
Left ventricular systolic deformation in subclinical 

metabolic cardiomyopathies 

 

Asle Hirth 

 

 

 

 

 

Dissertation for the degree philosophiae doctor (PhD) 

 

Department of Paediatrics 

Haukeland University Hospital 

and 

Department of Clinical Science 

University of Bergen 

 Bergen, Norway, 2012 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30899507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
________________________________________________________________________ 
2 

Contents 

1. Scientific environment………………………………………………………      4 

2. Acknowledgements………………………………………………………….      7 

3. Abstract……………………………………………………………………...      9 

4. List of papers………………………………………………………………...    11 

5. Abbreviations………………………………………………………………..    12 

6. Introduction………………………………………………………………….    13 

6.1 Echocardiography as a tool for detecting and monitoring cardiac 

abnormalities caused by metabolic processes 

6.2 Left ventricular function in chronic kidney disease 

6.3 Cardiac function after renal transplantation in childhood 

6.4 The heart in Fabry disease 

7. Hypothesis and aim of the thesis……………………………………………    20 

7.1 Hypothesis 

7.2 Specific aims 

8. Methods……………………………………………………………………..    21 

8.1 Study populations 

8.2 Echocardiography 

8.3 Statistics 

9. Summary of results………………………………………………………….    31 

9.1 Study I 

9.2 Study II 

9.3 Study III 

10. Discussion…………………………………………………………………..   34 

10.1 Study population 

10.2 Strain echocardiography in subclinical LV dysfunction 

10.3 Cardiac function in chronic kidney disease 

10.4 Cardiac involvement in Fabry disease 



 
________________________________________________________________________ 

3 

11. Limitations……………………………………………………………….....   44 

 11.1 Study population 

 11.2 Echocardiography 

 11.3 Others 

12. General conclusions………………………………………………………...   47 

13. Perspectives…………………………………………………………………  49 

13.1 Possible implications for clinical practice 

13.2 Prospects for future research 

14. References…………………………………………………………………..   51 

15. Papers I – III………………………………………………………………..   61 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
________________________________________________________________________ 
4 

1.  Scientific environment 

This thesis came together as a result of national and international collaboration. It 

is based on clinical studies carried out at the Department of Clinical Science,

University of Bergen and Department of Paediatrics and Cardiology, Haukeland 

University Hospital in Bergen, Norway, and at the Institute of Medicine, Oslo 

University and Department of Paediatric Medicine, Oslo University Hospital, 

Rikshospitalet, in Oslo, Norway and at the Department of Cardiovascular 

Medicine, Queen Elizabeth Hospital, University of Birmingham, in Birmingham,  

United Kingdom. Most data were collected during a three-year scholarship

(2005 – 2008), including a one-year research visit to the University of 

– 2006). The work was funded by a research fellow-ship 

from Western Norway Regional Health Authority (2005-2008) and my co-workers 

received grants from the foundation of Renèe and Bredo Grimsgaard and Oslo 

Red Cross. 

 

During this work collaboration with the following three research groups has been 

essential: 

 

 

Research group for congenital cardiovascular physiology 
 
I have been a member of this research group since 2001. It focuses on 

cardiopulmonary physiology in children and adults with congenital heart diseases. 

During late 90’s and beginning of the new century this group established a 

complete cardiopulmonary exercise lab suitable for both children and adults 

located in the Children’s department, under the leadership of my main supervisor 

Professor Gottfried Greve. He introduced me to exercise testing and the difficult 

process of interpreting exercise data in children and adults with congenital heart 

Birmingham, UK (2005 
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disease. This, together with his in-depth knowledge of cardiomyopathies and my 

special interest in echocardiography led to the planning of the present thesis. I 

want to thank Gottfried for supervising me during these years, for his good 

friendship, for introducing me to our good colleagues in Birmingham, for sharing 

with me his hemodynamic understanding and for creating an inspiring working 

environment. Although it has been challenging we have kept our enthusiasm and 

positive attitude.  

At present I am in charge of a transition process that will take the exercise lab into 

brand new and expanded areas opening in 2014/2015, also including the possibility 

of exercise echocardiography and in-house exercise interventional trials 

(swimming pool and big gym). This will probably become my main arena for 

future research. 

 

The Bergen Heart in Hypertension group 
  

This group is led by my co-supervisor Professor Eva Gerdts. I worked together 

with this group in 2003/2004, which also marked my introduction to strain 

echocardiography, both Doppler and speckle strain echocardiography. I worked 

together with Einar Davidsen (PhD, consultant cardiologist) under supervision of 

Professor Gerdts, on two projects. The first project evaluated cardiac function in 

patients with haemochromatosis, using conventional echocardiography and tissue 

Doppler imaging. The second project was an interventional trial looking at 

myocardial deformation before and after pyridostigmine in patients with 

myasthenia gravis, using strain echocardiography. This work was very important 

for the planning and implementation of my thesis. I want to express my gratitude 

to Professor Eva Gerdts for her constant support and excellent academic skills 

throughout all these years. In particular I want to thank her for her positive and 

structured supervision during finalizing of this thesis. 
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Haukeland University Hospital competence group on Fabry disease 

This group was established in 2003 as a result of a new enzyme replacement 

therapy era within treatment of Fabry disease. It was a joint session between the 

Centre of Medical Genetics and Molecular Medicine (Professor Gunnar Houge), 

Department of nephrology (Professor Einar Svarstad), Department of Paediatrics 

(consultant paediatric nephrologist, Camilla Tøndel) and the Departments of Heart 

Disease and Paediatrics (myself, representing both the adult and paediatric 

cardiology section at the hospital). Establishing long-term follow-up protocols, a 

patient database and international collaboration were among the first tasks for the 

group. The group meets regularly to discuss single patients, protocols, latest 

scientific news and ongoing research projects within the group and arranges also 

an annual national meeting on diagnosis and treatment of Fabry disease in 

Norway. So far more than 20 peer review articles have been published from our 

group. Future research will focus on renal pathology and renal and cardiac 

markers that may suggest early treatment with enzyme replacement therapy. I 

want to thank all the members of the group for many important discussions, quite 

a few good laughs and for your constant focus on best clinical practice. It is a 

pleasure being part of this group 
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3.  Abstract 

Cardiovascular disease is a significant contributor to morbidity and mortality in 

patients with inherited metabolic disorders or chronic kidney disease. 

Conventional echocardiography typically identifies cardiac involvement at a more 

established stage of the disease. Strain echocardiography, which assesses the 

deformation of the myocardium, has the potential for early detection of subclinical 

myocardial dysfunction. 

 

This thesis consists of 3 studies of left ventricular myocardial deformation in 

patients with diseases causing metabolic myocardial alterations, associated with 

development of cardiomyopathy. In study 1, Doppler strain echocardiography was 

performed in 40 patients with Stage II and III chronic kidney disease. In study 2, 

speckle strain echocardiography was performed in 68 patients who underwent 

renal transplantation in childhood, and in study 3, speckle strain echocardiography 

was performed in 38 patients with Fabry disease. In all studies, the ability of strain 

echocardiography to detect subclinical cardiac dysfunction not detected by 

conventional echocardiography was studied. 

As demonstrated by the results of this thesis, echocardiography, using Doppler or 

speckle strain, detected impaired left ventricular long axis function in the studied 

patient groups. In particular, left ventricular longitudinal strain was reduced, while 

ejection fraction, measured by conventional echocardiography, was generally 

preserved in patients with early-stage chronic kidney disease and in patients with 

mild Fabry disease compared to healthy subjects. Furthermore, having metabolic 

disease was associated with lower left ventricular systolic strain independent of 

left ventricular mass. In patients who underwent childhood renal transplantation, 

hypertension was common and a main covariate of left ventricular diastolic 
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dysfunction. In contrast, left ventricular systolic deformation was comparable 

between patients and healthy subjects. 

