tioned if there really is a poisoned state of Y under H2 reactive sputtering. 

Deposition temperature 

The temperature during deposition is another parameter that greatly af-

fects the film growth. The deposition chamber at IFE was, however, not 

well equipped for experimenting with the deposition temperature. Heat-

ers were installed in the load lock to pre-heat the carrier and in the depo-

sition chamber to keep the temperature high during deposition, but there 

was no monitoring of the actual substrate temperature. In some instances 

(Paper I and II), we used temperature-sensitive stickers as an indicator 

for the maximum temperature achieved during processing. Additionally, 

the heating of the substrate was purely radiative, which resulted in 

lengthy pre-heating processes to achieve a stable substrate temperature. 

However, some temperature variation was done in the case of MgHx and 

Mg-Ni-H. The results were higher crystallinity and slower oxidation in 

ambient conditions for MgHx (Paper I & II) and higher resistivity and 

optical transparency for Mg-Ni-H (Paper V). 
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Figure 13 – Reactive sputter deposition and signs of poisoning of the 

target. (a) Cathode voltage on Al target, demonstrating poisoning of Al 

target when sputtering with reactive O2. There is a hysteresis in the effect 

illustrated by the extension of the poisoned state when lowering the O2 

flow rate. (b) Cathode voltage on Y target when increasing the flow of 

reactive H2. Contrary to the Al-O2 case, the cathode voltage is increased. 

Hysteresis curves were not measured. (c) Deposition rate of Y-H films in 

the center of the deposition zone, as a function of H2 flow. The line is a 

guide to the eye. 
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Surface morphology 

The surface structure of the metal hydride films was investigated by SEM 

and AFM. In Paper II, SEM images of the surface of MgHx films demon-

strate porosity and a quite dramatic morphology with features of up to 

several hundred nm. For YHx and Mg-Ni-H films, no such surface mor-

phology was found. The films were flat; no surface structures could be 

identified by SEM. AFM and NR measurements of the roughness gave 

RMS roughness in the order of 1-5 nm for YHx and Mg-Ni-H. 

Phase separation 

For MgHx films, phase separation of crystalline MgH2 and Mg was ob-

served by XRD. For YHx there was no such sign of phase separation, 

whereas for Mg-Ni-H films there were signs of phase separation in the 

eutectic regions and in the case of Mg-rich films where both crystalline 

Mg metal and MgH2 was observed. 

Oxidation and oxygen content 

The post-deposition oxidation and the O content of the films were highly 

different for the different metal hydrides. MgHx films seemed to have 

little O content in the as-deposited state16, but XRD proved formation of 

Mg(OH)2 after a certain time of exposure to ambient conditions. YHx 

films were found to have a substantial amount of O even in the as-

deposited state, and observations of changes in the optical properties 

suggest that even more O is absorbed in the films also after exposure to 

                                                 
16 The MgHx films were not investigated by RBS so the O content 

was not actually measured. In a study of similar samples, X-ray photoe-
lectron spectroscopy (XPS) revealed large amounts of O also in the as-
deposited state of MgHx films [75]. 



Chapter 3: Reactive sputter deposition of metal hydrides 

52 

air. On the other hand, Mg~2NiH~4 films contained little O in the as-

deposited state, and the films were found to be resistant against oxidation 

also when exposed to air for longer periods of time. 

3.2 Magnesium hydride 
Paper I and II deal with the deposition and characterization of MgHx 

films. The H/Ar ratio and the deposition temperature were varied in an 

attempt to produce single-phase MgH2 using reactive RF sputter deposi-

tion. However, as mentioned above, the resulting films for all the at-

tempted deposition conditions resulted having an amount of crystalline 

metallic Mg. This is in accordance with reported findings on MgHx films 

deposited by reactive sputtering [74], [75] and by the very similar pro-

cess of activated reactive evaporation [30].  

The Papers I and II give a thorough report of the optical, electrical 

and structural properties of the MgHx films. 

3.3 Magnesium nickel and magnesium nickel hydri-
de 

The Papers V and VI deal with the deposition and characterization of 

Mg-Ni-H films. Co-sputtering of Mg and Ni was used. Due to the ge-

ometry of the deposition chamber (see Figure 10), a sample with a com-

positional gradient was obtained. This was beneficial, as a film with a 

compositional range from almost pure Mg(Hx) to almost pure Ni resulted 

from every deposition, as demonstrated in Figure 14. Hydride films were 

observed to form for all compositions with more than 33% Mg (ignoring 

the H content), but single phase hydride films was only observed for 

compositions close to Mg~2NiH~4.  
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The Papers V-VI gives a good description of the structural, optical 

and electrical properties. However, some more details on the deposition 

rates and the composition of the resulting films are presented in here. 

 (a) 

 (b) 

Figure 14 - Visual appearance of the metallic and hydride gradients of 

Mg-Ni(-H) resulting from reactive co-sputtering. (a) A photograph of the 

reflection of metallic and metal hydride gradients and (b) a photograph of 

the optical transmission of Mg~2NiH~4 gradient with white light in the 

background. 

Deposition rates 

Measurement of the thickness of the deposited films and thereby the vol-

umetric deposition rate is not always the best measure of deposition. The 

volumetric deposition rate in the case of co-sputtering and reactive sput-

tering can be misleading because the volume of a compound film is not 

necessarily the same volume as the sum of the volume the constituents in 

the case of single target or non-reactive deposition. Figure 15 demon-
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strates an example of how the volumetric deposition rate increases while 

the gravimetric deposition rate decreases, when 30 % H2 is introduced in 

the Ar process gas under Mg sputter deposition. The density of the de-

posited material is important, as is also the porosity in the sample. The 

gravimetric deposition rate is a more direct measure of the amount of 

material in the sample, which is why weighing of the samples was used 

in addition to thickness measurements to estimate the deposition rates.  
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Figure 15 – (a) Volumetric and (b) gravimetric deposition rates as a func-

tion of position for Mg sputter deposition with and without reactive H2. 

The center of the deposition zone is approximately at position 0. 

Composition 

In the case of co-sputtering Mg-Ni films without reactive H2, measure-

ment of the deposition rates gave a good estimation of the composition at 

each point in the compositional gradient. The underlying assumption is 

that the deposition rates are not changed under co-sputtering with respect 

to the case of single-target deposition. This assumption is often used in 

co-sputtering of metallic Mg-Ni films [39], [117]. Measurements of the 

gravimetric deposition rates supported this, and separate measurements 
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of the local composition using EDS confirmed that the use of single-

target deposition rates for estimation of the composition of films deposit-

ed by co-sputtering gives satisfying accuracy (Figure 16). 
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Figure 16 – Estimation of the composition of Mg-Ni films as a function 

of position in the deposition zone from gravimetric deposition rates, 

compared to EDS measurements of the local composition. The figure 

demonstrates data for co-sputter deposition of Mg and Ni without reac-

tive H2. The broken lines are guides to the eye. 

For Mg-Ni-H films deposited with reactive Mg-Ni, it was found 

that the single-target deposition rates could not be used for estimation of 

the composition. That was because a collapse in the partial deposition 

rate of Mg was observed under reactive co-sputtering of Mg (see Paper 

V). The composition of Mg-Ni-H films was measured by EDS and RBS. 

The data in Figure 17 demonstrates that the two methods coincide in the 

quantification of the Mg and Ni content.  
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Figure 17 – Comparison of data from EDS and RBS for measurement of 

composition on Mg-Ni-H compositional gradient samples. The figure 

demonstrates data for co-sputter deposition of Mg and Ni with reactive 

H2. H is ignored in the calculation of the at%. The lines are guides to the 

eye. 

Oxygen content 

Reliable measurements of the O content could not be done by EDS. RBS 

did, on the other hand, give information about the O content, and also 

depth-dependent information about the O content in the samples was 

obtained. It is demonstrated in the Papers V and VI that the O content is 

relatively low, in the case of Mg~2NiH~4 it is close to or less than 1%. 

This means that little O is incorporated during the deposition process and 

that the samples do not oxidize substantially in air. The samples were 

exposed to ambient conditions for several weeks between the deposition 

and the measurement. Figure 18 shows the RBS data, also presented in 

the Papers V and VI, demonstrating the O content for eight different 

samples of Mg-Ni-H with different Mg:Ni ratio, denoted here as z in 

MgzNiHx. For all samples there is most O on the upper and lower inter-

faces of the films and relatively low O content in the bulk. The bulk O 
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content is especially low for the compositions where z is between 2 and 

3. This is exactly where we can observe the semiconducting state of Mg-

Ni-H, and this observation is thus very positive regarding the chemical 

stability of Mg~2NiH~4 and its potential application in PV technology. 

100 120 140 160 180 200

z = 2.87

z = 1.47

z = 2.31

z = 40.0
z = 15.8

z = 2.04
z = 1.71

C
ou

nt
s 

[a
rb

. u
.]

Channel

O in bulk
O on C interface O on upper surface

z = 0.27

 
Figure 18 – RBS data showing the O content in a set of samples with 

different composition MgzNiHx. 

Hydrogen content 

The H content of the samples has not been quantified. Considering the 

high resistivity and the high transparency of the Mg~2NiH~4 films, it is 

probable that they consist of a close to stoichiometric hydride. It is not 

clear from literature what H content is to be expected for fully hydrogen-

ated samples where z > 2 in MgzNiHx, but it seems reasonable that there 

are 2 H atoms per Mg atom if the compound is a combination of 

Mg2NiH4 and MgH2. Paper VI shows NRA data with a comparison of the 

H content of an as-deposited and a crystallized Mg2NiH4 film, which 

demonstrates that  the H is evenly distributed through the thickness of the 
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film and that the H content is similar for both of the samples. Unfortu-

nately there was no suitable calibration sample available at the time of 

the NRA measurement, so the data could not be used to quantify the H 

content. 

Density 

The density of a film can be calculated from the measured area, thickness 

and total mass. Table IV gives a summary of the densities found for vari-

ous Mg-Ni-H compounds in the form of thin films. 

