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Norwegian School of Economics and Business Administration†

August 17, 2010

Abstract

Despite attempts to get around the Jacobian in fitting spatial econometric
models by using GMM and other approximations, it remains a central prob-
lem for maximum likelihood estimation. In principle, and for smaller data sets,
the use of the eigenvalues of the spatial weights matrix provides a very rapid
and satisfactory resolution. For somewhat larger problems, including those
induced in spatial panel and dyadic (network) problems, solving the eigen-
problem is not as attractive, and a number of alternatives have been proposed.
This paper will survey chosen alternatives, and comment on their relative use-
fulness.

1 Introduction
Spatial regession models are fitted in a wide range of disciplines, from political and
regional science to epidemiology and ecology. In many cases, maximum likelihood
methods are chosen for fitting, but problems can arise when data sets become large.
The ways in which the fitted models are conceptualised also impact their interpre-
tation, as misspecification is a reccurring problem.
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ciation, New York; Eighth Spatial Econometrics and Statistics Workshop, Besançon, France; 49th
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Econometric Meeting, Lund, Sweden, and a research seminar at the Institute for Economic Geogra-
phy and GIScience, Vienna University of Economics and Business.

†Department of Economics, Norwegian School of Economics and Business Administration,
Helleveien 30, N-5045 Bergen, Norway; E-mail: <Roger.Bivand@nhh.no>
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Having defined the spatial regression models to be treated here, we will start
by considering the efficient computation of the log determinant of a possibly sparse
real symmetric positive definite matrix is necessary.1 One of these is in finding the
values of the log likelihood function for various spatial regression models, where
the underlying sparse matrix of spatial weights represents a graph of relationships
between observations. For small numbers of observations, there are no difficulties
in treating the spatial weights matrix as dense, and computing the log determinant
using its eigenvalues.

The initial intention in this paper was to discuss in detail developments in the
computation of such log determinants using Cholesky factorization in the Matrix
package for R. However, since Walde et al. (2008) have undertaken a broader com-
parison of different methods and approximations for computing the Jacobian as part
of a “contest” between maximum likelihood and generalized method of moments
model fitting methods, we will, in addition, take up a number of their conclusions,
and try to qualify them in the light of further analysis.2

After starting by describing the log likelihood function for a standard spatial
regression model, and explaining the eigenvalue approach, the paper turns to a dis-
cussion of sparse matrix methods. This is followed by a short review of some ap-
proximations to the log determinant. The review will also be set in the context of the
detailed presentation of log determinant computation by LeSage and Pace (2009).

In the study of the Jacobian, we will use six data sets of neighbour relation-
ships (spatial weights): Queen contiguities between 3111 US counties (sharing at
least one common boundary point); a complete 4900 observation grid as defined by
Walde et al. (2008, p. 157); Queen contiguities between cells on a 1◦ grid for world
land areas omitting Antarctica with 15260 observations; sphere-of-influence neigh-
bours for 25357 houses sold in Lucas county, Ohio3; Queen contiguities between
32698 US 2000 Census Zip Code Tabulation Areas (ZCTA, omitting Alaska and
Hawaii); and Queen contiguities between 64878 US Census tracts in 2000 (omit-
ting Alaska and Hawaii).

Only the 4900 observation grid has a single connected graph; the other data sets
have multiple disjoint connected subgraphs, including islands with no neighbours,
as shown in Table 1, which also shows the distribution of neighbours. The large
number of subgraphs in the Lucas county housing data is caused by the frequent

1This paper is based on extended discussions with Douglas Bates and Martin Mächler, and made
possible by helpful additions to the R Matrix package; they bear no resposibility for any remaining
misunderstandings on the part of the author.

2Following helpful collaboration with Janette Walde in throwing light on a number of counter-
intuitive conclusions in that paper, we understand that a correction to their paper will be submitted.

3Dataset included in the Spatial Econometrics toolbox for Matlab, http://www.
spatial-econometrics.com/html/jplv7.zip, temporal ordering disregarded here, coordi-
nates transformed to Ohio North State Plane.
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Table 1: Distributions of numbers of neighbours and numbers of subgraphs for data
sets.

