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Summary

Most life on this planet is microbial and for the last two decades, environmental gen-

omics has contributed to reveal an impressive biodiversity of this microbial life. This

approach applies DNA sequencing to environmental samples, with the significant ad-

vantage of not relying on cell cultures, since only a minority of microorganisms are

easily cultured in the laboratory. This thesis deals primarily with analysis of microbial

diversity based on community profiling. This variant of environmental genomics tar-

gets defined marker genes to study the structure of microbial communities. The use of

the small subunit ribosomal RNA as a phylogenetic marker is discussed and evaluated,

with emphasis on taxonomic classification, estimation of diversity and comparison of

community structure between samples. Thanks to improved sequencing technologies,

community profiling is an increasingly powerful and cost-efficient technique. Like all

methodologies it has limitations and sources of random- and systematic errors, many of

which remain poorly understood. In relation to this, a number of recommendations and

novel analysis methods are developed and provided. These are subsequently applied to

study environmental communities, targeting issues like the “rare biosphere” concept,

and variation of community structure across space and environmental gradients.

Taxonomic classification is the process of placing environmental sequences in con-

text of previously studied organisms. Thus, ecologically meaningful information such

as putative metabolic functions can be derived. In Paper I, a set of resources for taxo-

nomic classification is provided and evaluated. The performance of the resulting frame-

work, CREST (Classification Resources for Environmental Sequence Tags), is shown

to compare favourably to existing methods. It also provides a manually curated tax-

onomy and functionality for comparing composition across datasets. In Paper II, a

hydrothermal vent-associated microbial mat community is studied, using a set of differ-

ent environmental genomics methods. Based on this study, several important sources of

bias and reproducibility of community profiling are evaluated and discussed. The res-

ults highlight the importance of applying complementary methods. They also illustrate

the influence of primer choice, PCR bias and whether RNA or DNA is targeted. Ran-

dom variation, or noise, is another important factor to consider in community profiling



10 Abstract

studies. Papers III and IV, examines the effect of such noise from PCR amplification

and pyrosequencing. Currently, this is the most common sequencing method applied

to environmental samples. The results of Paper III demonstrate that early community

profiling studies using pyrosequencing have significantly overestimated the extent of

biodiversity, because of noise. To compensate for such noise in amplicon sequence

datasets, the program AmpliconNoise was developed. Using “mock communities”, a

mix of clones with known sequences, the performance of AmpliconNoise is demon-

strated and compared to alternative methods. Analyses of diversity in the microbial

mat community studied in Paper II utilise AmpliconNoise. Resulting estimates are

compared to previous findings, from similar environments.

In addition to biodiversity per se, the underlying diversity structures of communities

and the mechanisms shaping them, remain important but poorly understood issues in

microbial ecology. Because of their many useful characteristics, alkaline soda lakes

are used as model ecosystem to study several such issues, in Paper V. Results reveal

that these extreme environments harbour surprisingly high microbial diversity. Inter-

estingly, the most alkaline and saline lakes studied also appear to be the most diverse.

Further, it is shown that pH, oxygen level, and sodium- and potassium concentrations

can explain 30% of the compositional variance between the lakes studied. The exist-

ence of organisms endemic to individual lakes is also indicated. Although soda lakes

are relatively uncommon environments, this study provides an example of how fun-

damental biogeographical questions can be targeted using a careful choice of experi-

mental design and analysis methodology. The results call into question several estab-

lished notions such as extreme environments generally being less diverse and that few

prokaryotic organisms are endemic. Hopefully the findings will inspire future studies,

exploring these relationships further.

In summary, the work presented here illustrates the importance of evaluating and optim-

ising the methodology used in environmental genomics, particularly for amplicon se-

quencing, taxonomic classification, and estimation of phylogenetic diversity. It is likely

that methodological limitations have biassed and slowed down data analysis and inter-

pretation of important ecological issues like the rare biosphere and microbial biogeo-

graphy.
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Nomenclature

BLAST Basic Local Alignment Search Tool

cDNA Complementary DNA - derived using reverse transcription from RNA
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DNA Deoxyribonucleic Acid - utilised by living organisms as the primary

carrier of information, or the ’genotype’

env. genomics the application of high-throughput sequencing to nucleic acid samples

extracted directly from the environment.
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RNA Ribonucleic acid

rRNA ribosomal RNA - here referring either to sequences derived from the

ribosome itself or its encoding gene

RT-qPCR Real-time quantitative PCR

S Svedberg - a non-SI unit for sedimentation rate

SMRT Single Molecule Real Time sequencing - a third generation sequencing

technology developed by Pacific Biosciences

SSU the Small Subunit of ribosomal RNA (also known as 16S in prokaryotes

and 18S in eukaryotes) - here referring either to the subunit of the ribo-

some itself or its encoding gene

TAD Taxon Abundance Distribution - the distribution of relative abundances

of taxa in a sequence dataset or biological community
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Chapter 1

Introduction

Microorganisms (Bacteria, Archaea and unicellular eukaryotes) dominate life on our

planet, as well as global biomass and carbon turnover (Whitman et al., 1998). Because

of their dominance of global biogeochemical cycles, microorganisms are essential to

life and the functioning of the biosphere (Falkowski et al., 2008). Their metabolic ver-

satility and range of habitats is also impressive. Compared to the stricter requirements

of larger organisms, microorganisms grow across wide ranges of temperature, pH and

salinity, and new findings have repeatedly pushed our perception of the limits of mi-

crobial life (Pikuta et al., 2007). A better understanding of microbial ecology may be

essential for applications like modelling of large-scale ecological processes, but also for

human health and biotechnology. For every human cell of our body, we carry around

about ten cells of bacterial symbionts, vital for our well-being (Berg, 1996). Known as

the human microbiome, this microbial community may even play an important role in

determining our mood and mental health (Kinross et al., 2011).

However, the ecological importance of microorganisms has historically been over-

looked. Today, this notion is replaced with a growing appreciation for their paramount

importance and biodiversity. The rapid scientific progress leading to this paradigm shift

would not have been possible if not for molecular techniques like DNA sequencing.

These techniques circumvent the need for studying microorganisms through direct ob-

servation or culturing. This is particularly important since the majority of organisms

cannot easily be cultured. Those that can may be rare and opportunistic organisms, not

representing the ecologically important part of the community studied (Handelsman,

2004). Thus, it is only recently that the scale of microbial diversity is starting to be ap-

preciated. Largely responsible is environmental genomics, i.e. the application of high-

throughput sequencing to nucleic acid samples extracted directly from the environment.

It has become an invaluable tool for studying microbial ecology. Like other genomic
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techniques, it is quickly gaining ground thanks to the rapid technological development

of DNA sequencing, with dropping prices and exponentially increasing throughput.

Environmental genomics has revolutionised the field of microbial ecology, but in many

respects it is immature. Limitations and pitfalls remain poorly understood and new

techniques develop so fast that benchmarking studies, methodology and recommend-

ations for best practices, lag behind. The situation has even been likened to a “Red

Queen” coevolutionary arms race, where “it takes all the running you can do, to keep

in the same place” (Carrol, 1872), by Caporaso et al. (2011). In recent years, influ-

ential ecological concepts like the rare biosphere have been proposed (Sogin et al.,

2006), gained popularity, then as quickly been brought into question as a mere con-

sequence of sequencing bias and inappropriate analysis methods (Reeder and Knight

2009). The rare biosphere concept suggests that rare organisms tend to dominate the

diversity of natural communities, while they only constitute a small part of the total

biomass. Its implications are largely unknown. Either these rare organisms may have

important metabolic functions, or be inactive, acting as a “seed bank” (reviewed in

Pedrós-Alió, 2012). This is challenging to determine without knowing the structure of

the rare biosphere, or indeed that it exists. Another example is the deceptively simple

task of estimating the total number of microbial “species”. To simply increase our

sequencing efforts would be insufficient, until we have gained better knowledge of mi-

crobial biogeography (Curtis et al., 2006). However, more strategic use of sequencing

combined with increased throughput may contribute to such knowledge.

This cyclic scientific progress is common and illustrates how conceptual understanding

is linked to methodology (Kuhn, 1962). Thus, to improve environmental genomics,

the assumptions of its methodology must be continuously re-evaluated. It can then be

improved, and used to answer essential questions in microbial ecology. This requires

interdisciplinary efforts, combining biology, informatics and mathematics. Instead,

bioinformatics is sometimes seen as a “magic wand” or “black box” by microbiologists,

while fundamental microbial ecology is ignored by bioinformaticians. Such attitudes

do not contribute to cross-scientific progress. In this work, I attempt to avoid both,

while evaluating, improving and applying community profiling methods. Also known

as phylogenetic marker gene profiling, this is an invaluable technique for studying the

diversity and composition of microbial communities. Here, the small subunit ribosomal

RNA or its gene (SSU rRNA) is used as a phylogenetic marker and analysed using high

throughput sequencing. Hopefully, this thesis can also serve as a primer for using this

powerful technique.

The thesis is divided in two major parts. Part I is organised into five chapters. In addi-

tion to this introductory chapter, Chapter 2 provides a background to the experimental
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and analytical methodology in environmental genomics, focussing on community pro-

filing and sequencing technology. Chapter 3 presents four research questions serving

to identify and illustrate gaps in the current knowledge, both of methodological and

ecological character. An underlying aim was to close these gaps, and to bridge the gap

between bioinformatics and microbial ecology. My contributions in this respect are dis-

cussed in Chapter 4, with detailed results available in the five research papers, enclosed

in Part II. Finally, Chapter 5, provides concluding remarks and future perspectives.
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Chapter 2

Background

2.1 Experimental methodology

2.1.1 Diversity and composition of microbial communities

Except for in microbiology laboratories, microorganisms nearly never exist as mono-

cultures in nature. Understanding the structure of microbial communities and the mech-

anisms shaping them represent basic but poorly understood questions with significant

ecological importance.

When describing community structure, the term diversity is typically used to describe

the degree of variation, e.g. the number of taxa or Operational Taxonomic Units (OTUs;

see Section 2.2.1). Composition also takes into account abundance metrics and is of-

ten discussed at lower taxonomic resolution (e.g. comparing the relative abundance

of Archaea in relation to Bacteria). More specific, the term alpha diversity was intro-

duced by Whittaker (1972) and refers to local diversity, typically within one sample or

site. Whittaker also introduced beta diversity referring to the difference between sites

of equal size. The term has since been used in several different respects, including

measures taking into account differences in abundance of taxa. Because of this am-

biguity, this thesis instead refers specifically to comparisons of either composition or

alpha diversity.

An important reason for studying community structure is to increase our basal know-

ledge of microbial biogeography, dispersal and diversity of microorganisms. Another

reason is to infer ecological function, or more exactly metabolism, niche, and contribu-

tion to biogeochemical cycles of individual community members. Based on community

structure, more broad hypotheses can then be formulated about local, regional or global
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community function and metabolism. This must always be done with care, since an as-

sumption is made, that genetic or phenotypic similarity also implies functional similar-

ity. The premises and limitations of such assumptions of homology is a matter of much

debate and strongly influenced by methodology. In relation to this, the term functional
diversity is often used, referring to the metabolic and functional repertoire of a com-

munity. There may also be functional redundancy to some extent in a community, if

two taxa share the same niche or metabolic strategy (Nannipieri et al., 2003). Many

techniques exist to study the functioning of communities directly, as opposed to their

phylogenetic structure. Molecular techniques such as functional metagenomics (termed

by Handelsman et al., 1998) and metatranscriptomics are very useful for this purpose,

but are not discussed in depth in this thesis.

2.1.2 Conventional methods for studying microbial community structure and their
limits

Direct observation of microbial communities is particularly challenging due to the mi-

croscopic scale and enormous numbers of cells involved. The small scale also adds

complexity. In addition, the information that can be gained by direct microscopic ob-

servation is typically limited, particularly in prokaryotes. It can even be misleading due

to observational bias and morphological plasticity (Justice et al., 2008). In spite of this,

microscopy has remained an important tool for identification of microorganisms, since

it was first used by Antonie van Leeuwenhoek in 1676. Since then, it has been refined

and improved by techniques such as fluorescence microscopy combined with staining,

using DAPI or acridine orange (reviewed in Kepner and Pratt, 1994). Using molecular

probes, cells belonging to specific taxa can also be stained using fluorescence in situ
hybridisation (FISH; DeLong et al., 1989).

