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Abstract

A valuation model for equity-linked life insurance contracts incorpo-
rating stochastic interest rates is presented. Our model generalizes some
previous pricing results based on deterministic interest rates. Moreover,
a design of a new equity-linked product with some appealing features is
proposed and compared with the periodical premium contract of Brennan
and Schwartz (1976). Our new product is very simple to price and may
easily be hedged either by long positions in the mutual fund of linkage or
by European call options on the same fund.

1 Introduction

Equity-linked or unit-linked insurance contracts link the amount of bene�t to
a �nancial asset. This asset could be a certain stock, a stock index, a foreign
currency, etc. For simplicity, we assume it is a mutual fund, commonly seen in
practice. Such products seem to o�er the insurance companies as well as the
insurance customers advantages compared to traditional products. Customers
may bene�t from higher yields in �nancial markets and then again, the insur-
ance industry may bene�t from o�ering more competitive savings products. In
addition, customers usually have some 
exibility with respect to choosing, and
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subsequently changing, the mutual fund for linkage. Thereby they may in
uence
the amount of �nancial risk of their policies.

Compared to classical insurance products, one distinguishing feature of equity-
linked products is the random amount of bene�t. The principle of equivalence,
based on the philosophy that a company's income (premiums), and expenses
(paid bene�ts) should balance in the long run, the traditional basis for pricing
life insurance policies, does not deal with random bene�ts. Typically, �nancial
valuation theories are used together with elements of actuarial theory to price
such products.

The integration of the two types of theories is based on the assumptions of
independence between �nancial and mortality factors and risk neutrality with
respect to mortality. That is, the insurer does not receive any economic com-
pensation for accepting mortality risk. This assumption is also implicit in the
traditional principle of equivalence and is justi�ed by the traditional pooling
argument saying that the insurer can, at least in principle, eliminate mortality
risk by adequately increasing the number of identical and independent contracts
in his portfolio.

The focus of this paper is design and pricing of equity-linked contracts in a
model with stochastic interest rates.

Our set-up includes a simple model of a �nancial market. In this market
a mutual fund and default free bonds are traded. In order to keep the model
simple, we restrict ourselves to two sources of uncertainty. The �rst re
ects
risk connected to the interest rate, the second risk connected to the mutual
fund to which the policy is linked. For the stochastic interest rate we apply
the term structure model by Heath, Jarrow, and Morton (1992) (henceforth
referred to as HJM ). This is a rather general framework which, e.g., includes
the term structure models of Vasicek (1977) and Cox, Ingersoll, and Ross (1985)
as special cases.

First, we calculate single premiums of two types of equity-linked policies
which are similar to traditional pure endowment contracts, expiring upon sur-
vival at the term of the contract, and term insurances, expiring upon death
before the term of the contract. These contracts include the characteristics of
most interesting life insurance policies on single lives. Furthermore, under our
set of assumptions the treatment of �nancial risk is independent of how complex
the insurance contract is, and the results of this paper can easily be generalized
to more complex life insurance policies.

As is the case for traditional life insurance, also equity-linked products are
often paid by periodical premiums. For equity-linked insurance this periodical
premium is typically designed as an investment plan, i.e., a certain proportion
or a certain amount of the periodical premium is supposed to be invested in the
mutual fund to which the contract is linked.

The second object of this paper is the design of an equity-linked policy with-
out an explicit minimum guaranteed bene�t. However, the insurer guarantees
that the periodical premium would at least cover a given number of units of
the mutual fund. Thus, this guarantee on the periodical premiums leads to a
minimum guaranteed bene�t expressed in number of units, and not as a �xed
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amount.
We claim that this contract has some appealing features compared to the

periodical premium contract introduced by Brennan and Schwartz (1976) and
extensively studied in the literature. First, it resembles contracts sold in real-
world markets. Second, pricing and hedging of this contract is simple. Finally,
we demonstrate how insurance companies may use their knowledge about mor-
tality to level the periodical premiums, resulting in constant periodical premi-
ums which may be desirable from insurance customers' point of view.

The paper is structured as follows: Section 2 categorizes parts of the existing
literature on equity-linked policies. A description of the valuation framework
follows in section 3. In section 4 single premiums of contracts similar to tradi-
tional pure endowment contracts and term insurances are priced. In section 5
a new type of contract, inspired by real-world contracts, is suggested and com-
pared with the periodical premium contract of Brennan and Schwartz (1976).
Section 6 contains some concluding remarks.

2 Literature on equity-linked contracts

The �rst treatments of equity-linked contracts based on �nancial theory of which
we are aware are Brennan and Schwartz (1976), Brennan and Schwartz (1979a),
Brennan and Schwartz (1979b) and Boyle and Schwartz (1977), subsequently
(and somewhat ambiguously) referred to as BS. They recognized that the payo�
of an equity-linked contract with guarantee is related to the payo�s of certain �-
nancial options, and applied the option pricing theory initiated by the results of
Black and Scholes (1973) and Merton (1973). The more recent works are based
on the martingale pricing theory, an extension of the Black-Scholes-Merton the-
ory by Harrison and Kreps (1979) and Harrison and Pliska (1981).

The literature on unit-linked insurance is now rather abundant and may be
classi�ed along the following categories.

