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Abstract 
The gravity model is used to estimate trip distributions. The estimates are in form of trip 
frequencies. This study is devoted to an entropy problem where the solution decomposes trip 
frequencies to the underlying probabilit y distribution.  
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Introduction 
According to Sen & Smith (1998), the analogy of gravity forces in social sciences can be 
dated back to Carey and his studies, published in 1858, on the sociological phenomena of 
group behavior. In modern times, the gravity model is mostly used in areas such as 
transportation, physical planning, environmental studies, regional economics and 
geographical analysis. In this paper, a disaggregated gravity model will be presented, and 
applied on data of commuting flows. This also means that the often-used words, such as 
commuting and traff ic flows are specific for the empirical example. With respect to the 
model, these words might be substituted by a far more general interaction concept. Somewhat 
loosely, we might say that the gravity model is an attempt to model a rather common 
observation: Traff ic flow, or a level of interaction, between any pair of nodes is decreasing 
with the distance between the nodes, and increasing with the population in the nodes.  This 
phenomenon is an analogy to Newton’s law of gravity, and thereby the name of this class of 
models. In the late sixties, A.G. Wilson introduced the concept of entropy maximization in a 
formal deviation of the gravity model (i.e. Wilson (1967,  1970)).  This optimization approach 
is often referred as the most probable state approach, and is similar to the classical maximum 
entropy principles (Golan et al. 1996).  Since the seminal work by Wilson, the gravity model 
has been developed in many directions and it is now possible to derive it from many different 
principles other than the entropy based most probable state approach. An overview of the 
class of gravity models is presented in Erlander & Stewart (1990) and Sen & Smith (1998).  
 
The traditional gravity model enables planners to predict traff ic flows between any pair of 
locations. The predictions are in form of positive real numbers. This kind of information may 
be very useful in many situations, i.e. in evaluating consequences by new or upgraded road 
links in a transportation network. In this paper, we will consider traff ic flows as random 
numbers. We specify an entropy based gravity model that gives us, a generally unique, 
probabilit y distribution of the traff ic flow between any pair of locations. From the calibrated 
probabilit y distributions, it is obviously possible to calculate expected traff ic flows. In 
addition, the probabiliti es give information not contained in the classical gravity model. This 
disaggregated information might be useful in sensitivity analysis in traff ic planning models. 
New road links or upgraded road links are often based on an expectation of future use. If the 
expected level of traff ic is too low, this is an argument against such investments. On the other 
hand, a high predicted future usage would provide an argument for the investments.  From a 
planner’s point of view, knowledge of the probabilit y for achieving a minimum level of traff ic 
will give the planner information about the risk of the project. Capacity planning is somewhat 
similar. Here, the planners are concerned about the upper tail of the traff ic level distribution.  
 
In this article, we will use this disaggregated information to do some ill ustrative sensitivity 
analysis according to the consequences mentioned above. But first the classical gravity model 
will be presented, and then the classical model is extended to a more disaggregated level.  
 
 
The Classical Problem 
The statistical interpretation of the gravity model, as found in Wilson (1967), is derived from 
a trip distribution problem within a network with a specific number of zones, or nodes, where 
each zone potentially might appear both as a point of origin and a point of destination. The 
transport flows resulting from individual choices of residential and working zones can be 
specified by an origin-destination matrix (O-D matrix). If it is possible to identify each 
individual in such a description, these constitute a microstate of the system. On the other 
hand, the macrostate of the system contains only the total number of workers corresponding to 



 3 

each cell of the O-D matrix. Such a matrix is often labeled a trip matrix. The number of 
different microstates that results in the same macrostate is given by the multinomial 
coeff icient: 
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Here, { }ijTW  is the number of microstates that are associated with the trip matrix { }ijT . 

i=1,2,…I is an index of origins, and j=1,2,…,J is an index of destinations. T is the total 
number of commuters in the system, ∑=

ij ijTT .  

 
By taking the natural logarithms of eq. (1), using the Stirlings approximation and ignoring 
constant terms, the entropy becomes (the deviation is similar to Golan et al. (1997), p. 8-9): 
 
 

{ } ∑−=
ij ijijij TTTH ln      (2) 

 
The doubly constrained gravity model results from maximization of the entropy (2) under the 
following three kinds of restrictions, and a non negativity constraint: 
 

ij ij OT =∑       (3) 

ji ij DT =∑       (4) 

∑∑ ≤
i j ijij CTc      (5) 

        0≥ijT          

 
Here, Oi is the population of commuters living at origin i. Dj is the number of working places 
at destination j. cij is the unity cost of commuting from origin i to destination j. C is a cost 
restriction for the system. 
 
