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Abstract 

Metabolic imbalance is associated with increased risk of several diseases, including 

cancer.  Metabolism affects or is affected by virtually all other cellular processes, 

which is not surprising considering their conserved role throughout evolution. 

Mitochondria are important sensors of the intracellular metabolic environment and 

play a major role in bioenergetics and survival signaling in mammalian cells.  

Accordingly, these cell organelles have been implicated in the development of cancer, 

which includes changes in cellular metabolism and cell death signaling.   

Metabolic reprogramming in cancer cells increases cell growth and proliferation.  

This entails greater nutrient uptake which is metabolized to provide energy and 

intermediates for cell constituents.  This reprogramming has generally been 

associated with increased therapeutic resistance, but may also prove to be utilized in 

metabolic targeted therapies.  Major signaling networks that are involved in tumor 

growth and metabolic reprogramming are PI3K/Akt/mTOR signaling pathways often 

found mutated in cancer cells.  Activation of this pathway results in high glucose 

dependency and aggressive tumors.  On the other hand, the activation of a low-

energy-responsive AMP-activated protein kinase (AMPK) signaling pathway leads to 

growth inhibition.  Both of these signaling pathways may regulate or be regulated by 

mitochondrial functions, which has been the basis of this Ph.D study. 

The aim of this work was to investigate interactions between cell metabolism and 

signalling that affect mitochondrial function under conditions of energetic and 

metabolic stress. In order to reflect different contexts of mitochondrial regulation, we 

studied these mechanisms in both metabolically restricted cancer cells, as well as 

metabolically flexible primary rat hepatocytes.    

We found that leukemia cells that have mutations in the PI3K/Akt/mTOR signaling 

pathway (Jurkat) were more susceptible to glucose deprivation and agents that 

challenge this metabolism (such as palmitic acid). Alternatively, leukemia cells that 
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use more oxidative phosphorylation for their metabolism (HL-60) showed increased 

resistance to glucose deprivation, but higher susceptibility to agents interfering with 

their mitochondrial function (such as resazurin and AICAR).  Metabolically flexible 

primary cells (hepatocytes) were found to adjust their metabolism in response to 

agents that induce increased metabolic stress (TTA).   Interestingly, this involved the 

nutrient sensing mTOR signaling pathway, which may play a role in regulating cell 

size, whereas we found no indications of hyperplasia (no neoplastic growth of the 

liver).  

These studies support the growing understanding that metabolic characterization of 

cancer cells and its effects on and by mutations in cell signalling pathways, not only 

gives us a better understanding of tumour biology, but may also provide additional 

treatment targets and strategies in cancer therapy.  It is thus a possibility that 

treatments targeted to metabolism cause cell stress and death in metabolically 

compromised cancer cells, while more benign reversible stress responses may occur 

in normal cells.   
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Sammendrag 

Metabolsk ubalanse er assosiert med økt risiko for en rekke sykdommer, inkludert 

kreft.  Metabolisme påvirker eller blir påvirket av praktisk talt alle andre cellulære 

prosesser, noe som ikke er overraskende med tanke på deres konserverte rolle 

gjennom evolusjonen.  Mitokondriene er viktige sensorer av det intracellulære 

metabolske miljøet og spiller en stor rolle i bioenergi og overlevelse signalisering i 

mammalske celler.  Følgelig er disse organellene innblandet i utviklingen av kreft, 

som inkluderer endringer av cellenes stoffskifte og celledød signalisering. 

Metabolsk omprogrammering i kreft celler øker celle vekst og proliferering.  Dette 

innebærer høyere opptak av næringsstoffer som metaboliseres for å gi energi og 

mellomprodukter for celle bestanddeler.  Denne omprogrammeringen har vært 

assosiert med økt terapeutisk resistens, men kan også vise seg å bli utnyttet i 

metabolsk målrettede behandlingsformer.  Store signaliserings nettverk som er 

involvert i tumorvekst og metabolsk omprogrammering er PI3K/Akt/mTOR signal 

veien ofte funnet mutert i kreftceller.  Aktivering av denne veien resulterer i høy 

glukose avhengighet og aggressive svulster.  I forhold, fører en aktivering av en lav-

energi responderende AMP-aktivert protein kinase (AMPK) signal vei til vekst-

hemming.  Begge disse signalveiene kan regulere eller bli regulert av mitokondrielle 

funksjoner, noe som har vært utgangspunktet for denne PhD studien.   

Målet med denne avhandlingen var derfor å undersøke samspillet mellom celle-

metabolisme og signalisering, og effekten på mitokondriell funksjon under forhold 

som involverer energi og metabolsk stress.  For å belyse ulike sammenhenger ved 

mitokondriell regulering studerte vi disse mekanismene i både metabolsk rigide 

kreftceller og i metabolsk fleksible primære rottehepatocytter. 

Vi fant at lekuemiceller som har mutasjoner i PI3K/Akt/mTOR signaliseringsveien 

(Jurkat) er mer utsatt for glukose deprivasjon og agenter som utfordrer denne 

energien veien (f.eks. palmitinsyre).  Alternativt, viste mer metabolsk fleksible 
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leukemiceller (HL-60) bedre motstand mot glukose deprivasjon, men økt stress og 

død når de blir utsatt for agenter som forstyrrer deres mitokondrielle funksjon (f.eks. 

resazurin og AICAR).  Metabolsk fleksible primære celler (hepatocytter) tilpasser 

metabolismen til agenter som induserer økt metabolsk stress (TTA). Et interessant 

funn var at dette involverte den mTOR signaliseringsveien som påvirkes av 

næringsforhold og deltar i reguleringen av cellestørrelse. Vi fant imidlertid ikke 

indikasjoner på hyperplasi (ingen neoplasi i lever).  

Disse studiene støtter den økende forståelsen av at metabolsk karakterisering av 

kreftceller og dens virkninger på og av cellesignalisering mekanismer, ikke bare gir 

oss en bedre forståelse av tumorbiologi, men kan gi oss en pekepinn for en mengde 

potensielle kreftbehandlingsmål.  Det er derfor en mulighet at behandling rettet mot 

metabolismen vil indusere cellulære stressreaksjoner og celledød i kreftceller, mens 

reversible stressresponser vil kunne forekomme i normale friske celler. 
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1. Introduction  

1.1 Prefrace 

The word “metabolism” derives from the Greek language and interprets to “change” 

or “out throw” and in the more practical sense it involves the biochemical reactions in 

an organism where substances are broken down to sustain life.  Normally the phrase 

is divided into two sub categories namely catabolic metabolism and anabolic 

metabolism.  The prior involves the breakdown of substrates to produce energy, 

whereas the latter is using energy to produce cell components.  The mitochondria are 

key mediators in cellular metabolism and are small double membrane organelles 

found in almost all eukaryotic cells (Henze and Martin, 2003b).  Most of the adenine 

triphosphate (ATP), which in essence is the fuel that sustains cell life, is produced 

here via ATP synthase coupled to oxidative phosphorylation and the tricarboxylic 

acid cycle (TCA).  Our ATP turnover at rest is 28 g/min, which is equivalent to 1.4 

kg/hour (Salway, 2006).  During strenuous exercise this number increases to an 

incredible 0.5 kg/min (!), which underscores the important role the mitochondria have 

in maintaining metabolic homeostasis.   

External and internal factors such as nutritional composition, energy status, oxygen 

tension and chemical compounds cause mitochondrial responses, either directly or 

indirectly.  Furthermore, the mitochondrial tissue distribution is highly diverse in 

amount, composition and functionality, underscoring that they can take on pleiotropic 

roles in cells.  Accordingly, the metabolic flexibility of a cell may be determined by 

the mitochondrial function or malfunction, which is why many diseases are closely 

linked to mutations in mitochondrial genes, which makes them interesting targets to 

investigate in a whole range of diseases.  This thesis focuses on the metabolic 

flexibility of various cancer cell lines (metabolically compromised) as well as 

primary hepatocytes (metabolically flexible) with regards to mitochondrial function.  

Mitochondria are of special interest in cancer cell energy metabolism, as they are key 

regulators of maintaining a steady supply of precursors for maintaining high 
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proliferation rates.  In addition, their central role in cell death makes these organelles 

a promising “dual hit target” for selectively eliminating cancer cells.     

1.2 Cellular Energy Metabolism 

1.2.1  Energy substrates

The main energy substrates used in metabolism are carbohydrates, lipids and 

proteins.  How the body utilizes these substrates depends on the metabolic state (fed 

or starved), type of tissue, energetic demand (exercise or resting) and oxygen 

availability.  Glucose is the only substrate for the red blood cells (RBC) as they lack 

mitochondria, whereas the brain cannot use fatty acids as fuel and rely on glucose or 

the fatty acid derivatives ketone bodies ( -hydroxybuterate and acetoacetate) during 

fed or fasted state (prolonged) respectively (Salway, 2006).  Under aerobic conditions 

fatty acids are the preferred fuel by muscle cells and are metabolized by -oxidation 

to make ATP in the mitochondria.  The liver plays a vital role in glucose homeostasis 

and is the main organ (some from the kidneys), that make glucose during fasting. The 

substrates for glucose production are amino acids and glycerol, which help maintain 

glucose levels above 3.5 mmol/L (Salway, 2006).  Thus, during fasting fatty acids 

enters the liver cells and are used to make ketone bodies and ATP to fuel 

gluconeogenesis.  Initially the liver response to drop in blood glucose levels is to 

release its glycogen reserves (glucose stored in long chains), whilst starting the 

generation of glucose through the gluconeogenesis process.            

1.2.2  Glucose homeostasis 

Glucose is a polar molecule which does not readily diffuse across the hydrophobic 

plasma membrane; therefore, specific carrier molecules exist to mediate its uptake. 

This transport is conducted via bidirectional proteins called glucose transporters 

(GLUTs) across the membrane without requiring energy (Joost and Thorens, 2001).  
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GLUTs consist of a family of 13 members, GLUT 1 to 12 plus the proton (H+)-

myoinositol cotransporter (HMIT) (Joost et al., 2002, Uldry and Thorens, 2004).  

These transporters belong to a family of proteins called solute carrier family 2 (gene 

symbol SLC2A).  Structurally, the GLUTs can be divided into three classes: GLUT1 

to -4 (class 1), GLUT5, -7, -9, and -11 (class 2), and GLUT6, -8, -10, and -12 and 

HMIT (class 3) (Joost et al., 2002, Uldry and Thorens, 2004).  Class 1 is comprised 

of the most-well-characterized glucose transporters, GLUT1-4 (Table 1).  GLUT1 is 

ubiquitously distributed in various tissues with different levels of expression in 

different cell types.  GLUT2 is a low-affinity transporter for glucose and is found 

primarily in the intestines, pancreatic -cells, kidney, and liver (Thorens et al., 1988).  

This low affinity is an important regulator of glucose homeostasis, which is 

absolutely crucial for normal mental capacity (Owen et al., 1998).  GLUT3 mRNA 

expression is almost ubiquitous in human tissues, although the protein distribution is 

restricted to brain, testis (Haber et al., 1993) and placenta in early pregnancy (Brown 

et al., 2011).  GLUT3 transports glucose with high affinity (it has the lowest Km of the 

GLUTs), which allows for easy influx of glucose to the cells even when blood 

glucose levels drops.  This underscores the importance of maintaining adequate 

nutrient supply to the brain during all types of physiological conditions.  GLUT4 is 

the major glucose transporter in adipose tissue, as well as in skeletal and cardiac 

muscle.  These tissues are insulin sensitive and insulin stimulation leads to activation 

of downstream pathways of the insulin receptor, which mediates the rapid 

translocation of GLUT4 from intracellular vesicles to the cell surface, resulting in an 

increase in cellular glucose transport activity (Birnbaum, 1989, Langfort et al., 2003, 

Lira et al., 2007).  GLUT4 is consequently highly expressed at the cell plasma 

membrane in the fed state, whereas it is kept in intracellular vesicles upon fasting.  

