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ABSTRACT

Background. It is well known that hypertension may cause
glomerular damage, but the molecular mechanisms involved
are still incompletely understood.
Methods. In the present study, we used formalin-fixed paraffin-
embedded (FFPE) tissue to investigate changes in the glomeru-
lar proteome in the non-clipped kidney of two-kidney one-clip
(2K1C) hypertensive rats, with special emphasis on the glom-
erular filtration barrier. 2K1C hypertension was induced in
6-week-old Wistar Hannover rats (n = 6) that were sacrificed 23
weeks later and compared with age-matched sham-operated
controls (n = 6). Tissue was stored in FFPE tissue blocks and
later prepared on tissue slides for laser microdissection. Glom-
eruli without severe morphological damage were isolated, and
the proteomes were analysed using liquid chromatography–
tandemmass spectrometry.
Results. 2K1C glomeruli showed reduced abundance of pro-
teins important for slit diaphragm complex, such as nephrin,
podocin and neph1. The podocyte foot process had a pattern of
reduced abundance of transmembrane proteins but unchanged
abundances of the podocyte cytoskeletal proteins synaptopodin
and α-actinin-4. Lower abundance of important glomerular
basement membrane proteins was seen. Possible glomerular

markers of damage with increased abundance in 2K1C were
transgelin, desmin and acyl-coenzyme A thioesterase 1.
Conclusions. Microdissection and tandem mass spectrometry
could be used to investigate the proteome of isolated glomeruli
from FFPE tissue. Glomerular filtration barrier proteins had
reduced abundance in the non-clipped kidney of 2K1C hyper-
tensive rats.
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INTRODUCTION

Hypertensive nephrosclerosis is a major cause of renal failure
worldwide [1], and there is an urgent need for more knowl-
edge about the underlying mechanisms. Glomerular damage
occurs early in hypertensive nephrosclerosis [2] and is asso-
ciated with development of proteinuria and progressive kidney
damage [3]. Although it is generally accepted that proteinuria
is the result of damage to the glomerular filtration barrier, the
detailed biological mechanisms in different glomerular dis-
eases are still not known [4–6].

The two-kidney one-clip (2K1C) hypertensive rat is a
model for renovascular hypertension. A silver clip on the renal
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artery causes systemic hypertension and hypertensive kidney
damage in the non-clipped kidney [7]. Detailed morphological
studies have demonstrated podocyte loss as well as podocyte
foot process effacement in hypertensive glomerular damage
[8–10]. To our knowledge, no studies have previously analysed
the isolated glomerular proteome in hypertensive kidney
damage, although such a need has been clearly addressed [6].

For decades, formalin-fixed paraffin-embedded (FFPE)
tissue blocks have been the standard method of tissue pre-
servation for histopathological examination. Due to its cross-
bridging characteristics, tissue fixed in formalin was long
considered unsuitable for proteomic analysis but during the last
two decades methods to extract proteins from FFPE tissue have
been developed [11]. More recently, FFPE protein extraction
was combined with tandem mass spectrometry [12, 13], which
permitted large scale quantification of proteins in stored biop-
sies. These methods offer huge opportunities for investigation
of the proteomic basis of renal disease due to the large amount
of stored FFPE tissue in renal tissue biobanks [14, 15].

The overall objective of the present study was to determine
changes in proteins of the glomerular filtration barrier in a
model of hypertensive kidney disease. We focused on proteins
described as important in a recent review by Patrakka and
Tryggvason [5]. Our hypotheses were that microdissected
glomerular FFPE tissue could be used for quantitative prote-
omic analysis and that important glomerular filtration barrier
proteins would have lower abundance in 2K1C hypertensive
rats compared with sham-operated controls. We used laser mi-
crodissection to selectively isolate glomeruli, and reliability of
protein extraction was validated using fresh frozen glomeruli
samples. The method for quantitative proteomic analysis
using small amounts of FFPE glomerular tissue is described.

MATERIALS AND METHODS

Animals and experimental groups

Male Wistar Hannover rats (Taconic, Ry, Denmark) were
given free access to tap water and standard rat chow. At 6
weeks of age, the animals were randomly assigned to either
2K1C or control group and hypertension was induced as de-
scribed previously [16, 17]. Briefly, a silver clip with an intern-
al opening of 0.2 mm was placed on the left renal artery. The
controls were sham-operated, but not clipped. All experiments
were performed in accordance with, and under the approval
of, the Norwegian State Board for Biological Experiments with
Living Animals.

