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Preface 

The cover shows a confocal live image of a hippocampal neuron transfected with the Dendra2 
fluorescent reporter protein. The colors have been inverted and the hue adjusted. All the work 
was performed by Adrian Szum. Printed with permission.  
 
Many of the figures in this document are color images and are best viewed as a PDF-file or in 
a color printout.  
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Abstract 

Synaptic plasticity is defined as the ability of a neuronal synapse to change in strength, and is 

believed to be the basis of learning and memory. An example of synaptic plasticity, by far the 

most studied, is long-term potentiation (LTP): a stable, activity-induced increase in synaptic 

efficacy. LTP requires de novo gene expression, protein synthesis and protein degradation. 

Transcriptional and post-transcriptional regulation controls new protein expression. In the 

past decade, small non-coding RNAs called microRNAs have emerged as key regulators of 

translation. MicroRNAs bind to target mRNAs by complementary binding and recruit a 

protein complex to mediate mRNA silencing. This complex is known as the microRNA-

induced silencing complex (miRISC). The goals of this study were to investigate the 

composition of the miRISC in the rat dentate gyrus in vivo, to study modulation of the 

miRISC during LTP, and to uncover new candidate binding partners of Ago2. LTP was 

induced by HFS of the medial perforant path. The miRISC was isolated by 

immunoprecipitation of its core component, the protein Argonaute 2 (Ago2).  Five proteins 

thought to bind Ago2 were analyzed by co-immunoprecipitation with Ago2. These proteins 

were GW182, the RNase III enzyme, Dicer, the RNA-binding protein, FMRP, and the RNA 

helicases, MOV10 and DDX6. DDX6 was the only protein found to be reliably associated 

with Ago2, even though all the proteins were detected in association with Ago2 in HEK cells 

expressing EGFP-Ago2. DDX6 was non-significantly dissociated from Ago2 during LTP. In 

the total lysate, none of the analyzed proteins were significantly modulated during LTP. 

Nevertheless, Argonaute 2 and GW182 were non-significantly upregulated, and MOV10 was 

non-significantly downregulated during LTP. The study does not show a significant 

remodeling of the miRISC during LTP, but neither does it exclude this possibility. 

Immunoprecipitated samples were analyzed by mass spectrometry. New candidate Ago2 

binding partners were uncovered, such as the proteins DDX1 and FXR1, homologs of DDX6 

and FMRP. A protein important for translation, poly-A-binding protein 1 (PABP1), was also 

detected.  
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1 Introduction 

Learning and memory are remarkable faculties of the brain, and the mechanisms underlying 

them have puzzled scientists for years. A mechanism thought to be involved in new memory 

formation is synaptic plasticity, the ability of a neuronal synapse to change in strength (Bliss 

et al., 2003). Studying synaptic plasticity may be important for future research on diseases of 

cognition such as Alzheimer’s disease. To understand synaptic plasticity, one must start by 

understanding major building blocks of our brain, namely neurons. 

1.1 Neurons and synapses 

According to Ramón y Cajal’s ‘neuron doctrine’ postulated in 1888, neurons are the structural 

and functional units making up our central nervous system. Cajal noted that neurons are 

polarized cells, and suggested that they convey information in only one direction (Andersen et 

al., 2007). The information is transmitted in the form of electrical pulses called action 

potentials. In 1897, Sherrington proposed that neurons are linked together by functional 

junctions, eventually named synapses. Synapses are now recognized as the principal sites of 

interneuronal communication. In chemical synapses, chemical neurotransmitters transmit the 

signals from one neuron to the next, via intercellular gaps called synaptic clefts. Chemical 

synapses can be either excitatory or inhibitory, depending on the type of neurotransmitter 

produced by the presynaptic neuron. Gamma-aminobutyric acid (GABA) is an inhibitory 

neurotransmitter, whereas glutamate is an excitatory one. Many neurons can be linked 

together to convey information between different brain areas, forming a circuit. A major 

theme of current research, and a subject of this thesis, is how synapses and neuronal circuits 

can change to store information, such as during memory storage. This thesis addresses only 

excitatory glutamatergic synapses.  

1.2 Learning and memory 

Learning, the process for acquisition of information altering behavior, knowledge or internal 

representation, may result in memory, the retention of such information. Memory is not a 

single faculty, but is composed of distinct systems. Immediate memory refers to short-term 

storage of sensory information. Working memory is the capacity to retain this information 

temporarily during the processing of a task. Long-term memory is the long-term storage of 
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information, achieved through the process of consolidation. It can last for hours, days, month 

or even years, and can be recalled at any moment, although reconsolidation may be necessary 

for retaining a specific memory. Long-term memory comprises different systems. The two 

main subordinate systems are declarative (explicit) memory and nondeclarative (implicit) 

memory. Declarative memory is a conscious representational recollection of facts and events, 

such as “Oslo is the capital of Norway” and “I went skiing yesterday”. Nondeclarative 

memory refers to acquired skills expressed through performance, such as riding a bicycle or 

using chopsticks (Dudai, 2004; Squire, 2004). The hippocampus is a brain structure necessary 

for declarative memory formation (Martin et al., 2000; Neves et al., 2008). 

1.3 The hippocampal formation  

The hippocampal formation (Figure 1.1) is part of the limbic system, a phylogenetically old 

part of the cortex dealing with emotions and subconscious processes. Two major theories 

currently describe hippocampal function. First, the hippocampus has a time-limited 

involvement in the formation of declarative memory. Second, the hippocampus is involved in 

the formation of cognitive maps used for spatial navigation, or spatial memory (Andersen et 

al., 2007). 

Figure 1.1 | The hippocampal formation 

in the rat brain. (Figure modified from 

Cheung and Cardinal, 2005) 

 

 

 

 

 

 

 

The hippocampus is a bilateral structure, located between the cerebral cortex and the 

thalamus. As in humans, the rat hippocampus comprises the following structures: the 

subiculum, entorhinal cortex, dentate gyrus and cornu ammonis fields 1-3 (CA1, CA2, CA3). 

Neurons and fibers of the hippocampus are arranged in clear cut laminae. The principal cells 

of the dentate gyrus are the granule cells. These cells are densely packed and linearly 

arranged to form the granule cell layer. The primary cells of the CA region are the pyramidal 

cells (Andersen et al., 2007). 
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The main neural pathway of the hippocampus is the trisynaptic circuit (Figure 1.2), 

which is excitatory glutamatergic at every synapse. The entorhinal cortex conveys sensory 

information processed by the hippocampus back and forth to the neocortex. Granule cells of 

the dentate gyrus receive sensory information from layer II of the entorhinal cortex via the 

perforant path, forming a first synapse. The granule cells’ axons, called mossy fibers, project 

to CA3 pyramidal cells, themselves innervating CA1 pyramidal cells through Schaffer 

collaterals. Return projections to the entorhinal cortex come from the CA1 and subiculum 

(Andersen et al., 2007; Neves et al., 2008).  

 

 

 

 

 

 

 

 

 

Figure 1.2 | The trisynaptic circuit. Here shown in the rat brain. The main signaling pathway of the 

hippocampus forms a loop. The entorhinal cortex conveys information to the granule cells of the dentate gyrus 

through the perforant path. Mossy fibers connect the granule cells to the pyramidal cells in the CA3 region, 

forming a second synapse. Then, Schaffer collaterals innervate CA1 pyramidal cells. Fibers from this region and 

the subiculum project back to the entorhinal cortex (Figure modified from Neves et al., 2008). 

1.4 Synaptic plasticity  

In 1949, Donald Hebb postulated a hypothesis describing synaptic plasticity, stating that:  

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one or 

both cells such that A's efficiency, as one of the cells firing B, is increased. 

This activity-dependent ability of a synapse to change in strength is now widely assumed to 

be the basis of learning and memory. Synaptic plasticity is an attractive mechanism for 

learning and memory because its induction is rapid and associative, and its expression is input 

specific and persistent, much like memory itself (Bliss and Collingridge, 1993; Martin et al., 

2000; Medina and Izquierdo, 1995). Experiments using different techniques, such as in vivo 

electrophysiological recordings, mutant mice and pharmacological treatment, show 
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similarities between LTP and memory (Medina and Izquierdo, 1995). In 2000, Martin et al. 

combined several ideas into a single synaptic plasticity and memory hypothesis. They 

summarized that:  

Activity-dependent synaptic plasticity is induced at appropriate synapses during 

memory formation and is both necessary and sufficient for the information storage 

underlying the type of memory mediated by the brain area in which that plasticity is 

observed. 

Martin et al. (2000) investigated the validity of this hypothesis and concluded that synaptic 

plasticity may be necessary for learning and memory, but probably not sufficient. There are 

two main forms of synaptic plasticity: short- and long-term plasticity. Facilitation, depression 

and post-tetanic potentiation are examples of short-term plasticity, lasting seconds or less. 

Long-term potentiation (LTP) and long-term depression (LTD) are forms of long-term 

plasticity, lasting minutes, hours, days or months (Andersen et al., 2007). LTP is by far the 

most studied form of synaptic plasticity. 

1.5 Long-term potentiation 

LTP was first described by Bliss and Lømo in 1973. LTP occurs throughout the brain, but is 

most studied in the hippocampus, perhaps because of the hippocampus’ involvement in 

learning and memory, and its neat laminar arrangement. LTP can be divided into two 

subsequent temporal phases known as early-phase LTP (E-LTP) and late-phase LTP (L-LTP) 

(Figure 1.3).  

 

 
Figure 1.3 | The phases of LTP. Induction of LTP is triggered by high-frequency stimulation (HFS) of an 

afferent neuron, which causes an excitatory post-synaptic potential (EPSP), in turn leading to activation of 

several kinases. Early phase LTP (E-LTP) consists of modifications of preexisting proteins at the synapse by 

activated kinases. This nascent, short-lived potentiation may then be maintained through a process of 

consolidation, which depends on new gene expression and protein synthesis, giving rise to late phase LTP (L-

LTP).  
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1.5.1 Induction of LTP 

LTP can be N-methyl-D-aspartate receptor (NMDAR)-dependent or NMDAR-independent 

(Bliss et al., 2003). NMDAR-dependent LTP is the most prevalent form of LTP. 

Metabotropic glutamate receptors (mGluRs) may be involved in the induction of LTP, but 

play a more important role in LTD (Andersen et al., 2007; Medina and Izquierdo, 1995; Peng 

et al., 2011). Both electrical high-frequency stimulation (HFS) and application of 

pharmacological agents such as the neurotrophin brain-derived neurotrophic factor (BDNF) 

can induce LTP (Bliss and Lomo, 1973; Bramham and Messaoudi, 2005). LTP induced by 

HFS is NMDAR-dependent, whereas BDNF-induced LTP is NMDAR-independent 

(Messaoudi et al., 2002).  HFS induces the release of glutamate, the brain’s most prevalent 

excitatory neurotransmitter, into the synaptic cleft (Figure 1.4). In NMDAR-dependent LTP, 

glutamate binds to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) 

and NMDARs on the postsynaptic membrane. Glutamate binding to AMPARs leads to rapid 

influx of sodium ions (Na+) into the postsynaptic spine, causing depolarization of the 

membrane.  This excitatory post-synaptic potential (EPSP) relieves the magnesium ion (Mg2+) 

blockage of the NMDARs, allowing influx of calcium ions (Ca2+). Ca2+ may also be released 

from intracellular stores, and enter the spine through voltage-dependent Ca2+ channels. Ca2+ 

contributes to induce the early phase of LTP by activation of Ca2+-dependent enzymes (Bliss 

and Collingridge, 1993; Peng et al., 2011).  

 

Figure 1.4 | Induction phase of NMDAR-

dependent LTP. HFS-induced glutamate 

release into the synaptic cleft leads to glutamate 

binding to AMPARs and NMDARs. Na+ influx 

through AMPARs depolarizes the membrane, 

allowing relief of the NMDARs’ Mg2+ 

blockage. Ca2+ enters the spine through the 

open NMDARs and may induce LTP (Figure 

from Malenka and Nicoll, 1999). 

 

1.5.2 Early phase LTP 

E-LTP is in great part triggered by Ca2+-sensitive protein kinases, such as protein kinase C 

(PKC), calcium/calmodulin-dependent protein kinase II (CaMKII), and mitogen-activated 

protein kinase (MAPK). PKC may for example increase Ca2+ influx through voltage-gated 

channels. CaMKII is a kinase known to phosphorylate AMPARs, increasing their function, 
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and causing AMPARs stored in intracellular vesicles to relocalize to the synaptic membrane 

(Malenka and Bear, 2004; Peng et al., 2011). 

Retrograde messengers may be involved in communication between the pre- and post-

synaptic site of LTP induction, triggering increased glutamate release from the presynaptic 

membrane. Several candidates exist: nitric oxide (NO), carbon monoxide (CO), platelet-

activated factor (PAF), arachidonic acid (AA) and BDNF. NO is currently the best candidate, 

whereas AA is perhaps ruled out (Andersen et al., 2007; Medina and Izquierdo, 1995). The 

roles and necessity of retrograde messengers in LTP are debated. Retrograde signaling may 

also be involved in the formation of presynaptic LTP/LTD (Castillo, 2012; Peng et al., 2011).  

To obtain a stable LTP, consolidation must occur. Consolidation is the term for any 

event allowing the transition of unstable E-LTP to stable L-LTP. 

1.5.3 Late phase LTP 

L-LTP requires new gene expression and protein synthesis, perhaps in cooperation with 

protein degradation (Bramham and Wells, 2007). As mentioned in paragraph 1.5.1, one event 

triggering LTP is the influx of Ca2+ through NMDARs. Ca2+ is important in signaling from 

the LTP-induced spines to the nucleus, although how this is achieved is currently unclear. 