US Counties Grid 70x70 World grid Lucas OH US ZCTA US Tracts
0 4 0 7 0 229 17
1 31 0 80 3098 634 418
2 40 0 147 7228 1778 1098
3 96 0 274 7280 2712 2940
4 289 0 507 4587 4144 7080
5 621 0 907 2130 5593 12343
6 1047 0 752 809 5506 14311
7 694 0 1013 175 4478 12158
8 222 4 11573 48 2937 7552
9 53 0 0 1 1689 3644
10 10 0 0 1 1015 1711
11 2 8 0 0 612 767
12 0 0 0 0 356 377
13 1 0 0 0 202 178
14 1 264 0 0 107 124
15 0 4 0 0 74 55
16 0 0 0 0 50 39
17 0 0 0 0 41 19
18 0 0 0 0 30 12
19 0 264 0 0 32 12
20 0 0 0 0 27 8
21 0 0 0 0 30 3
22 0 0 0 0 25 1
23 0 0 0 0 21 1
24 0 4356 0 0 23 4
25 0 0 0 0 25 2
26 0 0 0 0 13 1
27 0 0 0 0 15 1
28 0 0 0 0 20 0
29 0 0 0 0 20 1
30 0 0 0 0 12 1
subgraphs 6 1 49 1481 243 30
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occurrence of pairs of houses that are much closer to each other than to any other
house; the dataset does not include repeat sales. The very large numbers of con-
tiguous numbers of neighbours for some observations in the two latter data sets is
caused by the way these observations are structured, for example central entities
with radiating neighbours, such as Central Park in New York (the entity in the Cen-
sus tract data set with 30 neighbours4). In the ZCTA data set, all the entities with
over 26 neighbours are three-digit codes with either XX or HH suffixes, indicating
parks, forest lands etc., or water bodies. The selection of data sets is similar to those
chosen by Smirnov and Anselin (2001).

2 Spatial regression models
Assuming that the variance of the disturbance term is constant, we start from the
standard linear regression model:

y = Xβ+ ε, ε ∼ N(0,σ2)

There are a number of alternative forms of spatial regression models; here we
will consider the simultaneous autoregressive (SAR) form, because the computation
of the Jacobian presents similar challenges for the conditional autoregressive and
spatial moving average representations. The SAR model may be written as (Cliff
and Ord, 1973; Ord, 1975; Ripley, 1981):

y = Xβ+u, u = λWu+ ε,

where y is an (N × 1) vector of observations on a dependent variable taken at
each of N locations, X is an (N× k) matrix of exogenous variables, β is an (k×1)
vector of parameters, ε is an (N×1) vector of disturbances and λ is a scalar spatial
error parameter, and u is a spatially autocorrelated disturbance vector with constant
variance and covariance terms specified by a fixed spatial weights matrix and a
single coefficient λ:

u ∼ N(0,σ2(I−λW)−1(I−λW′)−1)

It is usual in the literature to define the contiguity relation in terms of sets N(i)
of neighbours of zone or site i. These are coded in the form of a weights matrix
W, with a zero diagonal, and the off-diagonal non-zero elements often scaled to
sum to unity in each row (termed row standardized weights matrices), with typical
elements:

4See http://factfinder.census.gov/jsp/saff/SAFFInfo.jsp?_pageId=gn7_maps
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wi j =
ci j

N

∑
j=1

ci j

where ci j = 1 if i is linked to j and ci j = 0 otherwise. This implies no use of other
information than that of neighbourhood set membership. Set membership may be
defined on the basis of shared boundaries, of centroids lying within distance bands,
or other a priori grounds. In general, the number of neighbours for each observation
will be small compared to N, so that W is usually sparse. It may be reasonable,
based on knowledge of the underlying spatial interaction processes, to specify ci j
in other way, for example trade or migration flows, or in other ways that introduce
asymmetry. Indeed, the spatial weights defined here by row-standardisation are
asymmetric, but if ci j = c ji, the matrix is similar to a symmetric matrix.

Ord (1975) gives a maximum likelihood method for estimating the spatial error
SAR model. Unlike the time series case, the logarithm of the determinant of the
(N×N) matrix (I−λW) does not tend to zero with increasing sample size; it con-
strains the parameter values to their feasible range between the inverses of the small-
est and largest eigenvalues of W. For positive autocorrelation, as λ → 1/maxi(ζi)
— ζi are the eigenvalues of W, ln |I−λW| → −∞. The log-likelihood function for
the spatial error model:

`(β,λ,σ2) =−N
2

ln2π− N
2

lnσ
2 + ln |I−λW|

− 1
2σ2

[
(y−Xβ)′(I−λW)′(I−λW)(y−Xβ)

]
β may be concentrated out of the sum of squared errors term, for example as:

`(λ,σ2) =−N
2

ln2π− N
2

lnσ
2 + ln |I−λW|

− 1
2σ2

[
y′(I−λW)′(I−QλQ′

λ
)(I−λW)y

]
where Qλ is obtained by decomposing (X−λWX) = QλRλ.
As we can see, the problem is one of balancing the log determinant term against

the sum of squares term. When λ approaches the ends of its feasible range, the log
determinant term may swamp the sum of squares term (Bivand, 1984).

With moderate to large N, the calculation of the analytical variance-covariance
matrix of the model coefficients is impeded by the need to handle dense N ×N
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matrices. The variance-covariance matrix may be approximated by a numerical
Hessian, the computation of which also involves the Jacobian. Typically, the num-
ber of calls of the Jacobian function in this step is larger than in the line search to
find λ at the optimum.

3 Computing the Jacobian
The first published versions of the eigenvalue method for finding the Jacobian (Ord,
1975, p. 121) present it in product form:

log(|I−λW|) = log(
N

∏
i=1

(1−λζi))

instead of the equivalent summation form:

log(|I−λW|) =
N

∑
i=1

log(1−λζi)

where ζi are the eigenvalues of W. In the product form, it may become difficult
to compute, since the value of the determinant may underflow (become indistin-
guishable from zero before taking the logarithm) if care is not shown.

