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Abstract 

Glucokinase (GK) functions as a glucose sensor in insulin-producing pancreatic -cells 

and as a regulator of hepatic glycolysis, glycogen synthesis and gluconeogenesis. Its 

key role in glucose homeostasis is evidenced by naturally occurring GK gene 

mutations causing monogenic diabetes and hyperinsulinemic hypoglycemia and by the 

discovery of allosteric GK activators (GKA) that hold promise as new antidiabetic 

agents.  

GK catalyzes the first step in glucose metabolism, i.e. the conversion of -D-glucose 

to glucose-6-phosphate (G6P), using MgATP2- as the phosphoryl donor. Glucose 

activates GK on its binding to the active site by inducing a global conformational 

change. Using intrinsic tryptophan fluorescence (ITF) spectroscopy as a probe on the 

glucose-induced conformational change, we identified key residues in this process. 

The glucose-induced fluorescence increase was primarily determined by W99 and 

W167, and little affected by W257. Based on results from functional mutagenesis and 

structural dynamic analyses, we have proposed that three active site residues (N204, 

N231 and E256) in the L-domain function as primary contact residues for glucose 

binding to the super-open form. Moreover, local torsional stresses at N204 and D205 

of the highly flexible connecting region II was important for the subsequent 

propagation of the conformational transition towards cleft closure.  

No structural data have been available on ATP binding to the apoenzyme and how it 

possibly affects its conformation. Here, we provide the first experimental evidence for 

an equilibrium binding of ATP and its analogue AMP-PNP to the ligand-free enzyme. 

Moreover, ITF quenching analyses and molecular dynamics (MD) simulations 

indicated a significant conformational change upon nucleotide binding. This finding 

was supported by the protective effect of ATP on binding of the extrinsic fluorescence 

probe ANS and on limited proteolysis with trypsin. Furthermore, the modeled 

structure of the GK-ATP binary complex provided insight into the active site contact 

residues involved in the interaction with ATP.  
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The knowledge on covalent modifications of human GK (hGK) and their possible 

regulatory functions are limited, and the molecular and cellular mechanisms involved 

in its degradation/turnover are also poorly understood. Using the rabbit reticulocyte 

lysate (RRL) as an in vitro model system, we demonstrated that pancreatic -cell 

(isoform 1) and liver (isoform 2) hGK are substrates for the ubiquitin-conjugating 

enzyme system, and that both isoforms are polyubiquitinated on at least two lysine 

residues. A putative ubiquitin interacting motif (UIM) site at the C-terminal end was 

identified by 3D structural analysis, and associated with polyubiquitination at one of 

the sites. Moreover, our results supported that poly/multiubiquitination of recombinant 

pancreatic hGK in vitro target the newly synthesized enzyme for proteasomal 

degradation. Interestingly, purified free pentaubiquitin chains were demonstrated to 

interact with and allosterically activate (~1.4-fold) recombinant hGK, assigned to their 

equilibrium binding to the UIM site. Both these ubiquitin-mediated processes 

represent potential physiological regulatory mechanisms of GK.  
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1. Introduction 
 

1.1. Background 

Glucose is the primary source of energy in the cell and is essential for life. An 

adequate supply of glucose is for instance necessary for a normal function of the brain, 

and low blood glucose (hypoglycemia) is therefore associated with loss of 

consciousness, seizures and in the most severe cases - death. On the other side, chronic 

hyperglycemia, the key element of diabetes mellitus, is associated with dysfunction of 

organs like the cardiovascular system, kidneys and eyes. Normally, the blood glucose 

concentration varies within a narrow physiological range (4-8 mmol/l). This steady-

state concentration is mediated by coordinated homeostatic mechanisms, involving the 

endocrine pancreas (insulin and glucagon), liver (glucose stores) and peripheral tissues 

(glucose stores and energy expenditure), as well as a balanced secretion of other 

hormonal effectors, for instance from the gut (incretins). The concept of a glucose 

sensor component in this homeostatic feedback loop originated already in the late 

1960s [1]. Over the past three decades, the central role of glucokinase (GK) as a 

glucose sensor in the pancreatic -cell and its impact on whole body glucose 

homeostasis has become increasingly evident and is today widely accepted (Table 1) 

[2-6]. GK plays a key role in glucose-stimulated insulin secretion in pancreatic –cells 

and in the liver hepatocytes where it stimulates glucose uptake and glycogen synthesis 

[7-9]. In the 1990s and early 2000s, it was discovered that naturally occurring GK 

mutations can cause different forms of glycemic disorders. This new knowledge gave 

a considerable boost to the GK glucose sensor concept. The perception of the essential 

role of human GK (hGK) in glucose homeostasis culminated in 2003 with the 

discovery of a class of small synthetic organic compounds as potent allosteric 

activators of GK [10-13]. Recently, it has been demonstrated a potential application of 

these compounds in the treatment of type 2 diabetes mellitus (T2D) [9, 14]. In 2004, 

human liver GK was successfully crystallized in the unliganded and glucose-bound 

conformation [15]. The 3D structures represented a breakthrough in the research on 

GK and GK-linked glycemic disorders, opening up new and intriguing approaches to  
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Table 1. Historical milestones in GK research 
 

Year 

 

Discovery 

 

References 
   

1963 GK identified in rat liver [16-19] 
1968 GK identified in mouse pancreatic islets [20] 
1975/76 Sigmoidal glucose dependency [21, 22] 
1977/80 Mnemonic and slow transition mechanistic models 

of GK cooperativity 
[21, 22] 

1984/86 The GK glucose sensor paradigm [2, 3] 
1986 Differential regulation of GK activity in liver and 

pancreatic -cells 
[23] 

1986 Detection of GK in human islets [24] 
1989 GKRP identified [25, 26] 
1989/91 Cloning of rat and human liver GK cDNA [27, 28] 
1992 GK linkage to MODY [29, 30] 
1998 GCK-HI described for the first time [31] 
2001 GCK-PNDM described for the first time [32] 
2001/03 First reports on GKA [10-13] 
2004 Crystal structure of hGK solved and deposited to 

the PDB 
[15] 

2008/10 First reports on use of GKA in diabetic patients [14, 33] 
 

 
 

GKRP, GK regulatory protein; GKA, GK activator; PDB, Protein Data Bank. The table is modified from 
[34], with kind permission from Springer Science and Business Media © 2011. 
 

 

the functional characterization of the wild type (WT) enzyme, including its dynamic, 

catalytic and regulatory properties, and in particular to investigate disease-associated 

mutant forms. The 3D structures of hGK represent the fundamental basis of the present 

work. 

 

1.2. Monogenic diabetes 

Diabetes mellitus is a metabolic disorder of multiple etiologies. It is characterized by 

chronic hyperglycemia resulting from defects in insulin secretion, insulin action, or 

both [35]. Whereas, type 1 diabetes (T1D) and T2D, the two major forms of diabetes, 

are multi-factorial complex diseases caused by a combination of environmental, life-
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style related and genetic risk factors, some rare forms of diabetes are monogenic, i.e. 

resulting from single-gene defects. About 1-3 % of all diabetes cases can be attributed 

to monogenic causes [36-38]. In recent years, there has been a substantial progress in 

defining the etiological genes for monogenic diabetes. So far, some 20 genes have 

been identified, involved in pancreas development/differentiation or normal -cell 

physiology [39]. Identifying these genes has enabled a better understanding of the 

genetic and biochemical basis of -cell function and, moreover, improved patient 

management in terms of precise diagnosis, appropriate treatment and prognostic 

information as well as genetic counseling and follow-up of family members [40]. 

Genetic testing for monogenic diabetes in Norway has so far enabled the diagnosis of 

the exact subtype in about 60% of the cases (Figure 1). Thus, there are still many cases 

in which a monogenic cause is suspected but a genetic diagnosis have not been made 

(MODYX), presumably due to the presence of mutations in as-yet-undetermined 

genes.  

Monogenic diabetes is a clinically heterogeneous disease. It can be subdivided into 

two predominant forms, neonatal diabetes mellitus (NDM) and maturity-onset diabetes 

of the young (MODY). NDM is defined as insulin-requiring hyperglycemia that 

develops within the first 6-12 months of life [41] and occurs in ~1 of every 100.000 

live births. The condition is associated with intrauterine growth retardation and low 

birth weight as a consequence of low fetal insulin levels [42]. NDM can follow one of 

two clinical courses, which differ in the duration of insulin dependence early in the 

disease. About 50-60% of the cases are transient (transient neonatal diabetes mellitus 

or TNDM (OMIM #601410)) and resolve within the first 18 months of life, but then 

frequently relapse as T2D later in life [43]. In the remaining cases of NDM, the 

condition is permanent (permanent neonatal diabetes mellitus or PNDM (OMIM 

#606176)) and require lifelong medical treatment. MODY is the most common form 

of monogenic diabetes. It is an autosomal, dominantly inherited disease that is 

characterized by an early age of onset (at least one affected family member with an 

onset before 25 years of age), non-ketotic diabetes mellitus and primary pancreatic –

cell dysfunction [44]. Hence, the majority of patients typically presents with 
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Figure 1. The relative prevalence of monogenic diabetes subgroups in Norway based on 
genetic analysis of 314 probands referred to the Norwegian MODY registry. Only the 
individuals that fulfill the conventional MODY/monogenic criteria are included. In the 
Norwegian MODY registry, GCK-MODY has a relative prevalence of approximately 15%. 
MODYX refers to the individuals that have tested negative for the known causes of 
monogenic diabetes. The data (unpublished) are based on numbers extracted from the 
Norwegian MODY Registry per September 2011. 

 

hyperglycemia in childhood or adolescence and have a strong family history of 

diabetes. 

 

1.3. Glucokinase glycemic diseases 

GK was discovered almost 50 years ago, first as an enzyme of rat liver (1963) [16-19] 

and subsequently in mouse pancreatic islets (1968) [20]. With its central role in insulin 

secretion, it was early an obvious candidate gene for diabetes [45], and the GK-

encoding gene (GCK) was in fact the first MODY gene to be identified [29, 30, 46-

Probands with 
MODY referred for 

genetic testing

30%
HNF1A

15%
GCK

5%
HNF4A

2%
HNF1B

<1%
CEL

2%
MTTL1

2%
KCNJ11

1%
INS

<0.5%
ABCC8

~40%
MODYX

<0.5%
NEUROD1
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48]. Alterations in the catalytic activity of GK are associated with abnormal glycemia. 

Three different glycemic diseases, due to naturally occurring GCK mutations, have 

been described; GCK-MODY, GCK-PNDM and congenital hyperinsulinism. Hence, 

GK-associated diseases constitute a broad spectrum of clinical phenotypes, accounted 

for by the different nature of the causative mutations (summarized in Figure 2). 

Furthermore, common genetic variants of the GCK gene are associated with elevated 

fasting plasma glucose levels and T2D risk [49-51]. Altogether, these facts emphasize 

the significant role of GK in maintaining normoglycemia. 

 

 

 

    
 

Figure 2. Schematic representation of the spectrum of clinical phenotypes associated 
with mutations in the GCK gene. See text for details. 
 

 

 

 

Clinical severity Clinical severity

Catalytic efficiency
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Severe

PNDM

GCK-
MODY

T2D 
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Mild 
Hypoglycemia

Severe 
Hypoglycemia
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1.3.1. GCK-MODY 

Inactivating heterozygous mutations in GCK that impair either the function or level of 

expression of the enzyme cause a subtype of MODY, formerly known as MODY2 and 

today more preferably designated GCK-MODY or GCK-monogenic diabetes (OMIM 

#125851) [29, 30].  

 

Pathophysiology 
The pathophysiological mechanism of the hyperglycemia in GCK-MODY patients is 

primarily related to a –cell dysfunction characterized by reduced GK activity and an 

increased threshold for glucose-stimulated insulin secretion (GSIS) [52, 53]. The 

glucose threshold value is generally shifted from ~5 to 7 mmol/l (mM), consistent with 

a defect in glucose sensing by pancreatic –cells (see section 1.4). In normal 

physiology, the liver contributes to the control of blood-glucose homeostasis by net 

glucose uptake and storage after meals when postprandial blood glucose levels are 

high, and by net glucose production in fasted state [54, 55]. GK is central in this 

process, serving as a metabolic switch to shift hepatic carbohydrate metabolism 

between fed and fasting states. The hepatocytes of the liver contain ~99% of the 

body’s total GK content [5]. Moreover, GK provides ~95% of the glucose-

phosphorylating (hexokinase) activity in these cells. Clinical investigations in patients 

with GCK-MODY have revealed disorders of liver metabolism, in addition to the 

altered –cell function, such as reduced net hepatic glycogen synthesis and abnormal 

regulation of hepatic glucose output [56, 57]. Extensive studies on tissue-specific and 

global GCK knock-out mice, as well as models of GCK overexpression, have 

confirmed the findings in humans [58-64]. Furthermore, the mechanisms of action and 

therapeutic applications of small molecule GK activators (GKAs), also support a role 

of liver GK in the pathophysiology of this disease (see section 1.7.3.). Mice lacking 

hepatic GK are mildly hyperglycemic. In contrast, a -cell specific knock-out of GK 

results in severe hyperglycemia and death shortly after birth [27, 60]. Taken together, 

even though the reduced GK activity in the –cell and the subsequent impairment in 

GSIS seem to be the dominant physiological effects, abnormalities in hepatic glucose 
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metabolism seems to be a contributing factor in the pathogenesis of GCK-MODY 

hyperglycemia.  
 

Clinical features 
The clinical phenotype of GCK-MODY is very homogenous, despite a large number 

of naturally occurring patient mutations with varying effects on enzyme kinetics (see 

section 1.5) [65]. This has, at least in part, been explained by a compensatory up-

regulation of the remaining WT allele [66]. GCK-MODY is distinct from the other 

MODY subtypes. The disease is characterized by (i) mildly elevated fasting 

hyperglycemia of 5.5-8 mM (from a normal basal concentration of 4-5 mM), (ii) 

glycosylated hemoglobin (HbA1c) that is just above the upper limit of normal and 

rarely exceeds 7.5%, and (iii) a small 2-hour plasma glucose increment ( 4.6 mM) 

during an oral glucose tolerance test (OGTT) [67, 68]. Accordingly, many GCK 

mutation carriers do not develop manifest diabetes, but are diagnosed with impaired 

glucose tolerance or increased fasting plasma glucose. The fasting hyperglycemia is 

present from birth [69] and deteriorates only slightly with age. Due to the mild 

hyperglycemia patients are often asymptomatic and the hyperglycemia can easily be 

overlooked during childhood and young adulthood.  
 