Measurements of blood pressure and proteinuria

Blood pressure was measured at 8 weeks after clipping
using the tail-cuff method (CODA-6, Kent Scientific, Torring-
ton, CT) as described previously in more detail [17]. Before
sacrifice, urine was collected while the rats were kept individu-
ally in metabolic cages for 24 h. Urinary protein and creatinine
concentrations were analysed in the Laboratories for Clinical
Biochemistry at Haukeland University Hospital, Bergen
(Roche/Hitachi 912: U/CSF Protein and CREA plus assays).

Sacrifice procedure

At 23 weeks after clipping, six 2K1C and six sham rats were
sacrificed under isoflurane anaesthesia as described in more
detail previously [18]. The kidneys were flushed with phos-
phate-buffered saline from the arterial side, removed and
weighed. Transversal slices were fixed in 4% buffered formal-
dehyde, processed by standard procedures and embedded in
paraffin.

Tissue preparation and laser capture microdissection

Ten-micrometer FFPE sections were mounted on pre-
irradiated polyethylene naphthalate slides (MembraneSlide 1.0
PEN, Carl Zeiss MicroImaging GmbH, Göttingen, Germany),
deparaffinized and stained with haematoxylin eosin. Two
samples (one from the outer cortex and the other from the jux-
tamedullary cortex) each with 100 glomerular tuft cross-
sections were laser microdissected (PALM MicroBeam, Zeiss)
and pressure catapulted into a tube cap (AdhesiveCap 500
clear, Zeiss). Glomeruli with severe morphological damage
were excluded as the objective was to investigate early glom-
erular damage. Total volume of dissected glomerular tissue
ranged from 7.8 to 12.5 nL. Dissected FFPE tissue was stored
at −20°C.

Isolating fresh frozen glomeruli

Whole glomeruli were isolated using the agarose method
described in detail previously [19]. Six sham-operated control
rats were sacrificed 13–16 weeks after surgery, and 30 glomeruli
were transferred to an eppendorf tube and stored at −80°C
until use.

Protein/peptide extraction

Microdissected FFPE glomeruli were suspended in 10 µL
lysis solution [0.1 M Tris pH 8, 0.1 M dithiothreitol (DTT),
4% sodium dodecyl sulphate] and heated at 99°C for 60 min.
Fresh frozen glomeruli were sonicated, added lysis solution
and heated at 95°C for 5 min. The lysate was separated on a
NuPAGE Novex 4–12% Bis-Tris at 100 V for 8 min. The gel
was stained with Coomassie Brilliant Blue G-250, and one lane
was cut into one fraction, which was further cut into cubes of
1 mm3. Gel pieces were washed with 50% CH3CN in 50 mM
NH4HCO3, reduced in 10 mM DTT in 100 mM NH4HCO3

for 45 min at 56°C and carbamidomethylated with 55 mM io-
doacetamide in 100 mM NH4HCO3 at room temperature in
the dark for 30 min. In-gel tryptic digestion was performed
using trypsin porcine (Promega, Fitchburg, WI) at 37°C for
16 h in a 1:20 trypsin:protein ratio. The digested peptides were
eluted and desalted using Oasis HLB μElution plates (Waters,
Milford, MA).

Peptide separation and tandem mass spectrometry

The samples, containing an estimated amount of 0.5 µg
peptides from FFPE glomeruli and 1 µg from isolated fresh
frozen glomeruli (estimated using a bicinchoninic acid assay),
were loaded onto a pre-column (Acclaim PepMap 100, 2 cm ×
75 µm i.d. nanoViper column, packed with 3 µm C18 beads)
followed by separation on the analytical column (Dionex
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#164570, Acclaim PepMap100 nanoViper column, 75 μm i.d.
× 50 cm, packed with 3 μm C18 beads). Separation by liquid
chromatography was performed using an Ultimate 3000 RSLC
system (Thermo Scientific, Sunnyvale, CA) connected online
to an LTQ-Orbitrap Velos Pro mass spectrometer (Thermo
Scientific, Bremen, Germany) equipped with a Nanospray Flex
ion source (Thermo Scientific). The peptides were separated
using a 180-min LC gradient. The mass spectrometer was op-
erated in data-dependent acquisition mode to automatically
switch between full-scan MS and MS/MS acquisition. The
seven most intense eluting peptides were sequentially isolated,
fragmented and analysed in MS/MS mode.