Table IV – Measured density of Mg-Ni-H samples 

Compound Measured 

density  

[g/cm3] 

Density of 

bulk com-

pound* 

[g/cm3] 

Mg 1.79 ± 0.1 1.73 

Ni 8.37 ± 0.9 8.9 

MgHx 1.41 ± 0.04 MgH2: 1.45 

Mg2NiH4 2.82 ± 0.2 2.69 

*Calculated from known crystal structure (See Table II) 

3.4 Yttrium hydride 
Paper III reports deposition of YHx by reactive sputtering. In this paper, 

the optical, electrical and structural properties of optically transparent 

and black samples (T-YHx and B-YHx) are presented and compared with 

data for Y and Y2O3. The most interesting in this paper, apart from giving 

the first report on reactive sputter deposition of these compounds, is the 

fact that the films of T-YHx has an fcc structure whereas transparent 
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samples of YH3 normally are found in a hcp structure (see Table III). 

Paper III constitutes the background for Paper IV, where in the latter the 

photochromic effect in T-YHx is reported. Paper VII demonstrates a NR 

study on B-YHx and T-YHx films, examining especially the surface oxide 

that forms on unprotected samples.  

In this section, more details about the deposition and the properties 

of the resulting films will be given. A discussion of the O content of the 

YHx samples is also presented. 

Deposition zone 

In Paper III, we have stated “For zero or low hydrogen flow, metallic α-

phase yttrium films were obtained. For higher hydrogen flow ratios, 

black or transparent films were formed.” Due to limitations on the length 

of the paper, we had to leave out the complete explanation about under 

what conditions B-YHx and T-YHx preferentially forms. Considering that 

the B-YHx appears optically similar to the known YH2 phase and T-YHx 

appears similar to YH3, it is intuitive that B-YHx forms for intermediate 

H2 flow rates and T-YHx forms for higher H2 flow ratios. It is, however, 

not so straight-forward. The fact is that both phases formed in the same 

process, only at different positions in the deposition zone.   

Figure 19(a) displays the appearance of the deposition zone with 

areas of T-YHx (yellow) and B-YHx on the carrier (grey). The red rectan-

gle demonstrates the position of the Y target in relation to the deposition 

zone. The area where B-YHx is deposited corresponds to what is known 

as the racetrack-region on the target. The racetrack region is the rounded 

shape on which the etching of the target happens, visible on a photo of 

the target displayed in Figure 19(b). 
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The region where B-YHx is formed is reduced if the H2 flow rate is 

increased or if the total process pressure is increased. The appearance of 

the deposition zone demonstrated in Figure 19(a) is typical for a 20% H2 

in the process gas and a process pressure of 0.4 Pa. One might believe 

that this peculiar result is related to the sputtering setup used, but using 

the sputtering setup available at our collaborators at TU Delft, we ob-

tained similar results. A comparison of a sample from IFE and TU Delft 

is showed in Figure 20. 

We have not determined why the two phases form in this way, un-

der such similar conditions. As discussed in Paper III, the crystal struc-

tures of the two phases are similar, but with a slightly shorter lattice pa-

rameter for the B-YHx phase. Additionally, it seems that the T-YHx has 

higher concentration of O, and results presented in the following suggest 

that the O mainly is incorporated during the deposition of the film. 

 (a)   (b) 

Figure 19 – (a) A demonstration of the appearance of the deposition zone 

with typical distribution of T-YHx and B-YHx. (b) A photo of the Y tar-

get after reactive deposition, showing the racetrack region on the target.  
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Figure 20 – Photo of sample prepared at IFE (upper) and sample pre-

pared at TU Delft (lower) exhibiting regions of both B-YHx and T-YHx. 

The upper sample is deposited on a microscope slide (76 × 26 mm2), the 

lower on a quartz strip. The color variation visible in the T-YHx region is 

due to optical interference effects in the thin film. 

Oxygen content 

For O content estimations of film samples by RBS, the samples should 

preferably be deposited on C substrates so that the noise from the sub-

strate does not interfere with the signal from the film. Preparation of a 

sample of T-YHx on a C substrate was, however, not so straight-forward. 

The adhesion of T-YHx on the polished glassy C substrate was very poor, 

and samples delaminated from the substrate within short time after the 

deposition. There was no problem with the adhesion to the C substrates 

for any other kind of compound investigated in this work.  

The adhesion obstacle of T-YHx was solved by depositing a buffer 

layer and an overlying protection layer, both consisting of a 10 nm thick 

film of Mo. The over-layer was applied in-situ without exposing the 

sample to air, and was intended to protect the sample from oxidation. 

Figure 21 shows the layout of the sample and the data obtained by RBS. 

Two important conclusions can be drawn from this data: Firstly, the 

amount of O in the film is substantial. There is more than one O atom per 

Y atom in the structure, the O concentration was estimated to xO = 
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[O]/[Y] = 1.1. Secondly, the constant signal over the channels ~100-170, 

accounting for the signal from O, demonstrates that the O in the film is 

evenly distributed through the thickness of the film. The even distribution 

and the fact that the O was found even though a protecting metallic Mo 

layer has been applied, suggests that the O originated from the deposition 

process, and not from post-deposition oxidation of the sample in air. 
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Figure 21 – RBS spectra for T-YHx with data (black squares) and simula-

tion (red line), as well as a sketch of the sample of T-YHx used for quan-

tification of the O content. 

It might be timely to ask whether it is right to call this compound a 

hydride when it is shown to contain such high levels of O. The O content 

of stoichiometric Y2O3 would be xO = 1.5, not far from the value found 

for the T-YHx in the data demonstrated in Figure 21. However, consider-

ing the crystal structure, the optical properties and the electrical proper-

ties, which are all closer to what is normally observed for YH2 and YH3, 

it still seems correct to refer to this as a hydride. The compound known 
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as yttrium hydroxide, Y(OH)3, has a crystal structure that is completely 

different from that which is found for T-YHx, and it also has a much 

higher O content.  

Figure 22 shows RBS data for different films of unprotected yttri-

um metal, YHx and Y2O3.  Figure 22(a) displays data for a metallic Y 

film deposited without any reactive H2 added to the plasma. The O con-

tent of the film is relatively low, and the O is mainly located on the upper 

and lower interface of the film. Figure 22(b) displays data for a B-YHx 

film. There is definitely some O in the bulk of the film, and there appears 

to be a surface oxide with higher levels of O. The total O content in this 

B-YHx film is estimated to xO = 0.13, substantially lower than the O con-

tent of the T-YHx film for which data is displayed in Figure 21. As a ref-

erence, an Y2O3 film was prepared by annealing a metallic yttrium film at 

400 ºC for 1h in air, similarly as the Y2O3 reference presented in the 

XRD study in Paper III. The data for this oxide film, presented in Figure 

22(c), demonstrate an O content xO = 1.55, close to the 1.5 expected for 

stoichiometric Y2O3. In Figure 22(d), data for a T-YHx sample from the 

far eccentric deposition zone (see Figure 19(a)) is presented, from here 

on referred to as T*-YHx. The sample is collected from far away from 

the center of the deposition zone, where the deposition rate is very low. 

The O content of this sample (xO = 1.67) is even higher than expected for 

the stoichiometric Y2O3. The crystal structure of this sample exact sam-

ple was not investigated, but XRD studies on similar samples showed 

that even this type of sample exhibited the fcc T-YHx structure with a 

lattice parameter a = 5.35 Å.  
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Figure 22 – RBS spectra obtained for different samples. The origins of 

the signal for the different peaks (C, O and Y) have been indicated. Data 

is represented by black squares, whereas the result of the simulation is 

shown as a red line. Not that the counts are shown on a logarithmic scale, 

in opposition to the scale of Figure 21, to enhance the visibility of the O 

signal which is relatively low for (a) and (b). 

Paper VII presents a study of the YHx samples, with a focus on the 

surface oxide layer. It demonstrates that T-YHx and B-YHx samples that 

are unprotected against oxidation have surface oxides of 5-10 nm, and 

that below this oxide the composition is relatively uniform. This is in 

agreement with the findings of the RBS on the B-YHx sample in Figure 

22(b), which demonstrates a peak in the O signal at the upper surface. 

RBS on unprotected T-YHx samples could not be performed due to the 
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problem with adhesion of T-YHx to the C substrate. The findings of sur-

face oxide on unprotected samples indicate that the formation of such a 

surface oxide protects the sample from further oxidation. 

Figure 23 shows NR data collected for a Mo-protected film of T*-

YHx from the far eccentric deposition zone. This data was not included 

in Paper VII because it did not demonstrate any more details about the 

surface oxide layer which was the subject of the paper. The change in the 

plateau of total reflection, the pseudo-plateau, was not observed for the 

B-YHx and T-YHx samples discussed in Paper VII. The observation of 

such a pseudo-plateau gives an unambiguous proof that this type of sam-

ple has a higher SLD than the Si sample. The SLD of the film is close to 

3 × 10-6 Å-2, whereas the expected SLD for pure YH3 and Y2O3 is -0.88 × 

10-6 Å-2 and 4.42 × 10-6 Å-2, respectively. In other words, the composition 

of this T*-YHx sample seems to be closer to Y2O3, but there is still a 

considerable difference between the SLD of Y2O3 and the investigated 

sample. If the O content of this sample is xO = 1.6 (as found for as similar 

sample by RBS, see Figure 22) and the sample has no porosity, the H 

content can be estimated to xH = [H]/[Y] = 1.5. The samples should how-

ever be further investigated to firmly determine the composition. 
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Figure 23 – NR data, model and corresponding SLD profile (SLD) for T-

YHx sample from the far excentric deposition zone. 