In conclusion, Doppler or speckle strain echocardiography, may detect impaired 

myocardial function in patients with diseases causing metabolic myocardial 

alterations, in spite of normal findings on conventional echocardiography and 

without clinical evidence of heart disease. 
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5.  Abbreviations 

CKD Chronic kidney disease 

CV Cardiovascular 

GFR Glomerular filtration rate 

GL-3 Globotriaosylceramide 

LV Left ventricular 
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6.  Introduction 

6.1  Echocardiography as a tool for detecting subclinical cardiac 
involvement in metabolic and renal diseases 
Cardiovascular (CV) disease has long been recognised as a significant contributor 

to morbidity and mortality in children and adults with systemic diseases such as 

inherited metabolic disorders(1-3) and chronic kidney disease(4). The first signs of 

cardiac involvement can be difficult to discover since most patients remain 

asymptomatic for a shorter or longer period. Furthermore, it is well documented 

that commonly used measures of left ventricular (LV) function like ejection 

fraction are insensitive to early changes in myocardial function and actually may 

remain within normal range despite significant changes in LV structure and 

myocardial function(5, 6). Assessment of myocardial deformation by Doppler or 

speckle strain echocardiography are two novel methods suitable to detect subtle 

changes in myocardial function(7-9)(Figure 1). This “asymptomatic window” may 

represent an important time for early intervention to prevent or delay further 

progression to symptomatic cardiac disease(10). 
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   I             II 

Figure 1. Typical example of regional LV myocardial deformation by speckle 

strain echocardiography from apical 4-chamber view. The analyses provide time 

curves of normal LV regional longitudinal strain in a healthy subject (panel I) and 

reduced strain, in an asymptomatic Fabry patient (panel II). Colour coding in 

Figure tables reflect the respective LV segments. 

 

 6.2  Left ventricular function in chronic kidney disease 
The Kidney Disease Outcomes Quality Initiative of the National Kidney 

Foundation defines chronic kidney disease (CKD) as either kidney damage 

(proteinuria) or a decreased kidney glomerular filtration rate (GFR) of less than 60 

ml/min/1.73 m2 persisting for at least 3 months(11). CKD is stratified into five 

stages: stage I (GFR >90ml/min/1.73m2), stage II (GFR 60-90 ml/min/1.73 m2), 

stage III (GFR 30-59 ml/min/1.73 m2), stage IV (GFR 15-29 ml/min/1.73 m2) and 

stage V (GFR <15 ml/min/1.73m2, also called end-stage CKD)(12). The 

classification stages have been applied to adults and children with CKD including 

renal allograft recipients(12, 13).  

 

CV disease is the leading cause of death in patients with CKD(4). Abnormalities 

of LV structure and function are found in up to 75% of patients with end-stage 

CKD (14, 15) and is associated with an impaired prognosis(16). Although the 

pathogenesis of LV hypertrophy in CKD is considered multifactorial, 
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hypertension, alterations of fluid and electrolyte balance and anaemia are 

identified as the major determinants of LV hypertrophy in CKD patients(17, 18). 

The prevalence of early stages CKD is much higher than the prevalence of end-

stage CKD(19). Indeed, patients with CKD are 5-10 times more likely to die 

before reaching end-stage CKD because the risk of a CV disease is twice as 

common and advances at twice the rate compared to those without CKD(20, 21). 

Early detection and, thereby, adequate treatment of LV dysfunction and LV 

hypertrophy could potentially yield an improvement in the adverse CV outcomes 

of CKD patients(22). Due to the complex post-processing of Doppler strain 

echocardiography, reports on myocardial deformation in CKD have been few until 

now. However, recent studies have showed that Doppler strain echocardiography, 

measuring tissue velocity, strain and strain rate, is useful in end-stage CKD to 

identify LV abnormalities before changes in conventional indices of LV function, 

such as ejection fraction, occur(23). Furthermore, Rakhit DJ and co-workers 

demonstrated that reduced strain and strain rate were associated with adverse 

outcome in stage IV and V CKD and that these subclinical cardiac abnormalities 

could be improved by renal transplantation, but progressed under continuous 

dialysis(24). For early stage CKD however, no data on strain echocardiography is 

available. 

 

6.3  Cardiac function after renal transplantation in childhood 
The annual incidence of renal replacement therapy among European children (< 

15 years old) was 6.5 per million age related population in 2007(25). During 2009 

a total of 292 persons were renal transplanted in Norway. Eight were less than 15 

years old, comprising 2.7% of total renal transplantations (www.nephro.no). 

Survivors of childhood renal transplantation have more than a 10-fold increased 

risk of CV death compared to the general population(26). The classical risk factors 

include hyperlipidemia, hypertension and insulin resistance. The single most 

important factor is hypertension and associated vascular damage and LV 
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remodeling(27). Research on the complex mechanisms of ‘non-classic’ (uremic) 

CV risk factors, has led to a better understanding of the precursors of the 

vasculopathy that occurs early in paediatric CKD. Dysregulations in the calcium-

phosphate metabolism and vitamin D axis including secondary 

hyperparathyroidism, are believed to be the driving force of vascular damage 

leading to media calcification in the arteries(28, 29). Vascular calcification and the 

ensuing vascular stiffness starts to develop in early stages of CKD, increases with 

time in dialysis and is not reversed by renal transplantation in the short term(29, 

30). In paediatric patients with CKD, uremic associated factors are regarded as the 

main contributors to cardiovascular morbidity and mortality rather than 

atherosclerosis(31).  

 

Successful renal transplantation corrects many of the metabolic abnormalities 

associated with end-staged CKD, but comorbidities related to the 

immunosuppressive treatment, persistence of renal insufficiency and consequences 

of a chronic disorder per se may considerably influence CV health in the post-

transplantation patients.  

 

Renal transplanted children and children with CKD have been classified in the 

highest risk stratum for future CV disease along with children with diabetes type I 

and homozygous familial hypercholesterolemia(32). Focus has therefore turned 

towards preventive strategies in reducing the CV risk burden to lower CV 

morbidity and mortality in adulthood. LV hypertrophy is a predictor of mortality 

among adults(33) and LV hypertrophy is the most prevalent cardiac abnormality 

after renal transplantation in childhood(34). One preventive strategy could 

therefore be to introduce sensitive screening tools for early detection of LV 

myocardial dysfunction. Early detection may lead to early intervention and better 

treatment and sensitive tools are important to evaluate the effect of early 

intervention. Indeed, it has been demonstrated that tissue Doppler imaging(35) and 
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speckle strain echocardiography(36, 37) are more sensitive than ejection fraction 

and fractional shortening in the detection of subtle changes in LV contractile 

function. Furthermore, in asymptomatic patients with early stage CKD(38) or in 

paediatric patients shortly after renal transplantation(39), global systolic strain was 

reduced on strain echocardiography while ejection fraction and fractional 

shortening were normal on conventional echocardiography. However, studies on 

LV systolic function using speckle strain echocardiography long-term after 

childhood renal transplantation have so far not been published. 

 

6.4  The heart in Fabry disease 
Fabry disease is a progressive, X-linked inherited disorder of glycosphingolipid 

metabolism due to deficient or lack of lysosomal alfa-galactosidase A activity. 