Ca2+ signaling leads to activation of several important second messengers, for example 

extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and 

calcium/calmodulin-dependent protein kinase IV (CaMKIV). BDNF binding to tropomyosin-

related kinase B (TrkB) receptors, acetylcholine (ACh) binding to muscarinic receptors, and 

PKC can all activate ERK through the MAPK pathway. ERK, PKA and CaMKIV can in turn 

activate nuclear transcription factors (Figure 1.5). One example is the cAMP response-

element binding protein (CREB). CREB binds to cAMP response elements (CREs) found in 

the promoter region of many eukaryotic genes, thereby enhancing gene transcription. CREB 

targets several immediate early genes (IEGs), such as the transcription factors zif268 and c-

fos and Arc/Arg3.1 (activity-regulated cytoskeleton-associated protein / activity-regulated 

gene 3.1). IEGs are rapidly transcribed in response to neuronal activity (Andersen et al., 2007; 

Bramham et al., 2010; Peng et al., 2011).  
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Figure 1.5 | Activity-dependent transcription. 

Synaptic actrivity leads to activation of kinases, 

which in turn can activate transcription factors. 

BDNF, brain-derived neurotrophic factor; CREB, 

CRE-binding element; CRE, cAMP response 

element; ERK, extracellular signal-regulated kinase; 

MEF2, myocyte enhancing factor 2; NMDA-R, 

NMDA-receptor; ORF, open reading frame; PKA, 

cAMP-dependent protein kinase; PKC, protein 

kinase C; SARE, synaptic activity response 

element; SRE, serum response element; SRF, serum 

response factor; UTR, untranslated region (Figure 

modified from Bramham et al., 2010). 

 

The Arc protein is involved in regulation of actin dynamics and homeostatic regulation of 

AMPAR. Arc is especially intriguing because its messenger RNA (mRNA) is rapidly 

transported from granule cell somata in the dentate gyrus, selectively into dendrites that have 

been activated by HFS. Messenger ribonucleoprotein particles (mRNPs) are key protein 

complexes involved in this mRNA transport and localization. It has been shown that Arc is 

locally translated at the activated dendritic site, contradicting the obsolete hypothesis that all 

neuronal protein synthesis happens in the cell body (Bramham et al., 2010; Steward et al., 

1998).  

The neurotrophin, BDNF, is a trigger for protein synthesis-dependent L-LTP at 

glutamatergic synapses (Bramham and Messaoudi, 2005). Spine enlargement in CA1 neurons 

is dependent on protein synthesis and BDNF (Tanaka et al., 2008). HFS of presynaptic 

neurons triggers BDNF release into the synapse, which activates TrkB receptors, leading to 

mobilization of further BDNF secretion. BDNF signaling activates Arc-dependent LTP 

consolidation, and phosphorylation of the actin depolarization factor (ADF/cofilin) in 

dendritic spines. Blockage of TrkB activation hinders the formation of protein synthesis-

dependent L-LTP (Bramham et al., 2008).  

1.6 Local protein synthesis 

Ribosomes, translation factors and mRNAs have been found in mature dendrites, even in 

proximity to post-synaptic sites, supporting the idea of local dendritic protein synthesis 

(Bramham and Wells, 2007; Steward and Schuman, 2001; Sutton and Schuman, 2006). A few 
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proteins synthesized in dendrites are the cytoskeletal proteins Arc and microtubule-associated 

protein 1B (MAP1B), the α-subunit of the kinase CaMKII (αCaMKII), and the scaffolding 

molecule postsynaptic density protein 95 (PSD-95) (Grossman et al., 2006; Zalfa et al., 2003). 

There is evidence implicating local dendritic protein synthesis in synaptic remodeling 

(Bramham and Wells, 2007; Bramham et al., 2008; Sutton and Schuman, 2006; Tanaka et al., 

2008). Change in synaptic structure is bidirectional, and accompanies different forms of 

synaptic plasticity, such as LTP (Bramham et al., 2010; Tada and Sheng, 2006). LTP 

consolidation requires actin polymerization, an event associated with enlargement of the 

postsynaptic density, and spine growth (Figure 1.6) (Bramham and Wells, 2007).  

 

Figure 1.6 | Actin polymerization and 

spine morphology. In the event of LTP, 

G-actin monomers polymerize into F-actin 

chains, leading to spine growth, and more 

AMPAR are recruited to the postsynaptic 

membrane. Conversely, during LTD, actin 

chains depolymerize,   resulting in shrink-

age or loss of spines (Figure modified from 

Tada and Sheng, 2006). 

 
Rapid changes in local protein expression occur during changes in synaptic strength. Control 

of gene expression at the level of translation is essential because it allows a rapid, localized 

control of protein expression. Translation can be controlled by regulation of general 

transcription factors, which leads to changes in global translation rates, or by mRNA-specific 

repressors, which permits modulation of local protein composition (Besse and Ephrussi, 

2008). MicroRNAs (miRNAs) are diverse, target specific, and their regulation may be 

reversible, altogether making them attractive candidates for local mRNA-specific translational 

control. 

1.7 MicroRNAs 

Only 2-3% of the genome codes for proteins, but 90-95% of the genome is transcribed, 

suggesting that non-coding RNAs may have important functions, although mostly unknown to 

this day (Costa, 2010). One important class of non-coding RNAs is miRNAs (Grosshans and 

Filipowicz, 2008). The first two known miRNAs are lin-4 and let-7. They were both 

discovered in developmental studies of the nematode Caenorhabditiis elegans (Lee et al., 
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1993; Reinhart et al., 2000). miRNAs are 20-25 nucleotides in length and major regulators of 

post-transcriptional gene expression. miRNAs most commonly bind to the 3’untranslated 

region (UTR) of target mRNAs in a sequence-specific manner, where they act to inhibit 

translation (Wibrand et al., 2010). miRNAs are primarily found in multicellular organisms, 

but have been identified in a unicellular alga, Chlamydomonas reinhardtii, indicating an 

evolutionary old origin (Molnar et al., 2007). Hundreds of different miRNAs have been 

identified in plants and animals, and the number is rapidly increasing. In 2004, the miRBase* 

only listed 506 miRNA entries from 6 organisms (Griffiths-Jones, 2004), whereas the 18th 

release of the database from November 2011 contains an astonishing 21643 mature miRNA 

products from 168 species. The number of miRNAs per organism varies from a handful to up 

to several hundreds in mammals, and a large proportion of the transcriptome is probably 

subject to miRNA-mediated translational regulation (Huntzinger and Izaurralde, 2011). 

The canonical biogenesis pathway of miRNAs in mammalian cells (Figure 1.7) starts 

with gene transcription by RNA polymerase II, producing primary miRNA transcripts (pri-

miRNAs). Pri-miRNAs form stem-loop structures, with the mature miRNA contained in an 

imperfectly base-paired double strand stem, joined by a short terminal loop. The RNA-

binding protein Di George Syndrome critical region gene 8 (DGCR8) and the RNaseIII 

enzyme Drosha are core components of a multiprotein complex processing pri-miRNAs in the 

nucleus (Treiber et al., 2012). DGCR8 binds to the base of pri-miRNAs, guiding Drosha to 

cleave pri-miRNAs at their base (cropping step), generating ~70 nucleotides long hairpin 

structures called miRNA precursors (pre-miRNAs) (Krol et al., 2010). The nuclear export 

receptor Exportin 5 recognizes pre-miRNAs and mediates their export to the cytosol. In the 

cytosol, the RNaseIII enzyme Dicer cleaves pre-miRNAs (dicing step), resulting in ~22 

nucleotides long double-stranded RNAs (Treiber et al., 2012). In the dicing step, Dicer 

interacts with transactivation-responsive RNA binding protein (TRBP) and PKR activator 

(PACT), which both have double-stranded RNA binding domains (Kawahara et al., 2012). 

Depending on the thermodynamic properties of the two RNA strands, one of them is loaded 

into an Argonaute protein (Ago) and is incorporated in a multiprotein complex known as the 

miRNA-induced silencing complex (miRISC) (loading step), whereas the other strand is 

degraded (Schratt, 2009; Treiber et al., 2012). The core components of the RISC are the 

proteins Ago and GW182 (glycine-tryptophan protein of 182 kDa), but otherwise little is 

known about the total RISC protein composition (Krol et al., 2010). The miRISC mediates 

                                                 
* www.mirbase.org 
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inhibition of protein expression. Loading of miRNA duplexes to Ago proteins is assisted by 

Hsp70 (heat shock protein of 70 kDa) and Hsp90 (heat shock protein of 90 kDa) chaperones. 

A miRNA loading complex (miRLC) composed of Dicer, miRNA-free Ago, Hsp90, and 

TRBP has been identified (Liu et al., 2012). These authors also propose the existence of a 

miRNA precursor deposit complex (miPDC), whose core is composed of a pre-miRNA 

directly binding to Argonaute 2 (Ago2). The miPDC is thought to enhance the expression of 

certain Dicer-dependent miRNAs and to play a crucial role in the maturation of the Dicer-

independent miR-451.  

 
Figure 1.7 | Canonical miRNA biogenesis 

and mode of action. miRNAs are 

transcribed as part of primary miRNAs (pri-

miRNAs), which are cleaved by Drosha, 

producing miRNA precursors (pre-miRNA). 

Pre-miRNAs are exported to the cytosol and 

further processed by Dicer. One strand from 

the resulting miRNA duplex is loaded into 

the microRNA-induced silencing complex 

(miRISC). The miRISC can bind to target 

mRNAs by perfect or imperfect base-paring, 

resulting in degradation or translational 

repression, by mechanisms still debated 

(Figure from Schratt, 2009). 

 

1.8 Mechanisms of miRNA-guided post-transcriptional regulation 

Translation in dendrites is regulated by postsynaptic glutamate and TrkB receptor signaling 

(Bramham and Wells, 2007). The miRISC binds to target mRNAs by perfect or imperfect 

base-paring, usually within the mRNA’s 3’UTR (Huntzinger and Izaurralde, 2011; Schratt, 

2009). In case of perfect complementarity between the miRNA and mRNA strands, the 

mRNA undergoes endonucleolytic cleavage, whereas if the complementarity is imperfect, 

translation of the target is repressed (Krol et al., 2010). Mechanisms of translational 

repression and mRNA degradation are debated issues (Huntzinger and Izaurralde, 2011).  
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1.8.1 Translational repression 

Protein synthesis can be divided into three steps: initiation, elongation and termination. 

Translational repression is likely to occur predominantly at the initiation stage of translation 

(Huntzinger and Izaurralde, 2011). mRNAs possess a 5’ cap structure and a 3’-poly(A) tail. 

The highly conserved poly(A)-binding protein (PABP) interacts with the cap-binding 

complex eukaryotic translation initiation factor 4F (eIF4F, comprising eIF4E, eIF4G and 

eIF4A), giving rise to circular mRNAs efficiently translated and protected from degradation. 

The protein GW182, a protein of the miRNA silencing machinery, interferes with PABP 

function in translation and mRNA stabilization, perhaps by hindering PABP-eIF4G 

interaction, or by reducing PABP affinity for the poly(A) tail (Figure 1.8). Both mechanisms 

interfere with mRNA circularization, and render the 5’cap or poly(A) tail more accessible to 

mRNA decay enzymes (Tritschler et al., 2010). Surprisingly, some studies have shown that 

mRNAs lacking a poly(A) tail can be translationally silenced by miRNAs (Ender and Meister, 

2010). PABP may even be dispensable for deadenylation and translational repression by the 

Ago1-RISC in flies (Fukaya and Tomari, 2011). A second model for miRNA-mediated gene 

silencing is that the miRISC affects eIF4E-cap recognition. A third model proposes that the 

miRISC blocks association of the 40S and 60S ribosomal subunits. Models for post-initiation 

translational repression suggest miRISC-mediated ribosome drop-off, or facilitated 

degradation of nascent peptides. All these hypotheses have been challenged, and more 

research is necessary to understand which of these mechanisms is/are correct (Carthew and 

Sontheimer, 2009; Li and Rana, 2012). 

 

 

Figure 1.8 | miRNA-mediated translational repression.  In this 

model, proteins of the miRISC interfere with the function of the 

eIF4F complex and PABP, thereby disabling circularization and 

subsequent translation of the mRNA. ORF, open reading frame; 

PABP, poly(A)-binding protein; UTR, untranslated region. 
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1.8.2 RNA degradation  

mRNA degradation is perhaps the predominant mode of mRNA-regulation, at least in 

cultured mammalian cells. It is not known whether degradation is a consequence of 

translational inhibition. Degradation involves the recruitment of deadenylase complexes to 

mRNAs. The protein GW182 is known to interact with the two deadenylase complexes 

PAN2-PAN3 and CCR4-NOT, which deadenylate the target mRNAs, disabling 

circularization via PABP, silencing the mRNAs for translation (Figure 1.9). Surprisingly, 

deadenylation has been reported to occur both before and after translational repression, and 

even at untranslated mRNAs, indicating translation-independent degradation (Huntzinger and 

Izaurralde, 2011; Treiber et al., 2012). After deadenylation, target mRNAs are decapped by 

the enzyme mRNA decapping enzyme 2 (DCP2) and subsequently degraded by a 5’�3’ 

exoribonuclease, XRN1, or degraded by 3’�5’ decay by the exosome complex. The 

degradation is thought to take place in processing bodies (P-bodies). P-bodies are eukaryotic 

cellular structures enriched in mRNA-catabolizing enzymes and translational repressors 

(Eulalio et al., 2007; Filipowicz et al., 2008). miRNAs are important for regulation of gene 

expression, therefore miRNA levels and function have to be tightly controlled. 

 

 

Figure 1.9 | miRNA-mediated mRNA degradation. Target mRNAs 

are deadenylated by recruited deadenylase complexes such as CCR4-

NOT or PAN2-PAN3 (not shown), followed by decapping by the 

enzyme DCP2. The mRNA is degraded by XRN1-mediated 5’�3’ 

decay, or exosome-mediated 3’�5’ decay. DCP2, mRNA decapping 

enzyme 2; ORF, open reading frame; UTR, untranslated region. 

 

1.9 Regulation of miRNA biogenesis and function at the synapse 

There are several brain-specific miRNAs, such as miR-134. miRNAs in the brain are involved 

a range of processes, such as synapse formation and maturation, neurological disorders, 

neural plasticity and memory. Activity-regulated transcription factors such as CREB can 

control the expression of miRNAs at the level of transcription. miRNAs and transcription 

factors frequently form autoregulatory feedback loops. Control of proteins involved in 

miRNA biogenesis is another mechanism for modulating the pattern of miRNA expression. 