The even distribution of O through the thickness of the films, the O 

content of Mo-protected films, and the different O content at different 

positions in the deposition zone indicate that most of the O is incorpo-

rated in the films during the deposition process. However, no reactive O2

gas is used, and the purity of the gases is too high for the process gases to 

be the source of the O. It should also be noted that the O content of Y 

films deposited without reactive H2 is relatively low. To add to the confu-

sion, Mg-Ni-H films deposited with reactive H2 contains very low levels 

of O. Under the deposition of YHx films using the sputtering machine at 

TU Delft, which was equipped with an RGA, substantial amounts of H2O 

was observed to form when introducing H2 gas in the plasma. The source 

of the H2O might be the chamber walls, as reactive H+ ions from the 

plasma might react with adsorbed O on the walls. However, there is so 

far no conclusive evidence on the origin of the O in the T-YHx films. 
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Mass density 

The mass density of both the T-YHx and B-YHx films was found by 

weighing and thickness estimation to be in the range 4.0-4.5 g/cm3. XRR 

analyses gave similar results. The mass density of the stoichiometric 

compounds in the known crystal structure (see Table III) is for YH2, YH3 

and Y2O3 respectively 4.30 g/cm3, 3.87 g/cm3 and 5.04 g/cm3. 

Structure and morphology 

In Paper III, the crystal structures of T-YHx and B-YHx samples are dis-

cussed. We found that both these compounds exhibited an fcc structure 

with space group Fm-3m. This structure is the same as that of YH2, 

where the lattice parameter is known to be 5.20 Å [49].  In our work, B-

YHx and T-YHx films were found to have a lattice parameter of 5.26 Å 

and 5.35 Å, respectively. In Paper III, the difference in the intensities of 

the diffraction peaks have been attributed to film texture with preferred 

orientation of the ( 1 1 1 ) plane parallel to the substrate plane for B-YHx 

and correspondingly preferred orientation of the ( 1 0 0 ) plane for T-

YHx. This type of orientation was later confirmed in a yet unpublished 

texture study of the two types of films. Figure 24 demonstrates a recon-

structed pole plot showing the highly preferential growth of T-YHx sam-

ples, which explains the high intensity obtained for the ( 2 0 0 ) reflection 

in the θ - 2θ geometry applied in the XRD study of Paper III. 



Chapter 3: Reactive sputter deposition of metal hydrides 

68 

 
Figure 24 – Reconstructed pole plot for the ( 2 0 0 ) reflection for a T-

YHx sample. The unit [mrd] stands for multiples of random distribution. 

The microstructure of the YHx films has not been reported in any of 

the papers. Figure 25(a) shows an AFM image of the surface of a 540 nm 

thick B-YHx film deposited on glass. The surface shows features with as 

size in the order of 50-200 nm, which corresponds well to the crystallite 

size obtained from the width of the reflection peaks in XRD.  Figure 

25(b) demonstrates a SEM image of a cross-section of a ~1000 nm thick 

T-YHx sample. The cross-section was exposed by breakage of the film 

and the crystalline Si substrate, and the cross-section interface demon-

strates a quite rough breakage. Columnar structures in the film can clear-

ly be seen, as well as an increase in size of the crystalline grains towards 

the upper surface of the film. On the top surface one can also discern a 

similar surface structure as the one demonstrated in the AFM image of 

Figure 25(a). 
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 (a)  (b) 

Figure 25 – Microstructure of the reactively deposited YHx samples. (a) 

Surface morphology studied by AFM. The surface RMS roughness for 

this image is 4.9 nm. (b) Cross-section of sample on a crystalline Si wa-

fer studied by SEM. 
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4 Magnesium nickel hydride films for 
PV applications 

Films of semiconducting Mg~2NiH~4 were obtained using reactive sputter 

deposition. As discussed in Paper V and VI, as well as in Chapter 3, the 

films showed high purity as compared to the experiments with MgHx and 

YHx, with no observable presence of metallic particles and low O con-

tent.  The results are promising with regards to using Mg~2NiH~4 as a 

material for semiconductor devices as e.g. PV solar cells.  

Paper V and VI deal with the deposition and characterization of 

Mg-Ni-H films. Reactive sputtering had, before the publication of Paper 

V, not been reported earlier in literature as a synthesis method for 

Mg~2NiH~4. Westerwaal and his coworkers had published a paper on a 

similar synthesis method; activated reactive evaporation [41]. The most 

common synthesis method for Mg~2NiH~4 films is hydrogenation of Pd-

capped Mg~2Ni films [31]. We chose to develop reactive sputtering as a 

synthesis method because it is a more industrially relevant method, being 

a single step synthesis method and because there is no need for use of the 

rare metal Pd. It also greatly simplifies measurements to avoid the Pd 

capping, because the metallic Pd layer would complicate electrical and 

optical measurements. In the end it is also an advantage to avoid the Pd 

cap layer with regards to stability, as the Pd catalyst makes H desorption 

from Mg2NiH4 films happen in vacuum or at ambient conditions [41]. 

4.1 Structural properties  
The reactively deposited films of Mg~2NiH~4 were found to be amor-

phous when investigated with XRD, while the other compositions of Mg-
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Ni-H formed crystalline material. This is in accordance with what had 

been found for activated reactive evaporation [41] and hydrogenation of 

Pd-capped metallic films [118]. However, in this work we also found that 

by a post-deposition heat treatment, the films could be crystallized in the 

high-temperature structure. Crystalline films in this structure had been 

prepared earlier, but then by doing the actual synthesis of the films by 

hydrogenation of metallic films at high temperatures [39].  Figure 26

shows the visual appearance of a MgyNi1-yHx compositional gradient 

sample before and after crystallization. Paper VI demonstrates typical 

XRD patterns for different compositions of the film in the amorphous 

and crystalline form. 

(a)  (b) 

Figure 26 – Appearance at room temperature of a compositional gradient 

film (a) before and (b) after crystallization treatment (30 min at 523 K, in 

air). The sample is more Ni-rich on the right side, with composition 

Mg~2NiH~4 in the region which is red-transparent in (a) and orange-

transparent in (b). 

4.2 Optical properties 
Optically, the as-deposited films of Mg~2NiH~4 were found to have high 

transmission above the band gap, suggesting low presence of metallic 

particles in the films. The geometry of a single film on a substrate is 
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more accessible for optical investigation than films covered by Pd-

capping because the measurements are not hampered by the high reflec-

tion and low transmission of the Pd metal. Therefore, we found it worth-

while to perform a more in-depth optical analysis, using optical ellipsom-

etry as a method to determine the dielectric functions of the samples. The 

results are reported in Paper VI. The dielectric functions were obtained 

from a general oscillator fit to the ellipsometry data. The dielectric func-

tions were used to find the optical band gap of the films. The band gap of 

Mg-Ni-H depends on the Mg:Ni ratio of the sample, and increases with 

the Mg content. For Mg2NiH4 in the amorphous and crystalline form we 

found band gaps of 1.6 eV and 2.1 eV, respectively.  

4.3 Electrical properties 
In Paper V, we reported a resistivity of up to 10 Ωcm for Mg~2NiH~4 

samples deposited at room temperature, and 400 Ωcm for samples depos-

ited at ~100 ºC. Resistivity in the order of of 105 Ωcm was later measured 

for Mg~2NiH~4 samples prepared at room temperature by reactive sputter-

ing using the sputtering equipment at TU Delft. The resistivity found in 

this work is thus much higher than earlier reported for Mg2NiH4 films. 

Enache et al. reported a maximum value of 12.5 mΩcm for Pd-capped 

Mg2NiH4 samples, whereas Westerwaal et al. found a resistivity of up to 

0.34 Ωcm for samples deposited by activated reactive evaporation. The 

deviations reflect that the resistivity of a semiconductor is highly de-

pendent on subtle variations in the material. Vacancies, interstitials, de-

fects and impurities may act as donors or traps and one can therefore not 

expect reproducibility for the resistivity values when working with dif-

ferent deposition methods. One can also discuss the effect that the Pd cap 
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layer in the work of Enache et al. had on the measurements of electrical 

properties (see Paper V). We also observed that the resistivity and the 

band gap were changed when the samples were annealed at temperatures 

of 100-200 ºC ex-situ after the deposition. The crystalline films in the fcc 

HT structure had high resistivity, outside of the measurement range of 

the four point probe setup used for resistivity measurements.  

Temperature-dependent measurements of electrical prop-

erties 

In addition to the resistivity measurements reported in Paper V, tempera-

ture-dependent Hall and resistivity measurements were done. Measure-

ments were first done on a sample deposited at IFE, and later on samples 

deposited at TU Delft. Even though the composition, appearance, optical 

properties and stability of the IFE and TU Delft samples were similar, the 

results of the electrical measurements were different. The room tempera-

ture resistivity of the samples from Delft was in the range 103-105 Ωcm. 

The temperature dependence of the resistivity of one of the samples 

from TU Delft can be seen in Figure 27. This temperature dependence 

was typical for all the samples from Delft, showing a logarithmic in-

crease in resistivity as the temperature decreases. The IFE sample inves-

tigated had a different temperature-dependence of the resistivity, with a 

slight and almost linear increase in the resistivity as a function of increas-

ing temperature in the range 100-400K. At 400-450 K, both types of 

samples showed an irreversible reduction in the resistivity, probably re-

lated to the onset of dehydrogenation of the sample in the vacuum of the 

measurement chamber. Hall measurements on the samples were not con-

clusive. On the sample from IFE, the Hall coefficient appeared to be neg-
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ative, with a value of about -0.03 cm2/C at 300K. A negative Hall coeffi-

cient had been reported by Enache et al., who through Hall effect meas-

urements on Pd-capped Mg2NiH4 found that H vacancies act as n-type 

doping in Mg2NiH4 [84]. However, Hall analysis of amorphous materials 

is known to be very difficult [119]. Taking this into consideration, there 

is therefore not enough evidence to conclude about the conduction mech-

anisms and the polarity of amorphous Mg2NiH4 films. 
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Figure 27 – Temperature dependence of resistivity for a thin film of 

Mg2.17NiHx prepared by reactive sputtering at TU Delft. 