This results in accumulation of globotriaosylceramide (GL-3) and related 

glycosphingolipids (galabiosylceramide) within lysosomes. The lysosomes are 

ubiquitous sub cellular organelles in a variety of cell types, including 

cardiomyocytes and cardiac fibroblasts and capillary endothelial and renal 

cells(40). Lysosomes function as the digestive system of the cell, containing an 

array of enzymes capable of breaking down all types of biological polymers – 

proteins, nucleic acids, carbohydrates and lipids. The typical clinical feature of 

Fabry cardiac disease is LV hypertrophy. Although GL-3 accumulation does 

increase heart mass, studies have shown that GL-3 is responsible for only 1–3% of 

excessive LV mass in Fabry disease(41, 42). This indicates that LV hypertrophy 

may not arise solely as a direct consequence of GL-3 infiltration. One potential 

mechanism could be disruption of myocardial architecture by the lipid deposits 

leading to myofibrillar disarray similar to what is seen in familial hypertrophic 

cardiomyopathy(43, 44). However, this phenomenon is not very prominent in 

Fabry disease(45). Another hypothesis is that GL-3 accumulation causes 

disturbances in respiratory-chain enzyme activity within the mitochondrial 

metabolism, leading to reduced levels of creatinine phospathe, adenosine 
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diphosphate, and adenosine triphosphate(46-48). An increase in trophic factors, 

such as lyso-Gb3(49), or the alteration of cellular adhesion molecules in vascular 

endothelial cells, inducing coronary small-vessel disease(50), may also have a 

causative role in the development of CV disease in patients with Fabry disease. 

 

Enzyme replacement therapy with recombinant alfa-galactosidase A has been 

available since 2001. Biopsy studies have shown that enzyme replacement therapy 

completely or partially cleared microvascular deposits of GL-3 from the heart of 

Fabry patients(51). These changes are seen in parallel to a decrease in LV mass 

and an improvement in myocardial function and exercise capacity(52). However, 

randomised trials showing that enzyme replacement therapy will prolong life 

expectancy or reduce major cardiac events such as myocardial infarction, heart 

failure or cardiac death, are warranted(53). Most centres are reluctant to start high-

cost enzyme replacement therapy in asymptomatic patients without evidence of 

cardiac dysfunction. On the other hand, enzyme replacement therapy seems to be 

most beneficial in patients with less severe disease(54), with lack of improvement 

in myocardial function and exercise capacity in patients with end-stage myocardial 

fibrosis. Timely initiation of therapy is therefore probably of importance, but 

challenging due to the lack of documented effect on life expectancy and risk for 

major CV complications. 

 

Tissue Doppler imaging(55, 56) and Doppler strain echocardiography(52, 57) 

have proven useful to detect early cardiac involvement in patients with Fabry 

disease and to monitor disease progression and the effect of enzyme replacement 

therapy. However, these studies are few, probably due to technical challenges and 

time consuming post-processing. Myocardial deformation using speckle strain 

echocardiography has not been used previously in Fabry disease. If deformation 

analysis could improve the detection of subclinical cardiac abnormalities, 
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independent of LV mass, this could add important information to the 

understanding of cardiac involvement in Fabry disease. 
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7.  Hypothesis and aim of the thesis 

7.1  Hypothesis 

 The hypothesis of this project was that strain echocardiography is superior to 

conventional echocardiography in detecting subclinical cardiac involvement in 

patients with metabolic diseases. 

 
7.2  Specific aims 

 Can Doppler strain echocardiography detect myocardial abnormalities in 

asymptomatic patients with Stage II or III chronic kidney disease and normal 

LV systolic function by conventional echocardiography? 

 Is LV conventional and speckle strain echocardiography normal in 

asymptomatic children and young adults who underwent renal transplantation 

in childhood? 

 Can speckle strain echocardiography detect reduced LV systolic deformation 

in patients with genetically confirmed Fabry disease, independent of LV 

geometry studied by conventional echocardiography? 
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8.  Methods 

8.1  Study populations 

8.1.1 Study I 
This analysis was a prospectively planned echocardiographic substudy within the 

first 50 patients with stable Stage II or III CKD, recruited into a single-centre, 

prospective, double-blind, placebo-controlled, randomised interventional trial of 

spironolacton compared with placebo (Identifier: NCT00291720, 

www.clinicaltrails.gov). Patients with diabetes, history of angina, myocardial 

infarction, heart failure, cerebral or peripheral vascular disease, atrial fibrillation, 

valvular disease (more than mild regurgitation or any degree of stenosis), 

uncontrolled hypertension or anaemia with haemoglobin below 12 g/dl were 

excluded. Ten patients were excluded because of inadequate echocardiographic 

image quality. All patients had controlled blood pressure with mean daytime 24-

hour ambulatory blood pressure less than 130/85 mmHg and established treatment 

with an angiotensin-converting enzyme inhibitor or angiotensin II receptor 

blocker. 30 healthy sex- and age-matched volunteers from the study hospital staff 

served as controls. 

 
8.1.2  Study II 
This case control study included 68 paediatric and young adult patients who 

underwent renal transplantation during childhood (Identifier: NCT01008306, 

www.clinicaltrials.gov). 34 out of 46 paediatric patients (aged 2 – 17 years) were 

recruited from the outpatient clinics at Oslo University Hospital (Rikshospitalet), 

Oslo, Norway and 34 out of 61 adult patients agreed to participate after being 

identified through the Norwegian Renal Registry (www.nephro.no). Inclusion 

criteria for both groups were functioning graft >1 year and no clinical sign of 

cardiac disease. In the adult group 20 patients were excluded due to ongoing 
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dialysis or <1 year since transplantation (n=6), > 3 transplantations (n=1), 

orthopaedic restrictions or mental or neurological disorders (n=11), severe heart 

failure (n=1) and lost from follow-up (n=1). Adult controls were recruited from 

the hospital blood donor registry. Paediatric controls were recruited from the 

paediatric outpatient clinic, Haukeland University Hospital, Bergen, among 

patients that had been referred due to palpitations, syncope or a suspected heart 

murmur. Exclusion criteria were sign of cardiac disease, major locomotor or 

musculoskeletal restrictions.

 
8.1.3  Study III 
This was a prospectively planned study of adult patients newly referred to the 

Department of Heart Disease at Haukeland University Hospital for 

echocardiography because of genetically confirmed Fabry disease between 

November 2004 and February 2012. A total of 40 patients were referred during 

this period. All patients agreed to participate in the study, but one patient was 

excluded due to lack of written informed consent and another was excluded due to 

poor acoustic window. Age matched healthy controls were recruited among 19 

healthy volunteers from the hospital blood donor registry, recruited as controls for 

another project in 2004 (also part of study I) and 19 healthy medical students 

recruited in 2010 and 2011. 

 

All three study protocols were approved by the Local (Study I, South Birmingham, 

UK) or Regional (Study II, South-east Norway; Study III, West-Norway) Ethics 

Committee and carried according to the Declaration of Helsinki. Written informed 

consent was obtained from all patients or their parents if younger than 16 years of 

age prior to study start as well as from all controls. 
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8.2  Echocardiography 

8.2.1  Study protocol 
A Vivid 7 echocardiograph (GE Vingmed Ultrasound, Horten, Norway) equipped 

with a phased-array M3S or M5S transducer was used for all studies. The patients 

were examined in left supine position using the apical four- and two-chamber 

views (all studies), apical three-chamber view (Study I) and parasternal short-axis 

at the level of the papillary muscle (Study III). Three consecutive heartbeats were 

recorded at end expiration and stored digitally in raw data format on magnetic 

optical disks and analysed off-line by one (Study III) or two (Study I and II) 

independent observers, blinded to the clinical data using EchoPac (GE Vingmed, 

Horten, Norway) work station. 

  

8.2.2 Conventional echocardiography 
Quantitative echocardiography was performed following the Joint European 

Association of Echocardiography and American Society of Echocardiography 

guidelines(58). Pulsed-wave tissue Doppler imaging was performed at the mitral 

annulus from 6 (Study I, apical 4-, 2- and 3-chamber) or 4 (Study II and III, apical 

4- and 2-chamber) LV views, reporting the average peak systolic, early diastolic 

and late diastolic annular myocardial velocity (Figure 2). 