Diagnosis and treatment 
Due to the mild nature of the disease, the diagnosis of GCK-MODY is most often 

made during routine testing, for instance in pregnancy. GCK mutations have been 

found in 2-5% of women diagnosed with gestational diabetes [70-73]. Except during 

pregnancy, GCK-MODY patients rarely require pharmacological treatment. The risk 

of developing diabetes-related chronic complications like cardiovascular disease, 

kidney failure, retinopathy and neuropathy is low [74, 75].  
 

Prevalence 
It is difficult to assess the true prevalence of GCK-MODY. In UK, about 2% of 

Caucasian pregnant women were diagnosed with gestational diabetes, and of these 

about 2-5% had a mutation in the GCK gene, suggesting a population prevalence of 
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GCK-MODY of 0.04-0.10% [72]. As the disease has a mild expression, patients are 

frequently not diagnosed and, hence, GCK-MODY is probably underestimated. 

Moreover, the estimated prevalence of the disease in European Caucasian MODY 

families varies considerably. Whereas mutations in the GCK gene seems to be the 

second most common cause of MODY in Northern Europe, including Norway (Figure 

1) [75-79], it seems to be the most prevalent MODY subtype in countries of Southern 

Europe like France, Italy and Spain [48, 80-85]. This discrepancy is probably caused 

not only by the variations in the genetic background, but also, at least in part, by 

differences in the recruitment criteria [65]. To assess the exact prevalence of this 

disease, large-scale population studies are required.  

 

1.3.2.    GCK-PNDM 

Mutations in the GCK gene are an infrequent cause of PNDM in the European 

population [86, 87]. GCK-PNDM is caused by complete deficiency of GK activity due 

to homozygous or compound heterozygous inactivating mutations in GCK [65, 88]. 

The condition should be considered primarily in cases of neonatal diabetes presenting 

with a family history of mild hyperglycemia or GCK-MODY, especially when 

consanguinity is suspected. The first case of GCK-PNDM was described in 2001 [32], 

and later 11 new cases have been reported [89-93] in addition to at least one 

unpublished case (Eltonbary et al, unpublished). Almost all cases are attributed to 

consanguinity. Clinically, the disease is characterized by severe intrauterine growth 

retardation, low birth weight, pronounced hyperglycemia and ketoacidocis within the 

first days of life [32, 89]. This is a life-threatening disease that requires insulin 

treatment. However, recent studies have presented evidence for the potential use of 

sulfonylureas (in addition to insulin) to augment improved glycemic control [92, 93]. 

It was further demonstrated that use of sulphonylureas stimulated endogenous insulin 

secretion from -cells (albeit at very low levels) [92], and the combined treatment with 

sulfonylurea allowed management on a reduced insulin dose. It has therefore been 

speculated that PNDM cases due to mild GCK mutations may cause a less severe 
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phenotype that respond better to sulfonylureas [90]. The mechanism of sulfonylurea 

action in these patients is unclear.  

 

1.3.3.    GCK-HI 

Hyperinsulinism of infancy (HI), with an estimated incidence of 1 in 40.000-50.000 

live births [94, 95], is the most common cause of persistent hypoglycemia in early 

infancy [96]. The condition is also known as congenital hyperinsulinism of infancy 

(CHI), persistent hyperinsulinemic hypoglycemia of infancy (PHHI) and 

nesidioblastosis. HI is characterized by recurrent episodes of hyperinsulinemic 

hypoglycemia due to inappropriate secretion of insulin [94]. This is a life-threatening 

disorder where early diagnosis and treatment are essential to prevent potentially acute 

and severe complications like seizures, coma and, at worst, death. Several genetic 

causes of HI have been identified [97]. In 1998, activating heterozygous mutations in 

GCK were recognized as a cause of neonatal hypoglycemia [31]. GCK-HI (OMIM 

#602485) is a rare subtype, estimated to ~1.2 % of all HI cases [98]. At least 15 

activating GCK mutations have been reported to date [65, 99-101]. The primary 

mechanism in GCK-HI is a lowered threshold for GSIS, leading to a failure to 

suppress insulin secretion in the presence of hypoglycemia. The clinical phenotype 

covers a broad spectrum, even within the same family harboring the same mutation, 

both with regard to age of onset (from first day of life to adulthood), severity of the 

hyperinsulinism (from asymptomatic to unconsciousness and seizures), clinical course 

(a few cases have progressed to insulin resistance), as well as responsiveness to 

pharmacological treatment [102-104]. Even though a few cases with severe, medically 

unresponsive GCK-HI have been reported, most patients present with mild fasting 

hypoglycemia responsive to the sulfonylurea receptor agonist diazoxide. In two of the 

severe (medical unresponsive) cases of GCK-HI, pancreatic histology revealed 

abnormally large islets with some -cells containing large nuclei [100, 105], which 

could be due to increased intracellular glucose flux and -cell proliferation [100]. 

Thus, a complex mechanism for GK regulation is implicated in GCK-HI, and, to some 
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extent, the severity of hypoglycemia seems to correlate with the severity of the 

mutation/enzyme defect [65, 104].  

 

1.4. The role of pancreatic -cell GK in glucose-stimulated 
insulin secretion and glycemic disease 
 
The body’s sole glucose-lowering hormone, insulin, is produced, stored and secreted 

by the pancreatic -cells of the islets of Langerhans [106]. To maintain 

normoglycemia, these cells correlate their insulin secretion with changes in plasma 

glucose concentration. A postprandial fall in blood glucose leads to a decrease in 

insulin secretion. However, the -cells maintain a basal insulin secretion which allows 

the cells of the body to utilize glucose also between meals and during night. 

Furthermore, the -cells respond quickly (within minutes) to postprandial spikes in 

blood glucose by secreting increased amounts of insulin. Insulin subsequently acts to 

reduce blood glucose levels by stimulating glucose uptake in insulin-sensitive cells of 

liver, muscle and fat, and by inhibiting glucose production in the liver [107].  

In healthy individuals, the physiological threshold for GSIS in the pancreatic –cell is 

a result of a finely tuned coordinated interaction between glucose transport, oxidative 

glucose metabolism, the KATP-channel and the Ca2+-channel (Figure 3). GK is a key 

component in this glucose-sensing machinery and is frequently referred to as the 

glucose sensor of the pancreatic –cell [108]. The activity of GK is directly coupled to 

the blood glucose concentration, and rises and falls accordingly. Initially, glucose 

enters the -cells via the GLUT family of transporters [110]. The elevated intracellular 

concentration of glucose, in turn, activates GK, which catalyzes the phosphorylation of 

glucose to G6P. Glycolysis and further energy production in the Krebs cycle and by 

oxidative phosphorylation in mitochondria generate ATP. The resulting increase in 

ATP/MgADP ratio stimulates the closure of the ATP-sensitive potassium (KATP) 

channels, depolarization of the plasma membrane, subsequent opening of the L-type 
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Figure 3. A schematic model of the pancreatic –cell illustrating the main sequence of 
cellular events and the role of GK in glucose-stimulated insulin secretion (GSIS). Blood 
glucose levels are the major determinant of the rate of insulin secretion. As the plasma 
glucose level rises above basal levels (~5 mM), glucose is transported into the -cell via a 
GLUT carrier. Increased intracellular glucose levels activate GK which, in turn, catalyzes the 
phosphorylation of glucose to G6P. Metabolism of glucose leads to an increase in the cellular 
ATP/MgADP ratio, which triggers insulin secretion. An inactivating mutation in the GCK 
gene, the cause of GCK-MODY, leads to an impairment of GK enzymatic activity or protein 
stability, resulting in decreased glucose phosphorylation and an increased threshold for GSIS, 
causing mildly elevated fasting blood glucose levels (6-8 mM). In the case of GCK-PNDM, 
both alleles are affected, resulting in severe insulin deficiency of infancy due to a complete 
inactivation of GK activity. In contrast, in GCK-HI, activating mutations that increase the 
catalytic efficiency of GK cause a reduction in the threshold for GSIS (in some cases to as 
low as 1.5 mM). Thus, in both GCK-MODY and GCK-HI the GSIS is still intact, however 
induced from a shifted glucose threshold [109]. The figure is reprinted from [44], with 
permission from Massachusetts Medical Society © 2001.  
 

 

 

  
 



 22 

voltage-dependent calcium (Ca2+) channels, influx of extracellular calcium and 

mobilization of intracellular calcium stores. The following rise in intracellular calcium 

triggers the exocytosis of insulin from granules docked at the plasma membrane 

(Figure 3) [111]. In humans, the physiological –cell glucose threshold for GSIS is 

maintained close to 5 mM. As glucose phosphorylation is a key point of control for 

glycolytic flux in the -cell [112, 113], small changes in GK activity or stability can be 

physiologically significant since it will directly affect the threshold for GSIS. This is 

the mechanism by which many naturally occurring mutations in GCK cause glycemic 

disease in humans (see figure 3 legends). Mathematical modeling of the effect of 

naturally occurring GCK mutations on GSIS has indeed demonstrated a tight 

relationship between GK activity and the threshold for GSIS [114].  

 

1.5. Naturally occurring GCK mutations and the mechanism of  
their associated disease 
 
The strongest evidence for the GK glucose-sensor concept derives from the functional 

consequences of GK gene mutations in humans. From the first identified mutations in 

1992 until today, > 630 GCK mutations in more than 1440 families have been reported 

[65]. Missense, nonsense, small deletion/insertion (frameshift) and splice site 

mutations have been identified, and are distributed throughout the gene [65]. There are 

no mutational “hot spots” in the GCK gene. Recently, partial and whole gene deletions 

have been identified, but are probably a rare cause of GCK-MODY [115, 116].  

Of the ~630 GCK mutations described, around 65% are missense mutations, of which 

most (~97%) are inactivating mutations causing hyperglycemia [65]. Many of the 

missense mutations have only been described in a single family [65]. In many cases 

co-segregation has not been established. Despite the importance of ascribing 

pathogenicity to these variants, less than 20% have been functionally characterized 

[65, 114], most of them as E. coli expressed recombinant pancreatic hGK-glutathione-

S-transferase (GST) fusion proteins. The vast majority of the functionally 

characterized GK mutants demonstrate alteration in one or more enzyme kinetic 
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parameters (kcat, glucose S0.5, nH, Km for MgATP2-). For inactivating mutations 

(MODY, PNDM), the mutant proteins show reduced catalytic efficiency due to 

decreased catalytic activity (kcat) and/or increased glucose S0.5. The Hill coefficient (nH) 

and the MgATP2- Km can be increased or decreased [65]. For GK-activating mutations 

(HI), the opposite effect on the kinetic parameters is seen, with an overall increase in 

catalytic efficiency, mainly due to a reduction in glucose S0.5 and/or increased kcat. The 

Hill coefficient is usually decreased [65]. Furthermore, it has been shown that in some 

cases other mutational mechanisms are in play. For instance, some GK mutants 

demonstrate altered affinity for known interaction partners (see section 1.9.) or 

reduced thermostability [65]. Interestingly, careful kinetic analyses of recombinant GK 

enzymes have uncovered several missense variants not detected in healthy individuals, 

that demonstrate normal or near normal enzyme kinetic parameters as well as normal 

interaction with known regulatory proteins. These are potentially interesting since 

novel mutational mechanisms may be involved. In these cases, co-segregation with 

fasting hyperglycemia in the family will strengthen the interpretation of the variants as 

pathogenic. The importance of combining functional studies and segregation analyses 

has recently been emphasized [117].  

 

1.6. GK - a member of the hexokinase family of enzymes  
with unique properties 
 
GK belongs to the hexokinase family of enzymes as one of four glucose-

phosphorylating isozymes (ATP:D-hexose 6-phosphotransferase (EC 2.7.1.1)) found 

in mammalian tissues, designated hexokinase I-IV [118] or A-D [119]. The 

hexokinases represent key metabolic enzymes, catalyzing the MgATP-dependent 

phosphorylation of glucose to G6P, which is the first and rate-limiting step in 

glycolysis (Figure 4).  

Glucokinase (hexokinase IV or D) has derived its name from its preference for -D-

glucose as a substrate under physiological conditions. The enzyme is distinguished  



 24 

 
 

Figure 4. The reaction catalyzed by GK. GK catalyzes the phosphorylation of -D-glucose 
(on carbon 6*) to form G6P, the entry point of glucose into glycolysis. ATP participates as the 
phosphoryl donor (cosubstrate) in the reaction in a form complexed to Mg2+ (MgATP2-). 
 

 

from the other mammalian hexokinases in molecular mass, structure, kinetic 

properties, tissue distribution and physiological function [120, 121]. 

 

1.6.1.    Kinetic properties of GK 

GK operates as a monomer and has a molecular mass of about 52 kDa, as opposed to 

~100 kDa for hexokinase I-III. It is the principal enzyme responsible for glucose 

phosphorylation in hepatocytes and pancreatic –cells [24, 122, 123], the tissues 

important for the regulation and clearance of blood glucose. In these cells, GK has 

unique catalytic and kinetic properties to serve this physiological function [6, 124].  

GK is kinetically distinct from hexokinase I-III: (i) GK has a low affinity for glucose, 

i.e. a glucose concentration at half-maximal velocity (S0.5) of ~8 mM, (ii) GK is not 

inhibited by the product (G6P), (iii) GK displays positive cooperativity with respect to 

glucose (nH of ~1.8), and (iv) GK is physiologically saturated with its cosubstrate 

MgATP (Km of 0.15-0.4 mM). The enzyme displays classical hyperbolic Michaelis-

Menten kinetics with respect to the concentration of MgATP [120].  

Liver and –cell GK share the same unique kinetic properties [125]. Most importantly, 

the low affinity for glucose and the positive cooperativity with the substrate (see 
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section 1.8) allow GK to maintain a high sensitivity and responsiveness to variations in 

the glucose level within the physiological concentration range (4-10 mM).  