Label-free quantification

The raw data were analysed with the Progenesis LC-MS
software (version 4.0, Nonlinear Dynamics, Newcastle, UK)
using default settings. Protein intensity was determined by
adding the intensities of all peptides uniquely representing a
protein. Relative protein abundance was determined by com-
paring protein intensities between samples. Features were
searched and proteins identified by SearchGUI [20] and Pepti-
deShaker [21] using the UniProtKB Rattus norvegicus database
(downloaded from UniProt December 2013, 27 316 se-
quences). Precursor mass tolerance was set at 10 p.p.m. and
product mass tolerance at 0.5 Da. Carbamidomethylation of
cysteins and oxidation of methionines were set as fixed and
variable modifications, respectively. Two missed cleavages
were allowed, and false discovery rate was set at 1%.

Histology and immunohistochemistry

Series of 5-µm-thick sections from the non-clipped kidney of
2K1C hypertensive animals and the corresponding kidney from
sham-operated control animals were stained for periodic acid–
Schiff (PAS), for WT-1 Klon 6F-H2 (M3561 Dako, 1:50) to
count podocyte nuclei and for transgelin (SM22-α, ab10135
Abcam PLC, 1:1200 and G1D4 Novus Biologicals, 1:1200),
nephrin (Y17-R Novus Biologicals, 1:1200) and synaptopodin
(G1D4 Novus Biologicals, 1:400) to validate proteomic findings.
Slides were scanned with ScanScope® XT (Aperio) at ×40 and
viewed in ImageScope 11. According to the protocol for micro-
dissection, only glomeruli without severe morphological damage

were randomly selected. Identical glomeruli (≥10 per animal) in
two consecutive series of sections were used for assessment of
morphological damage (PAS) and counting of WT-1-positive
nuclei per glomerular cross section or glomerular tuft area. Sy-
naptopodin and nephrin staining were quantified by automatic
image analysis of 20 glomeruli per kidney using the Aperio posi-
tive pixel count algorithm v9.1. If necessary, results were normal-
ized to standard section thickness. Results are expressed as mean
number of positive pixels per µm2 glomerular tuft area.

Electron microscopy

For this investigation, renal tissue from a previous study
was used [17]. Small pieces from the renal cortex were fixed
in McDowell solution, postfixed in 1% osmium tetroxide and
embedded in EPON. Semithin sections were stained with
toluidine blue. Blocks with representative changes from two
non-clipped kidneys of 2K1C rats and two from sham-
operated controls were chosen for ultrastructural investigation.
Ultrathin sections were stained with uranyl acetate and lead
citrate and studied in a Jeol 100CX electron microscope.

Statistics

Fold change is given for relative quantitation of protein
abundance. A protein was considered differentially abundant
between 2K1C and controls if identified by at least two unique
peptides and had a t-test P-value of <0.05. For other analyses,
mean ± standard deviation (SD) is given and standard two-
sided t-tests were used for statistical testing and P-values of
<0.05 were considered significant unless otherwise noted.

RESULTS

Body weights were similar in the sham-operated control rats
and 2K1C rats at start of the experiment, but the 2K1C rats
weighed significantly less at time of sacrifice (Table 1). Eight
weeks after surgery, the 2K1C rats had higher blood pressure
compared with the sham-operated controls (P = 0.002). All
2K1C rats had proteinuria and morphological damage charac-
teristic of hypertensive nephropathy at time of sacrifice in con-
trast to none of the sham rats.

Table 1. Physiological characteristics of 2K1C and sham-operated rats

Sham (n = 6) 2K1C (n = 6) P-value

Weight rat (g)
0 weeks, surgery 177 ± 9a 170 ± 11 0.30
8 weeks 391 ± 28 365 ± 23 0.12
23 weeks, sacrifice 495 ± 32 378 ± 71 0.01

Kidney weight (g)
23 weeks, sacrifice 1.42 ± 0.11 Non-clipped/clipped

1.75 ± 0.19/1.05 ± 0.18
0.004/0.003

Blood pressure (mmHg)
8 weeks
Systolic 155 ± 10 206 ± 28 0.002
Diastolic 108 ± 9 162 ± 34 0.005

Proteinuria (g/L)
23 weeks, sacrifice 0.94 ± 1.91 4.62 ± 0.85 0.02

aThe data are given as mean ± SD.
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Reproducibility and reliability

The reproducibility of the method for extracting proteins
from FFPE glomerular tissue was assessed by individually ana-
lysing each of the 24 FFPE tissue samples (two samples from
each animal, six animals in each group). The number of identi-
fied proteins was similar in all the samples, with a mean of
1121 (SD 76, min 960, max 1270). Mean overlap between
control samples was 85% (SD 2.2%). The coefficient of vari-
ability (CV) was calculated from the protein abundances in
samples within the sham and 2K1C group (Supplementary data,
Table S1). The median variability was equally low within both
groups (21%), indicating a reproducible method work flow [22].
The average variability was, however, higher within the 2K1C
animals when compared with sham rats (28 versus 23%).