LV mass and relative wall thickness were both calculated based on linear 

measurements of LV chamber diameters and wall thickness in two-dimensional 

parasternal long-axis view. LV mass was calculated by the Devereux’s 

equation(59):  

LV mass (g) = 0.8 (1.04 (LVIDd + PWDd + IVSDd)  ÷ LVIDd3 3

where LVIDd, PWDd and IVSDd are the end-diastolic diameters of LV internal 

chamber, posterior wall and septum, respectively. The equation has been validated 

against autopsy data in patients with various cardiac and non-cardiac pathologies. 

Relative wall thickness was calculated as the ratio of 2 X PWDd/LVIDd(60). In 

) + 0.6 g 
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both paediatric (study II) and adult patients LV mass was indexed by body surface 

area. We used in patients less than 17 years of age a LV mass index above 88.9 

g/m2 to define LV hypertrophy(61). In adult patients we used the prognostically 

proven cut-off values of above 104 g/m2 and 116 g/m2 in women and men 

respectively(62, 63). We used the prognostically validated definition of LV 

geometry as normal (no LV hypertrophy and normal relative wall thickness), 

concentric hypertrophy (LV hypertrophy, relative wall thickness ≥0.43), eccentric 

hypertrophy (LV hypertrophy, normal relative wall thickness) or concentric 

remodelling (normal LV mass, relative wall thickness ≥0.43)(60). 

 

 
Figure 2. Tissue Doppler imaging from apical 4-chamber view. Normal values for 

systolic (S’), early diastolic (E’) and late diastolic (A’) mitral septal (left panel) 

and lateral (right panel) annular myocardial velocity. 

 

8.2.3 Strain echocardiography 
Strain is a measure of tissue deformation and it is defined as the percentage change 

in length normalised to the original length (Figure 3)(64). The velocity at which 

this change occurs is the strain rate. During a cardiac cycle the heart shortens and 

lengthens in the longitudinal direction, it thickens and thins in the radial direction, 

and it shortens and lengthens in the circumferential direction. In this thesis we 

investigated LV longitudinal (all studies) and circumferential (study III) 
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deformation (Figure 4).

 
Figure 3. Strain is defined as the change in length (L1 – L0) normalized to the 

initial length (L0) of the region of interest. Shortening a myocardial segment of 10 

cm to 8 cm, indicate a strain of -20%. No change in length would indicate 0% 

strain. The time at which this change occurs is the strain rate 
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Figure 4. Graphic presentation of myocardial deformation: longitudinal (left 

panel) and circumferential (right panel). The direction of deformation in systole 

(shortening) is shown as solid lines and that in diastole (lengthening) as dashed 

lines. 

 

 

8.2.3.1 Doppler strain echocardiography 

We used Doppler strain echocardiography in Study I to investigate LV 

longitudinal deformation. Because it requires parallel orientation between the 

ultrasound beam and the direction of motion, it was only applied in the apical 4-

chamber view. We carefully placed the wall under interrogation in the centre of 

the ultrasound beam and the image sector was narrowed, achieving frame rates of 

180 to 220 frames per second. Time of aortic valve closure was obtained from 

pulsed-wave Doppler at the level of LV outflow tract. We used a sample volume 

of 6 X 6 mm for tissue velocities and 12 X 8 mm for strain and strain rate (Figure 

5). Results are reported as peak systolic strain and strain rate measured at aortic 

valve closure (end systole) and postsystolic shortening. Furthermore, strain and 
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strain rate measurements from the septal and lateral basal and midle LV segments 

were averaged to obtain longitudinal global strain and strain rate. 

        A                         B 

Figure 5. Doppler strain echocardiography. Longitudinal strain curves over 

multiple heart cycles from the septal basal (yellow) and septal mid (green) 

segments in (A) patient with CKD and (B) healthy control. Peak strain at the 

aortic valve closure is significantly reduced in both the basal and mid segments in 

CKD compared with control subject. 

 

8.2.3.2  Speckle strain echocardiography 

Speckle strain echocardiography analyses motion by tracking natural acoustic 

reflections(65). An automatically defined region of interest is divided into blocks 

in which stable speckle-patterns (“fingerprints”) can be recognized by the 

software. Each block holds 20 to 40 pixels with variable greyscale intensity, 

constituting the image. These blocks are tracked consecutively frame to frame and 

the movement of the blocks are converted into velocity vectors. The change in 

block-vectors is defined as regional strain. Negative strain is classified as 

myocardial thickening and represents contraction, and is colour-coded red. 

Positive strain represents myocardial thinning and reflects relaxation, and is 

colour-coded blue. The method has been validated against MRI-tagging and 

sonomicrometry(66, 67) and proved valuable in evaluating LV function in patients 

with hypertrophic cardiomyopathies(68) and ischemic heart disease(69).  
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We used this technique in Study II and III to describe LV longitudinal and 

circumferential peak systolic strain and strain rate by analysing grey-scale 

images(70) from 6 segments for each view throughout the cardiac cycle: the 

antero-septal, anterior, lateral, posterior, inferior and septal segments in the 

parasternal short axis view, lateral and septal basal, middle and apical segments in 

the apical 4-chamber view and inferior, and anterior basal, middle and apical 

segments in the apical 2-chamber view (Figure 6). Care was taken to achieve 

frame rates of at least 50 frames per second by optimizing depth and sector width. 

Results are reported as the peak systolic strain and strain rate during the whole 

cardiac cycle. Furthermore, measurements from the individual LV apical and 

parasternal segments were averaged and reported as LV global longitudinal or 

circumferential strain and strain rate. 

  I         II              III 

 

 

Figure 6. Standard division of the LV in six segments when performing regional 

deformation analysis by speckle strain echocardiography on a parasternal short-

axis view (panel I), apical 2-chamber view (panel II) and apical 4-chamber view 

(panel III). Colour coding in Figure tables reflect the respective LV segments and 
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the numbers in the table reflect the measured strain in each segment. The lower 

panels provide time curves of respective LV regional strain. Images are taken on a 

healthy subject. 

 

8.2.4 Reproducibility 
In Study I Doppler derived peak systolic basal tissue velocities, strain and strain 

rate were analyzed off-line by two independent observers in 10 randomly selected 

subjects (intraobserver and interobserver variation). In Study II longitudinal global 

peak systolic strain and strain rate and segmental basal septal and lateral peak 

systolic strain by speckle strain echocardiography were analyzed in all patients by 

two independent observers (interobserver variation). 

 

8.3 Statistics 
The SPSS statistical computing program versions 14.0 to 17.0 (SPSS Inc., 

Chicago, Illinois, USA) were used for statistical analysis. Data are presented as 

mean ± standard deviation for continuous variables and as percentages for 

categorical variables. The chi-square test was used to compare categorical 

variables and Student t-test to compare continuous variables. Variables not 

normally distributed were log-transformed before tested in uni- and multivariate 

analysis. Bivariate correlations were assessed by Pearson’s correlation coefficients 

for normally distributed data. Multivariate linear regression analysis with an enter 

procedure and collinearity diagnostic was used to assess independent covariates of 

segmental and global longitudinal systolic strain and strain rate. Receiver 

Operating Characteristics curve analysis was used in Study III to identify the cut-

off value of LV global longitudinal systolic strain with best sensitivity and 

specificity in identifying disease. Reproducibility of measurements of systolic 

tissue velocities and systolic segmental and global longitudinal strain and strain 

rate were assessed by intraclass correlation coefficients and Bland-Altman limits
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of agreement(71). Two-tailed p < 0.05 was considered significant both in 

univariate and multivariate analyses. 
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9.  Summary of results 

9.1 Study I. Subclinical Abnormalities of Left Ventricular Myocardial 
Deformation in Early-Stage Chronic Kidney Disease: The 
Precursor of Uremic Cardiomyopathy? 