Another important feature of GLUT 4 is that it has a 3-fold higher glucose transport 

capacity than the widely expressed GLUT1 (Yu et al., 2011).     
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Receptor Tissue Distribution Special properties

GLUT 1 Ubiquitly expressed High capacity, low Km
(1-2 mmol/L) 

GLUT 2 Intestines, pancreatic -cells, 
kidney and liver 

High capacity, low 
affinity (Km 15-20 
mmol/L) 

GLUT 3 Brain, testis and placenta High capacity, low Km 
(1 mmol/L) 

GLUT 4 Skeletal and cardiac muscle, 
adipose tissue 

Activated by insulin, 
Km (5 mmol/L)  

Table 1.  Overview of Glut receptor distribution and blood glucose 
consentrational activation. (adapted from www.medbio.info/, 2012)

After glucose enters the cell it is phosphorylated by hexokinases or in the liver by 

glucokinase, which essentially traps the glucose inside the cell by adding a charged 

phosphate, creating glucose-6-phosphate (G6-P).  Figure 1 illustrates the conversion 

of glucose to pyruvate through glycolysis.  The G6-P is converted to fructose 6-

phosphate (F 6-P) by the enzyme phosphoglucose isomerase, and subsequently 

phosphofructokinase (PFK-1) converts it to fructose 1,6-bisphosphate (F1,6-BP).  

PFK-1 uses one mole ATP to add on the second phosphate group on the fructose 

molecule.  Several additional steps are needed before the irreversible step of pyruvate 

kinase makes pyruvate from phosphoenolpyruvate (PEP) (Salway, 2006).  

Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) are 

considered the main controlling steps for glycolysis flux modulation as they catalyse 

the three irreversible reactions in the glycolytic sequence (Weber et al., 1966).  

During starvation these irreversible steps are overcome by specific enzymes for the 

gluconeogenic pathway (figure 1).   
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Since glycolysis requires energy and releases energy, it is most efficient when linked 

to oxidative phosphorylation which is performed in the mitochondria under aerobic 

conditions.  In normal catabolic expenditure of one glucose, two pyruvate molecules 

are made and a net of 2 mole ATP.  In the presence of oxygen and normal metabolic 

checkpoints, pyruvate enters the mitochondria via the pyruvate carrier (Hildyard and 

Halestrap, 2003) where pyruvate dehydrogenase complex (PDH) catalyze the 

conversion to acetyl-CoA, yielding NADH and CO2 as byproducts.  

Figure 1.  Oxidation of Glucose in glycolysis and production of glucose in 

gluconeogenesis.  The three irreversible enzymatic steps in glycolysis are marked in 

red, whereas the gluconeogenesis specific enzymes are marked in green.  Intermittent 

steps are excluded, but included in the text.  Pyruvate generated through glycolysis is 

either transported into the mitochondria for complete oxidation via the tricarboxylic 

acid cycle (oxygen present), or converted to lactate by lactate dehydrogenase during 

anaerobic conditions.  Pyruvate has to be actively imported into the mitochondria 
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through the mitochondrial outer membrane (MOM), and mitochondrial inner 

membrane (MIM), before it is converted to acetyl-CoA which combines with 

oxaloacetate to form citrate.  During gluconeogenesis oxaloacetate is converted to 

malate and transported out of the mitochondria before returned to oxaloacetate which 

is further converted to phosphoenolpyruvate (PEP) by phosphoenolpyruvate 

carboxykinase (PEPCK).          

1.2.3  The Mitochondria 

The mitochondria are small double membrane organelles found in almost all 

eukaryotic cells.  They are considered to be derivatives of ancient aerobic bacteria  

that merged with a primitive eukaryotic cell over two billion years ago (Wallace, 

2005).  A relic from this event is that they comprise their own DNA, which encodes 

37 genes for 12S and 16S rRNAs, 22 tRNAs and 13 polypeptides belonging to the 

electron transport chain (ETC).  The remaining mitochondrial proteins are encoded in 

the nucleus, estimated to around 1500 genes, and has to be imported into the 

mitochondria through various import systems (Wallace, 2005).  Mitochondrial 

distribution throughout tissues is highly diverse in amount, composition and 

functionality, underscoring the fact that they can take on pleiotropic roles in cells 

(Hagland et al., 2007).  Figure 2 illustrates the different processes in which the 

mitochondria are involved.  This thesis will focus on some of these processes in 

connection to cellular metabolic response mechanisms.     
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Figure 2.  Mitochondria in cell life.  Through oxidative phosphorylation 

mitochondria produce the bulk of intracellular ATP, and hence are considered the 

cells power plants.  In addition, mitochondria regulate Ca2+ homeostasis and host 

some steps of several other metabolic circuitries including (but not limited to) the 

TCA cycle, the urea cycle, gluconeogenesis, ketogenesis, heme biosynthesis, fatty 

acid -oxidation, steroidogenesis, the metabolism of certain amino acids and the 

formation of Fe/S clusters.  ER, endoplasmic reticulum, PM, plasma membrane. 

(adapted in full from (Galluzzi et al., 2010)) 

Tricarboxylic acid cycle (TCA cycle)  
The TCA cycle is involved in the metabolism of sugars, lipids and amino acids and 

takes place in the mitochondrial matrix (Salway, 2006).  Originally it was thought of 

as an ongoing cycle whose main function was to oxidize acetyl-CoA, producing CO2

and NADH/FADH2 electrons for oxidative phosphorylation (Raimundo et al., 2011).  

Back then whole tissue homogenates were used and it was only after the technique of 

differential centrifugation, which resulted in appropriate separation of cellular 

components, that it became clear that many of the isoforms and enzymes of the TCA 

cycle were also present in the cytoplasm (Raimundo et al., 2011).  These cytoplasmic 
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localized isoforms and enzymes involves almost all of the TCA cycle intermediates 

except for those involved in succinate turnover (Raimundo et al., 2011).  The 

cytoplasmic and mitochondrial pool of TCA intermediates are connected to each 

other, which is reflected in a correspondingly increase or decrease of metabolites 

according to levels in each pool (Raimundo et al., 2011).  The mitochondrial outer 

membrane (MOM) has channels where these metabolites freely diffuses into the 

inter-membrane space, whereas the mitochondrial inner membrane (MIM) actively 

transports these metabolites across the MIM in a controlled fashion (Salway, 2006).   

The first step of the TCA cycle is the condensation of acetyl-CoA with oxaloacetate 

to form citrate.  Acetyl-CoA can be generated either from pyruvate, amino acid 

catabolism or fatty acid -oxidation.  The full oxidation of acetyl-CoA requires an 

eight step process, involving different enzymes and co-enzymes, which eventually 

results in the production of 3 NADH, 1 FADH2 and 1 GTP/ATP together with waste 

products such as H2O from glycolysis, and CO2 (Figure 3).  The first step in the cycle 

is mediated by citrate synthase and generates citrate.  Citrate is converted to isocitrate 

by aconitase, which is further converted to -ketogluterate ( -KG) by isocitrate 

dehydrogenase (IDH) generating NADH.  The amino acids glutamate, histidine, 

proline and ornithine enters the TCA cycle via -KG during amino acid catabolism, 

and therefore belongs to the glucogenic amino acids (Salway, 2006).  The enzyme -

ketogluterate dehydrogenase ( -kgDH) turns -ketogluterate into succinyl-CoA 

generating NADH.  The branched-chain amino acids valine and isoleucine together 

with methionine may also enter the TCA cycle by conversion to succinyl-CoA.   The 

next step involves succinyl-CoA synthetase and is the only step where GTP or ATP is 

generated together with succinate.  Succinate feeds electrons into the electron 

transport chain via succinate dehydrogenase (SDH) also referred to as Complex II.  

Otherwise the only complex of the respiratory chain which is exclusively encoded in 

the nucleus (Wallace, 2005).  Succinate dehydrogenase converts succinate to 

fumarate, producing FADH2 which donates its electrons to electron carriers of the 

ETC.  Fumarate is converted to malate by fumarase, a reaction found in both the TCA 
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cycle and cytoplasm (Raimundo et al., 2011).  Malate dehydrogenase completes the 

TCA cycle making oxaloacetate and NADH.      

Figure 3.  The TCA cycle.  The first committed step is the combination of 

oxaloacetate with acetyl-CoA to make citrate.  The source of acetyl-CoA depends on 

the cells metabolic situation, and can be generated from fatty acid -oxidation, 

pyruvate from glycolysis or catabolism of amino acids.  The enzymes shown in red 

have been found mutated in many cancers (described in later section). Succinate 

dehydrogenase is also part of the electron transport chain (ETC).     

Oxidative phosphorylation 
The NADH and FADH2 made from oxidation/reduction reactions in the TCA cycle 

are used as electron donors in the electron transport chain, which is found in the inner 

membrane of the mitochondria.  These co-factors cannot cross the mitochondrial 

membrane and as such must be recycled in the electron transport chain (ETC) 

(Salway, 2006), or via the exchange of TCA cycle intermediates between the 
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cytoplasm and matrix.  The ETC is made up of four complexes, commonly referred to 

as Complex I-IV and ATP synthase (complex V).  Electrons from electron donors 

NADH and FADH2 are fed into the ETC via complex I and II respectively, and 

consequently transferred via ubiquinol (QH2), the reduced form of ubiquinone, to 

cytochrome c oxidoreductase (complex III).  Furthermore, Complex III transfers the 

electrons to cytrochrome c which diffuses to cytochrome c oxidase (complex IV).  

Complex IV is where O2 is reduced to H2O.   

The flow of electrons drive a proton motive force where complex I, III and IV pumps 

protons (H+) into the inter-membrane space.  This results in a membrane potential, 

which has to be maintained to have a functional oxidative phosphorylation system, 

thus driving the ATP synthase (complex V) in the right direction where adenosine 

5’diphosphate (ADP) is converted to adenosine 5’triphosphate (ATP).  The protons in 

the inter-membrane space flow back into the matrix via the proton channel F0 of the 

ATP synthase (figure 4).  The net yield of ATP from one glucose molecule via 

glycolysis, TCA cycle and oxidative phosphorylation has been a point of debate for 

many decades.  But, the general consensus is that around 32 ATP are produced by 

catabolizing one glucose molecule (Salway, 2006), however this relies on a tight 

membrane integrity of the mitochondria and no influence of uncoupling proteins 

(UCP) (section 1.2.4 .  As a byproduct of oxidative phosphorylation, about 2% of the 

cellular oxygen is partly reduced to superoxide O2
- (Salway, 2006).  These are 

harmful reactive oxygen species (ROS), to which our body has developed defense 

mechanisms in the form of antioxidants (further explained in section 1.2.4)    
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Figure 4.  The Electron transport chain (ETC).  Electrons from the NADH/FADH2

generated in the TCA cycle fuels the pumping of protons across the matrix to the 

inter-membrane space, whereas the electrons transferred reduce O2 to H2O at 

complex IV.  The charge difference between the matrix side and the inter-membrane 

space is indicated by the proton gradient.  This membrane potential is used to fuel the 

synthesis of ADP to ATP by ATP synthase by allowing the protons to re-enter into 

the matrix through the proton channel in the F0 particle.  The ATP synthase is not the 

only escape route for the protons in the inter-membrane space, since the presence of 

uncoupling proteins may mediate proton leak.  Common inhibitors of the ETC and 

their inhibition site are listed in the table.     