2.1 Structure of Bene�t

The BS-contract is an endowment contract on a single life, i.e., the bene�t is
payable at the term of the contract or upon death, whatever comes �rst. A part
of the single premium, in the case of a single premium contract, or otherwise a
�xed amount of each periodical premium, is deemed to be invested in a mutual
fund. Denoting byDt the market value at time t of the accumulated investments
in the mutual fund, the bene�t of this contract is

max[Dt; Gt];

where Gt is a possibly time-dependent deterministic minimum guarantee.
The relationship between this payo� and �nancial call and put options can

be seen by writing

max[Dt; Gt] = max[Gt �Dt; 0] +Dt = max[Dt � Gt; 0] + Gt:
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Here max[Gt � Dt; 0] is the payo� of a put option and max[Dt � Gt; 0] is
the payo� of a call option on the accumulated investments in the mutual fund,
both with exercise price Gt and �xed expiration t.

More complicated bene�ts including caps, i.e. upper limits, are discussed
in Ekern and Persson (1996) and Nonnenmacher and Russ (1997), as well as
in the current paper. Hipp (1996) considers contracts with annual minimum
guarantees in addition to a guarantee on expiration.

Persson (1993) analyzes a more general equity-linked insurance contract,
e.g., including two or more lives and disability insurance.

2.2 Stochastic Interest Rate in Life Insurance

Traditionally the interest rate used for valuation of life insurance contracts is
interpreted as the company's return on its investments. In a real world �nan-
cial environment this rate will depend on the chosen investment strategy, which
again depends on the company's attitude towards �nancial risk as well as legis-
lation.

Whereas the majority of the literature so far assumes deterministic interest
rates, empirical observations as well as current academic research stress the need
for models incorporating stochastic interest rates.

The current article as well as Bacinello and Ortu (1993b), Bacinello and
Ortu (1994), Nielsen and Sandmann (1995), Nielsen and Sandmann (1996), and
Kurz (1996) apply stochastic models of interest rates.

2.3 Premium payment

In contrast to most �nancial products which are paid by a single amount at the
initiation of the contract, life insurance products are usually paid by periodical
premiums. The BS-study also includes the case of periodical premiums, and
periodical payments have been further analyzed by Delbaen (1986), Bacinello
and Ortu (1993a), Bacinello and Ortu (1994), Nielsen and Sandmann (1995),
Nielsen and Sandmann (1996), and Kurz (1996).

Another view on periodical premiums has been taken by Aase and Pers-
son (1994), where periodical premiums have been constructed in the more tra-
ditional way, i.e. by distributing the single premium over the period in which
periodical premiums are supposed to be paid.

2.4 Hedging strategies

In addition to pricing issues for equity-linked products, �nancial theories may
also suggest some hedging or replicating strategies that the insurance com-
pany may (or may not) use in order to reduce the �nancial risk often asso-
ciated with such products. This problem has been studied by Brennan and
Schwartz (1979a), Aase and Persson (1994), Hipp (1996), and M�ller (1997).
Aase and Persson (1994) and M�ller (1997) use time continuous death prob-
abilities and in Aase and Persson (1994) a connection between the celebrated
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Thiele's di�erential equation of the actuarial sciences and the famous Black and
Scholes equation is developed.

3 The valuation framework

The �rst two subsections contain a brief overview over the �nancial set-up. De-
tails can be looked up in any advanced �nancial textbooks, such as Du�e (1996).
The last subsection introduces the insurance factors.

3.1 The �nancial assets

A time horizon T is �xed and the �nancial uncertainty is generated by a 2-
dimensional standard Brownian motion (W 1;W 2) de�ned on a probability space
(
;F ; Q) together with the �ltration (Ft; 0 � t � T ), satisfying the usual condi-
tions and representing the revelation of information. In particular, Q represents
the equivalent martingale measure. All trade is assumed to take place in a fric-
tionless market (no transaction costs or taxes, and short-sale allowed).

A unit discount bond is a default-free �nancial asset that entitles its owner
to one unit of account at maturity without any intermediate coupon payments.
We denote by Bt(s) the market price at time t for a bond maturing at a �xed
date s � t. By de�nition Bs(s) = 1.

We assume there is a continuum of such bonds maturing at all times s; 0 �
s � T .

Furthermore, we assume that a mutual fund is traded and that its market
price per unit St is given by the following stochastic di�erential equation under
the equivalent martingale measure:

dSt = rtStdt+ �1StdW
1
t + �2StdW

2
t ; (1)

where �1 and �2 are constants and the initial value of the process S0 is given.
Here rt represents the short term interest rate in the economy and

p
�21 + �22

may be interpreted as the instantaneous standard deviation of the rate of return
on the mutual fund. As will soon be apparent, the Brownian motionW 2

t is used
to model mutual fund speci�c risk.

3.2 The Gaussian HJM model

The primitives of the HJM-model are the volatility structure and the initial
instantaneous forward rates.

The volatility structure is given by the function �t(u); for t � u. We assume
it is deterministic, i.e., �t(u) is a deterministic function of u and t.

Then we denote by ft(u); t � u � T , the instantaneous forward rates pre-
vailing at time t � 0. From the general relationship between the instantaneous
forward rates and the bond price,
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Bt(s) = exp

�
�

Z s

t

ft(u)du

�
;

and since f0(u) for 0 � u � T is given, the bond prices at time zero are
known as well.

All relevant quantities are determined by the volatility structure and the
initial instantaneous forward rates. For example, the short term interest rate
under the equivalent martingale measure is given by

rt = f0(t) +

Z t

0

�v(t)

Z t

v

�v(s)dsdv +

Z t

0

�v(t)dW
1
v :

The assumption of deterministic volatility structure implies that rt is Gaussian,
hence negative values of rt have positive probability. This fact is a theoretical
drawback of Gaussian term structure models, but does not seem to present a
problem for reasonable parameter values.