 

1.6.2.    Gene structure and tissue-specific gene regulation  

The tissue distribution of GK and the ‘low-Km’ (20-130 M) hexokinases are different. 

Hexokinases I-III are involved in energy metabolism in most tissues, as ubiquitous 

housekeeping enzymes. In contrast, GK is expressed with stringent tissue specificity in 

accordance with its highly specialized physiological functions.  

The GCK gene is located on chromosome 7p15.3-15.1 and consists of 12 exons that 

span a region of 45,168 bps. GCK transcription is regulated by two alternative tissue 

specific promoters which enable differential regulation of GK in –cells and liver in a 

manner consistent with the different function of these two tissues. Whereas the 

downstream promoter operates exclusively in the hepatocytes, the upstream, 

neuroendocrine promoter is functional in pancreatic –cells, but also in pancreatic –

cells and some rare glucose-sensing neuroendocrine cells of the brain (hypothalamus 

and anterior pituitary gland) and enteroendocrine cells of the gut [28, 126-132]. Thus, 

there is a complex network of GK-expressing glucose-sensing cells in the body, 

important for maintenance of whole body glucose homeostasis.  

Three different GK transcripts are produced by alternative splicing, encoding isoform 

1 (neuroendocrine) and isoform 2 and 3 (liver). The isoforms differ in the first 14-16 

N-terminal amino acids which constitute exon 1 (a, b, c) of the protein. Exon 1a is 

expressed in the pancreatic –cell whereas exons 1b and 1c are expressed in the liver 

[133, 134]. Exons 2-10 are identical in the three isoforms.  
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1.7. The 3D structure of hGK and the glucose-induced   
conformational change 

GK is a monomeric enzyme composed of two domains; a small (S) and a large (L) 

domain, linked by three connecting regions (Figure 5). The active site resides in a cleft 

between the two domains [15, 135-137]. GK is highly conserved with 95% sequence 

similarity between human and rat (HomoloGene). Before the crystal structure of hGK 

was solved, structural predictions were based on homology modeling. The initial 

models were made using the X-ray crystal structure of yeast hexokinase B [135, 136, 

138, 139]. However, the accuracy of these models was limited by the rather low amino 

acid sequence similarity (~30%) to hGK. Models of human brain hexokinase I 

(sequence similarity of 54%) provided the basis for more accurate structural 

predictions of GK with its substrates, and have been used to locate some of the 

disease-causing GK mutations and to interpret their functional implications [137, 140-

147]. Due to its high structural flexibility, GK has proved difficult to crystallize. In 

2004, Kamata et al overcame this problem by deleting the 11-15 N-terminal residues 

of hGK. These deletion mutants demonstrated similar in vitro kinetic properties as WT 

hGK [15]. Two high resolution crystal structures of liver hGK were obtained, one in 

its unliganded apo form (3.4 Å, PDB entry 1v4t) and the other in a complex with 

glucose and a synthetic GK activator compound (N-thiazol-2-yl-2-amino-4-fluoro-5-

(1-methylimidazol-2-yl)thiobenzamide) (2.3 Å, PDB entry 1v4s) [15]. It should be 

noted that residues 157–179 were unassigned in the electron density map of the 

unliganded hGK due to a disorder of this region. According to these structures [15], 

the sequences 1–64 and 206–439 constitute the L-domain, the sequences 72–201 and 

445–465 constitute the S-domain, and the sequences 65–71, 202–205 and 440–444 

represent the connecting regions I-III, respectively. 

Structural analyses of the two crystallized conformations of hGK confirmed previous 

biochemical and biophysical studies [150, 151], providing structural evidence that 

hGK undergoes a reversible, large-scale global conformational transition 

(isomerization) upon binding glucose, from a ‘super-open’ (inactive) conformation to 

a ‘closed’ (active) conformation (Figure 5). The spatial arrangement of the S- and L- 
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Figure 5. The C  backbone structure of hGK in the super-open and closed 
conformation, showing the glucose-induced conformational domain motion and closure 
of the active site cleft. The dynamic domains, interdomain bending residues and the changes 
in the interdomain cleft angle were identified with the DYNDOM program [148] using PDB 
entries 1v4t and 1v4s. The image was created by PyMOL [149]. 
 

 

domains in the apo form of hGK is different (more extended) from the open form of 

hexokinase I, and, hence, the structure of apo GK has been referred to as the ‘super-

open’ form [15]. Although the structure and spatial relationship of the closed 

conformation of GK and the C-terminal half of the closed form of hexokinase I are 

very similar, GK undergoes a much larger domain motion. This is in part due to a 

more flexible structure of the interconnecting region I in GK, which facilitates the 

movement of the C-terminal helix (see section 1.7.2) [15]. The glucose-induced 

conformational rearrangement of GK involves a large-scale hinge bending/sliding 



 28 

motion, which requires the breakage and reformation of numerous interactions. The 

final result is a reorientation of the S-domain, involving a ~104  rotation (as compared 

to ~12  for hexokinase I) toward the L-domain, which remains largely stationary 

(Figure 5) [15]. Hence, the enzyme adopts a more compact (‘closed’) structure 

involving a 96% closure of the active site cleft.  

 

1.7.1.    The active site 
The active site of GK resides in a channel-shaped cleft between the S- and L-domain, 

and provides a favorable microenvironment for the phosphorylation of the substrate –

D-glucose. The large-scale domain movement induced by binding of glucose (Figure 

5), closes the active site cleft and creates the stereochemical environment for binding 

of the cosubstrate MgATP. In the ternary GK-glucose-MgATP catalytic complex, the 

ATP -phosphate is in close spatial proximity to the 6-hydroxyl group of glucose 

[152].  

 

Glucose-binding site 
In the super-open conformation of GK, the glucose-binding site is exposed to the 

solvent and important residues for substrate interaction and catalytic activity are 

missing from the site (Figure 6) [15]. Hence, even if glucose is able to bind at this site 

with low affinity, the super-open state of the enzyme is considered catalytically 

inactive. Glucose binding induces closure of the interdomain cleft and displacement of 

the flexible S151-C181 loop structure from the protein surface (Paper III). The loop, 

which is part of the S-domain, closes over the incomplete active site as a lid (Figure 5), 

protecting the active site from solvent. This active site loop forms one rim of the 

glucose-binding site, and contributes to the catalytic environment in the hGK ternary 

complex. 

The residues that form hydrogen (H) bonds with the oxygen atoms of glucose have 

been defined crystallographically [15], and consist of T168 and K169 in the S-domain 

and N204, D205, E256 and E290 in the L-domain (Figure 6). The residues N204 and 
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Figure 6. Structure of the glucose-binding site. (A) The glucose-binding site in the closed, 
binary GK-glucose complex. E256 and E290 of the L-domain (blue stick model), T168 and 
K169 of the S-domain (cyan stick model), and N204 and D205 of connecting region II (green 
stick model) form hydrogen bonds with glucose (pink stick model). (B) The glucose-binding 
site in the super-open, apo form of hGK is exposed to solvent. The residues T168 and K169 of 
the S-domain (see A) are part of a disordered structure, and are not assigned in the electron 
density map of the super-open structure (1v4t). The color coding is as described in (A). The 
figures are reprinted from [15], with permission from Elsevier © 2004.  
 

 

D205 are part of connecting region II. Mutational analyses have confirmed the 

importance of several of these amino acids [138, 146, 153]. In general, mutations in 

glucose binding residues have a dramatic effect on the catalytic activity [137]. Most of 

these residues have been found mutated in GCK-MODY patients, emphasizing their 

critical role for enzyme function [65].   

It should be mentioned that in 2004 the structure of hGK with glucose alone (i.e. 

without activator) was not solved and, hence, it was not clear whether and to what 

extent the active conformation of GK as well as the structure and interactions around 

the glucose-binding site are altered by binding of the activator compound. 

 

ATP-binding site 
Yeast hexokinase and hGK have a low ATPase activity representing 1/10000 and 

1/2000 of its kinase activity, respectively [136]. The higher ATPase activity of GK 



 30 

indicated that water molecules are more accessible to the -phosphate of ATP in the 

absence of glucose [136]. Interestingly, an ATPase domain with the same basic 

structural fold is shared between hexokinases from bacteria, yeast and plants, to 

humans and other vertebrates, as well as other less related protein families as actin and 

the hsp70 family of heat shock proteins [154, 155]. This actin fold consists of five well 

conserved sequence motifs involved in the interaction with ATP; phosphate 1, connect 

1, phosphate 2, adenosine and connect 2 (Figure 7) [154].  

At the time of conducting this work no crystal structure of a ternary GK-glucose-ATP 

complex was available and the most accurate structural predictions on the ATP 

binding site were based on homology modeling using human hexokinase type I as 

template [137, 140, 141, 143, 146, 147]. Based on these models and ATPase domain 

sequence conservation, the residues T82, R85, T228, K296, S336, S411 and K414 

were predicted to form H-bond interactions with the ribose moiety or phosphate 

oxygens of ATP, placing the nucleotide in the correct orientation and conformation to 

interact with glucose. GK mutations that perturb or eliminate the interaction with ATP 

generally lead to enzymes with reduced affinity for ATP and severely impaired 

catalytic activity [137, 146]. Most of these critical contact residues have been found 

mutated in GCK-MODY patients [65]. 

 

1.7.2. The C-terminal -helix 

The C-terminal -helix (residues 447-460 (helix 17) in the super-open conformation 

and residues 443-461 (helix 19) in the closed conformation) plays a crucial role in the 

global conformational transition of hGK [15, 157]. Upon domain closure, the C-

terminal helix (referred to as ‘ 13’ in the literature), which is located adjacent to 

connecting region III (residues 440-444), moves from a solvent exposed interdomain 

position in the super-open form to a sequestered internal location within the S-domain 

in the closed conformation [15, 157, 158]. The helix contains several small residues 

(glycine and alanine) which assist with the movement around the connecting region. In 

both conformations, the C-terminal helix specifically interacts with helix 6 ( 5) of the  
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Figure 7. The five sequence ATP binding motifs of hGK. Multiple alignment of hGK 
isoform 1 and yeast hexokinases isozymes PI and PII was created using ClustalX v.2 [156] 
and the reference sequences P35557, P04806 and P04807 (UniProt), respectively. (*) 
indicates positions which have a single, fully conserved residue (:) indicates conservation 
between groups of strongly similar properties, and (.) indicates conservation between groups 
of weakly similar properties. Yellow boxes denote the most evolutionary conserved residues. 
Residue numbers and secondary structures of the motifs are given (arrow, beta strand; 
cylinder, helix; half circle, helix-turn or bend). Annotations of the secondary structure 
elements are derived from the Protein Data Bank using the PDB entry 1v4t. 
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L-domain [15]. During the conformational transition, changes in the domain interface 

take place, with the relative orientation of the helices changing from a parallel to a 

perpendicular orientation with a subsequent change in main residue interactions [15]. 

Recent MD simulations support a model in which the ‘release’ of the C-terminal helix 

from the S-domain is the final step in the slow conformational transition from the 

closed to the super-open state [158]. Moreover, evidence has been presented that this 

substrate-induced repositioning of the C-terminal helix is essential for GK kinetic 

cooperativity [157]. Interestingly, several GK activating mutations map to this helix or 

neighboring interacting structures [15, 65, 157-160].  

 

1.7.3. The allosteric activator site and pharmacological GK activator drugs 

The crystal structure of hGK complexed with glucose and a small molecule synthetic 

GK activator (GKA), revealed a hydrophobic binding pocket for the GKA molecule at 

the domain interface, 20 Å remote from the glucose and ATP binding sites [15]. The 

surface of the activator binding site is formed by the flexible loop of connecting region 

I (V62-G72), helix 6 of the L-domain (D205-Y215) and the C-terminal helix (E443-

C461) of the S-domain [15, 161, 162]. The search for small molecules that were 

capable of activating GK began already in the 1990s [5, 13], and today a wide range of 

GK activator compounds have been discovered as a result of intensive medicinal 

chemistry efforts. The GKAs have diverse chemical structures, but display a similar 

pharmacophore [34, 163]. For some of the activators the binding site and its contact 

residues have been defined crystallographically [15, 162, 164-167]. In the unliganded 

(glucose-free) form of hGK, the loop of connecting region I is occluded and the C-

terminal helix is released from the small domain, thus, the allosteric pocket is distorted 

or absent.  

GKAs bind close to one of the hinge regions involved in interdomain communication 

and propagation of conformational transitions. By binding to this regulatory site GKAs 

are able to allosterically enhance GK activity [13]. In vitro, these molecules increase 

the catalytic activity of GK, predominantly by lowering the [S]0.5 value for glucose (5-

10 fold). Many GKAs increase (up to twofold) the turnover rate (kcat) of the enzyme, 
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but in a few instances the kcat is slightly decreased. The Hill coefficient (nH) is lowered 

to a varying extent, and in some cases approaching unity [34]. The potential 

application of GKAs in the treatment of T2D is currently under investigation [9, 34, 

168, 169]. So far, the results from clinical trials (and animal studies) have 

demonstrated a dual mechanism of the activator molecules by potentially acting on 

both the -cell, by improving GSIS, and the liver, by reducing uncontrolled glucose 

output and restoring postprandial glucose uptake and glycogen synthesis [34]. Some 

GKAs are believed to carry a risk of inducing hypoglycemia. However, perhaps of 

greatest concern are the potential long-term adverse effects of GKAs. As 99% of the 

body’s GK is present in the liver, it is possible that enhanced GK activity may lead to 

increased de novo lipogenesis and plasma triglyceride levels [9, 170, 171]. Moreover, 

the potential effect of GKAs on the function of other GK-expressing cells and organs 

must be assessed.   

The existence of a physiological, endogenous GKA molecule has been postulated. 

Interestingly, the functional effects of synthetic GKAs mimic the kinetic effects of 

naturally occurring activating mutations causing HI [31, 65, 98¸ Barbetti, 2009 #177, 

101, 103, 105, 144, 172]. In contrast to inactivating GCK mutations, which are 

distributed throughout the 3D structure of hGK, almost all the HI-associated mutations 

colocalize to a common region in the 3D structure, which coincides with the binding 

site of the GKAs [15]. The overlap of these sites may suggest that common molecular 

mechanisms of activation are involved.  

