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Abstract

The gravity model is used to estimate trip dstributions. The estimates are in form of trip
frequencies. This gudy is devoted to an entropy problem where the solution decomposes trip
frequencies to the underlying probabilit y distribution.
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Introduction

According to Sen & Smith (1998, the analogy of gravity forcesin social sciences can be
dated badk to Carey and his gudies, pulished in 1858, orthe sociologicd phenomena of
group kehavior. In modern times, the gravity model is mostly used in areas sich as
transportation, ptysicd planning, environmental studies, regional econamics and
geographicd anaysis. In this paper, a disaggregated gravity model will be presented, and
applied on dita of commuting flows. This also means that the often-used words, such as
commuting and traffic flows are spedfic for the enpiricd example. With resped to the
model, these words might be substituted by afar more general interadtion concept. Somewhat
loosaly, we might say that the gravity model is an attempt to model arather common
observation: Traffic flow, or alevel of interadion, ketween any pair of nodesis deaeasing
with the distance between the nodes, and increasing with the popuationin the nodes. This
phenomenonis an analogy to Newton's law of gravity, and thereby the name of this classof
models. In the late sixties, A.G. Wilson introduced the ancept of entropy maximizationin a
formal deviation d the gravity model (i.e. Wilson (1967, 1970). This optimization approach
is often referred as the most probable state approach, andis smilar to the classical maximum
entropy principles (Golan et a. 1996. Sincethe seminal work by Wilson, the gravity model
has been developed in many diredions andit is now possble to deriveit from many different
principles other than the entropy based most probable state gopproach. An overview of the
classof gravity modelsis presented in Erlander & Stewart (1990 and Sen & Smith (1998.

The traditional gravity model enables plannersto predict traffic flows between any pair of
locaions. The predictions are in form of positive red numbers. Thiskind d information may
be very useful in many situations, i.e. in evaluating consequences by new or upgraded road
linksin atransportation retwork. In this paper, we will consider traffic flows as randam
numbers. We spedfy an entropy based gravity model that gives us, agenerally unique,
probability distribution o the traffic flow between any pair of locaions. From the cdi brated
probability distributions, it is obviously posgble to cdculate expeded traffic flows. In
addition, the probabiliti es give information nd contained in the dasscd gravity model. This
disaggregated information might be useful in sensitivity analysisin traffic planning models.
New road links or upgraded road links are often based onan expedation d future use. If the
expeded level of traffic istoolow, thisis an argument against such investments. On the other
hand, a high predicted future usage would provide an argument for the investments. From a
planner’s point of view, knowvledge of the probability for achieving aminimum level of traffic
will give the planner information abou the risk of the projed. Capadty planning is somewhat
similar. Here, the planners are cncerned abou the upper tal of the traffic level distribution.

In this article, we will use this disaggregated information to dosome ill ustrative sensiti vity
analysis acmrding to the ansequences mentioned abowve. But first the dasdcd gravity model
will be presented, and then the dasscd model is extended to a more disaggregated level.

TheClassical Problem

The statisticd interpretation d the gravity model, as foundin Wilson (1967, is derived from
atrip distribution problem within a network with a spedfic number of zones, or nodes, where
eadt zone poatentially might appea bath asapaint of origin and apoint of destination. The
transport flows resulting from individual choices of residential and working zones can be
spedfied by an arigin-destination matrix (O-D matrix). If it is posgble to identify eat
individual in such a description, these amnstitute amicrostate of the system. On the other
hand, the maaostate of the system contains only the total number of workers correspondng to



ead cdl of the O-D matrix. Such amatrix is often labeled a trip matrix. The number of
different microstates that results in the same maaostate is given by the multinomial
coefficient:

wir }= I (1)
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Here, W Tij} is the number of microstates that are sssociated with the trip matrix {T”. 3
i=1,2,..l isanindex of origins, andj=1,2,...,J isan index of destinations. T is the total
number of commutersin the system, T = Zij T -

By taking the natural logarithms of eqg. (1), using the Stirlings approximation and ignoring
constant terms, the entropy becomes (the deviationis smilar to Golan et a. (1997, p. 89):

H{Tij}: _ZijTij InTiJ' (2)

The doully constrained gravity mode results from maximization d the entropy (2) under the
foll owing threekinds of restrictions, and a non regativity constraint:
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Here, O; isthe popuation d commutersliving at origin i. D; is the number of working places
at destinationj. ¢ isthe unity cost of commuting from origini to destinationj. C isa st
restriction for the system.