To determine left ventricular function echocardiography was performed in 24

men and 16 women (mean age 48 ± 11 years) with stage II or III CKD and 

30 age and sex-matched healthy subjects. 

There were no differences in LV ejection fraction or systolic tissue Doppler 

velocities between patients with CKD and controls. In CKD, mean LV global 

longitudinal systolic strain (-15% ± 4% vs. -17% ± 3%, P < 0.01) and strain rate 

were reduced compared to controls (-0.88 ± 0.16 vs. -1.06 ± 0.31, P < 0.05). 

Regional peak systolic strain was reduced in the basal lateral and the basal and 

middle septal LV walls. Regional peak systolic strain rate was reduced in the basal 

and middle lateral and middle septal segments. There was good intra- and 

interobserver agreement: LV Systolic tissue velocity (r = 0.96; P < 0.001), LV 

global longitudinal systolic strain rate (r = 0.95, P < 0.001), and strain (r = 0.98, P 

< 0.001). Bland-Altman limits of agreement for intra- and interobserver variation 

revealed no systematic bias in differences between measurements with respect to 

their means: LV systolic tissue velocity 10.4% to -6.9% and 11.8% to – 12.4%, 

LV global longitudinal systolic strain rate 13.3% to – 12.7% and 19.9% to – 

21,6% and strain 15.1% to – 13,5% and 8.5% to – 11.9%. 

 

9.2 Study II. Left ventricular function in children and adults after 
renal transplantation in childhood. 

Conventional and speckle strain echocardiography was performed in 34 paediatric 

and 34 adult CKD patients aged 3-41 years (mean 20 ± 10). All underwent renal 

transplantation in childhood median 9.8 years earlier (range 2.0 – 28.4) and 

compared to 68 age- and sex-matched healthy subjects. Forty-three percent had a 
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pre-emptive transplant. Of the remaining, 70% received haemodialysis and 30% 

peritoneal dialysis on average for 6.9 months. Thirty-one percent of paediatric and 

35% of adult patients had known hypertension. In renal transplanted patients, 

multiple regression analysis showed that higher systolic blood pressure was 

independently associated with higher LV mass index (ß 0.618, 95% CI 0.107 - 

0.509, P = 0.026) when adjusted for age and diastolic variables. LV global 

longitudinal systolic strain and strain rate were comparable in patients and controls 

at the post-transplant follow-up. LV diastolic function, represented by the 

isovolumic relaxation time and the ratio of early mitral diastolic flow to early 

diastolic myocardial velocity (E/E`), was impaired in both paediatric patients (69 ± 

15 vs. 60 ± 12, P 0.01 and 6.8 ± 1.6 vs. 5.5 ± 0.9, P < 0.01) and adult patients (80 

± 16 vs. 71 ± 11, P 0.02 and 7.3 ± 3.3 vs. 5.2 ± 0.9, P < 0.01) compared to 

controls. Average peak VO2 was 66% and 85% of expected value in children and 

adults respectively. In multivariate analysis, systolic blood pressure (ß = 0.230, CI 

-0.000 – 0.008, P = 0.044) and LV diastolic relaxation (ß = 0.274, CI -0.001 – 

0.006, P = 0.001, respectively) were the main covariates of LV global longitudinal 

systolic strain rate. The same relations were found for LV global longitudinal 

systolic strain, but only in a univariate model (ß = 0.297, CI 0.002 – 0.006, P = 

0.001 and ß = 0.349, CI -0.002 – 0.007, P < 0.001). The interobserver agreement 

was within clinical acceptance: LV global longitudinal systolic strain (r = 0.66; P 

< 0.01), strain rate (r = 0.90; P < 0.01) and LV basal septal and lateral longitudinal 

peak systolic strain (r = 0.96 and r = 0.95; both P < 0.01). Bland-Altman limits of 

agreement revealed no systematic bias in differences between measurements: LV 

global longitudinal systolic strain (-2.56% to 1.46%), and strain rate (-0.02% to 

0.08%) and LV basal septal and lateral longitudinal peak systolic strain (-1.72% to 

2.04% and -1.23% to 3.09% respectively). 
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In this study we investigated if speckle strain echocardiography could detect early 

cardiac involvement in 25 women and 13 men aged 17 - 68 (32  15.9) with 

genetically confirmed Fabry disease by comparing them to 38 age- and sex-

matched healthy subjects. LV hypertrophy was found in 21% of the patients (4 

women and 4 men). LV global longitudinal systolic strain was lower in patients 

compared to controls (-16.3  3.9 vs. -19.5  2.5 %, P = 0.000). LV 

circumferential deformation was comparable in patients and controls. 28% had  

Stage II or III chronic kidney disease based on GFR measurements. In multivariate 

analysis, having Fabry disease (B = 2.457, CI 0.683 – 4.231, P = 0.008) predicted 

lower LV global longitudinal systolic strain independent of LV mass (B = 0.036, 

CI 0.023 – 0.050, P = 0.000), diastolic function, GFR, systolic blood pressure and 

age (multiple R2=0.60, P = 0.000). In receiver operating characteristics curve 

analysis, LV global longitudinal systolic strain was superior to LV mass in 

identifying patients with Fabry disease. 

 
9.4 Feasibility 
We excluded ten patients in Study I and one patient in Study III because of poor 

image quality. All other patients had sufficient image quality for analysis of strain 

by Doppler or speckle tracking. However, some segments were not possible to 

analyse. Summarizing the results of all the patients, the feasibility of longitudinal 

strain and strain rate by speckle strain echocardiography was 86.3% and 83.6%, 

respectively and for circumferential strain 84.2%. 

 
 

 

 

9.3 Study III. Speckle strain echocardiography may detect early 
cardiac involvement in Fabry disease. 
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10.  Discussion 

This thesis demonstrates that measurements of longitudinal strain may improve 

detection of LV systolic dysfunction in patients with diseases causing metabolic 

myocardial alterations, associated with development of cardiomyopathy. As 

demonstrated by the results, having Fabry disease was associated with lower LV 

global longitudinal systolic strain independent of systolic blood pressure, LV mass 

and age. Furthermore, LV global longitudinal systolic strain was superior to LV 

mass in identifying patients with Fabry disease. In patients with CKD, LV global 

longitudinal systolic strain was reduced in patients with early-stage disease, but 

not in post-transplant follow-up of patients who underwent renal transplantation 

during childhood. Finally strain echocardiography could be performed with 

clinical acceptable intra- and inter-observer reproducibility. 

 

10.1 Study population 
Differences and similarities between the studied patient populations are presented 

in Table 1. As pointed out, hypertrophy of cardiomyocytes and some degree of 

myocardial disarray may be found in the end-stage of the cardiomyopathy both in 

CKD and in Fabry disease(72-74). In CKD patients this is caused by chronic 

uraemia and longstanding hypertension. Our data suggest that LV systolic 

myocardial deformation is less affected in patients who underwent renal 

transplantation in childhood than in patients with stage II and III CKD (Table 1). 