 

1.7.4.    Cysteine residues at the active site of GK 

GK contains 12 cysteine residues, including five that appear as a conserved ring motif 

close to the active centre [135, 153]. The close vicinity and spatial localization of the 

Cys residues, together with the high structural flexibility of GK, makes the enzyme 

very vulnerable towards oxidative formation of intrachain disulfide bridges, and a 

concomitant inactivation of enzymatic activity [173-175]. GK is one of the most 

sensitive thiol enzymes in the pancreatic -cell, demonstrating high sensitivity towards 
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SH group oxidizing compounds such as the glucose analogue alloxan [176-179]. 

Glucose protects the enzyme against alloxan-induced inhibition [175]. The inhibitory 

effect of alloxan on GK catalytic activity can be prevented and frequently reversed by 

sulfhydryl group reducing agents, such as dithiothreitol (DTT), and the presence of 

thiol agents has demonstrated to be mandatory during purification of the enzyme 

[173]. In the absence of thiol agents, GK experienced a constant decay in activity 

[173]. When recombinant GK proteins are subjected to non-reducing SDS-PAGE, a 

double-band pattern can be observed, corresponding to the 52 kDa native GK protein 

and a faster migrating, more compact, oxidized form of ~49 kDa [176, 180]. The 

intensity of the 49 kDa band increased significantly upon alloxan treatment [181]. 

Moreover, freshly purified recombinant GK also displays a characteristic 

electrophoretic double-band pattern, indicating that the enzyme naturally exists in at 

least two different conformations [181], dependent upon the redox status of the 

sulfhydryl groups. The oxidized form represents ~1-2% of the total protein (Molnes et 

al, unpublished observations). No disulfide bonds have been observed in the crystal 

structure of pancreatic hGK [152]. In summary, these aspects emphasize that GK, with 

its high susceptibility to sulfhydryl oxidation at low glucose concentrations, is very 

vulnerable towards oxidative stress, especially in the pancreatic -cell having low 

enzymatic antioxidative defense mechanisms [179]. 

 

1.8. Kinetic models of positive cooperativity 

The positive kinetic cooperativity of GK with respect to glucose was discovered 35 

years ago [182, 183]. This property is unique since GK functions exclusively as a 

monomer [184] with a single substrate binding site [15]. Two models have appeared 

particularly appropriate to explain the observed cooperative kinetics of GK; the 

mnemonic and ligand-induced slow transition (LIST) models [21, 185-191]. Both 

models attribute the positive cooperativity to a slow, reversible, glucose-dependent 

conformational transition between a low affinity and a high affinity form of GK, and 

the conversion between the two conformations is slower than the catalytic cycle (kcat). 

Accordingly, the existence of different conformational states of the enzyme, combined 
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with their failure to reach conformational equilibria during the course of catalysis, is 

the fundamental basis for the sigmoidicity in the reaction rate profile of GK [22, 192, 

193].  

The mnemonic mechanism [186] is based on the concept that the enzyme retains a 

“memory” of the active conformation for some time after product conversion and 

release. According to this model, the unliganded enzyme alternates between two 

distinct conformational species, a low affinity state (E*) and a high-affinity state (E) 

(Figure 8A). Only the low-affinity conformation is postulated to exist in the absence of 

glucose. Both forms can bind glucose to form the same binary (E·G) complex, which 

reacts rapidly with MgATP to generate the ternary complex. Catalysis occurs from the 

high-affinity E·G state. If glucose is abundant, the high-affinity form (E) can rapidly 

go through another catalytic cycle, whereas if glucose levels are low, the enzyme 

slowly relaxes back to the low-affinity state (E*). Thus, the mnemonic model 

postulates the existence of a thermodynamically favored enzyme conformation in the 

absence of glucose and involves one catalytically active enzyme species [187]. In 

contrast, the LIST mechanism postulates the existence of two catalytic cycles. The 

model assumes that a pre-existing equilibrium exists between the two conformational 

states (E* and E) in the absence of glucose, and that each can accomplish a separate 

catalytic cycle, involving different enzyme states (E·G or E*·G) and kinetics (Figure 

8B) [21, 189, 194]. The overall steady-state rate is the sum of the rates for the two 

cycles. Furthermore, the equilibrium between the low-affinity (E*) vs. the high-

affinity (E) form is governed by the concentration of glucose. Thus, as the glucose 

level increases the equilibrium is shifted towards the high-affinity form. Evidence in 

support for both mechanistic models can be found within the experimental data 

collected on GK over the last 35 years [21, 120, 150, 151, 182, 187, 188, 194, 195].  

Initial support for the existence of a slow glucose-induced isomerization involving 

different conformational states of GK came from various observations, e.g. the lag- 

phase (~5-10 min) observed in kinetic experiments when rat liver GK was 

stored/preincubated at glucose concentrations lower than in the assay [194], and the 
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Figure 8. Alternative mechanisms proposed to explain the positive cooperativity of 
monomeric GK. (A) The mnemonic and (B) LIST models of positive cooperativity. E and E* 
represent two conformations of the enzyme. Red arrows represent the slow conformational 
transition (isomerization) between conformational states. (C) The “Kamata” model based on 
the crystallographic structures and analysis of domain movement [15]. See the text for details. 
The figures are reprinted from [15, 193], with permission form Elsevier © 2004/2012.  
 

 

time-dependent increase in intrinsic tryptophan fluorescence (ITF) of rat liver GK 

upon addition of glucose [151]. Structural evidence for the large-scale conformational 

alterations that accompany glucose binding was provided by the crystallization of the 

unliganded and glucose-bound liver hGK in 2004 [15]. Moreover, based on analysis of 

domain movement, Kamata et al predicted the occurrence of an intermediate “open” 

conformational form of hGK, in addition to the structurally solved “super-open” and 

“closed” forms, and, accordingly, devised a kinetic model that can account for the 

cooperative properties of GK (Figure 8C) [15]: (i) The super-open form is 

thermodynamically favorable in the absence of glucose; (ii) Upon binding glucose, a 

C 
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slow transition from the “super-open” (low-affinity, inactive) form to the “closed” 

(high-affinity, active) form is triggered, that is slower than the catalytic reaction; (iii) 

After glucose phosphorylation, a fast “closed—open” transition takes place. A large 

proportion of the enzyme stays in the “open” conformation for some time, and if 

glucose binds during this time, the enzyme re-enters the catalytic cycle. This “fast 

cycle” is favored if the glucose concentration is sufficiently high. At low glucose 

concentrations, GK will return to the “super-open” form; (iv) GK has two catalytic 

cycles, a slow “super-open—closed” cycle and a fast “open—closed” cycle. The ratio 

between these two catalytic cycles, which is glucose-dependent, is responsible for the 

characteristic sigmoidal nature of GK and its low affinity for glucose [15]. 

 

1.9. Regulation of hGK activity 

GK is regulated both at the transcriptional and post-translational level by a complex 

network of mechanisms which are fundamentally different in the hepatocytes and 

pancreatic –cells [6, 34, 196]. As already mentioned (Section 1.6.2), GK gene 

transcription is driven by two tissue-specific promoters [133, 134, 197]. The hepatic 

promoter, which is primarily controlled by insulin levels, operates exclusively in the 

liver, whereas the upstream or neuroendocrine promoter controls GK expression in 

pancreatic –cells as well as in glucose sensor cells of the gut, hypothalamus and 

anterior pituitary gland [5, 6, 127, 129-132, 196, 198]. In -cells, GCK expression is 

constitutive at a relatively low basal activity but subject to direct regulation by glucose 

levels [23, 112, 124, 199, 200]. However, some studies suggest that the glucose-

stimulated up-regulation of -cell GCK transcription is mediated, in part, via insulin 

secreted in response to glucose [201, 202].  

The adaptive response of GK to glucose also occurs at a post-translational level by 

means of substrate activation and stabilization [200]. The focus in the rest of this 

section and in the discussion will be on post-translational regulatory mechanisms of 

GK. 
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1.9.1.   Post-translational regulation of hGK  

In the pancreatic -cell, the GK protein levels show only marginal variations under 

physiological conditions, and the enzyme is considered to be regulated at the post-

translational level [196]. However, post-translational regulation of GK in both -cells 

and hepatocytes is complex and only partially understood. It is established that GK 

activity, its subcellular localization and cellular stability are regulated by a spectrum of 

non-covalent GK-protein interactions that are different in –cells and hepatocytes. In 

the hepatocytes, the interaction with the GK regulatory protein (GKRP) is a key short-

term regulatory mechanism of GK activity [203, 204]. The 68 kDa GKRP, first 

discovered in rat liver, is an allosteric inhibitor of GK that binds preferentially to the 

super-open form of GK which predominates when glucose is low [15, 25, 203]. GKRP 

binds GK competitively with respect to glucose, and glucose binding releases GK 

from the GK-GKRP complex by inducing a conformational transition to the closed 

form. Physiologically, the GK-GKRP interaction and the subsequent inhibition of GK 

activity are promoted by fructose-6-phosphate, and suppressed by fructose-1-

phosphate, compounds that bind to GKRP. Thus, the GK-GKRP interaction is 

modulated in response to fasting and feeding states [205, 206]. Importantly, GKRP 

provides a regulated translocation of GK between the cytosol and nucleus. As the 

glucose supply declines during periods of fasting, GKRP binds free cytoplasmic GK 

and transports it to the nucleus where GK is sequestered in an inactive state [207, 208]. 

Postprandially elevated glucose levels dissociate the GK-GKRP complex, and the 

active form of GK is translocated to the cytosol. This enables a rapid increase in GK 

activity and stimulation of glucose phosphorylation. Moreover, the GKRP-mediated 

compartmental redistribution of GK to the nucleus may serve to maintain a functional 

reserve of GK that can be quickly mobilized after a meal, in addition to stabilize and 

protect the enzyme from degradation by cytoplasmic proteolytic mechanisms [209, 

210]. In GKRP deficient mice, the disruption of this regulation and the subsequent 

decrease in GK activity leads to altered glucose metabolism and impaired glycemic 

control [209]. Furthermore, functional studies on recombinant hGK enzymes have 

demonstrated that some GCK mutations cause a loss of regulation by GKRP which 



 39 

may contribute to glucose intolerance in patients with GCK-MODY [65, 211-213]. 

The GKRP is not present or detectable in the pancreatic islets [214-216]. However, the 

presence of an inhibitory protein distinct from the liver GKRP has been suggested 

[215].  

A second important regulator of GK activity is the bifunctional enzyme 

phosphofructokinase-2/fructose-2,6-bisphosphatase (PFK2/FBPase2). The enzyme is 

expressed in both hepatocytes and -cells where it is involved in the regulation of the 

glycolytic ( -cell and hepatocytes) and gluconeogenetic (hepatocytes) pathways [217]. 

PFK-2/FBPase-2 is a cytoplasmic binding partner of GK, and in insulin-producing 

cells this interaction has been demonstrated to enhance the catalytic activity of GK 

[217-219]. This effect may be, at least in part, due to stabilization of a catalytically 

favorable (closed) enzyme conformation at elevated glucose concentrations [218-220].  

Beside its localization in the cytosol (hepatocytes and -cells) and in the nucleus in 

complex with GKRP (hepatocytes), GK has also been found to bind to subcellular 

structures such as mitochondria (hepatocytes and -cells) [221-223] and insulin-

containing secretory granules ( -cells) [216, 224, 225]. In mitochondria, GK is part of 

a regulatory multiprotein complex, and association of this complex with the outer 

mitochondrial membrane is dependent on the presence of the proapoptotic protein 

BAD [221, 223, 226]. Moreover, the phosphorylation status of BAD helps regulate the 

catalytic activity of GK. The detailed molecular basis for the GK/BAD interaction and 

its physiological significance for glucose metabolism, GSIS and apoptosis are, so far, 

not fully understood. Another potential mechanism for post-translational modulation 

of GK function, specific for the pancreatic -cell, arose from the observations that GK 

is part of the outer structure of insulin secretory granules in islet -cells and insulin-

secreting -cell lines [216, 224, 225, 227, 228]. The granule cytoplasm translocation 

of GK is regulated by insulin and, moreover, the release of GK from the granule-

bound state was accompanied by an increase in enzyme activity [228]. Hence, it was 

suggested that changes in GK activity induced by association/dissociation from insulin 

granules may be implicated in the regulation of GSIS in pancreatic -cells [216].  
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Covalent post-translational modifications 

Reversible post-translational modifications (PTMs) are used to dynamically modulate 

protein activity and stability. PTMs can occur at any step in the life-cycle of a protein 

serving various purposes, e.g. to mediate proper folding, cellular stability/turnover, 

subcellular localization, allosteric activation/inactivation, alter protein-protein 

interactions as well as to target a protein for degradation. There are > 200 different 

PTMs of which the majority occur by enzyme-mediated covalent attachment of a small 

chemical group, sugar, lipid or protein to one or more of the amino acid side chains in 

a target protein (e.g. glycosylation, acetylation, methylation, phosphorylation, S-

nitrosylation, oxidation, ubiquitination, SUMOylation etc.). As already described, 

post-translational processes are important in the regulation of the cellular activity and 

stability of GK in hepatocytes and -cells, but the knowledge of covalent PTMs of GK 

in target cells and their possible regulatory functions has been very limited. However, 

studies on cultured -cells have demonstrated that the association of GK with insulin 

granules [216, 225] was dependent on its interaction with nitric oxide synthase (NOS) 

and that the localization and activity of GK was regulated by post-translational S-

nitrosylation of the enzyme [216, 229]. Furthermore, it was suggested that defects in 

site-specific cysteine S-nitrosylation of GK are associated with naturally occurring 

GCK-MODY mutations in humans [230]. 

