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Abstract Multiscale methods can in many cases be
viewed as special types of domain decomposition pre-
conditioners. The localisation approximations intro-
duced within the multiscale framework are dependent
upon both the heterogeneity of the reservoir and the
structure of the computational grid. While previous
works on multiscale control volume methods have fo-
cused on heterogeneous elliptic problems on regular
Cartesian grids, we have tested the multiscale control
volume formulations on two-dimensional elliptic prob-
lems involving heterogeneous media and irregular grid
structures. Our study shows that the tangential flow
approximation commonly used within multiscale meth-
ods is not suited for problems involving rough grids.
We present a more robust mass conservative domain
decomposition preconditioner for simulating flow in
heterogeneous porous media on general grids.

Keywords Porous media · Reservoir simulation ·
Multilevel

1 Introduction

The heterogeneities at different scales in porous rocks
make reservoir simulations computationally challeng-
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ing, both with respect to time consumption and ac-
curacy. The rapid variations in fine-scale permeability
have big influence on the flow and need to be accounted
for in the numerical methods. Various upscaling proce-
dures have been developed to increase the efficiency
of the flow calculations (see [12]). These techniques
serve to construct coarse-scale flow parameters for the
global problem on a coarser scale. However, for flow
in complex geological media, it is crucial to solve the
transport of fluids on the fine scale (Darcy scale). The
idea behind multiscale methods as it was presented in
[18] is to capture the fine-scale flow properties within
independent local basis functions. After solving for the
pressure on the coarse scale, the local basis functions
then serve as accurate interpolation functions from the
coarse-scale to the fine-scale pressure solution. Since
the significant change in saturation often takes place
in smaller parts of the global domain, only a few local
basis functions need to be recalculated at each time
step. Also, since the local basis functions are indepen-
dent, the calculation of these may be carried out in par-
allel. Numerical experiments show that the multiscale
technique can be efficient for solving multiphase flow
problems in heterogeneous porous media [1, 3, 20].

The accuracy of the multiscale solution will, how-
ever, depend on the choice of localisation approxima-
tion, i.e. the choice of boundary conditions for the local
basis function problems. Since the error in the local
solutions is the largest close to the local boundaries, it
has been shown in [19] that the error can be greatly re-
duced by calculating the local basis functions on larger
overlapping domains. This corresponds to moving the
local boundaries closer to the global boundary which
determines the exact flow field. Another approach is
to directly incorporate global information into the local
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boundary value problems, by first solving an initial
global fine-scale problem [11]. The use of local–global
information has also been considered in [10]. While
these methods may provide more accurate local solu-
tions, they are in general more computationally expen-
sive, specially in the case of repeated update of the
global information, e.g. for changing global boundary
conditions. A third approach is to improve the accuracy
by means of local iterations on the domain interfaces
[16, 28]. We will consider the latter approach.

It has been showed, in [28], that the multiscale finite-
volume (MSFV) method of Jenny et al. [20] can be
viewed as a special case of a mass conservative domain
decomposition (MCDD) preconditioner, using a tan-
gential flow approximation on the domain interfaces.
The fine-scale solution for the MSFV method is ex-
pressed as a linear combination of local basis functions,
which is equivalent with one iteration using the MCDD
preconditioner. In the following, we will refer to the
multiscale solution, as the approximation obtained af-
ter one iteration with the MCDD preconditioner. The
class of MCDD preconditioners offers a general frame-
work for approximating the flow on the interface,
in which we can construct a wide range of different
multiscale preconditioners with various properties. In
this paper, we will focus on four principal properties
for the multiscale preconditioner. The preconditioner
should:

• Be cheap to construct. In this paper, we consider
local sparse approximations to the flow on the
boundary, i.e. sparse representations of the local
Schur complement systems.

• Be applicable as a multiscale method. For many
practical applications, it is computationally too ex-
pensive to iterate on the fine-scale solution, and
the coarse-scale solution will be applied directly.
The preconditioner should give a physically reliable
approximation to the fine-scale flow field after only
one iteration.