The chemical modifications produced by the fixation
process [23] may influence protein extraction from FFPE
tissue. We investigated differences in the identified proteins
from FFPE tissue and fresh frozen tissue by comparing the
overlap of identified proteins between 12 FFPE glomerular
samples from controls (six animals, two samples from each)
with the same number of fresh frozen glomeruli samples. A
total of 1303 proteins were identified from the FFPE sham
glomeruli and 1781 from the fresh frozen sham glomeruli. Of
the 1303 proteins from FFPE glomeruli, 83% overlapped with
proteins from fresh frozen glomeruli, presented as a Venn
diagram in Figure 1.

Changes in glomerular proteome in 2K1C versus sham

Combining the data from all 24 FFPE tissue samples using
label-free quantification, 8451 unique peptides (9585 in total)
were identified. The identified peptides correspond to a total
of 1417 proteins (Supplementary data, Table S2), of which
1066 proteins were identified with two or more unique pep-
tides, and used for protein quantification (Supplementary
data, Table S1). The analysis demonstrated that 185 proteins

were more abundant in 2K1C glomeruli compared with con-
trols and 206 proteins were less abundant.

We investigated changes in the glomerular filtration barrier
proteome following hypertensive injury by comparing relative
abundances (2K1C/sham) of proteins known to play a role in
the slit diaphragm complex, the podocyte foot process and the
glomerular basement membrane (GBM). We used Figure 2
(adapted from Patrakka and Tryggvason [5] and printed with
permission in this paper) as a basis for relevant proteins.

Podocyte foot process and the slit diaphragm complex. Of
the 19 podocyte foot process proteins (Figure 2), we were able to
quantify 15 from the glomerular samples (Table 2). Podocyte
foot process cytoskeletal proteins, such as β-actin, α-actinin-4
and synaptopodin [24, 25], were unchanged in 2K1C compared
with controls. In addition, no change was seen for actin-related
proteins (actin-related protein 3, F-actin-capping protein subunit
beta, fascin, tropomyosin alpha-1 chain) (data not shown).

Of the 18 slit diaphragm complex proteins in Figure 2, we
were able to quantify 12 from the glomerular samples, 11 of
which showed lower abundance in 2K1C compared with con-
trols (Table 3). Among these were several well characterized
slit diaphragm proteins such as nephrin, neph1, podocin and
ZO-1. However, the most significantly reduced proteins were
the less studied proteins Magi2 and Pard3b. Additionally,
roundabout homolog 2 (robo2), a protein recently found to
interact with nephrin in the slit diaphragm [26], showed
reduced abundance similar to nephrin.

The glomerular basement membrane. Most major proteins
of the GBM, which have previously been described in the litera-
ture [27], were identified in the glomerular tissue. Of the GBM
proteins, collagen IV α3 and α5 chains, laminin chains α5, β2
and γ1, nidogen-1 and agrin displayed significantly reduced
abundance in 2K1C as compared with sham (Table 4).

Potential glomerular damage markers. Table 5 presents a
list of potential glomerular damage markers in hypertensive
glomerular injury in the present study. The list contains all pro-
teins that were at least 30% more abundant in 2K1C rats as com-
pared with sham-operated controls (with a P < 0.01). Only
proteins that were not abundant in plasma (<100 peptide-
sectrum matches in [28]), and that overlapped with already
mapped glomerulus proteins [29] were included. In total, 23
proteins fulfilled the criteria and the proteins with the highest
relative change in 2K1C were transgelin, acyl-coenzyme A
thioesterase 1 and desmin (Table 5).

Morphological changes in 2K1C versus sham

The non-clipped kidney of 2K1C rats showed significant
morphological damage when compared with corresponding
kidneys in sham-operated rats (Figure 3). Glomerular morph-
ology in 2K1C varied from normal-to-mild morphological
damage (mesangial widening, absorption droplets in podocytes)
to more severe morphological damages (adherences, segmental
sclerosis, as well as pronounced ischaemic changes and throm-
botic microangiopathy in some rats). Hypertensive vasculopa-
thy was prominent, and acute and chronic tubulointerstitial

F IGURE 1 : Number of identified proteins from FFPE and fresh
frozen glomeruli from sham-operated controls. A total of 1781
proteins were identified in fresh frozen samples, compared with 1303
in FFPE samples. In total, 1088 proteins overlapped, corresponding
to 83% of the total identifications from FFPE glomeruli.
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damage was present. For the proteomic analyses in the present
study, we did not microdissect glomeruli with severe morpho-
logical damage.