In addition to analysing microorganisms directly in their natural habitats, early mi-

crobiologists like Louis Pasteur (1822-1895) and Robert Koch (1843-1919) developed

techniques for isolating and cultivating them in pure cultures. These techniques were

later complemented with the use of enrichment cultures by pioneers of microbial eco-

logy like Martinus Beijerinck (1851-1931) and Sergei Winogradsky (1856-1953). En-

richment cultures enabled the selection, isolation and analysis of organisms that did

not dominate a particular sample, or in other words, the first studies of microbial com-

munity structure.

Doubtless, cultivation-based (or “culture dependent”) techniques remain invaluable

tools in microbial ecology. They also represent the only taxonomically valid approach

for describing new bacterial species (with the exception of cyanobacteria; Euzéby,
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2012). Unfortunately, only a small fraction of viable microorganisms of most envir-

onments can be easily cultured. Thus, those retrieved using cultivation are often not

representative of the community as a whole. This realisation, although at least partly

understood for decades before, was termed the Great Plate Count Anomaly by Staley

and Konopka (1985). Fortunately, since the mid-1980s, microbiologists have been able

to take advantage of and further develop molecular methods to bypass the need for cul-

ture dependent studies. Since then, our understanding of microbial communities has

expanded and become significantly less biased towards the culturable minority.

2.1.3 Exploration of microbial communities using sequencing

DNA sequencing is the determination of the order of nucleotides in a DNA molecule,

resulting in a sequencing read. This molecular technique has been of tremendous im-

portance for recent progress in biology. The first forms of nucleotide sequencing in-

stead used RNA as template and depended on laborious restriction digests and two-

dimensional gel electrophoresis techniques (Holley et al., 1965). Seven years later, So-

gin et al. (1972) argued for using of ribosomal RNA (rRNA) as a phylogenetic marker

and use its sequence to determine the evolutionary history of prokaryotic microorgan-

isms, as a means to classify them. Although not considered viable or meaningful by

most microbiologists at the time (Sapp, 2005), the usefulness of this approach was later

demonstrated by Woese and Fox (1977), who used rRNA sequencing to reveal the three

phylogenetic domains of self-replicating life (Bacteria, Archaea and Eukaryota). This

work showed that the “Prokaryota” was not a monophyletic group and that humans and

all other eukaryotes share a common ancestor with the Archaea (except for our mi-

crobiome and mitochondria). Most importantly, it pioneered the essential and ongoing

work of reconstructing the Tree of Life, representing our current understanding of the

phylogeny of all living and extinct organisms.

The same year, Sanger et al. (1977) published a new method for DNA sequencing based

on polymerase elongation with chain-terminating inhibitors (dideoxy nucleotides). The

Sanger method allowed faster, less laborious sequencing and could generate longer se-

quences than previous methods. It quickly became the established sequencing method

(“first generation”) and formed the basis for automated Sanger sequencing, which also

incorporates fluorescently labelled inhibitors. To this day, it remains the method of

choice if both high accuracy and a long read lengths are required (up to about 800 bp).

By using various techniques for selection and separation, rRNA sequences could later

be obtained directly from environmental samples (first by Stahl et al., 1984). Such
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studies were greatly facilitated by applying a polymerase chain reaction (PCR) for se-

lective DNA amplification of sequencing targets (Saiki et al. 1988; Section 2.1.4). PCR,

followed by cloning using plasmid vectors in Escherichia coli (resulting in “clone lib-

raries”), was first applied by Giovannoni et al. (1990) to sequence environmental ge-

nomic rRNA genes from a water sample from the Saragosso Sea. Ward et al. (1990)

utilised a PCR independent variation of this method to sequence cDNA derived using

reverse transcription of rRNA (Amann et al., 1995). These culture-independent stud-

ies revealed many organisms previously unknown to science, and pioneered an era of

microbial exploration, which has continued to this day.

Recently, application of new sequencing methods (see 2.1.5) have demonstrated the

vast extent of diversity remaining to be explored. The extent of diversity uncovered by

these studies came as a surprise for many, although results agreed reasonably well with

estimates based on DNA re-association studies carried out several years earlier (Torsvik

et al., 1998). A large portion of the diversity was found to consist of low-abundant

organisms and has therefore been termed the rare biosphere (Sogin et al., 2006). This

can explain why earlier clone library surveys with relatively limited sequencing depths

did not reveal this diversity.

There are several reasons for the suitability of rRNA as a phylogenetic marker. Most

important, ribosomes are ubiquitous to all self-replicating organisms as they carry

out the essential function of protein synthesis. Because of their fundamental import-

ance, they maintain a high degree of conservation in sequence and secondary struc-

ture throughout evolution. For the same reason, horizontal gene transfer of the rRNA

gene is thought to be very rare. It has been proven possible, however, and appears to

have happened several times throughout evolution (Andam and Gogarten, 2011; Ki-

tahara et al., 2012). Another property making rRNA a suitable marker is that it can

be obtained in high quantities from most environmental samples, typically constituting

approximately 95% of extracted RNA. Further, rRNA genes contain hypervariable re-

gions interspersed with conserved ones, making them ideal for comparative sequence

analysis and alignment.

Ribosomal RNA consists of two subunits: one large and one small. In prokaryotes, the

large subunit (LSU) consists of two molecules named 5S and 23S after their sedimenta-

tion rates (measured in Svedberg; S). The small subunit (SSU) consists of one molecule

(16S, here referred to as “SSU”). These three molecules are typically organised as a co-

transcribed operon. For practical purposes the very earliest studies targeted the smallest

of these, 5S rRNA (e.g. Sogin et al., 1972), but the SSU has since become the de facto
phylogenetic marker, targeted by a tremendous number of sequencing studies (Tringe

and Hugenholtz, 2008). Several studies have also targeted LSU as a important com-
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plementary or alternative marker, especially in eukaryotes or to measure intra-species

variation. It has also been suggested as a superior prokaryotic marker, but remains

less popular, probably due to the relatively low number of LSU sequences in public

databases (Yilmaz et al., 2011b).

Nuclear SSU rRNA is also a widely used phylogenetic marker in eukaryotes (“18S”,

analogous to 16S in prokaryotes). However, common alternatives exist that are more

appropriate for particular taxa, e.g. the internal transcribed spacers (ITS) 1 and 2,

widely used for Fungi (Santamaria et al., 2012); or the subunit I of cytochrome C

oxidase (COI) for Metazoa, plants and other eukaryotes. The later is often referred

to as “metabarcoding” when used for community profiling (Taberlet et al., 2012), or

simply “barcoding” when used for identification of single species.

As an alternative to sequencing, community profiling can also be carried out using mo-

lecular fingerprinting methods, such as denaturing gradient gel electrophoresis (Muyzer

et al., 1993), or terminal restriction fragment length polymorphism (Liu et al., 1997).

Amplified sequences are then assayed without obtaining the sequences of the com-

munity. These techniques allow for relatively rapid comparisons between large num-

bers of samples at a lower cost than sequencing. However, semi-quantitative comparis-

ons, taxonomic classification and determination of diversity is generally more challen-

ging (Osborn et al., 2000), particularly for complex communities.

2.1.4 Targeted amplification and shotgun sequencing of rRNA

With the advent of new sequencing technologies (Section 2.1.5), a cloning step is no

longer necessary, since individual DNA molecules can be used as template for sequen-

cing. However, PCR is required to sequence only a specific gene, such as that en-

coding SSU rRNA, from extracted genomic DNA. The products of PCR amplification

are referred to as amplicons and the method as amplicon sequencing. Extracted RNA,

reverse-transcribed to complementary DNA (cDNA), can also be used as a template for

PCR. This results in a profile of the active and abundant part of the community (Amann

et al., 1995; Urich et al., 2008), whereas genomic DNA profiles the presence of organ-

isms within the community, including less active, dormant and dead cells (Luna et al.,

2002). Relatively small overlap between DNA- and RNA-based clone libraries from

the same environment have been demonstrated previously (e.g. Gentile et al., 2006;

Moeseneder et al., 2005) indicating that the approaches complement each other in a

meaningful way.

To amplify SSU rRNA (or other markers) from a broad group of the community, “uni-

versal” oligonucleotide primers are required. Such primers utilise conserved regions
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in the rRNA sequence and may also be degenerate, meaning that a cocktail of primers

with different nucleotides at one or more degenerate positions, are used. Using stand-

ard PCR, it is however not practically possible to achieve true universality, i.e. the

possibility to amplify all known microorganisms, should they be present in the sample.

Importantly, no primers exist that cover a majority of taxa in each of the three domains

of life (Bacteria, Archaea and Eukaryota). Special techniques using shorter, more uni-

versal primers have been suggested, but rely on the use of engineered polymerases

(Isenbarger et al., 2008).

Depending on the read length of the sequencing technology, it is not necessary to amp-

lify the entire SSU rRNA or its gene. Thus, many primer pairs are designed to amplify

hypervariable regions inside the SSU, which can be more informative due to their lower

degree of conservation. Several “universal” primer combinations exist and the choice

varies depending on preference of individual research groups, organisms targeted and

sequencing technology used (Klindworth et al., 2012). Primers with attached barcodes
can also be used, to facilitate the mixing of several amplicon libraries into a single

sequencing reaction (Hamady et al., 2008). The barcodes are then used to identify

sequencing reads from individual samples. This technique is also referred to as “multi-

plexing” (and barcodes as “multiplex identifiers”).

An alternative to amplicon sequencing is shotgun sequencing, where community DNA

or cDNA is used directly as a template for sequencing. The use of shotgun sequencing

of genomic DNA is referred to as shotgun metagenomics and requires that the DNA

is subjected to shearing into smaller, random fragments. This will result in very few

sequencing reads from SSU rRNA or other suitable phylogenetic markers. Instead, it

is primarily a method for studying the functional structure of communities, rather than

their taxonomic or phylogenetic composition and diversity.

Shotgun sequencing of community cDNA, however, can be successfully used as a com-

munity profiling method since the rRNA predominates RNA extracted from typical

environmental samples (Urich et al., 2008). This method has the added advantages

that it can avoid primer bias and other PCR artefacts (see 2.3.2-2.3.3) and that abund-

ant mRNA transcripts are also sequenced. A disadvantage, however, is that it is not

straightforward to determine the diversity of a sequenced community, since individual

reads will differ in their position within the SSU or LSU rRNA. This can be com-

pensated for to some extent by assembly (Miller et al., 2011; Radax et al., 2012).

Known as shotgun metatranscriptomics, this method can also be used as a functional

profiling method. This, which is actually the more common version, uses hybridisation

or other methods for reducing the amount of rRNA prior to sequencing, thus enriching

for mRNA.
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Figure 2.1: Development of sequencing costs per million base-pairs, compared to Moore’s law. Source: Wetterstrand (2012)

(used with permission).

2.1.5 Pyrosequencing and other “next generation” sequencing platforms

In the 1990s, sequencing was applied to a rapidly increasing range of studies in biology

and medicine, most notoriously the completion of the first draft of the human genome

in the year 2000. The demand for cheaper and faster sequencing helped drive a de-

velopment of increased parallelisation of the Sanger method and, later on, of current

(high-throughput) sequencing methods. The later are referred to here as second- and

third generation sequencing to separate them from the Sanger method (“first-generation

sequencing”). Since then, technical performance and the throughput-to-cost ratio has

developed faster than the famous Moore’s Law (Wetterstrand, 2012; Figure 2.1), often

used to describe long-term performance trends in the computer hardware industry.

The first of the second-generation methods include (in chronological order): Massively

Parallel Signature Sequencing developed by Lynx Therapeutics (Brenner et al., 2000)

and Polony Sequencing (Mitra et al., 2003); in addition to Pyrosequencing, Illumina,
SOLiD and Ion Torrent (see below).