• Possess good convergence properties. Some of the
local fine-scale features may be difficult to capture
within a coarse-scale system. Thus, we are forced to
iterate on the fine-scale residual.

• Be applicable to realistic porous media. Real-
istic flow problems for reservoir simulation in-
volve irregular grid structures and heterogeneous
anisotropic permeability fields. The multiscale ap-
proximations induced on the local domain inter-
faces have to be robust with respect to irregular
geometries and fine-scale anisotropies not aligned
with the grid.

We will consider the following elliptic problem for
two-dimensional flow in porous media,

−∇· (K∇u) = q in � ⊂ R
2, (1)

where K is a symmetric positive definite matrix repre-
senting the permeability of the media, u is the potential
and q represents the source terms. The permeability
is in general a full tensor describing the conductivity
of an anisotropic porous medium, and it is the spatial
variability of this parameter which represents the key
challenge discussed in this paper. By integrating Eq. 1
over an arbitrary control volume ω ⊂ � and applying
Green’s theorem, we obtain the integral equation for
conservation of incompressible fluids,

∫
∂ω

f· ν dσ =
∫

ω

q dτ. (2)

Here, f = −K∇u represents the Darcy velocity and
ν is the outward normal vector to ∂ω. Methods based
on the discretisation of Eq. 2 is referred to as control
volume methods and yield local mass conservation
within ω. The resulting discrete system of fine-scale
equations, arising from a control volume discretisation,
takes the following form:

Au = b . (3)

We will assume that the solution u ∈ V, where V
is the space of piecewise linear functions on � = ∪ωi.
The right-hand side term b represents the integrated
sources over ωi and belongs to the space of piecewise
constant functions on �. Finally, the fine-scale operator
A ∈ V is a sparse and in general non-symmetric matrix,
which contains information about the fine-scale geom-
etry and variability of K.

Previously, multiscale control volume methods have
focused on the elliptic problem (see Eq. 1) on regular
Cartesian grids. As far as we know, multiscale con-
trol volume methods have not been applied to prob-
lems involving irregular grid structures. In this paper,
we investigate the accuracy, efficiency and robustness
of different multiscale control volume approximations
when applied to heterogeneous problems on irregular
grids. Our study shows that the reduced boundary con-
dition, commonly applied with the MSFV methods [10,
16, 20], is not robust with respect to perturbations on
the fine-scale grid. Even for regular Cartesian fine grids
and isotropic permeability tensor, the spatial variability
in the fine-scale permeability may produce anisotropies
on the coarse scale. The tangential flow on the local
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boundaries is not sufficient to capture these coarse-
scale anisotropies within the solution. We introduce
a new multiscale framework, based on algebraic ap-
proximations to the Schur complement for constructing
more accurate and robust interface approximations, for
multiscale simulations on irregular grids. While this
is a pure algebraic technique, it naturally extends to
unstructured and multilevel grids.

The paper is organised as follows: In the next sec-
tion, we give an introduction to the MCDD precon-
ditioners. We show how the multiscale methods can
be formulated as stand-alone upscaling methods, or
as MCDD preconditioners for an iterative process. In
Section 3, we compare the existing localisation approx-
imation used for multiscale control volume methods
with an algebraic interface approximation based on
probing. A small comparison on the computational
cost related to each of the preconditioners is given in
Section 4, before testing the robustness and efficiency
of the preconditioners for some numerical experiments
in Section 5. Finally, we conclude the paper.

2 MCDD

In this section, we will consider the framework of
non-overlapping domain decomposition methods and
introduce the special class of MCDD methods in-
troduced by [28]. Within this framework, we formu-
late the multiscale control volume methods as MCDD
preconditioners.