The solution of the problem is given by (se Erlander and Stewart, 1990): 
 

( )ijjiij cT λβα −+= exp     (6) 

 
Here, αi, βj and λ are lagrangeian multipliers.  The parameters αi, βj are often named 
balancing factors since they ensure the fulfillment of the marginal constraints  (3) and (4) in 
the trip matrix. In order to use the gravity model (6) in numerical problems, the parameters αi, 
βj and λ need to be estimated.  This is usually done by an iterative two-step procedure. First 
the balancing factors { }{ }ji βα ,  are calibrated against observed marginals { }{ }ji DO , . Secondly, 

the essential parameter λ is usually calibrated on information of the total transportation cost in 
the system C by Newton’s method. These steps are repeated until convergence.  
 
In the first step, dealing with the balancing factors, it is rather usual to use a method referred 
to as the (biproportional) growth-factor, or row-column balancing method. Bregman (1967) 
proved the convergence of the balancing method, and the method is often denoted as 
“Bregman method”. Formal derivation of the method can for example be found in Lamond 
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and Stewart (1981) or Erlander and Stewart (1990).  With the structure of the gravity model as 
in eq. (6), the i-th  marginal row restriction eq. (3),  might be expressed as: 
 

( )∑ =−+
j iijji Ocλβαexp       

 
Solving for iα , we get: 

( )∑ −−=
j ijjii cO λβα explnln     (7) 

 
With similar operations on the column restrictions, the solutions for jβ become: 
 

( )∑ −−=
i ijijj cD λαβ explnln     (8) 

 
According to Bregman’s method, an iteration step consists of f irst calculating the balancing 
factors for the rows, using eq. (7), then calculating the balancing factors for the columns, 
using eq. (8). The Bregman iterations continue until the marginal constraints (3) and (4)  are 
suff iciently met. With respect to the balancing factors, the relation between Bregman’s 
method and Newton’s method is shown to be equivalente (Erlander and Stewart, 1990, pp. 
168-170). The computation time used by calibrating the classical gravity model is usual 
insignificant.  
 
If we are interested in more than just the expected number of commuters in a certain relation 
we could extend the gravity model in a two-stage fashion. First we solve the classical gravity 
model and get as a result the expected values for each cell i n the trip matrix. Since we know 
the upper bound for each cell value (min{Oi,Dj}) , we then solve the I×J entropy problems, 
one entropy problem for each cell . This procedure gives a probabilit y distribution for each 
cell . The inherent problem with such an extension is that the interdependence between the 
probabilit y distributions on the cells are lost. However, this simple extension makes it 
possible to add cell specific information in the second stage if there exists such information. 
In the absence of such additional information for at least some of the cells, the second stage 
problem will result in the trivial solution of uniform within cell probabilit y distribution.  
 
 
The disaggregated gravity model 
In the classical gravity model the prediction of commuters reciding in zone i and working in 
zone j, Tij, is a non-stochastic number. It is very likely that such flows of commuters are 
varying over time. In larger populations, and in populations with high turnover rates, it is 
probable that the level of commuting is changing on a daily basis. In many circumstances, the 
randomness of  the commuting flow might be a minor problem, that does not call for an 
implementation in the model. It is possible to consider the predicted flow, Tij, as an expected 
value. In other cases, such as in capacity planning, the upper tails of the distributions of  
commuting flows are of major interest, and far more interesting than the expectations (see 
Galambos, 1987). One simple way to incorporate the randomness in the gravity model, is to 
add an entropy term for each cell of the trip matrix. That means, instead of using Tij  as 
argument in the objective function, we use an underlying probabilit y distribution { }

ijijxp . Here, 

pijx is the probabilit y that the commuting flow from origin i to destination j is exactly xij, and 
xij is a random variable, limited to the positive natural numbers. To ensure the marginal 
constraints, the upper limit for the variable xij has to be min{Oi,Dj}.  This simple extension 
gives us following optimization problem: 
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The solution of this problem is derived from the first order conditions for the probabilities, 
and gives probabilities of the form: 
 

( ){ }
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     (11) 

 
 
Here, the{ }{ }ji βα ′′ ,  and λ′  are parameters, similar to the parameters in the traditional gravity 

model in eq. (6). After calibrating this kind of disaggregated gravity model, the probabilities 
in eq. (11) are the essential bricks that can be used in studying the probability of every 
possible trip matrix of interest.   
 
As seen from the table 1 and 2, the classical and the disaggregated gravity model does not 
give the same expected cell frequencies. It is possible, however, to incorporate cell specific 
weight factors γij, in the objective function in eq. (9): 
 

{ }
ijij ij ijxi j x ijxijijx pppH ∑∑ ∑−= lnmax γ  

 
If it is important for, some reason, to ensure the similar expected cell frequencies from the 
disaggregated model as in the classical model, it is easy to find such a set of weight factors. 
 