Pyrosequencing (“454”) was the first of the second-generation technologies, commer-

cially delivered as sequencing machines. Like Illumina, it is based on sequencing-by-
synthesis, i.e. reading of each nucleotide base in a sequence during DNA replication.

Pyrosequencing is based on stepwise flowing across a pico-titre plate of reagents in-

cluding one specific deoxynucleoside triphosphate (dNTP). If the dNTP is incorpor-

ated, i.e is complementary to the extension position in the template DNA strand, pyro-

phosphate is released and indirectly detected as light emitted by the enzyme luciferase

(Ronaghi et al., 1998). The technology was first commercialised by Pyrosequencing
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AB, but the critical miniaturisation and massive parallelisation of the process was de-

veloped by 454 Life Sciences (today part of Roche; Margulies et al., 2005). The present

version of the platform (GS FLX+ / Titanium) can generate about one million reads per

run, with lengths of about 500 bp for amplicons or 750 bp for shotgun sequencing.

Early amplicon sequencing studies using pyrosequencing revealed surprisingly high

diversity and novelty in the communities examined (Sogin et al., 2006; Roesch et al.,

2007). Since then, it has become the most widely used platform in environmental

genomics after Sanger sequencing, mainly thanks to its relatively long read length.

This allows for more accurate taxonomic classification and determination of diversity

in comparison to the shorter reads generated by other second-generation technologies.

Illumina (previously “Solexa”) was developed by Solexa and later acquired by Illu-

mina Inc. The technology is based on a parallelised technology where reversible dye-

labelled-terminators are added during replication of a single stranded sequence. The

base at that position can then be determined and the dye cleaved off, allowing another

round of terminators to be added (Shokralla et al., 2012). Compared to pyrosequen-

cing, Illumina generates shorter reads (150-250 bp), but with higher throughput and for

a significantly lower cost. It can also be used with so called “mate-pair” reads, allow-

ing for pairwise assembly of overlapping paired reads above 200 bp long (Rodrigue

et al., 2010) Recent protocols for Illumina’s MiSeq Personal Sequencer can even pro-

duce mate-pairs of length 2x250 bp (Illumina, 2012), theoretically allowing for 500 bp

long assembled sequences.

Like pyrosequencing, Illumina has been used successfully for numerous environmental

genomics studies (e.g. Qin et al., 2010; Caporaso et al., 2011).

SOLiD was developed by Applied Biosystems (now Life Technologies) and is based

on sequencing-by-ligation. This technology relies on the the differential sensitivity of

the enzyme DNA ligase for base-pairing mismatches (Shokralla et al., 2012). SOLiD

is comparable to Illumina in terms of cost and throughput, yields slightly shorter read

lengths (75 bp), but outperforms other existing methods in terms of accuracy (Glenn,

2011). Although no published studies to date used SOLiD for community profiling, it

has been used for functional profiling (e.g. Liu et al., 2011b).

Ion Torrent (now owned by Life Technologies) is the newest of the second-generation

platforms. It is based on a similar principle as pyrosequencing, but instead of indir-

ect detection of released pyrophosphate by light, the positively charged hydrogen ion

released along with it is detected. This is carried out by a proprietary ion sensor techno-

logy (Rothberg et al., 2011). During its two years of commercial availability, a number
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of upgraded protocols and reagents have been released (including disposable sequen-

cing “chips”). The present version (318) allows for a read length of 200 bp, at less than

one tenth of the cost per base of pyrosequencing, but with lower accuracy (Glenn, 2011;

LifeTechnologies, 2012). Ion Torrent has already been successfully used for amplicon

sequencing studies by e.g. Whiteley et al. (2012) and Jünemann et al. (2012).

All second-generation sequencing technologies require thousands of copies of each

unique DNA molecule to be sequenced. Because of this, they are depending on a PCR

amplification step (“in vitro cloning”), carried out as part of the sequencing protocol.

Pyrosequencing, Ion Torrent and SOLiD utilise a method called emulsion PCR, while

Illumina utilise another known as bridge PCR. The template for this amplification is

a single DNA molecule, replacing the need for cloning prior to sequencing. However,

errors are introduced during any PCR reaction, which contributes to lower sequencing

accuracy (see 2.3.2). In the case of amplicon sequencing, these errors are added to

those already present from amplicon library construction.

Third generation sequencing technologies, however are PCR-independent, able to se-

quence individual DNA molecules (reviewed in Schadt et al., 2010). In theory, the

approach allows for virtually unlimited read lengths with consistently high accuracy,

as opposed to second-generation methods, where increased length has to be balanced

vs. accuracy, partly because of their dependence on PCR. Commercialised third gen-

eration technologies include Helicos (Thompson and Steinmann, 2010; now discon-

tinued) and Single Molecule Real Time sequencing (SMRT), developed by Pacific

Biosciences (Eid et al., 2009). Neither platform is optimal for environmental genom-

ics studies, SMRT because of its higher error rate and Helicos because of short read

lengths. However, techniques like circular consensus sequencing (Travers et al., 2010)

show great potential for amplicon sequencing using SMRT. Hybrid approaches com-

bining SMRT and Illumina for genome sequencing (Koren et al., 2012) could also have

potential for shotgun metatranscriptomics. Yet more promising are the many technolo-

gies in development, including Oxford Nanopores (Stoddart et al., 2009), yet to release

proof-of-principle data at the time of writing.

2.2 Sequence analysis of community profiling data

2.2.1 Taxonomic classification

Taxonomic classification is the process of predicting the taxonomical positions or

“memberships” of organisms from a studied community, based on similarity to pre-

viously studied taxa or environmental clades. Either all unique sequences obtained are
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classified, or representatives from OTUs, alternatively contigs from assembly of shot-

gun sequencing reads. As discussed in Section 2.1.3, SSU rRNA is the most common

marker used in prokaryotes and also useful for classification of eukaryotes. Several

large projects also organise and align available SSU rRNA sequences into databases

such as SILVA (Pruesse et al., 2007), RDP (Cole et al., 2009) and Greengenes (DeS-

antis et al., 2006). These represent invaluable resources for taxonomic classification

and phylogenetic studies.

For each sequence to be classified, most classification methods utilise one of the fol-

lowing three strategies to identify a subset of similar sequences. Either each query

sequence is:

1. pairwise aligned (using e.g. BLAST) to a set of reference sequences with known

taxonomic affiliation;

2. fitted into an existing multiple alignment of reference sequences; or

3. divided into words of length n bp (“n-mers”), and the word composition compared

to a reference dataset.

Classification is then based on similarity to the sequences in this subset. In the most

trivial strategy, only the most similar reference sequence is selected and the query se-

quence is classified as belonging to the same taxon, possibly using a minimum sim-

ilarity or scoring function. Alternatives to this nearest neighbour strategy is to find

the lowest common ancestor (LCA) out of a set of nearest neighbours, a strategy first

used for metagenomic sequences in the program MEGAN (Huson et al., 2007). This

is trivial as long as the phylogenetic tree of the reference sequences is known, which

unfortunately is typically not the case. Instead such classifiers must approximate it us-

ing a reference-to-taxonomy mapping, in the case of MEGAN the “NCBI Taxonomy”

(Federhen, 2012). Another strategy is to apply Bayes’ theorem, resulting in a Naive

Bayes Classifier, so called because of its strong (naive) assumptions of independence

among underlying features, i.e. word frequencies. Table 2.1 lists some of the most

common classification tools, their strategies (according to the list above) and classifica-

tion algorithms. In addition, tree-based hybrid methods exist that first identify a subset

of related sequences, then predict a phylogenetic tree including the query sequence and

related sequences.

Liu et al. (2008) compared the performance of a number of different classification

strategies. For this, they used the RDP reference database (and cropped subsequences

thereof), as well as three environmental datasets. In this comparison, methods based

on multiple alignment (strategy 2) or tree-based methods showed higher accuracy for
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Table 2.1: Common taxonomic classifiers for SSU rRNA datasets

Name Reference Strategy Classification algorithm

PANGEA Giongo et al. (2010) 1 Nearest neighbour

MARTA Horton et al. (2010) 1 LCA-like

CLOTU Kumar et al. (2011) 1 Nearest neighbour

GAST (VAMPS) Huse et al. (2008) 1+3 with tree LCA

SINA Pruesse et al. (2012) 2 LCA

Greengenes Classifier DeSantis et al. (2006) 2+3 Nearest neighbour

RDP Classifier Wang et al. (2007) 3 Naive Bayes

MOTHUR Schloss and Westcott (2011) 3 (default) or 1 Naive Bayes or LCA

SSuMMo Leach et al. (2012) Hidden Markov Models Nearest neighbour

CREST Paper I 1 LCA

“leave-one-out” testing with reference sequences. Environmental datasets, however,

are often dominated by taxa that have not yet been taxonomically described. For these,

Strategies 1 (pairwise alignments) and 2 (nucleotide composition), provided better

results. Further, tree-based methods are generally more computationally demanding,

which presents another challenge for large scale community profiling. The results of

Liu et al. also indicated that accuracy of assignments vary depending on SSU rRNA

regions, especially for short reads with lengths around 100 bp.

Besides those tailored for SSU rRNA, several specific methods also exist for other

phylogenetic markers. In addition to community profiling data, many classification

tools are also available for shotgun metagenomics. However, a fundamental problem

associated with such analysis is that large numbers of genes in most genomes have

undergone horizontal transfer at some point during their evolutionary history (Andam

and Gogarten, 2011). Reads from such genes break the underlying assumption that

sequence similarity corresponds to phylogenetic similarity, which can be compensated

for by classifying only reads from suitable phylogenetic markers (Liu et al., 2011a).

2.2.2 Using Operational Taxonomic Units (OTUs) as proxies for microbial species

As mentioned in Section 2.1.2, isolation of microorganisms in pure culture remains

the only accepted route to describing new bacterial or archaeal species, in spite of the

problems associated with it. Apart from this approach, there is no consensus among

microbial biologists concerning a species concept and it remains a debated topic (Acht-

man and Wagner, 2008; Caro-Quintero and Konstantinidis, 2011). Several studies sug-

gest that genetic information alone may be insufficient to define a meaningful species

concept, at any rate if only one marker gene is sequenced. Combining genetic and
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ecological information may be a more successful approach (Reviewed in Fraser et al.,

2009).

In environmental genomics, Operational Taxonomic Units (OTUs) based on genetic

similarity are typically used as a proxy for species. Several definitions of OTUs ex-

ist, depending on method and preference. In SSU rRNA-based amplicon sequencing, a

clustering approach is commonly used. This approach takes advantage of the fact that

all sequences are obtained from a homologous region and thus can be directly com-

pared. Result from such comparisons are collected in a global similarity matrix and

are normally based on a global multiple alignment, or exhaustive pairwise alignments

between all unique sequences. Agglomerative hierarchical clustering can then be car-

ried out based on this matrix and OTUs are defined as all such clusters above a chosen

similarity cutoff (commonly 97%, for SSU rRNA).

A problem with alignment-based clustering methods is that processing time often scales

with the square of the number of unique sequences (O(n2)). Several hybrid approaches

have been developed that optimise this process for large datasets using dynamic pro-

gramming (Cai and Sun, 2011), n-mer composition (Edgar, 2010; Ghodsi et al., 2011)

or heuristic algorithms (Li and Godzik, 2006; Seguritan and Rohwer, 2001).

The 97% similarity cutoff commonly used to define OTUs in SSU rRNA amplicon

studies was first suggested for full-length sequences of the gene, by Stackebrandt and

Goebel (1994). It has later been suggested that this does not correspond to taxonomic-

ally described species or natural genetic clusters of variation, and a cutoff of 99% has

instead been proposed (Acinas et al., 2004; Stackebrandt and Ebers, 2006). However,

as the degree of variation differs between hypervariable regions of the SSU rRNA, the

same cutoff value will give rise to different numbers of OTUs depending on which re-

gion that is sequenced (Kim et al., 2011). Further, lower cutoffs may increase accuracy

by compensating for errors introduced by PCR or sequencing (see Section 2.3).