One specific problem addressed by Ord (1975, p. 125) is that of the eigen-
values of the asymmetric row-standardised matrix W with underlying symmetric
neighbour relations ci j = c ji. If we write w = C1, where 1 is a vector of ones, we
can get: W = CD, where D = diag(1/w). By similarity, the eigenvalues of W are
equal to those of: D

1
2 CD

1
2 . Of course, if the underlying neighbour relations are

not symmetric, the eigenvalues of W will not necessarily be real; the consequences
of using such asymmetric weights matrices are not known (Smirnov and Anselin,
2001, p. 303–304). The handling of intrinsically asymmetric weights matrices is
also discussed by LeSage and Pace (2009, pp. 88–89).

In addition to choices with regard to the underlying neighbour relations used
to structure covariance between observations, by no means all applications use row
standardisation of spatial weights matrices. Row standardisation has the convenient
consequence that the largest eigenvalue of W is known to be equal to one by design;
the value of the smallest eigenvalue is unknown, but in line search for λ, the rele-
vant interval is often taken as [0,1). However, row standardisation upweights neigh-
bour relations for observations with few neighbours, and downweights relations for
those with many neighbours. Tiefelsdorf et al. (1999) propose a variance-stabilising
scheme instead of row standardisation, which for underlying symmetric neighbour
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Table 2: Lower and upper interval bounds on λ, 3111 US counties Queen contiguity
data set, for binary weights (B), binary weights scaled to sum to N (C), variance-
stabilising weights (S) — real part only, row standardised weights (W) — real part
only, and variance-stabilising weights (S (sym)) and row standardised weights (W
(sym)) transformed to symmetry by similarity.

B C S W S (sym) W (sym)
lower -0.2932 -1.7179 -1.8026 -1.0000 -1.8026 -1.0000
upper 0.1489 0.8724 0.9374 1.0000 0.9374 1.0000

relations also yields an asymmetric spatial weights matrix that is similar to symmet-
ric. Further discussion of these issues may be found in Bivand et al. (2008); Ward
and Gleditsch (2008).

Many disciplines using spatial regression methods simply use unstandardised
neighbour relations matrices which may or may not be symmetric. Table 2 shows
the lower and upper bounds for λ for the same set of symmetric contiguous neigh-
bours for 3111 US counties under different weights representations. The underlying
eigenvalues have been calculated using the R eigen function, using the standard
LAPACK functions and with symmetry of the input matrix determined by the in-
ternal code. As can be seen, the intervals vary greatly, depending on choices of
specification.

One point that needs to be taken forward from this discussion is that although,
for SAR models, neither W nor (I−λW) are required to be symmetric postive def-
inite matrices, such an assumption makes computing the Jacobian more feasible. A
second point is that a line search for λ without knowledge of the extreme eigenval-
ues of W should be able to recover from leaving the feasible range of λ (Smirnov
and Anselin, 2001). There are obvious limits on N, because in general dense ma-
trices have to be used to find the eigenvalues of W, which impact both the use of
eigenvalues in computing the Jacobian and in setting the search interval for λ.5

A consequence of this discussion is that implementation is of the essence, some-
thing that we feel is demonstrated by Walde et al. (2008)6. Using MATLAB Re-
lease 7 version 14 on a 70 slave processor Linux cluster, they undertake 3000 Monte
Carlo runs pitting different fitting methods against each other. In fact, all the fitting
methods except one are maximum likelihood with differing methods for comput-
ing the Jacobian. The simulation scenario is for a regular 4900 observation grid, a

5Since the line search interval for λ can be manipulated, so far little attention has been given to
finding the extreme eigenvalues of sparse W for large N computationally; for some regular spatial
observation designs, analytical eigenvalues are known (Griffith, 2000).

6We are grateful to Janette Walde for her willingness to clarify questions arising during our study,
and for sharing code exerpts with us.
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SAR process with a λ coefficient value of 0.5, an intercept of one and a uniform
random x variable within zero and one and a coefficient of one; the remainder error
is assumed to be normal with zero mean and a standard deviation of one. The final
fitting method is generalised method of moments, which we will not be addressing
here. By setting the contest between methods for computing the Jacobian inside
model fitting simulation runs, it is not possible to see how well or poorly the actual
Jacobian values are computed for varying values of λ, rather how well the optimisa-
tion technique performs in providing the Jacobian method in the function returning
the log likelihood with proposed λ values — this raises concerns about whether the
optimisation technique is not giving some methods of computing the Jacobian a fair
chance.

With regard to the Ord eigenvalue method for computing the Jacobian, Walde
et al. (2008) conclude that it fails dramatically for N = 4900, when in principle
for a fixed W, the eigenvalues are also fixed, and consequently any variation in
their Monte Carlo runs cannot be coming from this source. Their numerical results
suggest that the line search for λ often halted at its lower bound, naturally leading
to poor performance; this diagnosis has been confirmed in correspondence with
the authors. In the next section, we present comparative results for computing the
Jacobian using the eigenvalue method, and do not find that they diverge from the
values from sparse matrix methods for moderate N.

