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Foreword 

Decentralized laboratory testing has increased over the last decade and several 

different portable instruments have been developed. Such testing is termed point-of-

care (POC) testing or near-patient testing. POC instruments are easy to use and are 

commonly used by personnel with little or no laboratory experience. The testing can 

be performed in many different settings, such as hospital clinics, ambulances, nursing 

homes, general practitioners, pharmacies, oil platforms, prisons and by patients at 

home for self-testing. The main objective in such testing is to produce rapid results to 

ensure effective clinical decision making and better patient care. 

The main objective in oral anticoagulation treatment with warfarin is to prevent 

thromboembolic events. This treatment is, however, associated with serious side 

effects and correct medical dose is essential. The risk of severe bleeding is increased 

if the patient is overdosed and the risk of thrombosis is increased when the patient is 

under dosed. There is high variability in dose response among patients and frequent 

laboratory monitoring is therefore necessary. The laboratory test is called 

prothrombin time and is expressed as International Normalized Ratio (INR). It is 

important that the INR instruments are reliable and that the personnel perform the test 

correctly because the dose given depends on the test result. Ideally, the INR result 

should be independent of the instrument used and independent of whether the 

measurement is performed in a hospital or in a primary care setting. Thus, the 

harmonization between methods should be good, but this is, however, not always the 

case for INR methods. 

Most of the patients on oral anticoagulation are treated in primary care. About 1700 

primary care laboratories in Norway perform POC INR testing. The primary care 

laboratories control their instruments by performing internal quality control and 

external quality assessment. There are, however, many challenges in performing 

analytical quality control of these instruments and the control systems need to be 

evaluated and improved. This thesis aims to address these issues for POC INR 

methods, and some of the findings will also apply for POC methods in general. 
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Abstract 

In Norway, most patients on oral anticoagulation with warfarin are treated in primary 

care. The treatment is monitored with the laboratory method prothrombin time, 

expressed as International normalized Ratio (INR). It is important that the INR 

methods have good analytical quality because the treatment (medical dose) depends 

on the INR result. Overdosing can cause severe bleedings and under dosing can lead 

to thrombosis. The laboratories in primary care control the analytical quality of their 

INR methods by performing internal quality control (IQC) and external quality 

assessment (EQA). There are, however, some challenges regarding these quality 

control systems. The aim of this thesis was to evaluate and suggest improvements of 

the analytical quality control of INR methods used in primary care. 

The primary care laboratories perform IQC mainly by two different approaches; 1) a 

commercial lyophilized control material is analyzed on the INR method and the result 

is compared with some control limits, 2) a fresh patient sample is analyzed both on 

the INR method and on a hospital method, and the difference between the methods is 

compared with some control limits. The latter approach is called split sample 

procedure. The primary care INR method is considered “in control” if the result is 

within the limits and “out of control” if the result is outside the limits (error alarm). 

The aim of paper I was to evaluate and compare these two IQC approaches in their 

ability to detect systematic errors. Power functions were created by computer 

simulations based on empirical data from 18 primary care laboratories using the INR 

methods Thrombotrack, CoaguChek S, or Hemochron Jr. Signature. The control rules 

12S, 13S, exponential weighted moving average, and the deviation limits of ± 10% and 

± 20% were evaluated by their probability of error detection and false alarms. The 

results showed that the probability of detecting systematic errors was higher when 

lyophilized control materials were used compared to patient split samples. The 

probability of false alarms was, however, the same. The conclusion in paper I was 

that IQC of INR methods in primary care should be performed by using control 

materials rather than the split sample procedure. The split sample procedure with 

native patient samples should be restricted to method bias estimation. 
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International guidelines recommend that primary care laboratories should participate 

in an EQA scheme whenever available. The aim of paper II was to investigate if and 

how the European countries provide this service for point-of-care (POC) INR 

methods. Thirty European countries were asked, and nineteen countries reported that 

they do not provide EQA schemes for POC INR methods, while 12 organizations 

from nine countries (Austria, Czech Republic, Denmark, Finland, Hungary, 

Netherlands, Norway, Switzerland and United Kingdom) reported that they offer this 

service. All 12 organizations answered a questionnaire regarding their schemes, and 

the results showed that there is a vide variation in how the schemes are organized. 

However, the most common is to use lyophilized control materials, establish peer 

group target values, use an acceptability limit of 15% and distribute four samples per 

year. Most of the countries organize educational activities with focus on quality 

improvement. The study in paper II demonstrates that most European countries do 

not provide EQA schemes for POC INR methods, and that the disadvantages in most 

of the provided schemes were the use of non-commutable control materials making 

comparison between different POC methods impossible. 

An important objective in EQA is to evaluate systematic deviations (bias) between 

methods. This is, however, not possible when non-commutable control materials with 

peer group target values are used. The aim of paper III was to develop a new EQA 

model in which an evaluation of method bias was incorporated in EQA schemes that 

use non-commutable materials. The model was developed based on the concept that a 

selected group of primary care laboratories should establish an estimate of the 

systematic deviation of the POC method from a designated comparison method by 

using fresh patient samples, and this information should then be incorporated in the 

feedback to the participants in the EQA scheme using non-commutable control 

materials. As a consequence, the participants will get more information about the 

analytical quality of their method. The model was applied twice in POC INR surveys 

among 1341 and 1578 participants, respectively. To estimate bias for each POC INR 

method, about 100 native patient samples were analyzed both by a selected group of 

expert primary care laboratories (72 and 69 in the first and second survey, 

respectively) and on a designated comparison method. Both method bias and the 
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deviation of a single-participant result in the EQA schemes were evaluated against 

separate analytical quality specifications. Two POC INR methods (CoaguChek XS 

Plus and Simple Simon) fulfilled the quality specification for bias, whereas one did 

not (Thrombotrack). More than 90% of the participants received results within the 

quality specification for a deviating EQA result. In conclusion, a new EQA model for 

POC methods was proposed in paper III. This model can be used in situations where 

commutable control materials are not available. An editorial in the journal Clinical 

Chemistry has recommended that EQA organizers should implement this proposed 

EQA model. 
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Abbrevations 

CLSI  Clinical and laboratory standard institute 

ECAA European concerted action on anticoagulation 

EQA  External quality assessment 

EQALM European organization for external quality assurance providers in 
laboratory medicine 

EWMA Exponentially weighted moving average  

F  Coagulation factor 

INR  International normalized ratio 

IQC  Internal quality control 

IRP  International reference preparation 

ISI  International sensitivity index 

ISO  International organization for standardization 

JCTLM Joint committee for traceability in laboratory medicine 

MNPT Mean normal prothrombin time 

NOAC New oral anticoagulants 

Noklus Norwegian quality improvement of primary care laboratories  

PED  Probability of error detection 

PFR  Probability of false rejection 

POC  Point-of-care 

PT  Prothrombin time 

TTR  Time in therapeutic range 

VKA  Vitamin K antagonist 

WHO  World health organization 
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1. INTRODUCTION 

1.1 Oral anticoagulation treatment 

The main objective in oral anticoagulation treatment is to prevent thrombosis. There 

are several types of anticoagulant drugs but the most commonly used worldwide is 

the vitamin K antagonist (VKA) warfarin. This drug is, however, associated with 

serious side effects and correct treatment is essential. Under dosing is associated with 

increased risk of thrombosis events and overdosing can lead to severe bleeding 

events. Patients with different indications for anticoagulation treatment such as atrial 

fibrillation or mechanical heart valves are treated on a long-term basis (often 

lifelong), while patients with other indications such as venous thromboembolism (e.g. 

deep vein thrombosis or pulmonary embolism) are treated only in short periods 

(usually from 6 weeks to 6 months). There is high intra- and inter-person variability 

in dose response due to different factors, such as age, body weight, acute and chronic 

diseases, diet, alcohol and drug interactions, and pharmacogenetic factors (e.g. 

variability in the CYP2C9 and VKORC1 gene) (1, 2). Consequently, a fixed dose is 

not possible and laboratory monitoring is necessary to determine the correct warfarin 

dose. The laboratory analysis prothrombin time, expressed as International 

Normalized Ratio (INR), is used to monitor the effect of the treatment. The optimal 

therapeutic range is 2.0 to 3.0 INR for most indications, and 2.5 to 3.5 INR for 

patients with mechanical heart valves (high-risk patients) (3). It has been shown that 

values below 1.8 INR and above 4.0 INR increase the risk of thrombosis and bleeding 

events, respectively (4). Time in therapeutic range (TTR) should be above 60% to 

achieve optimal clinical outcome (1), although others have argued that low INR 

variability is a more important prognostic factor than the TTR to achieve good 

clinical outcome (2). Consequently, it is important that the INR methods give reliable 

and stable values because systematic errors can lead to under or overdosing and high 

analytical variation can lead to unnecessary dose adjustments. 

In more than 60 years, VKAs have been the only alternative of oral anticoagulants in 

treatment and prevention of thrombosis, but in recent years new oral anticoagulants 
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(NOACs), such as direct thrombin inhibitors (e.g. dabigatran) and factor Xa inhibitors 

(e.g. rivaroxaban and apixaban), have entered the marked. Even though these NOACs 

have shown promising results in clinical trials, there are many unsolved problems and 

VKAs will probably still play an important role in anticoagulation treatment for many 

years to come (1, 5). 

 

1.2 Prothrombin time 

Prothrombin time (PT) is sensitive to factor deficiency in the extrinsic and common 

coagulation pathway (Figure 1). The extrinsic coagulation pathway is activated when 

the citrated patient plasma sample is added to the reagent, which consists of 

thromboplastin and calcium chloride. Calcium chloride is, however, usually not 

present in non-citrated whole blood point-of-care (POC) methods. Thromboplastins 

are commercially developed products and consist of phospholipids and tissue factor 

extracted from different origins. Coagulation factor (F) VII in the extrinsic system 

and FII (prothrombin) and FX in the common pathway are dependent on vitamin K 

for correct synthesis. In the presence of vitamin K, the coagulation factors become γ-

caboxylated. This carboxylation process and the presence of calcium ions are 

essential for the adherence of the clotting factors to the negatively charged 

phospholipids on the activated platelet surface (3). In VKA treatment, this γ-

carboxylation is inhibited and coagulation factors lose their activity. Such coagulation 

factors are called PIVKA factors (Protein Induced in Vitamin K abscence). Thus, in 

VKA therapy, the blood’s coagulation ability is reduced. 

PT is not a measurement of a single quantitative component but a result of a 

coagulation cascade system. Each factor in the cascade is not quantified; instead it is 

the time from the activation of the cascade to the formation of stable fibrin (clot 

formation) that is measured. 
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Figure 1: The coagulation cascade. The vitamin K depended coagulation factors are highlighted. 

Prothrombin is coagulation factor II. 

 

1.2.1 Owren and Quick methods 

In principle, there are two different methods for PT measurement. The Quick method 

was introduced by AJ Quick in 1935 (6) and the Owren method was introduced by 

PA Owren in 1947 (7). In Owren methods, FV and fibrinogen from bovine plasma 

are added to the reagent (so called combined reagent). Consequently, this method is 

sensitive only to the vitamin K-dependent factors (FII, FVII and FX) and does not 

reveal any deficiency in FV or fibrinogen in the patient’s blood. In the Quick method, 

there is no added plasma (so called plain reagent), and this method is thus sensitive to 

FII, FVII and FX, as well as to FV and fibrinogen. This is the main difference 

between the Owren and Quick method but there are several variations of both 

methods; e.g. different degree of dilution, wet and dry chemistry, and different types 

of thromboplastin used. All these varieties may contribute to discrepancies in results 

between methods (8, 9). The Quick methods are most commonly used worldwide, 

whereas Owren methods are mostly used in the Nordic countries. However, it has 

been questioned whether Owren methods should replace Quick methods worldwide 

(10) because the between-laboratory variability is lower for Owren methods (9). 
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1.3 Standardization – the International Normalized Ratio 

The standardization process of PT began already in the 1960s (11). It had been 

observed that different thromboplastins from different origins resulted in huge 

discrepancies in PT seconds, making comparisons across studies difficult. The 

objective was that it should be easier to compare clinical trials by introducing a 

common unit to report PT result. As a consequence, the INR system was introduced 

by the World Health Organization (WHO) in the early 1980s (12). The idea was that 

the PT result, expressed in INR units, should be independent of the thromboplastin by 

correcting for its sensitivity. Thus, the international sensitivity index (ISI) was 

developed in order to reduce the differences between PT methods. INR is a ratio 

between the patient's clotting time and the clotting time in normal plasma, corrected 

for the sensitivity of the thromboplastin used: 

ISI

INR
IS

(second) PT normalmean 
(second) PT sample  

The principle of the INR system is that all thromboplastins should be calibrated 

against an International Reference Preparation (IRP), which has an ISI equal to 1. 

The first IRP was established in 1976 (code 67/40) and was a combined 

thromboplastin reagent derived from human brain tissue (12, 13). In addition, IRPs 

derived from rabbit and bovine brains were established in 1978. The principle is that 

PT methods should be traceable to the IRP of same origin (e.g. methods using rabbit 

thromboplastin should be traceable to a rabbit IRP). As the IRPs were exhausted, new 

IRPs were established, all traceable to IRP 67/40. The current available IRPs are the 

recombinant human plain (coded rTF/09) and the rabbit plain (coded RBT/05) (14). 

No bovine IRPs are currently available, the last bovine combined (code OBT/79) is 

exhausted, and will not be replaced (14). It has been suggested that PT methods using 

bovine thromboplastins can be calibrated against a rabbit plain IRP (15). 
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1.3.1 Different calibration procedures 

Calibration of INR means to determine the ISI and mean normal PT (MNPT) values. 