Several benchmarking studies (e.g. Sipos et al., 2010; White et al., 2010; Sun et al.,

2011) have compared the consistency and quality of different OTU clustering ap-

proaches. Consensus results show that maximum-linkage clustering outperformed

heuristic approaches and alternative manners of merging hierarchical clusters, such as

average-linkage or UPMGA (Unweighted Pair Group Method with Arithmetic Mean).

An alternative to OTUs is to analyse clusters of sequences classified taxonomically to

the same genus or higher ranks. A promising hybrid approach was developed by White

et al. (2010) that utilise taxonomic annotations for semi-supervised OTU clustering.
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2.2.3 Diversity estimates, comparison and extrapolation of richness

The most widely used estimate of alpha diversity in community profiling studies is

richness, which is simply a count of the number of OTUs or taxa present in a com-

munity, habitat or sample. Richness and other diversity measures also depend on the

size, heterogeneity and population of the environmental sample investigated. Because

of the requirements of most PCR and second-generation sequencing protocols, relat-

ively large samples compared to their microbial inhabitants are typically needed, in or-

der to extract sufficient amounts of nucleic acid. This is sometimes desirable in order to

compensate for fine-grained environmental heterogeneity. Regardless, a consequence

is that few sequencing studies can provide a complete census of organisms present, ex-

cept in the most simple of communities. To compensate, a number of methods exist

that estimate total richness based on the captured diversity structure. An underlying

assumption of such methods is that the sequence dataset analysed represent a random

sample of the underlying diversity. This may not necessarily be true after PCR ampli-

fication, however.

One of the most simple richness estimators is Chao-1 (Chao, 1984). This non-

parametric estimate is based only on the shares of observed OTUs (or taxa) represented

by exactly one and two reads, respectively. While useful for estimating a minimum

level of total richness, the Chao-1 and other commonly used non-parametric estimates

(e.g. ACE; Chao and Lee, 1992) have been shown not to converge with increasing

sequencing depth when applied to complex communities, to a large extent caused by

sequencing artefacts (Gihring et al., 2011).

Parametric estimation can also be used to predict total richness (Hong et al., 2006). A

disadvantage with this approach is that a specific shape must be assumed for the un-

derlying taxon-abundance distribution (TAD). Quince et al. (2008) have developed a

Bayesian method utilising a Markov chain Monte Carlo algorithm, to sample and op-

timise a range of TAD parametrisations, along with associated probabilities of fitting

the underlying TAD. Based on this, estimates of total richness can be calculated. An

advantage of this method is that estimates are provided as Bayesian confidence inter-

vals rather than point estimates, allowing for significance assessments when comparing

the richness between samples. These estimates are also less sensitive to sequencing

artefacts than non-parametric estimates (Øvreås et al., unpublished).

A number of indices have also been proposed that take into account more aspects of

community diversity than simply richness. One such diversity index is the Shannon

index (H’), originally proposed to quantify the entropy in strings of text (Shannon,



32 Background

1948). H’ is defined as :

H ′ =−
R

∑
i=1

pi log(pi)

where total richness is R and relative abundance p. Another widely used diversity

index is the Simpson index (D), which equals the probability that two entities (sequence

reads) randomly taken from a dataset will represent the same class (i.e. taxon or OTU;

Simpson, 1949). It equals:

D =
R

∑
i=1

p2
i

Both of the mentioned indices take into account the evenness of the community, i.e.

how equal the different taxa or OTUs are numerically. Evenness can be described as

a quotient between measured H’ and its theoretical maximum, but this is problematic

since such a calculation requires total richness to be known. In either case, an evenness

of 1 indicates that all OTUs (taxa) are present at exactly the same abundance.

To allow unbiassed comparisons of diversity, datasets need to be derived using the

same methods. Differences in e.g. extraction method, primer choice or PCR condi-

tions can otherwise lead to biases that are not easily compensated (see 2.3.2-2.3.3). To

compare datasets derived with the same methodology, but with significantly different

size, random sub-sampling can be used. This is especially important when comparing

total richness or estimates like Chao-1, whereas parametric estimates, evenness and di-

versity indices are less sensitive to such bias (Gihring et al., 2011). Another approach is

rarefaction, which uses repeated random sub-sampling to calculate how observed rich-

ness depends on the sequencing effort in number of reads (Gotelli and Colwell, 2001).

Results can be illustrated as a rarefaction curve and allows for an intuitive manner to

compare richness, evenness and total sequencing efforts. Richness can also be com-

pared between datasets at specific sequencing depth, but the technique cannot be used

to estimate total richness by extrapolation (Gotelli and Colwell, 2001).

2.2.4 Comparison of community composition across datasets

One of the strengths of sequencing-based community profiling is that it allows for a

large number of biological samples to be processed and sequenced at a relatively low

cost. Lundin et al. (2012) have demonstrated that relatively few sequence reads per

dataset (~1,000) may suffice to reveal 90% of the trends in compositional difference.

This would allow for hundreds of barcoded datasets to be sequenced in one single

pyrosequencing run, for example. Compared to molecular fingerprinting methods, it

also allows for more direct compositional comparisons, that are not limited to only
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predominating taxa. It is preferable that datasets to be compared are derived using the

same set of methods, particularly for amplicon datasets where primer choice otherwise

might bias composition (see 2.3.2).

Following taxonomic classification, relative abundances can be compared directly

between datasets in order to find taxa present at significantly different relative abund-

ance. For pairwise comparisons, a suitable statistical method for this is Fisher’s exact

test (Parks and Beiko, 2010). It is also important to adjust calculated p-values for mul-

tiple hypothesis testing, using e.g. Bonferroni correction. For comparisons between

multiple datasets, it is often more useful to calculate a dissimilarity measure between

each pair of datasets. This can be calculated using normal Euclidean distance. How-

ever, a range of dissimilaritiy measures more suitable for ecological data also exist.

One of the most widely used for community profiling is the Bray-Curtis dissimilarity

(dBC; Bray and Curtis, 1957). This is analogous to the rectilinear Manhattan or “tax-

icab” distance, standardised by the sum of all taxon (or OTU) abundances, such that it

is bound between 0 and 1. It is given by the formula:

dBC =
∑R

i=1 |pi −qi|
∑R

i=1 (pi +qi)

where p is the abundance in the first and q in the second dataset, and R is the combined

richness of the two samples.

Based on the resulting dissimilarity matrix, multivariate statistical techniques can be

used for explorative data analysis. An example is hierarchical clustering, which can

handle non-metric dissimilarities like Bray-Curtis. In addition to clustering, ordination

methods like non-metric multidimensional scaling (NMDS) are very useful for analys-

ing relationships between datasets. Some ordination methods like principal compon-

ents analysis (PCA) and clustering methods like k-means, require Euclidean distances.

To compensate for problems this may cause when applied to ecological data, Hellinger

transformation can be applied (normalisation to relative abundance and square root

transformation; Legendre and Gallagher, 2001).

When comparing the composition between datasets of unequal size it is important to

compensate by removing rare taxa (or OTUs) below the detection limit in the smaller

dataset, especially when analysing presence or absence rather than using a dissimilarity

index (Gobet et al., 2012). For amplicon sequence datasets, it is also common to remove

all OTUs represented by only one read (singletons) before comparisons.
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2.3 Sources of random and systematic errors, and methods for com-

pensation

2.3.1 Sample handling, nucleic acid extraction and reverse transcription

The first step in preparation of an environmental sequencing library is the extraction

of nucleic acid (DNA or RNA) from collected samples. However, such extractions are

not always possible to carry out in the field, making it necessary to preserve samples

temporarily. The time between collection and preservation of a sample has potential

to influence the community, since it can involve severe stress factors, e.g. subjecting

anaerobic organisms to oxygen, or filtering of a water sample. It is thus important to

minimise this time, especially when analysing mRNA, whose half-life can be as short

as a few minutes (Selinger et al., 2003).

The choice of preservation method may also have an influence on nucleic acid yield and

quality. Simister et al. (2011) studied this influence for sponge endosymbiont samples,

comparing preservation in liquid nitrogen to RNAlater (a buffered saturated solution

of ammonium sulphate). The former was found to be favourable, but due to the small

differences and the complications of handling liquid nitrogen in the field, RNAlater

was nonetheless recommended.

Several studies have evaluated the influence of nucleic acid extraction methods on com-

munity profiling (e.g. Cuív et al., 2011; Simister et al., 2011; Terrat et al., 2012). A

range of protocols exist, differing in whether RNA or DNA is extracted, or both sim-

ultaneously. Protocols also differ in the method for cell lysis. Physical lysis methods

use e.g. bead-beating or freeze-thawing, while chemical methods use e.g. lysozyme

and a mixture of other substances. The most appropriate extraction method depends on

a range of factors such as the type of environment and organisms targeted (especially

the type of cell walls); preferred nucleic acid; and analytical constraints. Regardless,

the choice of extraction procedure can have a severe influence on the resulting com-

munity profile and fail to recover certain taxa, especially in complex environments like

soil (Terrat et al., 2012).

In addition to the potential systematic errors from sample handling and extraction, re-

verse transcription of extracted RNA into cDNA is another source of systematic and

random errors. Therefore, it has been recommended to always use technical duplica-

tion and never compare RNA-derived datasets using different primers or reverse tran-

scription conditions (Ståhlberg et al., 2004).
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2.3.2 PCR amplification bias and random drift

As already mentioned, many primer pairs exist that target different taxonomic groups

and regions of the SSU rRNA. Primarily, differences in taxonomic coverage can bias

results, if organisms present in the community have SSU rRNA sequences that do not

match the primers used. The extent of such bias depends on the number of mismatches,

their positions in the primer and the annealing temperature used (Sipos et al., 2007; Wu

et al., 2009). Diversity estimates obtained will also depend on which SSU rRNA region

that is targeted. In addition, shorter amplicon lengths may also skew the community

profile and increase apparent diversity (Engelbrektson et al., 2010). Use of primers with

degenerate positions can also bias results by preferential amplification of templates with

the nucleobases G or C (Polz and Cavanaugh, 1998).

In addition to the systematic errors discussed, PCR may also introduce significant ran-

dom error, skewing the community profile and leading to high variance in relative

abundances between technical replicates, particularly for rare taxa. This effect, termed

PCR drift by Polz and Cavanaugh (1998), is caused by the exponential nature of PCR

and can be decreased by minimising the number of amplification cycles and using tech-

nical replication. Replicates may be pooled after PCR.

2.3.3 Chimeras, misincorporations and other PCR artefacts

In addition to amplification bias, several artefacts can arise during PCR. These include

chimeric sequences formed by two different DNA molecules, point mutations and par-

tial sequence deletions. Such artefacts can lead to several analytical problems. In addi-

tion to increasing diversity estimates, they can also suggest the existence of organisms

that do not exist.

Taq polymerase, the high-temperature adapted DNA polymerase typically used in PCR,

lacks exonuclease proofreading activity and therefore causes a relatively high rate of

misincorporations during strand synthesis. This misincorporation rate has been es-

timated between 3x10-3 to 3x10-5 per nucleotide and cycle (von Wintzingerode et al.,

1997). In either case, PCR can lead to a significant share of sequences having one or

more point mutations, increasing with the number of amplification cycles used. The

use of proof-reading DNA polymerases for PCR can decrease the rate of misincorpor-

ations, but may at the same time worsen other PCR artefacts (Gury et al., 2008).

Partial sequence deletions are caused by the formation of secondary structures such

as hairpins. In addition to PCR, such artefacts can form with high frequency during
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reverse transcription, making them particularly problematic in RNA-derived sequence

datasets (von Wintzingerode et al., 1997).

The formation of chimeric sequences is a widespread problem, already identified in the

early days of PCR in the late 1980s (von Wintzingerode et al., 1997). Most chimeras

are generated from incomplete extension during PCR with the resulting fragment act-

ing as a primer in the next amplification cycle. Like PCR drift, the effect be reduced

by minimising the number of cycles used. Chimeras form more frequently when DNA

molecules of shorter sequence lengths are used as template, which particularly is the

case for cDNA (von Wintzingerode et al., 1997). Other factors also influence chimera

formation, choice of DNA polymerase, annealing temperature and other PCR condi-

tions, as well as the diversity of the community studied (Fonseca et al., 2012). All of

these factors may also influence the extent of other PCR artefacts. In a study by Osborn

et al. (2000), the type of Taq polymerase used had a larger influence on community fin-

gerprinting results than any other conditions tested, including template concentration

and number of cycles used.