 
Calibration and numerical calculus 
As mention above, the usual calibration of the classical gravity model is to choose the set of 
parameter values fulfilling the restrictions (3) to (5). Restriction (5) is commonly represented 
by an equality. (The calibration process is given a detailed discussion in Erlander and Stewart 
(1990)). In case of the disaggregated gravity models, it is possible to calibrate the model 
against the same marginal observations as in the classical case, with the exception that traffic 
flow is substituted by expected traffic flow. However, there are three main differences in the 
calibration process of the classical and the disaggregated gravity model. First, in the 
disaggregated model, each traffic level is decomposed to an expectation based on many 
probabilities. Hence, a considerable increase in calibration complexity follows. Second, the 
probabilities in the disaggregated model consist of factors of the form xu)exp( , where x might 
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be very large. Therefore, even small changes in u, might give enormous changes in the 
probabiliti es and overflow problems might appear. Third, while the classical gravity model 
could use the eff icient Bregman algorithm, this opportunity does not exist in the 
disaggregated model. It is not possible to isolate the balancing factors of  (11) as done in the 
Bregman equations (7) and (8).  This calls for either use of general methods for solving 
nonlinear equations, or a development of a specific algorithm for the calibration of the 
disaggregated gravity model.  In the following numerical example, such general methods have 
been used. The application of gradient methods did not work well on the test problem. The 
Jacobian matrix was ill conditioned, and standard scaling procedures did not significantly 
improve the condition. We reformulated the standard calibration process to a minimization 
problem and minimized the sum of squared residuals from the calibrating equations (the first 
three equations of restriction (10)). Then we successfully applied an irregular-simplex 
iteration sequence (see Nelder an Mead, 1965). This method represents a practical opportunity 
when the dimension of the trip matrix is not too large.     
 
 
Numerical estimates 
In the numerical evaluation of the disaggregated gravity model (11), data from Karmøy, an 
island on the south-west coast of  Norway, were applied. For a detailed presentation of the 
data see Thorsen and Gitlesen (1998). The island was divided into 11 postal delivery zones, 
representing 11 nodes in the network. The distance matrix is thereby symmetrical with rank 
11. In the calibration we used the marginal observations Oi, Dj and the total distance traveled 
by commuters, as a cost measure. 
 
We calibrated the classical model and the disaggregated model on the same data set. The 
estimated trip matrices are presented in tables 1 and 2. It is easy to see that the two different 
models give different aggregated information.  
 

[Table 1 about here] 
 
 

[Table 2 about here] 
 
 
The trip frequencies are not equal. Although the estimates are different, they also seem to 
represent the same spatial interaction patterns.  The correlation between the two trip matrices 
is 0.96. When the distance between the two matrices is measured by the root of squared cell 
differences, we get a distance of 507. That means an average distance per cell of 
507/121=4.19, or an average distance per trip of  507/6547=0.08. The spread of the cell 
frequencies seems to be larger in the disaggregated model than in the classical model. The 
standard deviation of the frequencies in the disaggregated model is 148.42. The frequencies in 
the classical model have a standard deviation of 123.67. From the classical gravity model, the 
distance deterrence parameter λ was estimated to be –0.158537.  In the disaggregated gravity 
model the estimate of  the distance deterrence parameter λ` was -0.00351798. The maximum 
entropy of the classical model was -3.58722, in the disaggregated model the maximum 
entropy was -3.48699. To get a similar reference in the entropy measure, we used here the 

same entropy measure for both models: ∑−
ij

ijij

T

T

T

T
ln ,  ∑=

ij ijTT .   

 
[Figure 1 about here] 
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Although it is possible to compare the models in some respects, the disaggregated information 
is not contained in the classical gravity model. From the disaggregated solution we will j ust 
present some examples of the additional information. Figure 1 presents the (cumulative) 
probabilit y distribution for the number of people living and working in zone 1. From the 
classical model, we find the expected number of commuters to be 618.28. From the 
disaggregated model we find the expected number to be 625.58. From the disaggregated 
information we find the probabilit y for less than 244 employees resides and working in zone 1 
is 0.00995. This number is less than 483 with probabilit y 0.01.  With probabilit y 0.10, the 
number is greater than 722. Standard deviation of the number of people living and working in 
zone 1 is 105.84.  
 
 

[Figure 2 about here] 
 
 
Figure 2 presents a somewhat different story. We are here looking at commuting flow from 
node 1 to node 7. From the classical model we find the estimated number of commuting from 
origin 1 to destination 7 to be 123.68. From the disaggregated model, the similar estimated 
expected number is 100.68. From the disaggregated information we find standard deviation to 
be 99.34. The probabilit y of less than 463 commuters from node 1 to node 7 is 0.99. The 
probabilit y of less than 232 commuters is 0.90, and it is a probabilit y of 0.99 for at least 10 
commuters. 
 