4 Sparse Matrix methods
When spatial regression models began to be taken up in applied research, hardware
constraints on computing eigenvalues for moderate N prompted work on alternative
methods for computing the Jacobian. In a series of contributions, Pace and Barry
(1997b,c,a) show that sparse matrix methods can be used to find the log determinant
directly.7 The method of choice is the Cholesky decomposition of a sparse, sym-
metric, positive-definite matrix, but can be extended to the LU decomposition if
requirements on the matrix need to be relaxed (Smirnov and Anselin, 2001). Natu-
rally, for the same sparse, symmetric, positive-definite matrix, one would expect the
log determinants based on the Cholesky decomposition and the LU decomposition
to be identical within machine precision.

Walde et al. (2008) find, by implication, that the Jacobian values from Cholesky
decomposition and the LU decomposition for the same (I− λW) matrix differ.8

Both Cholesky and LU decomposition implementations are provided in the Ma-
trix package in R, so we will use these to match the Jacobian values based on the

7The S-PLUS SpatialStats module also uses sparse matrix methods (Kaluzny et al., 1998).
8Correspondence with Janette Walde, who made code extracts available, indicates that the

Cholesky Jacobian was erroneously divided by 2, explaining the discrepancy.
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eigenvalue method for two sets of neighbours, and against each other for the four
larger sets in the range [−0.9,0.99], in steps of 0.01, extending a little the values
used by Walde et al. (2008) for their grid search.9 The analysis has been carried
out on an Intel Core-2 Duo 64-bit system with 4GB RAM running R 2.11.1, Ma-
trix 0.999375-43, spam 0.22-0, and spdep 0.5-19, under Red Hat Enterprise Linux
5; a threaded GotoBLAS 1.26 library optimised for the hardware was used, with
gfortran 4.1.2 for Fortran compilation.

From the 0.5 release of the spdep package, Jacobian computation has been mod-
ularised to use two functions for each method, one to set up the objects needed for
calculating the Jacobian, and a second called through the do_ldet function in each
log likelihood objective function call. The objects prepared once only in the set up
function are passed between the functions in an environment, avoiding the need to
pass the objects themselves separately. The method being used is also assigned to
the environment in the set up function.

The code used here is given in the appendix, and for each data set calculates Ja-
cobian values for selected methods. The set up timings are recorded, as are timings
for computing 190 Jacobian values. The timings for the set up are not an average
of multiple runs, and are simply those observed on the platform used. The set up
code for some methods is very simple, while for others it is more complex. For
the eigenvalue method, the set up timings reflect the computation of the eigenvalues
from the symmetric, or transformed to symmetric, weights matrix. In the latter case,
transformation to the similar symmetric matrix is an extra time cost. Similar steps
are required for set up for the other methods; the objects involved are described in
the help page for do_ldet in spdep (reproduced at the end of this paper).

Our reasoning in this analysis is that the Jacobian value for the same λ may vary
a little between methods and implementations of these methods, but should not
differ so much that they lead the optimisation procedure to choose an inappropriate
solution. As noted above, the discrepancy noted by Walde et al. (2008) was caused
by a coding error. Table 3 shows timings for the methods we have presented so
far: computing the eigenvalues of a symmetric representation of spatial weights and
then using them to calculate the required Jacobian values; computing the Jacobian
directly using Cholesky decomposition; and computing the Jacobian directly using
LU decomposition. As LeSage and Pace (2009, p. 83) point out, one would expect
the LU decomposition to take about twice as long as the Cholesky decomposition
on the same matrix. The LU decomposition also seems to be seriously affected by
the less sparse nature of the 70 by 70 grid data set.

The test setting is somewhat artificial, because candidate values of λ are pro-
posed by the numerical optimisation function, typically a line search function, and

9Smirnov and Anselin (2001, p. 313) remark that a line search for λ is unlikely to need more
than 50 evaluations of the Jacobian.
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few model fitting runs need as many as 190 values. Indeed, the overhead of com-
puting the sum of squared errors component of the log likelihood for each λ may be
quite substantial. LeSage and Pace (2009, p. 48, and in numerous implementations
in the Spatial Econometrics toolbox for Matlab) prefer to vectorise the computation
of the Jacobian and log likelihood over a fine grid of values of λ.

In the implementations in the Matrix and spam packages, the determinant

method for symmetric sparse matrix objects computes a Cholesky factorization of
(I− λW), and then extracts the determinant on the logarithm scale. The LU de-
composition is undertaken in an analogous way. In the Cholesky case, if W can be
transformed to symmetry by similarity, this is done during setup. In both of these
approaches, the Cholesky factorization or LU decomostition and the extraction of
the determinant is done for each value of λ.