2.3.4 Detection and removal of chimeric sequences

Detection of chimeric sequences is essentially a binary classification problem. All chi-

meras exist as recombinations of two or more parent sequences. Thus, their detection

would be trivial if all chimera-free parent sequences were known, which unfortunately

is not the case. In typical environmental datasets, many novel sequences are instead

encountered. Most existing algorithms used for chimera detection utilise reference

datasets of, ideally, chimera-free full-length sequences, to which the investigated com-

munity is compared using e.g. pairwise alignments. Investigated sequences may also

be subdivided and their parts aligned separately to the reference sequences. A heuristic

threshold or classification algorithm is then used to identify chimeras, which exhibit

significantly differential similarity between their partial sequences.

Several methods that use variations on the approach described above include CheckChi-

mera (Robison-Cox et al., 1995), Bellerophon (Huber et al., 2004), CCode (Gonzalez

et al., 2005), Mallard (Ashelford et al., 2006) and ChiSeqI (Arigon et al., 2008). How-

ever, these were developed for the longer reads of first-generation sequencing and typic-

ally show poor performance for shorter reads from e.g. pyrosequencing. To compensate

for this, a new generation of chimera classification tools were developed, including

ChimeraSlayer (Haas et al., 2011), UCHIME (Edgar et al., 2011), Perseus (Paper IV)

and DECIPHER (Wright et al., 2012). The former three methods utilise an alignment
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strategy, whereas DECIPHER performs taxonomic classification and identifies sub-

sequences (30-mers) that are not expected in the taxon to which the sequence has been

classified. Perseus and UCHIME can also identify chimeras without using a reference

dataset, instead analysing the relative abundances of sequences. A detailed discussion

of these methods and their performance is found in Section 4.3.

2.3.5 Noise, artefacts and compensation in pyrosequencing and Ion Torrent data

By definition, all sequencing methods incorporate a step where the underlying sequence

of nucleobases in a DNA molecule is measured (or multiple copies thereof, for first-

and second generation methods). Thus, they are influenced by systematic- and random

measurement errors, or in other words: bias and noise. Additional noise stems from

the PCR amplification inherent to second-generation sequencing methods and. Further-

more, the template molecule may already contain errors before sequencing, stemming

from the PCR carried out during amplicon library preparation, or from reverse tran-

scription (see 2.3.2-2.3.3). First-generation sequencing is further biased by the cloning

step necessary prior to sequencing.

Apart from PCR errors, the major source of noise in pyrosequencing stems from the

measurement of light intensities. Ideally, a specific measured light intensity repres-

ents the number of nucleobases incorporated during each measurement step. In reality,

however, noise contributes to a gaussian-like distribution of measured intensities for

each ideal intensity. This is particularly problematic when more than one base is incor-

porated, representing a homopolymer stretch, and the variation of measured intensities

increases with homopolymer length (Margulies et al., 2005). The variation also in-

creases with base position in the sequence, giving rise to more noise in the 3’ end of

sequences (Balzer et al., 2010). The situation is essentially the same for Ion Torrent,

although pH is measured instead of light intensities and available data indicate a higher

noise level compared to pyrosequencing (Loman et al., 2012).

Adjusted measures of light intensity in pyrosequencing, or pH in Ion Torrent, are

termed flow values. The name is derived from one type of nucleobase being intro-

duced at a time (flowed across the pico-titre plate), during the sequencing-by-synthesis

reaction. The default software delivered with these platforms can compensate to some

extent for systematic errors, but cannot compensate for random noise. During base-

calling, i.e. translation from measured flow values to sequence strings, each value is

instead rounded to the closest integer, representing the homopolymer length. The result

is a number of sequences with homopolymer stretches of incorrect lengths. A quality
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score is also assigned to each base representing its reliability, consequentially being

lower in longer homopolymer stretches.

A number of methods have been suggested in order to increase the accuracy of

pyrosequenced datasets. Huse et al. (2007) studied the accuracy of the first pyrosequen-

cing version (GS20) and found errors to be concentrated to reads significantly shorter

than average or with ambiguous base calls (“Ns”). Removing these decreased the er-

ror rate from 0.5 to 0.2 % in the dataset evaluated. However, later studies using newer

versions of the pyrosequencing were unable to reproduce a similar decrease in error

rate, using such filtering (Schloss et al., 2011). Other filtering methods also incorpor-

ate trimming of reads based on quality (Kunin et al., 2009) and alignments based on

predicted secondary structure of SSU rRNA (Cole et al., 2009).

For amplicon sequence datasets, a number of methods exist that utilise greedy agglom-

erative clustering algorithms, followed by a selection of unique representative sequence

for each resulting OTU (Huse et al., 2010; Kunin and Hugenholtz, 2010). Others use

iterative probabilistic clustering algorithms that incorporate flow value distributions

(Papers III, IV; Reeder and Knight, 2010). These methods are discussed further in

Section 4.3. Another recently developed method, DADA, use a similar clustering al-

gorithm, but does not take into account flow values (Rosen et al., 2012). This method

might also be a viable alternative for noise-reduction of other sequencing platforms

such as Illumina. Yet another method, HPCall, improves base-calling to better predict

homopolymer lengths in sequences (Beuf et al., 2012).

In addition to random noise and PCR errors, a number of systematic artefacts exist,

specific to pyrosequencing (Balzer et al., 2010). One such artefact is duplicated reads,

the removal of which is recommended for shotgun metagenome data (Gomez-Alvarez

et al., 2009). In amplicon- and shotgun SSU rRNA data, identical reads are expected

to appear naturally, however. Removing them would bias obtained taxon-abundance

distributions rather than correct them.
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Chapter 3

Research questions

As mentioned in Chapter 1, environmental genomics is a relatively young field, even

more so at the onset of my PhD project. The limitations and preconditions of its rapidly

developing methodology remain poorly understood, with several knowledge gaps. A

“culture gap” between bioinformatics and microbial ecology risk to widen them. The

major aim of this PhD thesis was to identify and helping to close such gaps, both of

methodological and ecological characters. Specifically, the use of SSU rRNA-targeted

pyrosequencing was investigated. A number of knowledge gaps were identified and

four specific research questions were devised, to target a selection of these:

Q1: How to determine taxonomic composition and novelty of microbial communit-
ies?

The purpose of taxonomic classification is to map sequences derived from environ-

mental samples to described taxa. Ultimately, it can also complement the underlying

taxonomy, leading to improved systematics and evolutionary understanding. By tra-

dition, only organisms cultured and studied in the laboratory have valid taxonomical

standing. However, a growing part of the known microbial diversity is derived only

from sequence data of uncultured organisms. How to complement microbial system-

atics with this type of data remains an unresolved issue. Regardless, an underlying

goal of taxonomic classification should always be to derive as meaningful and accurate

information as possible, from the community studied.

When I started to work on this thesis, none of the available classification methods were

deemed sufficient for the community profiling data considered here (from SSU rRNA

amplicon sequencing or shotgun metatranscriptomics). To address this, new resources

for classification were developed, described in detail in Paper I. The sub-questions
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below summarise the challenge of taxonomic classification and were formulated to aid

the design of new methods:

Q1.1: Does a suitable set of reference sequences exist, with sufficient coverage of SSU

rRNA sequences from all three domains of life?

Q1.2: How accurate is the taxonomic classification of the reference dataset? Is it up-

dated in relation to current phylogenetic studies?

Q1.3: Which method and set of parameters offers the best classification accuracy using

the chosen reference dataset?

Q1.4: Can novel sequences with unusually low similarity to reference sequences be

identified and distinguished from sequencing noise?

Q1.5: How can the predicted diversity and taxonomic composition best be illustrated?

Q2: What is the reproducibility, extents and sources of bias of SSU rRNA-targeted
pyrosequencing?

Prior to the work presented here, few studies, if any, had appropriately controlled the re-

producibility of SSU rRNA-targeted pyrosequencing. For amplicon sequencing, many

error sources are known to exist (see 2.3), including nucleic acid extraction, PCR, re-

verse transcription and choice of sequencing platform. All of these can potentially bias

the estimates of community composition and diversity. However, the relative influences

of individual sources of bias are largely unknown, as well as their relations to different

experimental protocols, including primer choice and reverse transcription. As demon-

strated using clone libraries by e.g. Moeseneder et al. (2005), the choice of nucleic acid

analysed also has strong influence on results (either rRNA, or its gene from DNA). It

is likely, however, that the lower sequencing depth as well as random errors inherent to

cloning increased these differences. The use of second-generation sequencing has re-

moved the need for a cloning step prior to sequencing, which has certainly helped to

reduce such errors. In conclusion, the difference between the active (RNA) and present

(DNA) organisms in environmental communities also remains an open question.

In Paper II, the extent of primer bias and other sources of variation were evaluated,

using a hydrothermal vent associated microbial mat community as a model system.

Several datasets were derived from two biological replicates of such mats, using both

shotgun- and amplicon sequencing, from DNA and RNA. In addition to systematic

error sources, the reproducibility of the amplicon sequencing protocol used was also

estimated.



41

Q3: How diverse are microbial communities and to what extent can this be determ-
ined?

The diversity of microbial communities and the mechanisms shaping it remains a sub-

ject of much debate. Several explanations for the extent of microbial diversity and the

rare biosphere (see Section 2.1.3) have been suggested, including sequencing artefacts

(Reeder and Knight, 2009), host-virus interactions (Thingstad, 2000) and other mech-

anisms related to dispersal and grazing (reviewed in Pedrós-Alió, 2012). In order to test

such ecological explanations, it is critical to understand the contribution of methodolo-

gical artefacts to sequence diversity. Without it, no definition of the rare biosphere or

estimate of its extent can be complete. Further, exhaustive studies remain unfeasible in

most ecosystems, in spite of exponentially increasing sequencing capacity. Consequen-

tially, extrapolation is necessary to infer total OTU richness. This would be challenging

even with a perfect and unbiassed sequencing technology, but without understanding

the consequence of noise introduced by PCR and sequencing, it is impossible. In other

words, before the first part of the question proposed here can be answered (“how diverse

are microbial communities?”), its second part must be addressed (“to what extent can

this be determined”). This second part can be divided into the following sub-questions:

Q3.1: What is the extent of systematic and random errors introduced during library

preparation and sequencing?

Q3.2: How can such errors influence current diversity estimates?

Q3.3: Can these errors be removed or compensated for, using e.g. filtering or cluster-

ing methods?

Q3.4: Given a successful compensation for errors (Q3.3), what is the extent of remain-

ing errors and how do these influence diversity estimates?

These questions were addressed in Papers III and IV, by using “mock communities”

with known real diversity and by providing a set of compensation methods (Amplic-

onNoise). My contributions to these papers consisted mainly in evaluation and imple-

mentation of new functionality.

The first part of Q3 (“how diverse are microbial communities?”) was then addressed

in Papers II and V. Even after the application of AmpliconNoise, significant errors

will still remain and influence diversity estimates. Unfortunately, their extent and con-

sequences (Q3.4) are expected to differ between natural ecosystems and the mock com-

munity samples used in Papers III & IV. Thus, important work remains in order to

answer this question in a satisfactory manner (see Chapter 5).
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Q4: How does diversity and composition of microbial communities vary across
space and environmental gradients?