The original WHO calibration procedure is to analyze 60 samples from patients on 

VKA treatment and 20 samples from healthy individuals both with an IRP and with 

the thromboplastin of interest using the manual tilt-tube technique (12) (Figure 2). 

The PT seconds of the IRP and the thromboplastin are both log transformed and 

plotted on the ordinate and abscissa, respectively. An orthogonal regression equation 

is calculated, and the ISI value of the thromboplastin is determined as the slope 

multiplied with the ISI of the IRP. The MNPT value of the thromboplastin is the 

geometric mean of the normal plasmas. 

 

Figure 2: Example of a full WHO calibration of a thromboplastin reagent. 60 patient plasmas and 20 

normal plasmas are analyzed with the thromboplastin and with an IRP by using the manual tilt-tube 

technique. 

 

This calibration procedure has, however, been modified and an easier method with 

fewer samples are suggested (13, 16). These guidelines recommend two approaches: 

1) Local ISI calibration with 20 samples from patients on VKA treatment and 

seven samples from healthy individuals (Figure 3). The plasmas are analyzed 

both with the local instrument/reagent combination and with the manual tilt-

tube technique with an IRP. The ISI and MNPT values are determined as 

described above for the WHO procedure. 
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2) Direct INR determination with three abnormal and one normal lyophilized 

pooled plasmas (at least 10 donations in each pool) with certified INR values 

(Figure 4). The plasmas are analyzed with the local instrument/reagent 

combination and plotted against the certified values. The INR of patient 

samples can then be calculated or obtained directly from this calibration curve. 

The ISI value is equal to the slope, and the MNPT value is the anti-log of the 

slope divided with the negative intercept (10a/-b). 

 

 

Figure 3: Example of local ISI calibration of a thromboplastin reagent. Seven patient plasmas and 

three normal plasmas are analyzed with the local instrument/reagent combination (x-axis) and with 

an IRP by using the manual tilt-tube technique (y-axis). 

 

Figure 4: Example of the direct INR calibration of a thromboplastin reagent. Three abnormal pooled 

plasmas and one normal pooled plasma with certified INR values are analyzed with the local 

instrument/reagent combination. 
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Poller et al. (17) have compared the reliability of these two calibration procedures for 

different IRPs. They found that the local ISI calibration was better (i.e. gave lower 

between-laboratory variability) than the direct INR calibration for human and rabbit 

thromboplastins, whereas the direct INR calibration was the best choice for combined 

rabbit thromboplastins. 

 

1.3.2 The Swedish calibrators 

In the direct INR calibration, it is recommended that the pooled plasmas are certified 

with assigned INR values by using IRPs (16). However, a Swedish group has 

developed an alternative approach where fresh normal plasmas are used instead of 

IRPs (18). The concept is that they have developed an equation describing the 

relationship between PT% and INR which is traceable to an IRP, and this formula is 

used to create a calibration curve with diluted normal plasmas. Thus, they have 

established an “anchor” to the IRP hierarchy, and each batch of calibrators is assigned 

with certified INR values from fresh samples. According to the Swedish group, there 

are some clear disadvantages of using IRPs in the certification of each batch of 

calibrators. First, preparation of new IRPs will increase the uncertainty of the ISI 

value further down the hierarchy. Second, thromboplastins are more or less unstable 

over time, which can increase the deviation from the conventional true value. Finally, 

transport and storage can have influence on the stability of the IRPs. By 

implementing the Swedish calibrators, the between- and within laboratory variation 

in Swedish hospitals were reduced (19). The supplier of these calibrators is the 

national EQA organizer in Sweden (Equalis) and all Norwegian hospital laboratories 

use these calibrators, as recommended by the Norwegian INR committee (20). 

The Equalis calibrators consist of only one normal and one abnormal lyophilized 

pooled plasma, and they are intended for three reagents only (combined rabbit 

thromboplastins); the SPA reagent (Diagostica Stago, France), the Nycotest PT 

reagent (Axis-Shield, Norway) and the Owrens PT reagent (MediRox AB, Sweden). 

When calibrating Quick methods, four calibrators are recommended (16) (Figure 4). 
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It is defendable to use only two calibrators in the direct INR determination of Owren 

methods because these methods are more robust than the Quick methods (18), i.e. the 

between-laboratory variation is lower, and the matrix effects between patient samples 

are lower because the degree of the dilution of the sample is higher and because FV 

and fibrinogen are added into the reagent. 

 

1.3.3 Calibation hierarchy and traceability 

The ISO document 17511 (21) describes the calibration hierarchy and traceability in 

cases where there is no traceability to SI units, no international conventional 

calibrator, but an international conventional reference measurement procedure 

(Figure 4 in the ISO document). This hierarchy is valid for some haemostatic factors 

(21) and it may be valid for INR methods which are calibrated by the manufacturer, 

e.g. POC methods (Figure 5). However, if the INR methods are calibrated by the end-

user, the traceability chain is different (Figure 5). The conventional reference 

procedure is the manual tilt-tube technique with the use of a certain reference reagent 

(IRP). The calibrators are assigned with certified INR values by using fresh normal 

and patient samples analyzed with the reference measurement procedure (full WHO 

calibration). The direct INR calibration is performed by using these calibrators 

analysed on the local instrument/reagent combination, whereas the local ISI 

calibration is performed using fresh patient and normal plasmas analysed both with 

the instrument/reagent combination and with the manual tilt-tube technique with a 

specific IRP. 
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Figure 5: The calibration hierarchy and traceability of INR methods calibrated by the end-user or by 

the manufacturer. 

 

1.3.4 Traceability of thromboplastins used in this thesis 

As mentioned, all thromboplastins should be traceable to the first reference 

thromboplastin coded 67/40 (the IRP at the top of the thromboplastin hierarchy) 

which is defined as ISI = 1 (12). A simplified figure of the traceability chain for the 

different thromboplastins used in this thesis is shown in Figure 6. Users of POC INR 

methods cannot calibrate their own method, and the ISI and MNPT values must be 

provided by the manufacturer. The Hemochron Jr. Signature and CoaguChek XS Plus 

are traceable to the recombinant human IRP (rTF/95) (22, 23), whereas the 

CoaguChek S is traceable to the rabbit IRP (RBT/90) (24). The calibration values (ISI 

and MNPT) for each batch of reagents are incorporated in each Hemochron cuvette 

and in a batch specific CoaguChek code chip. The CoaguChek users must therefore 

change this code chip when a new batch of strips is used. The Simple Simon is 
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traceable to the newest rabbit IRP (RBT/05), but is in addition verified against 

hospital methods using the Equalis calibrators (25). This is done to optimize method 

harmonization between Simple Simon and the hospital methods in Sweden and 

Norway. All equipment needed for measurements on Simple Simon have the same 

batch number, and all must be replaced when a new batch is used. The calibration 

values are incorporated in each batch of Simple Simon instruments. The 

Thrombotrack instrument is used in combination with the thrombotest reagent (26). 

The manufacturer provides ISI and MNPT values for two different calibrations of this 

reagent; one traceable to the bovine IRP (OBT/79) and one traceable to the rabbit IRP 

(RBT/90) through the Nycotest PT reagent calibrated with the Equalis calibrators. 

This latter calibration is performed to optimize the harmonization of thrombotest and 

the hospital methods in Norway. The thrombotest users can choose which calibration 

curve they want to use, but in Norway it is recommended to use the “Equalis 

calibration” (20). The designated comparison methods (STA Compact and STA R 

Evolution) used in paper I and III were calibrated by the end-user using the direct 

INR calibration procedure with the Equalis calibrators, and are thus traceable to the 

rabbit IRP RBT/90. 
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Figure 6: Simplified traceability chain of thromboplastins for the different INR instruments used in 

paper I and III. The reference thromboplastins (IRPs) are shown in light and dark grey, the routine 

tromboplastins (reagents) are shown in light blue and the instruments are shown in dark blue. 

 

1.4 Quality in laboratory medicine 

There are several factors that can influence the process from clinical findings to the 

diagnosing, monitoring and treatment of patients (Figure 7). This process has been 

called the brain-to-brain loop (27, 28) because the loop starts and ends in the 

clinician’s brain. The first step is the pre-pre-analytical phase, in which the clinicians 

have to decide which laboratory tests to request based on the patient anamnesis and 

clinical findings. The next steps are the pre-analytical phase (e.g. patient 

identification, sample collection, sample stability, centrifugation, handling of sample, 

preparation of reagents), the analytical phase (e.g. instrumentation, analytical 

principle, lot number of reagent, calibration, maintenance), and the post-analytical 

phase (e.g. data entry, reporting and communication of results). The final step is the 

post-post-analytical phase, in which the clinicians should interpret the test result and 

decide whether and how the patient should be treated. The clinician must also 
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consider additional testing. The pre-analytical, analytical and post-analytical phase 

takes place inside the laboratories, and it is the laboratories’ responsibility to assure 

that the quality in the different phases is good. The laboratory can be a central 

laboratory or a laboratory in the primary care. 

 

Figure 7: The brain-to-brain loop in laboratory medicine. The loop starts with the clinicians decisions 

of which laboratory test to request (pre-pre analytical phase) based on the clinical findings, and ends 

with the clinicians interpretation of the test result (post-post analytical phase) that may lead to 

treatment of the patient. 

 

1.4.1 Pre-analytical phase 

It has been shown that the majority of errors in laboratory medicine occur in the pre-

analytical phase (29, 30). However, for POC testing it has been reported that the 

majority of errors occur in the analytical phase (31). Nevertheless, it is important that 

the pre-analytical errors are as few as possible both in POC testing and in central 

laboratory testing. 
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Pre-analytical factors in INR testing 

Several pre-analytical factors may interfere in haemostatic testing (32). Some of these 

factors are dealt with in the following section for INR testing. 

Both venous and capillary blood can be used for INR measurements depending on the 

type of instrument used. For citrated venous blood, it is recommended to use test 

tubes with 3.2% sodium citrate (33). In most cases, it is not necessary to include a 

discard tube even if INR is tested on the first tube drawn (33-35). However, if a 

winged blood collection set (“butterfly”) is used and the citrate tube is the first tube, a 

discard tube is necessary to avoid under filled tubes (33). The citrate tube should 

ideally be completely filled, meaning that the blood to citrate ratio is 9:1. Under filled 

tubes increase the citrate concentration and the dilution of the blood sample, meaning 

that the clotting times and thus the INR value will increase. The recommended fill 

volume is 90% (33), but volumes as low as 67% (36) and 60% (37) have shown no 

significant influence on the INR results. It has been reported that inappropriate filling 

volume is the most common pre-analytical error in INR testing (38).  

If the INR measurement is performed in plasma, the citrated whole blood should be 

centrifuged at 1500g for minimum 15 minutes in order to produce platelet-poor 

plasma (<10x109/L) (33). The test tubes should be stored at room temperature (33), 

both as citrate whole blood and as citrate plasma, as well as empty tubes. Storage in 

the refrigerator can cause cold activation of factor VII (33) and decreased INR values. 

A 24 hour stability limit is generally recommended by CLSI for INR samples (33), 

but sample stability may, however, be dependent on the system used, and each 

laboratory should therefore confirm stability with its own system (33, 39, 40). A 

study investigating the stability of a Stago instrument/reagent combination showed 

that the samples were stable for 52 hours (41). A pilot study was conducted prior to 

this thesis (unpublished data) where plasma samples were analyzed at day 0 (within 2 

h), day 1 (within 24 h), day 2 (within 48 h) and day 3 (within 72 h) after collection. 

The samples were stored as citrated whole blood at room temperature and mail 

transport was simulated. The result showed no significant INR changes after 72 hours 

(p=0.79), which is similar to the findings of others (42, 43). 
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The effect of haemolysis in the samples is not clear (33). However, if haemolysis is 

present, it is recommended to use an instrument with mechanical clot detection rather 

than optical clot detection (33, 40). This recommendation is also valid for samples 

with lipemia and bilirubinemia (33). 

 

1.4.2 Analytical phase, analytical quality 

The analytical quality of a laboratory method should be good in order to ensure safe 

patient treatment. Therefore, it is important to frequently control the analytical quality 

by internal quality control (IQC) and external quality assessment (EQA). However, 

the control is useless without knowing how good the quality should be and which 

aspects of quality that is controlled. Therefore, it is important first to determine (or 

agree on) the analytical quality specifications, then estimate the analytical 

performance of the method, and finally assess the analytical quality by suitable 

control systems (44). 

Different aspects of analytical performance characteristic, analytical quality 

specifications and analytical quality control are described in more detail in the 

following sections with special emphasis on POC INR methods. 

 

1.4.3 Post-analytical phase 

The post-analytical phase is not dealt with in this thesis. 
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1.5 Analytical performance characteristics 

The quality of the analytical performance can be characterized in different ways. It 

can be expressed qualitatively as “good” or “bad” or quantitatively in numerical 

terms. The types of analytical errors can be divided into systematic and random 

errors, which can be added into a total error: 

Total error = systematic error + random error 

The analytical performance characteristics for total analytical error, systematic 

analytical error and random analytical error are expressed in qualitative terms as 

accuracy, trueness and precision, respectively, and in quantitative terms as 

inaccuracy, bias and imprecision, respectively, as illustrated in Table 1. 

Table 1: Analytical performance characteristics (modified from Menditto et al. (45)). 
Type of errors Qualitative term of 

performance characteristics 
Quantitative term of 
performance characteristics 

Total error Accuracy Inaccuracy 

Systematic error Trueness Bias 

Random error Precision Imprecision 

 

Accuracy is defined as closeness of a single measurement value and the true value 

(46), and the inaccuracy can be expressed in concentration units or in percentage. The 

accuracy includes the effects of both trueness and precision. 