Fatty acid biosynthesis and oxidation 
The liver plays an important role in glucose homeostasis, but is also crucial in 

lipogenesis and fatty acid oxidation.  After a meal, when the glycogen reserves are 



25

full, the remaining glucose available is shuttled through the pentose phosphate 

pathway making NADPH which e.g. is needed for lipid synthesis and antioxidant 

defense reactions (glutathione reduction).  Fatty acid biosynthesis is made possible by 

high levels of NADH and ATP made in the mitochondria, which inhibits isocitrate 

dehydrogenase leading to citrate accumulation.  Citrate is consequently transported 

out of the mitochondria through the tricarboxylate carriers and converted to acetyl-

CoA and oxaloacetate in the cytoplasm by citrate lyase.  Acetyl-CoA is, in the 

presence of insulin, converted to malonyl-CoA by acetyl-CoA carboxylase.  The 

carnitine palmitoyl transferase (CPT) I and II are involved in transporting fatty acids 

across the two mitochondrial membranes respectively, where malonyl-CoA is a 

potent inhibitor of CPTI (Salway, 2006, Skrede et al., 1997).  This in effect inhibits 

fatty acid oxidation during lipogenesis as malonyl-CoA is also a precursor for fatty 

acid synthesis.  Increased levels of citrate and ATP in the cytoplasm inhibit PFK-1, 

thus increasing the glucose-6 phosphate (G6P) levels when insulin is present.  Since 

G6P is the precursor for the pentose phosphate pathway the NADPH is continuously 

produced during high glucose levels (Salway, 2006).  Simplistically put, when blood 

glucose drops, the GLUT2 transporter with low glucose affinity does not transport 

glucose into the insulin producing pancreatic -cells and consequently insulin is not 

secreted (Salway, 2006).  The pancreatic -cells produce glucagon which activates 

glycogen breakdown in the liver and glucose release into the blood stream, thus 

preventing hypoglycemia.  During starvation cortisol is released from the adrenal 

cortex, and together with glucagon stimulates hormone-sensitive lipase which results 

in fatty acid release from adipocytes to be used for oxidative fuel in the liver.  The 

fatty acids enters the mitochondria via CPTI and CPTII and are oxidized through a 

number of steps generating high levels of NADH and FADH2, which are recycled to 

NAD+ and FAD in the ETC, where electrons are used for oxidative phosphorylation 

generating ATP for gluconeogenesis as described previously.        
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1.2.4  Metabolic flexibility and  Cellular Stress 

The general understanding of metabolism is based on the old biochemistry work done 

in the 1920s to 1960s, which included the before mentioned glycolysis (Embden, 

Meyerhof and Parnas), respiration (Warburg), the TCA cycle (Krebs), glycogen 

catabolism (Cori and Cori), oxidative phosphorylation (Mitchell) and ATP in energy 

transfer reactions (Lipmann) (DeBerardinis and Thompson, 2012).  The 

understanding of how substrates were utilized in complex enzymatic reactions, to 

maintain whole body energy homeostasis, was a tremendous break through and has 

since led to dietary treatment options to many metabolic diseases which prior had 

been untreatable.  The discovery of deoxyribonucleic acid (DNA) in the 1950s and its 

huge implications in genetic control directed the research into a new field, that of 

genes and proteins, leaving the area of basic biochemistry.  This resulted in a wealth 

of information on genetic mutations and affected proteins that were implicated in 

different diseases.  However, the connections between these mutations, the aberrant 

signaling pathways and how this affected the metabolism have only the last decade 

become an area of great interest (DeBerardinis and Thompson, 2012).  Cellular 

metabolism is now understood to be more than a self-regulating network that operates 

in the background of biological signaling, furthermore it clearly affects and is 

affected by protein signaling itself (DeBerardinis and Thompson, 2012).   

The connection of cell metabolism to major signaling pathways such as the 

Akt/mTOR/AMPK network (section 1.2.5), has given us a new insight into metabolic 

flexibility or lack thereof.  Mitochondrial dysfunction has been reported in many 

metabolic diseases, such as diabetes 2, insulin resistance, cardiovascular diseases, 

obesity and cancer (Henze and Martin, 2003a, Kim et al., 2008, Lesnefsky et al., 

2001, McBride et al., 2006, Modica-Napolitano et al., 2007, Wallace, 2005).  Obesity 

has thus been linked to an increased risk of developing cancer (Calle and Kaaks, 

2004),  where several mechanisms have been proposed to explain their 

interconnectivity.   Mutations caused by cellular stress reactions may affect important 
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signaling pathways involved in metabolic control and consequently lead to disease.  

The cells capability to adapt to increased stress, such as hypoxia, nutrient 

excess/deprivation or ROS seem to depend on the metabolic flexibility of the cell, 

which again is founded in its active signaling pathways.         

Hypertrophy and hyperplasia 
Hypertrophy is defined as an increase in cell size which subsequently results 

increased organ size in vivo.  In pure hypertrophy the cells do not proliferate, but 

merely increases in size due to more structural proteins and organelles (Kumar, 

2007).  This is usually a stress related response and is most commonly found in 

terminally differentiated cells, while cells capable of dividing might respond by 

hyperplasia.  Hypertrophy has been linked to major signaling pathways such as Akt 

and mTOR (Distefano et al., 2009, Haga et al., 2009), which regulate cell size and 

initiate cell division upon growth factor activation (Gibbons et al., 2009, Shaw and 

Cantley, 2006, Zoncu et al., 2011).  Hyperplasia is an increase in cell number, which 

again leads to an enlargement of the organ (Kumar, 2007).  These processes may act 

in coherence with each other with the same net result of an increased organ size.  One 

example of normally occurring hypertrophy and hyperplasia is during pregnancy with 

the growing uterus by both growing and dividing smooth muscle cells.  Hyperplasia 

as a consequence of increased hormonal production, which can be seen in wound 

healing, is a controlled process.  However, the pathological hyperplasia response can 

be a nestling ground for loss of growth control resulting in cancer growth as seen in 

livers expressing constitutively active PPAR  (Huang et al., 2011).      

Reactive oxygen species (ROS) 
As mentioned earlier, about 2% of the oxygen used in the ETC is released as ROS.  

This level of ROS plays an important role in the regulation of cell signaling, 

differentiation and proliferation (Wellen and Thompson, 2010).  ROS, such as the 

superoxide ·O2-, H2O2 and ·OH, are very unstable, short lived molecules which react 

rapidly and spontaneously with adjacent molecules causing cellular damage.   



28

To combat the effect of ROS the cells have evolved their own anti-oxidant defense.  

Superoxide dismutase (SOD) dismutes superoxide anions (·O2-) to hydrogen 

peroxide (H2O2), which can move through membranes and act as a mitochondrial 

signaling molecule (Mailloux and Harper, 2011). The H2O2 can oxidize thiol groups 

in phosphatases, kinases, transcription factors and metabolic enzymes (Mailloux and 

Harper, 2011).  One low molecular weight thiolating agent is glutathione peroxidase, 

which has a high affinity to H2O2 converting it to water.  The recycling of glutathione 

relies on NADPH, which illustrates the importance of maintaining a steady turnover 

of NADPH producing reactions in the antioxidant defense (Mailloux et al., 2007).  

Catalase is another cell antioxidant defense mechanism with a much lower affinity to 

H2O2 and predominantly found in the peroxisomes (Wanders and Waterham, 2006).  

These are the enzymatic cell defense, whereas there are also free radical scavengers 

such as vitamins A, C, and E, together with phytochemicals such as phenols, 

polyphenols and flavonoids found in foods.  However in regards to effectiveness in 

radical scavenging the cellular antioxidant defense exceeds the free scavengers 

significantly (Halliwell, 2012).  The cellular antioxidant system is energetically costly 

and requires ATP to produce glutathione and SOD at high levels (Diaz Vivancos et 

al., 2010).  Moreover, it is not a fast acting system since it relies on the biosynthesis 

of new antioxidant acting molecules in response to increased ROS.  Therefore, it 

would be beneficial for the cell to have an alternative antioxidant defense which may 

act more rapidly to changes in ROS.    

Uncoupling proteins (UCP) 
Endogenous proteins called uncoupling proteins (UCPs) may act by uncoupling the 

ETC from ATP production, by giving protons an alternative route back through the 

inner mitochondrial membrane thereby relieving the membrane potential (Ricquier, 

2005).  This phenomenon was first discovered in brown adipose tissue with the 

uncoupling protein UCP1, which was involved in non-shivering thermogenesis 

(Cannon and Nedergaard, 1985, Nicholls and Locke, 1984).  UCP1 allows for protons 

to leak back into the matrix without passing through the ATP synthase complex, 
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which results in generation of heat, maximum electron shuttling, increased oxygen 

consumption but diminished ATP production (Wallace, 2005).  Since UCP1 was 

identified, four more homologous anion transporters have been discovered (UCP1-5) 

(Ricquier and Bouillaud, 2000).  However, only UCP2 and UCP3 have been found to 

mitigate ROS production in the mitochondria (Echtay et al., 2002, Negre-Salvayre et 

al., 1997, Yonezawa et al., 2009).  Since UCP1 is exclusively found in brown 

adipocyte tissue, it was of great interest to see that UCP2 was more widely expressed 

and found in the macrophages, spleen, thymus, hypothalamus, stomach and the 

pancreatic cells, whereas UCP3 is mostly expressed in skeletal muscle and some in 

the heart and brown adipose tissue (Mailloux and Harper, 2011).   

The general notion that a high membrane potential leads to increased generation of 

ROS is the basis of the antioxidant capacity of the uncoupling proteins, which 

alleviates the high membrane potential (Mailloux and Harper, 2011).  For the 

uncoupling proteins to act as a first line of defense against ROS, they have to be 

expressed and localized to the mitochondria, and either held in check by inhibitors or 

be induced by activators.  Indeed, various activating allosteric regulators with 

association to the mitochondria have been identified such as fatty acids, glutamine, 

nucleotide and superoxide (Echtay et al., 2002, Hurtaud et al., 2006, Hurtaud et al., 

2007, Negre-Salvayre et al., 1997, Ricquier, 2005, Yonezawa et al., 2009, Mailloux 

and Harper, 2011).        

Cell death – Necrosis and Apoptosis 
Necrosis is cell death caused by hypoxia, trauma, toxins or infections.  It has 

generally been considered to be an uncontrolled cell death pathway.  However, recent 

updates on cell death have proposed that necrosis is not a random process. Terms 

such as caspase-independent cell death, programmed necrosis or necroptosis have 

been used to describe this alternative cell death program (Galluzzi and Kroemer, 

2008, Galluzzi and Kroemer, 2009).  Necrosis has different morphological features 

than the other cell death pathway, termed apoptosis.  Apoptosis is a non-
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inflammatory cell death, which cells use in the response to extrinsic or intrinsic cell 

death signals.  The apoptotic cascade is amplified by the release of apoptotic factors 

from the mitochondria (Jacobson et al., 1997).  This activates the caspases, which are 

the executioners of the apoptotic pathway.  They are named for their cysteine-

aspartate protease activity where they cut the bond between a cysteine amino acid and 

an aspartate amino acid (Jacobson et al., 1997).   

The essential notion is that the cells energy level plays a fundamental role in the death 

pathway chosen (figure 5).  Apoptosis requires ATP for successful execution, while 

necrosis is not dependent on energy per se (Kroemer et al., 1998).  Evidence show 

that programmed necrosis plays an important part in our immune defence against 

viruses (Cho et al., 2009).  In cancers, programmed necrosis may lead to harmful 

pathological cell loss which activates local inflammation responses and promotes 

tumour growth.  However, necrotic cell death may be exploited to eliminate cancer 

cells therapeutically. The use of alkylating DNA damaging agents (Zong et al., 2004), 

tumour-targeted photosensitizing molecules (Agostinis et al., 2004) or modulating 

energy metabolism in response to cell death stimuli (Zhang et al., 2009) may induce 

necrosis through increased ROS production and can be exploited in therapeutic 

treatment.  However, many cancer cells tolerate high levels of ROS as they have 

additional mutations in their cell cycle repair regulators such as p53, which would 

otherwise halt cell cycle progression to repair any DNA damage caused by increased 

ROS (Zhang et al., 2011, Levine, 1997).  In addition the strengthening of the cancer 

cells antioxidant defence has also been connected with ROS inducing 

chemoresistance (Derdak et al., 2008).    
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Figure 5.  The interface between Apoptosis and Programmed necrosis.  The 

programmed necrosis pathway depend on the activation of the serine/threonine kinase 

RIP1 (receptor-interacting protein kinase 1), which can be triggered by ligation of the 

tumor necrosis factor receptor (TNFR) or inhibition of caspases (Hitomi et al., 2008).  