A representative sample of 2K1C glomeruli eligible for mi-
crodissection was compared with sham rats; glomeruli from
2K1C rats had lower mean glomerular tuft area, a non-signifi-
cant trend towards a lower number of WT-1-positive podocyte
nuclei per glomerular cross section and a significantly lower
number per glomerular area (Table 6). As a sign of a defect
filtration barrier, podocytes from 2K1C glomeruli often con-
tained absorption droplets. Less than 5% of glomeruli eligible
for microdissection showed ischaemia, adherences, endothelial
swelling, segmental sclerosis or pseudocysts. Qualitative elec-
tron microscopy of representative glomeruli from 2K1C
non-clipped kidneys showed enlarged podocytes with electron
dense membrane-bound absorption droplets and mild seg-
mental foot process effacement, basement membrane changes
were not observed (Figure 3).

To validate proteomic findings, immunohistochemistry for
nephrin, synaptopodin and transgelin was performed (Figure 4).
As expected from the proteomic findings, synaptopodin showed
a similar amount of positivity in 2K1C and sham glomeruli.
Nephrin showed a tendency to lower expression in 2K1C glom-
eruli with a 2K1C/sham ratio of 0.9 (not significant, P = 0.15).
Nephrin staining correlated significantly with nephrin proteomic
intensity (r2 = 0.44, P = 0.02, Supplementary data, Figure S1).
Proteomic results indicated transgelin as a potential glomerular
damage marker. 2K1C glomeruli showed de novo staining in

F IGURE 2 : Important proteins of the glomerular filtration barrier. (A) Proteins of the podocyte foot process and GBM. (B) Proteins of the slit
diaphragm complex. Modified from and printed with permission from Patrakka and Tryggvason [5].

Table 2. Abundance of podocyte foot process proteins in 2K1C as
compared with sham-operated rats

Protein Gene 2K1C versus sham

Relative
abundance

P-value

Cytoskeletal proteins
Synaptopodin Synpo 0.86 0.16
α-Actinin-4 Actn4 0.92 0.23
Actin, cytoplasmic 1 Actb 1.04 0.74
Actin, cytoplasmic 2 Actc 1.24 0.003

Transmembrane proteins
Ptpro (glepp1) Glepp1 0.78 0.002
α3-Integrin Itga3 0.80 <0.001
β1-Integrin Itgb1 0.81 0.002
Podocalyxin Podxl 0.89 0.18
Dystroglycan Dag1 0.91 0.26
αv-Integrin Itgav 1.05 0.63
β3-Integrin Itgb3 N/A –
CD151 antigen Cd151 N/A –
Urokinase plasminogen

activator surface receptor
Plaur N/A –

Adaptor proteins
Talin Tln1 0.85 0.01
Na(+)/H(+) exchange regulatory

cofactor NHE-RF2
Nherf2 0.87 0.15

Ezrin Ezr 0.89 0.06
Utrophin Utrn 0.89 0.11
Integrin-linked protein kinase Ilk 0.93 0.29
Vinculin Vcl 1.01 0.86
Paxillin Pxn N/A –
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some podocytes as well as stronger staining in the parietal epithe-
lium and the glomerular vascular pole (Figure 4).

DISCUSSION

In the present study, we have investigated quantitative changes
in the glomerular proteome in hypertensive nephropathy.
Glomeruli without severe morphological damage were micro-
dissected from FFPE renal tissue, and small amounts of tissue
were used for quantitative proteomic analysis. Protein

extraction was shown to be reproducible and reliable. We de-
monstrated that proteins important for the glomerular filtra-
tion barrier were 20–40% less abundant in glomeruli from
2K1C rats when compared with sham rats. Proteins important
for the podocyte cytoskeleton were not changed. Morpho-
logically, we demonstrated glomerular hypertrophy in 2K1C
and a significantly lower number of podocytes per glomerular
tuft area. Transgelin, desmin and acyl-coenzyme A thioester-
ase 1 were identified as possible markers of hypertension-
induced glomerular damage.