The market price of the bond satis�es the following stochastic di�erential
equation under the equivalent martingale measure:

dBt(s) = rtBt(s)dt + a(t; s)Bt(s)dW
1
t ;

where

a(t; s) = �

Z s

t

�t(u)du;

and the initial value B0(t) is determined by the initial instantaneous forward
rates.

The quantity

v(t) = exp

�
�

Z t

0

rudu

�

is sometimes called the discount function and represents the stochastic present
value at time zero of one unit of account at time t.

In this model market prices of �nancial assets may be calculated as expec-
tations of discounted cash
ows under the equivalent martingale measure. In
particular, the market price at time t of a unit discount bond expiring at time
s may be calculated as

Bt(s) = EQ

�
v(s)

v(t)
jFt

�
;

6



where EQ [�jFt] denotes the conditional expectation under the probability
measure Q.

As a second example consider a European call option on one unit of the
mutual fund. The payo� of this option is max[St � G; 0], where the constant
G represents the exercise price. Denote the market price at time zero of the
described option with expiration at time t by �t(G). Given our model of the
�nancial market it follows that

�t(G) = S0�(d
1
t (G))� GB0(t)�(d

2
t (G)); (2)

where

d1t (G) =
1

�t

�
1

2
�2
t + ln

�
S0

B0(t)G

��
;

d2t (G) = d1t (G)��t;

�t =

sZ t

0

a(s; t)2ds + (�21 + �22)t� 2�1

Z t

0

a(s; t)ds;

and �(�) denotes the cumulative standard normal distribution function. See
Amin and Jarrow (1992). The volatility parameter �t depends on the volatility
structure (a(s; t)) as well as the volatility parameters of the mutual fund (�1
and �2), in addition to time to expiration (t).

3.3 Insurance factors

Let C(t) denote an arbitrary insurance bene�t payable at time t, possibly de-
pendent on the market value at time t of the mutual fund (formally, C(t) is
adapted to the �ltration (Ft; 0 � t � T )).

Let the random variable Tx, de�ned on another probability space (
̂; F̂; P ),
denote the remaining life time of an x-year old person. We assume that the
probability density function for Tx exists and denote it by fx(�). Let tpx =
P (Tx > t) denote the survival probability of an x-year old policy buyer. By
construction Tx is independent of W 1

t and W 2
t , hence it is independent of all

processes re
ecting �nancial quantities. Finally, as indicated and explained in
the introduction, we assume risk neutrality with respect to mortality.

4 Single premiums of insurance contracts

In this section we derive single premiums at time 0, for a life aged x, of some
life insurance contracts of the pure endowment and term insurance types.
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4.1 Pure endowment and term insurance types of con-
tracts

From the assumed risk neutrality with respect to mortality and independence
between mortality and �nancial risk, it follows that the market price at time 0
of a pure endowment insurance contract with bene�t C(T ) payable at time T if
the insured is alive is

� = T pxE
Q [v(T )C(T )] : (3)

Similarly, the market price at time 0 of a term insurance with bene�t C(t)
payable upon death at time t � T is

�1 =

Z T

0

EQ [v(t)C(t)] fx(t)dt: (4)

In the remainder of this section we consider three di�erent kinds of bene�ts:
C(1)(t) = 1, C(2)(t) = max[St; Gt], and C(3)(t) = max[min[St;Kt]; Gt]. In
the �rst example the bene�t is deterministic, as in traditional life insurance
contracts. This example is included to isolate the e�ect of the stochastic interest
rate. In the second example the bene�t is the maximumof the value of one unit
of the fund and a guaranteed amount Gt. In principle the amount the insurance
company is obliged to pay under this contract has no upper bound. Therefore
in the last contract a maximum amount, a cap, is included.

4.2 Deterministic bene�ts

We will calculate the single premiums of the policies at time zero. First we turn
to the �rst example and calculate the market premiums of the pure endowment
insurance and the term insurance. From the formulas of the previous subsection
we obtain

�(1) = TpxB0(T )

and

�1(1) =

Z T

0

B0(t)fx(t)dt:

For the pure endowment insurance the single premium is the market price at
time zero of one unit of account payable at time T multiplied by the probability
of payment.

For the term insurance B0(t)fx(t)dt can, similarly, be interpreted as the
market value at time zero of the expected payo� in the time interval (t; t+ dt).
The single premium is then the sum of these expected payo�s over the whole
term of the contract.
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These formulas resemble the corresponding classical formulas. However, note
carefully an important di�erence: The usual present values of future payo�s are
replaced with market values of future payo�s.

Persson (1998) derives similar results for traditional life insurance based on
the Vasicek (1977) model of the term structure.

4.3 Equity-Linked Policies with Guarantees

For the second example let

U1(t) = EQ[v(t)max[St; Gt]]:

Here U1(t) can be interpreted as the market value at time zero of a ben-
e�t which expires at time t with probability 1. We observe that the payo�
max[St; Gt] resembles the structure of the bene�t in the BS-model.

The calculation of the above expectation is presented in the following propo-
sition.

Proposition 1 The market value at time zero of the bene�t max[St; Gt] payable
at time t is

U1(t) = S0�(d
1
t (Gt)) + GtB0(t)�(�d

2
t (Gt)):

Proof 1 From equation (2) we know the time zero value of the claim max[St�
Gt; 0]. Observe that max[St; Gt] = max[St � Gt; 0] + Gt. The market price at
time zero of the last term is B0(t)Gt. The formula of Proposition 1 is then the
sum of the two time zero market values.

The resulting formula depends on the initial forward rates (B0(t)) and �ve
parameters: the parameters of the mutual fund price process (S0, �1, �2), the
guarantee (Gt), and time to expiration (t).