This fundamental question is difficult to answer, because of the multitude of microbial

habitats, their complexity, and the many relevant physicochemical and biological para-

meters affecting indigenous microorganisms. The question is intentionally formulated

very generally, bordering on the naive. Yet, it illustrates our incomplete knowledge

of spatial heterogeneity across microbial habitats, both in terms of physichochemical

conditions and community structure. To disentangle these patterns of microbial biogeo-

graphy and the mechanisms that shape them is crucial for understanding the influence

of environmental gradients on microbial communities. Paper V evaluates the influ-

ence of three such gradients, namely salinity, pH and dissolved oxygen. More specific,

their correlation to diversity and composition of communities in alkaline soda lakes

were studied. Soda lakes represent excellent model ecosystems, thought to harbour

relatively unique communities of limited diversity. The question of spatial variabil-

ity was also targeted using replication. Further, sequence datasets derived from both

DNA and RNA were analysed. These were compared with respect to variation within

and between lakes, asking the question of whether diversity and compositional patterns

behave the same for genomic (potential) and transcribed (active) rRNA.
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Chapter 4

Discussion

4.1 Taxonomic classification of SSU rRNA sequence data

Taxonomic classification (Q1) enables comparisons of environmental communities

from different studies, and linking of taxonomic identity with function. The latter

serves the purpose of predicting ecological roles of members in the studied com-

munity. It is particularly relevant in community profiling studies where, as opposed

to functional metagenomic profiling, this cannot be directly inferred from similarity to

protein-coding genes.

Preferably, a taxonomy should be coherent with its underlying evolutionary history, as

inferred using sequencing data (or must be, according to phylogenetic nomenclature;

Cantino and de Queiroz, 2010). Ecological roles can then be inferred from phylogen-

etic marker sequences mapped to the taxonomy, based on knowledge about the taxa

to which they are classified. An important factor is the similarity between query and

reference sequences. Those nearly identical to reference sequences from well-studied

microbial species can be placed at higher resolution, whereas sequences with low iden-

tity must be classified more conservatively. It can also be of interest to study such

sequences more closely, due to their novelty. Environmental sequences can be useful

to include as references, either to improve classification accuracy or to infer possible

ecological roles of sequences with low similarity to cultured, well-described species.

They can also improve the accuracy of phylogenetic trees and thus the taxonomy itself

(Nilsson et al., 2011).

SILVA (Pruesse et al., 2007) is a database that address the issues above, i.e. using

aligned SSU rRNA sequence data to construct a phylogenetically consistent taxonomy

including environmental sequences. However, no method prior to the work presented
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here was capable of using SILVA or similar resources for classification of large se-

quence datasets. Neither did any method allow for direct detection of taxa with high

novelty (low similarity to reference sequences). To this end, a classification scheme

named “CREST” (Classification Resources for Environmental Sequence Tags; Paper
I) was developed.

CREST was implemented both as a standalone program (GPL licensed), a web server

and as part of the existing program MEGAN (Huson et al. 2007; Figure 4.1). This

modular approach was intended to make it accessible for as many scientists as pos-

sible, regardless of background and computer skills. CREST uses an alignment-based

classification strategy and the user can classify sequences using two different reference

databases: (1) SilvaMod, resulting from a manual curation of the SILVA database and

taxonomy, or (2) Greengenes (see below). It also allows for construction and use of

custom databases and taxonomies using the program ARB (Ludwig et al., 2004). In

addition, CREST reports total composition of one or more datasets, as well as taxon-

specific diversity. Novel sequences are also identified and classified more conservat-

ively.

The accuracy of CREST was compared to other classification tools intended for SSU

rRNA sequence datasets (see 2.2.1), using two different cross-validation techniques, as

well as environmental sequence data. Except for one test case, CREST outperformed

the RDP Classifier (Wang et al., 2007), likely the most widely used classification tool

for SSU rRNA sequence data. Classification tools like SINA aligner, SSuMO (Leach

et al., 2012) and GAST (Huse et al., 2008) could not be tested using cross-validation

due to the nature of their reference data. However, tests using environmental datasets

were carried out for these tools, in all cases with discouraging results.

Greengenes is an SSU rRNA reference alignment and database similar to SILVA. Dur-

ing the development of CREST, Greengenes announced their own custom taxonomy,

much like SILVA, taking into account the tree resulting from hierarchical clustering of

reference sequence alignments (McDonald et al., 2012). A difference between the two

is that Greengenes uses a custom-developed algorithm to taxonomically annotate se-

quences in its database, whereas SILVA was annotated manually. Further, Greengenes

does not yet include nuclear eukaryotic sequences (18S rRNA). Neither does it provide

a tool for classification of large datasets. However, training data derived from a sub-

set of Greengenes is available for the RDP Classifier. When compared to the default

training data of the RDP Classifier, this improved classification accuracy significantly,

especially for archaeal taxa. Thanks to encouraging results, Greengenes was adop-

ted into CREST as an alternative to SilvaMod. Comparisons between the two (Paper
I) were inconclusive with the best accuracy depending on testing scheme. SilvaMod
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Figure 4.1: Overview of CREST: The flow of information during the construction of a new reference database such as Silva-

Mod is represented by arrows. The classification tools MEGAN or LCAClassifier use CREST taxonomy files for classification

of environmental sequences aligned to the reference database with Megablast.

generally performed better when applied to environmental data, whereas Greengenes

showed better cross-validation results. The taxonomic annotation approach utilised in

Greengenes shows promise, since it can avoid time-consuming manual updates when

incorporating new sequences, or findings from phylogenetic studies.

4.2 Bias and reproducibility of SSU rRNA-targeted pyrosequencing

There are many methodological issues associated with community profiling , such as

reproducibility and sources of bias (see Section 2.3). These should always be care-

fully considered in studies utilising community profiling. In Paper II, the influence

and causes of PCR bias were investigated, as well as differences between RNA- and

DNA derived datasets (Q2). Reproducibility, and the influence of DNA extraction,

could also be estimated to some extent. This analysis was carried out in connection

to an ecological study of a microbial community from a hydrothermal vent associated

biofilm. The degenerate, prokaryotic “universal” primer pair used for amplicon se-

quencing in the study, targets the V5-V6 hypervariable region of the SSU rRNA. V6 is

a commonly targeted region in amplicon sequencing and known to be the second most

suitable for determination of diversity and taxonomic affiliation, after V3 (Jeraldo et al.,

2011). The pair was chosen because it has been shown to provide the highest possible
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coverage among bacteria and archaea without mismatch, by Jørgensen et al. (2012).

The community investigated in Paper II was diverse, but relatively uneven and dom-

inated by mesophilic Epsilonproteobacteria. Two biological replicates taken from ad-

jacent mats were sampled and used to construct various sequencing libraries, yielding

DNA- and RNA- (cDNA) derived amplicon- as well as shotgun datasets. Amplicon

libraries were also prepared twice from one cDNA pool, allowing for estimation of re-

producibility of the sequencing step. These two replicates were more similar than any

other pair of datasets. One of the three DNA amplicon datasets was derived with an

alternative extraction method, but did not deviate more from the other two.

Comparisons based on taxonomic composition (Paper I) showed that sequence data-

sets (Paper II) clustered mainly according to library type. When comparing compos-

itional differences between sequences derived from the same sample, the biggest dif-

ferences were found between DNA- vs. RNA-derived datasets, followed by shotgun-

vs. amplicon datasets. These consistently differed more than the two biological replic-

ates did from each other, when analysed with the same experimental strategy. Further

analysis revealed that both DNA vs. RNA and shotgun vs. amplicon differences were

mostly systematic, with the same taxa showing consistent and significant differences in

all pairwise comparisons made. The taxa with the highest overrepresentation in DNA-

compared to RNA-derived datasets were both archaeal.

The differences between amplicon- and shotgun datasets were also investigated further,

using shotgun sequence data. Using linear regression, it was shown that about half of

this variation could be explained by two factors: primer mismatch, and nucleobase

composition at degenerate positions (Paper II). As expected, only two “nucleobase

types” were statistically significant, namely (1) G or C, and (2) A or T. The first are

responsible for stronger base pairing, requiring a higher melting temperature. It is pos-

sible that reverse transcription or shotgun sequencing also biased results against certain

taxa, related to e.g. G/C-content, not possible to control using this simple methodology.

However, the indicated causes of primer bias agree well with earlier studies of multi-

template PCR (e.g. Polz and Cavanaugh, 1998; Wu et al., 2009). It also demonstrates

that using universal primers with degenerate positions other than G/C or A/T may be

problematic and compromise the semi-quantitative rigour of sequencing results.

Although not examined in detail, Paper II also indicates an impressive technical re-

producibility of the methodology employed. Between the two technical replicates se-

quenced with different platforms, the maximum class level difference in relative abund-

ance was very similar to that reported in a benchmarking study by Pilloni et al. (2012)

(about 10% of relative abundance). Further, all OTUs represented by over 20 reads

were found in both replicates (compared to 96% in the study by Pilloni et al.). This
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strongly contrasts the discouraging results of Zhou et al. (2011), possibly because of

differences in the experimental procedure. For example, Zhou et al. did not use the

two-step (reconditioning) PCR protocol shown to minimise the PCR bias caused by

barcoded primers and lead to better reproducibility (Berry et al., 2011).

Paper II also indicates that bias caused by differing extraction methods was limited.

This is supported in Paper V where the choice of extraction protocol had no discernible

effect on clustering patterns of datasets. The choice of protocol used for harvesting

cells from their aquatic habitat, however, had significant influence on the abundance of

several taxa.

Because of its high resolution compared to functional profiling, community profiling

is a technique especially suited for exploring the diversity of rare taxa and communit-

ies with low biomass. However, technical reproducibility may decrease with lower

abundance (as noted by Legge, 2012). This is important to take into account when

studying the rare biosphere, whose members often show higher spatial or temporal

variation in abundance (Paper V; Youssef et al., 2010; Peura et al., 2012). In addi-

tion to inactive taxa, expected to show such distributions, part of this variation could

be artifactual. Other studies have shown more conserved relative abundances for rare

taxa (Bowen et al., 2012; Kirchman et al., 2010). As a semi-quantitative method, only

relative abundances can be measured. Complementary methods, such as quantitative

real-time PCR (RT-qPCR) or microscopy-based cell counting (Paper V), can be used

to achieve quantitative results. However, RT-qPCR targeting DNA-derived SSU rRNA

will not provide an estimate of cell numbers due to variations in the number of rRNA

gene copies between taxa (Lee et al., 2009).

4.3 Dealing with sequence noise and determination of microbial di-

versity

The microbial biodiversity and omnipresence revealed by community profiling surveys

is one of the most important findings in modern ecology. However, the extent and im-

plications of this diversity remain poorly understood. The rare biosphere is one of its

fascinating aspects, but many technical questions must be addressed to better under-

stand it (Q3.1-Q3.4). This calls for the development of algorithms for noise-filtering

and accurate diversity estimation, preferably with implementations easily used by most

of the scientific community. For this purpose, PyroNoise was developed (Paper III).

Later it was succeeded by AmpliconNoise (Paper IV). My contributions to these soft-

ware packages were development (mainly of auxiliary workflow components), testing,

benchmarking and documentation.
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Figure 4.2: Example of homopolymer noise and its influence on base-calling in pyrosequencing. Although the two flowgrams

in the example were generated from identical underlying sequences they yield reads with a pairwise similarity of only 83%.

PyroNoise (Paper III) is an algorithm for correction of noise-induced pyrosequen-

cing artefacts in amplicon datasets, implemented in C and allowing for parallel execu-

tion. The idea behind PyroNoise was to work directly with the measured intensities,

or flowgrams, for each sequence, because these contain information that is lost after

base-calling (see Section 2.1.5). For example, two very similar flowgrams can lead to

base-called sequences that do not appear similar when aligned (see Figure 4.2). What

PyroNoise does can be described as merging such flowgrams into clusters, in cases

where abundance data supports that they were generated from identical underlying se-

quences.

To parametrise PyroNoise, clones with known sequences were mixed into a mock com-
munity and pyrosequenced. The probability densities of measured intensities surround-

ing homopolymer lengths were then used, to derive the likelihood of a given flow value

distribution being derived from a given nucleotide sequence. Expanding on this, a

Bayesian model was derived, able to predict the total probability of the dataset, given

assumptions of which underlying sequences that generated the flowgrams obtained.

The PyroNoise algorithm uses expectation-maximisation to find a local maximum of

this total probability, by re-assigning flowgrams to nucleotide sequences iteratively.

The starting point is the mapping of each flowgram to the nucleotide sequence that

would arise from normal base-calling.