2.1 Grids and scales

We will consider a cell-centred grid on the fine scale,
consisting of control volumes {ωi, 1 ≤ i ≤ n}, such that
they form a non-overlapping partition of �. Thus,

� =
⋃

i

ωi; ωi ∩ ω j = ∅ i 	= j.

A primal coarse grid is then constructed on top of
the fine grid, such that each primal coarse-grid cell
{�i, 1 ≤ i ≤ N} is a collection of fine-grid cells and the
boundaries of �i coincide with boundaries on the fine
grid, as shown in Fig. 1. Moreover, we require that
each fine-grid cell is represented in exactly one primal
coarse-grid cells. Thus, the primal coarse grid also sat-
isfies a non-overlapping partitioning of �. The centre-
most fine-grid cell within each primal coarse-grid cell is
further denoted as the coarse-grid node. Continuing in
this manner, we note that we can construct a hierarchy

Fig. 1 The multiscale mesh. Here, the bold faces show the primal
coarse grid, constructed on top of an underlying fine-scale grid.
The dashed lines further indicate the dual coarse grid, on which
the circles and stars refer to vertex and edge nodes, respectively

of cell-centred coarse grids. However, for simplicity,
we will here restrict our attention to two-scale meth-
ods. We consider true multiscale implementations of
this framework in [30]. Note also that both the fine
and the coarse grid may consist of arbitrarily shaped
polygons.

We further introduce a dual coarse grid (indicated by
dashed lines in Fig. 1) on which we will solve our local
problems. We will refer to the dual coarse-grid cells as
domains and denote them by �′

i. The primal coarse-
grid nodes of � will then be located at the vertices
of �′

i. On each domain �′
i, the degrees of freedom

corresponding to the boundary nodes will be denoted
by subscript B and those corresponding to internal
nodes by subscript I. The degrees of freedom related to
the boundary unknowns will further be subdivided into
those corresponding to vertex nodes and edge nodes,
denoted by subscripts V and E, respectively.

Note that, while the primal coarse cells �i are collec-
tions of cell-centred grid cells, the degrees of freedom
on �i are strictly separated from those on � j, when
i 	= j. For the dual coarse grid, the nodes are located
on the vertices. Hence, the dual coarse cells �′

i form a
non-overlapping partitioning of � in the classical sense,
where the nodes on the dual-cell boundaries may be
shared between neighbouring cells.
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2.2 Mass conservative coarse-scale operator

For many applications, the multiscale method is ap-
plied as an upscaling procedure. At each time step
of the simulation, the potential values are solved on
the coarse scale, and the fine-scale solution is only
reconstructed locally through a linear combination of
coarse-scale basis functions. These basis functions are
computed initially and seldom recomputed during the
simulation. To reconstruct a mass conservative fine-
scale flux field at a given time step, it is crucial that the
coarse-scale operator also serves as a discretisation of
the mass-conservation principle given in Eq. 2. Thus,
as a preprocessing step, we will integrate the fine-scale
equations (corresponding to fine-scale control volumes
ωi) associated with each primal coarse cell �i into
the row of the corresponding coarse node i. This will
give us mass conservation on the primal coarse grid,
represented by the coarse nodes.

We will consider a family of spaces {Vi, 1 ≤ i ≤
N} corresponding to the primal coarse cells �i and
the extension operators RT

i : Vi → V, such that V =∑N
i=1 RT

i Vi. For each �i, we define Mi : Vi → Vi as
the integration operator adding all rows in Ri A, corre-
sponding to fine-scale control volume equations on �i,
into the row of the coarse node i. More precisely, we
can write the integration operator on matrix form

Mi = I + eiV
(
1 − eiV

)T
, (4)

where I is the identity matrix, eiV is the unit vector
identifying the row of the vertex (coarse) node and 1
is the vector entirely filled with ones. By applying the
integration operator Mi on the fine-scale system (Eq. 3)
restricted to each coarse cell �i, we construct a system
of equations, which is mass conservative on both scales.
We write the MCDD system as

Cu = p, (5)

where

C =
∑
�i

(Ri)
T Mi Ri A and p =

∑
�i

(Ri)
T Mi Rib .