Ubiquitin (Ub) is a 76-amino acid globular protein (~8.5 kDa) that is highly conserved 

in eukaryotic cells. Ubiquitination (or ubiquitylation) is a reversible cellular process 

that involves the covalent attachment of one or several Ub proteins to a target protein 

[120, 231, 232]. Protein ubiquitination is an elegant example of how a single protein 

can regulate an array of diverse cellular processes such as cell cycle progression, 

regulated cell proliferation, cellular differentiation, apoptosis, transcriptional 

regulation and protein quality control (PQC) [233-236]. Given the central role of Ub in 

these processes, dysregulation of the ubiquitination machinery has been found 

associated (directly or indirectly) with the pathogenesis of many human diseases [237-

241]. In addition to Ub, there is a growing family of Ub-like proteins (UbLs) which, 
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similar to Ub, covalently modify proteins on lysines by related enzymatic pathways, 

but with distinct functional implications [242]. 

 

The ubiquitin conjugating system and ubiquitin-mediated proteolytic 
pathway  
 

Conjugation of Ub to a protein substrate or to itself usually involves the sequential 

action of three enzymatic reactions (Figure 9) [237, 243]. In the first step, Ub is 

activated for transfer by ubiquitin-activating enzyme E1 in an ATP-dependent 

reaction: E1 catalyzes the adenylation of Ub at the C-terminal glycine residue (G76), 

followed by the formation of an E1-S-Ub thioester intermediate [244]. In the second 

(ubiquitin-conjugating) step, activated Ub is transiently transferred from E1 onto an 

active site cysteine of the E2 enzyme via a trans(thio)esterification process to form 

another thioester bond [245]. To complete the enzymatic sequence, E2-S-Ub interacts 

with the E3 ubiquitin-protein ligase, which recognizes and associates with the 

substrate, promoting the transfer and conjugation of Ub [246, 247]. The Ub moiety is 

generally conjugated to target proteins through the formation of an isopeptide bond 

between a lysine ( -amino group) on the protein and the C-terminal carboxyl group of 

Ub. The completion of one ubiquitination cycle results in a monoubiquitinated 

substrate. However, most often the cycle is repeated to form polyubiquitinated or 

multiubiquitinated substrates. The ubiquitin-chain is lengthened by the E3 ligase in 

collaboration with E1 and E2, sometimes with the help of an additional conjugating 

factor E4, specifically required for efficient multiubiquitin chain extension [248-250]. 

Eukaryotes are today estimated to have two E1 enzymes, ~40 E2 enzymes and > 600 

E3s or E3 multiprotein complexes [251]. The E2-E3 pair is the primary determinant of 

substrate specificity [243]. Ubiquitination is reversible through the action of a large 

family of deubiquitinating enzymes (DUBs) (isopeptidases) which releases and 

disassembles polyubiquitin chains, enabling recycling of ubiquitin [252-254]. The 

human genome is predicted to encode ~95 DUBs which fall into at least five different 

classes [255].  
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Several ubiquitin-binding domains (UBDs), including UIM (Ub-interacting motifs) 

and UBA (Ub-association), can form transient, non-covalent interactions with either 

mono-ubiquitin or polyubiquitin chains [249, 250]. Cellular proteins containing one or 

several UBDs (often called ubiquitin receptors) are the immediate decoders of 

ubiquitination, being responsible for transmitting specific Ub signals to downstream 

cellular events. Importantly, the selective preferences of UBDs for ubiquitin chains of 

specific length and linkage are central to the versatile functions of Ub.  

The topology of the polyubiquitin chain appears to be a function of specific E2s and 

the E2-E3 combinations involved [251-253]. All seven internal Lys residues (K6, K11, 

K27, K29, K33, K48 and K63) of Ub are believed to contribute to the assembly of 

polyubiquitin chains [254, 255]. This ability to form a variety of structures with 

diverse lengths and linkages distinguishes ubiquitination from UbL modification of 

proteins. It is generally assumed that the formation of polyubiquitin chains of different 

linkage types provides functional specificity that determines the fate of the modified 

protein [254].  

Ub is best known for its function in targeting proteins for controlled degradation by the 

26S proteasome [256, 257]. Most proteins degraded by the ubiquitin-proteasome 

pathway are linked to a polyUb chain in which the Ubs are coupled through isopeptide 

 

 

 
 

Figure 9. The ubiquitin-proteasome degradation pathway. See text for details. The figure 
is reprinted from [248], with permission from Nature Publishing Group, a division of 
Macmillan Publishers Ltd © 2010.
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linkages to K48 (or in some cases K11 or K29) on the preceding Ub. At least four 

sequentially added Ub moieties are believed to be required for efficient recognition 

and binding of the modified target protein to the proteasome [258]. In contrast, 

monoubiquitination and K63-linked polyubiquitin chains serve non-proteolytic 

functions in various intracellular pathways [234-236, 254, 259, 260]. Once a target 

protein is marked by K48-linked polyubiquitination, it appears to have a short half-life 

in cells, as it is rapidly degraded by the proteasome. Proteins can be targeted directly 

to the proteasome through recognition of polyubiquitin by the 26S complex or, 

alternatively, it can occur indirectly, mediated by various proteasomal shuttle factors 

[255]. The proteasome is a large (26S or ~2400 kDa) ATP-dependent multicatalytic 

protease that is present both in the nucleus and cytosol of eukaryotic cells [237, 261]. 

The 26S proteasome is composed of two subcomplexes, a 20S proteolytic core that 

provides the proteolytic activity needed to degrade modified substrates, and a 19S 

regulatory complex that confers the ability to recognize and unfold polyubiquitinated 

protein substrates and insert them into the proteolytic chamber [261]. The degradation 

through the proteasome is an irreversible process and the proteins are degraded to 

small peptides, most of which are hydrolyzed to amino acids by the sequential action 

of endo- and exopeptidases in the cytosol and nucleus. Proteins destined for 

degradation need to be deubiquitinated to ensure efficient substrate degradation as well 

as recycling of Ub, and tightly regulated deubiquitination is accomplished by 

proteasome-associated DUBs [262, 263]. The main steps in the ubiquitin-proteasome 

pathway are illustrated in Figure 9. 

 

Role of the ubiquitin-proteasome pathway in –cell dysfunction and 
hyperglycemia 

Chronic hyperglycemia has been associated with oxidative stress and subsequent 

defective insulin secretion [264]. As previously mentioned, the pancreatic -cell is 

particularly vulnerable towards oxidative stress [179], which in turn may trigger the 

ubiquitin-proteasome pathway [265], suggesting a potential involvement of this 

pathway in hyperglycemia and -cell dysfunction [266]. Interestingly, the ubiquitin-

proteasome degradation pathway has been ascribed a regulatory role in the pancreatic 
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-cell in glucose-stimulated (pro)-insulin synthesis, biogenesis and surface expression 

of the K+
ATP channel and in maintaining the normal function of the Ca2+ channel – all 

essential components of GSIS [267-269]. However, little is known about covalent 

post-translational modifications of GK and their possible regulatory functions in the 

target cells, and the molecular and cellular mechanisms involved in the 

degradation/turnover of GK are also poorly understood. The possible implications of 

Ub (or UbLs) and the ubiquitin-proteasome pathway in this regard have not yet been 

subject for investigation and, hence, remain to be elucidated. 
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2. AIMS OF THE PRESENT STUDY 
 

Two 3D structures of hGK were solved in 2004 [15]. This represented a milestone in 

the research on hGK and hGK-linked glycemic disorders opening up new and 

intriguing possibilities for structure-function studies of WT hGK and its disease-

associated mutant forms. The two structures also represented the starting point of the 

present study, with the main objective to characterize structural, dynamic, catalytic and 

regulatory properties of WT hGK as a basis for studies on disease-related mutant 

forms in which the molecular mechanism(s) of the disease remained to be established. 

 

The specific aims were: 
1. To characterize steady-state kinetic properties of WT hGK and some selected 

mutant forms. 

2. To study the reversible glucose-induced global conformational transitions in WT 

hGK and Trp mutant forms using ITF spectroscopy. 

3. To provide new insight into the mechanism of substrate (glucose) activation: 

a. Identify the active site residues involved in the initial recognition and 

binding of glucose to the super-open (apoenzyme) conformational form. 

b. Determine the site of initiation of the glucose-induced conformational 

transition.  

4. To provide new insight into the interaction of the cosubstrate (Mg)ATP with hGK: 

a. Investigate whether the cosubstrate can bind to the apoenzyme and the 

possibility of a related conformational change. 

b. Identify active site residues involved in ATP recognition and binding to the 

super-open (apoenzyme) conformational form as well as related structural 

changes.  

5. To gain further insight into the catalytic function of WT hGK and its multiple 

disease-related mutant forms. 

6. To examine ubiquitination as a potential regulatory mechanism of hGK, in 

particular with respect to enzyme activity and stability (degradation/ turnover).  
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3. SUMMARY OF RESULTS 
 
 

3.1. Paper I 

In this work, we have studied binding of -D-glucose and the associated glucose-

induced global conformational transition of pancreatic hGK in real-time by ITF 

spectroscopy. By a combined approach using functional mutagenesis and structural 

dynamic analyses we aimed to identify key residues involved in this process. A 

hyperbolic binding isotherm for -D-glucose was observed at 25 C with a Kd value of 

4.8  0.1 mM. Single-site W F mutation analyses revealed a contribution of all three 

tryptophans in the overall glucose-induced ITF enhancement, with major contributions 

of W99 and W167, which both are located in highly flexible loop structures. The 

measured biphasic time-course of the fluorescence enhancement is influenced to a 

variable extent by all three tryptophans. To identify the residues involved in the initial 

binding of glucose to the unliganded “super-open” conformation and subsequent 

conformational transitions, all interacting residues defined in the 3D structure of the 

closed conformation were individually mutated. The mutations N204A, D205A and 

E256A/K of the L-domain resulted in enzyme forms which did not bind -D-glucose 

at 200 mM as measured by ITF and they were essentially catalytically inactive. In 

contrast, in the mutants of the S-domain (T168G and K169N), glucose induced a 

significant fluorescence enhancement, but with increased Kd values. Overall, our data 

support a molecular dynamic model in which initial binding of -D-glucose to residues 

N204, N231 and E256 of the L-domain and subsequent interaction with D205 trigger 

local structural changes that propagate in a concerted fashion toward a closed 

conformation. This involves the highly flexible interdomain connecting region II 

(R192-N204), helix 5 (V181-R191), helix 6 (D205-Y215) and the C-terminal helix 17 

(R447-K460).  
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3.2. Paper II 

Catalytic activation by -D-glucose binding is a key regulatory mechanism of hGK. 

The mechanism of activation is reasonable well understood based on the structural 

analyses of two crystallized conformations of the enzyme. By contrast, there are no 

similar structural data on ATP binding to the ligand-free enzyme and how it affects its 

conformation. Using ITF spectroscopy and the catalytically inactive mutant form 

T228M as a reference to correct for the inner filter effect, we demonstrated that 

binding of adenine nucleotides to the unliganded form of pancreatic hGK resulted in a 

conformational change. Furthermore, we observed that AMP-PNP and ATP bind to 

WT hGK in the absence of glucose with apparent [L]0.5-values of 0.27  0.02 mM and 

0.78  0.14 mM, respectively. Moreover, the binding of nonhydrolysable ATP 

analogues to the apoenzyme increased its affinity for -D-glucose. The nucleotide-

induced change in conformation was further supported by the significant protective 

effect of ATP on the binding of the extrinsic fluorescence probe 8-anilino-1-

naphthalenesulfonate (ANS) and on the limited proteolysis by trypsin. Subsequently, 

the biochemical and biophysical data were confirmed by MD simulations conducted 

with a modeled structure, providing the first insights into the dynamics of the binary 

complex with ATP including a motion of the flexible surface/active site loop. In this 

complex, the adenosine moiety is packed between the -helices 12 and 15 and 

stabilized by H-bonds (to T228, T332 and S336) and hydrophobic interactions (to 

V412 and L415). The binding resulted in a conformational change with domain 

motions and a partial closure of the active site cleft. Overall, our data indicate that 

ATP-induced changes in the conformation of hGK may have implications for its 

kinetic cooperativity with respect to -D-glucose. 
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3.3. Paper III 

In this study, we investigated the role of ubiquitination as a potential post-translational 

regulatory mechanism of hGK. Using the rabbit reticulocyte lysate (RRL) as an in 

vitro model system, we demonstrated that pancreatic -cell (isoform 1) and liver 

(isoform 2) hGK serve as substrates for the ubiquitin-conjugating enzyme system. 

Moreover, we found that both isoforms are polyubiquitinated on at least two lysine 

residues. Mutational analysis was used to possibly detect the target residue(s), and the 

results indicated that multiple lysine residues function as redundant ubiquitin acceptor 

sites. Deletion of the C-terminal -helix, containing a putative ubiquitin-interacting 

motif (UIM), resulted in loss of polyubiquitination at one site, suggesting that one of 

the target lysines is associated with the UIM motif. Proteasome-dependent degradation 

of hGK was studied in a proteasome and ATP-enriched RRL system and demonstrated 

that poly-/multi-ubiquitination of hGK in vitro, at least in part, served as a signal for 

proteasomal degradation of the newly synthesized protein. Moreover, we demonstrated 

that free polyubiquitin chains (Ub5, K48-linked) interacted with and allosterically 

activated recombinant hGK at low nanomolar concentrations (1.4 fold at ~100 nM 

Ub5), assigned to their equilibrium binding to the C-terminal UIM site. Furthermore, 

the affinity of Ub5 binding to hGK was regulated by the glucose-dependent 

conformational state of the site. We suggest that both these ubiquitin-mediated 

processes represent potential physiological regulatory mechanisms for hGK as a 

glucose sensor in pancreatic -cells.  
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4. METHODS AND METHODOLOGICAL ASPECTS 
 

4.1. Functional comparison of GST-hGK and non-tagged hGK 

For detailed biochemical and physico-chemical studies on hGK, milligram quantities 

of highly purified recombinant enzyme are imperative. In this study, efficient and 

high-level expression of recombinant pancreatic hGK was provided by expression in 

E. coli as GST fusion proteins [270]. Rapid and gentle purification by affinity 

chromatography ensured the recovery of pure (>98% as determined by SDS-PAGE) 

and enzymatically active, full-length GST-hGK (76 kDa). After cleavage of the fusion 

protein at the restriction site by factor Xa, non-tagged hGK (52 kDa) was isolated with 

a recovery of ~50 % and no detectable loss in enzyme activity. The relative low yield 

of isolated, tag-free hGK can be explained by incomplete cleavage and loss in the final 

repurification step.  