The NMDAR- and TrkB receptor-activated MAPK/ERK signaling pathway can lead to 
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stabilization of TRBP, and thus stabilization of its partner, Dicer. Accessory proteins such as 

Lin-28 can also interact with processing proteins such as Drosha or Dicer (Krol et al., 2010; 

Schratt, 2009). Editing of precursor miRNAs, for example adenosine base conversion to 

inosine by adenosine deaminases acting on RNA (ADARs),  suppresses miRNA biogenesis at 

both the cropping and dicing steps (Kawahara et al., 2012). Another way of controlling 

miRNA-mediated silencing is by regulation of miRISC proteins. The core components of the 

miRISC, Ago and GW182, as well as other proteins, are probable targets for regulation (Krol 

et al., 2010).  

1.9.1 Argonaute proteins  

Argonaute (Ago) proteins are specialized small-RNA-binding proteins, with a molecular mass 

of ~100 kDa. They bind mature miRNAs directly, and mediate miRNA-guided gene 

silencing. Ago proteins can be divided into two subfamilies: the Ago subfamily and the Piwi 

subfamily. Humans express four genes of the Ago subfamily, named Ago1-4. Ago proteins 

have an ancient origin, and are conserved throughout species. Studies on bacteria and archaea 

have revealed Ago protein structure, but mammalian Ago structure is still unavailable. All 

Ago proteins have a PAZ- (PIWI-Argonaute-Zwille), MID- (middle domain) and PIWI-(P-

element-induced wimpy testes) domain (Figure 1.10). The PAZ domain binds the 3’ end of 

miRNAs, whereas the MID domain binds their 5’ end. The catalytic activity of the miRISC, 

also called Slicer activity, lies in the Ago protein itself, more specifically within the PIWI 

domain. In mammals, only Ago2 is endonucleolytically active (Ender and Meister, 2010; 

Treiber et al., 2012). 

 

Figure 1.10 | Argonaute protein structure. 

(A) Crystal structure of Argonaute from the 

bacteria Thermus thermophilus (Wang et al., 

2008). (B) Domain organization of Ago 

proteins. The PAZ and MID domains bind 

miRNA, whereas the PIWI domain is the 

active site for endonucleolytic activity (Ender 

and Meister, 2010). 
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Regulation of Ago proteins may take part in regulation of miRNA function. Different Ago 

proteins may have distinct functions, and differences in the cellular concentration of 

individual Ago proteins may affect miRISC function. Modifications of Ago proteins may also 

be important. Polyubiquitylation and subsequent proteasomal degradation leads to impaired 

miRNA-mediated silencing, and hydroxylation or Ser387 phosphorylation leads to Ago2 

stabilization and increased P-body localization (Krol et al., 2010). Tyr529 phosphorylation 

reduces small-miRNA-binding (Rudel et al., 2011). 

1.9.2 GW182 proteins 

GW182 proteins interact with Ago, and are required for miRNA-mediated silencing 

(Tritschler et al., 2010). They are named so because they contain glycine (G) and tryptophan 

(W) repeats, and have a molecular mass of 182 kDa. Insects have only one GW182 paralog, 

whereas mammals have three (TNRC6A, TNRC6B and TNRC6C), with multiple splice 

variants (Krol et al., 2010). A 210 kDa isoform of human GW182 named trinucleotide GW1 

(TNGW1) has been reported (Li et al., 2008). Insects and vertebrates share a conserved 

central ubiquitin associated-like domain (UBA) and a C-terminal RNA recognition motif 

(RRM) (Figure 1.11). Despite conservation, those domains are not strictly required for 

GW182 silencing activity. The N-terminal GW repeat-containing region binds Ago proteins, 

whereas the C-terminal- and M-GW repeats-containing regions promote translational 

repression and degradation of miRNA targets. Intriguingly, those regions are not highly 

conserved, and the number of GW repeats varies for different GW182 proteins (Tritschler et 

al., 2010).  

 The exact mechanism by which GW182 proteins contribute to silencing is not 

perfectly understood, but some GW182 interactions are known. GW182 interacts with 

poly(A)-binding protein 1 (PABP1) and interferes with PABP1 function in translation and 

mRNA stabilization (Figure 1.8). GW182 proteins also interact with the two deadenylase 

complexes PAN2-PAN3 and CCR4-NOT (Figure 1.9). The GW182 interactions with PABP1 

and the deadenylase complexes are conserved throughout evolution, meaning that these 

interactions are probably important for miRNA-mediated gene silencing (Kuzuoglu-Ozturk et 

al., 2012). 

GW182 proteins accumulate in P-bodies, yet these are not required for mRNA 

silencing and degradation, suggesting that this localization may be a consequence of silencing 

(Eulalio et al., 2009; Tritschler et al., 2010). Little is known about the regulation of GW182 
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proteins. TNRC6A is highly phosphorylated, although the significance of this 

phosphorylation is unknown (Krol et al., 2010). TNRC6A may also undergo ubiquitylation.  

 

Figure 1.11 | Dm GW182 protein structure. (A) 

Ribbon diagram of Drosophila melanogaster (Dm) 

GW182 structure. (B) Domain organization of 

Dm GW182. N-GW, N-terminal glycine and 

tryptophan (GW) repeats; M-GW, middle GW 

repeats; UBA, ubiquitin associated-like domain; 

Q-rich, region rich in glutamine (Q); RRM, RNA 

recognition motif (Figure modified from Eulalio 

et al., 2009). 

 
 

1.9.3 Other RISC proteins 

The miRISC contains many proteins other than Ago and GW182, required for miRNA 

function or modulation. DDX6, MOV10, Dicer and FMRP are proteins thought to be 

associated with Ago2 and perhaps part of the RISC. 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 (DDX6), also known as RCK/p54 in 

humans, is an evolutionary conserved 54 kDa ATP-dependent RNA helicase, localized to P-

bodies and stress granules. DDX6 interacts with Ago1 and Ago2 in P-bodies of human cells, 

and is required for miRNA-induced gene silencing (Chu and Rana, 2006). Surprisingly, 

overexpressed DDX6 in cultured neuronal cells interacts with amyloid precursor protein 

(APP) mRNA as part of a multi-protein complex and results in elevated levels of APP mRNA 

and protein (Broytman et al., 2009). DDX6 is required for efficient replication of hepatitis C 

virus (HPC) replication, suggesting a role for DDX6 in HCV genome amplification and/or 

maintenance of cellular homeostasis (Jangra et al., 2010). DDX6 cooperates with the zing 

finger homolog tristetraprolin (TTP) in AU-rich element (ARE)-dependent translational 

repression (Qi et al., 2012). Taken together, these studies suggest that the helicase DDX6 may 

have a role in balancing activation and repression of translation (Minshall et al., 2009). 

Moloney leukemia virus 10 protein (MOV10) is a 114 kDa RNA helicase required for 

miRNA-mediated mRNA cleavage. It is a homologue of the Drosophila DExD/H-box RNA 

helicase Armitage. MOV10 binds Ago1 and Ago2 to mediate miRNA-induced translational 

repression (Meister et al., 2005). MOV10 is present at synapses and NMDAR-mediated 

synaptic activity promotes MOV10 degradation by the proteasome. MOV10 may be 
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dissociated from the RISC and degraded as a result of NMDAR-mediated synaptic activity, 

relieving miRISC-mediated translational repression (Banerjee et al., 2009). Overexpressed 

MOV10 is able to reduce the infectivity of human immunodeficiency virus type 1 (HIV-1) by 

inhibiting replication, whereas reduced MOV10 expression increases HIV-1 infectivity 

(Wang et al., 2010). 

Dicer is a 215kDa RNase III enzyme involved in the cleavage of pre-miRNA in the 

canonical miRNA biogenesis pathway. Dicer excises miRNAs from the stems of stem-loop 

pre-miRNAs to generate double-stranded miRNA duplexes. One of the strands is loaded onto 

Ago2, forming the minimal miRISC. Dicer is part of the miRNA loading complex, composed 

of Dicer, miRNA-free Ago, Hsp90, and TRBP. Mammals have only one Dicer protein, 

whereas other organisms may have several, for example the fly Drosophila Melanogaster 

expresses two Dicers (Carthew and Sontheimer, 2009). A well-studied mechanism for 

regulation of Dicer processing of pre-miRNAs is regulation by the protein Lin-28. Lin-28 

binds to the terminal loop of most let-7-family miRNAs, and Lin-28 recruits a specific uridyl 

transferase (TUTase), TUT4. TUT4 in turn polyuridylates the let-7 pre-miRNA targeted by 

Dicer at its 3’end, thereby repressing Dicer function. This mechanism is highly conserved 

throughout evolution (Treiber et al., 2012). There is competition between Dicer mRNA and 

pre-miRNAs for export from the nucleus through Exportin 5, and Dicer is downregulated by 

overexpression of pre-miRNAs in human cells (Bennasser et al., 2011).  

Fragile-X mental retardation protein (FMRP, also called FMR1) is a highly conserved, 

70-80 kDa RNA-binding protein, highly expressed in the brain and testes. The absence of 

FMRP causes fragile-X syndrome, the most common form of inherited mental retardation 

(Bagni and Greenough, 2005; Bassell and Warren, 2008). FMRP is localized to dendrites and 

synapses, and is thought to function as a translational repressor of specific mRNAs, including 

the dendritically translated mRNAs MAP1B, α-CaMKII, PSD-95 and Arc, all involved in 

synaptic plasticity (Bassell and Warren, 2008; Edbauer et al., 2010). FMRP-mediated 

translational repression may function through a ribonucleoprotein complex that contains the 

small dendritic non-translatable RNA BC1. BC1 may recruit FMRP to its target mRNAs 

(Zalfa et al., 2003). FMRP selectively binds ~4% of the mRNA in the mammalian brain, and 

is associated with actively translating polyribosomes in cultured neurons and brain 

synaptoneurosomes. FMRP may act as a regulator of translation as a response to group I 

mGluR activation, contributing to mGluR-LTD. Several studies indicate that FMRP function 

may be controlled by phosphorylation (Muddashetty et al., 2011; Narayanan et al., 2008). It is 

also possible that FMRP plays a role in mRNA stability and transport (Bassell and Warren, 
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2008; Muddashetty et al., 2011). FMRP interacts with RISC proteins such as Ago2 and Dicer, 

and associates with miRNAs, but is not essential for RNAi-mediated mRNA cleavage 

(Edbauer et al., 2010). FMRP may not influence RISC function, but rather play a role in stress 

granule formation (Didiot et al., 2009).  

1.10  Project goals and methodological approach 

Neuronal plasticity requires both rapid de novo protein synthesis and protein degradation. 

Regulation of translation occurs mainly at the initiation step, for example through 

phosphorylation of initiation factors. In LTP, the critical time period for protein synthesis in 

most synapses lasts less than one hour, meaning the regulation of protein synthesis must be 

rapid. Alteration of mRNA stability is a rapid mechanism for the control of protein synthesis, 

and miRNAs have emerged as key regulatory molecules of mRNA stability. miRNAs bind 

complementarily to their target mRNAs and recruit a specific set of proteins, forming the 

miRISC. The miRISC can interfere with PABP and hinder circularization of the mRNA, 

thereby hindering translation. The miRISC can also promote degradation of the mRNA by 

recruiting deadenylase complexes and decapping enzymes. However, little is known about the 

regulation of miRNA function in the brain.  

 Here, we examine how miRNA function is regulated during synaptic plasticity, by 

determining whether the protein composition of the miRISC changes after induction of LTP 

in the mammalian brain. The study is a collaboration with a former PhD student in our lab, 

Balagopal Pai. To our knowledge, we are the first to study the protein composition of the 

miRISC during LTP. LTP was induced at the perforant path in the dentate gyrus of 

anaesthetized rats. Monoclonal Ago2 antibodies were used to co-immunoprecipitate Ago2-

associated proteins from the dentate gyrus lysate. Five proteins thought to bind the core 

component of the miRISC, Ago2, were analyzed by Western blotting. These proteins were 

GW182, the RNase III enzyme Dicer, the RNA-binding protein FMRP, and the RNA 

helicases MOV10 and DDX6. The time points chosen for analysis of miRISC modulation 

were 30 minutes and 2 hours after the induction of LTP. These time points correspond to two 

stages of LTP, at which protein expression in the induced spines may be different. In addition, 

mass spectrometry was used to identify potentially new protein constituents of the brain 

miRISC.  
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Project goals 

Goal 1 

Use immunoprecipitation (IP) to investigate whether the proteins GW182, Dicer, FMRP, 

MOV10 and DDX6 are associated with Ago2 in the rat dentate gyrus in vivo, and whether 

these associations are modulated during LTP. 

Goal 2 

Use mass spectrometry to identify new candidate Ago2 binding partners and to investigate 

whether these proteins are modulated during LTP.  
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2 Materials and methods 

2.1 Electrophysiology and microdissection 

Electrophysiology and microdissection were performed by Birgitte Berentsen. Experiments 

followed the established protocols from the Bramham Lab. Animal experiments were 

conducted in accordance with the European Community Council Directive of November 24th, 

1986 and approved by the Norwegian Committee for Animal Research.  

Male Sprague-Dawley rats weighing at least 250 g were used. The rats were 

anaesthetized by intraperitoneal injection of urethane (1.5 mg/kg), and placed in a stereotaxic 

apparatus. A stimulating electrode was inserted in the left brain hemisphere at specific 

stereotaxic coordinates, to stimulate the medial perforant path. A recording electrode was 

inserted ipsilaterally in the hilar region of dentate gyrus, at the depth where the recorded 

positive-going field excitatory-post-synaptic-potential (fEPSP) reached its maximal slope. 

The contralateral (right) hemisphere served as a control. Test pulses were applied to the 

perforant path at 0.033 Hz throughout the experiment, except during HFS. The baseline 

response was recorded for 20 min. The pattern for induction of LTP by HFS consisted of 

eight pulses at 400 Hz, repeated four times at 10 seconds interval. This HFS-session was 

repeated twice, at 5 min interval. Signals from the hilus were amplified, filtered, and 

digitized. After HFS, induced responses were recorded for 30 min or 2 hrs, and the rats were 

immediately decapitated. The hippocampus of each brain hemisphere was rapidly 

microdissected from the cortex, followed by separation of the dentate gyrus and hippocampus 

proper. The tissues were flash frozen in a mixture of 96%*  methanol and dry ice, before 

storage at -80ºC. 