Incorporating the insurance aspects, the single premiums of the two contracts
can now be expressed by exploiting relations (3) and (4) as

�(2) = T px[S0�(d
1
T (GT )) + GTB0(T )�(�d

2
T (GT ))]

and

�1(2) =

Z T

0

[S0�(d
1
t (Gt)) + GtB0(t)�(�d

2
t (Gt))]fx(t)dt:

For constant interest rate these formulas reduce to the results in Theorem 1
and 2 of Aase and Persson (1994).
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4.4 Equity-linked policies with minimum guarantees and
capped bene�ts

We now turn to the third case. De�ne

U2(t) = EQ[v(t)max[min[St;Kt]; Gt]];

where Gt < Kt. This expression can similarly be interpreted as the market
value at time zero of the bene�t max[min[St;Kt]; Gt] payable at time t.

Proposition 2 The market value at time zero of the bene�t max[min[St;Kt]; Gt]
payable at time t is

U2(t) = S0[�(d
1
t(Gt))� �(d1t (Kt))] + GtB0(t)�(�d

2
t (Gt)) +KtB0(t)�(d

2
t (Kt)):

Proof 2 Observe that max[min[St;Kt]; Gt] = Gt+max[St �Gt; 0]�max[St �
Kt; 0]. Thus, its time zero market value is GtB0(t) + �t(Gt) � �t(Kt), where
�t(�) is given in expression (2).

By comparing this formula to the formula for U1(t), we note that it depends
on one more parameter, namely Kt, the cap. Observe that U2(t) < U1(t) since
high values (> Kt) of the mutual fund do not lead to higher bene�t because of
the cap.

As for the previous bene�t, by incorporating the insurance aspects, the single
premiums of the two contracts can now be expressed by equations (3) and (4)

as �(3) = TpxU
2(T ) and �1(3) =

R T
0 U2(t)fx(t)dt, respectively.

These formulas generalize the similar results under deterministic interest
rate in Proposition 2.1 and Lemma 3.4 of Ekern and Persson (1996) to the case
of stochastic interest rate.

5 A new equity-linked contract based on peri-

odical premiums

In this section we describe an equity-linked life insurance policy of the endow-
ment type, whose bene�t is linked to the market value of the mutual fund in
a speci�c way. There is no explicit guaranteed bene�t. Currently equity-linked
products without guarantees are sold, e.g., in Norway. However, for the con-
tract we analyze there is a guarantee expressed in number of units connected
to the periodical premium, which again leads to a time dependent minimum
guaranteed bene�t in number of units.

5.1 The periodical premium guarantee

Let Pt; t = 0; 1; :::; T�1, be the periodical premiumpaid at the beginning of each
year, if the insured is alive. Assume that the contract speci�es a �xed amount
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of the premium, denoted by dt, deemed to be invested in the mutual fund.
Without guarantees, the number of units acquired at time t should therefore be
equal to dt=St, but at this point we introduce the minimum guarantee provision,
expressed by a minimum number of units guaranteed at time t. Let gt represent
this guarantee, and nt denote the actual number of units deemed to be invested
in the mutual fund at time t. Thus,

nt = max

�
gt;

dt
St

�
; t = 0; 1; :::; T � 1:

The market value at time t of the periodical premium Pt must be equal to
the value of nt units at time t, i.e.,

Pt = ntSt = dt + gtmax[St � kt; 0] ; (5)

with kt = dt=gt.
The time t payo� of the minimumguarantee provision, Pt�dt, is then equal

to the payo� of gt call options on (units of) the mutual fund with exercise price
kt and maturity t.

Observe that the amount of periodical premium depends on the time t value
of the mutual fund and, thus, is stochastic.

5.2 The bene�t

If death occurs at time � between t and t+1, with t = 0; 1; :::; T�1, the bene�t
C(� ) is simply the market value at time � of the accumulated investments in
the mutual fund, i.e.,

C(� ) = S�

tX
j=0

nj;

whereas the bene�t at maturity T , due if the insured is alive, is

C(T ) = ST

T�1X
j=0

nj:

This contract thus merely represents a way of saving, and does not include any
additional coverage against unfavorable events such as death or disability.

5.3 Constant periodical premium

The life insurance policy just described is a pure �nancial instrument, in which
the mortality risk is completely absent from the insurance company's point of
view. The mortality risk, indeed, determines only the time to expiration of the
policy.
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If the insured wishes to pay a �xed periodical premium determined at the
inception of the contract, which is common in traditional life insurance, then
this premium will be a�ected by the mortality factors.

To see this, denote by P the constant periodical premium and observe that
the market value at time 0 of the stream of constant periodical premiums P ,
paid at the beginning of each year if the insured is alive, should equal the market
value of the stream of time dependent periodical premiums Pt, i.e.,

P

T�1X
t=0

B0(t)tpx =
T�1X
t=0

[dtB0(t) + gt�t(kt)] tpx;

where �t(�) for t > 0 is given in expression (2), and �0(k0) = max[S0 � k0; 0].
The right hand side represents the market value at time zero of the periodical
premium payments given by expression (5) paid until death or the term of the
contract, whatever comes �rst. The left hand side is simply the similar market
value at time zero of the constant periodical premiums P . From this equation
P is determined as

P =

PT�1
t=0 [dtB0(t) + gt�t(kt)] tpxPT�1

t=0 B0(t)tpx
:

Notice that P depends on the survival probabilities.
If, in particular, the amounts to be periodically invested in the mutual fund

dt and the minimumguaranteed numbers of units gt are constants, i.e., if dt = d
and gt = g for all t, then

P = d+ g

PT�1
t=0 �t(k)tpxPT�1
t=0 B0(t)tpx

; (6)

with k = d=g. The periodical premium for the minimum guarantee provision,
P � d, is proportional to the ratio between the time 0 value of a portfolio of
European call options on the mutual fund, all with the same exercise price but
di�erent maturities, and the time 0 value of a portfolio of unit discount bonds
with the same maturities of the options and held in the same proportions.