The programmed necrosis pathway depend on the activation of the serine/threonine 

kinase RIP1 (receptor-interacting protein kinase 1), which can be triggered by 

ligation of the tumor necrosis factor receptor (TNFR) or inhibition of caspases 
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(Hitomi et al., 2008).  In NIH 3T3 murine fibroblasts, TNFR activation ignites the 

extrinsic apoptotic pathway, which depends on caspase-8.  Caspase-8 mediated 

degradation of RIP1 may represent one of the major molecular switches between 

apoptosis and necroptosis.  Apoptosis and necroptosis may preferentially involve 

mitochondrial outer membrane permeabilization (MOMP) and mitochondrial 

permeability transition (MPT) of both membranes, respectively.  For the sake of 

clarity, multiple intermediate regulators of apoptosis have not been depicted.  

Abbreviations: AIF, apoptosis-inducing factor; ANT, adenine nucleotide translocase; 

Cyt c, cytochrome c; GPI, glycosylphosphatidylinositol; IFN, interferon; LMP, 

lysosomal membrane permeabilization; PTPC, permeability transition pore complex; 

ROS, reactive oxygen species; TLR, Toll-like receptor; Z-VAD.fmk, Z-Val-Ala-

Asp(OMe).fluoromethylketone.  This figure is adapted from (Galluzzi and Kroemer, 

2008).

Autophagy 
Autophagy means “self-eating”, and is a cells rescue mission in response to nutrient 

depletion, hypoxia or starvation.  One characteristic of autophagy is the presence of  

autophagosomes, which are double membrane organelles containing cellular 

components which are being “re-cycled”, during starvation (Jaboin et al., 2009). The 

process of autophagy is regulated differently to apoptosis, but excessive autophagy 

will ultimately lead to cell death (Wong et al., 2010).  As many cancer cells have 

defective apoptotic machinery and thus are not responding to apoptotic agents, 

autophagy has emerged as interesting targets for cancer treatment.   

Autophagy is primarily a starvation or damage prevention response, which is 

activated when challenging the cells energy status (Amaravadi and Thompson, 2007).  

In vitro this is done by inducing cellular stress leading to ROS, removing essential 

nutrients from the growth medium, or depriving the cells of oxygen for limited 

periods (Frezza et al., 2011).  In vivo, the induction of ROS by chemical agents can 

lead to autophagy and more precisely mitophagy if the cell perceives the 
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mitochondria as potentially damaging organelles (Kim et al., 2007, Erikstein et al., 

2010).  Paradoxically, basal level of autophagy induced by stresses such as hypoxia, 

nutrient restriction or growth factor withdrawal, tips the cellular fate towards survival 

(Wong et al., 2010).  This recycling of cellular components to support survival 

implicates many of the key signaling pathways involved in maintaining cellular 

energy homeostasis.   

1.2.5 Cellular energy sensors and major signaling pathways 

AMP-activated protein kinase (AMPK)   
Free adenine nucleotides in mammalian cells lie in the range of 3,000–8,000 mM for 

ATP, 50–200 mM for ADP and 0.5–5 mM for AMP (Xiao, 2011).  AMP is made by 

the conversion of 2 ADP to ATP and AMP by adenylate kinase, an enzyme widely 

and highly expressed in eukaryotic cells (Hardie et al., 2012).  The reaction is 

reversible and the levels of nucleotides determine if the reaction is displaced towards 

ATP and AMP production or vice versa.  Consequently, an increase in the ADP/ATP 

ratio would indicate falling energy status of the cell and AMP levels would increase 

accordingly.  Several enzymes involved in glucose homeostasis are AMP/ATP 

sensors, however the most famous AMP sensor of the cell is the AMP-kinase (Hardie 

et al., 2012).  Upon activation AMPK suppresses anabolic pathways, while activating 

catabolic pathways that generate ATP (reviewed in (Hagland et al., 2007, Hardie et 

al., 2012)).   

AMPK is an energy sensor and metabolic modulator.  The kinase is activated by high 

levels of AMP, which is indicative of cellular stress.  Genes encoding AMPK 

subunits are found in essentially all eukaryotes with a conserved phosphorylation 

activation site at Thr172  (Hardie et al., 2012).  Upstream activators of AMPK 

involves the Liver Kinase B1 (LKB1), which provides a high basal level of 

phosphorylation of Thr172 that is further modulated by the binding of AMP (Hardie 

et al., 2012).  Another activator of AMPK is the Ca2+/calmodulin-activated protein 
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kinase kinase (CAMKK ), consequently triggering AMPK activation in response to 

increased cellular Ca2+ levels without necessarily requiring a change in ADP or AMP 

levels (Hardie et al., 2012).  However, the effects of ADP and AMP on AMPK 

involves direct binding on the regulatory subunit which is unaffected by the upstream 

phosphorylation kinases or phosphatases (Hardie et al., 2012).  Since the levels of 

ADP and ATP is so much higher in cells there have been speculations as to whether 

the AMP levels would ever become high enough in vivo to compete with the 

allosteric site by ATP and ADP (Oakhill et al., 2012).  However, the recent 

identification that ADP also moderately activate AMPK, is likely to represent an 

important physiological mechanism for regulating the activity of the enzyme (Xiao, 

2011).  Moreover, the activation can inhibit cell proliferation of both non-malignant 

as well as cancer cells (Motoshima et al., 2006).  This has led to the search of AMPK 

activators to be used in cancer treatment.  There are at least two interesting AMPK 

activators which have shown to have promising effect at inhibiting cancer growth in 

vitro.  One is the 5-aminoimidazole-4-carboxamide riboside (AICAR), which is an 

AMP analog and directly activates AMPK (Woodard et al., 2010), while the other 

more indirect agent is metformin, which is a complex I inhibitor and thus causes an 

increase of intracellular AMP (Foretz, 2010, Viollet et al., 2012).  In addition, the 

activation leads to upregulation of several transcription- and cofactors involved in 

mitochondrial biogenesis, including nuclear transcription factor 1 and 2 (NRF1/2), 

mitochondrial DNA transcription factor and peroxisome proliferator-activated 

receptor-  co-activator-1  (PGC-1 ) (Kukidome et al., 2006).  Another important 

cellular metabolic sensor to which AMPK negatively regulates is the mammalian 

target of rapamycin (mTOR) (Motoshima et al., 2006) (section 1.2.5).

Peroxisome proliferator activated receptors (PPARs)
The PPAR family of ligand-activated transcription factors includes the PPARα, 

PPARδ and PPARγ subtypes, which are essential lipid and nutritional sensors with 

individual agonist specificity and tissue dependent expression.  These factors 

heterodimerize with RXR in order to activate gene transcription of target genes, and 
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are involved in the regulation of multiple cellular functions including metabolism, 

proliferation and differentiation (Escher and Wahli, 2000).  Various roles of the 

PPARs have been discussed with respect to tumour development and progression.   

PPARα activation by peroxisome proliferators has for instance been associated with 

hepatic carcinogenesis in rodents (Reddy et al., 1980), but humans seem to be more 

refractory to such effects (Cattley et al., 1998).  Some fatty acids and derivatives are 

potent agonists for PPARs, and activate transcription of target genes (Gottlicher et al., 

1993).  Several activating agents, both natural and synthetic, exert anti-tumour effects 

(Tronstad et al., 2003).  Especially, PPARγ has emerged as a potential therapeutic 

target for the treatment of solid tumours and haematological malignancies (Wang et 

al., 2006).  PPARγ has many activities and are involved in glucose as well as lipid 

homeostasis and cell differentiation. It interacts with mitochondrial biogenesis and 

AMPK via its cofactor PGC-1α.  These factors also work together with other 

signalling pathways that are linked to cell growth, such as the JAK-STAT pathway 

that is prominent in haematological malignancies (Rajasingh and Bright, 2006).   

The complicated mechanisms and actions of the PPARs and their ligands can 

possibly explain the diverging results on the therapeutic potential that has been 

reported.  Hopefully, future research will reveal therapeutic modalities that allow 

selective modulation of this system in order to treat malignant disorders.  

The IGF/PI3K/Akt network 
Obesity, insulin insensitivity and diabetes 2 are closely connected.  They are a 

consequence of increased metabolic stress, which results in hyperlipidemia and 

hyperinsulinemia.  High insulin levels leads to increased levels of insulin-like growth 

factor I (IGF-I), as well as decreased levels of IGF binding proteins 1 and 2 which 

mediates inhibition of the bioavailability of IGF (Gallagher and LeRoith, 2010).  

Insulin responsive tissues such as the liver, muscle and adipocytes respond to the 

binding of insulin growth factor, and subsequently activates its downstream effector 
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proteins which involves the phosphatidylinositol 3-kinase (PI3K)-Akt signaling 

pathway (Gallagher and LeRoith, 2010).   

IGF signaling has been linked to a number of cancers where the proposed beneficial 

proliferative effect is activated through the PI3K-Akt pathway (Gallagher and 

LeRoith, 2010).  Cancers which are sensitive to insulin can be growth inhibited by 

calorie restriction (reviewed in (Speakman and Mitchell, 2011)).  This is based on the 

fact that increased Akt signaling correlates with increased glycolysis and proliferation 

in many tumors (Plas and Thompson, 2005).  Akt is a signaling hub thought to 

interact with as many as 9000 proteins (Lawlor and Alessi, 2001).  Figure 6 show the 

PI3K-Akt signaling pathway involved in metabolic control, where Akt mediates 

translocation of GLUT4 (Yamada et al., 2005),  inhibits the tuberous sclerosis 

complex 2 (TSC2), which in effect activates the mTOR pathway involved in protein 

synthesis and cell growth (Zoncu et al., 2011).  Furthermore, the activation of mTOR 

prevents autophagy, signaling to the cell that energy and substrates are in an 

abundance and anabolic reactions may proceed (Zoncu et al., 2011).   

The Akt pathway is one of the most commonly altered pathways (due to gain of 

function mutations) in transformed cells (Elstrom et al., 2004).  It is not merely 

regulated by insulin signaling, but a whole range of growth factor receptors which 

mediates their signal through PI3Kinase (Plas and Thompson, 2005).  The PI3K 

phosphorylates the phosphatidylinositol diphosphate (PIP2) to PIP3, which again can 

be dephosphorylated by the tumor suppressor phosphatase and tensin homolog 

(PTEN) (Plas and Thompson, 2005).  Full Akt activation is achieved by the 

phosphorylation on separate sites by the upstream kinase phosphatidylinositol-

dependent kinase-1 (PDK1) (Alessi et al., 1997, Cohen et al., 1997).  The increased 

glycolytic flux seen in cancers, which was first documented by Otto Warburg in the 

1920s (Warburg et al., 1927), involves a whole range of enzymes which can be linked 

to the Akt pathway to maintain normal metabolic homeostasis (described below).  