The fEPSP was analyzed with the software DataWave Experimental WorkBench 

(DataWave Technologies, Longmont, CO, USA). An analysis of variance (ANOVA) was 

performed, based on the values of the last 5 min of baseline. Details on surgery and 

electrophysiology have previously been described (Messaoudi et al., 2002; Panja et al., 2009). 

 

 

 

                                                 
* All percentages in this chapter are volume / volume percentages. 
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2.2 Antibodies 

Anti-EIF2C2 (Ago2) antibody from Abnova was used for IP and Western blotting 

(monoclonal mouse, dilution 1:1000). Other antibodies used for Western blotting were: anti-

β-actin (cytoskeletal) from Bethyl laboratories (polyclonal rabbit, 1:1000), anti-Arc (C7) from 

Santa Cruz Biotechnology (monoclonal mouse, 1:200),  anti-DDX6 from Bethyl laboratories 

(polyclonal rabbit, 1:500), anti-Dicer, a gift from Prof. W. Filipowicz at the Friedrich 

Miescher Institute in Switzerland (polyclonal rabbit, 1:1000), anti-FMRP from Abcam 

(polyclonal rabbit, 1:1000), anti-GW182 (H70) from Santa Cruz Biotechnology (polyclonal 

rabbit, 1:20), anti-GW182 from Bethyl laboratories (polyclonal rabbit, 1:1000), and anti-

MOV10 from ProteinTech Group (polyclonal rabbit, 1:250). Primary antibodies were diluted 

in 5% bovine serum albumine (BSA). Secondary antibodies used were: Horseradish 

Peroxidase (HRP) conjugated goat anti-mouse (1:2000) from Calbiochem and Millipore, and 

HRP-conjugated goat anti-rabbit (1:2000) from Calbiochem. Secondary antibodies were 

diluted in 1× Tris-buffered saline (TBS) supplemented with 0.1% Tween20 (1×TBST). 

2.3 Cell culture and transfection 

Human embryonic kidney (HEK) 293T cells were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Sigma Aldrich), supplemented with 10% fetal bovine serum (Sigma 

Aldrich/Gigco) and 8 mM L-glutamine at 37ºC and 5% CO2. The cells were  grown to 90-

95% confluence (~24 hrs), and transfected with plasmids expressing Ago2 fused to enhanced 

green fluorescent protein, (EGFP-Ago2 was a gift from Prof. Philip Sharp’s lab at MIT, MA, 

USA), using the 6-well protocol for LipofectamineTM 2000 (Invitrogen, see appendix for link 

to user manual). Lipofectamine is a cationic lipid, binding the negatively charged DNA and 

mediating fusion of the transfection complex with the cell membrane. Less than 24 hrs after 

transfection, the cells were harvested and lysed in lysis buffer containing 5 µl of 0.1% Triton 

(X100, SigmaUltra, Sigma Aldrich), 50 µl phenylmethylsulfonyl fluoride (PMSF, Sigma 

Aldrich), and ½ tablet of protease inhibitor (Complete, Mini, Protease Inhibitor Cocktail 

Tablets, Roche), in 5 ml of 1×PBS. The lysates were clarified by centrifugation at 10 000 rpm 

for 20 min at 4ºC. 
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2.4 Tissue homogenization and protein determination 

Dentate gyrus tissues were individually hand-homogenized with 8 strokes in 300 µl of freshly 

made lysis buffer on ice, containing 20 mM Tris-HCl, 150 mM NaCl, 2 mM MgCl2, 0.5 mM 

DTT, 1 mM NaF, 2 mM EDTA, 0.5% NP40, RNase inhibitor (1 µl/sample, RiobolockTM 

RNase Inhibitor, Fermentas), and protease inhibitor (1 tablet/10 ml, Complete, Mini, Protease 

Inhibitor Cocktail Tablets, Roche). The homogenates were centrifuged at 10 000 rpm for 20 

min at 4ºC and the pellets were discarded. Protein concentrations in the dentate gyrus 

homogenates and the EGFP-Ago2-transfected HEK cells were determined by using the 

microplate procedure of the Thermo Scientific Pierce® BCA Protein Assay Kit (see appendix 

for link to user manual). 10 µl of diluted sample (1:10) was loaded into three replicate wells, 

together with 190 µl of working reagent*, and incubated for 30 min at 37ºC on a gyro rocker. 

Bovine serum albumine (BSA) was used as a standard. 

 The bicinchoninic acid (BCA) assay combines the reduction of copper(II) ions (Cu2+) 

to copper(I) ions (Cu+) by protein peptide bonds in an alkaline solution (Biuret reaction), and 

the chelation of two BCA molecules with one Cu+, forming a purple-colored product 

exhibiting strong absorbance at 562 nm (Smith et al., 1985). This assay was chosen because it 

is compatible with the detergents in the lysis buffer. 

2.5 Co-immunoprecipitation 

Immunoprecipitation (IP) is a type of affinity chromatography, used for purification of a 

protein. The protein is precipitated out of a solution by using an antibody coupled to a solid 

substrate (Protein A/G-conjugated agarose beads) against the antigen of interest. Co-

immunoprecipitation (co-IP) is a technique for the analysis of protein-protein interactions, in 

which any protein bound to the selected antigen will be precipitated together with it. 

Protein G Sepharose beads (45 µl/sample, GE Healthcare) were washed 4 times in 500 

µl of 1× phosphate buffered saline (PBS), and centrifuged at 3000 rpm for 3 min at 4°C 

between each wash. Ago2 antibody (3 µg/sample) was added to the beads diluted in 1×PBS 

(100 µl/sample). Ago2 antibody and beads were incubated on a rotator either for 1 hr at room 

temperature (RT), or preferably overnight at 4°C. After incubation, the antibody-bound beads 

were washed 1-2 times with 500 µl of 1×PBS, and divided equally between as many tubes as 

there were samples. For each sample, 750 µg of protein was added to the antibody-bound 

                                                 
* Working reagent is provided in the Pierce® BCA Protein Assay Kit.  
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beads diluted in 400 µl of lysis buffer, and incubated on a rotator for 3 hrs at 4°C. The 

protein-antibody-bead complex was collected by centrifugation. Nonspecifically bound 

proteins were removed by washing the beads 3 times with 500 µl of lysis buffer, with 3 min 

of centrifugation at 3000 rpm at 4°C between each wash. The immunoprecipitated complex 

was eluted from the beads, denatured and reduced by adding 30 µl of 2× sample buffer (XT 

sample buffer, BioRad), and boiled at 95°C for 5 min. 40 µl of unbound proteins from each IP 

were denatured in 10 µl of 4× sample buffer. For each sample, 75 µg of total homogenate was 

denatured in 2× sample buffer. Ago2 immunoprecipitated from EGFP-Ago2-transfected HEK 

cells was used as a positive control for the experiment, whereas antibody-bound beads alone 

were used as a negative control.  

2.6 SDS-PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is a method for 

separating proteins according to their size. Protein samples are denatured and reduced by a 

sample buffer, and then separated in a polyacrylamide gel composed of an upper stacking gel 

and a lower resolving gel. An electric field is applied across the gel, causing the reduced 

proteins to migrate toward the anode (+) through the pores of the gel, in a speed reversely 

proportional to size. 

Immunoprecipitated samples, total homogenates and unbound proteins (from IP) were 

separated by SDS-PAGE in a 1.5 mm thick polyacrylamide gel (see appendix), alongside 

protein standard (Precision Plus Protein Dual Color Standards, BioRad). The proteins were 

concentrated in the stacking gel at 80 V, and then separated in the resolving gel for 2-3 hrs at 

100 V in a Mini-PROTEAN® 3 Cell (BioRad, see appendix for link to user manual). 

2.7 Western blotting 

Western blotting is a method used to detect proteins present in a sample. After separation of 

the proteins by SDS-PAGE, the proteins are transferred from the gel to a protein-binding 

membrane by electrophoretic transfer, and subsequently detected by enzyme-conjugated 

antibodies. An appropriate substrate is added to produce a detectable product, such as 

chemiluminescence or fluorescence. 

The proteins were transferred to a nitrocellulose membrane (Amersham Hybond ECL 

Nitrocellulose Membrane, GE Healthcare) by electrophoretic transfer, either at 100 V for 1.5 
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hrs at RT, or 21 V overnight at 4°C, in a Mini Trans-Blot® Electrophoretic Transfer Cell 

(BioRad, see appendix for link to user manual). Membranes were stained with Ponceau S dye 

and cut into several bands. The Ponceau S dye was rinsed off with ddH2O and 1×TBST. Then 

the membranes were blocked with 5% non-fat dry milk in 1×TBST for 1 hr at RT on a gyro 

rocker. After blocking, the membranes were incubated in primary antibody on a gyro rocker 

for either 2 hrs at RT, or preferably overnight at 4°C. After washing 3×5 min with 1×TBST, 

the membranes were incubated in secondary antibodies for 1 hr at RT, and washed again 3×7 

min with 1×TBST. The selected secondary antibodies were coupled to the enzyme 

horseradish peroxidase, allowing detection of the protein bands by the use of a 

chemiluminescent substrate for the enzyme (Thermo Scientific Pierce® ECL Western 

Blotting Substrate, see appendix for link to user manual). To re-probe the membrane with 

different antibodies, the membrane could be washed 3×5 min with 1×TBST, stripped with 

mild stripping buffer (15 g/l glycine, 1 g/l SDS, 1% Tween20, pH 2.2) for 1hr, and washed 

3×5 min with 1×TBST. Chemiluminescence was detected by a Gel Documentation System. 

Band intensities were quantified using the software Quantity One (Bio-Rad). Student’s t-test 

for dependent samples was used for statistical analysis of the difference between LTP-induced 

samples and their controls. The p-value for significance was 0.05.   

2.8 Mass spectrometry 

Mass spectrometry (MS) is an analytical technique used for determining the mass of particles 

in a sample, from which peptide and protein composition can be elucidated. Proteins excised 

from an SDS-PAGE gel are reduced and alkylated to increase the accessibility for trypsin 

digestion, which leads to specific cleavage at arginine (R) and lysine (K) residues (Figure 

2.12). Peptides are desalted and concentrated by binding to a matrix, to improve mass spectra 

quality. MS instruments consist of an ion source, a mass analyzer and a detector. After 

ionization, the mass analyzer separates the ions according to their mass-to-charge ratio (m/z). 

The ions are detected and the signal is processed into mass spectra. Tandem mass 

spectrometry (MS/MS) can be used to predict the identity of proteins. Selected ions from a 

first round of MS are fragmented, and these fragments undergo a second round of MS.  
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Figure 2.12 In-gel trypsin di-

gestion. (1) Polyacrylamide gel 

stained with Coomassie Brilliant 

Blue. (2) Destaining by ABC and 

ACN. (3) Reduction by DTT and 

(4) alkylation by IAA to increase 

digestion efficiency. (5) Protein 

digestion by trypsin at R and K 

amino acid residues. (6) 

Extraction of the peptides (Figure 

modified from Granvogl et al. 

2007). 

 

Immunoprecipitated samples were separated by SDS-PAGE at 80 V in a 0.75 mm thick gel 

for about 15 min after reaching the resolving gel. The gel was treated in a fixing solution 

(50% methanol, 10% acetic acid) for 30 min shaking at RT, stained with Coomassie blue dye 

(50% methanol, 7% acetic acid, 2.5 g/l Coomassie Brilliant Blue) overnight shaking at RT, 

and destained in destaining solution (50% methanol, 7% acetic acid) overnight shaking at RT. 

The stained protein-containing bands were excised and cut into 1×1 mm squares, and the dye 

was removed by alternately incubating the cubes with 100 µl of 50 mM ammonium 

bicarbonate (ABC) and 100 µl of acetonitrile (ACN), 3×5 min at RT. The cubes were 

incubated in reduction buffer (6.5 mM DTT in 50 mM ammonium bicarbonate) for 1 hr at 

60ºC shaking, shrunk with ACN, and incubated in alkylation buffer (54 mM iodoacetamide in 

50 mM ammonium bicarbonate) for 20 min at RT in the dark. Before digestion, the gel cubes 

were washed with successive incubations of 100 µl of 50 mM ABC and 100 µl of ACN, 2×5 

min at RT. After rehydration of the gel cubes in 20 µl of digestion buffer (10 µl trypsin in 140 

µl ammonium bicarbonate) for ~30 min, 10-20 µl of ABC was added, and digestion was 

allowed to proceed overnight (≤16 hrs) at 37°C. After digestion, the supernatant was collected, 

and peptides were extracted from the gel by incubation in 60 µl of 10% formic acid (FA) for 

10 min at RT followed by incubation in 50 µl of ACN for 5 min at RT. The extraction step 

was repeated once. The peptide solution was concentrated to a volume of ~10 µl by vacuum 

centrifugation.  

A STAGE (Stop And Go Extraction) tip column was prepared by wedging two small 

pieces of C18 Empore 3M Extraction Disk approximately 3 mm above the narrowest part of a 

200 µl pipette tip. The C18-matrix was activated by slowly pushing 20 µl of methanol 
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through the STAGE tip by means of a syringe, followed by equilibration with 20 µl of buffer 

B (0.5% acetic acid, 80% acetonitrile) and washing with 20 µl of buffer A (0.5% acetic acid). 

The peptide sample was loaded and pushed out, leaving the peptides bound to the Empore 

disk. Washing with buffer A was repeated, and the peptides were eluted by pushing through 

10 µl of buffer B, twice. The eluted peptides were collected in Protein LoBind Eppendorf 

tubes and vacuum centrifuged until ~2 µl remained.  

After sample preparation, mass spectrometry itself was conducted by Olav Mjaavatten 

at The Proteomics Unit at University of Bergen (PROBE), supported by the National Program 

for Research in Functional Genomics (FUGE) funded by the Norwegian Research Council. 

The instrument used was an Orbitrap Velos Pro (Thermo Scientific) equipped with a 

nanospray Flex ion source (Thermo Scientific). The data were matched against the Swissprot 

protein database using the mascot search engine*. 