 
Closing comments 
In this paper we have presented an extension of the gravity model based on the entropy 
principle, and shown how it is possible to estimate the whole probabilit y distribution for each 
travel frequency in the trip matrix. At an aggregated level, the numerical example suggests 
that the disaggregated model and the classical model are rather similar with respect to the 
predicted trip distribution, the differences between the two matrices are rather small . The 
additional distributional information in the disaggregated model is clearly useful, and it is 
hard to see how such information could be extracted from other well -accepted principles. 
Classical statistics is excluded, within this tradition we need observed frequencies. Without an 
observed trip matrix, classical statistics can’ t even give an estimated trip matrix from the 
classical gravity model. Bayesian statistics might be an opportunity, but we don’ t see how to 
realize such an approach. In the focus of this article, the strength of the entropy principle is 
clearly also a major weakness: We get a solution from a clearly underdetermined system, but 
we don’ t know how well the solution describe the real word.  To study the goodness of f it one 
will need a large sample of observed trip matrices and measure the distance between observed 
and predicted distribution of traff ic levels. This is probably very costly. The computational 
diff iculties experienced when calibrating the disaggregated model on the test problem show 
there is a need to develop eff icient special purpose calibration algorithms. Secondly, it would 
be interesting to incorporate more flexible probabilit y distributions.  
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FIGURE 1: The cumulative probability distribution of workers living and working in zone 1. 
(Expected value is indicated with the vertical line). 
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FIGURE 2: The cumulative probability distribution of workers living in zone 1 and working 
in zone 7. (Expected value is indicated with the vertical line). 
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TABLE 1: Estimated trip matrix by the classical gravity model 
 
 
  Destination  
  1 2 3 4 5 6 7 8 9 10 11 Total 

1 618.28 22.87 16.71 81.40 12.91 12.14 123.68 64.85 10.44 0.90 4.82 969 
2 56.23 10.15 7.42 36.14 5.73 5.39 39.99 28.79 4.63 0.40 2.14 197 
3 15.28 2.76 13.51 65.83 10.44 9.82 72.85 52.44 8.44 0.73 3.90 256 
4 19.26 3.48 17.02 294.84 46.75 43.98 326.26 234.87 37.80 3.27 17.47 1045 
5 5.10 0.92 4.51 78.10 17.00 16.00 118.66 85.42 13.75 1.19 6.36 347 
6 4.41 0.80 3.90 67.54 14.70 49.18 193.47 139.28 22.42 1.94 10.36 508 
7 11.76 1.55 7.57 131.16 28.55 50.65 972.68 509.96 82.07 7.11 37.94 1841 
8 0.74 0.13 0.65 11.28 2.46 4.36 60.93 155.92 25.09 0.84 11.60 274 
9 1.15 0.21 1.02 17.63 3.84 6.81 95.21 243.65 139.39 4.66 64.44 578 

10 0.21 0.04 0.19 3.21 0.70 1.24 17.34 17.14 9.81 1.60 4.53 56 

O
ri

gi
n 

11 0.58 0.10 0.51 8.88 1.93 3.43 47.94 122.67 70.18 2.35 217.43 476 
 Total 733 43 73 796 145 203 2069 1655 424 25 381 6547 
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TABLE 2: Estimated trip matrix by the disaggregated gravity model 
 
  Destination  
  1 2 3 4 5 6 7 8 9 10 11 Total 

1 625.60 5.10 8.72 85.35 16.24 19.97 100.93 69.24 21.48 2.28 14.10 969 
2 24.61 4.80 7.81 36.37 13.18 15.49 31.05 33.36 16.36 2.24 11.75 197 
3 14.38 4.30 8.47 59.65 15.34 18.61 47.20 52.47 19.90 2.27 13.42 256 
4 12.37 4.14 7.77 412.76 19.85 25.88 196.90 317.69 28.57 2.32 16.76 1045 
5 10.70 3.97 7.11 70.93 17.63 22.16 79.53 93.50 24.05 2.30 15.14 347 
6 9.94 3.88 6.79 47.17 15.62 38.15 148.79 190.64 28.11 2.31 16.61 508 
7 9.38 3.73 6.29 28.96 13.03 19.15 1365.50 347.59 28.38 2.31 16.70 1841 
8 7.38 3.49 5.54 16.91 9.97 13.10 32.72 134.99 30.29 2.26 17.34 274 
9 7.43 3.50 5.57 17.15 10.05 13.24 33.72 302.86 148.73 2.35 33.41 578 

10 4.21 2.69 3.61 5.87 4.84 5.39 6.88 7.28 7.06 2.05 6.12 56 

O
ri

gi
n 

11 7.00 3.42 5.34 14.89 9.27 11.87 25.80 105.39 71.07 2.32 219.64 476 
 Total 733 43 73 796 145 203 2069 1655 424 25 381 6547 
              
              
              
              
              
             
 