The podocyte has been subject to detailed study during the
last decades [30], and mapping of the intracellular processes
within the podocyte is emerging [31]. In the present study, we
used a label-free proteomics approach to quantitatively
compare glomerular proteins from 2K1C rats with hyperten-
sive kidney damage to sham-operated controls. We were able
to quantify over a 1000 proteins and in order to study proteins
important for the glomerular filtration barrier; we chose to
focus on proteins described in a recent review by Patrakka and
Tryggvason [5]. The slit diaphragm proteins, nephrin and
podocin, have previously been shown to be associated with po-
docyte foot process effacement and are reduced in hyperten-
sive nephrosclerosis [8, 10]. Gene expression analyses have
also shown downregulation of nephrin, podocin, magi2 and
ZO-1 in other glomerular diseases, like focal segmental glo-
merulosclerosis [32, 33]. Our results support these findings,

Table 3. Abundance of slit diaphragm complex proteins in 2K1C as
compared with sham rats

Protein Gene 2K1C versus sham

Relative
abundance

P-value

Membrane-associated guanylate
kinase, WW and PDZ domain-
containing protein 2

Magi2 0.64 <0.001

Dendrin Dnd 0.65 <0.001
Protein Pard3b Pard3b 0.65 <0.001
Kin of IRRE-like protein 1 Neph1 0.68 <0.001
Roundabout homolog 2 Robo2 0.69 <0.001
Par-6 (partitioning defective 6)
homolog beta

Pard6 0.69 <0.01

Nephrin Nphs1 0.72 <0.001
Podocin Nphs2 0.77 <0.01
Tight junction protein ZO-1 Tjp1 0.77 <0.001
Spectrin beta chain, non-erythrocytic
1 (β-II spectrin)

Sptbn1 0.80 <0.001

Spectrin alpha chain, non-
erythrocytic 1 (α-II spectrin)

Sptan1 0.82 <0.001

Protein CD2AP Cd2ap 0.87 0.03
IQ motif containing GTPase
activating protein 1

Iqgap1 0.93 0.21

Peripheral plasma membrane protein
CASK

Cask N/A –

NCK1-2 Nck1-2 N/A –
P-cadherin Cdh3 N/A –
VE-cadherin Cdh5 N/A –
Short transient receptor potential
channel 6

Trpc6 N/A –

Junctional adhesion molecule 4 Jam4 N/A –
Protein Fat1 Fat1 N/A –

Table 4. Abundance of GBM proteins in 2K1C as compared with
sham-operated rats

Protein Gene 2K1C versus sham

Relative abundance P-value

Agrin Agrn 0.61 <0.0001
Collagen alpha 3 Type IV Col4a3 0.69 0.03
Collagen alpha 4 Type IV Col4a4 N/A –
Collagen alpha 5 Type IV Col4a5 0.69 0.03
Laminin alpha 5 Lama5 0.70 0.007
Laminin beta 2 Lamb2 0.71 0.01
Laminin gamma 1 Lamc1 0.70 0.01
Nidogen-1 Nid 0.72 0.01
Protein Hspg2 Hspg2 0.84 0.20

Table 5. List of potential glomerular damage markers in 2K1C
hypertension

Protein Gene 2K1C versus sham

Relative
abundance

P-value

Transgelin Tagln 3.41 <0.01
Acyl-coenzyme A thioesterase 1 Acot1 3.19 <0.01
Desmin Des 2.43 <0.0001
Acid ceramidase Asah1 2.16 <0.0001
Alpha-crystallin B chain Cryab 1.74 <0.001
Ficolin (collagen/fibrinogen domain
containing) 1

Fcn1 1.86 <0.01

Ferritin light chain 1 Ftl1 1.86 <0.01
Glutamyl aminopeptidase Enpep 1.62 <0.0001
NADH-cytochrome b5 reductase 3 Cyb5r3 1.51 <0.0001
Major vault protein Mvp 1.44 <0.01
NADH dehydrogenase
[ubiquinone] flavoprotein 2,
mitochondrial

Ndufv2 1.43 <0.001

Heat shock 27 kDa protein 1 Hspb1 1.43 <0.01
Lactadherin Mfge8 1.40 <0.01
60S ribosomal protein L12 Rpl12 1.39 <0.01
Atlastin-3 Atl3 1.38 <0.001
Coronin-1C Coro1c 1.38 <0.0001
40S ribosomal protein S10 Rps10 1.38 <0.001
Protein Serpinb6 Serpinb6 1.37 <0.0001
Pyruvate kinase PKM PKM 1.37 <0.0001
Glucose-6-phosphate 1-
dehydrogenase

G6pd 1.36 <0.01

Nestin Nes 1.32 <0.01
60S acidic ribosomal protein P0 Rplp0 1.31 <0.001
NADH dehydrogenase
(ubiquinone) flavoprotein 1