Trueness is defined as closeness of agreement between the average of replicate 

measurements and a reference value (46), and the bias can be expressed in 

concentration units or in percentage. Method bias is the mean deviation of results 

from one method compared with results from a reference method (or a designated 

comparison method which is traceable to a reference method). In IQC terminology, 

this is called the stable systematic error and should ideally be corrected before patient 

results are released (47). In IQC, it is the changes in the systematic errors we will 

detect. 
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Precision is defined as closeness of agreement between replicate measurements of the 

same sample under specified conditions (46). The three conditions are, ranged from 

less to more variable conditions: repeatability, intermediate precision and 

reproducibility. Repeatability and intermediate precision are estimates of the 

imprecision in a single laboratory, whereas reproducibility is an estimate of the 

imprecision between different laboratories (48). The terms “within- and between-

laboratory variation” used in this thesis can be referred to as intermediate precision 

and reproducibility, respectively. The total within-laboratory variation consists of 

within-run variation and between-run variation. The within-run variation can be 

referred to as repeatability. The imprecision is called analytical variation and can be 

expressed numerically in concentration units as standard deviation (SD) or in 

percentage of the mean value as coefficient of variation (CV). In IQC terminology 

this is called the stable analytical variation, and it is the increase in this variation we 

want to detect. 

The term “single participant performance” is used in this thesis to describe the 

performance of a single participant in EQA (i.e. the performance of the user using a 

specific POC method). 

 

1.5.1 Special issues regarding INR methods 

Trueness 

Trueness of INR methods is difficult to assess because of the lack of a functional 

reference method (49). The top of the INR hierarchy is the conventional reference 

measurement procedure: the manual tilt-tube technique with the use of a certain 

reference reagent (reference thromboplastin, IRP). The manual tilt-tube technique 

cannot be used directly to establish the true value of a patient sample (or an EQA 

control material), because different IRPs can give different INR values (8, 50, 51). 

Consequently, the reference method is only used to calibrate other methods. Different 

methods should be calibrated with different IRPs (see 1.3). No true calibrators have 

been developed (52). According to the database of the Joint Committee for 
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Traceability in Laboratory Medicine (JCTLM) (53), there is no reference 

measurement procedure available for prothrombin time testing, but there is, however, 

one higher-order reference material available (rabbit brain thromboplastin). It is 

important to remember that INR results are not traceable to a SI unit; it is not a 

quantification of a single component, but a measurement of the result of a reaction 

involving many factors, e.g. a cascade system. Consequently, there are no primary 

reference measurement procedure and no primary calibrator. 

Because of these issues it is common to perform comparisons between routine 

methods. Harmonization of methods used in primary care and in hospitals could 

improve the anticoagulation treatment, and it is therefore valuable to assess the 

agreement between a POC INR method and a hospital routine method that is 

traceable to a reference measurement procedure (with a given IRP). 

 

Precision 

For capillary POC INR methods, such as for example the CoaguChek instruments, it 

is not possible to estimate ordinary within-run variation (repeatability) because each 

reagent test strip cannot be re-used. In addition, fresh capillary whole blood cannot be 

analyzed in replicate because of the limited stability (the coagulation process starts 

immediately after the blood sampling). However, it has been suggested that the 

repeatability of such methods can be estimated by performing duplicate 

measurements using blood from two fingers and using one reagent strip per 

measurement (52, 54). When several patient samples are analyzed in duplicate, the 

within-run variation can be estimated as (55): 

n
d

SD runwithin 2

2d 2

ru  

where d is the differences between duplicates and n is the number of duplicate 

measurements. This formula is used in paper I to calculate the repeatability. The 

intermediate imprecision cannot be estimated using capillary samples from patients 
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because of the limited stability. To verify the intermediate precision stable control 

materials must be used (52). 

 

1.6 Analytical quality specifications 

1.6.1 In general 

All laboratory measurements have some degree of measurement uncertainty. The true 

value is unknown; the measurement result is always only an estimate of the true 

value. We cannot require that a method has no measurement errors; we have to accept 

some uncertainty. The question is how much we can tolerate to ensure safe patient 

treatment and diagnosing. Therefore, we need analytical quality specifications in 

order to assess if the method has good enough quality in everyday practice. 

Analytical quality specifications are necessary to evaluate the analytical performance 

characteristics. 

Specifications for analytical quality can be determined on the basis of different 

strategies in a hierarchical system (56). At the top of the hierarchy is the strategy that 

quality specifications should be based on clinical outcomes, followed by 

specifications based on biological variation and on the clinicians’ opinions. Next is 

specifications based on the professional recommendations (national and 

international), followed by recommendations from EQA organizations. Finally, at the 

bottom of the hierarchy is specifications based on "state of the art". 

 

1.6.2 Specifications related to internal quality control 

A laboratory method is defined as “in control” if the control results are within the 

quality control limits, and “out of control” if the results are outside these limits (57). 

The control limits are depended on the control rule used (see 1.7.2). However, before 

choosing a control rule we must determine the maximum allowable error that is 
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acceptable to pass the control system. This maximum error should be determined 

based on strategies as high as possible in the hierarchy. 

When a control rule is chosen the laboratory should calculate the actual total error 

that is accepted to pass the control system (TEcontrol system). The magnitude of this error 

is depended on the chosen control rule, the number of control samples, the analytical 

imprecision (CVA) and the bias of the method, and can be calculated as (58): 

AA CVkCVbiasTE CkCb 65.1system  control  

The factor k is specific for each control rule and can be found in power function 

diagrams where the probability of error detection is 90% (59) (for the control rules 

12S and 13S for n=1 control sample, the k is 3.35 and 4.35, respectively). TEcontrol system 

should not exceed the quality specification for total error. From the equation above it 

is clear that if the stable analytical performance (bias and imprecision) of a method is 

close to the maximum allowable error, there are minimum room for changes in the 

analytical performance. Therefore, Bolann and Aasberg (60) have suggested to 

include a safety margin in the quality specification for total error, e.g. to include the 

power of the control rule used. As a consequence, they also suggest to tighten the 

specification for analytical variation based on biology, e.g. the imprecision should not 

be larger than 0.15 of the within-subject biological variation. 

In the “six sigma” concept, the maximum allowable imprecision and bias (CVmax and 

biasmax) are determined based on the quality specification for total error (TEmax) (57): 

6
max

max
TECV T   and  biasmax ≤ 1.5 · CVmax 

If both of these specifications are fulfilled, a sigma performance of at least 4.5 is 

achieved. The sigma performance describes how many sigmas that fit within the limit 

for total error and can be calculated as: 

ACV
biasTESigma bT max  
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A sigma performance of six is characterized as “world class”, whereas a sigma 

performance of three or less is considered unacceptable (57). However, the “six 

sigma” concept is only a tool to control the analytical quality. The quality 

specification for total error must be determined based on strategies in the hierarchical 

system. 

 

1.6.3 Specifications related to external quality assessment 

The acceptability limits used in EQA should of course also be established based on 

strategies as high as possible in the hierarchy. However, the quality specifications 

established by EQA organizations are mainly based on a compromise between “state 

of the art” and biological variation (61). 

The quality specifications for inaccuracy, bias and imprecision should be used to 

assess the performance of different methods and the performance of each single 

laboratory’s method. However, only a few types of EQA schemes are designed to 

assess all of these performance characteristics (see 1.7.3). Some schemes can only 

assess the between-laboratory variation within methods. 

The quality specifications used in EQA to assess each single participant can be 

determined by different approaches (62), e.g. a deviation limit in percent from the 

assigned target value, a deviation limit in concentration units from the assigned target 

value, or a z-score limit. The z-score is defined as: 

betweenSD
xZ targetta
S
x  

where x is the participant result, target is the assigned target value and SDbetween is the 

between-participant standard deviation. A z-score less than two is considered 

acceptable, whereas a z-score between two and three is a warning signal, and above 

three is an alarm signal (62). The z-score can thus be compared with the control rules 

12S and 13S used in IQC (see 1.7.2), although the z-score limits are depended on the 
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analytical quality of all participants whereas the control rule limits are depended on 

one lab only. The z-score is based on “state of the art”. It has been argued that EQA 

limits based on biological variation is more useful than the z-score (63). 

Some EQA organizers calculate the uncertainty of the assigned target value (or use a 

fixed uncertainty value) before calculating the acceptability limits. This approach 

results in different acceptability limits in percent in different levels and assures that 

the evaluation of the participants’ performance is not so dependent on the 

concentration of the control material. 

Different graphical presentation of the data with the acceptability limits (e.g. 

histogram, Youden plots, Shewhart control charts for results over several surveys) 

can be given to the participants (62). The scores can be given simply as “acceptable” 

or “unacceptable”, or divided into categories such as “excellent”, “very good”, 

“borderline”, “insufficient”, “poor” or “bad”. 

 

1.6.4 Analytical quality specifications for INR methods 

The analytical quality specifications for INR methods based on different strategies 

are mentioned in the following section and are listed in Table 2. 

 

Based on clinical outcome 

It has been suggested that the assessment of agreement between INR methods should 

be based on clinical decision-making (64). In this study they have developed a model 

to assess the clinically important differences between INR methods, in which they 

have added saw-toothed lines in Bland-Altman plots. Results are defined to be in 

agreement if both results lead to the same clinical decision. Another approach is to 

use error-grids to assess clinically relevant INR differences (65, 66). The INR 

differences were divided into different error zones (risk zones) with increasing 

clinical relevance; Zone A - clinical irrelevant (no risk), Zone B - low clinical 
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relevance (low risk), Zone C - moderate clinical relevance (moderate risk) and Zone 

D – major clinical relevance (high risk, dangerous). 

 

Based on biology 

The general concept is that the analytical performance (imprecision and bias) should 

be a minor part of the biological variation, meaning that it should make only a small 

contribution to the total variation of a patient result. The specifications for 

imprecision and bias are based on the within-subject biological variation (CVWB) and 

the between-subject biological variation (CVBB) (67). 

For INR, different estimates of CVWB and CVBB are reported. The CVWB for healthy 

individuals are reported to be 2.3% (68), 3.0% (69), 3.3% (70) and 5.8% (71). The 

CVBB are reported to be 4.0% (69), 5.7% (70) and 6.8% (68). In the database of Ricos 

et al. (72), the CVWB and CVBB for INR are given as 4.0% and 6.8%, respectively (the 

database is based on two studies (68, 71)). However, it seems to be higher for patients 

in steady-state anticoagulation treatment, where a CVWB of 9.0% (73), 9.5% (74), 

9.1%-10.9% (75), and 10.8%-13.3% (76) have been reported. Based on these 

estimates of biological variation different analytical quality specifications for INR 

can be calculated (Table 2). The specification for imprecision (CVA), bias and total 

error (TE) in Table 2 is based on the following formulas: 

CVA  ≤ 0.5 · CVWB   bias ≤ 2225.0 BBWB CVCV C  

ACVbiasTE Cb 65.1   (one-sided 95% confidence interval) 

The formula for TE has, however, been questioned (77). The specification for CVA is 

determined under the assumption that bias is negligible and the specification for bias 

is determined under the assumption that the CVA is negligible. Thus, the imprecision 

and bias are interrelated (78) and it is questionable whether it is correct to add these 

two specifications into a total allowable error. 
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Based on clinicians’ opinions 

In a study by Kristoffersen et al. (79), the clinicians in general practice in Norway 

were asked how much the INR value had to change in order to change the warfarin 

dose (critical difference between two consecutive measurements). The median critical 

difference was 0.8 INR, which corresponded to a CVA of 4.1% (when bias is zero). In 

another study (80), the clinicians in 13 countries were asked the same question and 

the median critical difference was 1.9 INR, which corresponded to a CVA of 11.5%. 

 

Based on professional recommendations 

The international organization for standardization (ISO) recommends different 

requirements for the manufacturer and for the patients INR instruments used for self-

testing (52) (Table 2). The requirements for the manufacturers are that 90% of the 

results in level below 2 INR should be within ±0.5 INR of the reference method. In 

level 2.0-4.5 INR, the requirement is 90% of results within ±30% of the reference 

method. Bias should not exceed ±0.3 INR in level 2-4.5 INR. The requirements for 

the individual POC INR instrument used by the patients are that 95% of the results in 

level 2-4.5 INR should be within ±0.5 INR, and bias should not exceed ±10%. There 

are no specifications for imprecision. The quality specifications are based on “state of 

the art” (52). 

The Norwegian INR committee has recommended that 95% of the POC INR results 

should be within ±20% of a hospital method calibrated with the Swedish calibrators 

(20). The repeatability (CVA) should be less than 6%. 

In a Danish consensus document, a group of experts have recommended that bias and 

imprecision of hospital INR methods should be less than 3% (81). Bias and 

imprecision of POC INR methods should be less than 6% and 5%, respectively. A 

single POC INR EQA result is considered acceptable if it deviates less than 17.7% 

from the method specific target value, or less than 26.0% from a comparison method 

(split sample procedure with the use of patient samples). 
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The British Society for Haematology has recommended that single INR results from 

two different methods should be within ±0.5 INR of each other (82). This 

recommendation is valid both when two POC methods are compared (i.e. when one 

single INR result analyzed by a patient is compared with one single INR result 

analyzed by a healthcare professional) and when a POC method is compared with a 

hospital method (i.e. when one single INR result analyzed by a healthcare 

professional is compared with one single INR result analyzed at the hospital). 
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Table 2: Analytical quality specifications for INR based on different strategies. 