Prior to the outset of this project, the GST fusion proteins of hGK were mostly used in 

the kinetic characterization of mutant forms, due to the potentially stabilizing effect of 

the fusion partner. In order to validate the utility of GST-hGK in kinetic and 

fluorescence studies, we compared the functional properties of tagged and non-tagged 

WT enzyme. They demonstrated similar steady-state kinetic parameters and 

comparable apparent binding constants for glucose (Paper I) and AMP-PNP (Paper II) 

in equilibrium binding studies by ITF spectroscopy. These findings, in good agreement 

with other reports on the subject [271-274], substantiate that the fusion partner at the 

N-terminal does not affect the kinetics of WT hGK or perturb the substrate-induced 

conformational changes. Moreover, the increase in ITF signal response when glucose 

is added at saturating concentrations was comparable without (Feq-Fo ~33) and with 

(Feq-Fo~30) the fusion partner (Paper I), considering the experimental error in 

determining the absorption coefficients at 280 nm for the two proteins. However, the 

relative fluorescence increase ( Fmax,eq/Fo) of WT GST-hGK was ~27%, as compared 

with a ~60% increase for WT hGK. This is explained by GST containing four Trp 

residues [275], contributing to the background fluorescence (Fo). These quantitative 

differences in the ITF response to glucose between non-tagged and tagged enzyme 
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were also observed in the binding studies with AdNs, although the ( Fmax,eq/Fo) value 

of the AdN-induced fluorescence quenching was much smaller.  

Concurrent studies of more than 30 mutant forms of hGK have provided a detailed 

comparison of the kinetic parameters of tagged and non-tagged hGK, which further 

support a limited interference of the GST tag [273, 274]. However, care should be 

taken when characterizing more mutant proteins since the GST moiety may not always 

be inert [273]. In fact, recent data are consistent with GST acting as a transiently 

stabilizing partner for some mutant forms (Negahdar et al, unpublished and [273]). 

This finding is not surprising since recombinant, non-tagged WT hGK has a marginal 

thermal stability and a propensity to aggregate at temperatures 40 C (Paper II and 

[276]).  

 

4.2. Helix nomenclature 

The helices in hGK are designated according to the crystal structures resolved in 2004 

[15]. A total of 17 helices were identified in the unliganded, super-open state (PDB 

identity: 1v4t) versus 19 helices in the glucose and allosteric activator bound, closed 

state (PDB identity: 1v4s) (see Paper I). In this study, we have numbered the helices 

successively irrespective of helix type ( - or 310 helix). This differs from Kamata et al 

who generally refer only to -helices (one exception). Thus, in hGK the C-terminal 

helix corresponds to helix 17/19 or 13. The information on secondary structure 

elements were generally retrieved from the MolMovDB of the Yale Morph Server 

[277, 278].  

 

4.3. Analyses of protein dynamics 

Although the static 3D crystal structures of GK have been determined for the 

apoenzyme and different complexes with substrate(s) and low molecular weight 

activators (see Section 1.7), the function of the protein in solution at physiological 

temperatures is governed by its dynamic properties. In the present study, we have used 
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fluorescence spectroscopy and computational methods to gain insights into different 

conformational states and dynamics of hGK.  

 

4.3.1. Intrinsic fluorescence spectroscopy 

Intrinsic fluorescence spectroscopy is a highly sensitive biophysical tool for the 

structural and dynamic characterization of proteins. The method relies on the natural 

(intrinsic) fluorescence of proteins in the near UV region, which mainly arises from 

the aromatic amino acids tryptophan (Trp) and tyrosine (Tyr). Trp is by far the most 

frequently used fluorescence probe due to its high extinction coefficient ( ), large 

Stokes’ shift (h EX-h EM) and quantum yield ( F), coupled with the unique 

environmental sensitivity of its indole ring. Moreover, Trp is a relatively rare amino 

acid in proteins, and therefore more specific information on the local conformation and 

environment of individual Trp residues can be attained. Its fluorescence is 

characterized by a high signal to noise ratio with need of relatively low concentrations 

( M) of pure protein when reagents of high analytical grade are used. In intrinsic 

tryptophan fluorescence (ITF) spectroscopy the fluorescence from Trp is selectively 

measured using excitation wavelengths in the range 295-305 nm. Both the 

fluorescence emission intensity and maximum emission wavelength ( max) vary 

depending upon the polarity and dynamics of the molecular environment, which make 

ITF a useful conformational probe. The max of Trp residues in proteins is highly 

related to their degree of solvent exposure. In general, the max of the indole ring is 

blue-shifted if the group is buried within the hydrophobic core of the native protein, 

and its emission shifts to longer wavelengths (red shift) upon exposure to polar amino 

acid groups or solvent water (following, for instance, ligand-induced conformational 

changes). Trp residues buried in apolar core regions of a protein have a blue emission 

maximum, as low as ~310 nm, whereas Trp fully exposed to an aqueous environment 

can have a red emission maximum of ~355 nm. The fluorescence spectra of multi-Trp 

proteins are generally broader than that of single-Trp proteins due to the contribution 

of multiple emitters with different, but overlapping spectra.  
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GK has three Trp residues (W99, W167 and W257), and the 3D structures of the 

protein have provided valuable information on their backbone conformation and 

microenvironment in different conformational states. Thus, ITF has been found to be a 

sensitive indicator of even minor structural changes of the enzyme and its dynamic 

properties on the ms-to-min time scale. As first reported by Lin and Neet [151], 

binding of glucose results in an increase in the ITF signal response and a shift in max 

of the emission spectrum. In order to assess the contribution of the individual Trp 

residues to the glucose-induced fluorescence increase, we made (Paper I) single-Trp 

mutants (retaining two Trp residues) by site-directed mutagenesis, where the Trp 

residues were substituted one at the time. Trp was replaced by phenylalanine (Phe), 

which does not contribute to the fluorescence when excited at 295 nm. The mutations 

did not significantly affect the backbone structure or conformational stability of the 

enzyme (Paper I and [273]). However, the mutations affected the steady-state kinetic 

parameters of the enzyme. The W167F mutant in the active site loop showed a 

reduction in catalytic efficiency (kcat/[S]0.5) and kinetic cooperativity with respect to 

glucose, which probably can be explained by its localization in the glucose binding 

pocket adjacent to the glucose-interacting residues T168 and K169. The W257F 

mutant revealed a ~50% reduction in catalytic efficiency, which may be due to its 

position in a rigid backbone structure near the glucose binding site, conferring minor 

local structural perturbations affecting the glucose affinity. Interestingly, the W99F 

mutant in a highly flexible loop structure displayed a small increase in substrate 

affinity, and thus, catalytic efficiency. W99 is located in close vicinity to connecting 

region I and the GK activator (GKA) binding site, and it has been suggested that 

mutations at this site may stabilize the closed form of the enzyme [273].  

In order to determine the contribution of the three Trp residues to the glucose-induced 

fluorescence enhancement of hGK, their +glucose/-glucose fluorescence difference 

spectra were generated. Mutations of W99 and W167 resulted in a large decrease (~70 

and ~80 %, respectively) in the fluorescence response to glucose, whereas mutation of 

the “buried” W257 gave only a moderate decrease of ~35%. Furthermore, the W99F 

mutant demonstrated a ~11 nm blue shift in max in the difference spectrum compared 
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to WT hGK, whereas only a ~2 nm shift was observed for W167F and W257F 

(towards the blue and red, respectively). This indicates that W99 is responsible for the 

more red emission of WT hGK, in agreement with its high degree of exposure to 

aqueous solvent in both the super open (27%) and closed state (45%) of hGK. The 

fluorescence spectrum of WT hGK apoenzyme (pH 7.0) displayed an emission 

maximum of ~340 nm. Upon binding of glucose a ~2 nm blue shift was observed. This 

shift is most likely explained by changes in the fluorescence of W167, experiencing a 

large reduction in solvent accessibility upon cleft closure and desolvation of the active 

site (Paper I). Recently, the relative solvent accessibility of the Trp residues was 

determined by acrylamide quenching analyses (W99 (11.6/13.1 %), W167 (14.4/5.8 

%) and W257 (6.2/5.2 %)), providing experimental evidence that the solvation of 

W167 is significantly decreased by glucose [279]. Thus, the magnitude of the glucose-

induced fluorescence increase is primarily determined by W99 and W167, and little 

affected by W257. Complementary studies on double-Trp mutants (retaining only one 

single Trp residue) have recently been performed [273, 279], and the results are 

consistent with the findings presented herein for the single-Trp mutants. 

 

4.3.2. Extrinsic fluorescence spectroscopy 

A number of polyaromatic hydrocarbons or heterocycles have been used as extrinsic 

fluorescent probes in the study of protein structure and ligand-induced conformational 

changes. Here, we have used 8-anilinonaphthalene-1-sulfonate (ANS) as an extrinsic 

fluorophore with affinity for hydrophobic clusters in GK. The weak fluorescence of 

ANS was greatly enhanced upon binding to ligand-free WT hGK. Both ATP and 

glucose binding significantly reduced the ANS fluorescence signal (glucose>ATP), 

compatible with a decrease in accessible hydrophobic clusters as compared with the 

ligand-free enzyme. 
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4.3.3. Computational methods 

X-ray-diffraction data on GK contains information not only about the average 3D 

structure but also about the spatial distribution around this state. This mean-square 

atomic displacement [280] is commonly expressed as the B-factor or temperature 

factor. The isotropic B-factor values calculated for the C  carbons (Paper I) 

demonstrated the freedom and restriction for various sites, with low values (  30 A2) 

for the glucose-interacting residues in the unliganded state, except for T168 and K169. 

Complementary global mode analysis by the Gaussian Network Model (GNM) [281, 

282] revealed similar sites (minima) of low translation mobility.  

Among the different theoretical methods available for description of protein flexibility, 

molecular dynamics (MD) is probably the most powerful [283-285]. In this study 

(Paper II), we have used state of the art atomistic MD simulations, close to the 

physiological conditions, by the widely used AMBER program package [286]. Based 

on the atomic coordinates for unliganded hGK as a starting point, MD simulations (ps-

to-2 ns time scale) of the binary complexes with ATP and glucose were carried out in 

explicit water (that is, individual water molecules were included in the simulations). 

The simulations indicated a significant conformational change of hGK upon ATP 

binding, including motion of the flexible surface/active site loop and partial closure of 

the active site cleft, and also showed the residues directly contacting the nucleotide at 

the active site. In contrast, when the MD simulations were performed with glucose in 

the super-open conformation, there was no measurable closure of the active site cleft 

during the 2-ns MD simulations. In this case, the simulation time was too short to 

observe the large glucose-induced conformational change of hGK, characteristic of a 

hysteretic enzyme, which occurs on a ms-to-min time scale in the ITF studies (Paper I 

and [157, 287]).  
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5. GENERAL DISCUSSION 
 

5.1. GK protein stability 

GK plays a central role in maintaining glucose homeostasis, serving as a glucose 

sensor in the pancreatic -cells and as a regulator of hepatic glucose uptake and 

glycogen synthesis [7]. Alterations in GK activity and regulation are associated with 

abnormal glycemia, as illustrated by naturally occurring GCK mutations causing 

diabetes or hyperinsulinemic hypoglycemia. This emphasizes the importance of 

preserving the stability and activity of this enzyme, also under conditions of cellular 

stress.  

Recombinant GK without a fusion partner is only marginally stable under 

physiological conditions. It has a low intrinsic thermal stability (apparent Tm = 42.4 ± 

0.2 C) and a propensity to aggregate at Tp  40 C (Paper II and [276]). Glucose and 

ATP stabilize the enzyme through a ligand-induced conformational change to a more 

compact conformation, as demonstrated by the protective effect of the ligands (glucose 

> ATP) on limited proteolysis (Paper II). A stabilizing effect of glucose on the thermal 

stability of GK has also been observed in ITF spectroscopy [279] and differential 

scanning calorimetry studies [279, 287]. Moreover, glycerol has been demonstrated to 

increase the thermostability of GK and promote glucose binding (lowering its Kd) 

presumably by reducing/removing water interactions with the protein [279]. However, 

the stabilization by glucose and glycerol was limited as they were unable to prevent 

irreversible heat denaturation above 40 C [279]. Interestingly, in contrast to 

guanidine-Cl (Paper II), urea prevented irreversible aggregation and preserved 

reversibility of the thermal unfolding process, probably explained by its ability to bind 

directly to the protein backbone and the hydrophobic side chains of GK [279]. Overall, 

these studies have contributed to an increased understanding of the biophysical basis 

of WT GK thermostability and established a foundation for studies on disease-

associated mutant forms. 
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In silico calculation of the free energy of folding/unfolding (  G) [288, 289], 

predict that several misfolded missense GCK-MODY mutations harbor a reduced 

thermal stability that could be related to an increased rate of degradation when 

expressed in mammalian cells (Negahdar et al, unpublished). To date, ~15 GCK-

MODY mutations have been identified with an apparently reduced in vitro thermal 

stability of the recombinant enzymes as fusion proteins, and has been proposed to 

explain (at least in part) their “loss-of-function” [114, 139, 211, 212, 271, 272, 290-

295]. However, it can be anticipated that many more of the >600 GCK mutations 

identified so far will demonstrate reduced in vitro stability. Although such in vitro 

stability studies can provide valuable information on mutant forms, the kinetic and 

thermodynamic parameters for folding-unfolding processes in the cell are different 

from the “ideal” in vitro conditions. For instance, macromolecular crowding affects 

the structure and function of proteins under physiological conditions and favors 

intermolecular interactions with proteins and other cellular components [296-299]. 

Recently, we have investigated the effect of the catalytically near-normal mutations 

S263P, G264S and R275C on the cellular stability of GK (Negahdar et al, 

unpublished). Evidence was provided that their “loss-of-function” is, at least in part, a 

result of protein misfolding and destabilization, causing dimerization/aggregation and 

an enhanced rate of cellular degradation.  