As can be seen in Table 3, the Jacobian values for all methods agree within ma-
chine precision for the two smaller data sets.10 Timings for the eigenvalue method
are divided between setup and run times for 190 Jacobian values; for the remaining
alternatives, total set up and run times are reported. Eigenvalue-based Jacobian val-
ues are not available for the four larger data sets, but the comparison of the Cholesky
and LU decomposition Jacobian values shows that they are equal within machine
precision. The LU decomposition is substantially more time-consuming, which,
with the equality of the values of the Jacobian for given λ, appears to support the
use of the Cholesky decomposition where possible.

The implementations of sparse Cholesky decomposition in the Matrix and spam
packages are independent of each other, with the former using approximate mini-
mal degree ordering, and the latter multiple minimum degree (MMD, default) or
reverse Cuthill-McKee (RCM) pivoting. The implementation in the Matrix pack-
age provides simplicial or supernodal decomposition, which can be specified di-
rectly. In addition, a heuristic is provided in the CHOLMOD code used by Ma-
trix, which chooses the prefered decomposition method automatically (here termed
CHOLMOD). With the exception of the very sparse Lucas, OH data set, the sim-
plicial decomposition is faster than the supernodal. For the denser 70×70 grid, the
simplicial decomposition is twice as fast as using eigenvalues, while the supern-
odal is slower. The CHOLMOD-heuristic — called at each Jacobian calculation
— appears to increase execution times, and is at best comparable to supernodal
decomposition.

If the spam implementation is chosen, it seems important to avoid the reverse
Cuthill-McKee (RCM) pivoting scheme, which only performs acceptably for the
Lucas, OH data set. Using the default multiple minimum degree (MMD) pivoting
scheme, this implementation is at best no better than the Matrix supernodal decom-
position. Consequently, in model fitting using sparse Cholesky decomposition dur-

10Machine precision is taken as 1.49012e-08, as in all.equal() in R.
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ing each Jacobian computation, the prefered choice would be Matrix with simpli-
cial decomposition (method="Matrix_J", default control option super=FALSE).

5 Updating Cholesky decompositions
A promising innovation for reducing the computational burden of computing the Ja-
cobian in spatial regression models was introduced in the Matrix package in March
2008. A comparable facility was introduced into the spam package in June 2008.
Since the pattern of sparseness in the matrix for which the log determinant is to be
found does not change, it is possible to carry out the Cholesky decomposition once,
and then update the values respecting the fill-reducing permutation found when the
decomposition was first undertaken. This incurs a moderate setup cost, but speeds
up the finding of each Jacobian value for successive λ proposed by the optimiser.

In Matrix, the Cholesky method computes the Cholesky decomposition of a
sparse, symmetric, positive-definite matrix, permitting the user to choose among
different kinds of sparse Cholesky decompositions (Davis, 2006). It returns an ob-
ject extending CHMfactor, so that the determinant method used will be for the
appropriate class. The super= argument is FALSE by default, leading to the use of
a simplicial decomposition; when TRUE, a supernodal decomposition is created, or
if set to as.logical(NA), the CHOLMOD-heuristic is used to choose the decom-
position method. The Imult= argument defaults to zero, but for our purposes needs
to be larger than the maximum row sum of W, and is here taken as 2. The matrix
that is decomposed is W+mI where m is the value of Imult, and for positive λ, we
reverse the sign of W.

Depending on the value of λ, we either return zero for λ within machine pre-
cision of zero, or switch on the sign of λ. The update method for CHMfactor

objects takes as additional arguments the original parent= dsCMatrix matrix, and
argument mult= taking values 1/λ for positive λ, or 1/(−λ) for negative λ. This
value updates the numerical values of the decomposition as λ changes. The out-
put value from determinant is multiplied by N log(λ) (or −λ for λ < 0) yielding
the Jacobian in logarithm form (see for a similar development, in the context of a
characteristic polynomial approach Smirnov and Anselin, 2001, p. 307).

In the spam package, updating still requires the provision of (I−λW) for each
value of λ, but avoids repeated decompositions, using an initial decomposition made
with the chosen pivoting method. Table 4 shows that the Jacobian values returned
by the updating Cholesky decomposition methods are equal to those of the direct
Cholesky method. The setup timings differ between the representations, with setup
for the less sparse 70 by 70 grid data set taking markedly longer for simplicial than
supernodal decomposition, and marginally for the spam MMD pivoting scheme.

The same seems to apply to the run times for finding 190 Jacobian values, with
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the supernodal representation clearly out-performing simplicial for the 70 by 70
grid. The run time of the simplicial decomposition is also close to that of the spam
MMD pivoting scheme. Once again the spam reverse Cuthill-McKee (RCM) piv-
oting scheme proves much worse than the default spam multiple minimum degree
(MMD) pivoting scheme for all data sets.

The supernodal representation is a little faster for the world grid, but for the
US counties, the Lucas county houses, the US ZCTAs, and the US Census tracts,
the simplicial representation is faster. Note that the supernodal representation does
better on regular grids with little variation in the number of nonzero elements per
row, while the simplicial representation seems to handle greater variation better
(see Table 1). While the spam multiple minimum degree (MMD) pivoting scheme
does quite creditably, it is always inferior to the Matrix methods on run times.
The overall best choice is to permit the CHOLMOD heuristic decide between the
simplicial and supernodal decomposition methods, since the heuristic procedure is
only run once when the initial fill-in pattern is determined.