Performance of PyroNoise was evaluated and compared to: (1) the “standard method”

of OTU clustering as applied by Sogin et al. (2006) when defining the rare biosphere;

(2) the RDP pipeline that incorporates quality score filtering (Cole et al., 2009); and

(3) the assembly method CAP3 (Huang and Madan, 1999). Results showed that Pyro-

Noise, followed by chimera removal and maximum-linkage clustering with 97% sim-

ilarity cutoff, estimated OTU richness precisely when tested on data from the mock

community. Other methods overestimated this richness by at least six times. For unique

sequences rather than OTUs, PyroNoise overestimated richness by about 50%, whereas

the standard method predicted a richness two orders of magnitude higher. Applied to
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Figure 4.3: Overview of the AmpliconNoise workflow.

environmental data, PyroNoise predicted a 40% lower OTU richness compared to other

methods.

In Paper IV, PyroNoise was re-parametrised to handle data from the newest pyrosequen-

cing version (GS FLX Titanium) and re-implemented to decrease processing time. It

was also complemented by two separate algorithms: SeqNoise, for removal of PCR

noise; and Perseus for removal of chimeras. Together these are incorporated into a

workflow called AmpliconNoise (see Figure 4.3). SeqNoise uses a similar Bayesian

model as PyroNoise, although it clusters noise-corrected, base-called sequences to

compensate for PCR misincorporations, rather than flowgrams.

As opposed to other chimera removal methods, Perseus (Paper IV) uses an approach

that does not require a reference dataset. Instead, it utilises abundance data. For each

sequence in the environmental dataset, an assumption is made that it could be chimeric

and formed from two or more parents found in the same dataset. The probability of

this is evaluated and compared to the probability that the sequence and its two parents

evolved naturally from a common ancestor. Only parent sequences of equal or higher

abundance are considered, since each chimera present will have undergone at least one

amplification cycle less than its parents.

During the development of AmpliconNoise, various attempts were made to include

a trimming step based on quality scores, followed by more rigorous filtering, prior

to the PyroNoise algorithm. However, preliminary results indicated that this did not

increase the accuracy of the obtained sequences. However, a filtering step similar to

that suggested by Huse et al. (2007) is applied, as well as trimming.
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Performance of AmpliconNoise was evaluated with existing and new mock communit-

ies, and compared to the methods DeNoiser (Reeder and Knight, 2010) and single-

linkage pre-clustering (SLP; Huse et al., 2010). From the original mock community,

the predicted number of unique sequences or OTUs never deviated more than 2% from

the true number. SLP and DeNoiser over-predicted OTU richness with about 25%, at

97% similarity. For lower cutoffs, SLP underestimated richness. Further, SLP consist-

ently increased per-base error rates in clustered sequences, whereas AmpliconNoise

decreased it. The later finding is especially relevant for analysis of taxonomic com-

position, since the accuracy of classification is severely decreased by sequencing errors

(particularly for nucleotide-composition based methods; Lanzén et al. 2011). Using

SLP with e.g. the RDP Classifier should thus be considered unsuitable, and the use of

raw reads as preferable. This issue arguably deserves more attention, rather than only

focussing on diversity estimation in combination with sequencing noise.

Lee et al. (2012) have confirmed the superior accuracy of AmpliconNoise, also tak-

ing into account a novel aspect, namely predictions of relative abundances. The most

important finding of Papers III and IV, however, is how sequencing and PCR noise

can lead to inflated diversity estimates, if not properly compensated for. The problem

of overestimation was independently confirmed by Kunin et al. (2009), contemporary

with Paper III. This led to the realisation that earlier studies had overestimated the ex-

tent of the rare biosphere. Most of the scientific community adapted quickly and a clear

majority of community profiling studies now incorporate noise compensation methods.

AmpliconNoise, and the simplified DeNoiser implementation of PyroNoise, were also

incorporated in widely used amplicon sequence analysis packages like QIIME (Reeder

and Knight, 2010) and MOTHUR (Schloss et al., 2011).

Perseus, the method for chimera removal included in AmpliconNoise, was also com-

pared independently to other methods. Results indicate that Perseus performs better

than ChimeraSlayer (Paper IV) and comparably to UCHIME (Schloss et al., 2011),

when applied to pyrosequenced amplicon data. DECIPHER (Wright et al., 2012) has

not yet been compared to Perseus. According to its authors it performs better than

UCHIME with longer sequence reads. UCHIME was used to complement Amplic-

onNoise in Paper V, because Perseus failed to identify a number of chimeras whose

parents were not part of the sequence dataset. Instead, these chimeras appeared to be

formed by recombinations between PCR products with cDNA-templates not covered

by the primers used. This illustrates a shortcoming with the reference-free strategy of

Perseus, and how the two methods can complement each other.

As mentioned in section 2.2.2, methods using heuristic speed-up of agglomerative OTU

clustering were recently developed to handle large sequence datasets. However, for
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pyrosequencing, AmpliconNoise reduces the number of unique sequences in most en-

vironmental datasets to such an extent that hierarchical clustering is no longer prob-

lematic. Further, heuristic clustering methods should be used with caution, given their

reduced accuracy. However, AmpliconNoise and similar methods are not available for

sequencing data from other platforms than pyrosequencing, for example Illumina. For

these platforms, agglomerative clustering methods instead have an important role to

play in reducing data size. It is theoretically possible to use AmpliconNoise with Ion

Torrent data, which shares the same file format for flowgrams. However, specific para-

metrisation has not yet been carried out.

AmpliconNoise is more computationally demanding than alternative methods. This

can be a serious limitation, especially at high sequencing depths. If computer power is

limited, and accurate diversity estimates not important, DeNoiser may be sufficient for

removing a majority of the noise and allowing OTU clustering. A method using graph-

ics processing units to speed up AmpliconNoise analysis is also available (Gao and

Bakos, 2012). Further, a promising noise-filtering method called DADA was recently

developed (Rosen et al., 2012). According to the authors, it outperformed Amplicon-

Noise on the datasets analysed in Paper IV, in terms of both accuracy and processing

time.

Another shortcoming of AmpliconNoise is its limitation to amplicon sequence data.

Recently, Miller et al. (2011) developed the method EMIRGE for noise reduction and

diversity estimation in shotgun sequence data. However, it requires Illumina data.

4.4 Community structure in environmental datasets

To investigate the diversity of environmental microbial communities (Q3), as well as

the heterogeneity and variation of community structure across gradients (Q4), soda

lakes were chosen as a model ecosystem (Paper V). Several factors make soda lakes

particularly suitable for this purpose. Firstly, many relevant physicochemical and bio-

logical gradients can easily be targeted in these environments, both inside individual

lakes and by comparing several lakes to each other. Salt concentrations and pH are

examples of the later category, while depth-related gradients such as oxygen and light

are examples of the former. These are typically practical to measure due to the lim-

ited lake depths. They are also steep due to high productivity and biomass (Zinabu and

Taylor, 1997). The biomass also facilitates isolation of high-quality RNA and DNA

from limited amounts of lake water.

Secondly, soda lakes are considered extreme environments because of their high pH
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Figure 4.4: Geographical position of the soda lakes studied in Paper V, annotated with sampling regime, pH, salinity and

photographs taken during sampling. Map source: Google Inc.

and salinity. Consequentially, they are expected to harbour limited diversity, more eas-

ily covered with community profiling. The extreme conditions also make soda lakes

uninhabitable to all except adapted alkaliphiles. Thus, successful immigration is expec-

ted to be low. With large distances between them, soda lakes can be thus be considered

biogeographical islands.

Soda lakes in the Ethiopian Rift Valley were studied in Paper V, selected for differing

pH and salinities (see Figure 4.4). Three types of environmental and physicochemical

variations were considered:

1. environmental heterogeneity and random community structure variation (between

biological replicates);

2. internal depth-related environmental gradients (limited dispersal barriers); and

3. environmental gradients between lakes (significant dispersal barriers).
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The studied communities (Paper V) appeared more diverse than expected, considering

their high salinities and pH. Interestingly, the two most “extreme” lakes, showed the

highest richness estimates. In previously studied neutral freshwater lakes (Logue et al.,

2012; Peura et al., 2012; both using AmpliconNoise), OTU richness was approximately

twice as high as in the studied soda lakes, at corresponding sequencing depths. Another

SSU rRNA region was targeted by these studied, however, and water samples were not

pre-filtered. Both factors may have biased the comparison of diversity to the favour of

the neutral lakes. Taken together, this calls into question the notion that more extreme

aquatic habitats are generally less diverse.

It is possible that limited dispersal may act to increase diversity and evolution of

endemic organisms in these habitats, as previously suggested in euxinic freshwater

lakes (Barberán and Casamayor, 2011). If this is the case, it calls into question an-

other established principle, namely the first half of Baas-Becking’s famous hypothesis:

“everything is everywhere” (O’Malley, 2008). It is possible that the bias of culture-

based studies influenced Baas-Becking to make this conclusion, where many cosmo-

politan opportunistic organisms are often found in cell cultures regardless of sample

origin (Souza et al., 2012).

One factor making many organisms unculturable is a dependence on chelators of in-

soluble Fe(III), called siderophores, from other organisms. These act as growth factors

for many organisms that do not produce their own siderophores, even though the abil-

ity may be retained and utilised occasionally (D’Onofrio et al., 2010). It was suggested

by Lewis (2010) that this dependence prevents sporulating cells from colonising en-

vironments with suboptimal conditions. It can be argued that this mechanism leads

to a distribution pattern that disagrees with the Baas Becking hypothesis, at least as

far as the active part of communities is concerned. Other observations of endemicity

(e.g. Barberán and Casamayor, 2011; Martiny et al., 2006) also disagree with this

hypothesis, although it arguably is rather inexactly formulated. As noted by Zinger

et al. (2011), the topic is being debated actively, fuelled by contrasting results between

studies. This inconsistency may have more to do with the taxonomic resolution con-

sidered, than underlying ecological principles (Souza et al., 2012; Zinger et al., 2011).

This demonstrates the importance of accurate taxonomic classification (Q1) and careful

methodological choices.

For all samples studied (Papers II and V) parametric estimates and rarefaction in-

dicated that sequencing depth was far from exhaustive, with rare OTUs contributing

considerably to diversity. Similar trends were observed in at least one of the mentioned

neutral lake studies (Logue et al., 2012), as well as numerous studies of other environ-

ments (e.g Kirchman et al., 2010; Agogué et al., 2011; Gobet et al., 2012), including the
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use of alternative marker genes (Vos et al., 2012). Such findings support the existence

of a rare biosphere, although its contribution to global biodiversity and cell abundances

may be significantly smaller than first thought.

A comparison of parametric richness estimates from the soda lake datasets (Paper
V) demonstrates that richness did not vary significantly between spatial replicates.

Compositional analysis also showed that replicates shared a substantial core com-

munity. The same applied between depths in certain lakes. However, Shannon- and and

Simpson diversity estimates varied to a larger extent, indicating that taxon-abundance

distributions were less conserved than richness, or absence- and presence of OTUs.

This demonstrates the importance of spatial replication, even in habitats considered

relatively homogenous. Unfortunately, replication has been relatively uncommon in

community profiling studies (Prosser, 2010). In this case (Paper V), practical con-

straints limited the degree of replication possible, doubtless a common situation.

It was challenging to relate compositional variations to differences in environmental

and physical parameters, because compositional variation between lakes did not show

clear patterns of co-variance with such parameters. Sodium, potassium, oxygen and

pH (in decreasing order) did however appear significantly correlated with community

composition. Together these explained 30% of between-habitat variation. This was

expected and agrees well with previous studies of aquatic environments (e.g. (Barberán

and Casamayor, 2011; Herlemann et al., 2011; Lozupone and Knight, 2007). In soda

lake sediments, pH has also showed a strong compositional influence, but with the

opposite trend between richness and pH (Xiong et al., 2012). This could either indicate

that sediment diversity is shaped by different mechanisms than aquatic diversity or,

more likely, be an artefact of the insufficient noise compensation used by Xiong et al.

(2012).