Figure 6 illustrates the Akt involvement of several key metabolic enzymes, where 

hexokinase is the first enzyme in glycolysis and, upon Akt signaling, translocate to 
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the voltage dependent anion channel (VDAC) on the mitochondrial outer membrane 

(Mathupala et al., 2001).  Hexokinase plays a critical role in maintaining the high 

catabolic rates of rapidly growing tumors, and the binding to VDAC is thought to 

prevent release of the pro-apoptotic proteins cytochrome c and reactive oxygen 

species (ROS) (da-Silva et al., 2004, Kroemer et al., 2007, Pastorino et al., 2002).    

Chronic exposure to high nutrient concentration can lead to cellular stress reactions, 

one being overexpression of the IGF1 receptor in response to constantly high insulin 

levels.  Consequently, abnormal signaling adaptations may occur where the cell 

becomes autonomic and unresponsive to extracellular growth inhibitions or nutrient 

depletion.  The constitutive activation of pathways involved in nutrient control is 

therefore found in many types of cancer, where the activation of the PI3K-Akt 

pathway has been found to render cells dependent on glucose for their survival 

(Elstrom et al., 2004).   
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Figure 6.  Akt signalling controls cellular metabolism. Akt regulation of 
nutrient transporters, FOXO transcriptional regulation of cellular metabolism, and 
TSC2 regulation of mRNA translation are highlighted.  Adapted in full from (Plas 
and Thompson, 2005). 

Mammalian target of Rapamycin (mTOR) 
The intermediary mechanisms between nutrient sensing and protein synthesis in vivo

are only partly understood (Sengupta et al., 2010).  However, recent findings suggest 

that mTOR lies at the heart of intracellular nutrient sensing and control major 

metabolic pathways (Howell and Manning, 2011, Hsieh et al., 2012).  The mTOR 

protein is highly conserved among eukaryotic cells, and can form two distinct protein 

complexes named mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), 

where mTORC1 is the primary nutrient sensor (Howell and Manning, 2011).   

Extracellular signalling from growth hormones, cytokines, nutrients or stress all 

converge on the mTORC1 pathway, which in effect initiates protein translation when 

nutrients and growth hormones are high, while shutting down these responses when 

energy levels are low (Shaw and Cantley, 2006).  Upstream regulators of mTORC1, 

which are also induced or repressed by nutritional status, involve the PI3K-Akt 

pathway (Cho, 2001, Cho et al., 2001, Hirashima, 2003, Jiang, 2003, Wan et al., 
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2011), MAP-Kinase-extracellular regulated kinase (ERK) pathway (Bergan et al., 

2011, Bost, 2005, Reindl et al., 2011) and AMPK pathway (Speakman and Mitchell, 

2011).  Recently, it was shown that mTORC1 was involved in regulation of fasting-

induced ketogenesis via the peroxisome proliferation activating receptor (PPAR ) 

transcriptional regulator (Sengupta et al., 2010).   

Downstream targets of mTORC1 includes the eukaryotic translation initiation factor 

4E-binding (eIF4E binding) proteins (4E-BPs) which act by repressing translation by 

binding to eIF4E (Le Bacquer et al., 2007).  Phosphorylation of 4E-BP1 by mTORC1 

releases its inhibitory binding of eIF4E, which is free to bind to a scaffolding protein 

eIF4G and initiate 5’ mRNA translation (Le Bacquer et al., 2007).  4E-BP1s have 

been linked to glucose and lipid homeostasis and are highly expressed in liver 

(Tsukiyama-Kohara et al., 2001).        

1.2.6 Cancer Metabolism

The Warburg effect – increased glycolysis 
Tumors consist of a heterogeneous distribution of cancer cells, which gene and 

protein expression may also be highly diverse.  However, cancer cells do have some 

commonalities.  One being increased aerobic glycolysis, also known as the Warburg 

effect, named by its discoverer Otto Warburg (Warburg et al., 1927).  Warburg 

postulated that the increased glycolysis was a response to defective mitochondrial 

machinery (Warburg, 1956).  This has later been disproven, as many highly 

proliferating tumor cells do not have defects in their oxidative metabolism capacity 

(Moreno-Sanchez et al., 2007).  Instead, resent research have demonstrated important 

links between cancer cell metabolism involving the mitochondria and its tumor 

growth abilities (DeBerardinis et al., 2008, Galluzzi et al., 2010, Raimundo et al., 

2011).   

The infamous Cell paper by Hanahan and Weinberg in 2000, called “Hallmarks of 

Cancer”, proposes six molecular, biochemical and cellular traits that characterize the 

development and progression of malignant tumors (Hanahan and Weinberg, 2000).  
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However, back then none of these traits included metabolic reprogramming, although 

this phenomenon was well accepted and widely used in clinical assessment of tumors 

(18Fluoro-2-deoxyglucose positron emission tomography, FDG-PET).  For a long 

time the fundamental biochemistry of cell metabolism was something regarded as 

autonomous and not worthy of further studies, where in fact none of the six hallmarks 

would exist without the metabolic reprogramming supporting their effect.  However, 

during the last decade the interest in the “old” biochemistry has regained its position 

in science as many of the oncogenes and tumor suppressor genes found mutated in 

cancer are involved in metabolic control (DeBerardinis et al., 2008, DeBerardinis and 

Thompson, 2012, Elstrom et al., 2004, Erickson and Cerione, 2010, Gallagher and 

LeRoith, 2010, Galluzzi et al., 2010, Goel et al., 2003).  Since it is now generally 

accepted that cancer cells must have a changed metabolism to sustain the rapid 

uncontrolled cell growth, the “Hallmarks of Cancer: the next generation” was 

recently published including metabolic reprogramming as one of the main traits 

needed for cancer progression (Hanahan and Weinberg, 2011).   

The Hallmarks of Cancer connected to metabolism 
Growth Signal autonomy
Cancer cells can acquire the capability to sustain proliferative signaling by increasing 

the growth factor expression on the cell surface, thereby sensitizing the cell to lower 

amounts of growth signals.  This has been linked to the N-acetylglucosamine 

(GlcNAc) regulation which is nutrient-responsive (Wellen and Thompson, 2010).   

Evading growth suppressors 
Many tumor suppressors have shown to be important metabolic check points.  These 

are often involved in turning off anabolic processes in response to cellular stress.  A 

well-known tumor suppressor is the phosphatase and tensin homolog (PTEN), which 

when inactivated leads to glucose dependent metabolism via constitutive activation of 

the PI3K-Akt pathway (Antico Arciuch et al., 2011, Elstrom et al., 2004).   
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Escaping apoptosis 
Apoptosis is a programmed cell death initiated upon cellular damage, which cannot 

be repaired.  One mediator of apoptosis is the p53 tumor suppressor which is a cell 

stress sensor and has been connected to oxidative phosphorylation (Matoba et al., 

2006) via the transcriptional regulation of Cytochrome C Oxidase 2 (SCO2) Complex 

IV.  In addition p53 can also be translocated directly to the mitochondria (Marchenko 

et al., 2000) where it interacts with apoptotic regulators such as B cell lymphoma 

(Bcl-2) (Tomita et al., 2006).   Recently, mutated p53 was also connected to the 

deregulation of autophagy and resistance to apoptosis in response to the omega-3 

fatty acid, docosahexaenoic acid (DHA) treatment (Jing et al., 2011). 

Unlimited replicative potential 
The reactivation of telomerase to inhibit chromosome shortening and thereby avoid 

cell senescence has been connected to the oncogene c-Myc (Kim and Chen, 2007).  

Glutaminolysis which is a common metabolic response in cancer cells depend on c-

Myc activation (Wise and Thompson, 2010).   

Angiogenesis, invasion and metastasis 
The matrix metalloproteinase (MMP) found in the extracellular matrix (ECM) aid in 

the increased vascularization of the tumor (Campbell et al., 2010).  In addition to 

stimulating vascular endothelial growth factor (VEGF) release from heparan sulphate 

proteoglycan (Campbell et al., 2010), the MMPs have shown to be more active in 

glycolytic cells inducing break down of the ECM and increase invasiveness.  This 

was linked to the PI3K pathway through PDK1 (Xie et al., 2006).   

Glycolysis, glutaminolysis and oxidative phosphorylation in cancer cells 
For cancer cells to survive and have a high proliferation rate, they must adapt to the 

harsh extracellular environments they may encounter by outgrowing nutrient and 

oxygen transporting vasculature.  The obstacles to overcome include hypoxia, higher 

acidity due to lactate secretion and lack of nutrients and growth factors.  The hypoxia 

inducible factor 1 (HIF-1), is induced under hypoxic conditions via ROS generation 
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from the mitochondria, or mutations in the TCA cycle enzymes (DeBerardinis et al., 

2008, Raimundo et al., 2011).  When oxygen is present the HIF-1  subunit is 

hydroxylated by prolyl hydroxylases (PHDs) thereby recruiting the von Hippel-

Lindau (VHL) tumor suppressor which targets the complex for proteasomal 

degradation (Raimundo et al., 2011).  HIF-1 targets genes encoding glucose 

transporters, glycolytic enzymes and lactate dehydrogenase- A (LDH-A) (Dang and 

Semenza, 1999).  Consequently, increased HIF-1  expression is correlated with 

increased angiogenesis, aggressive tumor growth and poor patient prognosis (Powis 

and Kirkpatrick, 2004).  HIF-1  may also reduce the mitochondrial oxygen 

consumption by restricting the TCA cycle from its acetyl-CoA precursor pyruvate 

(Selak et al., 2005).   

Mutations in succinate dehydrogenase (SDH), fumarase and isocitrate dehydrogenase 

(IDH1/2) have been found in a number of tumors and are thought to have a role in 

cancer formation (Raimundo et al., 2011, King et al., 2006, Selak et al., 2005).  The 

accumulation of fumarate, succinate and citrate caused by such mutations have been 

implicated in an inhibitory effect of the PHDs thus making HIF-1  free to associate 

with the HIF-1  subunit in the nucleus and initiate transcription (Raimundo et al., 

2011).  Additionally an overexpression and/or over-activation of the tree irreversible 

enzyme reactions involved in glycolysis has been described for a number of tumour 

cells (Hagland et al., 2007, Moreno-Sanchez et al., 2007, Pelicano et al., 2006, Moon 

et al., 2011).   

Many tumors express the embryonic pyruvate kinase isoform PKM2 (Christofk et al., 

2008).  This isoform has a lower affinity to its substrate PEP, and consequently stalls 

glycolysis at this step.  This leads to accumulation of glucose metabolites at their 

irreversible steps (Figure 1), which can be channeled into other pathways such as the 

pentose phosphate pathway (PPP), the hexoamine pathway and nucleotide synthesis, 

to support anabolic growth (Christofk et al., 2008, Wellen and Thompson, 2010).  

Since pyruvate may be limited due to the PKM2 expression, the cell has to use other 
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means of maintaining substrates for the TCA cycle and thus precursors and co-factors 

for lipid, amino acid and nucleotide synthesis.  This is achieved by increasing 

glutamine import, which is converted to glutamate via glutaminase, before 

transaminated by -ketoacid transaminases to -KG that feeds into the TCA cycle 

(Erickson and Cerione, 2010, Smolkova et al., 2011, Wise and Thompson, 2010).  

Since very little glutamine is fully oxidized to acetyl-CoA, this reaction is thought to 

be incomplete and has therefore been given a similar name as the incomplete 

oxidation of glucose in glycolysis, namely glutaminolysis (Newsholme et al., 1985).  