Ndufv1 1.30 <0.001
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but show that also the other slit diaphragm proteins are less
abundant in 2K1C. Several podocyte transmembrane proteins
identified in the present study show reduced abundance in
2K1C, including α3β1-integrin, the major podocyte integrin
involved in GBM binding [5] and glepp1 that is important for
maintaining podocyte structure and function [34, 35]. This is
supported by previous studies that showed decreased

abundance of α3β1-integrin in podocytes subjected to mech-
anical stress in vitro [36] as well as in diabetic nephropathy
[37], suggesting a possible factor in podocyte detachment.
Downregulation of glepp1 is previously reported as an early
marker for podocyte injury. Interestingly, regulation of glepp1
precedes change in podocalyxin expression [34], which is con-
sistent with the results in the present study. Several studies on

F IGURE 3 : Histological (A–D) and ultrastructural (E and F) characteristics of the unclipped kidney in 2K1C (B, D and F) versus sham-oper-
ated control rats (A, C and E). (A and B) An overview image from the juxtamedullary cortex with arcuate arteries (arrows, notice pronounced
wall hypertrophy in B). Encircled glomeruli in (B) show severe morphologic changes and are not eligible for microdissection. (D) shows a typical
glomerulus, chosen for microdissection, with minor mesangial changes and absorption droplets in podocytes (arrow). Ultrastructurally these
glomeruli (F) show enlarged podocytes compared with sham podocytes (E, arrowheads). In addition, the glomerulus in (F) shows electron dense
absorption droplets (circle) indicating proteinuria and segmental foot process effacement (arrow).
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hypertensive nephrosclerosis have shown reduced abundance
of the actin-associated proteins α-actinin-4 and synaptopodin
[10, 38, 39]. However, common for these studies is a promin-
ent degree of glomerulosclerosis, a feature that in mutational
studies has been shown to be mediated by dysfunction of these
proteins [40, 41]. In the present study, only glomeruli without
severe morphological damage were microdissected and we
believe that this explains the apparent discrepancy between the
present and previous studies. The present study also demon-
strated reduced abundance of the proteins from the GBM in
the glomeruli from hypertensive rats. Qualitative electron mi-
croscopy in the present study and a previous study on hyper-
tensive nephrosclerosis [42] did not show significant thinning
of the GBM, and our proteomic finding does not seem to have
a clear morphological explanation. To our knowledge, no
studies have investigated the proteome of the GBM in hyper-
tensive nephrosclerosis and our novel findings will need con-
firmation and further investigation in future studies.

To investigate the reliability of extracted proteins from FFPE
glomeruli for use in proteomic analyses, we compared the iden-
tified proteins from FFPE glomeruli with the identified proteins
from isolated fresh frozen glomeruli. As more tissue was used
when analysing fresh frozen glomeruli (1 µg) as compared with
when analysing FFPE glomeruli (0.5 µg), the 40% higher
number of identified proteins in fresh frozen glomeruli in the
present study could be expected, although it is likely that the
number of identifications using fresh frozen glomeruli would be
higher also with equal tissue amounts. Importantly, 83% of pro-
teins from FFPE samples could be identified also in the fresh
frozen samples. This is only slightly lower than the overlap
between two separate samples containing glomeruli from FFPE
tissue (85% overlap) or fresh frozen tissue (86%, data not
shown). In general, the quality of protein identifications was at
least similar, and possibly even better than other studies that
compare fresh frozen and FFPE prepared material from other
tissues, using gel-based methods [43, 44]. A few previous studies
have analysed the glomerular proteome in fresh frozen [45] and

FFPE tissue [46, 47]; however, these identified significantly fewer
proteins than the present study. This is noteworthy considering
the low amount of glomerular FFPE tissue used in our study
(10 nL); we attribute a large part of this to the use of state-of-
the-art LC–MS/MS technology used in our study. Based on the
high degree of overlap with isolated fresh frozen samples, high
number of identified proteins per sample, low variation in
numbers of identified proteins between samples, low CV within
groups, high consistency between findings for relative quantity
for different proteins from the same compartment, as well as
similar findings in immunohistochemistry validation, we con-
clude that our method is well suited for further analyses of the
glomerular proteome.