In Fabry patients both the accumulation of GL-3 within the heart itself, but also 

within the kidney, causing progressive renal impairment as in CKD, may 

contribute to cardiac dysfunction. Of note, in our Fabry population 28% had stage 

II or III CKD based on GFR. The reduced renal function may influence 

myocardial function beyond the direct effect of Fabry disease itself, and probably 

at least in part explains our findings of reduced LV myocardial systolic 

deformation despite an overall low disease severity score. 
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Table 1. Characteristics of study population 

 
CV, cardiovascular; CKD, chronic kidney disease; LV, left ventricular; Tx, 

transplantation 
1Data from thesis, 2End-stage CKD (myocardial histology of early-stage never 

described(74), 3(75-77), 4(78, 79), 5(72, 73),  6(72), 7(80, 81), 8(82, 83) 

 

10.2 Strain echocardiography in subclinical LV dysfunction 
When tissue Doppler strain echocardiography was first introduced in the mid 90’s, 

studies were primarily looking for a new indicator of regional left ventricular 

contraction and function in ischemic heart disease(84-86). With the growing 

experience with the method it was tempting to apply the method also to better 

evaluate global left ventricular contraction and function(87).  

 

Global longitudinal systolic strain measured by Doppler or speckle strain 

echocardiography has proved sensitive to early LV systolic myocardial 

abnormalities even in patients with normal LV systolic function measured by 

conventional echocardiographic methods.(5, 6, 9) Strain echocardiography has 
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been suggested to be particular useful in a number of cardiomyopathies associated 

with development of LV hypertrophy. This includes the preclinical diagnosis of 

cardiomyopathies due to non-obstructive hypertrophic cardiomyopathy, 

Friedreichs ataxia and amyloidosis(37, 88-90). In all these studies there was an 

association between reduced regional and/or global strain and LV mass. However, 

it was not studied if reduced strain was predictive of having the disease, 

independent of LV mass. Indeed abnormal LV geometry is associated with 

changes in LV regional and global deformation and this can be identified by 

Doppler or speckle strain echocardiography as shown in our studies. As 

demonstrated in our studies LV hypertrophy was found in 18% of patients with 

CKD, in 19% of patients after childhood renal transplantation and in 21% of 

patients with Fabry disease. Both increased LV mass and high relative wall 

thickness was associated with reduced global myocardial deformation in our 

patients in Study III. More important however, is the ability of strain 

echocardiography to detect LV myocardial dysfunction in asymptomatic patients 

without LV hypertrophy. In study I and III, LV longitudinal systolic strain was 

significantly reduced in patients compared to controls, independent of LV mass. 

Our findings supports previous publications demonstrating lower global strain to 

be a better marker of LV global dysfunction than LV ejection fraction and 

fractional shortening in patients with coronary artery disease(91) and our findings 

suggest that reduction in LV global longitudinal strain is present before LV 

hypertrophy can be measured and therefore may be superior to LV mass in 

identification of early  subclinical myocardial involvement. 

 

10.3 Cardiac function in chronic kidney disease 
Study I is among the first to demonstrate that patients with early-stage CKD have 

subclinical LV systolic dysfunction with evidence of impaired LV global 

longitudinal strain on echocardiography. In contrast, a previous report by Hayashi 

and co-workers found that early diastolic myocardial velocity (E’) was reduced in 
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patients with severe (Stage IV) CKD only and not in patients with mild/moderate 

(Stage I – III) CKD(92). Furthermore, the reduction in early diastolic myocardial 

velocity (E’) in their study was seen both in patients with LV hypertrophy and in 

those without(92). This is consistent with our finding of comparable LV global 

longitudinal systolic deformation in patients with and without LV hypertrophy and 

with and without known hypertension, suggesting that other factors than 

hypertrophy and hypertension contributes to the myocardial dysfunction. In a 

study by Nasir et al, Harmonic Phase tagged magnetic resonance imaging showed 

that circumferential strain and strain rate was reduced in early-stage CKD patients 

with a creatinine clearance less than 60 mL/min(93). The present results add to 

this knowledge by demonstrating that LV global longitudinal systolic strain and 

strain rate were significantly reduced in patients with early-stage CKD compared 

to healthy subjects, consistent with a hypothesis of subclinical cardiac 

involvement associated with early-stage CKD. In a 36-months follow-up study of 

129 patients with late-stage (Stage IV and V) CKD, Rakhit and co-workers 

showed that global longitudinal strain measurements worsened in patients on 

continuous dialysis while it improved in patients undergoing renal 

transplantation(24). Furthermore, this subclinical LV myocardial dysfunction was 

associated with adverse outcome, suggesting that the detection of subclinical 

myocardial dysfunction added incremental value to clinical predictors. Whether 

this also refers to patients with early-stage CKD need further evaluation in future 

studies to determine if they are related to the severity of the CKD itself or other 

factors like LV hypertrophy or systolic blood pressure.  

 

The prognostic value of LV deformation has been studied in patients with heart 

failure, demonstrating that longitudinal strain measurement is a promising 

echocardiographic parameter to predict benefit from cardiac resynchronization 

therapy(94, 95) and it was the strongest predictor for new onset atrial fibrillation in 

hospitalized patients with heart failure(96). No previous studies have investigated 
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the prognostic value of strain and strain rate imaging, and there are no studies 

regarding the effect of intervention on subclinical myocardial abnormalities in 

early-stage CKD. 

 

We found no difference in global LV systolic myocardial deformation between 

patients who underwent renal transplantation in childhood and healthy subjects. 

Also LV ejection fraction and fractional shortening were comparable between 

patients and controls. We might speculate that this reflects a normalisation of 

myocardial function after removal of the ‘uraemic state’ before transplantation. 

Most of our patients had a pre-emptive transplantation with organ from a living 

donor and mean time on dialysis was only 6.9 months, all of which are favourable 

in terms of CV prognosis(97, 98). However, mild hypertension was common 

among our renal transplanted patients. Furthermore, ambulatory blood pressure 

measurement showed mild hypertension, both in patients with known hypertension 

and on antihypertensive drugs and in those believed to be normotensive, 

suggesting an under-diagnosing and under-treatment of hypertension in our cohort. 

Baltabaeva and co-workers showed that longitudinal peak systolic strain was 

reduced in the LV basal septal wall, but increased in the LV basal lateral wall in 

untreated patients with mild to moderately elevated blood pressure(99). They did 

not report global measurements. In our adult transplanted patients we also found 

reduced longitudinal peak systolic strain in LV basal septal wall, but with no 

differences in the LV basal lateral wall compared to healthy subjects. This may be 

explained by particular high level of wall stress at the LV basal septum due to an 

increased local radius of curvature compared to the LV free wall(100). The basal 

septum is therefore often the first region to show changes under the influence of 

pressure overload. The increase in segmental strain in the LV basal lateral wall 

may be a compensating mechanism early in hypertension. Our finding of normal 

global LV myocardial deformation in patients with childhood renal transplantation 

supports this theory. Chen and co-workers demonstrated reduced regional 
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longitudinal and circumferential strain rate in hypertensive patients with LV 

hypertrophy, but normal ejection fraction and fractional shortening measured by 

conventional echocardiography, suggesting a more severe impairment of LV 

systolic deformation in patients with combined hypertension and LV 

hypertrophy(101). In comparison, our renal transplanted patients had a low 

prevalence of LV hypertrophy (19%) compared to previous reports(102, 103), and 

this may have contributed to the well-preserved LV systolic function, including 

normal LV systolic myocardial deformation. Furthermore, it has been suggested 

that paediatric and adolescent renal recipients have a hyperdynamic circulation, 

characterised by reduced after-load and sympathetic over-activity(102, 104). This 

may explain our finding that global systolic myocardial deformation was well 

preserved and in some wall-segments even increased. In patients with childhood 

onset CKD it is hypothesised that uremic-associated factors, such as interstitial 

fibrosis(74) and endothelial dysfunction followed by arterial medial 

calcification(31), are the main contributors to cardiovascular morbidity and 

mortality rather than classic atherosclerotic intimal calcification. Abnormal 

myocardial deformation may reflect cardiomyocyte hypertrophy with disarray and 

interstitial fibrosis(74, 105). This is commonly seen in patients with familial 

hypertrophic cardiomyopathy(44) and has also been found on endomyocardial 

biopsy in patients with end-stage CKD(74)(Table 1).  