A complex network of mechanisms is involved in the regulation of GK catalytic 

activity in pancreatic –cells and hepatocytes. However, little is known regarding the 

cellular protein quality control (PQC) machinery involved in the recognition and 

targeted degradation of GK and its many disease-associated mutant forms [65]. In 

Paper III, we have demonstrated that recombinant pancreatic and liver WT hGK are 

covalently modified by ubiquitination, and that poly/multi-ubiquitination of hGK in 

vitro can serve as a signal for proteasomal cotranslational degradation of the newly 

synthesized protein. Protein synthesis, folding and degradation are closely coupled 

processes, and a significant fraction of newly synthesized proteins are degraded 

cotranslationally [300-302]. This may represent an early recognition by the PQC 

machinery of misfolded nascent proteins [301, 303]. Furthermore, recombinant hGK 
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was found to interact with and to be allosterically activated up to 1.4-fold by purified 

free polyubiquitin chains at low nanomolar concentrations, assigned to their 

equilibrium binding to a C-terminal UIM site (Paper III). Together, these findings 

suggest a potential role of ubiquitination in the cellular regulation of GK catalytic 

activity and stability/turnover, as well as in the interaction with other cellular proteins, 

including ubiquitin-conjugated proteins and free/conjugated poly-ubiquitin chains. 

Because ubiquitination of misfolded proteins associated with cytoplasmic chaperones 

are mostly degraded through the ubiquitin-proteasome system [304], further studies 

are warranted to investigate this possibility for selected loss-of-function mutants of 

GK. 

 

5.2. The multiphasic global conformational transitions and  
perturbations of conformational equilibria 

In steady-state kinetics, GK shows non-hyperbolic (sigmoidal) dependence on glucose 

concentration [150, 187], and the underlying mechanism for the cooperative behavior 

of GK has been of primary interest in the study of this enzyme. The classical concerted 

model of cooperative kinetics [305] does not apply to the monomeric GK with a single 

substrate binding site. The possibility of two glucose binding sites in hGK has been 

proposed [147], but only a single glucose binding site was observed in the crystal 

structure [15, 152]. Furthermore, equilibrium binding of glucose to unliganded WT 

hGK displays a hyperbolic (non-cooperative) binding isotherm (Kd = 4.9 ± 0.1 mM) 

(Paper I and [273, 287]), consistent with a single binding site. It is now widely 

accepted that the positive cooperativity of GK with respect to glucose is kinetic in 

origin, and monomeric GK has emerged as a model system for understanding this type 

of cooperative response. 

GK is activated by binding of glucose, and this process has been described as a 

reversible, slow transition from a super-open, inactive (low affinity) state to a closed, 

high activity (high affinity) state [151, 287]. Crystal structure analyses of the 

unliganded and glucose-bound hGK [15, 152] have confirmed these observations by 
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demonstrating that binding of glucose at the active site induces a large-scale domain 

movement that closes the active site cleft and creates the stereochemical environment 

for binding of the cosubstrate MgATP2- and catalysis. The three residues N204, N231 

and E256 in the L-domain was proposed to function as primary contact residues (Paper 

I and [15]). The hGK-glucose association is driven by a favorable entropy change ( S 

= 150 ± 10 J mol-1 K-1) (Paper I and [279]), in keeping with the fact that an increase in 

protein dynamics plays a dominant role in the interaction. In the closed conformation, 

precise alignment of additional substrate interacting residues (notably T168 and K169 

in the flexible surface/active site loop of the S-domain) and the subsequent higher 

affinity for glucose, efficiently accelerate the chemical reaction on binding of 

MgATP2-.  

Recent results from x-ray crystallography, high-resolution NMR, targeted MD 

simulations, pre-steady state and steady-state glucose binding studies have shown that 

hGK is an intrinsically mobile enzyme that can sample multiple distinct 

conformational states both in its unliganded and binary enzyme-glucose complex [151, 

158, 160, 276, 287, 306-308]. Furthermore, its positive kinetic cooperativity with 

respect to glucose is mediated by the glucose-induced conformational transition, which 

probably includes interconvertible intermediate states exhibiting variable degree of 

cleft closure and different affinities for glucose. Interestingly, Liu et al [309] have 

assessed conformations of GK in solution by small angle x-ray scattering (SAXS) 

experiments, demonstrating that glucose in solution dose-dependently converts GK 

from an apo (super-open) conformation to an intermediate active open conformation, 

distinct from the active, closed conformation observed in crystals [15]. The glucose-

bound open conformation was predicted with a cleft opening angle of ~17  relative to 

the closed conformation obtained for the crystal structure [309]. The authors suggest 

that the active open conformation represents a physiological intermediate in the 

reaction cycle of GK, in agreement with a previous proposal [15]. 

Increasing evidence substantiate that also the ligand-free enzyme in solution is in a 

preexisting equilibrium between at least two conformers, i.e. the super-open 

conformation and an alternative (presumably less open) conformation with a higher 



 59 

affinity for glucose [276, 306-308]. However, the apoenzyme is considered to be 

dominated by the thermodynamically favored super-open conformation [158, 306, 

307, 309], as suggested based on 3D structure analyses [15, 309]. In order to gain 

insight into the free-energy landscape of proteins, temperature perturbations can be 

used to shift the population equilibrium [310]. In unliganded WT hGK the observed 

temperature induced (1 C to 39 C) reversible quenching of the ITF fluorescence is 

consistent with a slow conformational isomerization (thermal hysteresis), reminiscent 

of the global glucose-induced conformational change (Paper I). Moreover, the 

observed biphasic time course suggests the presence of a relatively stable intermediate 

in the thermal transition, and gives support to the existence of an equilibrium between 

conformational substates of hGK in the absence of ligand.  

In Paper II, we have provided the first experimental evidence for an equilibrium 

binding of ATP and the analogue AMP-PNP to the ligand-free enzyme and a 

subsequent nucleotide-dependent conformational change, including motion of the 

flexible surface/active site loop and partial closure of the active site cleft. In addition, 

MD simulations provided insights into the active site contact residues involved in 

binding ATP. The ligand-free and glucose-bound enzymes are dynamic entities that 

can sample multiple conformational substates [276, 308], and we hypothesize that 

nucleotide binding may shift the equilibrium between different conformations (see 

Figure 10), as previously demonstrated for glucose (Paper I and [151, 160, 287, 306, 

307]) and allosteric effectors (see below). In fact, results from steady-state kinetic 

analyses (Paper II) gave support to a certain conformational control of GK catalytic 

activity by binding of (Mg)ATP, with possible implications for the kinetic 

cooperativity with respect to glucose. Moreover, using ITF fluorescence titrations it 

was demonstrated that binding of ATP analogues to the ligand-free enzyme resulted in 

an increased equilibrium binding affinity for glucose, both in the WT enzyme and the 

low affinity GCK-MODY mutant L146R (Paper II). We speculate that these effects 

may be related to a partial catalytic activation of GK following ATP binding, and that 

similar or possible larger effects of ATP may occur in other GK disease-associated 

mutant forms.  
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Figure 10. Schematic representation of the standard free energy landscape for the 
catalytic network of the GK reaction. Conformational changes occur along both axes. The 
changes occurring along the Reaction Coordinate axis correspond to the environmental 
reorganization at the active site that facilitates the chemical reaction (Papers I and II, and 
references therein). It includes molecular motions related to substrate binding (Section 4 and 
[158]). In contrast, the conformational changes occurring along the Ensemble Conformations 
axis represent the ensembles of conformational substates existing at all stages along the 
reaction coordinate [276, 307, 308], possibly leading to a number of parallel catalytic 
pathways [310]. A state is defined as a minimum in the energy surface, whereas a transition 
state is the maximum between the wells [311]. A change in the system (ligand binding, 
mutation) shift equilibrium between states. The figure and portions of the caption are adapted 
from a recent model on the catalytic network of the enzyme dihydrofolate reductase [312].  
 
 

It has been suggested that the allosteric GK regulators GKA and GKRP modulate the 

activity of GK by finely tuning its conformational landscape [307]. In other words, 

they act as reversible conformational traps, by binding and stabilizing a specific GK 

conformation [307]. According to this model, GKRP stabilizes open GK conformers 

that prevail at low glucose concentrations, whereas increased glucose concentration 

and/or addition of GKAs shift the equilibrium towards the closed conformers and 

induce a dissociation of the GK-GKRP complex. SAXS experiments have 

demonstrated that the GKAs shift the conformational equilibrium of GK to the active 

conformation at lower glucose concentrations [309]. The SAXS profiles revealed 

small conformational differences between the various GK-glucose-GKA complexes, 
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which was consistent with the inherent ability of the individual GKA to activate GK 

(GKAs that suppressed [S]0.5 for glucose mildly gave a GK-glucose-GKA complex 

that was less compact than those GKAs with a more dramatic impact on the [S]0.5 -

value) [309].  

Similarly, it has been proposed that mutations in hGK may shift its conformational 

equilibria by stabilizing or destabilizing one conformer, or facilitate or slow the super-

open closed transition. In the same way as for GKAs, activating GK mutations, most 

of which occur at or near the allosteric GKA site, are predicted to shift the enzyme 

towards the active conformation [158, 160, 309]. This can be exemplified by the 

activating mutations Y214C/S, V455M and A456V, which have been predicted to 

perturb the electrostatic and hydrophobic interactions between helix 6 (D205-Y215) 

and the C-terminal helix (helix 17, R447-K460) which stabilize the inactive, super-

open conformation (Paper I). These helices are structurally important in the allosteric 

regulation of GK. As a result, the structural perturbation of the apoenzyme favor 

glucose binding and the transition to the active, closed conformation (Paper I and [158, 

160, 309]). Furthermore, transient and steady-state kinetic studies and/or SAXS 

analyses on the mutations Y214C/S, Y215A and A456V have demonstrated that the 

mutated enzymes seem to adopt a more compact conformation in the apo form, being 

favorable for glucose binding but perturbing the allosteric regulation of the enzyme by 

GKA and, in some cases, also by GKRP [160, 273, 274, 309] (see also section 5.5). 

Further mutational studies, notably on GCK-MODY associated mutations, may 

contribute to a better insight into the mechanistic and functional implications of the 

multiple conformational equilibria and ligand-induced conformational transitions of 

hGK. 

To summarize, both substrate binding and catalysis are associated with substantial 

conformational changes in GK. The catalytic pathway of the enzyme involves a 

glucose-induced cooperative conformational transition and multiple intermediates and 

conformations along the reaction coordinate (Figure 10) [151, 158, 160, 276, 287, 306-

309]. Furthermore, the binding of various ligands and effectors (glucose, ATP, GKA, 

GKRP etc.) as well as mutations in GK may modulate the enzyme activity by shifting 
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the conformational equilibria. We propose a simplified reaction scheme for 

mammalian GK (Scheme 1), based on the existence of a pre-existing equilibrium 

between at least two (a super-open (GK‡) and a presumably less open (GK )) 

conformers with different affinity for glucose (low and higher affinity, respectively). 

Scheme 1: Reaction scheme for mammalian GK. GK‡ and GK  are the proposed apo 
conformers in a two-state conformational model, whereas GK* is the active, closed 
conformation of the enzyme (Paper II). 

 

5.3. Allosteric effectors of hGK 

Allostery is the regulation of protein activity by the reversible binding of an effector 

molecule at a site other than the active site [313, 314]. The mechanism(s) of this site-

to-site communication is of great interest, especially in the field of drug design [313]. 

Allosteric effectors are commonly small molecules or proteins. However, mutations 

and covalent modifications such as phosphorylation and formation/breaking of 

disulfide bonds, can also act as allosteric triggers [314].  

In addition to the basic kinetic cooperativity of GK with respect to glucose, the 

catalytic activity of GK is modulated by its interaction with physiological and 

pharmacological allosteric effectors, including proteins and small molecules. The 

discovery of small molecules as GK activators, and the identification of their binding 

site in the 3D structure [15, 152], represents a promising development in the treatment 

of T2D [9, 13, 34, 168, 169, 315-318]. Against this background it has become 

important to fully understand the complex allosteric regulation of the enzyme and the 

possible cross-talk between the allosteric effectors.  
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The crystal structures of GK have revealed that its surface properties are very 

dissimilar in the open and closed conformations [15, 152]. Moreover, a number of 

related algorithms have revealed that the location of potential binding sites of small 

molecules in surface motifs (pockets) is very different in the two conformational states 

[319]. This difference explains the biochemical finding that the function of the 

allosteric effectors is dependent on the conformational state of the enzyme.  

 

5.3.1. Glucokinase activators (GKAs) 

The small molecule GKAs have diverse chemical structures, and varies in their 

activating potency depending on how they modulate the kinetic parameters ([S]0.5 for 

glucose, Vmax and nH) of GK, and thus their overall effect on its catalytic efficiency [9, 

34, 309]. Today, the binding site of several GKAs has been defined 

crystallographically [15, 152, 162, 164-167], and they all bind to a common 

hydrophobic pocket [9, 15, 34, 152, 161, 162, 318]. The site is located near the hinge 

region between the S- and L-domains in the closed (active) conformation, but is in 

general inaccessible in apo GK (even though some GKAs have been reported to bind 

with low affinity to the unliganded form) [15, 152, 307].  

In general, many allosteric effector molecules exert their effect by causing a 

conformational change in the target protein that affects its ability to bind, or properly 

interact with, the substrate(s) [314]. However, no conformational changes were 

observed in the crystal structure of GK upon binding of GKA, and no apparent effect 

on the molecular flexibility could be detected [152]. Therefore, the authors proposed 

an allosteric mechanism in which GKAs, on binding to the closed form of GK, cause a 

shift in the equilibrium of conformational ensembles (Section 5.2) towards the active 

closed (high-affinity) form, also supported by kinetic studies [307]. However, this 

allosteric mechanism does not sufficiently account for the variable effects of GKAs 

upon enzyme kinetics. The allosteric activator site includes the connecting region I and 

the C-terminal helix, involved in propagation of the glucose-induced conformational 

change. It is therefore reasonable to hypothesize that structural changes are closely 

linked also to the allosteric modulation of GK activity, but presumably too small to be 
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seen in the crystal structures [313]. In that case, a fundamental question is how the 

allosteric effect/signal is communicated from the allosteric to the active site 20 Å 

away. Recently, Larion and Miller have proposed a model for the structural coupling 

of the two sites, involving a network of interconnected amino acids that may have 

significant impact on glucose binding and/or catalysis [193]. According to their model, 

helix 6 is involved in this site-to-site communication, with the glucose interacting 

residues N204 and D205 (catalytic base) located at its N-terminal end and the residues 

Y214 and Y215, forming hydrophobic interactions with the activator, at the C-terminal 

end of the helix [193].  