The fine-scale operator C belongs to the same space
as A but has the additional property of preserving the
mass balance on the coarse scale as well as the fine
scale. It can be shown that this preprocessing step also
acts as a good preconditioner for the fine-scale operator
A, as it introduces a coarse space [30].

2.3 Schur complement system

The idea behind domain decomposition methods is
to decouple the global fine-scale problem into inde-
pendent local boundary value problems. The global
fine-scale problem is then solved by iterating on the
boundary unknowns of these local problems. To ac-
celerate the iterative process, a global coarse-scale
problem is constructed to capture the low-frequency er-
ror and to pass information between the local problems.

By grouping the unknowns corresponding to internal
nodes in uI and those corresponding to boundary nodes
in uB, we can reorder the unknowns u = [

uI uB
]T

, and
write Eq. 5 as

[
CII CI B

CBI CBB

] [
uI

uB

]
=

[
pI

pB

]
. (6)

All the internal unknowns uI are now decoupled into
local domains �′

i, where the matrix CII has a simple
block diagonal structure. Thus, the internal degrees
of freedom may be solved locally within each domain
�′

i as

uI = C−1
I I (pI − CI BuB) . (7)

Hence, we can eliminate the internal degrees of
freedom by substituting Eq. 7 into the second line of
Eq. 6 and obtain the reduced Schur complement system

(
CBB − CBIC−1

I I CI B
)

uB = pB − CBIC−1
I I pI . (8)

The matrix S = CBB − CBIC−1
I I CI B is referred to as

the Schur complement of C, and for simplicity, we
also denote g = pB − CBIC−1

I I pI as the modified right-
hand side term. The Schur complement S is related
to the space of discrete harmonic functions, where the
multiplication of S to a vector x is equivalent to solve a
local Dirichlet problem involving C−1

I I on each domain
�′

i. The matrix S can be shown to yield better properties
w.r.t. the condition number [4]; however, it is expensive
to construct. In general, we never explicitly construct
the Schur complement matrix S; we only do the neces-
sary matrix–vector multiplications involving S.

By a similar reordering of the unknowns, uB =[
uE uV

]T
, we can write the Schur complement system

on matrix form

[
SEE SEV

SV E SVV

] [
uE

uV

]
=

[
gE

gV

]
. (9)

Here, SEE and SEV have a block diagonal structure;
however, each block is in general dense. In particular,
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the Schur complement matrix SEE can analytically be
written as

SEE = CEE − CEIC
−1
I I CIE. (10)

This equation will be important later, when we dis-
cuss the properties of the different preconditioners. We
observe that the first term in Eq. 10 contains the local
couplings between the neighbouring edge elements,
CEE. This matrix will be sparse, with a predominantly
tridiagonal structure. The second term in Eq. 10 is re-
ferred to as the global term, where internal information
is interpolated onto the edge nodes. This term couples
all the edge nodes together and forms a full matrix.

A direct solution of Eq. 9 is for most applications
computationally too expensive, and we seek to con-
struct a preconditioner for the Schur complement prob-
lem such that the number of local algebraic operations
involving C−1

I I is as low as possible. We approximate
Eq. 9 by

[
I Ŝ−1

EE ŜEV

SV E SVV

] [
uE

uV

]
=

[
Ŝ−1

EEgE

gV

]
, (11)

where ŜEE and ŜEV now denote the approximations
to SEE and SEV , respectively. Note that we have only
modified the equations for the edge nodes, where

uE = Ŝ−1
EE

(
gE − ŜEVuV

)
. (12)

Hence, the solution uV of Eq. 11 still remains mass
conservative on the coarse scale. In fact, any approxi-
mation of uE will only affect the accuracy and not the
property of mass conservation on the coarse scale. By
substituting Eq. 12 into the second line of Eq. 11, we
can write a mass conservative system of equations for
the solution uV on the coarse scale,