Strategy for 
establishing 
analytical quality 
specifications 

Quality 
specification for 
total error 
(inaccuracy) 

Quality 
specification for 
systematic 
error (bias) 

Quality 
specification for 
random error 
(imprecision) 

Publisher (comments) 

Based on clinical 
outcome 

Results are in 
agreement if 
they give the 
same clinical 
decision 

  Shermock et al. (64) 

 Error zones with 
different risks 
and clinical 
relevance 

  Hemkens et al. (65) 
Petersen et al. (66) 
 

Based on 
biological variation 

TE ≤ |5.3|% Bias ≤ |2|% CVA ≤ 2% Ricos et al. (72)  
(healthy individuals) 

 
TE ≤ |3.725|% Bias ≤ |1.25|% CVA ≤ 1.5% Wada et al (69)  

(healthy individuals) 
 

TE ≤ |4.37|% Bias ≤ |1.65|% CVA ≤ 1.65% Rudez et al (70)  
(healthy individuals) 

 
  CVA ≤ 4.5% Besselaar et al. (73)  

(patients on OAT) 
 

  CVA ≤ 4.7% Lassen et al. (74)  
(patients on OAT) 

 
  CVA ≤ 4.6% Geest-Daalderop et al. (75) 

(patients on OAT) 
 

  CVA ≤ 5.4% Geest-Daalderop et al. (76) 
(patients on OAT) 

Based on 
clinicians’ opinions 

  CVA ≤ 4.1% Kristoffersen et al. (79) 
(median in Norway) 

 
  CVA ≤ 11.5% Kristoffersen et al. (80) 

(median in 13 countries) 
Based on 
professional 
recommendations 

Below 2 INR: 
90% of results 
within ±0.5 INR 

Level 2-4.5 INR: 
90% of results 
within ±30% 

Level 2-4.5 INR: 
Bias ≤ |0.3| INR 

 ISO 17593 (52) 
(requirements for the 
manufacturers of POC 
instruments) 

 Level 2-4.5 INR: 
95% of results 
within ±0.5 INR 

Bias ≤ |10|% 
 

 ISO 17593 (52) 
(requirements for each 
patient’s POC instrument) 

 95% of results 
within ±20% 

 CVA ≤ 5% Trydal et al. (20)  
(for POC INR instruments) 

 TE ≤ |14.25|% 
 

Single EQA 
result < |17.7|% 

Single EQA 
result < |26.0|% 

Bias ≤ |6|% CVA ≤ 5% Danish consensus doc. (81) 
(for POC INR instruments) 

(EQA with lyophilized 
control materials) 

(Split sample with patient 
samples as EQA) 

 Result from two 
methods within 
±0.5 INR 

  Fitzmaurice et al. (82) 
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1.7 Analytical quality control 

Control of the analytical quality can be performed when the analytical quality 

specifications for different analytical performance characteristics are defined. 

Analytical quality control can be divided into internal quality control (IQC) and 

external quality assessment (EQA). The type of control material used is essential in 

both control systems. 

 

1.7.1 Control materials 

Ideally, the matrix of the control material should be identical to patient samples so 

that they are fully comparable (83). This is often referred as “commutability” of 

control materials. Control samples are commutable if the relationship between two 

methods are the same as for native patient samples (83), meaning that the control 

materials consist of the same patient specific factors that can interfere with the tests. 

However, commutable materials are difficult to achieve mainly because the materials 

must be stable over time and it is difficult to vary the levels of the constituents. 

Therefore, the materials are often lyophilized and different levels of constituents are 

added or artificially reduced. These processes can result in non-commutability (84). 

In addition, lyophilized materials must be reconstituted with the proper amount of 

water, and this pre-analytical factor does not reflect usual sample treatment and can 

result in a larger between-laboratory variation than for fresh patient samples. Studies 

have shown that some processed samples are commutable, whereas some are not 

(85), and each processed control material should therefore be tested for 

commutability (86, 87). Different control materials have shown both smaller and 

larger between-laboratory variation compared to native patient samples (88). 

The control material values should preferably be in a level in which medical 

decisions are made and in different concentration levels (normal and abnormal levels) 

(57, 89). The homogeinety and lot-to-lot variation for control materials must be at an 

acceptable level. 
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Control materials for INR methods 

The optimal is to use native patient blood, but this is a challenge because of the 

limited stability of the samples (especially capillary whole blood, which must be 

analyzed within seconds). Therefore, most commercial control materials for INR 

methods are lyophilized. An alternative to the lyophilized material is to use fresh 

frozen plasma from centrifuged citrated whole blood. When stored at -74° C or lower 

the plasma is stabile for at least two years (33). However, after the plasma is thawed 

(at 37 °C) it must be analyzed immediately (33). This material is suitable for plasma 

methods and is used in EQA scheme in Norway and Denmark for hospital methods. 

Fresh frozen plasma cannot, however, be used in EQA schemes for POC INR 

methods for several reasons: 1) not all POC INR methods can use plasma, 2) the 

number of POC participants are often very high and it would require a large amount 

of material, which would result in a practical challenge of making this material 

several times a year, 3) the material must be sent frozen and kept frozen until it is 

analyzed, and not all primary care laboratories have a freezer. In addition, it would be 

very expensive to send the samples with express mail because of the high number of 

participants. Another challenge of using fresh frozen citrated plasma is that for 

capillary whole blood methods the materials must be recalcified before use, and this 

does not reflect usual sample treatment and may increase the between-laboratory 

variability. The fresh frozen plasma may not be commutable for these methods, as 

shown in the Netherlands where small differences between reagent lot numbers were 

seen when capillary whole blood was used, whereas larger differences were seen 

when fresh frozen pooled plasmas were used (90, 91). 

Different kinds of commercial lyophilized control plasmas are available, such as 

human or animal plasma, pooled or single plasma, artificially depleted normal plasma 

or plasma from patients. It is preferable to use plasma from humans (57), and it is 

likely that lyophilized plasma from patients on oral anticoagulation treatment is more 

commutable than lyophilized adsorbed normal plasmas in which the coagulation 

factors are artificially depleted. 
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No previous studies have investigated which types of control materials that are in use 

in the different EQA schemes for POC INR methods. However, some EQA 

organizations in Europe (92-94), Australia (95) and USA (96) use commercial 

lyophilized control materials. Unfortunately, no lyophilized material is suitable for all 

methods, due to insufficient compatibility with the POC INR methods (matrix 

effects). This means that different materials are required for the different POC INR 

methods and method specific target values must be used (see 1.7.3). Another 

drawback of using lyophilized materials is the necessity of adding water and calcium 

chloride (the latter is only for capillary methods, such as CoaguChek). For the 

different lyophilized control materials used in this thesis, see Materials and methods. 

As mentioned, the optimum would be to use native patient samples as control 

materials, and an EQA scheme where such material is used, is needed (a proposal of 

such a scheme is presented in paper III). An investigation of which types of control 

materials that are in use in the different EQA schemes for POC INR methods should 

be conducted (and this was done in paper II). 

For IQC of POC INR methods it is common to use commercial lyophilized control 

materials and/or split sample procedure with native patient samples (see 1.7.2). 

However, no studies have investigated the effectiveness of these two approaches in 

their ability to detect error. Such an investigation was therefore performed in paper I. 

 

1.7.2 Internal quality control 

The objective of IQC is to monitor the stability of the analytical quality of a method, 

detect changes in analytical errors and to estimate the analytical uncertainty in routine 

patient samples. The prerequisites are that control materials with established target 

values must be used (established by the manufacturer or by the single laboratory), the 

stable analytical variation of the method must be known, analytical quality 

specifications and control rules must be chosen, and the control materials must 

behave similar to patient samples (60). 
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The laboratory analyzes one or more control samples over time in order to detect 

changes in random and systematic error of the method compared to previously 

results. The IQC results are assessed “on the spot” and the analytical performance can 

thus be assessed continuously. 

 

Power functions 

The basic principle in IQC is to detect analytical errors. It is not possible to detect all 

errors at any time, but the aim is to detect as many and as early as possible. Ideally, 

the control system should give a signal or an alarm when a true analytical error 

occurs, and no false alarms should be given. 

The probability of error detection (PED) is depended on the analytical quality of the 

method, the control rule used, the number of control samples, and the size of the error 

(97). Thus, the probability of detecting a large error is higher than detecting a small 

error. Power function diagrams illustrate the probability of detecting changes in 

systematic or random errors with different control rules and different number of 

samples (59), and can for example be created by computer simulations. The size of 

the error is usually expressed in number of analytical SD in order to make the 

diagrams valid for all methods. However, the size of the systematic error can also be 

expressed in percent. Figure 8 illustrates the power of detecting a change in bias 

expressed in percent for a method with an analytical variation of CVA = 3% or CVA = 

5%, when the stable analytical bias is zero. The probability of detecting a positive 

change in bias is similar to the probability of detecting a negative change in bias if the 

stable bias is zero. This assumption is done in the Westgard’s diagrams (59). 

However, if the method has a bias that is not corrected, the power function diagram is 

asymmetrical around zero and the power function diagrams should include both 

positive and negative changes. This is done for one control rule in this thesis (see 

3.1.5). 

The probability of false rejection (PFR) is shown in power function diagrams where 

the error is zero (Figure 8) and is thus an expression of false alarms. PFR is the same 
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as type 1 error or α-error (reject the null hypothesis when it is true) and should be as 

low as possible. PED is the same as 1 minus type 2 error or 1 minus β-error (β-error is 

to keep the null hypothesis when it is not true), and should be as high as possible. The 

latter can be described as the power of a statistical test (98). 

 

Figure 8: Example of power function diagrams for three different control rules used on a laboratory 

method with an analytical variation of a) CV = 3% and b) CV = 5%, when the number of control 

sample is one, and the stable analytical bias is zero. The probability of detecting a change in 

systematic error of for example 15% for a method with CVA = 3%, is above 90% for all three control 

rules, whereas it is decreased to 84% for the 12S rule, 75% for the EWMA rule, and 50% for the 13S 

rule if the method has a CVA of 5%. The probability that the control system will give an alarm when 

there is no change in systematic error, is less than 1% for the EWMA and 13S rule, and 5% for the 12S 

rule regardless of the methods analytical variation. 

 

Control rules 

Analytical quality specifications must be decided before choosing the control rules 

because the magnitude of errors that will be detected by the control system is 

different for the different control rules (57). One should choose a control rule with the 

lowest possible number of controls, low PFR, high PED, and the easiest statistical 

calculations (59). It is recommended that PFR should be less than 5% and that PED 

should be higher than 90% (99). This can sometimes be difficult to achieve, and a 

high PED should be prioritized if the prevalence of error is high and a low PFR should 

be prioritized if the prevalence of error is low (100). If the analytical quality of the 
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method is very stable, a PED of 50% is acceptable if the PFR is low and the number of 

samples is low (101). 

There are several different control rules, known as the Westgards rules (101), but 

only the 12S and the 13s rule are used in this thesis (paper I). Both these rules depend 

on the analytical variation (SDA) of the method, meaning that the limits are 

numerically wide if the SDA is large and vice versa. When the 12S and 13S rules are 

used each single control result is assessed on the spot, and only the latest control 

result is assessed. These rules are thus not suitable to detect changes over time. A 

trend detection control rule such as the moving average or the exponentially weighted 

moving average (EWMA) can be used for this purpose. EWMA is the geometric 

weighted sum of the latest control result and all previous results, in which each single 

weighted value decreases exponentially with time (102). The formula is shown below 

(103): 

1)1( 11( ttt ExE )x  general formula 

 011 )1( ExE E1(x )x  result no. 1 

 122 )1( ExE E1(x )x  result no. 2 

 233 )1( ExE E1(x )x  result no. 3 

etc 

 
2

q   Upper and lower limit 

E0 is the expected mean value (μ), E1, E2, E3 and so on are the calculated EWMA 

values, x are each single control result, σ is the stable SDA, q is a variable that 

represents the distance from μ expressed in number of standard deviations, and λ is 

the weighting factor. A high λ weighs the most recent control results more than older 

results, whereas a low λ weights the older results more than newer results. 
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A systematic error can arise stepwise or gradually. The source of stepwise changes 

can for example be calibration differences, change of reagent lot number, and wrong 

use of pipettes. The reasons for the gradually changes are more diffuse and can be 

difficult to detect because the systematic error has evolved over time. The EWMA 

rule gives a relatively quick response to small stepwise and gradually changes, while 

the 12S and 13S rule give a quick response to large stepwise changes. 

 

Internal quality control of POC methods 

IQC of POC methods is challenging for many reasons. The persons who operate these 

methods have usually no or little experience with laboratory work, they lack 

knowledge of the purpose with IQC, and they have problems with all the statistics 

(e.g. calculation of the analytical SD, calculation of the control limits). The methods 

are often easy to use and it is tempting to think that no user errors will occur. In 

addition, the manufacturers often state that IQC is not necessary because many POC 

methods have several integrated control systems (“on-board” QC systems) both in the 

instrument and in each reagent strip, and thus they claim that the method will give an 

error message if something is wrong with the tests. However, a collective opinion 

paper states that such controls are insufficient (104). Another challenge is the costs; 

the tests and control materials can be expensive and some materials have short 

stability (e.g. the manufacturer’s controls for CoaguChek XS Plus must be analyzed 

within 30 min). 

Despite these challenges, it is recommended that IQC of POC INR methods should be 

performed regularly and preferably every day the instrument is in use (82, 105). In 

addition, IQC should be event driven, i.e. performed when there is a change in 

reagent lot, when an unexpected result appear, when there is a change in the 

measurement procedure, when there is a suspicion of errors, and after instrument 

maintenance or service (89). The POC instruments should be controlled with control 

materials or by performing split sample analysis (89). However, it is little evidence 

whether IQC of POC methods actually leads to quality improvement. IQC is useful 
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only when an “out of control” result is followed by troubleshooting and corrective 

actions. Patient results should not be reported until the error has been detected. It is 

therefore important that the false rejection rate is low so that unnecessary problems 

and stops can be avoided and that the primary care laboratories can take an analytical 

control rejection seriously. 