 

In CKD, diastolic dysfunction commonly precedes changes in systolic function on 

conventional echocardiography(106, 107). Our renal transplanted patients and 

Fabry patients had impaired LV diastolic compliance as also previously reported 

by others(103, 108). Isovolumic relaxation time and the ratio of early mitral 

diastolic flow to early diastolic myocardial velocity (E/E`) were significantly 

higher both in the paediatric patients and adult patients after childhood renal 

transplantation compared to healthy controls. There are conflicting evidence about 

improvement in LV diastolic function after renal transplantation(103). 
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Cyclosporine, used by 47% of our patients, is supposed to contribute to interstitial 

myocardial fibrosis(109). We did not have cardiac magnetic resonance imaging 

information of LV myocardial fibrosis in our patients. However, our cohort of 

renal transplanted patients was fairly young with only short time since 

transplantation and with well-preserved LV systolic deformation, suggesting that 

widespread interstitial fibrosis was unlikely. As previously noted, our study 

showed a high prevalence (33%) of mild hypertension in both children and adults 

with childhood renal transplantation. It is therefore more likely that the impaired 

LV diastolic function in our renal transplanted patients can be explained by 

inadequate blood pressure control rather than by fibrosis caused by cyclosporine 

treatment. Arterial hypertension is a common consequence after renal 

transplantation(110). It is linked to an increased risk of CV events, graft failure, 

proteinuria, and death(111). Diastolic dysfunction is an early finding in mild to 

moderate hypertension(112) and is found to precede LV hypertrophy in the 

development of hypertension(113). In our renal transplanted patients impaired LV 

diastolic relaxation was associated with higher LV mass index in multiple 

regression analysis (ß 0.357, CI 0.156, 0.433, P < 0.001). Furthermore, previous 

reports have shown that impaired LV diastolic function identifies hypertensive 

patients at increased CV risk(114). In our hypertensive renal transplanted patients, 

higher systolic blood pressure was independently associated with higher LV mass 

index. This is in accordance with data from Harkel and co-workers who found an 

association between LV hypertrophy and systolic hypertension in paediatric 

patients with diastolic dysfunction after renal transplantation(115). In the Losarten 

Intervention For Endpoint reduction in hypertension (LIFE) Study losartan or 

atenolol-based antihypertensive treatment in hypertensive patients with LV 

hypertrophy and LV diastolic dysfunction, resulted in significant improvement in 

trans-mitral flow patterns but this was not directly associated with reduced CV 

morbidity and mortality.(116) Only patients with in-treatment normal LV filling 
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had reduced risk for hospitalization for heart failure, emphasising the importance 

of timely antihypertensive treatment(116). 

 

10.4 Cardiac involvement in Fabry disease 
Our study demonstrated that reduced LV global systolic strain is associated with 

having Fabry disease independent of LV mass. To our knowledge this is the first 

study to use speckle strain echocardiography in the search for subclinical markers 

of cardiac involvement in Fabry disease. Speckle strain echocardiography has 

revealed that LV longitudinal systolic strain in patients with hypertrophic 

cardiomyopathy is reduced in proportion to patient symptoms(117). Also in our 

study, abnormal myocardial deformation was confined to the longitudinal LV 

mechanics. LV longitudinal mechanics predominantly reflect subendocardial 

myocardial function. This is the most vulnerable component of LV mechanics due 

to increased degree of shear stress, and the subendocardial myocardial function 

therefore is likely to deteriorate first(65). It has been shown that circumferential 

strain, reflecting mid-myocardial and epicardial LV function, remain normal or 

super-normal, as a compensating mechanism to preserve systolic function, in the 

early course of hypertrophic cardiomyopathies(117). Depending on extent of 

myopathy, the extent of compensation offered by circumferential strain in relation 

to reduction in longitudinal strain in hypertrophic cardiomyopathy may vary(68, 

117). Our Fabry patients demonstrated slightly increased LV global systolic 

circumferential strain and strain rate compared to healthy subjects, supporting the 

impression of mild Fabry disease with intact circumferential compensating 

mechanism. Weidemann and co-workers also found abnormal longitudinal strain 

in patients with Fabry disease using Doppler strain echocardiography(52, 118). In 

their study they also showed that strain parameters improved after enzyme 

replacement therapy. As in our study there was a mixture of patients with and 

without LV hypertrophy. Our finding that reduced global systolic strain was 

independent of LV mass is important because we need a cardiac marker 
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independent of LV hypertrophy which can detect cardiac involvement in Fabry 

patients at an earlier stage. Previous studies have shown an association between 

the severity of myocardial fibrosis and LV longitudinal strain in Fabry 

patients(83). This is consistent with data from patients with hypertrophic 

cardiomyopathy where the amount and location of LV fibrosis and LV end-

diastolic wall-thickness were independent predictors of LV longitudinal systolic 

strain(119). In pressure overload cardiac disease, like hypertension, it is suggested 

that hypertrophy is induced over the entire ventricle as a reaction to the elevated 

afterload, until high values of wall stress induces irreversible fibrosis(120). In 

Fabry disease however, a recent study demonstrated that LV hypertrophy is not 

obligate in female Fabry patients with LV myocardial fibrosis(57). This may be 

due to the fact that increased afterload is not the driving force of LV hypertrophy 

in Fabry disease, but rather the myocardial alterations caused by GL-3 

accumulation within the cardiomyocytes. 

 

As demonstrated in study I, early-stage CKD was associated with abnormal LV 

myocardial deformation. Impaired renal function is common in Fabry patients due to 

accumulation of globotriaosylceramide (GL-3) within the glomerular endothelial, 

mesangial and interstial cells and in the podocytes.(121) Indeed, our data showed that 

28% of the patients could be classified as having early-stage (stage II or stage III) CKD 

based on GFR measurements. Furthermore, a reduced GFR was associated with reduced 

LV global longitudinal strain (r = 0.318, P = 0.031). We therefore suggest that renal 

function should be reported when describing LV myocardial deformation in Fabry 

patients.  
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Despite the fact that enzyme replacement therapy has been available since 2001 

there is no evidence that this has improved life expectancy in Fabry patients. At 

present non-randomized studies have demonstrated that enzyme replacement 

therapy have the ability to reduce the amount of GL-3 accumulation in 

cardiomycytes(122) and that it can reduce LV hypertrophy and possibly prevent 

progress in LV fibrosis, particular in patients with mild to moderate cardiac 

involvement(52). So far no studies have documented effect of treatment on any 

hard CV endpoints and CV disease remains to be the major cause of death in 

Fabry disease(2). It has been suggested that the lack of CV prognostic effect may 

be related to that treatment is started too late(52). At our hospital we start enzyme 

replacement therapy in patients with significant clinical symptoms or 

asymptomatic patients with evidence of renal dysfunction measured by GFR or 

cardiac dysfunction on conventional echocardiography. The restrictive practice is 

mainly due to the high costs of enzyme replacement therapy, but also to the lack of 

data on effect of the treatment on CV prognosis. It is challenging to use 

conventional echocardiography to recognize early cardiac involvement in Fabry 

disease. Newer modalities may be able to detect subclinical cardiac involvement, 

without the presence of LV hypertrophy or reduced LV ejection fraction, both 

more established signs of cardiac damage and advanced disease. This could lead to 

an earlier diagnosis on an individual base. The benefit of such a strategy, tailoring 

enzyme replacement therapy, remains to be tested in larger prospective 

multicentre studies. 
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11.  Limitations 

11.1 Study population 
When interpreting the results of the studies in this project, it should be kept in 

mind that they are all observational studies. The true onset of cardiac involvement 

in a single patient is generally unknown. Therefore our evaluations were 

performed at different stages of the diseases with potential differences in baseline 

characteristics, complicating the interpretation of our data. Due to the low 

prevalence of the diagnoses included in this thesis, the low number of patients 

included is obviously a limitation to the thesis, and no attempt for power 

calculations was done. However, this study limitation is difficult to overcome, if 

not designed as a multi-centre study. Hypertension was seen in all our study 

populations, and it is difficult to truly adjust for the known influence of 

hypertension on LV myocardial function in multivariate analysis. Furthermore, 

given the small size of the study populations, separate analysis within groups of 

patients with and without hypertension were clearly limited. This was not a study 

however, of patients with hypertension. Two-thirds of all Fabry patients are female, 

which explain the male/female ratio in study 3(57). Previous studies have reported 

gender differences in Fabry disease. Both the extent of cardiac involvement and 

the time-course have been demonstrated to be different in women compared to 

men(123, 124). However, our project did not have power to assess gender 

differences in Fabry disease. 