In addition to the soda lakes, diversity estimates from the hydrothermal microbial mats

(Paper II) were of particular interest. Firstly, the study was one of the first to use

AmpliconNoise on environmental data. Secondly, the community showed many sim-

ilarities to “Marker 52”, the most diverse of the communities studied in Sogin et al.

(2006), and later Huber et al. (2007). Both derived their energy from hydrothermal

vents, had similar pH and taxonomic composition. Merged datasets from the microbial

mat communities yielded 982 OTUs in total (97% similarity), similar to the richness of

the lake community used for testing of PyroNoise (Paper III). According to rarefaction

analysis, the “Marker 52” dataset is about five times as OTU-rich at corresponding se-

quencing depth (Huber et al., 2007), but inadequate noise reduction likely explains this

discrepancy. A more recent study of similar environments using better noise compens-

ation, similar to SLP, estimated richness values more similar to those of the microbial
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mats studied in Paper II (Huber et al., 2010).

These findings support those of Paper III and indicate that the study introducing the

term “rare biosphere” (Sogin et al., 2006), significantly overestimated its richness.

Although a rare biosphere still appears to exist, its extent and the suggested mechanisms

shaping it, would also benefit from re-examination. For example, Sogin et al. (2006)

noted that the majority of rare OTUs showed lower similarity to reference strains and

suggested their antiquity as an explanation, i.e. that these OTUs have persisted over

geological time scales, largely thanks to the competitive benefits of being rare (Pedrós-

Alió, 2012; Thingstad, 2000). Yet, such rare taxa are suggested to periodically take

over environmental niches from dominating ones, enabling the microbial community

to adapt more quickly to environmental changes (Sogin et al., 2006). If this happens

frequently enough, it arguably would contradict the higher degree of novelty observed

in the rare biosphere. Further, studies using other experimental conditions and methods

for noise removal (including Paper II) often fail to reproduce such a high degree of

novelty. Improved reference databases for taxonomic classification (e.g. Paper I) may

also explain this discrepancy. Another explanation is that the majority of rare organisms

in one site, typically are dominant elsewhere. The communities examined in Paper V
contain several examples of such OTUs.

4.5 Complementarity of environmental genomics approaches

An important aspect of taxonomic classification (Q1) is the ability to compare compos-

ition across datasets and different experimental approaches (e.g, sequencing strategy,

primer differences or even marker genes). This approach was important to the analyses

carried out in Papers II and V, where it was used to compare composition between

amplicon- and shotgun sequence datasets. With amplicon datasets, a taxonomy-

independent approach can be employed instead, comparing the distribution of OTUs

defined by clustering. Especially for novel or poorly categorised taxa, this can provide

a better resolution. A disadvantage, however, is that many OTU-clustering algorithms

are not deterministic and sensitive to minor differences in query sequences. Further, to

add new datasets requires the entire clustering to be repeated, which can be computa-

tionally costly.

There has been some debate regarding which of these two practices that is more ap-

propriate (taxonomy dependent vs. independent). Hybrid approaches have also been

suggested (e.g. Lozupone and Knight 2005; Schloss and Westcott 2011; Sul et al.

2011). It is interesting to note that analyses based on taxonomic clusters and OTU dis-
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tributions resulted in nearly identical clustering patterns in Paper V. However, clusters

dissolved when deeper taxonomic levels were used (order or class rank).

It is possible that several studies reporting insignificant results using “taxonomy-

dependent” approaches may have suffered from overly conservative classifications, for

example labelling a sequence Gammaproteobacteria (class rank), rather than Methyl-
ococcaceae (family rank). The latter allows inference of more useful information,

i.e. that we are dealing with a methane oxidiser. This potential pitfall of taxo-

nomic classification can be worsened by poor coverage or classification of reference

sequences. Taxonomy-independent approaches, based on OTU composition alone, can

cause equally detrimental problems when noise is not compensated for (see Section

4.3).

To counteract these problems, ‘functional biogeography’ has been suggested as an al-

ternative to traditional community profiling, to “allow for the possibility that the traits

themselves disperse irrespective of their original hosts” (Raes et al., 2011). As demon-

strated here (Paper V) and in countless other studies (e.g. Lozupone and Knight, 2007;

King et al. 2010; Finkel et al., 2012; reviewed in Martiny et al., 2006), clear biogeo-

graphical patterns do exist and can be revealed also by community profiling, whereas

functional patterns in cases lack similar resolution (Raes et al., 2011). Thus, com-

plementary approaches using both functional and phylogenetic profiling clearly have

a role to play in biogeographical studies, as in the definition of meaningful species

concepts for Archaea and Bacteria. The comparative analysis carried out in Paper II
demonstrates this complementarity of shotgun- and amplicon sequencing, even when

considering only taxonomic composition. Using this combination, shotgun sequencing

can be used to quantify the bias in amplicon sequence datasets, providing a valuable

quality control. Regression analysis (as carried out in Paper II) could even be used to

compensate for such primer bias.

The results of Paper II also illustrate the complementarity of RNA- and DNA-based

sequencing. This is supported by other studies showing that the abundance of rRNA

and its gene can differ substantially between taxa, particularly in environments with

high overall activity (Rodríguez-Blanco et al., 2009). Presence of dead and dormant

organisms are also expected to contribute to these differences (Luna et al., 2002; Jones

and Lennon, 2010). However, in Paper II, the majority of taxa were encountered both

in DNA and RNA, albeit at different relative abundances. This was not the case in

several earlier studies based on clone-libraries (e.g. Moeseneder et al., 2005), probably

caused by their lower sequencing depth and cloning bias.
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Chapter 5

Conclusions and future perspectives

The results described in this thesis have contributed to increase the understanding of

sequencing-based community profiling methods, their limitations, and sources of er-

rors and bias. The work has also provided freely available software for the purpose

of taxonomic classification and compensation of error sources. Their applicability to

problems in microbial ecology was demonstrated, and in doing so, novel ecological in-

sights were obtained. However, many of these insights, both of technical and ecological

nature, warrant further investigation.

Early use of high throughput sequencing for community profiling overestimated com-

munity diversities significantly, due to unresolved methodological issues. However, the

existence of a rare biosphere remains plausible and is supported by several theoretical

and empirical studies (including Papers II and V). Several questions remain, critical

to better understanding the ecological and evolutionary consequences of the rare bio-

sphere:

• Whether most rare organisms are consistently rare, or experience habitats or peri-

ods with high abundance;

• How accurately diversity can be estimated, after the application of AmpliconNoise

(Q3.4); and

• The extent of microbial diversity in different environmental communities, and

what determines it.

These questions are intimately related to microbial biogeography and heterogeneity

(Q4). Compensation of sequencing noise and other artefacts is fundamental for finding

meaningful biogeographical patterns, as is accurate taxonomic classification or OTU

clustering. Thus, results from earlier studies lacking proper noise compensation should
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always be questioned, especially if lack of correlation was taken to indicate lack of a

connection (as in e.g. Daghino et al., 2012). Re-analysis of existing datasets could in-

stead have a meaningful role to play in re-evaluating biogeographical patterns targeted

by previous studies, highlighting the usefulness of data depositories like the NCBI Se-

quence Read Archive (NCBI, 2013) and standardised metadata formats (Yilmaz et al.,

2011a).

In conclusion, continuous and critical re-evaluation of methodology should be priorit-

ised, especially in recent techniques such as environmental genomics. More established

ecological concepts, derived from the study of larger organisms, also deserve critical

re-evaluation when applied to the microbial world. The overwhelming complexity of

microbial life provides a challenge to the development of general models, able to pre-

dict community structures. Still, important fundamental questions of microbial biogeo-

graphy can be successfully targeted, given a careful choice of model ecosystem and

experimental design. The soda lake community study (Paper V) provides a good ex-

ample and may contribute to bridging the gap between bioinformatics and microbial

ecology (see Chapter 1).

The diversity of the studied communities showed a counter-intuitive trend, with regard

to salinity and pH. Although such factors limit the range of possible indigenous life, the

predicted OTU richness was higher in the two most saline and alkaline lakes studied. A

more ambitious study covering more lakes would increase the potential to reveal these

trends, i.e. the underlying ecological and physicochemical relations to diversity and

composition. It is possible that trophic interactions play a role in this, e.g. by limiting

the diversity of bacteriovorous grazers or opportunistic organisms. Another possible

explanation is that pH increases available dissolved carbon dioxide for photosynthetic

organisms, leading to higher productivity and biomass (Grant, 2006). Indeed, a cor-

relation between cell density and richness was established in one of the lakes studied.

Therefore, future studies should seek to include measurements of production and cell

density with phylogenetic diversity.

Limited effective immigration and endemism may also play a part in shaping the in-

digenous communities of soda lakes. As demonstrated by e.g. Sloan et al. (2006),

neutral community models (NCMs) may help to reveal such connections. Observations

in favour of this approach include that taxon-abundance distributions closely fitted log-

series distributions, coherent with random colonisation from a large metacommunity

(Hubbell, 2001). The applicability of an NCM does not imply that only random factors

shape the community structure, however. In the studied communities, 30% of compos-

itional variation could be explained by physicochemical factors (Paper V).

A large fraction of the OTUs were only encountered in one of the five lakes studied
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Figure 5.1: The number of OTUs (y-axis) shared between exactly n of the studied soda lakes (x-axis). To compensate for

environmental heterogeneity and differing sequences depths, only OTUs from the surface of lakes at abundance above the

minimum detection limit were included. The grey line indicates a fitted log-linear correlation.

(Paper V). Further, the number of OTUs shared between lakes showed an inverse log-

linear correlation to the number of lakes considered (Figure 5.1). Since a limited num-

ber of soda lakes exist on Earth, this substantiates the existence of microorganisms en-

demic to individual lakes, as suggested earlier for stratified freshwater lakes (Barberán

and Casamayor, 2011). This presents a problem to the NCM approach suggested above,

because speciation is not considered in Hubbel’s original framework. However, a num-

ber of recent models have incorporated speciation into NCMs and could prove useful

for this purpose (reviewed in Kopp, 2010).

Although limited sequencing data exists from soda lakes, the data presented here would

benefit from a meta-analysis, incorporating such datasets as they become available.

Inclusion of existing data from neutral lakes, or clone libraries from soda lakes, can

also be considered. A problem with this approach is differences between methodology,

particularly primer choice and SSU rRNA region targeted. As demonstrated in Paper
II, these factors must always be taken into account, or compensated for by establishing

the influence of primer bias. Further, global similarity-based OTU clustering is not

possible when combining datasets from different SSU rRNA regions. However, as

demonstrated in Paper V, taxonomic classification using CREST (Paper I) provides a

viable alternative to this approach.

The classification scheme and taxonomies available in CREST could also benefit from

improvements, to increase the accuracy of this approach further. For example, nucle-
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otide composition could be integrated with the current alignment-based method into a

multiple classifier system. Another issue is the classification of novel sequences. Cur-

rently, those are bundled into a separate cluster, when several of them share a common

parent taxon. CREST could be extended to avoid such clusters forming polyphyletic

groups and increase classification accuracy. For example, a taxonomy-independent

clustering approach could be employed for sequences with low similarity to reference

sequences.

In spite of rigorous compensation, the influence of remaining sequencing noise and

other artefacts cannot be excluded when comparing patterns of diversity across habitats.

However, it is interesting to note that over half of the OTUs in the soda lakes studied

(Paper V) were shared between at least two datasets. Several OTUs shared by many

lakes were also consistently rare. This indicates that remaining noise is not solely

responsible for the observed patterns and that increased sequencing efforts and better

replication could help to improve our understanding of these patterns in diversity.

An important remaining task is to establish the degree of remaining sequencing arte-

facts after compensation with AmpliconNoise or other methods (Q3.3). The mock

communities used for this purpose (Papers III and IV) are not expected to provide a

realistic picture of remaining noise in complex environmental communities. A con-

ceptually simple approach would be the construction and sequencing of more complex

mock communities, incorporating several hundreds of clones with known sequences,

mixed in predetermined proportions according to a distribution common in nature, e.g.

log-normally. Although practically demanding to construct, these would provide useful

standardised resources for benchmarking of sequencing technologies and downstream

analysis tools.
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