 

Internal quality control of POC INR methods in Norway 

Participants in EQA schemes organized by the Norwegian quality improvement of 

primary care laboratories (Noklus) are regularly asked how often they perform IQC 

of their method, and the results from the November 2012 survey amongst 1726 

participants were as follow: daily 7%, weekly 40%, occasionally 15%, never 2%, 

when change in reagent lot 15%, and 21% did not answered the question. The 

Thrombotrack and Simple Simon participants were dominant in the “daily group” and 

the CoaguChek participants were dominant in the “never group”. This is logical since 

it is easier to obtain a suitable control material to the first two instruments, which are 

venous wet chemistry methods, than the latter instruments which are capillary dry 

chemistry methods (see Material and methods). 

Ideally, the control materials used for IQC should be independent of the manufacturer 

of the method (106). However, the most common approach for IQC for POC INR 

methods in the Norwegian primary care are that they buy a commercial control 

material which is made for their method (manufacturer depended). One single control 

sample measurement is plotted against a target value with defined acceptability 

limits. These limits can be based on the laboratory’s own analytical variation (usually 

the Westgard rule 12S or 13S) or recommended by experts (e.g. ±10 %). However, the 

most common is to use the manufacturer’s acceptable target intervals. In addition, or 

as a substitute to the use of commercial control materials, the primary care 

laboratories often perform a split sample procedure with native patient samples, e.g. a 

fresh patient sample is analyzed on their own method and the sample is sent to a local 

hospital for comparison. The deviation between the two results is then compared with 
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some defined acceptability limits (e.g. ±20 %). Split sample procedure has been 

recommended as an alternative when the commercial control materials are not 

suitable (93, 105), but no studies have compared the utility of these two procedures, 

i.e. how good the split sample procedure and the use of control materials are in 

detecting errors. 

 

1.7.3 External quality assessment 

One of the main objectives in EQA is to compare results within and between 

methods. The optimum is to use a reference method in order to assess the trueness of 

methods. EQA is both a tool to compare the analytical performance of different 

methods and a tool for the individual laboratory to compare results with others with 

the same or different methods. EQA is administered by an external part (an EQA 

organizer) and the result is assessed retrospectively. The time period between the 

reported result and the feedback should be as short as possible. 

The different types of EQA schemes can be divided into six categories (107) and 

different aspects of analytical quality can be assessed (Table 3). Category 1 and 2 are 

characterized by the use of commutable control materials with reference target 

values, in which the trueness of methods can be assessed. In addition, standardization 

and harmonization of methods can be evaluated by calculating the systematic 

deviation between methods and the between-method variation. The between-

laboratory variation within and between methods can also be evaluated. The trueness 

of a single laboratory is assessed when mean of replicate measurements is compared 

with a reference target value (category 1), whereas the accuracy is assessed when a 

single measurement is compared with a reference target value (category 2). In 

addition, the single laboratory can compare its own result with the median of other 

methods and the median of own method. In category 3 and 4 there are no reference 

target value, and the traceability of methods cannot be evaluated. However, the 

systematic deviation between methods can be assessed because commutable control 

samples are used, and thus the between-method variation can be evaluated. In 
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addition, the between-laboratory between-method variation and the between-

laboratory within-method variation can be calculated. The single laboratory can 

compare results within own method and between other methods. Category 5 and 6 are 

characterized by the use of non-commutable control samples and there is no reference 

target value. In these schemes, method specific target values are the only option, and 

assessment of traceability and harmonization of methods is not possible. However, 

the between-laboratory variation within methods can be evaluated, and for category 6 

this is the only aspect of analytical quality that can be assessed. The single laboratory 

can only compare results within its own method. In schemes where replicate 

measurements are performed (category 1, 3 and 5) the mean within-laboratory 

variation and the within-laboratory variation for a single laboratory can also be 

assessed. 
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Table 3: Different EQA categories and the aspects of analytical quality assessment 

(modified from Miller et al. (107)). 

EQA 
category 

Commutable 
material 

Reference 
target 
value 

Replicate 
measurements 

Assessment of the 
analytical quality of 
methods 

Assessment of the 
single laboratory 

1 Yes Yes Yes 

Bias 
 
Systematic deviation 
between methods 
 
Between-laboratory 
variation between and 
within methods 
 
Within-laboratory 
variation 

Bias 
 
Systematic deviation 
from other methods 
 
Systematic deviation 
from own method 
 
 
Within-laboratory 
variation 

2 Yes Yes No 

Bias 
 
Systematic deviation 
between methods 
 
Between-laboratory 
variation between and 
within methods 

Inaccuracy 
 
Deviation from other 
methods 
 
Deviation from own 
method 

3 Yes No Yes 

Systematic deviation 
between methods 
 
Between-laboratory 
variation between and 
within methods 
 
Within-laboratory 
variation 

Systematic deviation 
from other methods 
 
Systematic deviation 
from own method 
 
 
Within-laboratory 
variation 

4 Yes No No 

Systematic deviation 
between methods 
 
Between-laboratory 
variation between and 
within methods 

Deviation from other 
methods 
 
Deviation from own 
method 

5 No No Yes 

Between-laboratory 
variation within 
methods 
 
Within-laboratory 
variation 

Systematic deviation 
from own method 
 
 
Within-laboratory 
variation 

6 No No No 
Between-laboratory 
variation within 
methods 

Deviation from own 
method 
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External quality assessment of POC INR methods 

It is recommended that users of POC INR methods should participate in an EQA 

scheme whenever available (89, 108). However, it is a challenge for the EQA 

organizers to provide such schemes because of the often large number of participants 

and that the different methods cannot use the same control materials. In addition, it is 

a challenge to obtain suitable control materials. 

When lyophilized control materials are used in EQA schemes for POC INR methods 

the schemes are characterized as category 5 or 6. Different materials are used for the 

different POC INR methods and method specific target values are necessary. 

Consequently, the assessment of trueness and harmonization of methods is not 

possible. For category 6, which is most common for POC INR methods, only the 

between-laboratory variation within methods can be assessed, and the single 

laboratory can only compare results with its own method. Alternative approaches 

have therefore been developed but all have some limitations. The European concerted 

action on anticoagulation (ECAA) has developed a set of five lyophilized QC 

plasmas with certified INR values (109) in order to evaluate the trueness of POC INR 

methods. The drawback of this approach is that the QC set is aimed at one type of 

instruments only (the CoaguChek monitors), and that lyophilized plasmas are used, 

i.e. it does not necessarily reflect the quality of native samples (91, 110). In addition, 

the participants cannot compare results with other participants, and this approach is 

therefore not an EQA but more similar to control systems in which the methods are 

controlled with certified reference materials. 

Another alternative EQA approach is the split sample procedure in which native 

patient samples are used to compare single INR-results between a POC method and a 

hospital method (93). The main drawback of this approach is that it is difficult for the 

participants to find the origin of a single deviant result because of the numerous of 

variables that can affect the result. This split sample approach has also been used to 

compare results between patient self-testing POC instruments both with POC 

instruments used in primary care and with hospital methods (111, 112). 
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There is a need to develop an EQA scheme in which commutable control materials 

are used and the trueness of all POC INR methods can be assessed. The participants 

should be informed of the origin of a deviant result (is it due to the method or the 

participant performance?), and the scheme should be easy for the EQA organizer to 

perform on a regular basis. 
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2. AIMS 

The main objective of this thesis was to evaluate and suggest improvements of the 

analytical quality control of INR methods used in primary care. 

 

Paper I (internal quality control) 

The aim of paper I was to evaluate and compare two common approaches of IQC of 

POC INR methods in their ability to detect changes in systematic errors. The two 

approaches were the use of lyophilized control materials and the use of patient split 

samples, both in combination with different control rules. 

 

Paper II (external quality assessment) 

The aim of paper II was to investigate if and how the European countries provide 

EQA schemes for POC INR testing. 

 

Paper III (external quality assessment) 

The aim of paper III was to develop an EQA model for POC methods that will 

improve EQA schemes in situations where non-commutable control materials are 

used. 

 



 56 

3. MATERIALS AND METHODS 

3.1 Paper I and III: 

The use of patient samples and lyophilized control materials in internal 

and external quality control of INR methods in primary care 

 

3.1.1 Selection of primary care laboratories and patients 

The primary care laboratories were randomly selected in paper I, because they should 

represent a random primary care laboratory performing IQC of their POC INR 

instrument. In paper III, the primary care laboratories were specifically selected based 

on certain selection criteria (e.g. good analytical quality and skilled personnel). This 

was done because these laboratories should establish the systematic deviation (bias) 

of one type of POC INR method and thus the user errors had to be minimized (these 

selected primary care laboratories were considered as experts). All primary care 

laboratories in both studies received written information about the study and gave 

written informed consent to participate. 

In both papers, each primary care laboratory selected patients on long-term oral 

anticoagulation treatment with warfarin, who came for a routine follow-up visit with 

their general practitioners. The patients received written and oral information about 

the studies and gave oral informed consent to participate. The Regional Committee 

for Medical and Health Research Ethics in Western Norway approved both studies. 

The number of selected primary care laboratories and patients in the two studies are 

shown in Table 4. Eighteen primary care laboratories participated in the study in 

paper I, whereas 72 and 69 participated in the first and second survey in paper III. 

Four or five patient samples were analyzed at each laboratory. The aim was to get 

minimum 20 results for each POC method in paper I and minimum 100 results in 
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paper III. The patient results in paper I were used as input in the computer simulation 

program whereas the patient samples in paper III were used to estimate method bias. 

Table 4: Number of selected primary care laboratories and patients in paper I and III. 

POC INR 
instrument 

Number of primary 
care laboratories 

Number of patient 
samples per lab 

Total number of 
patient results Paper 

Thrombotrack 8 5 40 I 

CoaguChek S 5 5 25 I 

Hemochron Jr. 
Signature 5 5 25 I 

Thrombotrack 25 and 23 4 to 5 102 and 103 III 

CoaguChek XS Plus 23 and 24 4 to 5 99 and 105 III 

Simple Simon 24 and 22 4 to 5 113 and 100 III 

 

3.1.2 Collection of split sample results with native patient samples 

The principle of the split sample procedure is that a fresh patient sample is analyzed 

both on the POC method at the primary care laboratory and on a designated 

comparison method in order to compare results between methods. Single split sample 

comparisons were evaluated in paper I (used as internal quality control), whereas 

mean of approximately 100 split sample comparisons were evaluated in paper III 

(used as method comparison). In paper I, the selected primary care laboratories 

analyzed an INR split sample once a week for five weeks. The mean deviation of all 

split sample results and the within-day and between-day variation were used as basis 

(input) for the computer simulations. In paper III, each selected primary care 

laboratory analyzed four or five split samples during a two weeks period, and mean 

deviation of all split sample comparisons for one POC INR method were calculated. 

This estimation of POC method bias was then evaluated against an analytical quality 

specification of 6%. All patient samples in paper I and III were sent to the hospital 

laboratory (Haraldsplass Diaconess Hospital, Bergen, Norway) by ordinary mail the 

same day of sample collection, and the samples were analyzed the day of arrival. 
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3.1.3 Collection of control results with lyophilized materials 

In paper I, the selected primary care laboratories analyzed a commercial lyophilized 

control material once a week for five weeks. The control samples were analyzed at 

the same day as the split samples. The mean of all the control results and the within-

day and between-day variation were used as basis (input) for the computer 

simulations. In paper III, results from two ordinary EQA schemes for POC INR 

provided by Noklus were used. The participants analyzed two lyophilized control 

materials in each scheme. The selected expert primary care laboratories were amongst 

these participants, and the target values were established based on the results from 

these experts. All participants were evaluated against these target values with the 

acceptability limit of ±15% from the target value. The different control materials used 

in paper I and III are shown in Table 5. 

Table 5: Lyophilized control materials used in paper I and III. 

Name of 
control Material Reconstitution Manufacturer Used on POC 

INR instrument Paper 

CoaguChek 
PT Controls 

Lyophilized 
rabbit plasma 

Breakable ampoule 
with water and 
calcium chloride 
are integrated 

Roche Diagnostics, 
Germany 

CoaguChek S I 

DirectCHEK, 
abnormal 

Lyophilized 
whole blood 
from sheep, horse 
and bovine 

Breakable ampoule 
with water are 
integrated 

International 
Technidyne 
Corporation (ITC), 
USA 

Hemochron Jr. 
Signature 

I 

Control 
Plasma AK 

Lyophilized 
patient plasma 

Separate vial with 
water to be added 

Baxter AG, Austria Thrombotrack I and III 

TriniCHEK Lyophilized 
adsorbed human 
plasma 

Separate vial with 
water to be added 

Trinity Biotech, 
Ireland 

Thrombotrack 
and Simple 
Simon 

III 

OKP Lyophilized 
bovine and 
adsorbed human 
plasma 

Separate vial with 
water to be added 

MediRox AB, 
Sweden 

Simple Simon III 

NEQAS 
Level 1 and 2 

Lyophilized 
adsorbed human 
plasma 

Separate vials with 
water and calcium 
chloride to be 
added 

UK NEQAS for 
Blood Coagulation, 
United Kingdom 

CoaguChek XS 
Plus 

III 
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3.1.4 INR methods 

The INR methods used in paper I and III are shown in Table 6. At the time, this was 

the most commonly used INR methods in Norway. A total of five different POC INR 

instruments were used and the designated comparison methods were the STA 

Compact and the STA R Evolution instruments with the SPA reagent. All of the INR 

methods differ in one way or the other (Table 6), and all have different traceability 

(Figure 6). The two comparison methods are, however, almost identical. 