Increased uptake of glutamine and its consequent conversion to glutamate, yields 

high amounts of nitrogen needed to maintain a steady state production of new amino 

acids.  The -KG in the mitochondria can then be diverted into two alternative 

pathways depending on redox status and the ETC.  An ETC independent pathway 

directly converts -KG to citrate by reductive carboxylation via IDH2 (Wise et al., 

2011).  This reaction depends on NADPH which is produced in the mitochondria by 

the conversion of malate to pyruvate via the mitochondrial malic enzyme.  If oxygen 

is present and ETC is functioning, -KG may proceed in its normal direction through 

-KG dehydrogenase (Smolkova et al., 2011).   This process requires steady supply 

of co-factors such as NAD+ and regeneration of FADH2 to FAD.  Since these co-

factors cannot cross the mitochondrial membranes, they have to be synthesized and/or 

recycled in the matrix in order for the TCA cycle to run efficiently (Belenky et al., 

2007).  The recycling of NADH and FADH2 is achieved by complex I and II 

respectively.  The NAD synthesis is conducted by the NAD enzyme NMNAT3 in the 

mitochondria (Nikiforov et al., 2011).   

Normally the TCA cycle is linked to the oxidative respiration pathway and NAD+ is 

recycled from NADH.  During hypoxia this cannot be completed, NADH would not 

be recycled and enzymatic reactions requiring NAD+ as co-factors would stall.  As 

described above this could result in reversal of TCA at -KG, or it may be bypassed 

by upregulation of uncoupling proteins allowing protons to leak back into the matrix 

independent of oxygen availability or ATP synthesis (Robbins and Zhao, 2011).  This 
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would support high TCA cycle flux even during hypoxic conditions.  These 

mitochondria linked effects thus creates the nestling ground for increased glycolytic 

flux even in the presence of oxygen, which has been known as the Warburg effect 

(figure 7).   

 

Figure 7.  Major features of cancer cell metabolism. The major features of cancer 

cell energy metabolism, specifically, glycolysis as a key source of ATP and metabolic 

precursors via concomitant output from the pentose phosphate pathway (“PPP 

CYCLE”) are summarized. The pentose phosphate pathway is also an important 

source of NADPH and ribose.  Enhanced lactate production contributes to 

extracellular acidification, which supports invasion.  Citrate from the TCA cycle is 

extruded from mitochondria and supports fatty acid synthesis, especially when also 

enforced by glutaminolysis.  Glutaminolysis may also provide alanine and other 

amino acids for use in protein biosynthesis.  Glycolysis allows survival during 

hypoxia, and, in turn, upon re-established sufficient oxygen levels oxidative 
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glutaminolysis may allow for ATP production and biosynthesis at when glucose 

levels are low (aglycemia).  Anoxic glutaminolysis may also contribute to 

biosynthesis at sufficient ATP levels.  Collectively, these metabolic changes support 

proliferation and cell growth (adapted from (Smolkova et al., 2011)). 
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2. Aims of study 

The overall aim of this thesis was to investigate crosstalk between cell metabolism 

and signalling in the regulation of mitochondrial function during conditions of 

energetic and metabolic stress.  The mechanisms were studied in metabolically 

restricted cancer cells and metabolically flexible primary rat hepatocytes to reflect 

different contexts of mitochondrial regulation.    

2.1 Specific Aims 

• Identify mitochondrial and cellular responses in cancer cell lines after 

treatment with agents causing metabolic stress 

• Identify protective or combined effects of glucose depletion together with 

pathway-selective agents in two metabolically different leukemia cell lines  

• Identify mechanisms of mitochondrial stimulation in hepatocytes of rats 

treated with a known PPAR-activator. 
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3. Material and Methodology considerations 

3.1   Pitfalls when using cell cultures 

3.1.1 Cell lines and Growth medium 

The number of cell lines and cell culture medium available these days is 

overwhelming.  Most cell lines which can be bought commercially have been made 

immortal either by inducing expression of genes to keep them proliferating 

indefinitely or they have been selected for such characteristics after patient biopsies.  

The ability to grow cell lines in culture was a tremendous breakthrough in modern 

medicine, and has since been used for studies not only involving cancer but also HIV, 

vaccine development, toxicity and gene mapping (Lucey et al., 2009).   

In the early days of cell culturing it was found that the cell lines thrived in a nutrient 

rich and growth factor supplemented medium.  This usually involves growing cells in 

medium containing 11.2-25mmol/L Glucose, which is a hyperglycemic condition 

hard to achieve physiologically unless one has diabetes (normal blood glucose levels 

ranges from 4-11mmol/L).  These hyperglycemic conditions are often the nutrient 

background to many of the cancer metabolism studies that have been published.  In 

our experiments we also used the recommended culture conditions for our cell lines, 

which meant keeping them in high glucose environments (RPMI 1640 > 11mmol/L), 

supplemented by excess glutamine (4 mmol/L) and foetal calf serum (FCS).  To test 

their glucose dependency we grew them in glucose deprived medium, but which still 

contained glutamine and FCS.  In retrospect we should have used dialyzed FCS as 

this contains less glucose than normal FCS.  Therefore, we cannot rule out the 

presence of glucose, although at very low concentration, during the first hours of our 

glucose deprived experiments.  Additionally, cancer cells thrive on both glucose and 

glutamine in parallel as substrates to maintain high proliferation (DeBerardinis et al., 

2008).  Consequently, with the added glutamine in excess we were still giving them 

one of their preferred substrates during the glucose deprived conditions.  However, 
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glutamine has a short half-life in medium (Ozturk and Palsson, 1990), and even if 

cells were able to utilise this amino acid to support growth I believe the growth rate 

would be significantly reduced.   

This being said, the glucose deprived conditions were used as a model to look for 

extreme responses, as the cells would have to rely on their metabolic flexibility to use 

other substrates to maintain growth and survival.  

3.1.2 Physiological relevance 

The extrapolation of these experiments to the 

 physiological state is hard as the whole body energy homeostasis is kept in rigorous 

control, where blood glucose levels cannot drop below 3.5mmol/L and glutamine 

levels are kept at 0.4-0.5mmol/L (Owen et al., 1998).  Another consideration is that 

the lactate secreted from glycolytic cancer cells in culture would not accumulate in 

extreme concentrations in the body, as they do in our closed flask environment, but 

would be cleared away either by using the Cori cycle or by cells in close proximity to 

the tumor (Samudio et al., 2008).  However, rapidly growing tumors in vivo are 

exposed to conditions where oxygen and nutrient availability are restricted due to 

poor vascularisation, which may mimic the glucose deprivation conditions we used.  

Although these experimental setting most likely do not reflect the exact conditions to 

which spontaneously arisen cancers are exposed to in vivo, they may give us useful 

leads as to cellular stress responses involved under extreme conditions.   

3.2 Respiration 

3.2.1  The Oxygraph 2K   

The Oxygraph-2K provides a high-resolution approach to the monitoring of cellular 

and mitochondrial respiratory function.  Its sensitivity is especially important in 

monitoring low respiratory activities found in metabolically compromised cells or 

tissues.  The quality of the experimental results is based on a good understanding of 
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the machine, where background flux corrections, as well as careful and meticulously 

cleaning of all the parts are done prior to each run.  The background correction was 

performed to avoid false readings, as a high experimental background of oxygen 

would give us an overestimation of respiration data, and consequently incorrect 

respiratory coupling ratios.  In addition, remnants of inhibitors or substrates used 

from previous runs could interfere with the next experiment if not cleaned properly.  

All in all, a single run (duplicates as it has two chambers) usually takes over 2 hours, 

of which we have to be present and monitor the oxygen flux.  It was therefore of great 

importance to plan our primary cell experiment well (paper III), since these cells were 

could not be used for oxygen flux measurements the following day.     

3.2.2  Intact or permeabilised cells  

Most of the initially published respiratory data were done on mitochondrial fractions, 

as the sensors used then had low resolution and required allot of material.  

Consequently, much of the respiring data which has formed the basis of our oxidative 

phosphorylation understanding was done on liver mitochondria (more mitochondria 

in liver cells).  Now we are able to measure respiration in intact cells or tissue and in 

very little material as such.  Measurements in intact cells give information about the 

balanced metabolic mechanisms under viable conditions, whereas analysis of 

permeabilised cells and isolated mitochondria address specific processes of 

mitochondrial respiration.  For those reasons the choice of respiration medium is 

important.  For intact cells we used the corresponding cell culture medium (without 

FCS addition), and MIRO5 (Oroboros), which is a mitochondrial respiration medium, 

for the permeabilised cells.  The use of culture medium gives us an accurate reading 

as to how the cells are respiring while grown in culture.  The MIRO5 medium is 

made to simulate intracellular environment for the mitochondria, although without 

any substrates available.  This is why we have to add the different substrates to this 

medium to run the TCA cycle (glutamate, malate and succinate) in addition to ADP, 

which is the substrate for the ATP Synthase to make ATP.   
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4 Summary of papers 

4.1 Paper I 

Cellular stress induced by resazurin leads to autophagy and cell death via 

production of reactive oxygen species and mitochondrial impairment. 

Background

Resazurin (Alamar Blue) is widely used as a cell proliferation marker and is a redox 

reactive compound.  Based on earlier findings that chemical reactions involving 

resazurin generates reactive oxygen species (ROS) (Prutz et al., 1996), we wanted to 

use resazurin as an oxidative stress inducer in different cancer cell lines and primary 

AML cells.   

Results

We found that the HL-60 cell line was much more sensitive to resazurin treatment 

than the Jurkat cell line.  Transmission electron microscopy confirmed cellular stress 

with autophagosomes in HL-60 after 48 hours of treatment, while signs of mitophagy 

were seen in both cell lines after 24 hours.  Resazurin treatment caused a dramatic 

increase in ROS production, especially in the HL-60 cells.  Although HL-60 cells 

were found to have higher routine respiratory rates than Jurkat cells, there was no 

correlation between the effects seen by resazurin treatment and oxygen consumption.  

The anti-proliferative effects were confirmed in native acute myelogenous leukemia 

(AML) blasts.     

Conclusions

The results suggest that resazurin triggers cellular ROS production and initiates cell-

specific stress responses such as mitochondrial dysfunction, reduced proliferation, 

autophagy and cell degradation.   
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4.2 Paper II 

Modulation of mitochondrial energy metabolism leads to respiratory 

dysfunction and metabolic stress via cell specific pathways in leukemia cells. 

Background 

Mutations in specific pathways affecting cellular metabolism determines the 

metabolic flexibility of cancer cells.  Here we used the two cell lines HL-60 and 

Jurkat, which had previously been found to have different metabolism to address the 

importance of mitochondrial respiration in glucose dependency and metabolic stress.   

Results

In Jurkat cells, a low respiratory rate correlated with glucose dependence and Akt 

activation, whereas HL-60 cells had a higher tolerance for glucose deprivation.  Of 

the metabolic modulators Jurkat were selectively sensitive to Palmitic acid, while 

HL-60 cells did not tolerate AICAR treatment.  Glucose deprivation protected the 

mitochondrial respiration effects seen when treating cells with high glucose and 

modulating agent.  Moreover, Jurkat cells selectively downregulated complex II 

activity upon glucose deprivation.  However, HL-60 cells showed signs of autophagy 

after AICAR treatment when glucose was present, whereas during glucose 

deprivation also necrosis was identified (flow cytometry).  Constitutive activation of 

the Akt pathway has previously been linked to glucose dependence, which correlated 

with expression levels seen in our Jurkat model.  The introduction of myr-Akt in HL-

60 cells did not change the metabolic preference or mitochondrial respiratory rates in 

these cells.  The uncoupling protein 2 (UCP2) was found at higher expression levels 

in Jurkat cells than in HL-60 cells, additionally glucose deprivation led to a profound 

increase in UCP3 expression in Jurkat cells.     
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Conclusions

Mitochondrial respiration represents a vital determinant of metabolic flexibility, and 

respiratory dysfunction is a common effect of metabolic stress irrespective of glucose 

dependency and Akt activation.   