The solution d the problem is given by (se Erlander and Stewart, 1990:
Tij = eXF(ai + Bj _/\Cu') (6)

Here, a;, B and A arelagrangeian multipliers. The parameters a;, 5 are often named
balancing fadors sncethey ensure the fulfillment of the marginal constraints (3) and (4) in
the trip matrix. In order to use the gravity model (6) in numerica problems, the parameters a;,
B and A neal to be estimated. Thisisusually dore by an iterative two-step procedure. First
the balancing fadors {a, },{3, } are cdibrated against observed marginals {0,},{D, }. Secondy,

the esential parameter A isusualy cdibrated oninformation d the total transportation cost in
the system C by Newton's method. These steps are repeaed urtil convergence

In the first step, deding with the balancing fadors, it is rather usual to use amethodreferred
to as the (bipropartional) growth-fador, or row-column balancing method. Bregman (1967
proved the convergence of the balancing method, and the methodis often dencted as
“Bregman method’. Formal derivation o the method can for example be foundin Lamond



and Stewart (1981) or Erlander and Stewart (1990. With the structure of the gravity model as
in eg. (6), thei-th marginal row restriction eg. (3), might be expressd as:

zjexp(ai + B, —/\cij): o)

Solving for a,, we get:
a; =InO, —=In Zjexp(ﬁj —/\c”.) 7)

With simil ar operations onthe clumn restrictions, the solutions for 3; become:
B, =InD, -In ziexp(ori —/\c”.) (8)

Acoording to Bregman's method, an iteration step consists of first cdculating the balancing
fadorsfor the rows, using eg. (7), then cdculating the balancing fadors for the amlumns,
using eg. (8). The Bregman iterations continue until the marginal constraints (3) and (4) are
sufficiently met. With resped to the balancing fadors, the relation between Bregman's
method and Newton's methodis shown to be equivaente (Erlander and Stewart, 1990, pp.
168-170). The computation time used by cdibrating the dasscd gravity mode is usual
insignificant.

If we aeinterested in more than just the expeded number of commutersin a ceatain relation
we ould extend the gravity model in a two-stage fashion. First we solve the dasscd gravity
model and get as aresult the expeded values for ead cdl in the trip matrix. Sincewe know
the upper boundfor ead cdl value (min{O;,D;}) , we then solve the 1xJ entropy problems,
one entropy problem for ead cdl. This procedure gives a probabilit y distribution for ead
cdl. The inherent problem with such an extensionis that the interdependence between the
probability distributions onthe cdls are lost. However, this smple extension makes it
possble to add cdl spedfic informationin the ssaondstage if there exists such information.
In the ésence of such additional informationfor at least some of the cdls, the second stage
problem will result in thetrivia solution o uniform within cel probability distribution.

The disaggregated gravity model

In the dasgcd gravity modd the prediction d commutersredding in zonei andworkingin
zonej, Tj;, isanonstochastic number. It is very likely that such flows of commuters are
varying over time. In larger popuations, andin popuations with high turnover rates, it is
probable that the level of commuting is changing onadaily basis. In many circumstances, the
randamnessof the commuting flow might be aminor problem, that does not cdl for an
implementation in the model. It is possble to consider the predicted flow, T; asan expeded
value. In ather cases, such asin cgpadty planning, the upper tail s of the distributions of
commuting flows are of mgjor interest, and far more interesting than the expedations (see
Galambas, 1987. One simple way to incorporate the randomnessin the gravity model, isto
add an entropy term for ead cdl of the trip matrix. That means, instead of using Tj; as
argument in the objedive function, we use an underlying probability distribution {pimj } Here,

pijx is the probability that the commuting flow from origini to destinationj is exadly x;;, and
x;j isarandam variable, limited to the paositi ve natural numbers. To ensure the marginal
constraints, the upper limit for the variable x; hasto be min{O;,D;}. This sSmple extension
gives us foll owing optimization problem:



max H{pijx}: _ZiZj ZXH pij)% lnpij’ﬂ (9)

J- ZM X Pijx, = O,
O inu % Py, =D
st. iz G zx” X Py, =C (10)
o Pix, =1
U
Dpijxij > 0

The solution of this problem is derived from the first order conditions for the probabilities,
and gives probabilities of the form:
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Here, the{ai’},{B;} and A’ are parameters, similar to the parametersin the traditional gravity

model in eg. (6). After calibrating this kind of disaggregated gravity model, the probabilities
in eg. (11) are the essentia bricks that can be used in studying the probability of every
possible trip matrix of interest.