Table 6: INR methods used in paper I and III. 

Instrument Type of 
method Clot detection Thromboplastin Chemistry 

(dilution) Paper 

CoaguChek S Quick Optical Rabbit Dry (none) I 

Hemochron Jr. 
Signature Quick Mechanical Recombinant 

human Dry (none) I 

STA Compact Owren Mechanical Rabbit Wet (1:21) I 

Thrombotrack Owren Mechanical Bovine Wet (1:5) I and III 

Simple Simon Owren Optical Rabbit Wet (1:21) III 

CoaguChek XS Plus Quick Electrochemical 
Recombinant 

human 
Dry (none) III 

STA R Evolution Owren Mechanical Rabbit Wet (1:21) III 

 

 

3.1.5 Computer simulations 

In conjunction with paper I, we designed a computer simulation program in Microsoft 

Excel 2003. The program is a tool for evaluation of different control system regarding 

the ability of detecting systematic errors and the rate of false alarms. Two simulation 

programs were developed, one for the lyophilized control sample results and one for 

the patient split sample results. Four different control rules were used in each 

program. The 12S, 13S and EWMA rule were used in both programs, whereas the 

deviation limits of ±10% and ±20% (called 110% and 120%) were used in the control 

sample simulation and the split sample simulation program, respectively. The control 

rules were selected because they are commonly used in primary care, except for the 
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EWMA rule which was chosen because it is a trend detection rule. The stable bias 

was ignored for the 12S, 13S, EWMA and 110% rule, but was not ignored for the 120% 

control rule. Changes in systematic errors of ± 0%, 5%, 10%, 15%, 20% and 25% 

were simulated in each model. 

In real experiments the analytical quality is estimated based on the single 

measurements. In computer simulations it is the opposite situation; the single 

measurements are estimated (simulated) based on the analytical quality. Thus, if the 

analytical quality is known, a large number of single measurements can be simulated 

without doing large real experiments which can be time consuming and expensive. In 

paper I, the analytical quality was estimated based on empirical data, i.e. each 

primary care laboratory analyzed one split sample and one control sample once a 

week for five weeks, and this was done only once. The simulation programs were 

designed to simulate that one split sample and one control sample were analyzed once 

a week for 20 weeks, and this was done 1000 times. However, paper I describes 

results for one (n=1) and four (n=4) weeks, only. The empirical input data were mean 

of all control results or mean deviation of all split sample results, the within-

laboratory within-day variation and the within-laboratory between-day variation. The 

total within-laboratory variation was used in the simulation programs to calculate the 

control limits, and can be expressed as 

2
.

2
daybetweendaywithintotal CVCVCV Cd  

The within-day variation can be referred as repeatability, whereas the total within-

laboratory variation can be expressed as intermediate imprecision. As stated in 

section 1.5.1, patient samples cannot be used to estimate the intermediate imprecision 

because of the limited stability. It is therefore important to notice that the 

intermediate imprecision was not calculated directly from the patient samples, but 

from the patient split samples (e.g. the differences between the POC method and the 

comparison method). The CVwithin-day for the split samples are thus a combination of 

the repeatability of the POC method and the repeatability of the comparison method. 



 61 

3.1.6 Quality specifications 

In paper I, a change in systematic error of ±15% was considered clinically important 

and all control systems should be able to detect this error as fast as possible (low 

number of control samples), regardless of which instruments and control rules that 

are used and regardless of control materials or split samples are used. 

In paper III, the quality specifications were set to ±6% for bias (81) and ±15% for a 

deviating EQA result. This bias specification was chosen because the specification 

based on biology is calculated from healthy individuals and is thus too tight, and the 

ISO bias specification is valid in the therapeutic level or for patient self-testing only 

(Table 2). The quality specification for a deviating EQA result was chosen because 

paper II showed that this was the most commonly used acceptability limit for POC 

INR methods used by EQA organizers. 

 

3.1.7 Statistical calculations 

All statistical calculations were performed using Microsoft Office Excel 2003. In 

paper I, the analysis of variance (AVOVA) nested design (113) was used to estimate 

the within-lab within-day variation and the within-lab between-day variation, as 

recommended by ISO (52). In both paper I and III, outliers were excluded according 

to Burnett (114). The box plots in paper III (supplemental files) were created in 

SPSS. 
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3.2 Paper II 

Survey amongst EQA organizers in Europe 

A total of 30 European countries were invited to participate in this study. The 

invitation was sent by e-mail to all members of the European Organization for 

External Quality Assurance Providers in Laboratory Medicine (EQALM). To reach 

as many European countries as possible, non-members were also contacted. In the 

invitation, which was sent in 2010, they were asked whether or not an EQA scheme 

for POC INR was provided in their country at that time. Those EQA organizers that 

reported that they did provide this service were asked to fill in a questionnaire of 23 

questions dealing with how the schemes were organized and how they interact with 

the participants (see Appendix). 

 



 63 

4. RESULTS 

4.1 Paper I 

Internal quality control of INR methods in primary care 

The estimated analytical quality of Thrombotrack, CoaguChek S and Hemochron Jr. 

Signature is shown in Table 7 for the lyophilized control materials and in Table 8 for 

the patient split samples. These estimates were used in the computer simulation 

programs to create power function diagrams. In general, the imprecision was lower 

for the control materials than for the split samples, meaning that the probability of 

detecting a systematic error was higher for the control samples than for the split 

samples. This was true for all control rules and all instruments. The PFR, however, 

was similar for the control samples and the split samples. An example of this is 

shown in Table 9, where the change in systematic error was set to +15% and the 

number of observations were set to four. The probability of detecting a change in 

systematic error of +15%, for e.g. the 13S rule using four observations on the 

Thrombotrack instrument, was >99% for the control samples and 62% for the split 

samples, whereas the PFR were 1% in both control systems (Table 9). Overall, the 

EWMA control rule had the best combination of high PED and low PFR for all three 

instruments. 

Table 7: The empirical data for the control samples. 

POC instrument n Mean INR CVwithin % CVbetween % CVtotal % 

Thrombotrack 39 2.19 1.9 3.3 3.8 

CoaguChek S 24 2.76 7.3 5.1 8.9 

Hemochron Jr. Signature 25 4.73 9.4 0.0 9.4 

 

Table 8: The empirical data for the patient split samples. 

Instrument n Bias % CVwithin % CVbetween % CVtotal % 

Thrombotrack 39 13.5 2.3 6.5 6.9 

CoaguChek S 25 7.7 5.9 8.8 10.5 

Hemochron Jr. Signature 25 16.7 9.0 11.7 14.8 
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Table 9: The probability of error detection (PED) and false rejection (PFR) for control samples and 

split samples for different control rules and different POC INR instruments in detecting a change in 

systematic error of +15% when the number of observations were n=4. 

Control rule, Control samples Split samples 

POC instrument PED (%) PFR (%) PED (%) PFR (%) 

12S     

Thrombotrack >99 18 97 18 

CoaguChek 85 16 74 18 

Hemochron 82 19 53 17 

13S     

Thrombotrack >99 1 62 1 

CoaguChek 35 1 22 1 

Hemochron 28 <1 9 1 

EWMA     

Thrombotrack >99 2 94 2 

CoaguChek 74 1 56 2 

Hemochron 67 1 26 2 

110%     

Thrombotrack >99 3   

CoaguChek 99 72   

Hemochron 99 75   

120%     

Thrombotrack   >99 54 

CoaguChek   97 43 

Hemochron   >99 88 
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4.2 Paper II 

External quality assessment of point-of-care INR testing in Europe 

A total of 30 European countries were asked whether or not they provide an EQA 

scheme for POC INR, and 28 responded (Estonia and Lithuania did not respond). 

Most of the countries (n=19) did not provide this service (Table 10). All 12 

organizations in the 9 countries that did provide EQA for POC INR (Table 11) 

answered the questionnaire. 

Table 10: European countries that did not provide EQA for POC INR. 

European countries that did not provide EQA for POC INR 

Belgium Iceland Poland Slovenia 

Bulgaria Ireland Portugal Spain 

Croatia Italy Romania Sweden 

France Latvia Russia Turkey 

Germany Luxemburg Slovakia  

 

Table 11: European organizations that provided EQA for POC INR. 

European country EQA organization 
 

Austria ÖQUASTA Austrian Society of Quality Assurance and Standardization 

Czech Republic SEKK External quality assessment system for clinical laboratories 

Demanrk DEKS Danish Institute for External Quality Assurance for Laboratories 
in Health Care 

Finland Labquality Labquality 

Hungary QualiCont In Vitro Diagnostic Quality Control Nonprofit Public Utility Ltd. 

Netherlands ECAT and FNT External quality Control for Assays and Tests 
Federation of Netherlands Thrombosis services 

Norway Noklus Norwegian Quality Improvement of Primary Care Laboratories 

Switzerland CSCQ and MQ The Quality Control Center Switzerland 
Association of Medical Quality Control 

United Kingdom UKNEQAS and WEQAS United Kingdom National External Quality Assessment Scheme 
Welsh External Quality Assessment Schemes 
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A vide variation were seen between the different EQA schemes. The number of 

samples distributed per year varied from 1 to 12 with the median of 4, and the 

number of participants varied from 75 to 2665. All EQA organizations offered 

schemes to CoaguChek users, and this was the most commonly used instrument in all 

countries. Different kinds of control materials were used: lyophilized plasma (most 

common), lyophilized whole blood, frozen artificial liquid material, fresh frozen 

patient plasma and fresh capillary patient blood. Peer group target values were most 

common in all schemes. The acceptability limits varied between 12% and 30%, with 

a limit of 15% as the most common. 

 

4.3 Paper III 

New model for external quality assessment of point-of-care testing 

In this paper, a new model for EQA was developed (Figure 9). Fresh patient samples 

were used in combination with lyophilized control materials in order to assess both 

the method bias and the single-participant performance. The model was applied twice 

(in 2010 and 2011) on POC INR methods. 

The INR method biases estimated from the native patient samples were -0.4% and  

-1.2% for CoaguChek, 1.1% and 1.8% for Simple Simon, and 9.0% and 8.2% for 

Thrombotrack, for the 2010 and the 2011 sampling period, respectively. CoaguChek 

and Simple Simon fulfilled the quality specification of bias less than 6%, while 

Thrombotrack exceeded this limit. 

The portion of participants with INR results within the quality specification of ±15% 

for a deviating EQA result using lyophilized control materials was between 97% and 

98% for CoaguCheck and Thrombotrack users, and between 90% and 97% for 

Simple Simon users for both control materials in the two EQA surveys. 

The best combined assessment scenario was when both results were within the 

quality specifications. More than 90% of the CoaguChek and Simple Simon 



 67 

participants achieved the best case scenario result, while none of the Thrombotrack 

participants achieved this result because of the unacceptable bias (see supplemental 

files of paper III). 

 

Figure 9: Principle of the new EQA model. Native patient samples should be analyzed both with a 

reference method or a designated comparison method, and at some selected expert primary care 

laboratories. The “true” value should be established with the reference or comparison method. Bias 

of the POC method can then be estimated. In the same time period, non-commutable control 

materials should be distributed to all EQA participants and to the expert primary care laboratories. A 

method specific target value for the non-commutable control materials for each POC method should 

be established based on the results from the experts. Each single participant result can then be 

compared with this target value. By using separate quality specifications, combined assessment of 

method bias and single participant performance is possible. The best case scenario is when both 

results are within the quality specifications. The worst case scenario is when both results are outside 

the quality specifications and the results deviate in the same direction. Such a participant will report 

patient results that are greatly over- or under estimated. The idea is to accumulate the results from 

year to year, so that possible problems better can be addressed: “Is it the method or is it the 

participant performance that needs to be improved?” 
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5. Discussion 

Patients on warfarin treatment are commonly monitored in primary care. It is vital 

that the INR methods used in the monitoring process have good analytical quality in 

order to ensure safe patient treatment. As a consequence, the primary care 

laboratories are recommended to perform internal analytical quality control and 

participate in external analytical quality assessment schemes. This thesis and its 

associated papers aim to evaluate and improve these analytical quality control 

systems. In the following, some methodological considerations and main findings in 

the three papers will be discussed followed by some recommendations at the end. 

 

5.1 Methodological considerations 

5.1.1 Study population 

The primary care laboratories were randomly selected in paper I because they should 

represent all laboratories in primary care. However, due to the relative small number 

of participants it cannot be excluded that if other laboratories had participated 

different estimates of the analytical quality could have been obtained. Nevertheless, 

the aim of this study was not to evaluate the analytical quality of POC methods but to 

use these estimates in computer simulations to evaluate different IQC procedures. It 

is no reason to believe that the main conclusions would have been different if other 

primary care laboratories had participated. With a simulation of one thousand control 

runs, the internal validity of this study is considered strong. 

In paper III, the primary care laboratories were selected based on certain criteria in 

order to characterize them as “experts”. This was done because the results from these 

laboratories were used to estimate method bias and thus the user errors had to be 

minimized. However, it cannot be excluded that some of the deviating results 

between the expert’s POC method and the comparison method were due to user error. 

By choosing other experts the method bias could have been slightly different, but 
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since the biases were estimated based on a large number (one hundred) of patient 

samples the external validity is considered strong. In addition, the expert laboratories 

were selected from all parts of Norway and thus represented all “good” primary care 

laboratories in Norway. 