                                                 
* http://www.matrixscience.com/ 
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3 Results 

3.1 Long-term potentiation was induced by high-frequency stimulation 

Fibers of the medial perforant path in the hippocampus form synapses with the granule cells 

of the dentate gyrus. By stimulating this pathway with a single electrical stimulus-pulse, an 

electrical potential is generated on the postsynaptic side of the granule cells. This potential is 

called a field excitatory post-synaptic potential (fEPSP), and can be recorded (Figure 3.1). 

The recording electrode was placed in the hilar region of the dentate gyrus, and baseline 

response to test pulses at 0.033 Hz was recorded for 20 min. LTP can be induced at the 

granule cell synapses by applying HFS to the medial perforant path, using the protocol 

described in the methods chapter. HFS was applied to the medial perforant path on the left 

side of the rat brain, whereas the right side was an unstimulated control. The fEPSP response 

to HFS was recorded for either 30 min or 2 hrs post-HFS. The two chosen time points 

correspond to different stages of LTP, at which protein expression in the induced spines may 

be different, and the composition of the miRISC may vary. HFS led to a stable and robust 

increase of the fEPSP in the hilar region of the dentate gyrus, confirming successful induction 

of LTP. The average change of fEPSP from baseline was 48 ± 7% (n = 6) for experiments 

recorded for 30 min post-HFS (Figure 3.2 A), and 29 ± 6% (n = 8) for experiments recorded 

for 2 hrs post-HFS (Figure 3.2 B). For both time points, the changes were statistically 

significant (p < 0.001). Immediately after the electrophysiological experiments, the dentate 

gyri were microdissected from the cortex.  

 

 

Figure 3.1 | Field excitatory post-synaptic potential 

(fEPSP). The figure shows a typical fEPSP recording as 

response to a single test-pulse. The fEPSP slope was 

determined by calculating the average of five points along 

the rising segment of the first positive peak (showed by 

the arrow). 
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Figure 3.2 | Time course plots for HFS-induced changes in fEPSP. Each point in the chart represents the 

average fEPSP of the experiments, for 2 min. The baseline is the response to test pulses at 0.033 Hz, recorded for 

20 min before HFS. The arrows represent the three sessions of HFS. (A) fEPSP recording for 30 min post-HFS. 

The average increase of the fEPSP was 48 ± 7% (n = 6, p < 0.001). (B) fEPSP recording for 2 hrs post-HFS. The 

average increase of the fEPSP was 29 ± 6% (n = 8, p < 0.001). Plots provided by Birgitte Berentsen. 

3.2 Western blotting 

The dentate gyri were homogenized in lysis buffer, and total protein concentration in lysates 

was determined using the BCA assay. Western blotting was performed for total lysates. For 

each sample, 75 µg of protein was loaded onto the SDS-PAGE gel, and equal loading was 

confirmed by probing the blots for the housekeeping gene β-actin (Figure 3.3).  

 

Figure 3.3 | β-actin as a control for equal protein loading.  Repre-

sentative immunoblot showing β-actin in total lysate. β-actin was used 

as a control for equal protein loading in SDS-PAGE.  
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3.3 Arc was induced by high-frequency stimulation 

The Arc protein is critical for many forms of protein synthesis dependent plasticity. It is 

involved in regulation of actin dynamics and homeostatic regulation of AMPA receptors. The 

gene Arc/Arg3.1 is rapidly transcribed in response to neuronal activity. Sustained Arc 

synthesis is necessary for HFS-induced LTP. Infusion of Arc antisense 2 hrs after HFS leads 

to a complete reversal of LTP (Messaoudi et al., 2007). Therefore, the immunoblots of total 

lysate were probed for Arc. The protein was consistently and significantly detected in the 

dentate gyri stimulated by HFS, both 30 min and 2 hrs post-HFS, and was not expressed in 

the unstimulated controls (Figure 3.4). As a precaution, dentate gyri that did not express Arc 

in the HFS-treated side were excluded from this study.  

 

Figure 3.4 | Arc induction by HFS. Representative immunoblot 

showing Arc in total lysate. Both 30 min and 2 hrs post-HFS, Arc protein 

expression was induced in HFS-treated dentate gyri (+), but not in 

unstimulated dentate gyri (-). 

3.4 Background for immunoprecipitation experiments 

My biochemical experiments are based on IP of Ago2. Before detailing these results, it is 

important to summarize the results of former PhD student Balagopal Pai from the 

characterization and selection of Ago2 antibodies. Ago2 is part of the Argonaute (Ago) family 

of proteins, which bind mature miRNAs directly, and mediate miRNA-guided gene silencing. 

Modulation of the Ago2 protein and other components of the miRISC may be important for 

regulation of miRNA-mediated silencing. This form of silencing is thought to have a role in 

regulation of gene expression during LTP. One goal of the project was to examine regulation 

of Ago2, the core protein of the miRISC, after induction of LTP in the rat dentate gyrus. Ago2 

antibodies from the companies Abnova, Ascenion and PTG lab were tested for detection and 

IP of Ago2 from total lysates of rat dentate gyrus and HEK cells overexpressing Ago2 

coupled to EGFP (Figure 3.5). The antibody from Abnova was best at detecting EGFP-Ago2 

and gave the greatest IP efficiency (90%) in rat dentate gyrus. The antibody from Abnova was 

therefore selected for further use. The EGFP-Ago2 complex expressed in HEK cells was 

detected at ~125 kDa in HEK cell lysate, reflecting the combined molecular mass of Ago2 (98 

kDa) and EGFP (26.9 kDa).  
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Figure 3.5 | Antibody selection for immunoprecipitation. (A) Immunoblots from total lysates probed with 

Ago2 antibodies from the companies Abnova and PTG lab. Ago2 was detected in naïve HEK cells, in HEK cells 

overexpressing EGFP-Ago2 and in dentate gyrus (DG) lysate. (B) Immunoblots from Ago2 IP probed with Ago2 

antibodies from Abnova and PTG lab. Ago2 was detected in HEK cells overexpressing EGFP-Ago2 and in 

dentate gyrus lysate, but not in beads or IgG controls. Figure from Balagopal Pai. 

 

The next step of the project was to examine proteins that interact with Ago2 in the miRISC. 

Co-IP of candidate RISC proteins was tested in lysates from neocortex, hippocampus proper 

and dentate gyrus, as well as HEK cells expressing EGFP-Ago2. The predicted proteins were 

the RNA helicases, DDX6 and MOV10, the RNase III enzyme, Dicer, the RNA-binding 

protein, FMRP, and GW182. The proteins were successfully immunoprecipitated in all lysates 

(Figure 3.6), although the proteins MOV10 and GW182 were inconsistently co-

immunoprecipitated. There was no difference in miRISC composition between brain regions. 

The conditions for IP, such as protein amount, antibody concentration, incubation time and 

lysis buffer composition, were varied to find the optimal protocol. The retained protocol was 

described in the materials and methods chapter.  

 

Figure 3.6 | Co-immunoprecipitation of RISC proteins with Ago2. 

Immunoblots showing the proteins Dicer, Gw182, MOV10, FMRP 

and DDX6 in Ago2 co-immunoprecipitate, in cortex, dentate gyrus, 

CA region and HEK cells overexpressing EGFP-Ago2. CTX, cortex; 

DG, dentate gyrus; CA, cornu ammonis or hippocampus proper. 

Figure from Balagopal Pai.  
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3.5 Ago2 was immunoprecipitated 

Regulation of Ago2 after HFS-treatment of the dentate gyrus was examined. In the total 

lysates, there was a non-significant tendency for increased protein quantity of Ago2 in HFS-

treated dentate gyrus, with a fold change of ~1.1 for the 30 min time point and ~1.2 for the 2 

hrs times point (Figure 3.7 A, B). IP of Ago2 was performed from total lysates, and the Ago2 

protein was detected by Western blotting (Figure 3.7 C, D). No change in protein expression 

was detected in immunoprecipitated samples. There was no significant difference between the 

amounts of Ago2 in the lysates and in the IP. EGFP-Ago2 expressed in HEK cells was used 

as a positive control for successful Ago2 detection by immunoblotting. EGFP-Ago2 was 

consistently detected in immunoblots, both in total lysate and in IP. Beads coupled to Ago2 

antibodies without protein lysates were included in every IP experiment, as a negative control. 

The negative control ensured that the different antibodies used for immunoblotting did not 

detect the G-sepharose beads used for IP. 

 

 
Figure 3.7 | Ago2 in total lysates and IP. (A) Column chart representing fold change (± SEM) of Ago2 content 

in total lysate of HFS-treated dentate gyri (+), compared to the unstimulated dentate gyri (-). Average 

densitometric values from immunoblots were used to create the chart. Fold change for the 30 min time point: 

1.09 ± 0.15, n = 8, p = 0.82. Fold change for the 2 hrs time point: 1.23 ± 0.13, n = 5, p = 0.93. (B) Representative 

immunoblots showing Ago2 in total lysate. (C) Column chart representing fold change (± SEM) of Ago2 in 

Ago2 IP from HFS-treated dentate gyri (+), compared to the unstimulated dentate gyri (-). Fold change for the 30 

min time point: 1.03 ± 0.10, n = 8, p = 0.59. Fold change for the 2 hrs time point: 1.02 ± 0.14, n = 5, p = 0.81.  

(D) Representative immunoblots showing Ago2 in IP. SEM, standard error of the mean.  
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3.6 Co-immunoprecipitation of Ago2-interacting proteins 

Proteins predicted to interact with Ago2 were examined by co-IP. The results of these 

experiments are reported in this section.  

3.6.1 DDX6 was associated with Ago2 

DEAD box polypeptide 6 (DDX6) is an RNA helicase localized to P-bodies and stress 

granules. DDX6 interacts with Ago2, and is required for miRNA-induced gene silencing. 

DDX6 association with Ago2 after LTP induction was investigated. DDX6 was indeed co-

immunoprecipitated with Ago2, both in HFS-treated dentate gyri and in the unstimulated 

dentate gyri. For both time points, the amount of DDX6 protein in total lysate did not change 

(Figure 3.8 A, B), whereas the amount of DDX6 in co-IP decreased non-significantly, with a 

fold change of ~0.8 for both time points (Figure 3.8 C, D). HEK cells transfected with EGFP-

Ago2 were used as a positive control for successful detection of DDX6 in total lysate and as a 

control for successful IP.  

 

 
Figure 3.8 | DDX6 in total lysates and IP. (A) Fold change (± SEM) of DDX6 in total lysate of HFS-treated 

dentate gyri (+), compared to the unstimulated dentate gyri (-). Fold change for the 30 min time point: 0.89 ± 

0.14, n = 6, p = 0.44. Fold change for the 2 hrs time point: 0.93 ± 0.16, n = 6, p = 0.88. (B) Representative 

immunoblots showing DDX6 in total lysate. (C) Fold change (± SEM) of DDX6 in Ago2 IP from HFS-treated 

dentate gyri (+), compared to the unstimulated dentate gyri (-). Representative immunoblots showing DDX6 in 

IP. Fold change for the 30 min time point:  0.82 ± 0.12, n = 9, p = 0.19. (D) Fold change for the 2 hrs time point: 

0.80 ± 0.15, n = 5, p = 0.51. 
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3.6.2 MOV10 was detected in total lysates but not in Ago2 IP 

Moloney leukemia virus 10 protein (MOV10) is an RNA helicase that binds to Ago2. 

MOV10 is implicated in miRNA-mediated translational repression. MOV10 may dissociate 

from the miRISC after synaptic activity, relieving miRISC-mediated translational repression. 

MOV10 was detected in total lysate, and there was a non-significant tendency for decrease in 

MOV10 protein quantity in HFS-treated dentate gyri, with a fold change of ~0.85 for both 

time points, indicating a possible degradation of MOV10 (Figure 3.9 A). MOV10 was not 

detected in co-IP with Ago2, but was detected in HEK cells expressing EGFP-Ago2 (positive 

control). Immunoblots of total lysates probed for MOV10 protein gave two bands: an 

invariable band at 150 kDa and a variable lower band at 130 kDa used for quantification. The 

lower band was chosen because several studies have detected MOV10 at 130 kDa instead of 

its actual molecular mass of 114 kDa, perhaps because of post-translational modifications 

(Banerjee et al., 2009; Meister et al., 2005). In the positive control, MOV10 was detected at 

114 kDa (Figure 3.9 B). 

 
Figure 3.9 | MOV10 in total lysates. (A) Fold change of MOV10 quantity in total lysate of HFS-treated dentate 

gyri. Fold change for the 30 min time point: 0.83 ± 0.11, n = 6, p = 0.67. Fold change for the 2 hrs time point: 

0.86 ± 0.02, n = 6, p = 0.30. (B) Representative immunoblots showing MOV10 in total lysate. The band used for 

quantification was the lower band at 130 kDa. 

 

3.6.3 Dicer was detected in total lysates 

Dicer is an RNase III enzyme involved in the cleavage of pre-miRNA in the canonical 

miRNA biogenesis pathway. Dicer was successfully detected in total lysates, but did not show 

any significant change in expression during LTP, neither at 30 min nor 2 hrs post-HFS 

(Figure 3.10). Dicer was not consistently detected in the co-IP with Ago2, but was always 

detected in HEK cells expressing EGFP-Ago2 (positive control).  
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Figure 3.10 | Dicer in total lysates. (A) Fold change of Dicer in total lysate of HFS-treated dentate gyri. Fold 

change for the 30 min time point: 1.12 ± 0.22, n = 7, p = 0.90. Fold change for the 2 hrs time point:  

1.0 ± 0.1, n = 3, p = 0.89. (B) Representative immunoblots showing Dicer in total lysate. 

 

3.6.4 FMRP was difficult to detect in total lysates 

Fragile-X mental retardation protein (FMRP) is an RNA-binding protein, whose absence 

causes fragile-X syndrome. FMRP is localized to dendrites and synapses and is thought to 

function as a translational repressor of specific mRNAs, including several mRNAs involved 

in synaptic plasticity. FMRP interacts with RISC proteins such as Ago2 and Dicer, and 

associates with miRNAs, but may not be essential for RNAi-mediated mRNA degradation. 