5.4 Financial risk and hedging

By this contract the �nancial risk exposed to the insured includes:

- the payment of high premiums, if the unit price of the mutual fund is
\high" at the premium payment dates,

- the collection of a low bene�t, if the unit price of the mutual fund is \low"
when the contract expires.

One of the ideas behind unit-linked insurance is that the fund of linkage
may represent a well diversi�ed portfolio in the economy. An example of a
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well diversi�ed portfolio is the market portfolio whose market value re
ects the
condition of the economy as a whole. Hence in a situation where the value of the
bene�t is low, the value of the whole market is low, implying that the amount of
bene�t is protected in \real terms". Another property of our suggested contract
is that in situations when the market value of the fund is high you still receive a
minimum number of units. Both this arguments indicate that that the second
point above is not as severe as it may seem at �rst glance.

The �rst point could be undesirable from the insured's point of view, but
we demonstrated in the previous subsection how the contract can be sold with
�xed periodical premium payments.

The major �nancial risk facing the issuer of this contract is the risk of a
future high market price of the fund. In this situation the guarantee becomes
e�ective. This risk may be substantially reduced, or even totally eliminated, by
the use of one or several hedging strategies explained below.

In the case of time dependent periodical premiums Pt if the insurer acquires
nt units of the mutual fund at each time t during the life of the contract, the
bene�t is replicated. By this dynamic strategy �nancial risk is not eliminated
since the insurer faces a loss in each period the guarantee becomes e�ective.

A similar dynamic strategy could be implemented also in the case of constant
periodical premiums. The replicating strategy described above would require to
invest in the mutual fund, at each time t, an amount exactly equal to Pt, but
in the case of constant premium the insurer receives P instead of Pt, and this
amount may not be enough for buying the speci�ed number nt of units of the
fund.

To hedge this risk at the inception of the contract the insurer could buy,
for each identical and independent policy in his portfolio, a fraction tpx of
contingent-claims with payo� at time t equal to max[Pt�P; 0], for any t between
0 and T � 1. Letting

h =

PT�1
t=0 �t(k)tpxPT�1
t=0 B0(t)tpx

and recalling that Pt = d+ gmax[St � k; 0] and P = d+ gh, then

max[Pt � P; 0] = gmax[St � (k + h); 0];

which corresponds to the payo� of g European call options on the mutual fund
with exercise price k + h and maturity t. Hence we have identi�ed the relevant
contingent claim for hedging as a European call option with exercise price k+h.
This hedging strategy ensures that the insurer has the amount Pt available at
each time t. Note that all �nancial risk is not eliminated since the amount
Pt is not enough to buy the appropriate number of units in periods where the
guarantee becomes e�ective.

Below we discuss how all �nancial risk may be eliminated from the insurer's
point of view already at the inception of the contract. If the insured dies before
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maturity T , the contract expires and the number of periodical premium guar-
antees issued by the insurer is reduced. Here we only discuss the case where the
insured survives. From a �nancial risk perspective this case represents in fact
the `worst case'.

There are two immediate ways the insurer may reduce the risk of a future
high market price of the fund at the time of initiation of the contract. He can
either buy units of the mutual fund or buy call options on the same fund with
appropriate exercise prices.

Assuming the insured will survive the term of the contract, the minimum
number of units he will be entitled to at time T is G =

PT�1
i=0 gt. If the insurer

buys G units of the mutual fund at time zero, he will be protected against future
high market values of the fund.

The same protection can be obtained by buying gt call options on the mutual
fund with expiration t and exercise price kt for all t between 0 and T � 1.

By following the dynamic strategies indicated above for both constant and
time dependent periodical premium the insurer will at each time have su�cient
investments in the fund to cover the bene�t. This strategy is not riskless since
the insurer su�ers losses in periods where the guarantees are e�ective.

By appropriate investments in the fund of linkage or European call options all
�nancial risk may be eliminated already at the inception of the contract. Many
details of these hedging strategies are left out here, in particular comparisons
of capital requirements and associated costs. Our main point here is just to
demonstrate that the suggested insurance contract may easily be hedged by
standard �nancial instruments.

5.5 Comparison with the BS-contract

The structure of the constant periodical premium contract presents some analo-
gies, but also a fundamental di�erence, with respect to the celebrated BS-
contract, in which there is no closed form solution for the periodical premium
neither under the assumption of deterministic interest rates, see also Delbaen (1986),
nor under the Vasicek (1977) model for the short term rate, see Bacinello and
Ortu (1994). Also in the BS-contract a �xed part, d, of the periodical premium is
deemed to be invested in a mutual fund, but the minimum amount guaranteed,
at death or maturity, is not stochastic. In our model, instead, this guarantee
is expressed in units of the mutual fund, and therefore its monetary value is
unknown a priori. This fact, however, may constitute an appealing feature from
the insured's point of view and, at the same time, allow him to hedge against
alternative sources of economic risk such as in
ation, currency devaluation, etc.
Observe, indeed, that the reference fund with unit price St could be composed
of equities, as well as of units of a foreign currency, gold, silver, and so on.