As the glomerulus consists of several cell types, podocytes,
mesangial cells and endothelial cells, it is possible that altered
balance between these cell types could account for some of the
proteome changes described in the present study. To minimize
such potential differences, we chose only to microdissect
glomeruli without severe morphological damage. Glomerular
hypertrophy is a common feature of hypertensive kidney
disease [42, 48] and was also observed in glomeruli included
in this study. The expanding tuft surface area requires the po-
docyte to stretch, a potential pathological response that is fol-
lowed by foot process effacement, podocyte detachment and
focal segmental glomerulosclerosis [42, 49]. The unchanged
abundance of the podocyte-specific cytoskeletal protein synap-
topodin, validated by immunohistochemistry, indicates that
the ratio between podocyte cell volume and total cell volume
did not change much. Both the glomerular tuft area and the
podocytes were larger in 2K1C as compared with sham. As the
podocyte cell count was lower per glomerular area in hyper-
tensive compared with normotensive rats, and electron mi-
croscopy did not show denudation of glomerular capillaries,
this indicates that the podocytes had undergone hypertrophy.
Electron microscopy also showed mild foot process fusion in
2K1C, a trait that is expected to result in a lower foot process
surface area. Although uncertain, the reduced abundance of
proteins from the slit diaphragm and other transmembrane
proteins of the foot processes may be partly explained by the
observed morphological changes. Further studies will need to
investigate whether primary molecular changes with loss of slit
diaphragm proteins can play a pathophysiological role.

We also examined proteins identified in the present study
that could be potential damage markers for glomerular injury
with focus on proteins already mapped to the glomerulus [29]
and with a relative increase in abundance >30% in 2K1C. Pro-
teins known to be abundant in plasma [28] were excluded.
The three proteins with the highest relative abundance in
2K1C compared with controls were desmin, acyl-coenzyme
A thioesterase 1 and transgelin. Desmin is an intermediate
filament protein that has also previously been found to be up-
regulated in podocytes of the non-clipped kidney 2K1C hyper-
tensive rats [50] and is suggested as a marker for glomerular
injury in puromycin aminonucleoside nephrosis [51] and dia-
betic nephropathy [52] in rat models. Transgelin is upregulated
in podocytes of several nephropathies [53, 54] and has been re-
ported as markers for repopulating mesangial cells in response
to damage [55]. The former was also suggested by our

Table 6. Morphological characteristics of glomeruli eligible for proteomic
analysis

Sham
(n = 6)

2K1C (n = 6) P-value

Glomerular morphology
Mean glomerular area

(µm2)
8640 ± 1080 10 600 ± 1770 0.004

Number of podocyte nucleia

per glomeruli cross
section

12.6 ± 2.1 10.9 ± 2.2 0.07

Number of podocyte nucleia

per 1000 µm2

glomerular area

1.46 ± 0.12 1.07 ± 0.33 0.001

Glomerular lesions (% positive glomeruli)
Absorption droplets 0 21.4 ± 10.8 0.002
Ischaemia 0 0.8 ± 1.9 0.18
Adherences 0 4.8 ± 5.7 0.05
Endothelial swelling 0 4.8 ± 6.5 0.09
Segmental sclerosis 0 0.8 ± 2.0 0.18
Pseudocysts 0 1.9 ± 3.0 0.09

aCounted as WT-1-positive nuclei per glomerular cross section.
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immunohistochemistry findings. Acyl-coenzyme A thioester-
ase 1 is involved in intracellular lipid metabolism [56], but its
role in disease has not been studied.

In conclusion, the present study has demonstrated a reliable
and reproducible method for extracting proteins from small
amounts of FFPE glomerular tissue for quantitative proteomic
analyses. In 2K1C hypertensive rats, we demonstrated reduced

abundance of podocyte proteins from the slit diaphragm
complex and proteins important for the interaction with the
glomerulus basal membrane. Furthermore, potential damage
markers have been presented, with desmin, transgelin and
acyl-coenzyme A thioesterase 1 being the most interesting for
future research. Future studies of the glomerular proteome
at different stages of hypertensive nephrosclerosis will be

F IGURE 4 : Immunohistochemistry for synaptopodin, nephrin and transgelin in glomeruli from 2K1C and sham. Representative micrographs
are presented. (A and B) Synaptopodin shows a linear staining along the capillary wall and is identical in sham and 2K1C. (C and D) Nephrin is
positive in podocytes with a linear staining along the capillary wall. Positivity is slightly decreased in 2K1C as compared with sham, in statistical
analyses this did not reach significance (P = 0.15). (E and F) Transgelin is negative in sham, whereas some podocytes (red circles) are positive in
2K1C. There is also increased positivity in the parietal epithelium and the glomerular vascular pole in 2K1C.
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important for a more detailed characterization of the under-
lying mechanisms.

SUPPLEMENTARY DATA

Supplementary data are available online at http://ndt.oxford
journals.org.
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