FMRP was difficult to detect in total lysate, showing only weak bands, even when large 

amounts of total protein were used (1 mg). There was no change of FMRP expression in the 

total lysate (Figure 3.11). In the immunoblot for co-IP, a weak band of 70-80 kDa, 

corresponding to the molecular mass of FMRP, was inconsistently detected. FMRP was 

readily detectable in HEK cells overexpressing Ago2-GFP, both for total lysate and co-IP.  

 
Figure 3.11 | FMRP in total lysates. (A) Fold change of FMRP in total lysate of HFS-treated dentate. Fold 

change for the 30 min time point: 0.92 ± 0.12, n = 8, p = 0.28. Fold change for the 2 hrs time point:  

0.94 ± 0.09, n = 7, p = 0.61. (B) Representative immunoblots showing FMRP in total lysate. 
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3.6.5 GW182 in total lysates was not significantly modulated during LTP 

Glycine-tryptophan proteins of 182 kDa (GW182) are required for miRNA-mediated 

silencing. GW182 proteins are known to interact with Ago2 and to inhibit translation, for 

example by interfering with the function of poly(A)-binding protein (PABP) and by 

interacting with deadenylase complexes. In total lysate, there was a non-significant trend for 

increase in GW182 protein quantity 2 hrs after the induction of LTP, with a fold change of 

1.15 (Figure 3.12). GW182 was not reliably detected in co-IP with Ago2. Antibodies from 

two companies were tested for detection of GW182 on immunoblots. The antibody from 

Santa Cruz Biotechnology gave very weak bands, whereas the antibody from Bethyl 

laboratories gave many unspecific bands. The antibody from Bethyl laboratories was chosen 

because it gave the strongest band at 182 kDa, the molecular mass of GW182.  

 

 
Figure 3.12 | GW182 in total lysates. (A) Fold change of GW182 quantity in total lysate of HFS-treated dentate 

gyri. Fold change for the 30 min time point: 0.96 ± 0.13, n = 8, p = 0.98. Fold change for the  

2 hrs time point: 1.15 ± 0.17, n = 7, p = 0.80. (B) Representative immunoblots showing GW182 in total lysate. 

 

3.7 Ago2 binding partners were detected by mass spectrometry 

Proteins bound to Ago2 in Ago2 IP were separated by SDS-PAGE for 15 min, and the 

protein-containing portion of the gel was excised and cut into pieces. The proteins in the gel 

were reduced, alkylated and trypsinated. The resulting peptides were extracted from the gel, 

and were analyzed by an Orbitrap mass spectrometer. The obtained peptides were matched 

against the Swissprot protein database using the mascot search engine, to uncover which 

proteins were present in the samples. Five pairs of samples were analyzed: five HFS-treated 

dentate gyri, and the corresponding five untreated contralateral dentate gyri. All the samples 

were from experiments recorded for 30 min post-HFS. Up- or downregulated proteins in 

HFS-treated dentate gyri could be identified by mass spectrometry analysis.  
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The immunoprecipitated protein Ago2 was found in the IP samples, confirming 

successful IP. In two of the samples, Ago2 was neither up- nor downregulated (Figure 3.13). 

In sample number 2, there was a 0.17 fold change of Ago2 content in HFS-treated dentate 

gyri compared to the untreated dentate gyri. In sample number 4, there was a 0.76 fold 

change, and in sample number 5, there was a 1.60 fold change. The average fold change for 

all samples was 0.90 ± 0.23.  

 
Figure 3.13 | Ago2 in IP, detected by mass spectrometry. Column chart representing fold change of Ago2 

quantity in Ago2 IP from HFS-treated dentate gyri (30 min time point), compared to the unstimulated 

contralateral side. Average fold change for all samples: 0.90 ± 0.23.  

 

None of the candidate binding partners of Ago2 that this thesis focuses on were detected by 

mass spectrometry, but the proteins DEAD box polypeptide 1 (DDX1) and fragile-X mental 

retardation syndrome-related protein 1 (FXR1) were detected. DDX1 belongs to the same 

family of DEAD (Asp-Glu-Ala-Asp) box ATP-dependent RNA helicases as DDX6. FXR1 is 

an RNA binding protein that interacts with the structurally and functionally similar protein 

FMRP (Zhang et al., 1995). Interestingly, PABP1 was found in the samples. PABP1 interacts 

with eIF4F and the poly(A) tail of mRNAs to protect them from silencing and degradation. 

Other proteins of interest were detected, such as several heterogeneous nuclear 

ribonucleoproteins (HNRPs), the α- and β-subunits of CaMKII, several types of PKC, and 

MAPK 3. None of the more than one thousand detected proteins were consistently up- or 

downregulated in the HFS-treated dentate gyri, compared to the unstimulated contralateral 

sides. 
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4 Discussion 

LTP requires both de novo protein synthesis and protein degradation. Major regulators of 

translation are miRNAs, which act through the miRISC. This project assesses the poorly 

known RISC protein composition and its regulation. Findings and implications, as well as 

methodological considerations and future perspectives, are discussed in this chapter.  

4.1 Detection of predicted Ago2 binding partners by IP 

4.1.1 Ago2 may not be up- or downregulated during LTP 

The protein Ago2 is the core component of miRISC. Ago2 binds miRNAs and recruits 

proteins that mediate gene silencing. One means by which miRNA activity could be 

modulated during LTP is through changes in the Ago2 association with miRNAs or with the 

effector RISC. miRNAs are regulated by mGluR and NMDAR signaling during LTP in rat 

dentate gyrus in vivo, at 2 hrs post-HFS (Wibrand et al., 2010). Induction of LTP in the rat 

dentate gyrus triggers rapid changes in Ago2-associated miRNA (Pai et al., 2012). Ago2 may 

be post-transcriptionally modified, altering its function. Hydroxylation and Ser387 

phosphorylation stabilize Ago2 and increase Ago2 localization to P-bodies in vitro (Qi et al., 

2008; Zeng et al., 2008). Ubiquitylation and subsequent proteasomal degradation of Ago2 

lead to impaired miRNA-mediated silencing (Rybak et al., 2009). Tyr529 phosphorylation of 

Ago2 reduces its binding to miRNAs (Rudel et al., 2011). A study in HEK293 cells shows a 

small increase in mRNA levels after Ago2 knockdown. The authors found no evidence for 

activation of silenced genes at the mRNA level, suggesting that miRNAs have a tuning role in 

regulation of gene expression (Schmitter et al., 2006).  

The protein composition of the RISC may be different at various stages of LTP. The 

critical time period for protein synthesis lasts less than one hour in most synapses. Therefore, 

the expression of Ago2 in the present study was investigated at two time points, namely 30 

min and 2 hrs post-HFS. At 2 hrs post-HFS, it was found that Ago2 was non-significantly 

upregulated by ~20% in total lysates of HFS-treated dentate gyri, compared to the untreated 

contralateral dentate gyri. When Ago2 was immunoprecipitated from the total lysate, this 

tendency for Ago2 upregulation during LTP was not found. This finding could mean that 

protein synthesis during LTP is not controlled by differential expression of Ago2, but rather 

by regulation of other RISC proteins or by regulation of miRNA biogenesis. HFS-LTP is 
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NMDAR-dependent; it is therefore possible that NMDAR signaling during LTP regulates the 

pool of miRNAs available for Ago2 binding, and thus regulates which pool of mRNAs are 

translated or repressed. Another major mechanism of regulation not directly examined here is 

post-transcriptional modification of Ago and other RISC proteins. There was no significant 

difference between Ago2 expression in total lysates and Ago2 expression in IPs. Minor 

differences could perhaps be explained by modifications of Ago2, such as phosphorylation or 

ubiquitylation, masking the epitope. A monoclonal antibody was used for IP and 

immunoblotting, minimizing unspecific binding. The expression of Ago2 could be different at 

a later time point than 2 hrs; although a recent study in our lab shows no change in Ago2 

expression 4 hrs post-HFS (Pai et al., 2012). The expression of Ago2 could be altered at an 

earlier time point of critical protein synthesis than 30 min, which remains to be investigated.  

4.1.2 DDX6 is associated with Ago2 

The RNA helicase DDX6 is a component of the RISC known to interact with Ago2. DDX6 is 

required for miRNA-induced translational repression (Chu and Rana, 2006). RNA helicases 

catalyze unwinding or remodeling of RNAs. Helicase activity may be important for assembly 

of the RISC and for binding or dissociation of mRNA targets (Robb and Rana, 2007; Tomari 

et al., 2004). DDX6 has been implicated both in increased and decreased mRNA translation, 

suggesting that DDX6 has a role in balancing activation and repression of translation, as 

proposed by Minshall et al. (2009). DDX6 proteins are localized to P-bodies and stress 

granules, sites of miRNA-mediated mRNA silencing. DDX6 could be the effector molecule 

that shuttles miRISC target mRNAs toward P-bodies, for storage or processing. Location of 

the miRISC to P-bodies may be the consequence rather than the cause of translation 

repression (Chu and Rana, 2006). The P-body marker DDX6 and the transport 

ribonucleoprotein (RNP) marker zipcode-binding protein 1 (ZBP1) do not colocalize in 

cultured hippocampal neurons, but interact in a dynamic manner via docking. Chemical 

stimulation of the neurons with BDNF or NMDA leads to a considerable decrease in P-

bodies, suggesting that P-bodies disassemble after synaptic stimulation. Synaptic activity may 

lead to release of dendritically localized mRNAs from P-bodies, and possibly translation of 

those mRNAs (Zeitelhofer et al., 2008).  

In total lysates, DDX6 expression was not altered during LTP, neither at 30 min nor 2 

hrs post-HFS. DDX6 association with Ago2 was confirmed by co-IP, as found in previous 

studies. DDX6 was non-significantly dissociated from Ago2 during LTP, at both time points. 

The results from co-IP indicate that ~20% of Ago2-bound DDX6 was dissociated from Ago2 
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during LTP, but the results from total lysates suggest that DDX6 was not degraded. Perhaps a 

specific set of mRNAs, recognized by the miRISC, is relieved from repression and P-body 

localization in a reversible manner during LTP. The derepressed mRNAs could code for 

proteins specifically expressed during LTP. It is possible that DDX6 dissociation from Ago2 

leads to derepression, for instance by hindering mRNA localization to P-bodies. DDX6 

association with Ago2 was the same at 30 min and 2 hrs post-HFS, perhaps indicating that 

depression is maintained during the critical period of LTP consolidation. An example of a 

protein derepressed during the critical period of LTP consolidation is Arc. Arc is a protein 

known to be required for stable LTP expression 2 hrs after LTP induction, but is no longer 

required 4 hrs after LTP induction (Messaoudi et al., 2007).  

4.1.3 MOV10 may be degraded during LTP 

Like DDX6, MOV10 is an RNA helicase associated with P-bodies, and is involved in 

translational control. MOV10 is known to interact with Ago2 to mediate miRNA-induced 

translational repression in human cells (Meister et al., 2005). NMDAR-mediated synaptic 

activity promotes MOV10 ubiquitylation and subsequent degradation by the proteasome. 

MOV10 dissociation from the RISC may relieve miRISC-mediated translational repression 

(Banerjee et al., 2009). Protein degradation through the ubiquitin-proteasome system may be 

essential for long-term fear memory in the rat amygdala, and may be involved in several 

aspects of learning-induced synaptic plasticity. Fear conditioning induces NDMAR-

dependent polyubiquitylation and degradation of MOV10 and other proteins involved in 

translational control (Jarome et al., 2011).  

MOV10 was detected in total lysate, but was not found to interact with Ago2 in the rat 

dentate gyrus in co-IP experiments. There was a non-significant tendency for downregulation 

of ~15% of MOV10 proteins in the total lysate of LTP-induced dentate gyri, both 30 min and 

2 hrs post-HFS. The observed downregulation of MOV10 in total lysates may be caused by 

MOV10 degradation as a result of NMDAR signaling during LTP, in agreement with the 

studies by Banerjee et al. (2009) and Jarome et al. (2011). MOV10 could be degraded through 

the ubiquitin-proteasome system. Perhaps MOV10 was not found in co-IP with Ago2 because 

MOV10 is not or weakly associated with Ago2 in the rat dentate gyrus. Alternatively, 

MOV10 could dissociate from Ago2 at an earlier time point than 30 min post-HFS, and not 

reassociate, or reassociate at a later time point than 2 hrs post-HFS. MOV10 degradation or 

dissociation from Ago2 may lead to derepression of translation of certain mRNAs involved in 

synaptic plasticity. The expression of MOV10 during LTP was similar at 30 min and 2 hrs 
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post-HFS, again indicating that silencing of some mRNAs may be relieved up to 2 hrs after 

LTP induction.  

4.1.4 Dicer does not reliably co-immunoprecipitate with Ago2 

The RNase III enzyme Dicer is involved in the cleavage of pre-miRNA in the canonical 

miRNA biogenesis pathway. Dicer interacts with Ago2, Hsp90 and TRBP, forming the 

miRISC loading complex (miRLC) (Liu et al., 2012). Ago2 bound to mature miRNA 

constitutes the minimal RISC and may subsequently dissociate from Dicer and TRBP. The 

protein Lin-28 regulates Dicer-mediated processing through a conserved mechanism. Lin-28 

binds to let-7 pre-miRNAs and recruits an uridyl transferase (TUTase), which polyuridylates 

let-7 pre-miRNAs. Dicer binds to polyuridylated let-7 pre-miRNAs, and is repressed (Treiber 

et al., 2012). Pre-miRNAs and Dicer mRNA compete for nuclear export through Exportin 5, 

and Dicer is downregulated by excessive pre-miRNAs expression (Bennasser et al., 2011). An 

miRNA precursor deposit complex (miPDC) may serve as a temporary storage site for pre-

miRNAs in the cytosol during variations in Dicer availability (Liu et al., 2012). 

Dicer was detected in total lysate, but Dicer expression did not change at 30 min or 2 

hrs after LTP induction. Co-IP experiments demonstrated that Dicer did not interact with 

Ago2 in the rat dentate gyrus. It is possible that NMDAR-dependent or -independent 

regulatory steps at the level of miRNA processing regulate the pool of miRNAs available for 

miRISC assembly during LTP. The expression of Dicer was not altered after the induction of 

LTP, suggesting that cleavage of pre-miRNAs by Dicer may not be the critical regulatory step 

of miRNA processing. Perhaps miRNA processing, miRNA loading onto the RISC, and 

miRISC function are controlled by other mechanisms than regulation of Dicer expression. 