In order to compare our bene�t C(t) with the corresponding one in the BS-
model, assume now that in case of death during the time interval (t� 1; t] this
bene�t is paid at the end of the year, i.e. at time t instead of at the time of
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death. The relations of subsection 5.2 are modi�ed in the following way:

C(t) =
t�1X
j=0

max

�
gSt;

d � St
Sj

�
; t = 1; : : : ; T:

Observe that

C(t) � max

2
4gtSt; t�1X

j=0

d � St
Sj

3
5 ;

so that there is an implicit minimum bene�t guaranteed at time t, given by the
market value of g � t units of the mutual fund. We recall that in the BS-contract
the bene�t, that we denote by C�(t), is instead given by

C�(t) = max

2
4Gt;

t�1X
j=0

d � St
Sj

3
5 ;

where Gt represents the minimum amount guaranteed at time t, expressed in
the usual unit of account.

It is also interesting to compare the periodical premium for the minimum
guarantee provision in both models. As already said, in our model this market
price is proportional to the time 0 value of a portfolio of European call options
on one unit of the mutual fund. We recall that for the BS-contract the periodical
premium, denoted by P �, is instead given by

P � = d+
EQ

hPT

t=1 �tv(t)max
h
Gt �

Pt�1
j=0 d � St=Sj; 0

ii
PT�1

t=0 B0(t)tpx
; (7)

where

�t =

(
t�1px (1� 1px+t�1) ; t = 1; :::; T � 1

T�1px; t = T

represents the probability that the policy expires at time t. The periodical
premium for the guarantee, P � � d, is then proportional to the value at time 0
of a portfolio of European put options on the accumulated investments in the
mutual fund, each one with maturity t and exercise price Gt, see Bacinello and
Ortu (1994).

We observe, however, that for the BS-contract the minimum guarantee Gt

can be �xed in such a way to supply the insured with an adequate coverage
against early death. In our model, instead, the minimum guarantee could reach
an adequate level only in the long run so that, even in the case of constant
premiums, our policy may represent, from the insured's point of view, mainly
an appealing way of investing money, but not a suitable coverage in the case
of death during the �rst years of contract (since the mortality component has
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the only function of levelling the premium). Anyway, the goal of getting, in the
same time, an interesting �nancial and insurance product can be easily attained
if the insured buys, in addition to the policy here described, a standard term
insurance contract.

5.6 Numerical results

In this subsection we present some numerical results for the constant premiums
P and P � de�ned in expressions (6) and (7) respectively, all obtained under the
assumption of a constant volatility structure, i.e. �t(u) � � for all t; u.

It is easy to check analytically the behavior of P with respect to the para-
meters on which it depends by the sign of its partial derivatives, all in closed
form. In particular this premium is increasing with respect to the initial unit
value of the mutual fund S0, the minimum number of units guaranteed at each
premium payment date g, the amount d deemed to be periodically invested in
the fund, the instantaneous forward rates f0(t) prevailing at time 0, the volatil-
ity parameters �; �1; �2 (at least when they are positive), while it is decreasing
with respect to the time 0 prices of unit discount bonds B0(t). It is not a pri-
ori clear the behavior of P with respect to the maturity T and to the survival
probabilities tpx (or, alternatively, to the age x of the insured at the inception
of the contract).

To study this behavior, to get a numerical intuition for the price of the
minimum guarantee provision in our contract, P � d, and to compare it with
the corresponding price in the BS-model, P � � d (not in closed form), some
numerical examples are presented below.

For comparison, we have �xed the BS-parameter Gt = gtS0=B0(t). This
quantity can be interpreted as the riskless return at time t of the amount gtS0
invested at time 0 in unit discount bonds with maturity t. If the same amount
were invested in the mutual fund, its stochastic return at time t, gtSt, would
give exactly the implicit minimum guaranteed bene�t in our model, as shown
in the previous subsection.

To evaluate the expectation in expression (7) Monte Carlo simulations are
employed. To this end we have simulated 1; 000; 000 trajectories for the standard
Brownian motions W 1

t and W 2
t in the time interval (0; T ] and used them for

building corresponding trajectories of

rt = f0(t) +
�2t2

2
+ �W 1

t ;

v(t) = exp

�
�

Z t

0

rudu

�
;

and

St =
S0
v(t)

exp

�
�
t

2
(�21 + �22) + �1W

1
t + �2W

2
t

�
:
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As for the term structure of interest rates at time 0, in all our numerical
examples we have set f0(t) = r0 + qt (so that B0(t) = exp

�
�r0t � qt2=2

�
), and

although in most cases we have �xed q = 0 (
at term structure), we have also
considered increasing (q > 0) and decreasing (q < 0) term structures. Moreover,
we have �xed d = g = S0 = 1. Finally, we have constructed the probabilities

tpx and �t from the Italian Statistics for Males Mortality in 1991.
Table 1 reports some results obtained when the maturity T varies between

5 and 15 while the other parameters are �xed.

TABLE 1

x = 40; f0(t) = r0 = 0:04; � = 0:06; �1 = 0:03; �2 = 0:2

T P P � P � � P
5 1.1630 1.2025 0.0395
6 1.1984 1.2405 0.0421
7 1.2343 1.2801 0.0458
8 1.2711 1.3214 0.0503
9 1.3088 1.3628 0.0540
10 1.3473 1.4060 0.0587
11 1.3865 1.4467 0.0602
12 1.4263 1.4880 0.0617
13 1.4666 1.5246 0.0580
14 1.5073 1.5593 0.0520
15 1.5481 1.5915 0.0434

From Table 1 one can see that both P and P � are increasing with respect
to the maturity T . The price for the minimum guarantee provision is never
negligible, and for the BS-contract it is on average 514 basis points (bp) higher
than for our contract.