As seen from the table 1 and 2, the classical and the disaggregated gravity model does not
give the same expected cell frequencies. It is possible, however, to incorporate cell specific
weight factors y;j, in the objective function in eqg. (9):

max H{pijx}: _ZiZj Yii Zm Piix, InpipqJ

If it isimportant for, some reason, to ensure the similar expected cell frequencies from the
disaggregated model asin the classical model, it is easy to find such a set of weight factors.

Calibration and numerical calculus

As mention above, the usual calibration of the classical gravity model isto choose the set of
parameter values fulfilling the restrictions (3) to (5). Restriction (5) is commonly represented
by an equality. (The calibration process is given a detailed discussion in Erlander and Stewart
(1990)). In case of the disaggregated gravity models, it is possible to calibrate the model
against the same marginal observations asin the classical case, with the exception that traffic
flow is substituted by expected traffic flow. However, there are three main differencesin the
calibration process of the classical and the disaggregated gravity model. First, in the
disaggregated model, each traffic level is decomposed to an expectation based on many
probabilities. Hence, a considerable increase in calibration complexity follows. Second, the

probabilities in the disaggregated model consist of factors of the form exp(u)™, where x might



be very large. Therefore, even small changesin u, might give enormous changesin the
probabiliti es and overflow problems might appea. Third, while the dasscd gravity model
could use the dficient Bregman algorithm, this oppatunity does not exist in the
disaggregated model. It is nat posgble to isolate the balancing fadors of (11) asdorein the
Bregman equations (7) and (8). This cdlsfor either use of general methods for solving
norlinea equations, or adevelopment of a speafic dgorithm for the cdibration d the
disaggregated gravity model. In the foll owing numericd example, such general methods have
been used. The gplicaion d gradient methods did na work well onthe test problem. The
Jaaobian matrix was ill condtioned, and standard scding procedures did na significantly
improve the condtion. We reformulated the standard cdli bration processto a minimization
problem and minimized the sum of squared residuals from the cdi brating equations (the first
three guations of restriction (10)). Then we succesgully applied an irregular-simplex
iteration sequence (seeNelder an Meal, 1965. This methodrepresents a pradicd oppatunity
when the dimension d the trip matrix is not too large.

Numerical estimates

In the numericd evaluation d the disaggregated gravity model (11), data from Karmay, an
island onthe south-west coast of Norway, were gplied. For adetail ed presentation d the
data seeThorsen and Gitlesen (1998. Theislandwas divided into 11 petal delivery zones,
representing 11 noaks in the network. The distance matrix is thereby symmetrica with rank
11.1n the caibration we used the marginal observations O;, D; and the total distancetraveled
by commuters, as a mst measure.

We cdibrated the dasdcd model and the disaggregated model onthe same data set. The
estimated trip matrices are presented in tables 1 and 2.1t is easy to seethat the two diff erent
models give diff erent aggregated information.

[Table 1 abou here]
[Table 2 abou here]

Thetrip frequencies are not equal. Although the estimates are diff erent, they also seem to
represent the same spatia interadion patterns. The crrelation between the two trip matrices
is0.96.When the distance between the two matricesis measured by the roat of squared cdl
differences, we get a distance of 507.That means an average distance per cdl of
507/121=4.19, ¢ an average distanceper trip of 507/6547=0.08.The spread of the cdl
frequencies amsto be larger in the disaggregated model than in the dasscd model. The
standard deviation d the frequenciesin the disaggregated modd is 148.42.The frequenciesin
the dasscd model have astandard deviation d 123.67.From the dasdcd gravity model, the
distance deterrence parameter A was estimated to be —0.158537.1n the disaggregated gravity
model the estimate of the distance deterrence parameter A was -0.00351798The maximum
entropy of the dasscd model was -3.58722 jn the disaggregated model the maximum
entropy was -3.48699.To get asimil ar referencein the entropy measure, we used here the

T
same entropy measure for both models: - Z —In2t, T= ZJ i -

[Figure 1 abou here]



Although it is possble to compare the models in some respeds, the disaggregated information
isnat contained in the dasgcd gravity model. From the disaggregated solution we will j ust
present some examples of the alditional information. Figure 1 presents the (cumulative)
probability distribution for the number of people living and working in zone 1. From the
classcd modd, we find the expeded number of commutersto be 618.28.From the
disaggregated model we find the expeded number to be 625.58.From the disaggregated
information we find the probabilit y for lessthan 244employees resides and working in zone 1
i$0.00995.This number islessthan 483with probability 0.01. With probability 0.10,the
number is greaer than 722.Standard deviation d the number of people living and working in
zone 1is105.84.