4.4 Chemical stability under ambient conditions 
The films of Mg-Ni-H were found to be stable under ambient conditions. 

Chapter 3 (Figure 18) and the Papers V and VI demonstrate RBS meas-

urements on films that had been stored unprotected at ambient condi-

tions. The measurements showed that not much more than 1% O was 

present in the bulk of the film in the case of Mg~2NiH~4. The films were 

also surprisingly resistant towards heat treatment, as demonstrated by the 

possibility to crystallize the films in air under heating of up to 250 ºC, 

apparently with little loss of H. If further heated, dehydrogenation was 
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triggered around 300 ºC in air. In vacuum, Mg~2NiH~4 films were found 

to dehydrogenate at 200-240 ºC. However, even though the films do not 

completely oxidize or decompose at temperatures below 200 ºC, perma-

nent changes in the optical and electrical properties were observed even 

for treatment at lower temperatures of only 50 ºC. This has to be taken 

into consideration if the material is to be used as a semiconductor in 

technological applications. 

4.5 The prospects of Mg~2NiH~4 for PV applications 
Thin-film solar cells based on Mg-Ni-H would constitute an alternative 

technology to the thin-film solar cells of today’s market, free of scarce 

elements as In and Te. It has unfortunately not been possible in this work 

to demonstrate a working PV device based on Mg2NiH4. However, the 

experiments that have been carried out within the project have not re-

vealed any concrete barriers with regards to this application of the mate-

rial. 

On one hand, our experiments have showed that it is relatively 

simple to obtain Mg-Ni-H films with a band gap that is interesting for 

utilization in a single band gap solar cell. The band gap we have found 

(1.6 eV for Mg2NiH4) is close to the optimal value for a single-band-gap 

solar cell (see Figure 4). The optical and electrical properties discussed in 

Paper V and VI are also promising, due to strong optical absorption and 

reasonable electrical resistivity. It is possible to deposit Mg2NiH4 using 

reactive sputtering, a method which is suitable for industrial large area 

processing. The resulting films are found to be stable against oxidation at 

ambient conditions, and no phase segregation was observed for 

Mg~2NiH~4 by XRD. Phase segregation is a well-known problem in other 

alternative semiconductor materials for solar cells, as e. g. in CZTS [120] 
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and CuO [121]. All these factors are promising with regards to the appli-

cation of Mg~2NiH~4 for solar cells. 

On the other hand, we do still not have control over the electrical 

properties. We do not know the polarity and doping of the as-deposited 

material, or how to modify the electrical properties by impurities. The 

fact that the compound is amorphous in the as-deposited form might be a 

draw-back, but not necessarily. The crystalline form that can be obtained 

by annealing the samples has a too high band gap to be interesting as an 

absorber material for PV applications.  

With the current information, we can therefore not make any esti-

mations about the feasibility and possible ultimate performance of a 

Mg~2NiH~4-based PV device. This would depend on material characteris-

tics that have not yet been examined, and the type of device to be made. 

There are many options for making a PV device, including for example 

homo-junction and hetero-junction devices, as demonstrated in Figure 3 

(page 7) for two existing PV technologies.  

In sum, there still remains substantial work in order to understand 

and control the electrical properties and design a working PV device 

based on Mg~2NiH~4.  
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5 Photochromism in yttrium hydride 
Our discovery of photochromic effect in T-YHx films introduced some-

thing new in metal hydride science. It has also given a new contribution 

to the limited number of known inorganic photochromic materials.  

Photochromism – the change of color upon illumination of a mate-

rial – was actually reported for YHx in 2007, in a high-pressure experi-

ment performed by Ohmura and his coworkers at the Japanese Synchro-

tron Radiation Center [99]. Another relevant finding was that of the 

group of Rosenbaum at the University of Chicago, who found persistent 

photoconductivity in YHx at temperatures of up to 10 K [100]. The work 

of these two groups put our findings in a context and provide a back-

ground for the discussion of the phenomenon (see Section 1.6.2 for more 

details). The discovery of photochromism of thin T-YHx films at ambient 

conditions and with moderate light intensity has brought the phenomenon 

closer to technological relevance and eases the study of the effect, avoid-

ing high pressure and cryogenic temperatures. 

5.1 Optical properties of the transparent state 
The optical properties of the non-illuminated, transparent state of T-YHx 

were investigated by optical ellipsometry. The real part n of the complex 

refractive index, ñ = n + ik, was found by fitting the obtained optical con-

stants to a Cauchy model for the dielectric function. The complex part k 

was later estimated by fitting optical transmission and reflection data 

using the n obtained from ellipsometry. The refractive index obtained for 

T-YHx is displayed in Figure 28. The Cauchy model is weaker than the 

general oscillator model fit done for Mg~2NiH~4 in Paper VI, and espe-

cially the refraction index for wavelengths below the band gap at ~477 
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nm (2.6 eV) should be considered slightly speculative. However, the re-

fractive index obtained by this method gives a reasonable fit for the opti-

cal transmission and reflection for T-YHx films, as demonstrated for two 

different samples in Figure 28. 
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Figure 28 – Optical properties of the transparent state of T-YHx. (a) The 

refractive index. (b) and (c) show the fit of the optical reflection and 

transmission of two T-YHx samples with thickness of respectively 534 

nm and 142 nm, using the refractive index in (a). 

5.2 Properties of the photochromic reaction 
The photochromic reaction in T-YHx is described in Paper IV. When a 

thin film of T-YHx is illuminated by visible or UV light, it becomes dark-
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er, the optical transmission is reduced by up to ~50% after one hour in 

solar illumination. The reaction is reversible, so the sample will return to 

its initial transparency if it is left in the dark. The time it takes for com-

plete relaxation depends on the strength and time of the illumination, the 

temperature of the sample and the sample itself. 

The photochromic darkening is accompanied by a decrease in resis-

tivity, as visible in Figure 29. Figure 29 displays the optical transmission 

and the changes in electrical resistivity for a film illuminated by light 

from a solar simulator light source. Each illumination cycle of 30 s re-

duces the optical transmission by approximately 10%. The electrical re-

sistivity is reduced by approximately one order of magnitude by the first 

illumination, and then by ~75% for each of the following cycles. The 

relaxation that happens in the dark part of the cycle is substantial, but not 

complete. Especially for the electrical resistivity one can see that it takes 

longer time to relax back than it takes to reduce the resistivity under il-

lumination. 

The strength and kinetics of the photochromic reaction depends on 

the light that illuminates the sample. It also depends on the external con-

ditions, as also observed by the earlier reports at high pressure [99] and 

low temperature [100]. In our experiments, we observed that especially 

the temperature was central; the relaxation speed was greatly increased 

by heating to moderate temperatures of 40-50 ºC. For other inorganic 

photochromic materials, the chemical ambient is also of great importance 

for the photochromic reaction. Gavrilyuk et al. have e.g. reported on the 

effect of air humidity on the photochromic response of MoO3 films 

[122]. The effect of chemical environment has not been thoroughly stud-

ied for T-YHx films in this work. 
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Figure 29 – Optical transmission and changes in electrical resistivity for a 

thin film of 500 thick sample of T-YHx exposed to light from the solar 

simulator. 

In addition to the external factors, the nature of the sample itself 

plays a large role for the kinetics and strength of the photochromic reac-

tion. The film thickness and O content are important parameters. The 

time after deposition and the illumination history of the sample also af-

fects the photochromic reaction. A conclusive study of how these differ-

ent factors affect the photochromic reaction has not yet been performed. 

The role of oxygen and the fcc crystal structure 

As discussed in Paper III, the crystal structure of the T-YHx films dif-

fered from the hcp structure which is normally expected for transparent 

YH3. We believe that the O that is incorporated during deposition in the 

reactive sputtering process (see Chapter 3) is important for the photo-

chromic reaction. Whether the role of the O is primary, as an active spe-

cies in the electronic change of the material, or only secondary, as a sta-

bilizer of the fcc lattice, is not known. Anyway, it is a fact that photo-
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chromic reaction at ambient conditions never has been observed in films 

of low-O YH3 in the hcp structure. 

Figure 30 shows the transmission spectra before and after illumina-

tion for 30 minutes by a strong light probe, for a film deposited at IFE 

and films prepared by hydrogenation of Pd-capped Y and by reactive 

sputtering at TU Delft. It shows that while photochromism was observed 

for both of the reactively deposited samples, the hydrogenated sample did 

not show any significant change in the transmission. There is also a large 

difference in the reaction strength between the reactively deposited sam-

ples from IFE and TU Delft, which might have to do with the large dif-

ference in thickness and a potential difference in the O content. While the 

reactively deposited samples exhibited an fcc lattice, the hydrogenated is  
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Figure 30 – Optical transmission spectra before and after 30 minutes of 

illumination. The illumination used here is the same as the light probe 

used for transmission measurements. (a) For a ~600 nm thick sample 

prepared at IFE. (b) For samples prepared at TU Delft; a ~230 nm thick 

reactively deposited sample and a ~200 nm thick hydrogenated Y sample 

with ~10 nm Pd capping.  



Chapter 5: Photochromism in yttrium hydride 

84 

assumed to exhibit the hcp structure as the synthesis method is well 

known and so far only hcp-YH3 has been reported to form by using this 

method17. 

The physical mechanisms 

The possible physical mechanisms of the photochromic reaction have 

been discussed in section 3.3 of Paper IV. At present, the mechanism is 

still unknown. It is obvious to compare with the gasochromic transition 

of YHx films between transparent and opaque [26], but it seems improba-

ble that there should be a reversible exchange of H with the ambient at 

normal conditions, especially with an oxide layer protecting the film 

from the external environment (as demonstrated in Paper VII). Another 

parallel that could be discussed is the photochromism of other com-

pounds in thin films, as the transition metal oxides WO3 and MoO3. The 

mechanisms in these compounds have been studied thoroughly, and are 

reasonably well understood [21], [123]. However, the reaction character-

istics of T-YHx differs from that of the transition metal oxides in many 

aspects, so there is little reason to believe that the same mechanisms are 

active in T-YHx. 

In a recent and yet unpublished study, we performed time-resolved 

synchrotron diffraction under illumination of T-YHx films at the SNBL at 

ESRF in Grenoble. We found a contraction of the lattice, as a response to 

both the X-ray beam itself and the illumination applied. Figure 31 

demonstrates the volume change in as a result of the lattice contraction 

observed for a sample of T-YHx exposed to illumination and the X-ray 

                                                 
17 There is one exception: Hydrogenated films of Pd-capped Y-Mg 

have been found to exhibit the fcc structure [50]. 
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beam for 3 hours. A lattice contraction was also reported by Ohmura et 

al. in the finding of photochromism of YHx at high pressure [99].  
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Figure 31 – Lattice contraction of T-YHx under illumination, studied by 

time-resolved XRD at the SNBL in Grenoble. 