In paper II, the recruitment of the participants is essential for the results of the study 

and thus the internal validity. An invitation was sent to 30 of the 44 European 

countries defined by the United Nation (115). It cannot be excluded that some of the 

non-invited countries do provide EQA schemes for POC INR, although this is not 

likely (the non-invited countries were Albania, Andorra, Belarus, Bosnia and 

Herzegovina, Greece, Liechtenstein, Macedonia, Malta, Moldova, Monaco, 

Montenegro, San Marino, Serbia and Ukraine). In addition, even if an invited country 

reported that they did not provide EQA for POC INR, it cannot be excluded that other 

kinds of quality control for POC INR are provided in that country (e.g. control of 

patient self-testing performance). This limits the external validity of this study. 

 

5.1.2 Questionnaire 

In paper II, a questionnaire was distributed to the EQA organizers that provided EQA 

schemes for POC INR methods at the time this study was conducted. All organizers 

answered the questionnaire which consisted of 23 questions, both open and closed 

(see Appendix). Eleven of the twelve EQA organizers answered all 23 questions; 

only one organizer did not answer three questions regarding supervision and guidance 

of participants. This high response rate makes the internal validity of this study 

strong. The questionnaire was designed to handle several different POC INR schemes 

for each EQA organizer, because different control materials are often circulated to 

different POC methods, and different EQA approaches are therefore possible. This 

increased the external validity of this study. 

Since most of the European countries did not provide EQA for POC INR methods it 

would have been interesting to know the reason why. This question could thus have 
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been included in the study. However, there are reasons to believe that this is due to 

the challenge of obtaining suitable control materials, as reported from Germany 

(116). 

 

5.1.3 Designated comparison method 

The choice of comparison method was based on the fact that there is no reference 

method available for INR and thus a routine laboratory method was chosen. Because 

patients often are treated both in primary care and in hospitals, is it important to 

examine the agreement between methods used in these settings. Therefore, the most 

commonly used hospital method in Norway was chosen as the comparison method in 

both paper I and III. The designated comparison method was calibrated at the start of 

each study with the Swedish calibrators using the “direct INR calibration” procedure 

(18). As an alternative, the designated comparison method could have been calibrated 

with a reference thromboplastin of “higher order”, i.e. with a rabbit IRP using the 

“full WHO ISI calibration” procedure, in order to give more “true values”. This could 

have increased the validity of the bias estimations in paper III, but it would not have 

reflected the real situation in Norway where this calibration procedure is not used. 

The comparison between POC methods and routine hospital methods in paper III 

could therefore not have been done. In paper I, in which the IQC routines were 

examined, a “full WHO ISI calibration” procedure would not have been of any value 

because the aim of this study was to detect changes in systematic errors and thus the 

stable biases of the POC methods were ignored. However, the biases were not 

ignored for the 120% rule, but again this calibration would not have represented the 

common IQC practice in Norway and thus the results would not have been valid. 

The designated comparison method is a key factor in bias estimation. ISO (52) state 

that a routine measurement procedure that is traceable to the manual tilt-tube 

technique with an IRP may be used to assign the reference values. By choosing a 

different comparison method in paper III other bias estimates could have been 

obtained due to the limited harmonization of INR methods (117). To ensure that the 
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designated comparison method represented “a typical Norwegian hospital method”, 

the results in paper III were adjusted by using a regression equation based on three 

fresh frozen control plasmas with assigned values. The assigned values were the 

median of Norwegian laboratories using the same method as the designated 

comparison method. The external validity of the estimated biases is therefore good. 

However, the principles of the proposed model are more important in this paper than 

the actual results. If a different comparison method had been chosen the principles of 

the model would still have been valid. 

A strength in both paper I and III was that only one lot number of reagents was used 

on the comparison method and only one lot of lyophilized control materials was used 

on the POC methods. This avoids possible lot-to-lot variability and strengthens the 

internal validity of the studies. Different lot numbers of POC reagents were used in 

paper III, making lot-to-lot comparisons possible, both by using native patient 

samples and by using lyophilized control materials. This is a strength of this study. In 

paper I, however, different lots of POC reagents would have resulted in false high 

between-laboratory variation estimations and thus the computer simulation inputs 

would not have been correct. Therefore, only one lot of POC reagent was used in 

paper I. 

 

5.1.4 Split sample procedure 

The split sample procedure with native patient samples is commonly used in method 

comparison studies, both when two POC methods are compared and when a POC 

method is compared with a hospital method. This procedure has also been used in 

EQA and IQC. The split sample results are assessed differently dependent on the 

purpose of the comparison, and this will be addressed in the following sections. 

In method comparisons, all split sample results are assessed together and different 

statistical calculations can be made, such as for example mean deviation (bias) 

between the POC method and the comparison method, regression analysis and 
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difference plot (118). The use of split sample procedure in method comparison 

studies is recommended by the CLSI and ISO (52, 118), and this procedure was 

modified and used in paper III. The advantage of using split sample is the use of 

commutable control samples, i.e. fresh native patient samples. 

When split sample procedure is used in EQA schemes, one split sample result for 

each participant is assessed. This approach has been reported useful when there are 

no suitable control materials available (93). Another study (111) which has compared 

four different EQA approaches for patients (traditional EQA schemes with and 

without supervision, split sample procedure between the patient’s POC method and 

the clinic’s POC method, and split sample procedure between the patient’s POC 

method and a hospital method) concluded that the best approach was the traditional 

EQA schemes without supervision (personal guidance) or the split sample procedure 

between a patient’s POC method and a clinic’s POC method. The EQA split sample 

procedure against a hospital method is considered less useful because it is difficult to 

locate a possible error of the POC method when only one split sample result is 

assessed (111, 119). This is because it includes pre-analytical factors and the 

performance of the hospital method. Assessment of a single split sample result was 

therefore not used in paper III. 

The purpose of IQC is to detect changes in analytical quality (random and systematic 

errors) and to estimate the analytical imprecision of a method. However, when the 

split sample procedure is used none of these issues are suitable addressed. In paper I, 

the probability of error detection was higher using a lyophilized control material than 

using the split sample procedure. This was because the imprecision of the control 

sample measurements was lower than the imprecision of the split sample 

measurements. Thus, it was recommended not to use the split sample procedure as a 

substitute for the use of control materials in IQC. Monitoring of the analytical 

performance of a single laboratory should be performed by using suitable control 

materials. The optimum is to use control materials commutable with patient samples. 

If the materials are non-commutable, the target value must be changed when there is 

a change in lot number of either the control material or the POC reagent (120). The 



 73 

split sample results can only be evaluated retrospectively, whereas the results from 

internal control materials can be evaluated “on the spot”. Another drawback of using 

the split sample procedure in IQC is that the stable analytical bias must be corrected 

in order to use some of the control rules (e.g. 12S and 13S), and this may be impractical 

and difficult for the primary care laboratories to perform. Consequently, a percent 

deviation limit is used instead, such as the 120% rule which is commonly used in 

Norway. The biases of the POC methods are not corrected, and as shown in paper I 

this resulted in a high false alarm rate for POC methods with a positive bias in 

detecting a positive change in systematic error (and vice versa; for POC methods with 

a negative bias in detecting negative changes in systematic errors). The split sample 

procedure is thus only suitable for method comparisons, in which one primary care 

laboratory can estimate the bias of their POC method compared to a hospital method. 

Estimation of the analytical imprecision of the POC method is not possible using the 

split sample procedure. This must be estimated either by using a control material or 

by using patient samples analyzed in duplicate on the POC method. 

 

5.2 Discussion of results 

5.2.1 EQA schemes and control materials for POC INR methods 

Paper II showed that only a few countries in Europe provide EQA schemes for POC 

INR methods and that there is a vide variation in how these schemes are organized. It 

seems that it is a difficult task to obtain suitable control materials, especially for 

capillary methods. Consequently, alternative variants have been developed. One 

approach is the split sample procedure with native patient samples, and another is the 

use of the “on-board” QC system for the INRatio instruments. The latter approach is 

provided in Austria and the Czech Republic and is developed by the fact that there 

are no commercial control materials available for this instrument; only fresh patient 

samples can be used. All participants in the two countries receive test strips from one 

batch and are asked to analyze one arbitrary patient sample (fresh capillary sample). 
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The instrument displays two QC values (in seconds) for each patient result and the 

participants are asked to report the two QC values only. The two target values are the 

median from all participants from that specific batch of test strip. This EQA approach 

can be classified as category 4 (see 1.7.3) in which commutable samples are used and 

evaluation of the participant performance and the between-laboratory variation of one 

reagent lot is possible. However, evaluation of lot-to-lot variation is not possible 

since only one lot is distributed to all participants. In addition, the harmonization of 

methods cannot be assessed because this EQA approach is addressed to one POC 

method only. 

Paper II showed that the most commonly used control material in EQA schemes for 

POC INR in Europe is lyophilized plasma. Different control materials are provided to 

the different POC INR instruments, and method specific target values are used. Only 

one EQA organization (the Federation of Netherlands Thrombosis services) uses a 

native-like material, i.e. fresh frozen plasma to the CoaguChek participants and fresh 

frozen plasma with added red blood cells to the ProTime participants (all the 

participants must in addition add a calcium chloride solution to the materials). These 

materials are, however, not suitable in EQA schemes for primary care laboratories 

mainly because of the limited stability (all participants must analyze the controls on 

the same day). Consequently, these materials are distributed to anti-coagulation 

clinics only.  

Another alternative control material to the lyophilized materials is provided in Wales, 

where an artificial liquid material is distributed to the CoaguChek participants. The 

material is based on bovine plasma with added stabilizers and dyes to make it look 

like whole blood. The advantage of using this material is that neither addition of 

water nor calcium chloride is required, and the pre-analytical errors are therefore 

reduced. The drawback is that the material is sent frozen which is a practical and 

economical challenge for the EQA organizers and that the material is not based on 

human plasma which may result in non-commutability with patient samples. 
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5.2.2 Novel EQA model 

In paper III, a novel EQA model was proposed. The model is a combination of 

method comparison and traditional EQA of a single participant. Split sample 

procedure with native patient samples was used to assess agreement between 

methods, and lyophilized control plasmas were used to assess single participant 

performance. The two assessments were then combined in one figure. The POC 

methods were assessed in the hands of the user. A similar approach has been 

proposed by Tripodi et al. (112) for POC INR methods used for patient self-testing. 

The patients analyzed three control plasmas on their POC method and the results 

were compared with the method specific target value. In addition, a split sample from 

each patient was analyzed both on the patient’s POC method and at a hospital 

method. The main difference between this study and the proposed model in paper III 

is that each split sample result was assessed in the Tripodi study (like an IQC result), 

whereas the mean of all split sample results were assessed in paper III (method bias). 

Single split sample results are influenced by both bias and imprecision, whereas the 

influence of imprecision are reduced considerable when mean of all split sample 

results is assessed. The proposed model in paper III is thus more suitable to assess 

trueness of POC methods. Another approach for trueness assessment is established by 

the ECAA where five lyophilized control plasmas with certified INR values are used 

to assess one type of POC INR method (109). As discussed previously (see 1.7.3), 

this approach has however some disadvantages. A third approach is developed by 

Ross et al. (121), in which the matrix effect of a control material is estimated. By 

correcting for this matrix related bias in the establishment of the reference target 

value, trueness of methods as well as trueness of each single participant was assessed. 

This approach is, however, difficult to implement for INR methods because of the 

lack of a functional reference method (49). 

Already in 1996, Libeer et al. (122) suggested that a selected group of participants 

could use the split sample procedure with native patient samples to estimate method 

bias once a year. The proposed model in paper III is an elaboration of this suggestion. 

The novel of this model is that it combines the evaluation of method bias with the 
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evaluation of the single participant performance. Hence, it is possible to address 

whether it is the method or the participant performance, or both, that needs to be 

improved. 

 

5.2.3 Analytical quality goals used in EQA for POC INR 

Paper II showed that the most common acceptability limit used in EQA schemes for 

POC INR was a deviation of ±15% from a method specific target value. All EQA 

organizers used a percent deviation limit from the target value; none used the z-score. 

However, two organizers reported that they take the uncertainty of the target value 

into account before calculating the limits; a target interval is used instead of a target 

value. This is due to the fact that the target value always is associated with an 

uncertainty, and to avoid that a larger proportion of results falls outside the limits in 

low level than in high level. 

The acceptability limits used in EQA are often set as a minimum standard, and an 

EQA result within the limits does not necessarily indicate good analytical quality 

(107). Consequently, two organizers have divided the acceptability limits into 

categories (good, acceptable and poor). The reported acceptability limits varied 

between 12% and 30%, indicating that an EQA result could be assessed as acceptable 

in one country and unacceptable in another. The limits seem to be narrower in 

schemes used for educational purposes compared to schemes where participation is 

mandatory and have legal consequences. Ideally, for similar schemes the 

acceptability limits should be equal across countries and based on “clinical outcome”. 

A collective opinion paper (123) state that future effort should be put in harmonizing 

the EQA acceptability limits across Europe, and that the best approach to determine 

these limits is by biological variation. It is not known which step in the quality goal 

hierarchy the reported acceptability limits in paper II are based on. This question 

could have been included in the questionnaire. 
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5.2.4 Analytical quality of POC INR methods 

Control of the analytical quality of a method does not automatically result in quality 

improvement (122). IQC and EQA can only monitor and assess the analytical quality. 

Therefore, it is important that the laboratories take some actions to improve quality if 

the requirements are not meet. However, it is better to prevent errors than to correct 

them (44). 