In Table 2 we show the behavior of the premiums with respect to an age of
the insured at time 0 between 30 and 50.
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TABLE 2

T = 10; f0(t) = r0 = 0:04; � = 0:06; �1 = 0:03; �2 = 0:2

x P P � P � � P
30 1.3480 1.4067 0.0587
31 1.3480 1.4067 0.0587
32 1.3480 1.4067 0.0587
33 1.3479 1.4067 0.0588
34 1.3479 1.4066 0.0587
35 1.3479 1.4066 0.0587
36 1.3478 1.4065 0.0587
37 1.3477 1.4064 0.0587
38 1.3476 1.4063 0.0587
39 1.3475 1.4061 0.0586
40 1.3473 1.4060 0.0587
41 1.3471 1.4058 0.0587
42 1.3469 1.4055 0.0586
43 1.3467 1.4053 0.0586
44 1.3464 1.4050 0.0586
45 1.3462 1.4047 0.0585
46 1.3459 1.4044 0.0585
47 1.3455 1.4040 0.0585
48 1.3451 1.4036 0.0585
49 1.3447 1.4031 0.0584
50 1.3442 1.4026 0.0584

FromTable 2 one can observe that both P and P � are decreasing with respect
to x. However, the absolute di�erences are small and we are tempted to conclude
that the insurer's age has only an imperceptible in
uence on the premiums. In
this connection, we point out that also the use of di�erent mortality tables
proved to be almost irrelevant in the premium calculation. To interpret this
fact recall that, at least in our model, the mortality component has the only
function of levelling the premium. Also in these examples the premium P � is
higher than P , 586 bp on average.

The results reported in Tables 3 to 7 show the behavior of P and P � with
respect to the initial term structure. More precisely, in Table 3 we consider the
case of 
at term structures, and report the premiums corresponding to di�erent
values of the initial spot rate r0. In Tables 4 and 5 we consider linearly increasing
term structures corresponding to two di�erent slopes and to various levels of the
initial spot rate, while in Tables 6 and 7 we show similar results obtained when
the initial forward rates f0(t) linearly decrease with respect to their time to
maturity t.
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TABLE 3

x = 40; T = 10; f0(t) = r0; � = 0:06; �1 = 0:03; �2 = 0:2

r0 P P � P � � P
0.02 1.2840 1.3364 0.0524
0.03 1.3146 1.3704 0.0558
0.04 1.3473 1.4060 0.0587
0.05 1.3819 1.4430 0.0611
0.06 1.4186 1.4813 0.0627
0.07 1.4572 1.5211 0.0639
0.08 1.4978 1.5620 0.0642
0.09 1.5403 1.6042 0.0639
0.10 1.5846 1.6476 0.0630

TABLE 4

x = 40; T = 10; f0(t) = r0 + 0:001t; � = 0:06; �1 = 0:03; �2 = 0:2

r0 P P � P � � P
0.02 1.2931 1.3473 0.0542
0.03 1.3242 1.3817 0.0575
0.04 1.3574 1.4176 0.0602
0.05 1.3926 1.4549 0.0623
0.06 1.4298 1.4936 0.0638
0.07 1.4689 1.5336 0.0647
0.08 1.5099 1.5748 0.0649
0.09 1.5529 1.6172 0.0643
0.10 1.5976 1.6608 0.0632

TABLE 5

x = 40; T = 10; f0(t) = r0 + 0:002t; � = 0:06; �1 = 0:03; �2 = 0:2

r0 P P � P � � P

0.02 1.3022 1.3582 0.0560
0.03 1.3340 1.3930 0.0590
0.04 1.3677 1.4293 0.0616
0.05 1.4034 1.4669 0.0635
0.06 1.4410 1.5059 0.0649
0.07 1.4807 1.5461 0.0654
0.08 1.5222 1.5876 0.0654
0.09 1.5655 1.6302 0.0647
0.10 1.6106 1.6739 0.0633
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TABLE 6

x = 40; T = 10; f0(t) = r0 � 0:001t; � = 0:06; �1 = 0:03; �2 = 0:2

r0 P P � P � � P
0.02 1.2751 1.3256 0.0505
0.03 1.3052 1.3592 0.0540
0.04 1.3373 1.3944 0.0571
0.05 1.3714 1.4310 0.0596
0.06 1.4076 1.4691 0.0615
0.07 1.4457 1.5085 0.0628
0.08 1.4858 1.5493 0.0635
0.09 1.5278 1.5912 0.0634
0.10 1.5717 1.6344 0.0627

TABLE 7

x = 40; T = 10; f0(t) = r0 � 0:002t; � = 0:06; �1 = 0:03; �2 = 0:2

r0 P P � P � � P
0.02 1.2664 1.3148 0.0484
0.03 1.2959 1.3481 0.0522
0.04 1.3274 1.3829 0.0555
0.05 1.3610 1.4192 0.0582
0.06 1.3966 1.4569 0.0603
0.07 1.4343 1.4961 0.0618
0.08 1.4739 1.5365 0.0626
0.09 1.5154 1.5783 0.0629
0.10 1.5588 1.6212 0.0624

As expected, from Tables 3 to 7 one can notice that the initial spot rate
r0 has a strong in
uence on the premiums, no matter if the term structure is

at, increasing, or decreasing. Moreover, as analytically established under the
assumption B0(t) = exp

�
�r0t � qt2=2

�
, our premium is an increasing function

both with respect to r0 and with respect to q, and the same behavior can also
be numerically veri�ed for the corresponding premium for the BS-contract P �,
which is on the average 605 bp higher than P .