5.3 Smart windows based on photochromic T-YHx 
In the context of solar energy, it is relevant to consider the application of 

films of T-YHx in energy-saving smart windows. Films of T-YHx has a 

photochromic response to sunlight that reduces the optical transmission, 

and could therefore be suitable in a window technology for reducing the 

need for cooling in areas where sunlight gives excessive heating of build-

ings during daytime (see Section 1.3). The fact that the reduction in 

transmission is relatively uniform over the visible and near infrared light 

spectrum is favorable for such applications. It is also reversible and the 

window would return to the maximum transparency during night or low 

light conditions. Deposition of films of T-YHx on large area as in a win-

dow is no problem; deposition on large area glass has been demonstrated 

in this work, as displayed in Figure 32.  
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There are, however, some important drawbacks of the application 

of T-YHx for photochromic windows. One is that the band gap of T-YHx 

is within the visible spectrum (~2.6 eV, or ~480 nm, corresponding to 

blue light), giving the films have a yellow appearance. That could reduce 

the comfort for users of the building and might limit the application of 

such windows to areas where such a tint would be desirable as a part of 

the architecture. This problem could be solved by applying very thin 

films that absorb less light and are therefore more color neutral. Another 

solution could be to produce an alloy with Mg, as the introduction of Mg 

in YH3 has been observed to increase the band gap of the hydride [50]. 

Increasing the O content is another way to increase the band gap of rare-

earth hydride, as has been reported for O-containing GdHx films [124].  

 

 
Figure 32 – The author with a sample of a photochromic film of T-YHx 

on large area substrate for demonstration of smart photochromic window 

based on T-YHx. The dark quadratic field in the center of the sample is a 

result of 1 h illumination of the corresponding area with the solar simula-

tor. Photo: Arnfinn Christensen/Forskning.no [125]. 
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Another drawback is the speed of the reaction. The darkening of a 

typical film is not saturated even after several hours of illumination, and 

the relaxation reaction back to the transparent state could take many 

hours. Relaxation times of even up to several days were observed for 

some samples after a day of natural sunlight illumination. 

The effect on the energy balance of a building due to a photo-

chromic window with the properties of T-YHx has not been analyzed in 

this work. It would be interesting to do an analysis of how such a window 

would work under typical conditions in a climate where cooling of build-

ings is a necessity. Together with an assessment of the extra cost that the 

introduction of a T-YHx film would give on the fabrication of windows, 

such an analysis could provide an indication of whether a commercializa-

tion of the technology would be feasible. 
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6 Conclusions 
While research on metal hydrides recently has focused mainly on hydro-

gen storage, battery technology and smart windows, this work demon-

strates that other applications of metal hydrides are viable. Many interest-

ing effects and possible applications of these compounds are yet to be 

revealed. This thesis signals some directions that might be pursued in 

future research on metal hydrides, with emphasis on applications of thin 

films in solar energy technology. 

Thin-film metal hydride synthesis by reactive sputtering 

Reactive sputtering has so far been a relatively unexplored way of syn-

thesizing metal hydrides. This thesis provides a reference point for future 

work with similar materials. For the different materials synthesized, the 

following are the most important findings: 

- MgH2 films were deposited by RF reactive sputter deposition, but 

the formation of some amount of metallic Mg particles could not be 

avoided. 

- Mg-Ni-H films were deposited by reactive co-sputtering of Mg and 

Ni targets, the resulting films having relatively high purity in the 

case of Mg~2NiH~4. The high purity was demonstrated by high op-

tical transmission for energies below the band gap and the relative-

ly high resistivity. Low content of O was also confirmed by meas-

urements. Films with higher Ni content than MgNi2Hx did not react 

with H, and films with more Mg than Mg3NiHx formed a mixture 

of metal hydride and metallic Mg particles. It was observed that the 

deposition rate of Mg was severely changed by both the introduc-

tion of H2 in the chamber during deposition and the co-deposition 
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of Ni using H2-containing gas. On the other hand, the Ni deposition 

rate was relatively unaffected by both reactive H2 and co-

deposition. 

- YHx films can be synthesized in two very different electronic 

states, one conducting and optically black state (B-YHx) and one 

insulating and optically transparent state (T-YHx). The two states 

resemble earlier reported results for YH2 and YH3, respectively, but 

it was found that the samples hold a substantial amount of O. The 

O content was especially high, up to ~1 O atom per Y, for the T-

YHx samples, which also had a different crystal structure than what 

is known for YH3. There was no sign of phase segregation in the 

XRD patterns for any of the YHx films deposited. 

Semiconducting films of magnesium nickel hydride for PV 

applications 

The results obtained here demonstrate that metal hydride films with ma-

terial properties that are promising for PV applications can be synthe-

sized. Using reactive sputter deposition, we have been able to obtain 

amorphous Mg~2NiH~4 films with a band gap that is suitable for solar 

cells. Optical measurements by ellipsometry and spectrophotometry 

showed band gaps in the range 1.5 – 1.8 eV depending on the Mg:Ni 

ratio in the samples. The electrical properties can be manipulated not 

only by the Mg:Ni ratio but also by temperature treatment and by chang-

ing the temperature or the H2:Ar ratio during the deposition process. 

However, at the time of writing this thesis, no proof of a working metal 

hydride-based solar cell has yet been demonstrated. 
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The photochromic effect in T-YHx 

Films of T-YHx showed a strong photochromic effect accompanied by 

persistent changes in the conductivity of the material. The material re-

sponds to visible and UV light, but the reaction is strongest for light with 

photon energy above the band gap (~2.6 eV). The photochromic response 

gives a uniform reduction in the optical transmission over visible and IR 

wavelengths. The photochromic reaction is reversible; the material relax-

es back to its initial transparent state when left in dark. This is the first 

report of such an effect in metal hydride films at ambient conditions, 

even though similar phenomena have been observed earlier at low tem-

peratures and high pressures. Evidence suggests that the fcc crystal struc-

ture and/or the O content is essential for the photochromic effect. The 

physical mechanism of the optical and electrical response has not been 

resolved, but the properties and the nature of the reaction make it relevant 

for applications in technology related to e. g. smart windows to regulate 

solar heating and daylight illumination in buildings.  
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7 Future work 
This thesis has demonstrated two new directions in experimental metal 

hydride science, focusing on thin-film semiconducting metal hydrides. 

The results are promising, but the knowledge of the materials is still too 

scarce to assess the feasibility and performance of metal hydrides in sem-

iconductor devices as solar cells, or in windows or other products incor-

porating photochromic metal hydrides.  

The experience from synthesis and characterization of semicon-

ducting Mg~2NiH~4 should be built upon with more detailed studies of the 

electrical properties of such films. It is central to understand the conduc-

tion mechanisms and be able to control them e.g. by impurity doping. 

When a certain level of control and understanding of the material is 

achieved, semiconductor devices can be suggested and tested experimen-

tally.  

The photochromic effect in T-YHx should be further pursued in or-

der to understand the physical origin of the photochromic reaction. A 

good physical understanding might enable us to tune the kinetics and 

strength of the photochromism and thereby tailor the material for differ-

ent technological applications. With respect to the application of T-YHx 

in photochromic windows, an energy balance study should be carried out 

to investigate the performance of such technology with respect to rele-

vant alternatives. The feasibility of T-YHx photochromic windows 

should also be analyzed, in the light of the cost of the production meth-

ods and the cost and availability of the raw materials. 

There are also important questions remaining with regards to the 

reactive sputter deposition process. The most puzzling is the O in the T-
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YHx films and which is the source of this O in the reactive sputtering 

process. Further, the room for variation of gases, pressure and deposition 

temperature open many opportunities with regards to thin-film metal hy-

dride deposition, of which only a small number of combinations has been 

investigated in this work. Results have shown that the electrical proper-

ties of Mg-Ni-H films are highly dependent on the process, but the rela-

tion of the electrical properties with the H and O content and the micro-

structure of the films has not yet been investigated.  

Finally, I would like encourage future studies of reactive sputter 

deposition of metal hydrides, by investigating the reactive deposition of 

other hydrides. The material class of the metal hydrides is vast, and most 

metal hydrides been little investigated in their thin-film form. These ma-

terials might demonstrate properties that are highly relevant for applica-

tion in technologies for PV applications, smart windows or applications 

that are yet unthought-of.  
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Paper I 
Reactive sputtering of magnesium hydride thin films for photovoltaic 

applications 

Popular summary 

How can MgH2 be utilized in solar cells? MgH2 is an insulator which 

would be transparent in its pure form, like e.g. glass or ice. Because it is 

an insulator, it cannot constitute the main part of a solar cell, but can be 

used as a transparent layer in a solar cell device. However, the existence 

of metallic particles in the deposited films makes the films appear only 

partly transparent. In this paper, usage of MgH2 as a surface passivation 

film for silicon solar cells is explored. The hydrogen in the films could 

possibly be beneficial for the silicon material, resulting in higher effi-

ciency of silicon solar cells. Our experiments did however not show any 

proof of such positive effects on the silicon material. 

Context 

This was the first paper of our group concerning an experimental study 

on metal hydride films. We chose to start with MgH2 because it is a sim-

ple, well-known and reasonably stable compound. In this phase of the 

work we were concentrating on the deposition process and it was not at 

all certain that we would be able to make magnesium hydride films by 

using reactive sputtering. We were therefore pleased to observe that 

MgH2 indeed did form.  
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ABSTRACT 
 

Deposition of MgHx (MgH2 + Mg) thin films is performed using RF reactive sputtering 
in argon-hydrogen plasma. Films are characterized using x-ray diffraction (XRD), scanning 
electron microscopy, optical and resistivity measurements. Formation of crystalline MgH2 is 
confirmed by XRD, but the formation of some metallic Mg in the films could not be avoided. 
Increased H/Mg ratio by deposition at high hydrogen flow or high total pressure gives films that 
oxidize within days or weeks. Deposition at elevated substrate temperature results in improved 
crystallinity and stability. Initial studies of MgHx for silicon surface passivation are presented.  
 