6 Approximations
Walde et al. (2008) also try out a number of approximations to the Jacobian, two of
which will be presented here. The timings here reflect the proof-of-concept nature
of the coding, which has not been optimised. Despite this, the results are of some
interest, and use sparse matrix operations from the Matrix package throughout.

Barry and Pace (1999) propose the use of a Monte Carlo estimator with two
tuning parameters, p and m (see also LeSage and Pace, 2009, pp. 96–105). The
outcome is minus the mean of p random variates Vi, calculated from an N× p ma-
trix of drawings from the Normal distribution with zero mean and unit variance,
and m products of this matrix and the spatial weights matrix W. The setup func-
tion prepares a list of these expansion products, storing powers of W in m N × p
matrices. Zhang and Leithead (2007) suggest that the p candidate draws could be
subject to selection to eliminate inappropriately generated seeds. Here the original
description due to Barry and Pace (1999) is followed, using p = 16 and m = 30 as
in Walde et al. (2008).

The implementation here re-uses the same random seeds for each λ value by
calculating a list of expansion products, but pre-calculates m matrix operations on
N× p matrices to save time. The method is as follows:

Vi =−N ∑
m
k=1

x′iWkxi

x′ixi

λk

k

for i = 1, . . . , p, W with real eigenvalues in [−1,1], and xi ∼ N(0, I).
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A second approximation is proposed by Pace and LeSage (2004), who elaborate
a Chebyshev decomposition, where:

log |I−λW| ≈
q+1

∑
j=1

c j(λ)tr(T j−1(W))− n
2

c1(λ)

where T0(W) = I, T1(W) = W, T2(W) = 2W2− I, Tk+1(W) = 2WTk(W)−
Tk−1(W), and q represents the highest power of the approximating polynomial.
The matrix traces can be set up without knowledge of the λ values entering into the
Jacobian, and may be constructed more efficiently as shown by Pace and LeSage
(2004, p. 188); the maximum value of q is taken here as 5 (see also LeSage and
Pace, 2009, pp. 105–108).

The q+1 coefficients c j(λ) are given by:

c j(λ) = (
2

q+1
) ∑

k=1
q+1log[1−λcos(

π(k−0.5)
q+1

)]cos(
π( j−1)(k−0.5)

q+1
)

No matrix operations are involved in calculating the approximations to the Ja-
cobian for successive values of λ, yielding very fast look-up times.

Table 5 shows that the setup times for the approximations are not large, but
that the Monte Carlo execution is laborious in this implementation. The Cheby-
shev approximation method performs very fast, and is constant in q, although setup
increases in q as one would expect. Walde et al. (2008) advise against using the
Chebyshev approximation, but only tried q = 2, refering to results in the initial pa-
per (Pace and LeSage, 2004). Since the setup time for larger q is not great, q = 5 has
also been used here. Figure 1 and Table 6 show that while the Chebyshev approxi-
mation with q = 2 has obvious problems, both the Monte Carlo approximation and
the Chebyshev approximation with q = 5 perform quite well in terms of accuracy.
Performance falls off as λ moves to the extremes of its feasible range.

Other approximation methods are discussed by Smirnov and Anselin (2001) and
Griffith (2004), and work in this area is continuing (Smirnov and Anselin, 2009).

7 Conclusions
We have reviewed implementation details of sparse matrix and approximate ap-
proaches to fitting spatial regression models and to interpreting their results. Many
of the implementation details are not obvious to users, but do affect their ability to
get work done. More studies are required to compare alternative implementation
choices; more will certainly be undertaken following the publication of LeSage and
Pace (2009). The currently released version of the R package spdep provides some
opportunities for experimentation.
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Figure 1: Jacobian approximations compared with Cholesky decomposition Jaco-
bian values.
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While many of the points made in the discussion of the computation of the Jaco-
bian are critical of the conclusions drawn by Walde et al. (2008), it is only through
work like theirs that these issues can be given the attention that they deserve. Our
conclusions are that the use of eigenvalues and sparse matrix decompositions are
equivalent, and will only yield different results in maximum likelihood estimation
if other aspects of the implementation differ — the Jacobian values for given λ

will be the same within machine precision. There is an open question concerning
the finding of the interval for conducting the line search for λ when its largest and
smallest eigenvalues are not available either because the eigenproblem cannot be
solved for large N, or where the interval is not imposed by design. Another open
question concerns the symmetry of the underlying spatial weights, which is often
imposed by design, but which may not represent the underlying data generation
process adequately.

Further, we would argue that updating a Cholesky decomposition of the spatial
weights matrix is an alternative that deserves broader use. The rejection by Walde
et al. (2008) of the Chebyshev approximation appears to be driven by their choice
of q = 2 — we find that a value of q = 5 gives acceptable results when λ is not
strongly negative, and that higher values of q deserve study. The implementation of
the Monte Carlo approximation used here is not inefficient, but could be improved
to reduce timings even more — its accuracy is acceptable.