 

11.2 Echocardiography 
Strain echocardiography is highly dependent on good image quality. Artefacts 

should be avoided to achieve reliable measurements. For this reason, speckle 

strain echocardiography was performed on a single optimal image from each view, 

rather than averaging measurements from multiple images with different quality. 

The feasibility in this work was, however, in accordance with modern 
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echocardiographic machines, harmonic frequencies and study protocols using 

Doppler or speckle strain echocardiography(125, 126). The proportion of 

segments that was possible to analyse was average. Because all segments with 

visually poor tracking were discarded, time-demanding and subjective evaluation 

was reduced. In our view, this increases the generalizability of the results. Also, to 

improve generalizability and reduce subjective evaluation, no adjustments were 

made to the default settings for strain analyses in EchoPac except from slight 

adjustments of endocardial outline and width of the region of interest, if the visual 

tracking was poor for the analysis of strain by speckle tracking. In addition to 

image quality, Doppler and speckle strain echocardiography are dependent on high 

frame rate. This was taken into account in this work by obtaining gray-scale 

images at a frame rate above 50 frames/second and Doppler strain at frame rates 

above 180 frames/second, achieving average frame rates within clinical 

acceptance(6, 91). Both Doppler and speckle strain echocardiography are load-

dependent measures of LV function and the results reported in this thesis should 

be interpreted keeping this limitation in mind. However, we examined our patients 

in a stable condition, verifying the clinical usefulness of the method in this 

circumstance. The statistically significant change in strain of 2.0% to 3.1% and in 

strain rate of 0.18% in Study I and III may not be clinically significant and is close 

to the difference of repeated measures. In any individual patient, abnormalities of 

more than one parameter of tissue characterization may be required before 

concluding that there is a clinical significant myocardial dysfunction. 

 

The definition of LV geometry was based on conventional parasternal measures of 

LV dimensions and wall thicknesses assuming the site of measurements to be 

representative for the whole ventricle. In spite of its limitations, this method is in 

accordance with current LV quantification guidelines, and assessment of LV 

geometry by this method is commonly used clinically, and has proven prognostic 

value in patients with hypertension(60). 



 
________________________________________________________________________ 
46 

11.3 Others 
Information from cardiac magnetic resonance imaging was not included in the 

present project. We therefore do not know whether participating patients had LV 

fibrosis in the present study. In a consensus document on Fabry disease from 2006 

cardiac magnetic resonance imaging was optional and in particular recommended 

in patients with LV hypertrophy(127). At our institution cardiac magnetic 

resonance imaging was included in the routine follow-up of Fabry patients in 2009 

from the age of 18. A similar practice should probably be established in patients 

with CKD.  

 

We did not include cardiac biomarkers in our studies. Cardiac biomarkers have 

become useful in screening for cardiac dysfunction(128). A combination of 

cardiac troponin T and C-reactive protein proved useful in the risk stratification of 

patients with end-stage CKD(129).  
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12.  General conclusions 
 
The following conclusions were found for the three prespecified 
research questions: 
 

1. Can Doppler derived strain imaging detect myocardial abnormalities in 

asymptomatic patients with stage II or III chronic kidney disease and 

normal LV geometry and systolic parameters on conventional 

echocardiography? 

 In patients with stage II or III chronic kidney disease, LV ejection fraction 

is generally preserved, while LV longitudinal systolic deformation is 

abnormal. Therefore, LV myocardial deformation assessment may be used 

for identifying patients with impaired myocardial function in spite of 

normal ejection fraction and without clinical evidence of heart disease. 

 

2. Is LV conventional and speckle tracking echocardiography normal in 

asymptomatic children and young adults who underwent renal 

transplantation in childhood? 

 Children and adults who underwent renal transplantation in childhood had 

relatively preserved LV myocardial deformation, despite changes in LV 

geometry including higher relative wall thickness and LV mass index and 

systolic blood pressure. LV diastolic function was impaired and was, 

together with systolic blood pressure, the main covariate for reduced LV 

systolic deformation. 

 

3. Can speckle tracking echocardiography detect reduced LV systolic 

deformation in patients with genetically confirmed Fabry disease, 

independent of LV geometry studied by conventional echocardiography? 
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 In patients with genetically confirmed Fabry disease, reduced LV global 

longitudinal strain was related to disease severity and higher systolic blood 

pressure and LV mass. Lower LV global longitudinal strain was closer 

associated with Fabry disease than LV mass and may be a better marker of 

early cardiac involvement. 
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13.  Perspectives 

13.1 Possible implications for clinical practice 

LV hypertrophy is a crude measure of cardiac involvement in asymptomatic 

cardiomyopathies. Myocardial dysfunction may often be detected by strain 

echocardiography despite normal findings by conventional echocardiography, 

including normal LV geometry and ejection fraction. Whether the detection of 

abnormal deformation may have prognostic importance in patients with CKD or 

Fabry disease remains to be tested in prospective, longitudinal echocardiographic 

studies in asymptomatic patients with normal LV geometry and systolic 

parameters by conventional echocardiography. 

 

Our research group has included speckle strain echocardiography in the 

echocardiographic protocol of evaluation of cardiac function in patients with high 

risk of developing CV disease such as patients with CKD, diabetes, familial 

hypertrophic cardiomyopathy and several forms of metabolic diseases, including 

Fabry disease. However, while awaiting data on the prognostic role of deformation 

analysis, this should be used with caution in the individual follow-up of such 

patients.  

13.2 Prospects of future research 

Our data provide support for a longitudinal clinical outcome trial to investigate 

whether abnormal systolic deformation is a marker of adverse prognosis in early-

stage CKD and mild Fabry disease. To yield sufficient power for definitive 

answering the value of using strain echocardiography in prognostic assessment of 

such patients, multicentre studies must be used. Alternatively, well-designed 

registries reflecting the multicentre experience in Fabry disease may be used. 
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Focus should be on recruiting asymptomatic non-treated patients with a confirmed 

diagnosis and normal findings on conventional echocardiography. In Fabry 

patients also information about the presence of fibrosis by cardiac magnetic 

resonance imaging should be included in future studies. The hypothesis should be 

that abnormal systolic deformation is a precursor of LV hypertrophy in patients 

with early-stage CKD and mild Fabry disease. A possible substudy could be an 

interventional arm using neurohormonal blocking agents, which have been shown 

to be effective in improving the prognosis of other groups of patients with LV 

systolic dysfunction(130, 131). A substudy investigating men and women 

separately would be particular interesting in Fabry disease, since previous studies 

suggest gender specific differences related to the extent of cardiac involvement in 

women and the time-course of these changes. Such information could allow 

optimization of management with CV drugs and/or enzyme replacement therapy, 

increasing the likelihood of long-term improvements in CV outcomes and life 

expectancy. 
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