[Figure 2 abou here]

Figure 2 presents a somewhat diff erent story. We ae here looking at commuting flow from
noce 1 to nock 7. From the dasscd mode we find the estimated number of commuting from
origin 1to destination 7to be 123.68.From the disaggregated model, the similar estimated
expeded number is 100.68.From the disaggregated information we find standard deviationto
be 99.34.The probability of lessthan 463commuters from node 1 to nock 7is0.99.The
probability of lessthan 232commutersis 0.90,and it is a probability of 0.99for at least 10
commuters.

Closing comments

In this paper we have presented an extension d the gravity model based onthe entropy
principle, and shown how it is passble to estimate the whale probabilit y distribution for ead
travel frequency in the trip matrix. At an aggregated level, the numericd example suggests
that the disaggregated model and the dasdcd model are rather similar with resped to the
predicted trip distribution, the diff erences between the two matrices are rather small. The
additional distributional information in the disaggregated model is clealy useful, andit is
hard to seehow such information could be extraded from other well-accepted principles.
Clasdcd statistics is excluded, within this tradition we need observed frequencies. Withou an
observed trip matrix, classcd statistics can’t even give an estimated trip matrix from the
clasgcd gravity model. Bayesian statistics might be an oppatunity, but we don't seehow to
redize such an approach. In the focus of this article, the strength of the entropy principleis
clealy also amajor weakness We get a solution from a dealy underdetermined system, but
we don't know how well the solution describe the red word. To study the goodressof fit one
will nead alarge sample of observed trip matrices and measure the distance between observed
and predicted distribution d traffic levels. Thisis probably very costly. The computational
difficulti es experienced when cdlibrating the disaggregated model on the test problem show
thereisaneeal to develop efficient speda purpose cdibration algorithms. Seandy, it would
be interesting to incorporate more flexible probabilit y distributions.
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FIGURE 1: The cumulative probability distribution of workers living and working in zone 1.
(Expected value isindicated with the vertical line).
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FIGURE 2: The cumulative probability distribution of workersliving in zone 1 and working
in zone 7. (Expected value is indicated with the vertical line).
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TABLE 1: Estimated trip matrix by the classical gravity model

Origin

Destination
1 2 3 4 5 6 7 8 9 10 11 Tota
1 61828 2287 16.71 8140 1291 1214 123.68 64.85 10.44 0.90 4.82 969
2 5623 1015 742 3614 573 539 39.99 2879 4.63 0.40 2.14 197|
3 1528 276 1351 6583 1044 982 7285 5244 8.44 0.73 3.90 256
4 1926 348 17.02 29484 46.75 4398 326.26 234.87 37.80 3.27 17.47 1045
5 510 092 451 7810 17.00 16.00 11866 8542 1375 1.19 6.36 347
6 441 0.80 390 6754 1470 49.18 19347 13928 2242 194 10.36 508
77 1176 155 757 13116 2855 50.65 972.68 509.96 82.07 7.11 37.94 1841
8 074 013 065 1128 246 436 6093 15592 25.09 0.84 1160 274
9 115 021 102 1763 384 6.81 9521 243.65 13939 466 64.44 578
10 021 0.04 0.19 321 070 124 1734 17.14 9.81 1.60 453 56
11 058 010 051 888 193 343 4794 12267 7018 2.35 217.43 476
Total 733 43 73 79 145 203 2069 1655 424 25 381 6547
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TABLE 2: Estimated trip matrix by the disaggregated gravity model

Origin

Destination
1 2 3 4 5 6 7 8 9 10 11 Total
1 62560 510 872 8535 16.24 19.97 100.93 69.24 2148 228 14.10 969
2 2461 480 781 36.37 13.18 15.49 31.05 3336 16.36 224 11.75 197
3 1438 430 847 59.65 15.34 1861 4720 5247 1990 227 1342 256
4 1237 414 7.77 41276 19.85 25.88 196.90 31769 2857 232 16.76 1045
5 1070 397 711 70.93 17.63 22.16 7953 9350 2405 230 15.14 347
6 994 388 6.79 4717 1562 38.15 148.79 190.64 28.11 231 16.6] 508
7 938 373 629 2896 13.03 19.15 136550 34759 2838 231 16.70 1841
8 738 349 554 1691 9.97 13.10 3272 13499 3029 226 17.34 274
9 743 350 557 1715 10.05 13.24 33.72 30286 148.73 235 3341 578
10 421 269 361 587 4.84 539 6.88 7.28 7.06 2.05 6.12 56
11 7.00 342 534 1489 927 11.87 25.80 105.39 71.07 2.32 219.64 476
Total 733 43 73 796 145 203 2069 1655 424 25 381 6547,
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