4.3 Paper III 

The pan-PPAR activator tetradecylthioacetic acid (TTA) increases 

mitochondrial respiration and hypertrophy in rat hepatocytes involving the 

mTOR/4E-BP1 pathway 

Background 

Mitochondria are crucial whole cell energy homeostasis both in normal cells as well 

as cancer cells.  We wanted to investigate mechanisms of mitochondrial regulation in 

hepatocytes of rats treated with the PPAR-activator TTA, which is known to mediate 

potent induction of mitochondrial fatty acid oxidation.  This represents a very flexible 

metabolic system where we aimed to identify new mechanisms of crosstalk between 

cell signalling and mitochondrial function.   

Results 

The TTA treated rats had lower cholesterol, induction of PPAR  responsive genes in 

the liver and increased mitochondrial biogenesis.  The mitochondria were functional 

as assessed by TCA cycle enzymes and oxidative phosphorylation.  However a much 

higher LEAK rate was observed in TTA treated rats than in control.  This could be 

connected to a profound increase in UCP3 gene expression.  Furthermore, protein 

expression showed a marked upregulation of the mTORC1/4EBP1 pathway, in 

addition to upstream signalling proteins Akt and ERK1/2.     
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Conclusions 

Hepatocytes are metabolically flexible and respond to TTA induced metabolic stress 

by upregulating catabolic and anabolic pathways resulting in cell hypertrophy.  As 

the increased catabolism may exceed the cells energetic need, the oxidative 

phosphorylation system becomes less coupled (higher LEAK respiration).  The 

cellular response seems to involve upregulation of stress response pathway ERK1/2 

and the intracellular nutrient-sensitive mTOR pathway. 
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5 Discussion 

5.1 Mitochondria in health and disease 

The mitochondria are vital for cellular survival.   Their compartmentalized structure 

makes an optimal environment for many bioenergetic and biosynthetic pathways 

crucial for cell energy homeostasis (Galluzzi et al., 2010).  In addition many pro- and 

anti-apoptotic signalling pathways converge at the mitochondria, where 

mitochondrial proteins play an important part.  Their diverse distribution and 

consequently pleiotropic roles in tissue metabolism, results in a multitude of 

mitochondrial linked diseases (Kim et al., 2008, Lesnefsky et al., 2001, Modica-

Napolitano et al., 2007).   

Mitochondrial ROS generation in response to cellular stress, may lead to advanced 

mutagenesis and promote tumorigenesis (Galluzzi et al., 2010).  Damaged or 

dysfunctional mitochondria are normally cleared by the specialized autophagic 

response of mitophagy (Kim et al., 2007, Egan, 2011), however if the cell beholds 

additional mutations in cell survival pathways, this response might be obscured 

(Maiuri et al., 2010).  Total cell ATP depletion leads to necrotic cell death, which is 

associated with high ROS levels (Amaravadi and Thompson, 2007, Hitomi et al., 

2008).  The necrotic cell death pathway is a non-reversible pathway as opposed to 

apoptosis, which is mediated through several signalling cascades and may up to a 

point be reversed (Kroemer et al., 1998).  Together with autophagy, they give us three 

possible ways of inducing cell stress and death by challenging mitochondrial 

metabolism.  It has therefore been important to find mechanisms, or conditions which 

impact the mitochondrial ROS production (paper I), causing increased cell stress 

(paper II and III) and consequently cell death (paper I and II).     
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5.2 Cellular stress reactions  

The link between increased ROS and cancer is interesting, based on the fact that 

change in nutrient or oxygen availability can induce stress and lead to ROS, which 

may harm the normal metabolism and cause mutations in important cell cycle check 

points (Ralph et al., 2010, Sung et al., 2011).  The exact mutations and consequent 

protein expression changes will determine whether the cell commits to a specific 

metabolism (i.e. glycolytic) or if it has the capability to make energy from different 

catabolic processes (i.e. mitochondria).  This is important as highly glycolytic tumors 

have shown considerable treatment resistance (Hagland et al., 2007, Mailloux et al., 

2010).   Resazurin is a ROS inducing agent that specifically affected cancer cells with 

a less glycolytic phenotype (paper I), whereas metabolic substrate such as palmitic 

acid was a powerful cell stress inducer in glycolytic cells (paper II).  TTA caused 

mitochondrial proliferation, higher oxygen flux and hypertrophic response in 

metabolically flexible primary cells (paper III).  This response was associated with 

higher uncoupling effect, which would allow the liver to metabolize mitochondrial 

substrates and recycle NADH and FADH2 irrespective of its own ATP synthesis 

needs.   

During fasting the recycling of NADH to NAD+ is a rate limiting step, which is partly 

aided by -hydroxybuterate dehydrogenase recycling of NADH producing NAD+ and 

-hydroxybuterate in the liver (Salway, 2006).  This is crucial as the brain need 

ketones and glucose made from gluconeogenesis at levels which may exceed the ATP 

requirement of the liver.  Parallels can be drawn to the cancer cell energy 

homeostasis, where substrate turnover rate has to match the energy and biomolecule 

requirements of cell proliferation.  If the ATP requirement is met, but the TCA flux 

generating precursors for cell biosynthesis is limited, the cell may respond by 

uncoupling the ETC to maintain a high turnover of NADH/FADH2 to NAD+/FAD 

(Ayyasamy et al., 2011, Mailloux et al., 2011, Robbins and Zhao, 2011, Samudio et 

al., 2008).  Consequently, the limitation of the system would be the rate at which the 
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TCA cycle can produce its intermediary compounds (Ralph et al., 2010).  The relative 

conversion of NADH to NAD+ is also a determinant in the enzyme kinetics of the 

TCA cycle (Salway, 2006).   

During prolonged starvation, high mitochondrial NADH/NAD+ from fatty acid 

oxidation in the liver, turns oxaloacetate to malate, which is subsequently exported 

out of the mitochondria and used for gluconeogenesis during fasting (Owen et al., 

1998).  This halts the conversion of lipid derived acetyl-CoA to citrate, where it 

instead is converted to ketone bodies through HMGCoA synthase and -

hydroxybuterate dehydrogenase as described above.  However, in the presence of 

glucose and continued fatty acid oxidation, which results in high NADH levels inside 

the mitochondria, the uncoupling proteins may come in to play (paper III).  The high 

NADH build up has previously been linked to increased ROS (Ralph et al., 2010), 

and ROS induction may activate the uncoupling proteins as an antioxidant defence 

mechanism (Echtay et al., 2002, Hurtaud et al., 2006, Mailloux and Harper, 2011).   

5.3 Increased ROS may lead to cell death 

In paper I we found that resazurin caused high levels of ROS in HL-60 cells 

compared to the Jurkat cell line.  This response was connected to induction of 

autophagy in HL-60 cells after 48 hours, whereas both cell lines showed signs of 

mitophagy after 24 hours of treatment (paper I, figure 2 B-C).  It would therefore 

seem that both cell lines were able to initiate mitophagy, whereas only HL-60 cells 

invoked additional autophagy upon resazurin treatment.  The HL-60 cells derive from 

a different type of leukemia (acute myeloid leukemia, AML), and have a higher 

respiratory rate but lower routine control ratio (Routine/Maximal or Routine/ETS, 

paper I and paper II, respectively) than Jurkat cells (paper I, figure 4C).  The lower 

the ratio, the higher the membrane potential, which has been linked to increased ROS 

production (Mailloux and Harper, 2011).  Furthermore, the HL-60 cells are more 

reliant on oxidative respiration, which subsequently make them susceptible to 
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treatments obscuring their respiratory function (Netto et al., 2009).  Jurkat cells had a 

lower respiratory rate than HL-60 cells, but utilized as much as 70% of their 

respiratory capacity under normal conditions (paper I, figure 4C).  They had a higher 

resazurin to resorufin conversion rate but showed less ROS production upon 

treatment.  The high routine control ratio suggests a low membrane potential, which 

correlates with reduced ROS production.  However, there seemed to be fewer 

mitochondria per Jurkat cell compared to HL-60 (TEM pictures in paper I and II), 

which would affect the ROS level as well as routine respiration data, but not coupling 

efficiency (paper I and II).   

Jurkat cells have a mutation in the tumor suppressor PTEN, which consequently leads 

to increased Akt activation (Freeley et al., 2007, Shan et al., 2000).  Activation of the 

Akt pathway is a commonly found mutation in cancer cells, and is related to 

increased glucose dependence (Elstrom et al., 2004, Lawlor and Alessi, 2001).  We 

found that Jurkat cells were more sensitive to glucose deprivation than HL-60 cells 

(paper II), which correlates with glucose dependence.  However, high glycolytic flux 

does not support cell proliferation by itself and must involve some of the biochemical 

pathways in the mitochondria for precursors for lipid, amino acid, and nucleotide 

synthesis (Matés et al., 2009, Wise and Thompson, 2010, Erickson and Cerione, 

2010).   

5.4 The role of TCA and UCP in cancer growth 

Increased import of glutamine has been identified in many cancers, connected to 

maintaining a high TCA flux by providing the substrate -KG (Erickson and Cerione, 

2010, Matés et al., 2009, Wise and Thompson, 2010).  In the mitochondria glutamine 

is converted to glutamate through glutaminase, an enzyme found upregulated in 

cancer (Erickson and Cerione, 2010), and subsequently -ketoacid transaminase turns 

glutamate to -KG, which feeds into the TCA cycle.   
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We found that Jurkat cells seem to utilize more of their complex II capacity during 

glucose rich conditions, whereas glucose deprivation showed a specific drop in 

complex II activity (paper II).  If pyruvate derived from glycolysis was feeding into 

the TCA cycle of Jurkat cells during glucose rich conditions this may together with 

glutamine, or on its own provide enough substrates for running the TCA cycle in the 

normal direction, thus fuelling complex II with electrons.  However, during glucose 

deprived conditions the lack of  pyruvate, may force the cells to rely on glutamine as 

their TCA cycle substrate, and thus reverse the cycle generating citrate directly from 

reductive carboxylation of -KG (Wise et al., 2011), circumventing complex II (paper 

II).  Indeed, this situations may mimic what was seen under normoxic and hypoxic 

conditions, where citrate was made from pyruvate during normoxia, but during 

hypoxia glutamine was found to be the precursor by reductive carboxylation (Metallo 

et al., 2012).  Consequently, the reverse TCA cycle may be connected to increased 

ROS, which is a well-known phenomenon during hypoxia (Ralph et al., 2010).  This 

connection would further support the observed effect during anaerobic glycolysis, 

where pyruvate is not transported to the mitochondria for oxidation, but converted to 

lactate and secreted.   

Glutamine may also regulate translation of UCP2 (Hurtaud et al., 2007), which could 

function as a feed forward reaction to speed up the TCA cycle when there is no 

substrate limitations.  We found that UCP2 levels dropped upon glucose deprivation 

(paper II), maybe related to the reversal of the TCA cycle.  Interestingly the 

expression of UCP3 was significantly increased during glucose deprivation in Jurkat 

cells, which could be a response to increased ROS as UCP3 has been shown to 

regulate ROS levels (Mailloux and Harper, 2011).  However this combination with 

glucose deprivation and upregulation of UCP3, could lead to ATP depletion, thus 

activating the AMP sensitive AMPK (paper II).  A similar response was observed in 

the hepatocytes from TTA-treated rats, which was connected to increased LEAK 

activity (paper III).  Although HL-60 cells showed a modest upregulation in UCP3 
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transcription in response to glucose deprivation, these cells presented higher 

endogenous levels of the mitochondrial antioxidant SOD2 (paper II).      

5.5 Metabolic reprogramming support cell growth 

The fact that highly proliferating lymphocytes are glucose dependent may not be 

surprising as this was identified and even connected to increased glutaminolysis in 

the early eighties (Newsholme et al., 1985).  The rationale was that lymphocytes need 

to be able to proliferate to great numbers upon activation, and as such would need 

substrates to sustain this proliferation, which involved glucose and glutamine 

utilization (Newsholme et al., 1985).  In support of this observation, two independent 

groups recently published that quiescent human primary T and B lymphocytes use 

fatty acid oxidation (FAO) to maintain energy homeostasis, whereas upon activation 

they switch to glycolysis and glutaminolysis (Le et al., 2012, Wang et al., 2011).  