 

Imprecision 

The analytical imprecision (repeatability) of Thrombotrack, CoaguChek S and 

Hemochron Jr. Signature was estimated in paper I, both with lyophilized control 

materials and with native patient samples. The CV results were 1.9% and 1.5% for 

Thrombotrack, 7.3% and 5.7% for CoaguChek S, and 9.4% and 8.9% for Hemochron 

Jr. Signature, respectively. Thrombotrack fulfilled the quality specification based on 

biological variation for patients on warfarin treatment (CV ≤ 5.4%) (73-76), 

specification based on clinician’s opinion (CV ≤ 4.1%) (79) and specification based 

on professional recommendations (CV ≤ 5%) (20, 81), whereas CoaguChek S and 

Hemochron Jr. Signature did not meet these requirements. Other studies found a 

CV=3.0% for Thrombotrack (124), CV=3.4% (125) and CV=5.5% (126) for 

CoaguCheck S, and CV=8.5% for Hemochron Jr. Signature (127). 

When the analytical precision of a method is poor, it is a challenge to perform IQC 

(44). One criterion for analytical variation is that it should be less than 1/6 of the 

maximum allowable error, which is characterized as “six sigma performance” (57). In 

this situation, it is easy to find a control rule which gives a PED > 90% and a PFR < 

5%. At four to five sigma performance the control rule(s) must be carefully selected 

and more effort must be put in the IQC administration. At less than four sigma, the 

IQC becomes almost impossible and useless because of the low PED and high PFR 

(57). This was seen in paper I where CoaguChek S achieved 4.1 sigma performance 

and Hemochron Jr. Signature achieved 2.6 sigma performance (the calculations are 

based on the CVwithin-day estimates from duplicate patient samples. The maximum 
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allowable bias was set to 15%, the maximum allowable analytical variation was set to 

5%, and the stable bias was ignored). Consequently, no control rule was optimal for 

these instruments. The corresponding number for Thrombotrack was 15.5 sigma, 

meaning that all rules were useful. In primary care, it is common that the laboratories 

use a fixed percent control limit of for example 10%. The control rule 110% 

corresponded to 15S for Thrombotrack, 11.5S for CoaguChek S and 11S for Hemochron 

Jr. Signature (calculated based on the CVwithin-day estimates from duplicate control 

samples). Consequently, this control rule was useless for CoaguChek S and 

Hemochron Jr. Signature with a false error rate of 27% and 29%, respectively (for 

n=1). 

 

Bias and accuracy 

In paper III, the most commonly used POC methods were compared with the most 

commonly used hospital method in Norway. CoaguChek XS Plus and Simple Simon 

fulfilled the analytical quality specification of bias less than 6% (based on 

professional recommendations) (81) and bias less than 2% (based on biological 

variation for healthy individuals) (72), whereas Thrombotrack did not meet this 

requirements. However, all three methods fulfilled the ISO (52) requirements of bias 

less than 0.3 INR in level 2.0-4.5 INR and the inaccuracy requirement of at least 90% 

of the POC results within 30% of the comparison method. Only the Thrombotrack 

instrument did not fulfilled the Norwegian inaccuracy requirements of at least 95% of 

the POC results within 20% of the comparison method (20). 

One limitation of the bias estimates in paper III is that there were few samples above 

4.5 INR, especially for CoaguChek XS Plus. Bias in high INR level can theoretically 

be different from bias in low or therapeutic level because the methods are calibrated 

for the INR level 1.5-4.5 only (13). However, a study which has investigated the 

analytical quality of CoaguChek XS Plus in level 4.5-8.0 INR found that bias was  

-0.1% compared with a hospital method (128), which were similar to the biases found 

in paper III. A review of the analytical quality of POC INR methods for patient self-
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testing performed by Christensen and Larsen in 2012 (54) showed that the reported 

biases for CoaguChek XS Plus varied from -0.40 INR to 0.13 INR. A recent 

publication found a positive bias of 0.25 INR for CoaguChek XS Plus in the 

therapeutic level (129). This discrepancy in results could indicate that the comparison 

methods used in the different studies were not harmonized. 

Paper II showed that the CoaguChek instruments were the most commonly used POC 

INR methods in Europe. The Thrombotrack and Simple Simon instruments are most 

common in the Nordic countries and only a few studies have investigated the 

analytical quality of these instruments. The review by Christensen and Larsen did not 

include Thrombotrack and Simple Simon because these instruments are not suitable 

for patient self-testing (they are wet chemistry and some laboratory experience is 

therefore required). However, the Scandinavian evaluation of laboratory equipment 

for primary health care (SKUP) found that Simple Simon had a bias of +0.13 INR 

and 98% of the samples were within the quality specification of 20% compared with 

a hospital method (130). Another study showed that Simple Simon had a bias of 

+5.1% compared to a hospital method (131). These two studies indicate that the 

harmonization between Simple Simon and the hospital methods in Norway is 

acceptable. The bias of Thrombotrack has been reported by SKUP (124) to be +0.64 

INR, and only 40% of the results were within the quality specification of 15% 

compared with a hospital method. These findings were similar to another study (132) 

which found a bias of +0.54 INR and 57% of the results were within the quality 

specification of 0.5 INR compared to a hospital method. After the SKUP study in 

2000, the manufacturer changed the traceability chain of the thromboplastin used on 

the Thrombotrack instruments, in order to improve harmonization with the 

Norwegian hospital methods (see 1.3.4). Even though paper III showed that the bias 

has been smaller (+0.2 INR) the harmonization is still not satisfactory. 

Already in 1959, P. A. Owren claimed that widely differing results could be seen by 

using different thrombplastins (133). The INR system was therefore developed in 

order to standardize the analysis (12). The principle is that the ISI value should 

correct for the sensitivity of different thromboplastins and the INR value should 
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therefore be independent of the thromboplastin used. It has been shown that different 

thromboplastins have different sensitivities (134). However, even if the ISI corrects 

for large differences between thromboplastins and methods, INR discrepancies can 

still be seen (11). It is important to remember that calculation of INR is based on 

mean values, and single patient results can therefore deviate much from one method 

to another. Several publications have reported poor agreement between methods (8, 

117, 135), and this indicates that more effort should be put in the harmonization 

process. Principally, when the methods are not harmonized common reference 

intervals cannot be used (136). Therefore, different therapeutic intervals for INR 

monitoring could have been established for different methods. 

 

5.2.5 Recommendations 

Some recommendations for analytical quality control of POC methods can be 

proposed based on the findings in paper I, II and III and other publications. The 

evidence of the following recommendations is given as references, but level of 

evidence and strength of recommendation have not been addressed. 

 

Internal quality control 

First of all, there is little published evidence that IQC of POC methods actually leads 

to quality improvement. However, it is recommended that POC users should perform 

IQC (104, 137, 138), and that the in-built electronic controls are not sufficient (104). 

IQC of POC INR methods can be performed by using control materials or by using 

the split sample procedure (89). However, paper I showed that the probability to 

detect true errors was higher when a control material was used compared to the split 

sample procedure. This is true as long as the imprecision of the control materials is 

lower than the imprecision of the split samples. The split sample procedure used as 

IQC (i.e. when one patient sample is analysed both on a POC method and on a 

comparison method, and the deviation between these methods is compared against a 
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control limit) is therefore not recommended because of the various factors that can 

influence the single split sample result. Split sample may, however, be useful in 

situations where there are no control materials available or when the control materials 

are poor, meaning that the imprecision is larger using the control material compared 

to using patient samples. However, in such cases only large errors can be detected. 

The split sample procedure should be restricted to method comparison studies, in 

which the primary care laboratory can estimate the stable analytical bias of their 

method compared to a designated comparison method (e.g. in cases where the 

primary care laboratory starts with a new analysis or change instrument/method). 

When this bias is established, IQC with the use of suitable control materials should be 

used to detect changes in bias.  

Recommendation 1: IQC of POC methods should be performed by using control 

materials suitable for the methods (104, 137, 138) (paper I) and not by the split 

sample procedure (paper I). 

The control rules should be chosen based on the prevalence of medically important 

errors (100). If the prevalence is high, a control rule with high PED should be 

preferred, and if the prevalence is low, a control rule with low PFR should be 

preferred(100). The prevalence of errors was, however, not investigated in this thesis. 

The control frequency should be related to the potential risk of harm of the patient, 

and it should be increased when the risk is increased (104). A higher control 

frequency is required for methods with large analytical imprecision compared to 

methods with low analytical imprecision. This is because the probability of early 

error detection is higher when the number of control samples is increased (59), and 

the number of erroneously patient results reported are thus depending on the time 

interval between each control measurement (139). This was seen in paper I where the 

CoaguChek S and Hemochron users would have to perform IQC more frequent than 

the Thrombotrack users to detect the same size of systematic error. 

Recommendation 2: The IQC frequency should be related to the prevalence of 

medically important errors and potential risk of harm to the patient (100, 104). 
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Recommendation 3: POC methods with poor analytical quality should be controlled 

more frequently than POC methods with good analytical quality (paper I). 

Note that the recommendations given from paper I are based on detecting changes in 

systematic errors. However, there is no reason to believe that the conclusions should 

be different for detecting an increase in random errors. 

 

External quality assessment 

It is recommended that POC users should participate in an EQA scheme whenever 

available (104, 137, 138). This recommendation is also valid for POC INR methods 

(89, 108). However, paper II showed that only a few countries in Europe offer an 

EQA scheme for POC INR methods and different types of schemes are provided. No 

recommendation can be given regarding which type of EQA scheme for POC INR 

methods leads to best quality improvements, as this was not examined in this thesis. 

However, the availability and organization of such schemes were investigated in 

paper II and the results showed that the most commonly used control material was 

lyophilized plasma with peer-group target values. Participation in EQA schemes is 

considered useful even when the control materials are non-commutable and peer-

group target values are used. In such schemes, the primary care laboratories can 

compare their result with others with the same POC method and the between-

laboratory variation can be assessed. In addition, participation has an educational 

aspect with focus on quality improvement. It is assumed that participation in such 

schemes will improve the quality, but the evidence for this assumption is limited. No 

quality improvement can be achieved simply by participate in EQA; unacceptable 

results must be followed by corrective actions. 

Recommendation 4: Users of POC methods should participate in an EQA scheme 

whenever available (104, 137, 138) (paper II). 

EQA schemes with non-commutable control materials and peer-group target values 

can be considerably improved by implementing the proposed model presented in 
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paper III, and it has been recommended that EQA organizers should implement this 

model (140). As a consequence, the primary care laboratories will get more 

information about the analytical quality of their POC method. By implementing the 

proposed model, the schemes become more useful without the need to distribute 

native samples to all participants. For the EQA organizers the proposed model might 

be simpler and easier to carry out than traditional method comparison studies because 

they will often have limited access to patients. In addition, several different methods 

can be compared to the same designated comparison method, meaning that biases of 

different methods can be compared and harmonization between methods can be 

assessed. Lot-to-lot-evaluations can also be performed using this model. The model 

can in principle be implemented for all constituents, but for practical reasons the 

sample stability should for example be at least 24 hours (the samples must be 

transported from the primary care laboratories to the comparison method). This 

model is thus not suitable for e.g. glucose. The expert primary care laboratories and 

the designated comparison method should be carefully chosen in order to establish 

valid bias estimations. The analytical quality specifications should also be carefully 

selected. By using this model, EQA organizers should be able to advise the 

participants against using poor methods. 

Recommendation 5: EQA organizations should implement the proposed EQA model 

presented in paper III in order to improve the utility of EQA schemes that use non-

commutable control materials (140). 
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6. MAIN CONCLUSIONS 

This thesis and its associated papers aimed to evaluate and suggest improvements of 

the analytical quality control of INR methods used in primary care, and the main 

conclusions were: 

 Internal quality control: The probability of detecting systematic errors was 

higher when the primary care laboratories used lyophilized control materials 

compared to using patient split samples, for all the investigated control rules. 

The probability of false alarms was, however, the same. IQC of POC INR 

methods should therefore be performed by using control materials and not by 

the split sample procedure. 

 

 External quality assessment: Most European countries do not offer EQA 

schemes for POC INR methods. Only 12 EQA organizations in nine European 

countries reported that they provide this service. There is a vide variation in how 

these schemes are organized, but the most common is to use lyophilized control 

materials, establish peer group target values, use an acceptability limit of 15% 

and distribute four samples per year. 

 

 External quality assessment: A new EQA model was developed in order to 

improve EQA schemes that use non-commutable control materials. In this 

model, native patient samples were used in combination with non-commutable 

(lyophilized) control materials in order to assess both the POC method bias and 

the single-participant performance. By using this model the primary care 

laboratories will get more information about the analytical quality of their POC 

method. 
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7. FUTURE PERSPECTIVES 

Analytical quality control of POC methods faces many challenges. Some of these are 

addressed in this thesis (exemplified for POC INR methods), but many remain 

unsolved. An important question is whether or not analytical quality control really 

leads to quality improvement. Simply performing analytical quality control does not 

automatically improve the quality. Studies are needed to investigate how the primary 

care laboratories handle an unacceptable control result and examine if these 

corrective actions actually leads to quality improvement that will benefit the patient. 

Such studies are important but may be challenging to conduct. Another important 

aspect in analytical quality control is the quality of the control materials. No control 

system is of any value if the control results do not reflect the patient results. A 

deviating control result should indicate that the patient results will deviate in the same 

way. However, if the control material is not commutable this assumption may not be 

valid. Future studies should investigate the commutability of control materials. 

The EQA model presented in this thesis could be further developed. The suggested 

number of expert laboratories and patient samples could be further evaluated and 

optimized in order to obtain valid bias estimates and at the same time keep the model 

easy to perform on a regular basis. The EQA organizers could for example 

collaborate in performing this model so that the workload is reduced. The model 

could in addition be modified to fit other laboratory methods that are not POC 

methods. Non-commutable control materials are often used in EQA schemes for 

hospital laboratories and implementation of this model could improve the evaluation 

of traceability and inter-method harmonization for several different constituents. 

Noklus will implement the proposed model in the near future for INR in primary care 

and maybe also for other constituents. 
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