INTRODUCTION
 

Metal hydride materials have been thoroughly studied for hydrogen storage, battery and 
switchable windows applications. In these cases low stability is an important requirement, as it 
enables hydrogenation/ dehydrogenation at reasonable temperatures and pressures. Due to the 
insulating or semiconducting nature of many metal hydrides, they were recently proposed for 
application in photovoltaic devices [1]. The high hydrogen content in these materials could 
possibly be beneficial for passivation in silicon-based devices and also used as antireflective 
coating. Another possibility, based on the suitable and large span of band gap energies for the 
metal hydride material group, could be hydride-based multijunction devices. Both applications 
would require stable materials as well as favorable electrical and optical properties.  

MgH2 is an insulator with a band gap of 5.6 eV [2] that has been studied for hydrogen 
storage purposes due to the light weight, high hydrogen content and large availability of Mg. 
However, the hydrogenation and dehydrogenation processes are slow, in particular for large 
particle sizes [3]. Thin films of MgH2 have been prepared by hydrogenation of Pd capped Mg 
films, and by activated reactive evaporation. In the case of hydrogenation of metallic Mg with a 
thin palladium cap, completely transparent films with surprisingly low resistivity are obtained 
[4]. In-situ deposition of MgH2 was reported using activated reactive evaporation of magnesium 
with an atomic hydrogen source [5]. In that case, insulating, amorphous films with a 
brown/transparent appearance were obtained. By modeling the optical properties using effective 
medium theory it was concluded that the films consisted of metallic magnesium particles in 
magnesium hydride. About 10 vol.% of metallic Mg could not be prevented for in-situ grown 
films. In this work we present initial experimental studies of in-situ deposition of metal hydride 
thin films using RF sputtering of magnesium in a hydrogen containing plasma. Since the aim is 
to investigate the possibility for using MgH2 or other metal hydrides in photovoltaic applications, 
special attention is given to stability and passivation issues. 
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EXPERIMENTAL 
 
 Depositions are performed in a Leybold Optics A550V7 inline sputtering system using a 
metallic Mg target (99.95%). Both stationary and oscillating substrate carrier is used. The 
maximum power of the RF generator is 1000 W. Parameters such as RF power, working 
pressure, Ar/H2 flow ratio and substrate temperature are varied. Films are deposited on glass 
substrates (microscope slides) and monocrystalline silicon wafers. Characterization includes x-
ray diffraction (XRD) using a Bruker-Siemens D5000 diffractometer in Bragg-Brentano 
geometry, scanning electron microscopy (SEM), transmittance and reflectance measurements, 
resistivity using four-point-probe and thickness using an alpha-step profilometer.  
 For studies of silicon surface passivation, monocrystalline, double side polished silicon 
wafers (1-3 �cm, p-type cz-Si, Siltronix, 300 �m, (100) oriented) were etched in a Piranha etch 
for 8 minutes followed by a 2 minute dip in HF and subsequently loaded into a PECVD chamber 
for single side deposition of about 40 nm a-Si at 230 �C. After unloading, samples were dipped 
in HF again before loading into the sputter chamber for deposition of MgHx on the opposite side. 
One sample was passivated with PECVD a-Si on both sides as a reference. The effective 
minority carrier lifetime was measured using a Semilab microwave photoconductance decay 
(�W-PCD) setup. 
 
RESULTS AND DISCUSSION
  
Depositions on glass
 

The influence of different process parameters on the properties of MgHx films was 
investigated. In the first experimental series, the power was fixed at 600 W and the working 
pressure at 3.8 x 10-3 mbar, while the flow rates of Ar and H2 were varied according to table 1. 
For increasing hydrogen content in the plasma the film resistivity increases and the optical 
properties change from metallic to dark. This optically black state of MgHx is well known in 
literature [4]. Thinner films appear brown and partly transparent while thicker films deposited 
under the same conditions appear black. X-ray diffractograms of films deposited with different 
Ar:H2 flow are shown in figure 1. Peaks corresponding to tetragonal MgH2 can be observed in 
sample B and D, together with peaks from metallic Mg. For increasing H2/Ar flow, the intensity 
of the Mg peaks decrease and that of the MgH2 peaks increase. The large background is due to 
the amorphous glass substrate. Thinner films with Ar:H2 flow of 160:40 (sample C) appear 
amorphous in �-2� scans.  

 
 Table 1: Influence of varying Ar/H2 gas flow ratio for constant power (600W) and 
working pressure (3.8x10-3 mbar).  

Sample Gas flow Ar 
(sccm) 

Gas flow H2 
(sccm) 

Thickness 
(nm) 

Appearance Resistivity 
(�cm) 

A 200 0 210 Metallic 7.4x10-6 
B 180 20 285 Dark 9.5x10-4 
C 160 40 140 Transparent/brown Too high 
D 160 40 680 Black Too high 
E 140 60 130 Transparent/brown Too high 
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Figure 1: Sample D (red, above) and B (black, below) from table 1. Peaks related to MgH2 and 
Mg are observed in both samples. The large background is due to the amorphous glass substrate. 
 
 In another experimental series, the power was varied while keeping the Ar: H2 flow at 
160 : 40 sccm and the total pressure at 3.8e-3 mbar. This gave transparent/brown films in all 
cases but with lower resistivity (7.0 x 10-3 �cm) for a 100 nm thick film deposited at low power 
(300 W). For higher power (600 and 900 W) and for 300 nm thick films deposited at 300 W, the 
resistivity was too high to be measured by our four point probe set-up. Decreased power results 
in decreased Mg sputtering rate and could be expected to increase the probability for formation 
of the insulating hydride phase. The decreased resistivity could be due to a different 
microstructure where metallic Mg particles are connected in a conductive network rather than 
isolated within the hydride [5]. The high resistivity for the thick, low power film indicates that 
increased deposition time and/or thickness could cause increased hydrogenation of the deposited 
film. 
 A number of depositions were performed where the pressure was increased to 10-2 mbar. 
In all these cases, the as-deposited films were in the optically black state but shifted to 
completely transparent after exposure to air, as discussed below.  
 In the last experimental series the substrate temperature was increased (200, 250 and 300 
�C) while keeping all other process parameters constant (power 600 W, pressure 3.8e-3 mbar, 
Ar:H2 flow 160:40 sccm). The intensity of the diffraction peaks increases slightly with increasing 
substrate temperature for films with similar thickness (660-740 nm). Peaks corresponding to both 
Mg and MgH2 increase. From SEM images, the microstructure appears very similar for samples 
deposited at varying substrate temperature, except for a slightly larger crystal size at higher 
temperature. All samples in this series showed pronounced porous structure. 
 The trends presented briefly above results in a trade off when trying to deposit stable and 
dense films with high hydrogen content. To maximize formation of the hydride phase, large 
H/Mg ratio (low power) and high H pressure is expected to be beneficial. However, this leads to 
porous films that easily oxidize. Post-treatments of films in H-plasma could be a way to further 
hydrogenate films while avoiding the porous structure. Continued investigations of MgHx 
deposition will be presented in future work.  
 
 

 



Stability
 Stability of the deposited films was investigated as a function of storage in air, annealing 
in air and light exposure under a solar simulator. Changes were monitored by XRD, 
transmittance and resistivity measurements. The change in transmittance of films annealed in air 
at different temperatures is shown in figure 2. The sputtering parameters in this case was Ar : H2 
flow 140 : 60 sccm, power 600 W and pressure 3.8e-3mbar. Annealing was performed in a belt 
furnace for 30 minutes with the hot zone set at 200, 300 or 400 �C. The transmittance increases 
slightly for annealing at 200 �C and significantly for 300 and 400 �C. For the highest 
temperature, the increase in transmittance of the bulk film is accompanied by formation of 
bubbles or holes in the film. For the film annealed at 400 �C, XRD �-2� scans show a weak and 
broad peak at 43º that probably corresponds to MgO. The low transmittance around 400 nm is 
accompanied by low reflectance, i.e. high absorption. This was also observed for films deposited 
by activated reactive evaporation [5] and attributed to metallic particles embedded in the MgH2 
film. Annealing under the conditions mentioned above does not remove this absorption. In the 
case of annealing at 400 �C, above the upper limit for decomposition of about 290 �C at 1 bar 
(MgH2 �Mg + H2) [6], we hypothesize that MgH2 is replaced by MgO but that metallic Mg 
remains. 
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 Figure 2: Transmittance of films deposited at 600W, Ar:H2 flow 160:40 sccm and 
working pressure 3.8e-3 mbar as a function of annealing 30 minutes in air at different 
temperatures. 
 

Some samples changed during storage in air, from partly transparent / brown to 
completely transparent after between one day and several months. The samples that did switch 
had been deposited with high hydrogen flow, high total pressure and in one case low power. 
XRD �-2� scans show low-intensity peaks at 18.5� and 59� for a sample that had switched to 
transparent. These peaks correspond well to Mg(OH)2 [7]. The transparent films are insulating as 
measured by our four point probe. In some samples, the switching progressed slowly over the 
sample and the onset could be observed to be in the center. It was also observed that the 
transparent films grew in thickness with up to 50% from the as-deposited state to the transparent 
state. This suggests that the films may take up oxygen and hydrogen from air and water vapor.  

 



 
 Since photodecomposition has been reported for some hydrides [8], stability checks 
under light soaking were performed. Films deposited in the same run as the samples in figure 2 
were exposed to a Xenon lamp calibrated to an intensity of 1000 W/m2. No substrate cooling was 
available for the setup, so the samples heated up to about 40-60 �C during light exposure. 
Monitoring of transmittance as a function of light soaking time showed negligible increase in 
transmittance for exposures of up to one hour. However, since both MgH2 and MgO have very 
large band gap, oxidation of MgH2 would not be detected. 
 