Appendix
Code used to generate results:

> library(spdep)

> tab_out <- list()

> dsets <- c("USC", "Walde4900", "wrld", "LO", "USZC", "UST")

> for (dset in dsets) {

+ load(paste(dset, "_lw.RData", sep = ""))

+ nb <- get(paste(dset, "_lw", sep = ""))$neighbours

+ tab_out[[dset]] <- vector(mode = "list", length = 4)

+ cnb <- card(nb)

+ tab_out[[dset]][[1]] <- c(table(cnb))

+ tab_out[[dset]][[2]] <- length(nb)

+ tab_out[[dset]][[3]] <- n.comp.nb(nb)$nc

+ tab_out[[dset]][[4]] <- sum(cnb)

+ }

> save(tab_out, file = "tab_out.RData")

> library(spdep)

> load("USC_lw.RData")

> USC_nb <- USC_lw$neighbours

> set.ZeroPolicyOption(TRUE)
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> eigs_out <- vector(mode = "list", length = 6)

> eigs_out[[1]] <- eigenw(nb2listw(USC_nb, style = "B"))

> eigs_out[[2]] <- eigenw(nb2listw(USC_nb, style = "C"))

> eigs_out[[3]] <- eigenw(nb2listw(USC_nb, style = "S"))

> eigs_out[[4]] <- eigenw(nb2listw(USC_nb, style = "W"))

> eigs_out[[5]] <- eigenw(similar.listw(nb2listw(USC_nb, style = "S")))

> eigs_out[[6]] <- eigenw(similar.listw(nb2listw(USC_nb, style = "W")))

> eig_res <- sapply(eigs_out, function(x) 1/range(Re(x)))

> save(eig_res, file = "eigs_out_res.RData")

> library(spdep)

> library(spam)

> set.ZeroPolicyOption(TRUE)

> lambda <- seq(-0.9, 0.99, 0.01)

> dsets <- c("USC", "Walde4900", "wrld", "LO", "USZC", "UST")

> output <- list()

> for (dset in dsets) {

+ load(paste(dset, "_lw.RData", sep = ""))

+ listw <- get(paste(dset, "_lw", sep = ""))

+ can.sim <- FALSE

+ if (listw$style %in% c("W", "S"))

+ can.sim <- spdep:::can.be.simmed(listw)

+ res <- list()

+ if (length(listw$neighbours) < 5000) {

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("verbose", FALSE, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(eigen_setup(env))

+ type <- get("method", envir = env)

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ }

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("family", "SAR", envir = env)

+ set.seed(length(listw$neighbours))

+ setTime <- system.time(mcdet_setup(env))

+ type <- get("method", envir = env)

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out
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+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(cheb_setup(env, q = 2))

+ type <- paste(get("method", envir = env), "2", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(cheb_setup(env, q = 5))

+ type <- paste(get("method", envir = env), "5", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(Matrix_setup(env, Imult = 2, super = FALSE))

+ type <- paste(get("method", envir = env), "simp", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(Matrix_setup(env, Imult = 2, super = TRUE))

+ type <- paste(get("method", envir = env), "sup", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)
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+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(Matrix_setup(env, Imult = 2, super = as.logical(NA)))

+ type <- paste(get("method", envir = env), "NA", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(Matrix_J_setup(env, super = FALSE))

+ type <- paste(get("method", envir = env), "simp", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(Matrix_J_setup(env, super = TRUE))

+ type <- paste(get("method", envir = env), "sup", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(Matrix_J_setup(env, super = as.logical(NA)))

+ type <- paste(get("method", envir = env), "NA", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,
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+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(spam_setup(env))

+ type <- get("method", envir = env)

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(spam_setup(env, pivot = "RCM"))

+ type <- paste(get("method", envir = env), "RCM", sep = "_")

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(spam_update_setup(env))

+ type <- get("method", envir = env)

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("can.sim", can.sim, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(spam_update_setup(env, pivot = "RCM"))

+ type <- paste(get("method", envir = env), "RCM", sep = "_")
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+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ env <- new.env(parent = globalenv())

+ assign("listw", listw, envir = env)

+ assign("n", length(listw$neighbours), envir = env)

+ assign("family", "SAR", envir = env)

+ setTime <- system.time(LU_setup(env))

+ type <- get("method", envir = env)

+ res[[type]] <- vector(mode = "list", length = 3)

+ res[[type]][[1]] <- setTime

+ res[[type]][[2]] <- system.time(out <- sapply(lambda, function(x) do_ldet(x,

+ env)))

+ res[[type]][[3]] <- out

+ rm(env)

+ output[[dset]] <- res

+ }

> save(output, file = "output_Jacobian.RData")

Functions help page

do_ldet Spatial regression model Jacobian computations

Description

These functions are made available in the package namespace for other devel-
opers, and are not intended for users. They provide a shared infrastructure for
setting up data for Jacobian computation, and then for caclulating the Jaco-
bian, either exactly or approximately, in maximum likelihood fitting of spatial
regression models. The techniques used are the exact eigenvalue, Cholesky de-
compositions (Matrix, spam), and LU ones, with Chebyshev and Monte Carlo
approximations.