The competition of Dicer and pre-miRNAs for export through Exportin 5 may regulate pre-

miRNA availability in the cytosol. If regulation of miRNA processing is important for LTP, 

the regulation may focus on the selection of miRNAs necessary for LTP, and not on the 

expression of processing enzymes themselves. Dicer expression during LTP was the same 30 

min and 2 hrs post-HFS, indicating that processing of miRNAs is perhaps not regulated by a 

change in Dicer availability. Indeed, pre-miRNAs could be stored in miPDCs in the cytosol, 

as suggested by Liu et al. (2012). An explanation for not detecting Dicer in co-IP with Ago2 

might be that Dicer only briefly associates with Ago2 during the loading step of miRISC 

formation, and then quickly dissociates.  
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4.1.5 FMRP does not reliably co-immunoprecipitate with Ago2 

The RNA-binding protein FMRP is localized to dendrites and synapses and is thought to 

function as a translational repressor of specific mRNAs, including several mRNAs involved 

in synaptic plasticity. FMRP may also function in mRNA stability and transport. mGluR 

activation is thought to regulate FMRP phosphorylation, which in turn regulates translation of 

different mRNAs. FMRP-dependent changes in spine morphology and AMPAR 

internalization can lead to mGluR-LTD. FMRP probably has multiple roles in translation. 

FMRP is associated with cytoplasmic fragile-X mental retardation interacting protein 1 

(CYFIP1), which interacts with eIF4E and PABP in the brain. A study in the mouse brain 

shows that the CYFIP-FMRP complex dissociates from eIF4E, thus allowing translation in 

response to stimulation with BDNF or the group I mGluR agonist (S)-3,5-dihydroxy-

phenylglycine (DHPG). The authors propose that CYFIP1 mediates FMRP function (Napoli 

et al., 2008). It is unclear whether FMRP phosphorylation regulates this mechanism. Although 

FMRP associates with miRNA and RISC proteins such as Ago2 and Dicer, it may not 

influence RISC function, but rather control the fate of translationally repressed mRNAs. 

FMRP and the RISC associate to distinct pools of mRNAs and the mRNAs associated with 

FMRP are destined to stress granules (Didiot et al., 2009). A study showed that mGluR-

dependent LTD was enhanced in fmr1 knockout mice, whereas NMDAR-dependent LTD and 

LTP were not affected by FMRP deficiency (Bear et al., 2004). Conversely, two more recent 

studies showed that NMDAR-dependent LTP in the dentate gyrus was diminished in fmr1 

knock-out mice (Eadie et al., 2012; Yun and Trommer, 2011). 

FMRP was difficult to detect in total dentate gyrus lysates. FMRP is known to be 

found in the brain, so perhaps post-translational modifications or binding partners masked the 

epitope for antibody recognition. LTP induction did not affect FMRP expression in the 

dentate gyrus compared to the contralateral unstimulated dentate gyrus, neither at 30 min nor  

2 hrs post-HFS. In co-IP experiments, FMRP was not associated with Ago2 at either time 

point. Our results indicate that FMRP expression may not be modulated by HFS. Perhaps 

FMRP-interacting proteins such as CYFIP are regulated rather than FMRP itself. FMRP 

could regulate the stability of present mRNAs without being part of the miRISC, and direct 

repressed mRNAs to stress granules. The lacking change of FMRP expression both 30 min 

and 2 hrs post-HFS support the idea that FMRP does not affect miRISC-mediated silencing. 

FMRP may not be associated with Ago2 in the rat dentate gyrus, or perhaps only transiently, 

which would explain why it was not detected in co-IP with Ago2. Previous studies suggest 

that FMRP has a role in LTD rather than LTP. 
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4.1.6 GW182 does not reliably co-immunoprecipitate with Ago2 

GW182 interaction with Ago1 in the fly Drosophila Melanogaster is essential for miRNA-

mediated translational repression (Eulalio et al., 2008). GW182 proteins promote translational 

repression by interfering with the function of PABP1 and by interacting with deadenylase 

complexes such as PAN2-PAN3 and CCR4-NOT. A study in cultured hippocampal neurons 

shows that BDNF-mediated protein synthesis requires the target mRNA to be repressed and in 

association with GW182 in P-bodies. BDNF causes GW182 to dissociate from translationally 

upregulated target mRNAs, and to associate with downregulated target mRNAs (Huang et al., 

2012). GW182 associated with miRNAs and RISC proteins accumulate in P-bodies, perhaps 

as a consequence of silencing (Eulalio et al., 2009). GW182 can be post-transcriptionally 

modified. GW182 is phosphorylated but the role of this modification is unknown (Eystathioy 

et al., 2002). 

GW182 was difficult to detect in total lysates. The immunoblots show a non-

significant increase in GW182 expression 2 hrs after the induction of LTP. Co-IP experiments 

indicate that GW182 was not associated with Ago2. It is puzzling that GW182 was so 

difficult to detect in total dentate gyrus lysates, because GW182 is known to be found in 

neurons. Perhaps there was a pool of GW182 not recognized by the antibodies because of 

post-translational modifications or binding partners masking the epitope. Polyclonal 

antibodies from two companies were tested, and neither gave strong bands, supporting the 

idea of poor antibody binding to the epitope. The detected bands showed no significant 

difference in GW182 expression after LTP induction, neither 30 min nor 2 hrs post-HFS, 

meaning that LTP probably does not modulate the expression of GW182. It is nevertheless 

possible that GW182 interactions to other proteins are altered during LTP. The lacking Ago2-

GW182 interaction in co-IP does not agree with several studies clearly showing GW182-Ago 

interaction, for example in Drosophila Melanogaster cells or human cells (Eulalio et al., 

2008; Takimoto et al., 2009). Perhaps the GW182-Ago2 interaction is weaker in mammalian 

brain cells in vivo, than in cultured cells and other cell types. But no other tissues than brain 

were tested in this thesis, so these assertions are only speculations. 
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4.2 Detection of Ago2 binding partners by mass spectrometry 

Proteins bound to Ago2 in Ago2 IP were detected by mass spectrometry. Proteins of interest 

were DDX1 and FXR1, which are homologs of respectively DDX6 and FMRP. In addition, 

PABP and hnRNP K were detected. 

4.2.1 Ago2  

Immunoprecipitated Ago2 was analyzed by mass spectrometry to detect binding partners. 

Five HFS-treated dentate gyri recorded for 30 min post-HFS, and the corresponding untreated 

contralateral dentate gyri were analyzed. The Orbitrap mass analyzer was chosen because of 

its speed, high resolution and sensitivity. In average, Ago2 was not up- or downregulated in 

HFS-treated dentate gyri. Regulation of Ago2 and other proteins varied a lot from one sample 

to another. Often, but not always, one specific sample differed from the others. It is difficult 

to draw a valid conclusion about protein regulation with such great variance within five 

samples. Nevertheless, the finding that Ago2 expression is not regulated 30 min post-HFS 

matches the results from immunoblotting, suggesting that Ago2 expression is possibly not 

regulated by synaptic activity. 

4.2.2 DDX1 and hnRNP K  

DDX1 belongs to the same family of DEAD box ATP-dependent RNA helicase as DDX6. 

DDX1 is a homopolymeric poly(A) RNA-binding protein involved in the 3’ end processing of 

pre-mRNAs. DDX1 possesses RNA unwinding activity only when in complex with 

heterogeneous nuclear ribonucleoprotein K (hnRNP K). The DDX1-hnRNP K complex RNA 

unwinding activity is important in human leukemia (K562) cells. hnRNP K is a 

multifunctional protein involved in the regulation of transcription, translation, nuclear 

transport, and signal transduction. hnRNP K is a component of the heterogeneous nuclear 

ribonucleoprotein complexes which bind pre-mRNAs directly and facilitate mRNA 

biogenesis (Chen et al., 2002).  

Mass spectrometry analysis revealed that the protein DDX1 and several heterogeneous 

nuclear ribonucleoproteins (hnRNPs) interacted with Ago2. Of specific interest was  

hnRNP K. As for Ago2, the mass spectrometry results for regulation of DDX1 and hnRNP K 

during LTP varied a lot between each sample, even when the results were normalized to 

Ago2. In conclusion, neither DDX1 nor hnRNP K were consistently up- or downregulated 30 

min post-HFS. Therefore, regulation of DDX1 and hnRNP K expression during LTP cannot 

be predicted based on our current results. It is intriguing to find pre-mRNA processing 
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proteins such as DDX1 and hnRNP K bound to Ago2. Perhaps DDX1 and hnRNP K interact 

specifically with certain pre-mRNAs or mRNAs, which in turn associate with Ago2 through 

miRNA interactions. Co-IP of DDX6 with Ago2 clearly showed an interaction between the 

two proteins. It is therefore surprising that mass spectrometry did not detect DDX6 in 

association with Ago2. The amino acid sequence of DDX1 is ~30% identical to other DEAD 

box proteins, including the nine conserved DEAD box protein motifs. One of the closest 

relatives of DDX1 is DDX6 (Godbout et al., 2007). It is therefore possible, but not certain, 

that the DDX6 antibody cross-reacted with DDX1, so that DDX1 really was detected by 

immunoblotting instead of DDX6. 

4.2.3 FXR1  

The RNA binding protein FXR1 is a paralog of FMRP. Both proteins interact with Dicer and 

the RISC. FMRP and FXR1 interact with the miRNA pathway to play a role in eye and neural 

crest development in the frog Xenopus laevi (Gessert et al., 2010). Even though FMRP and 

FXR1 are similar, they have some distinct functions. FMRP has a unique neural-specific 

function responsible for regulating neuronal protein expression and synaptic connectivity 

(Coffee et al., 2010). The expression of FXR1, but not FMRP, is increased upon Dicer 

knockdown and the consequent reduction of miRNAs in chicken DT40 cells. This finding 

suggests that FXR1 is regulated by miRNAs (Cheever et al., 2010). Conversely, FXR1 also 

regulates miRNAs. FXR1, but not FMRP, regulates the brain-specific miRNAs miR-9 and 

miR-124 by forming a complex with Dicer and pre-miRNAs, resulting in elevated miR-9 and 

miR-124 translation (Xu et al., 2011). Ago2 is usually associated with translational 

repression, but surprisingly Ago2 and FXR1 bind to the AU-rich element in the 3’UTR of 

tumor necrosis factor α (TNFα) mRNA in HEK293 cells and human leukemia (THP-1) cells, 

activating TNFα translation under serum-starved conditions. An Ago2-FXR1 activation 

complex may exist (Vasudevan and Steitz, 2007).  

FXR1 interaction with Ago2 was detected by mass spectrometry. As for Ago2, DDX1 

and HNRNP K, there was high variability in FXR1 expression during LTP between each 

sample, indicating that FXR1 was not consistently up- or downregulated during LTP. It is 

possible that FXR1, but perhaps not FMRP, is associated with the Ago2 in the mammalian 

brain, or that FMRP is indirectly or transiently associated with Ago2. As proposed by 

Vasudevan and Steitz (2007), FXR1 may be part of an activation complex, in association with 

Ago2. The FXR1-Ago2 complex could have a role in regulation of translation in the 

mammalian brain. We currently do not have any evidence for regulation of FXR1 association 
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to Ago2 during LTP. FXR1 may form a complex with Dicer and selected pre-miRNAs, as 

proposed by Xu et al. (2011). This complex could regulate synaptic plasticity-specific miRNA 

maturation, but this remains a speculation.  

4.2.4 PABP1  

PABP1 is a regulator of mRNA translation and stability and is required for miRNA-mediated 

regulation and nonsense-mediated decay (Brook et al., 2012). PABP interacts with eIF4F, 

giving rise to circular mRNAs efficiently translated and protected from degradation. GW182 

may hinder PABP-eIF4G interaction or reduce PABP affinity for the poly(A) tail, to interfere 

with PABP-dependent mRNA circularization. Thus, GW182 interferes with PABP function in 

mRNA stability and translation (Tritschler et al., 2010). The RNA helicase DDX3 interacts 

with PABP1 and eIF4E in stress granules to regulate translation in stress responses (Shih et 

al., 2012). PABP1 is post-translationally modified by methylation and acetylation on various 

sites. The PABP1 modifications may be linked to mRNP formation (Brook et al., 2012).  

Mass spectrometry analysis revealed PABP1 interaction with Ago2. PABP1 is known 

to be involved in translation, so the finding that PABP1 is directly or indirectly associated 

with Ago2 suggests that it plays a role in regulation of translation in the rat dentate gyrus. As 

for the other proteins detected by mass spectrometry, PABP1 was not consistently up- or 

downregulated after LTP induction, which does not allow us to predict any changes in PABP1 

association with Ago2 during LTP.  

4.2.5 MOV10, Dicer, FMRP and GW182  

Surprisingly, none of the candidate binding partners of Ago2 were detected my mass 

spectrometry. MOV10, Dicer, FMRP and GW182 were not detected by co-IP with Ago2 

either, so the mass spectrometry results match the co-IPs. This finding suggests weak or no 

binding of the candidate proteins to Ago2, or low abundance of the candidate proteins in the 

rat dentate gyrus. Other parts of the brain or other organs should be tested to confirm this 

hypothesis. Other possible explanations are that sites of protein-protein interaction are altered 

by the lysis buffer during homogenization, or that epitopes are masked by interacting proteins 

or post-translational modifications.  
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4.3 Methodological considerations 

4.3.1 Electrophysiology 

LTP was induced in the dentate gyrus of rats by applying HFS to the medial perforant path. 

There are several variables to consider in electrophysiological experiments. The animals had 

the same living conditions and diet, and were approximately of the same age and weight. 