Consequently the high glucose and glutamine turnover in resting lymphocytes were 

converted to glutamate, aspartate, lactate and ammonia and hardly contributed to 

energy generation (Newsholme et al., 1985).  Thus the excess glutamine utilized was 

not based on energy requirements of the cell, but rather served as a metabolic primer 

for rapid cell growth in response to signals initiating cell proliferation.   

In our Jurkat model Akt was constitutively phosphorylated at its active site (paper II), 

which is due to the mutation in PTEN (Freeley et al., 2007).  Moreover the cells were 

highly susceptible to palmitic acid treatment which caused cell death (paper II).  The 

activation of the Akt pathway in leukemia cells have previously been reported to 

inhibit the carnitine palmitoyltransferase 1A (CPT1A) found in the outer 

mitochondrial membrane and involved in fatty acid -oxidation (Deberardinis et al., 

2006).  Thus, inability to import and utilize palmitic acid may explain why the cells 

did not tolerate this treatment.  This would further imply that normal T lymphocytes 

that have been activated by an extracellular agent may be susceptible to fatty acid 

treatment.  Extrapolation of this to our cancer cell models, suggests that there are two 
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modes of action that are specifically required for tumorigenesis, a theory which is 

also supported by others (Jose et al., 2011, Zoncu et al., 2011).  One is the activation 

of an autonomous cell growth signal through mutations in growth receptors or their 

downstream pathways, and two is the mutation in genes involved in increased 

metabolic turnover examples being Akt for glycolysis, and c-Myc for glutaminolysis.   

Stress and growth-associated crosstalk between metabolism and signaling are further 

elucidated in our hepatocyte model (paper III).  Here, we accelerated metabolic flux 

by treatment of a fatty acid which could not be oxidized.  Our data strongly suggest 

that cell stress responses are triggered by this modified fatty acid (paper III), and 

similar observations have recently been identified in cultured cancer cells (Lundemo 

et al., 2011).  In our studies, these stress responses included increased mitochondrial 

biogenesis, oxidative capacity and increased substrate utilization.  This was further 

connected to upregulation of the mTORC1/4EB-P1 pathway (paper III).  The 

mTORC1 upregulation has been implicated in cancer progression (Gibbons et al., 

2009, Zoncu et al., 2011), but may not be the instigator of tumorigenesis as we only 

found hypertrophic cells (paper III).  All in all, it seems that the metabolic 

reprogramming in hepatocytes is well tolerated as these cells are highly metabolically 

flexible.  However in less flexible cells, it may be hypothesized that this metabolic 

reprogramming might act as a priming condition, which together with growth 

receptor activation could lead to rapid cell proliferation.  This further suggests that an 

activating mutation, in pathways causing metabolic reprogramming, would in 

combination with an activating mutation in a growth receptor, possibly lead to 

uncontrolled cell growth.   

In this perspective, recent publications show that cells in nutrient rich environments 

(glucose + glutamine), increase their glycolytic flux, which generates UDP-N-

acetylglucoseamine (UDP-GlcNacs), produced in the hexoamine pathway (Wellen et 

al., 2010).  Moreover, the GlcNAcs cause N-glycosylation of tyrosine kinase 

receptors which has been connected to cellular transformation (Vander Heiden et al., 
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2012, Wellen and Thompson, 2010).  The hexoamine pathway diverges from 

glycolysis at fructose-6-phosphate, one of the irreversible steps in glycolysis, and is 

only active when substrates such as glutamine and acetyl-CoA are also present in 

excess (Wellen and Thompson, 2010).  Additionally, high levels of acetyl-CoA, from 

increased ATP-citrate lyase (ACL) activity, can cause histone acetylation leading to 

enhanced transcription in nutrient rich environment (Wellen et al., 2009).  Therefore, 

the true metabolic reprogramming caused by mutations, would render cells unable to 

cope with nutrient deprivation or metabolic agents interfering with their preferred 

metabolism (Jurkat + palmitic acid, paper II).  However, cancer cells that maintains 

metabolic flexibility and thus are able to utilize the full spectra of metabolic 

substrates could prove to be more resistant to such treatments (HL-60 cells + palmitic 

acid, paper II).  This underscores the possible potential of proper metabolic profiling 

of cancers before commencing treatment.   

5.6 Lifestyle and Cancer 

The increasing evidence linking overfeeding, obesity and diabetes 2 with cancer 

clearly shows that we are not preventing cancer with our high-carbohydrate, high-fat 

western-type diet (Calle and Kaaks, 2004).   Hyperglycemia and insulin insensitivity 

are traits of diabetes 2, and interestingly of cancer cells themselves (Elstrom et al., 

2004, Sung et al., 2011, Yamada et al., 2005).  Constant nutrient availability, which 

exceeds the energy requirements of the cell result in increased cell stress and 

consequently aberrant signalling.  The work done on glycosylations (GlcNAcs) and 

acetylations (acetyl-CoA) all confirm that both unicellular and multicellular 

organisms use metabolite-mediated posttranslational modifications to match nutrient 

abundance throughout the metabolic network (DeBerardinis and Thompson, 2012).  

Since, GlcNAcs are mediators of growth factor receptors, they may lead to a growth 

advantage of a cell just by increasing the number of growth receptors on the cell 

surface (Wellen et al., 2009, Wellen and Thompson, 2010).  The constant over-



62

exposure to nutrients, may lead to cellular metabolic adaptations which provide the 

nestling ground for tumorigenesis.  Conversely, the opposite might be true where 

caloric restriction inhibits tumorigenesis.  Indeed, there are numerous studies 

supporting this notion, however they seem to converge on the insulin growth factor 

(IGF-1) responsive tumors, whereas cancers with mutations downstream of this 

receptor do not respond to calorie restriction (Speakman and Mitchell, 2011).   

Another emerging target for caloric restriction is brain tumors (Maurer et al., 2011, 

Zhou et al., 2007).  This is based on basic physiology, which show that during 

prolonged starvation the ketones are the primary fuel (>70%) for brain cells (Cahill, 

2006) and can only be utilised as such by functional mitochondria.  Thus their 

metabolic flexibility must be intact to survive pro-longed starvation.  The commonly 

found mutation in IDH1/2 in various gliomas have been linked to increased 

dependence of glutamine and glucose at the expense of functioning TCA cycle 

(Reitman et al., 2011).  This suggest that these cancers are not metabolically flexible, 

and that the use of ketogenic diet as treatment may be a promising alternative or 

supplementary treatment to the much more invasive tumor resection treatment offered 

the last fifty years (Maurer et al., 2011, Scheck et al., Zhou et al., 2007, Zuccoli et al., 

2010).   
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6 Conclusions and Future Perspectives  

The retained capacity of metabolic flexibility, seen in some cancers, may render them 

more resistant to substrate deprivation, albeit more sensitive to treatments inducing 

ROS.  This was identified in the paper I where resazurin caused metabolic stress 

predominantly in the metabolically flexible HL-60 cells, which involved responses 

such as increased ROS and autophagy.  Furthermore the glucose dependency seen in 

many cancers could be exploited by treating with a substrate that would interfere with 

this preferred metabolism.  This was identified in paper II, where Jurkat cells were 

more glucose dependent, and more susceptible to treatment with the fatty acid 

palmitic acid.  The HL-60 cells on the other hand showed high sensitivity to AICAR 

treatment, which was further augmented when combined with glucose deprivation.  

These responses seemed to rely on the signalling pathways that were upregulated, as 

constitutive Akt signalling was found in Jurkat, while HL-60 cells did not have this 

activating mutation.  The ability of HL-60 to induce or inhibit the mTOR pathway 

seemed to play a role in the autophagy response seen both in paper I and II.  High 

cellular metabolic flexibility, which is not constrained by activating or deactivating 

mutations, may trigger many of the same pathways when exposed to a metabolic 

stress inducer (TTA).  This was confirmed in paper III where highly metabolically 

flexible primary rat hepatocytes showed enhanced mTOR activity upon increased 

metabolic stress, which involved mitochondrial biogenesis, increased oxidative 

capacity and higher uncoupled respiration.  Interestingly, the treatment led to cell 

hypertrophy, but we found no indications of hyperplasia (neoplasia in the liver). 

In conclusion, increased functional load, either by nutrient excess (i.e. high glucose 

and glutamine) or specific metabolic modulators (palmitic acid, AICAR, TTA), can 

cause cellular stress reactions that threaten cell survival if the limits of metabolic 

flexibility are challenged. In cancer, metabolic rigidity involving mitochondrial 

alterations seem to be promoted by common growth inducing oncogenic mutations. 

In contrast, metabolically flexible hepatocytes not having dysregulated growth 
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demonstrated high adaptability and tolerance to stressful conditions, in a response 

also involving hypertrophy. In agreement with recent literature, this study 

underscores the importance of metabolic rigidity and associated stress mechanisms in 

cancer biology, and further emphasizes the potential of utilizing associated treatment 

strategies in future cancer therapy.   

To pursue these findings further, it would be interesting to co-treat rats with both 

TTA and mTORC1 inhibitors, to see if this led to a different cell response than 

hypertrophy.  In addition, it would be interesting to treat rats with TTA before 

subsequently giving them a TTA-free normal chow diet, to see whether the 

mitochondrial proliferation response and hypertrophy were reversed.  If this was 

reversed, the exact reversal time would have to be investigated.  This may be 

important as clinical trial treatments with mTORC1 inhibitors against cancer have 

shown to induce hyperlipidemia, high cholesterol, hypertension and generally 

symptoms associated with obesity (Reardon et al., 2006, Riely et al., 2007).  Thus we 

could postulate that a pre-treatment with TTA may lead to a hypolipidemic response 

that could protect the patients during mTORC1 inhibitory treatment.     

Altogether it seems that the ability of cancer cells to modulate their metabolism 

depends on the flexibility of their signalling pathways.  The therapeutic window for 

targeting cancer metabolism does, therefore, rely on their inflexibility in nutrient 

utilisation, which can be distinguished from normal healthy cells.  There are several 

considerations to be made if one is to actively pursue using inhibitors of cancer cell 

metabolism in vivo.  For instance inhibitors of the glutamine receptor SLC1A5, which 

is upregulated in many cancers (Wise and Thompson, 2010) results in deactivation of 

mTOR in vitro (Nicklin et al., 2009).  As mentioned above, the use of such inhibitors 

in vivo may lead to metabolic effects that are not desirable.  Another consideration to 

be made if using the glutamine receptor inhibitor, is that the drug would have to be 

constructed as to not cross the blood-brain barrier, as glutamine turnover is essential 

for neuronal signalling (Yudkoff et al., 2008).  Furthermore, it may disturb blood 
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ammonia homeostasis, as well as gluconeogenesis during fasting, which both involve 

glutamine.  Although, the glutamine addiction, seen in many cancers but not all, 

provides an exciting new therapeutic target, the patient’s metabolic state has to be 

closely monitored during such treatment.   

Great advances have been made the last years in trying to assess the metabolic 

profiling of tumors in vivo, both with radiolabelling glutamine and glutamate for the 

use in PET (Qu et al., 2012, Koglin et al., 2011), as well as advances in higher-field 

magnetic resonance spectroscopy (MRS) which has drastically improved and made it 

possible to detect many metabolites in vivo (Choi et al., 2012).  Understanding the 

metabolic phenotype of cancer cells and cell signalling involvement, not only gives 

us a better understanding of tumour biology, but may present a wide range of 

potential targets for advanced cancer therapies.   More studies involving diet 

manipulations with regards to cancer growth are called for, and can hopefully lead to 

a more effective combinational treatment together with today’s standard care.   
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