Usage

do_ldet(coef, env, which=1)

cheb_setup(env, q=5, which=1)

mcdet_setup(env, p=16, m=30, which=1)
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eigen_setup(env, which=1)

spam_setup(env, pivot="MMD", which=1)

spam_update_setup(env, in_coef=0.1, pivot="MMD", which=1)

Matrix_setup(env, Imult, super=as.logical(NA), which=1)

Matrix_J_setup(env, super=FALSE, which=1)

LU_setup(env, which=1)

Arguments

coef spatial coefficient value

env environment containing pre-computed objects, fixed after as-
signment in setup functions

which default 1; if 2, use second listw object

q Chebyshev approximation order; default in calling spdep func-
tions is 5, here it cannot be missing and does not have a default

p Monte Carlo approximation number of random normal vari-
ables; default calling spdep functions is 16, here it cannot be
missing and does not have a default

m Monte Carlo approximation number of series terms; default in
calling spdep functions is 30, here it cannot be missing and does
not have a default

pivot default “MMD”, may also be “RCM” for Cholesky decompisi-
tion using spam

in_coef fill-in initiation coefficient value, default 0.1

Imult see Cholesky; numeric scalar which defaults to zero. The ma-
trix that is decomposed is A+m*I where m is the value of Imult
and I is the identity matrix of order ncol(A). Default in calling
spdep functions is 2, here it cannot be missing and does not
have a default, but is rescaled for binary weights matrices in
proportion to the maximim row sum in those calling functions

super see Cholesky; logical scalar indicating is a supernodal decom-
position should be created. The alternative is a simplicial de-
composition. Default in calling spdep functions is FALSE for
“Matrix_J” and as.logical(NA) for “Matrix”. Setting it to
NA leaves the choice to a CHOLMOD-internal heuristic
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Details

Since environments are containers in the R workspace passed by reference rather
than by value, they are useful for passing objects to functions called in numerical
optimisation, here for the maximum likelihood estimation of spatial regression
models. This technique can save a little time on each function call, balanced
against the need to access the objects in the environment inside the function.
The environment should contain a family string object either “SAR”, “CAR”
or “SMA” (used in do_ldet to choose spatial moving average in spautolm, and
these specific objects before calling the set-up functions:

eigen Classical Ord eigenvalue computations:

listw A listw spatial weights object
can.sim logical scalar: can the spatial weights be made symmetric by

similarity
verbose logical scalar: legacy report print control, for historical reasons

only

and assigns to the environment:

eig a vector of eigenvalues
eig.range the search interval for the spatial coefficient
method string: “eigen”

Matrix Sparse matrix pre-computed Cholesky decomposition with fast updat-
ing:

listw A listw spatial weights object
can.sim logical scalar: can the spatial weights be made symmetric by

similarity

and assigns to the environment:

csrw sparse spatial weights matrix
nW negative sparse spatial weights matrix
pChol a “CHMfactor” from factorising csrw with Cholesky

nChol a “CHMfactor” from factorising nW with Cholesky

method string: “Matrix”

Matrix_J Standard Cholesky decomposition without updating:

listw A listw spatial weights object
can.sim logical scalar: can the spatial weights be made symmetric by

similarity
n number of spatial objects
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and assigns to the environment:

csrw sparse spatial weights matrix
I sparse identity matrix
super the value of the super argument
method string: “Matrix_J”

spam Standard Cholesky decomposition without updating:

listw A listw spatial weights object
can.sim logical scalar: can the spatial weights be made symmetric by

similarity
n number of spatial objects

and assigns to the environment:

csrw sparse spatial weights matrix
I sparse identity matrix
pivot string — pivot method
method string: “spam”

spam_update Pre-computed Cholesky decomposition with updating:

listw A listw spatial weights object
can.sim logical scalar: can the spatial weights be made symmetric by

similarity
n number of spatial objects

and assigns to the environment:

csrw sparse spatial weights matrix
I sparse identity matrix
csrwchol A Cholesky decomposition for updating
method string: “spam”

LU Standard LU decomposition without updating:

listw A listw spatial weights object
n number of spatial objects

and assigns to the environment:

W sparse spatial weights matrix
I sparse identity matrix
method string: “LU”

MC Monte Carlo approximation:
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listw A listw spatial weights object

and assigns to the environment:

clx list of Monte Carlo approximation terms
W sparse spatial weights matrix
method string: “MC”

cheb Chebyshev approximation:

listw A listw spatial weights object

and assigns to the environment:

trT vector of Chebyshev approximation terms
W sparse spatial weights matrix
method string: “Chebyshev”

Some set-up functions may also assign similar to the environment if the weights
were made symmetric by similarity.

Value

do_ldet returns the value of the Jacobian for the calculation method recorded
in the environment argument; the remaining functions modify the environment
in place as a side effect and return nothing.

Author(s)

Roger Bivand <Roger.Bivand@nhh.no>
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