Male rats were used because the female estrus cycle affects several parameters in the 

hippocampus, such as increased cell proliferation and excitability (Scharfman et al., 2003; 

Tanapat et al., 1999). Correct dosage of urethane for anesthesia prevented death of the rat by 

overdosage. The placement of the electrodes is critical for stimulation and recording, and was 

ensured by monitoring the recorded signals. The stimulus required to obtain maximal fEPSP, 

and the strength of the evoked fEPSP, could vary between animals. Exclusion criteria were set 

to ensure minimal variability between the experiments, although individual variations cannot 

be completely avoided when working with live animals. Tissue damage during electrode 

insertion was minimized by proceeding slowly. Microdissection was performed quickly (5-6 

min) on ice to avoid tissue damage due to hypoxia and nutritional deficiencies.  

4.3.2 Tissue homogenization and protein determination 

After microdissection, the dentate gyri were homogenized in lysis buffer. The composition of 

the lysis buffer used for tissue homogenization is important. A non-ionic detergent, NP-40, 

was used to preserve non-covalent protein-protein interactions. A protease inhibitor cocktail 

was added to prevent protein degradation, and an RNase inhibitor was added to protect 

RNase-dependent protein associations. Even if kept on ice, proteins will start degrading at 

room temperature. Therefore, during homogenization, the unhomogenized samples were kept 

in the freezer for as long as possible. Total protein concentration in lysates was determined 

using the BCA assay. Protein determination was performed as quickly as possible after 

homogenization to avoid protein degradation. Repeated freeze-thaw cycles of protein-

containing samples cause damage to the proteins because of ice crystal formation. Therefore, 

aliquots were made if necessary, and freeze-thaw cycles were avoided. The BCA assay was 

chosen for protein determination because it is compatible with the detergents present in the 

lysis buffer. However the lysis buffer contains the reducing agent DTT. DTT reduces the Cu2+ 

ions in the working solution of the BCA assay, forming Cu+ ions, which give color when 

forming a complex with two BCA molecules. To compensate for any inaccuracies caused by 

DTT in the sample lysates, both samples and proteins standard should be diluted in lysis 
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buffer. Loading three duplicates of each standard and sample allows detection of unequal 

protein loading caused by for example pipetting errors. 

4.3.3 Immunoprecipitation 

IP was performed to isolate the core component of the RISC, Ago2. Proteins bound to Ago2 

were precipitated with it, that is, co-immunoprecipitated. The antibody used for IP was a 

mouse monoclonal immunoglobulin G1 (IgG1) Ago2 antibody. Protein G sepharose beads 

were used because protein G has greater affinity for IgG1 mouse antibodies than protein A. 

The incubation time of the antigen and the antibody-bound beads varies between antigens 

with different binding kinetics. The optimal incubation time for my samples, giving the 

greatest yield of Ago2 protein detected by Western blotting, was 3 hrs. IP is a technique that 

enables pull-down of an entire protein complex, and not just a single protein. Protein-protein 

interaction can be analyzed, and the protein composition of the complex can be characterized.  

4.3.4 Western blotting 

Proteins were separated by SDS-PAGE in an 8% polyacrylamide gel because the molecular 

masses of the candidate binding partners of Ago2 were in the range of ~50-250 kDa. An 8% 

gel has large enough pores to separate the heaviest proteins well, while still slowing the 

lightest proteins down sufficiently. The SDS-PAGE was run for 2-3 hrs, until the 50 kDa 

proteins approached the bottom of the gel, for maximal separation of the proteins. When 

separating proteins by SDS-PAGE, all the samples from one set of experiments were loaded 

on the same gel, because densitometric values from different immunoblots may vary. Even if 

the fold change in LTP-induced samples compared to controls is calculated, the difference in 

densitometric values from blot to blot can cause small variations in the results. Equal amounts 

of total protein were loaded in each well, to be able to compare the amount of candidate 

proteins between samples. To ensure equal protein loading, the blots were probed for the 

housekeeping gene β-actin. Western blotting is a semi-quantitative method adequate for 

comparing the amount of protein between samples, but does not give an absolute value of 

protein quantity. A source of variation is that the bands used for densitometry were delineated 

manually. Large amounts of protein were used for IP, to increase the possibility to detect 

Ago2 binding partners. On the other hand, using too much protein for IP may conceal small 

differences in protein-protein interaction between the LTP-induced samples and their 

controls. The choice of antibodies used for Western blotting is important for an optimized 

detection of the proteins of interest. Monoclonal antibodies are often preferred because they 
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bind specifically to their antigen. A drawback is that they may bind too specifically, and may 

not recognize the epitope if the antigen has been modified, for example because of 

denaturation. Polyclonal antibodies are therefore useful for the detection of denatured 

proteins, but may give background signal. Secondary antibodies are the main cause of 

background signal, but thorough washing of the membranes after incubation with antibodies 

reduces background signal.  

4.3.5 Experimental controls for immunoprecipitation 

Human embryonic kidney (HEK) 293T cells expressing EGFP-Ago2 were used as a positive 

control for successful detection of Ago2 and Ago2-interacting proteins by immunoblotting, 

both for total lysates and IP samples. Thus, the Ago2-expressing HEK cells were also a 

positive control for successful IP. The disadvantage of this control is that both the cell type 

and the species are different from the samples. The miRISC composition in human embryonic 

kidney cells may differ from adult rat neuronal cells. The advantage is that HEK cells are easy 

to grow and are readily transfected.   

 Antibody-bound beads with no sample were used as a negative control in co-IP.  This 

negative control ensures that the antibodies used for immunoblotting don’t cross-react with 

the beads. The secondary antibodies used for immunoblotting are specific for both heavy and 

light chains of IgG. Therefore, two bands were present on the membrane, corresponding to 

the heavy (50 kDa) and light (25 kDa) chains of the precipitated primary antibody. The 50 

kDa band could interfere with the 54 kDa protein DDX6, but the bands were well separated 

by SDS-PAGE, because the gels were run until the 50 kDa proteins approached the bottom of 

the gel.   

4.3.6 Sample preparation for mass spectrometry 

The immunoprecipitated samples used for mass spectrometry were digested in-gel, because 

the lysis buffer in the samples contained detergents. Detergents cannot be used for protein 

denaturation preceding in-solution digestion, because they will interfere with the MS analysis. 

In-gel digestion is advantageous because the electrophoresis removes low molecular mass 

impurities, including detergents and buffer components (Shevchenko et al., 2006). A source 

of error is that 15 to 50% of peptides may be lost during sample preparation for mass 

spectrometry, for example during destaining, by adsorption on surfaces of pipette tips and 

tubes, during vacuum centrifugation, during peptide extraction from the gel, and during 

ionization (Granvogl et al., 2007). The reduction and alkylation steps increase the 
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accessibility of arginine and lysine in disulfide-containing proteins. Digestion by trypsin is 

advantageous because it cleaves the proteins specifically at lysine and arginine residues, 

which have a biological distribution that gives peptides of appropriate masses for mass 

spectrometry analysis. The optimum pH for trypsin digestion is between 7 and 9. Ammonium 

bicarbonate (ABC) is therefore a suitable buffer (pH 8.1). Desalting the samples significantly 

improves the quality of the mass spectra because salts are a major cause of noise.  

4.4 Reflection upon project goals 

Goal 1: detection of predicted Ago2 binding partners by IP 

The first goal was to use IP and Western blotting to investigate whether the proteins GW182, 

Dicer, FMRP, MOV10 and DDX6 are associated with Ago2 in the rat dentate gyrus in vivo, 

and whether these associations are modulated during LTP. All the candidate proteins were 

detected in total lysate, even though FMRP, GW182 and MOV10 gave weak bands on the 

immunoblots. Ago2 was successfully immunoprecipitated, but of all the candidate proteins 

known to interact with Ago2, only DDX6 was associated with it. The experiments were done 

many times, and a range of different conditions were tested, such as variations in the lysis 

buffer, in total protein amount, and incubation time at different steps. Yet, no improvement in 

protein detection in co-IP was achieved. Therefore, it is tempting to suggest that the 

interaction between Ago2 and FMRP, GW182 and MOV10 is weaker in mammalian brain 

cells in vivo, than in cultured cells. This suggestion remains a speculation, because no other 

tissues than brain were co-immunoprecipitated with Ago2. There was no significant 

modulation of DDX6 or Ago2 in co-IP during LTP, or any significant modulation of any of 

the candidate proteins in total lysate during LTP. Nevertheless, some tendencies for up- or 

downregulation were observed. These results give an indication of how the miRISC might be 

modulated, but a greater number of duplicates would give a more certain answer. The number 

of duplicates is a challenging point because the experience is expensive and time consuming. 

Overall, the first goal of the project was achieved, but in retrospect, we should perhaps have 

focused on new candidate proteins when we repeatedly couldn’t detect GW182, Dicer, FMRP 

and MOV10 in co-IP with Ago2.  

 

Goal 2: detection of Ago2 binding partners by mass spectrometry  

The second goal was to use mass spectrometry to identify new Ago2 binding partners, and to 

detect changes in protein interactions during LTP. Ago2 in IP was detected by Orbitrap mass 



Discussion 

 50 

spectrometry, confirming successful IP of Ago2. More than a thousand direct or indirect 

binding partners of Ago2 were detected. Of these, a few proteins important in translational 

silencing were found, such as PABP1, DDX1 and FXR1. No consistent changes in protein 

interaction with Ago2 or expression of Ago2 itself were found during LTP. The goal was 

achieved, but the work could be expanded. Additional replicates could give more reliable 

information about regulation of protein expression. Mass spectrometry could be performed for 

dentate gyri collected at other time points than 30 min post-HFS, to investigate whether 

protein regulation varies at different time points during LTP. 

4.5 Conclusions and future perspectives 

This study does not show any significant remodeling of the miRISC during LTP, but neither 

does it exclude this possibility. Remodeling of the miRISC may alter its function in 

translational repression, and change the expression of proteins important in synaptic 

plasticity. It is possible that mechanisms other than RISC remodeling, such as control of 

miRNA synthesis, may control changes in gene expression. Knowing the mechanisms 

underlying synaptic plasticity will give us a better understanding of learning and memory, and 

eventually, enable us to better study diseases of cognition. Many interesting questions about 

the miRISC in the mammalian brain are left unanswered. The full RISC protein composition 

is still unknown, and we have just started to investigate its modulation during LTP. Which 

receptors are required for RISC modulation? The cascade of events leading to changes in 

RISC composition is a possible field of study, and RISC localization in neurons is yet another 

interesting issue. Finally, the behavioral significance of RISC function needs more studying. 

The RISC pathway regulates synaptic protein synthesis associated with memory in 

Drosophila Melanogaster (Ashraf et al., 2006). Ago2 and the RISC may play a role in 

mammalian memory formation in vivo. In a study, small interfering RNAs (siRNAs) targeting 

Ago2 were injected in the dorsal hippocampus of mice. siRNA-mediated silencing of Ago2 

impaired short-term memory and long-term contextual fear memory (Batassa et al., 2010). 

More studies are needed to investigate the possible link between RISC regulation of protein 

synthesis and memory formation in mammals. 

 Several studies could be conducted in the foreseeable future. The protein composition 

of the RISC during LTP could be further analyzed by mass spectrometry, at other time point 

than 30 min after the induction of LTP. NMDAR-dependence of RISC modulation can be 

tested in vivo by infusion of NMDAR antagonists such as AP5 or CPP into the hippocampus, 
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before LTP induction. The RNase dependence of protein-protein interactions can be tested by 

adding an RNase to the beads during IP of the miRISC. Protein interactions with Ago2 can be 

confirmed by immunoprecipitating candidate proteins from dentate gyrus lysate, and trying to 

detect Ago2 in the IP. Candidate proteins for which available antibodies are not specific 

enough can be expressed in mammalian cells in vitro and tagged with protein tags such as 

Flag or glutathione S-transferase (GST). The tagged proteins can be immunoprecipitated and 

protein-protein interactions can be analyzed by Western blotting. Other techniques for 

analysis of protein-protein interactions in vitro are fluorescence resonance energy transfer 

(FRET), surface plasmon resonance (SPR) and yeast-two-hybrid. Colocalization of a RISC 

protein to P-bodies can be analyzed by probing cells with antibodies against the protein of 

interest and against a marker for P-bodies, such as mRNA decapping enzyme 1A (DCD1A). 

Modifications of RISC proteins, such as phosphorylation or ubiquitylation, can be analyzed 

by Western blotting. Localization of the miRISC can be analyzed in synaptoneurosomes, 

which are isolated resealed pre- and postsynaptic structures. Synaptoneurosomes could be 

used for proteomic analysis of synaptic miRISC. Changes in miRISC protein composition 

could then not be attributed to proteins transported from the cell body. Sucrose gradient 

analysis of polysomes can reveal whether RISC proteins are present in the polysomal fraction, 

which would indicate a role of the miRISC in translational regulation at polysomes. miRISC 

function can be analyzed further by blocking the function of RISC proteins such as GW182, 

for example by lentiviral expression of short hairpin RNAs (shRNAs). Knockout mice of 

RISC proteins can be useful for behavioral studies. It would be interesting to analyze the 

behavioral importance of the RISC and specific RISC proteins in learning and memory.  
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Appendix 

A User manuals 

LipofectamineTM 2000  

http://tools.invitrogen.com/content/sfs/manuals/lipofectamine2000_man.pdf 

 

Mini-PROTEAN® 3 Cell 

http://www3.bio-rad.com/cmc_upload/Literature/44432/4006157B.pdf 

 

Mini Trans-Blot® Electrophoretic Transfer Cell 

http://www3.bio-rad.com/cmc_upload/Literature/13280/M1703930.pdf 

 

Pierce® BCA Protein Assay Kit 

http://www.piercenet.com/instructions/2161296.pdf 

 

Pierce® ECL Western Blotting Substrate 

http://www.piercenet.com/instructions/2161743.pdf 

B Recipes  

Polyacrylamide gel 

 Resolving gel  
(8% acrylamide) 

Stacking gel 
(4% acrylamide) 

ddH2O 9.5 ml 6 ml 
30% Acrylamide/Bis 37.5:1 5.2 ml 1.34 ml 
Tris-HCl pH 6.8  - 2.5 ml 
Tris-HCl pH 8.8 5 ml  - 
10% Sodium dodecyl sulfate (SDS) 160 µl 100 µl 
10% Ammonium persulfate (APS) 160 µl 50 µl 
TEMED  16 µl 10 µl 
Total volume ~20 ml 10 ml 
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