Silicon surface passivation
 
 One of the objectives for investigation of metal hydrides in relation to photovoltaics is the 
possibility to utilize the hydride for passivation of defects in bulk silicon materials, as well as 
defects at the silicon wafer surface due to the high hydrogen content. In order to make an initial 
test of the use of MgH2 for silicon surface passivation, five samples were prepared as shown in 
table 2. The average lifetime of the as-deposited reference wafer was 220 �s. For the samples 
with sputtered MgHx on one side, the lifetime was around 11 �s. In the standard procedure for 
surface passivation using PECVD a-Si at IFE, a post deposition anneal at 450 �C for 1 minute is 
used to improve passivation properties. In order to investigate the effect of post annealing on 
samples with MgHx layers, one wafer was cut into four parts and were subject to 1 minute 
annealing at 200 �C, 300�C, 350�C and 400 �C respectively. Parts from a reference wafer were 
annealed together with each sample. The average lifetime of the reference wafer improved to 356 
�s after the 400 �C anneal, while that of the MgHx samples did not change. This low lifetime is 
even slightly lower than for a one-side passivated wafer (sample 1, table 2). The existence of 
metallic Mg particles in the MgHx films is expected to provide efficient recombination sites and 
contribute to the low lifetime. We conclude that sputtering of MgHx, at least using the present 
conditions, does not appear to be useful for silicon surface passivation.  
 
Table 2: Process parameters and average effective lifetime of mono-Si wafers with one-side 
sputtered MgHx layers. The backside is passivated with PECVD amorphous-Si. 
 

Sample Ar : H2 flow 
(sccm) 

Power 
(W) 

Pressure 
(10-3 mbar) 

Post 
anneal 
(�C) 

Average 
lifetime 
(�s) 

1 No deposition - - - 14.6 
2 160 : 40 300 3.8 - 9.8 
3 160 : 40 600 3.8 - 10.9 
4 160 : 40 900 3.8 - 10.6 
5 100 : 100 600 9.8 - 11.7 
6 100 : 100 600 9.8 200  11.2 
7 100 : 100 600 9.8 300  11.9 
8 100 : 100 600 9.8 350  11.8 
9 100 : 100 600 9.8 400  11.8 
10 PECVD ref - - - 220 
14 PECVD ref - - 400  356 

 

 



 

 

CONCLUSIONS 
 
In-situ deposition of magnesium hydride is studied using sputtering in argon-hydrogen plasma. 
Increased hydrogen content in the argon-hydrogen plasma leads to increased resistivity and a 
shift from metallic magnesium to black MgHx. Crystalline MgH2 is detected by XRD, but 
metallic Mg could not be avoided. By increasing the hydrogen partial pressure or reducing the 
power, films that oxidize within days or weeks are obtained. Increased substrate temperature 
improves the crystallinity and stability. Sputtering of MgHx, at least using the present conditions, 
does not appear to be useful for silicon surface passivation. One explanation for the large surface 
recombination is the existence of metallic Mg particles in the films. 
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Paper II  
Deposition of magnesium hydride thin films using radio frequency 

reactive sputtering 

Popular summary 

In this paper we go into further details about the MgH2 films that were 

deposited using reactive sputtering. The synthesis method of reactive 

sputtering had been relatively little explored before we started our exper-

imental work. Therefore there was limited information available in earli-

er scientific publications on the material characteristics of this type of 

hydride film. We here discuss the optical properties, show how the nano-

structures of the surfaces look and we assess how much of the Mg in the 

film that is bound in hydride form and how much is in metallic Mg form.  

Context 

This paper is the continuation of the work started in Paper I. Gradually 

we gained more experience and were able to draw more conclusions from 

the work and understand the results. We continued working with MgH2 

even though it seemed not to have any viable applications in solar cells, 

in the hope of making pure MgH2 films without the Mg particles, but also 

to learn more about the synthesis of metal hydrides and extend the 

knowledge about metal hydride films deposited by reactive sputtering.  
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Paper III  
Transparent yttrium hydride thin films prepared by reactive sput-

tering 

Popular summary 

Yttrium hydride films had been explored thoroughly in the years after 

1996, because of the fascinating switchable optical effect of hydrogenat-

ed yttrium films. However, the synthesis method of reactive sputtering 

had not been demonstrated. In this paper, we show that both the opaque 

and the transparent form of yttrium hydride can be obtained directly us-

ing reactive sputtering. Another interesting finding is that the transparent 

form had a different crystal structure than what is normally found for 

transparent yttrium hydride. The crystal structure of the transparent and 

the opaque hydride was almost identical, demonstrating that it is not nec-

essarily the crystal structure that determines the electronic properties and 

optical appearance of this hydride. 

Context 

Yttrium hydride was the second material we worked with after starting 

with magnesium hydride.  Even though we knew that yttrium hydride 

had a too large band gap to be useful as a semiconductor for solar cells, 

we wanted to do some tests with this hydride because it is a simple and 

well-known compound with reasonable chemical stability.  
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Paper IV  
A new thin film photochromic material: Oxygen-containing yttrium 

hydride 

Popular summary 

The yttrium hydride films described in Paper III concealed a secret. They 

were photochromic, which means that they change color when they are 

illuminated. There are several potential applications of photochromism, 

but the phenomenon has not received much attention in materials science, 

especially considering inorganic compounds. In a technological aspect, 

the finding opens up new opportunities for metal hydride films, as this 

was the first time ever that photochromism at normal conditions had been 

reported for a metal hydride. In the aspect of more fundamental science, 

it is of great interest to better understand the physics of the reaction. 

Context 

It was under the microscope, investigating some defects on the surface of 

transparent yttrium hydride films, I discovered the photochromic effect in 

yttrium hydride: The light from the microscope, when highly focused, 

left small dark spots on the sample corresponding to the areas that had 

been illuminated. The spots gradually disappeared, and appeared again 

when if I again put the sample under the microscope. I then took the 

sample to the solar simulator light source in our laboratory and observed 

the darkening of the entire sample. The effect was characterized in our 

laboratories and those of our collaborators at TU Delft. 
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Paper V 
MgyNi1-y(Hx) thin films deposited by magnetron sputtering 

Popular summary 

Magnesium nickel hydride is a promising candidate for utilization as a 

metal-hydride-semiconductor material for solar cells, because it has a 

band gap within the acceptable range for PV applications. Another reason 

is that it is based on the cheap and abundant elements Mg, Ni and H. In 

this paper, we present our results on the synthesis of the material Mg-Ni-

H in the form of thin films, suitable for solar cells and for studies of the 

optical and electric properties of the material. The method of reactive 

sputter deposition had not been earlier reported for Mg-Ni-H. The quality 

of the material was found to be quite high in the compositional range 

with approximately 2 Mg atoms per Ni, which is the composition for 

which the semiconducting Mg2NiH4 forms. The work therefore demon-

strated that the synthesis method of reactive sputtering is promising with 

respect to the application of Mg2NiH4 in solar cells. 

Context 

Magnesium nickel hydride was the first material that we worked with 

that actually had direct relevance as a light-absorbing layer in a new hy-

dride-based technology for solar cells. The experience that had been built 

on synthesis and characterization from working on MgH2 and YHx 

proved extremely useful as a background.   
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Paper VI 
The dielectric functions and optical band gaps of thin films of amor-

phous and cubic crystalline Mg~2NiH~4  

Popular summary 

In the application of the magnesium nickel hydride in solar cells, it is 

essential to know the optical properties of the material. In this paper, we 

show an optical analysis using a strong optical characterization method 

called ellipsometry, used to obtain the dielectric functions of the materi-

als. The dielectric functions describe the optical performance of the mate-

rial, they tells us how light moves in the material and how much of it that 

is absorbed.  In this paper we also demonstrate that films that are non-

crystalline can be crystallized in a very simple heat treating process, and 

we compare the optical properties of the non-crystalline and the crystal-

line material. 

Context 

This work is based on the materials that were reported in Paper V. We 

wanted to take advantage of the advanced optical characterization tech-

niques that were available in our laboratory and the expertise on optical 

characterization and modeling of my colleague J. Selj. With the article 

we wanted to firmly establish the optical properties of magnesium nickel 

hydride, and to make a comparison between the amorphous and the crys-

talline thin-film forms of the hydride. 

  

Pa
pe

r V
I 





159 

Paper VII 
Surface oxide on thin films of yttrium hydride studied by neutron 

reflectometry  

Popular summary 

This paper differs from the others in that it concerns mainly with a char-

acterization method rather than the synthesis method. Neutron reflectom-

etry is a method that is very relevant for metal hydride films, because 

hydrogen has a very special interaction with neutrons as compared to 

most other elements. That makes the method suitable for observing hy-

drogen and finding layers of different hydrogen and oxygen content in 

thin-film metal hydrides. In this paper, we demonstrate how one can use 

neutron reflectometry to study the surface oxide that naturally forms on 

yttrium hydride films that are not protected against oxidation. 

Context 

During the first year of my Ph.D. work, I attended the “HERCULES” 

course on the use of large experimental infrastructure in Grenoble and 

Saclay in France. During a practical demonstration of neutron reflectom-

etry, the beamline scientist F. Cousin was so friendly to let me have some 

tests on one of my own yttrium hydride samples. The tests gave interest-

ing results, so I later applied for beam time at Saclay and I travelled 

again, together with two of my colleagues, to do further neutron reflec-

tometry studies on the yttrium hydride films.  
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The applicability of standard methods for compositional analysis is limited for H-containing films.

Neutron reflectometry is a powerful, non-destructive method that is especially suitable for these

systems due to the large negative scattering length of H. In this work, we demonstrate how neutron

reflectometry can be used to investigate thin films of yttrium hydride. Neutron reflectometry gives a

strong contrast between the film and the surface oxide layer, enabling us to estimate the oxide thickness

and oxygen penetration depths. A surface oxide layer of 5–10nm thickness was found for unprotected

yttrium hydride films.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714517]

Characterization of the distribution and content of light

elements in thin-film systems are difficult using methods

based on x-rays, electrons, or ion scattering. Hydrogen, the

lightest element, is often considered invisible due to its low

scattering power and the absence of core electrons. Another

issue is the high mobility of the H atoms and the reactivity of

oxygen to exposed surfaces, resulting in high risks of the

sample being modified during sample preparation and/or by

the actual measurement. However, H can be the main con-

stituent in solid materials, e. g. metal hydrides. H impurities

and H-containing layers are also important for modulating

the electrical properties of semiconductors.1 It is, therefore,

of prime interest to establish methods of investigation for

H-containing thin films and their interfaces with other

materials.