 

5.3.2. Glucokinase regulatory protein (GKRP) 

One of the endogenous modifiers of GK is the GKRP, an allosteric inhibitor that 

modulate GK activity in hepatocytes. GKRP binds preferentially to the super-open 

conformation, and sequesters the inhibited enzyme in the nucleus [15, 25, 203, 204]. 

The crystal structure of GKRP has not been solved, and therefore the current 

knowledge on the structural interface of the GK-GKRP interaction is not established. 

Several motifs of GK have been proposed to be involved, including two asparagine-

leucine motifs, located in the hinge region near the substrate binding site (L58/N204) 

and in the large domain (L355/N350) [320]. Interestingly, L58 is part of an in silico 

predicted disordered region in GK [321]. Moreover, the L58/N204 motif is partially 

solvent exposed in the super-open conformation, but inaccessible in the closed 

glucose-bound form (data not shown), consistent with the finding that the interaction 

of GKRP with GK is competitive with glucose [203]. Recently, a common allosteric 

regulator region with non-overlapping binding sites has been proposed for GKAs and 

GKRP [274], that encompass different residues than the previous proposal. Two 

separate contact patches for GKRP (E51 and E52 & K140-L144 and M197) were 

proposed, also consistent with a previous study [322]. A concerted motion of the GKA 

and GKRP subdomains was proposed, in which glucose binding causes the two GKRP 

binding regions to separate (~ 20 Å  40 Å), causing dissociation of the GK-GKRP 

complex, and opening of the GKA binding site [274, 309]. This model is consistent 
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with the view that binding of GKA and GKRP are mutually exclusive, and that GKA 

binding is glucose-dependent and GKRP inhibition of GK is competitive with glucose 

[274].  

 

5.3.3. The bifunctional enzyme (PFK2/FBPase2)  

In contrast to GKRP, the bifunctional enzyme is expressed in both pancreatic -cells 

and hepatocytes, and it acts as an allosteric activator of GK [217-220]. The activation 

increases the Vmax value of GK, presumably by binding to and stabilizing its active 

closed form [218]. The interaction between GK and PFK2/FBPase2 is mediated by a 

binding motif in the bisphosphatase domain [217], whereas the interaction site on GK 

is currently not known. 

 

5.3.4. Polyubiquitin 

In Paper III, we have presented a potential novel mechanism for the allosteric 

regulation of GK. It was demonstrated that recombinant hGK interacts with and is 

allosterically activated by purified free pentaubiquitin chains (with an apparent EC50 of 

93 nM), and possibly also by unidentified polyubiquitinated proteins. The interaction 

with pentaubiquitin affected mainly Vmax (>40 % enhancement at ~100 nM Ub5), but 

with only a modest increase in the affinity for glucose. By 3D structural analysis we 

identified a classical UIM site in the highly mobile C-terminal part of GK including 

the C-terminal helix, and mutational removal of this site almost abolished the binding 

of free polyubiquitin to GST-hGK. Moreover, polyubiquitination of GK appeared to 

be coupled to this site. The UIM site (residues 442-464) interacts specifically with 

helix 6 in both the super-open and closed conformations. Interestingly, in the closed 

conformation three residues of the C-terminal helix (V452, V455 and A456) form one 

face of the GKA binding site, whereas residues M210, I211, Y214 and Y215 in helix 6 

forms another face of the site. Thus, the proximity of the UIM and GKA site is 

striking. Moreover, the maximum stimulation of Vmax by pentaubiquitin was in the 

same order of magnitude as that reported for many GKAs (~1.5-fold) [9, 34, 323]. But 
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in contrast to GKAs, polyubiquitin binds preferentially to GST-hGK in the absence of 

glucose, explained by a high accessibility of key interacting residues of the UIM site in 

the 3D structure of its unliganded form, whereas the accessibility of some contact 

residues is lower in the glucose-bound form (Paper III). As far as the molecular 

mechanism of the catalytic activation is concerned, the binding at the UIM site may 

perturb the equilibria between conformational substates, as has been proposed for 

GKAs and GKRP (see Section 5.2).  

 

5.4. Catalytic mechanism 

Enzyme kinetics and crystallographic studies have revealed that GK and other 

hexokinases share a common catalytic strategy that involves the initial activation of 

the 6 -OH group of glucose, followed by a nucleophilic attack on the -phosphate of 

ATP [152, 309, 324]. A conserved aspartate, whose side-chain carboxylate group is in 

close proximity to the 6 -OH group of glucose at the active site, serves as a general 

base catalyst, extracting a proton, thereby activating the 6 -oxygen to act as a 

nucleophile in the reaction. In GK, this catalytic residue is D205 [15, 152, 325], 

located in helix 6 of the L-domain and part of a classical ATP-binding motif (Connect 

1 site) [154]. In the super-open conformation (PDB i.d. 1v4t), the D205 carboxylate is 

locked into a position outside the active site by forming a salt-bridge with the side-

chain of R447 in the C-terminal helix (Paper I and [152]). In the glucose-bound closed 

conformer (PDB i.d. 1v4s), the D205 carboxylate group is rotated 177.7  about the 

C C  bond to form a H-bond to glucose (Paper I). This repositioning of the catalytic 

base is coordinated with the glucose-induced closure of the active site cleft [15]. On 

binding MgATP and formation of the ternary complex, D205 forms a H-bond 

interaction also with Mg2+ (Figure 11), as part of the hexahedral coordination of the 

ion in the catalytic complex [152]. Moreover, K169 in the active site (activation) loop 

plays an essential role in both glucose and ATP binding as well as in catalysis (Paper I 

and [152, 325]). In the closed binary GK-glucose enzyme, K169 forms H-bond 

interaction with glucose, and hence, contributes to the stabilizing of this complex. In 
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Figure 11. The catalytic scaffold of GK. The figure highlights the most important H-bond 
interactions involved in the stabilization of the catalytic complex. See text for details. The 
figure is based on the coordinates given in [152]. 
 

 

the catalytic ternary complex, K169 interacts with the -phosphate of AMP-PNP 

(Figure 11), and is predicted to directly participate in glucose phosphorylation by 

acting as a general acid catalyst, providing a proton to protonate the O 3 atom of the 

nucleotide [152, 325]. Moreover, K169N is a naturally occurring mutation in the GCK 

gene, associated with familial mild fasting hyperglycemia [80]. Consistent with its 

critical role in both ligand binding (glucose and ATP) and catalysis, the mutation of 

lysine results in a partial loss of glucose binding and an almost complete loss of 

catalytic activity (Paper I). N169 is not able to act as a general acid catalyst because its 

side-chain is incapable of providing a proton to ATP [325]. 

In the crystal structure of the ternary complex the 6 -OH group of glucose forms an 

important H-bond interaction with the O 3 atom of AMP-PNP (Figure 11), and 

additional H-bonds between GK and its substrates stabilize the catalytic complex. 

T228 is a highly conserved residue at the active site of the hexokinase family of 

enzymes, and mutations of this residue (T228M) are associated with GCK-MODY in 
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the heterozygous state [46], and with GCK-PNDM in the homozygous state [32]. The 

catalytic activity of GK is also dependent upon Mg2+, which coordinate the - and -

phosphates of ATP (Figure 11). According to the crystal structure, the ion is held in a 

hexahedral coordination, directly interacting with the side chain of D205, and the 

oxygens of the AMP-PNP -phosphate (O1 and O2) and -phosphate (O3), and 

indirectly with the side chains of S151 and D78, mediated through water molecules 

[152]. 

 

5.5. Molecular mechanisms of disease 

Functional characterization of recombinant mutant enzymes has demonstrated that GK 

mutations can be divided into groups of different molecular mechanisms, or a 

combination:  

1. Mutations that affect one or more enzyme kinetic parameters (kcat, [S]0.5 for 

glucose, nH, Km for MgATP2-). The majority of GCK mutations can be explained 

by an alteration in one or more kinetic parameters of the recombinant enzymes. 

This includes mutations that perturb the interactions with glucose/ATP or transmit 

structural changes to the substrate/cosubstrate binding site, and mutations that 

affect the activator (GKA) binding site or the connecting regions linking the L- and 

S-domains (Paper I and [65, 138, 146, 153, 325]). A subgroup of (1) is 
 

2. Mutations that affect the mechanism of GK activation, either by promoting 

glucose binding to the apoenzyme (T65I, Y214C and A456V) or by facilitating 

enzyme isomerization to the active form (W99R, Y214C and V455M) [160]. It is 

possible that this form of structural perturbation, that alters the kinetic basis of 

enzyme activation, is applicable also to inactivating GK mutations, but with an 

opposite effect on catalytic efficiency. Some of these mutations also seem to cause 

a structural compaction and partial closure of the apoenzyme, which mimics the 

activated (closed) form of hGK [160, 274, 309]. 
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3. Mutations that shift the equilibrium between conformational substates of GK. 

See Section 5.2 for details. 
 

4. Mutations that interfere with the normal interactions of GK with known 

regulatory proteins. See Section 1.9 for details. 

 
5. Mutations that cause an increased susceptibility to protein misfolding and 

destabilization. Enzyme kinetics alone cannot always explain the clinical and 

metabolic phenotypes of GK mutations. In fact, a number of mutations have been 

identified that co-segregate with GCK-MODY in the family, and are regarded as 

pathogenic, but when expressed as recombinant proteins they demonstrate near-

normal or even slightly increased catalytic efficiency [65, 114]. Instead, a reduced 

protein stability can be observed in vitro (e.g. thermal instability, aggregation and 

increased susceptibility to limited proteolysis) and/or in vivo (e.g. 

oligomerization/aggregation, a susceptibility to inactivation by oxidation [326] and 

increased turnover). See Section 5.1 for details. 

 
6. Mutations in the regulatory region of pancreatic GCK. Up to date, only a single 

mutation has been reported in the regulatory region of GCK. The mutation -

71G>C, located in the -cell promoter, was demonstrated to significantly reduce 

gene expression in vitro through a loss of regulation by the transcription factor Sp1 

[327]. 

 

This classification highlights the variety of molecular mechanisms that contribute to 

the reduced (MODY, PNDM) or increased (HI) phosphorylation capacity of GK, and 

emphasizes the importance of combining biochemical, biophysical and structural 

approaches in the study of naturally occurring GCK mutations. Moreover, cell-

biological approaches are warranted to fully characterize the mutant enzymes and to 

gain a deeper knowledge of the complex molecular regulatory mechanisms of GK.  
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6. FUTURE PERSPECTIVES 

The 3D structures of hGK [15] represented the starting point of the present study 

(Papers I-III), with the main objective to study structure-function relationships and 

regulatory properties of WT hGK. The unique kinetic properties of WT GK studied in 

Papers I and II represent the basis for its physiological role as a glucose sensor in 

pancreatic -cells. Further kinetic, biophysical and molecular dynamics studies are, 

however, needed to fully understand the basis of its positive kinetic cooperativity and 

the molecular mechanism of the glucose-induced conformational changes. Moreover, 

the extent of conformational heterogeneity of GK in its unliganded and complexed 

states is only partly understood (see Section 5.2).  

The new insights obtained in the current study with respect to the function of WT GK 

constitute a valuable basis for further studies on disease-related mutant forms. 

Mutations in GCK are the second most frequent cause of MODY in Norway. Except 

during pregnancy, patients with GCK-MODY rarely need pharmacological treatment. 

Recognizing GCK-MODY in these patients is therefore important since a correct 

diagnosis may change management [75]. Moreover, identification and functional 

studies on naturally occurring GCK mutations have proven important to provide 

insight into the biochemical basis of glucose sensor regulation, and a variety of cellular 

and molecular regulatory mechanisms are involved in the control of GK activity and 

stability (summarized in Section 5.5). WT hGK is only marginally stable under 

physiological conditions (Paper II), and we recently demonstrated that the catalytically 

near-normal mutations S263P, G264S and R275C cause protein misfolding, 

aggregation and reduced protein stability when expressed in HEK293 and MIN6 -

cells (Negahdar et al, unpublished). The possibility that this also may induce a cellular 

stress in -cells, with its low antioxidative defense system, should be studied. It has 

recently been demonstrated that some GCK-MODY associated mutants show an 

increased susceptibility towards oxidative stress and/or protein instability [326]. 

The discovery that small molecule glucokinase activators (GKAs) allosterically 

activate GK by increasing its substrate affinity and maximal catalytic rate, represent a 
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promising development in the treatment of T2D (www.ClinicalTrials.gov). In clinical 

trials the GKAs favorably influence glucose homeostasis by a dual action, affecting 

GK activity in both the liver and pancreatic -cells [9, 34]. Endogenous compounds 

have been proposed to play a similar activating/regulatory role, but they remain to be 

discovered. Some GKAs might induce hypoglycemia, which may narrow the 

therapeutic window. In order to reduce this risk, current efforts are focused on partial 

GK agonists that reduce [S]0.5 for glucose moderately, i.e. mimicking mild activating 

GK mutations, and hepatoselective compounds [9, 34]. As summarized in Section 5.3, 

the molecular mechanisms of allosteric regulation of GK are complex and only partly 

understood, and studies on a possible cross-talk between the different allosteric 

effectors should have a high priority. In paper III, we demonstrated that polyubiquitin 

allosterically enhances the catalytic activity of recombinant GK. We also found that 

WT hGK is polyubiquitinated in vitro, and evidence was presented that this may serve 

as a signal for proteasomal degradation of the newly synthesized protein. Cellular 

studies are warranted to examine whether these ubiquitin-mediated processes represent 

potential physiological regulatory mechanisms affecting the role of GK in glucose 

metabolism and insulin secretion. Moreover, a 3D structure of the GK (Ub)n complex 

would define the molecular mechanism of the catalytic activation. 
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