Table 8 reports some results obtained when the parameter �, characterizing
the volatility structure in the Gaussian HJM model, varies between 0 and 0:2
with step 0:01.
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TABLE 8

x = 40; T = 10; f0(t) = r0 = 0:04; �1 = 0:03; �2 = 0:2

� P P � P � � P
0.00 1.2757 1.2895 0.0138
0.01 1.2806 1.2987 0.0181
0.02 1.2892 1.3162 0.0270
0.03 1.3008 1.3385 0.0377
0.04 1.3148 1.3625 0.0477
0.05 1.3304 1.3855 0.0551
0.06 1.3473 1.4060 0.0587
0.07 1.3649 1.4227 0.0578
0.08 1.3829 1.4350 0.0521
0.09 1.4012 1.4425 0.0413
0.10 1.4195 1.4448 0.0253
0.11 1.4376 1.4421 0.0045
0.12 1.4554 1.4343 -0.0211
0.13 1.4729 1.4218 -0.0511
0.14 1.4899 1.4047 -0.0852
0.15 1.5065 1.3836 -0.1229
0.16 1.5226 1.3588 -0.1638
0.17 1.5380 1.3311 -0.2069
0.18 1.5530 1.3011 -0.2519
0.19 1.5673 1.2695 -0.2978
0.20 1.5811 1.2372 -0.3439

The results displayed in Table 8 are as expected, as far as the constant
premium P is concerned: the premium is increasing with respect to (and indeed
sensitive to) the volatilityparameter �. The premiumP �, instead, increases only
for relatively low values of the volatility parameter, reaches a peak corresponding
to the value of � = 0:1, before it decreases. Moreover, it is interesting to observe
that the di�erence P ��P is maximum, equal to 587 bp, when � = 0:06, which is
just the value for the volatility parameter that we have �xed in all the numerical
examples reported in Tables 1 to 7 and 9 to 10.

The di�erence P � � P increases rapidly for � between 0 and 0:06, then it
decreases roughly and becomes negative for � = 0:12. When � = 0:2, P �P � =
�3439 bp. This shows that for high values of � the BS-contract could be cheaper
than our contract. In our example a value of � between 0:11 and 0:12 equates
P and P �.

In Table 9 we show the behavior of P and P � with respect to the volatility
parameter �1, which determines (together with �) the instantaneous correlation
between changes in the unit price St and changes in the term structure under
the martingale measure. More precisely, the results here reported are obtained
for �1 between �0:2 and 0:2 with step size 0:02.
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TABLE 9

x = 40; T = 10; f0(t) = r0 = 0:04; � = 0:06; �2 = 0:2

�1 P P � P � � P
-0.20 1.3024 1.3504 0.0480
-0.18 1.3008 1.3514 0.0506
-0.16 1.3003 1.3532 0.0529
-0.14 1.3009 1.3558 0.0549
-0.12 1.3026 1.3593 0.0567
-0.10 1.3055 1.3635 0.0580
-0.08 1.3094 1.3684 0.0590
-0.06 1.3143 1.3740 0.0597
-0.04 1.3202 1.3802 0.0600
-0.02 1.3270 1.3870 0.0600
0.00 1.3346 1.3942 0.0596
0.02 1.3429 1.4019 0.0590
0.04 1.3518 1.4101 0.0583
0.06 1.3613 1.4185 0.0572
0.08 1.3713 1.4273 0.0560
0.10 1.3817 1.4364 0.0547
0.12 1.3924 1.4457 0.0533
0.14 1.4034 1.4551 0.0517
0.16 1.4147 1.4647 0.0500
0.18 1.4261 1.4745 0.0484
0.20 1.4376 1.4843 0.0467

From Table 9 one can see that both P and P � are more sensitive to changes
in �1 when this parameter is positive. Moreover, while P is slightly decreasing
for values of �1 between �0:2 and �0:16 and then increasing, the premium P �

is always increasing in our example. As for the di�erence P � � P , it is always
positive, 550 bp on the average.

The last table presented here, Table 10, displays the behavior of P and P �

with respect to the volatility parameter �2 characterizing the evolution of St,
which varies between 0 and 0:5 with step 0:05.
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TABLE 10

x = 40; T = 10; f0(t) = r0 = 0:04; � = 0:06; �1 = 0:03

�2 P P � P � � P
0.00 1.2871 1.3696 0.0825
0.05 1.2918 1.3720 0.0802
0.10 1.3049 1.3792 0.0743
0.15 1.3240 1.3907 0.0667
0.20 1.3473 1.4060 0.0587
0.25 1.3735 1.4243 0.0508
0.30 1.4015 1.4451 0.0436
0.35 1.4307 1.4677 0.0370
0.40 1.4605 1.4914 0.0309
0.45 1.4904 1.5160 0.0256
0.50 1.5201 1.5409 0.0208

From Table 10 one can observe that, as expected, both premiums are very
sensitive and increasing with respect to �2. Moreover, the BS-premium P �,
although being greater than P , tends to approach it as this volatility increases.
The di�erence P � � P , in fact, reaches 825 bp when �2 = 0 and goes down to
208 bp when �2 = 0:5.

To conclude this section we notice that, at least for the sets of parameters
here considered and, in particular, when the volatility � is su�ciently low,
a riskless minimum amount guaranteed Gt is worth more than a minimum
guarantee, with the same price at time 0, expressed in number of units of the
mutual fund.

6 Concluding remarks

This paper demonstrates how formulas for equity-linked life insurance contracts
based on deterministic interest rates may be generalized to stochastic interest
rates following the HJM-model. This framework is also suitable for pricing
insurance policies with di�erent kinds of bene�ts and more general contracts
involving e.g., more than one life or disability coverage etc. A new product
is suggested which is simple both to price and to hedge. The new product is
compared with the contract introduced by Brennan and Schwartz (1976).
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