In this work, we show how the use of neutron reflectom-

etry (NR) enables us to investigate the surface oxide and the

O and H distribution in films of yttrium hydride. Surface

layers are important for the behavior and chemical stability

of thin-film metal hydrides. A Pd cap layer is often used for

oxidation protection and to catalyze hydrogen uptake. For

samples prepared for optical and electrical measurements,

the Pd layer is, however, often so thin that the surface partly

oxidizes.2 The thickness of the oxide layer and distribution

of the oxygen in the film are hard to assess using conven-

tional methods for compositional analysis as Rutherford

backscattering (RBS).

We have, in this work, investigated unprotected yttrium

hydride films by NR. Yttrium hydride appears in two differ-

ent crystal structures at room temperature and ambient pres-

sure.3 The two phases have very different electronic states;

metallic as YH2 and optically transparent, semiconducting

with a band gap of 2.6 eV, when the stoichiometry

approaches YH3.
4 Yttrium hydride is highly reactive towards

O, but unprotected films of YHx have proven to be surpris-

ingly stable against oxidation under ambient conditions.5

The unprotected YHx films have showed interesting effects

in the crystal structure5 and a strong and technologically rel-

evant photochromic effect has been observed.6

NR is an efficient way of characterizing thin films, mul-

tilayers, and interfaces.7 In particular, it reveals properties of

layers and interfaces that are buried below several other

layers. NR is a non-destructive technique where the weak

sample interaction of the low energy neutrons (�a few meV)

ensures that the sample is not changed by the measurement

itself.

NR for characterization of hydrogen in thin films and

multilayers of metal hydrides was first reported in 1993 by

Mâaza et al.8 Later, Munter et al. showed how deuterium

absorption could be monitored in-situ during loading experi-

ments on thin Pd films.9,10 More recently, a series of studies

has been published by Fritzche et al., showing how NR can

be used to investigate the thermodynamics of hydrogen

uptake process in Pd-capped metal alloy films.11–15 NR has

also proved an efficient way to characterize deviations in the

hydrogen stoichiometry in very thin interface layers9,16 and

can be used to determine inter-diffusion of elements at the

interfaces of metal hydride films.11,12

NR relies on the difference in the coherent scattering

length density (SLD) for neutrons between different layers in

a multilayer structure. The SLD of each layer can be calcu-

lated using the formula q¼P
Ni bi, summing over all pres-

ent elements i, where Ni is the density in atoms/cm3 of the

element and bi is the coherent scattering length of the ele-

ment (see Table I). Owing to the negative scattering length

density of H, metal hydrides show a large contrast in the

SLD with respect to the substrate. O has a positive scattering

length density and there is thus also a large difference in the

SLD of the hydride film and the surface oxide. The large

contrast and large difference in thickness of the layers make

NR ideal for studying these systems. Fig. 1 demonstrates

calculated ideal SLD of the materials explored here. For

comparison, the calculated scattering length density for x-

rays is showed in Fig. 1(b). The x-ray SLD is very similar

for yttrium oxide and the yttrium hydrides, making the

distinction between oxide and hydride difficult in the inter-

pretation of x-ray reflectometry (XRR) data.

a)Author to whom correspondence should be addressed. Electronic mail:

trygve.mongstad@ife.no.
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The NR measurements were carried out at the EROS

(Ref. 17) time-of-flight reflectometer at Laboratoire Leon-

Brillouin, Saclay, France. This reflectometer uses a broad

wavelength neutron beam with wavelengths from 3 Å to

25 Å. The typical data collection time was 1 h per sample.

The data analysis was done with the EROS reflectivity data

analysis software package. The films were deposited on

50mm Ø, 5mm thick crystalline Si substrates, and the thick-

ness of the investigated films was in the range of

100–150 nm. The samples were deposited by reactive sput-

tering (see Ref. 5), using 20% H2 as reactive gas in the Ar

plasma. Two electronic states of YHx were obtained depend-

ing on the deposition parameters: the conductive and black

state (B-YHx) and the optically transparent semiconducting

state (T-YHx).
5 A cap layer of Mo was deposited in-situ on

some of the samples in order to protect the samples from oxi-

dation in air.

Fig. 2(a) shows the experimental data and the model fit

to the NR spectra obtained for a sample of B-YHx. The cal-

culated reflectivity of a pure silicon substrate is also showed

in order to illustrate how the film influences the reflectivity

spectrum. The critical scattering vector Qc is not shifted for

the sample with respect to the silicon substrate. This is typi-

cally observed for a layer with lower SLD than the substrate.

A layer of �100 nm thickness with a larger SLD than the

substrate would have caused the appearance of a pseudo-

plateau, i.e., a shift of the plateau of total reflection towards

higher values of the scattering vector Q. The interference

fringes visible in the spectrum at higher Q values are known

as Kiessig fringes,18 which constitute the basis for the fit of

the SLD profile (inset in Fig. 2(a)). The bulk of the film is

found to have an SLD of 1.1� 10�6 Å�2. This is higher than

the expected SLD of YH2 (see Fig. 1(a)) and can be

explained by incorporation of oxygen in the structure and

understoichiometry in the hydrogen content. The fit to the

NR data in Fig. 2(a) gives a surface oxide and/or hydroxide

layer with a thickness of 5 nm, with a maximum SLD of

2.5� 10�6 Å�2. The maximum SLD is limited by the fact

that the estimated roughness (1.5 nm on the upper surface) is

similar to the thickness of the surface layer. In addition, it is

probable that the surface layer contains a considerable

amount of H, which will also lower the SLD.

Fig. 2(b) shows data and fit for an equivalent film as in

Fig. 2(a) but covered with a 10 nm layer of Mo. The presence

of the 10 nm capping layer is clearly visible in the NR data

as a large Kiessig fringe superimposed on the smaller oscilla-

tions. The upper surface is also found to have a roughness of

1.5 nm, and the maximum SLD in the layer is of

4.0� 10�6 Å�2. To obtain the best fit to the data, a gradient

has been incorporated in the SLD profile, going from

1.0� 10�6 Å�2 at the substrate interface to 1.3� 10�6 Å�2

close to the surface oxide. This variation could be a result of

the deposition process or O that has penetrated through the

Mo layer. It is, however, difficult to get a fully conclusive fit

of NR data on such small and non-abrupt changes in the

SLD profile. The possible interpretations of such a gradient

might not reflect the physical state of the sample. The SLD

profile of this geometry is similar to the sample with a sur-

face oxide (Fig. 1(a)), but the NR data are substantially dif-

ferent. This underlines the strength of NR in differentiating

between layers with small differences in thickness and SLD.

Fig. 3 displays data and fit for an unprotected film of

T-YHx. The SLD determined for the bulk of the film is

TABLE I. Coherent scattering lengths for neutrons of the constituent

elements.a

Element Scattering length (fm)

H �3.739

O 5.803

Si 4.1491

Y 7.75

Mo 6.715

aRef. 22.

FIG. 2. NR data, model, and corresponding SLD profile (inset) for (a) an

unprotected B-YHx film and (b) a B-YHx film covered by 10 nm Mo.

FIG. 1. Calculated neutron and x-ray (Cu Ka) SLD of the materials investi-

gated in this work.
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�0.2� 10�6 Å�2, which is higher than expected for pure

semiconducting YH3 (see Fig. 1(a)). Again this is related to

the O content of the film and understoichiometry in H. The

surface oxide/hydroxide layer of this sample is around 10 nm,

which is higher than for the conductive YHx film shown in

Fig. 2(b). The oxide also has a tail that penetrates into the

bulk of the film. There could be oxide channels growing at the

crystal grain borders, as earlier discussed for yttrium hydride2

and pure yttrium19 films. For pure yttrium films, we found a

surface oxide layer of�5 nm and a similar oxygen penetration

profile. In Fig. 3, there is a layer of SiO2 with higher SLD

present on the substrate interface. The substrate oxide layer is

a result of the synthesis of the samples. Because of the poor

adhesion of T-YHx to pure Si, the native surface oxide on the

Si substrate was not removed prior to deposition.

Because of the strong sensitivity to H, NR can be used

to estimate the H content in a film. The value of the SLD is

significantly higher for the B-YHx (1.1� 10�6 Å�2, Fig. 2)

than for the T-YHx (0.2� 10�6 Å�2, Fig. 3). As the samples

are prepared in an approximately identical process and has

basically the same crystal structure,5 this provides an unam-

biguous proof of higher H content in the latter. In principle,

the H concentration can be directly calculated from the SLD

and the crystal structure. However, a true estimation of the H

content requires knowledge of the impurity content, porosity

and concentration of interstitials, and vacancies in the sam-

ple. For a trustworthy estimation of the H content NR there-

fore needs to be combined with complementary techniques

as x-ray diffraction, XRR, and RBS. Alternatively, one can

take advantage of the isotope contrast between hydrogen and

deuterium. D has a positive coherent scattering length for

neutrons and thereby contributes to an increase in the SLD

as opposed to H. If two sets of samples are prepared in the

same way but one with H and the other with D, the differ-

ence in SLD can give an accurate estimation of the H/D con-

tent of the sample. Similarly, NR has been used to study

loading/unloading of H in metallic films, where the SLD

prior to and post-loading is compared in order to estimate the

H concentration.9,11,13,15,20,21

In conclusion, NR is highly suitable for the study of ox-

ide layer formation on thin films of metal hydrides, because

of the large contrast in SLD between oxide and hydride. NR

can similarly also be used for example to investigate H accu-

mulation at interfaces in semiconductors or to study surface

oxides on non-hydride films with low SLD.
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