ACuV = gV − SV E Ŝ−1
EEgE, (13)

where

AC = [
SV E SVV

] [−Ŝ−1
EE ŜEV

I

]
. (14)

The coarse-scale operator AC is related to the space
of piecewise discrete harmonic functions, where the
approximated discrete harmonic extension on uV is
determined by the ŜEE and ŜEV . For the multiscale
methods, the coarse-scale equation (Eq. 13) will be
solved directly. The columns of AC contain the coarse-
scale basis functions, which can be used to recover the
fine-scale solution u f = [

uI uE uV
]T

.

3 Interface approximations

The essential part in the construction of a good MCDD
preconditioner, or efficient and accurate multiscale
method, is the choice of interface approximation, which

in our framework is ŜEB =
[

ŜEE ŜEV

]
. For most cases,

the approximation error in ŜEE will dominate. In this
section, we will primarily focus on different approxima-
tions to SEE and use ŜEV = CEV . In Section 3.4, we will
further discuss approximation techniques for the entire
SEB and how this can be related to flow-based upscaling
techniques.

Recall from Eq. 10 that SEE consists of two terms,
a local term CEE and a global term containing the
couplings between edge and internal nodes. We will
consider two types of interface approximations: a tan-
gential flow approximation and an interface probing
approximation. Both approximations result in low-
band matrices, which are fast to invert. We have
also applied other interface approximations, like the
Toeplitz approximation [5] and the J-operator [6].
While they yield good results for the elliptic problem
with constant coefficient on uniform Cartesian grids,
they do not perform well for problems involving het-
erogeneous porous media and non-regular fine grids.
Another approach, not considered here, is to directly
approximate the second term of Eq. 10 by applying
some local preconditioner on CII . This would lead to
a more expensive composite preconditioner, where the
resulting approximation is not guaranteed to be sparse.
For a broader discussion on different interface approx-
imations, see [31].

3.1 Approximation properties

Our aim is to construct approximations ŜEE with sim-
ilar spectral properties as SEE for which the system
involving ŜEE is fast to compute. In order to get a phys-
ically reliable solution after only one iteration (equiv-
alent to solving the coarse-scale problem), we need to
require some properties for the coarse-scale operator
AC. For single-scale methods, usual requirements for
the system matrix A are that they are mass conservative
and exactly reproduce constant and linear potential
fields. As an example, most control volume methods
are constructed precisely to satisfy these criteria.

As shown in Section 2, the MCDD preconditioners
are constructed to be mass conservative on both the
fine scale and the coarse scale. Furthermore, we will
require that AC is exact for constant solutions. For
general heterogeneous elliptic problems, this is the
only analytical solution that we can identify, which is
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obtained by imposing zero boundary conditions and no
internal source terms. For the multiscale methods, this
implies that the local basis functions must form a parti-
tion of unity, i.e. the sum of the local basis functions is
exactly equal to 1. For the MCDD preconditioners, we
require that

ŜEE1 = SEE1, (15)

which ensures that the approximation ŜEE is exact for
constant solutions. In the case of K-orthogonal fine
grids, i.e. grids which are aligned with the principal
directions of the permeability tensor, there are no cou-
plings between vertex and internal nodes. Thus, SEV =
CEV and property 15 is a sufficient criterion for the
resulting preconditioner to preserve constant solutions
locally. However, for general grids, property 15 is not
sufficient and we need to require that

ŜEB1 = SEB1. (16)

The importance of capturing the constant solution
has also been emphasized in domain decomposition,
where it corresponds to capturing the null space of the
local Schur complement matrices [24]. This is one of
the important properties for the coarse space, which
is needed to construct scalable two-level precondition-
ers with good convergence rates. Another important
property for the coarse space, which is necessary to
construct a robust preconditioner, is often referred to
as the bounded energy condition [25] and is directly
related to the capturing of sub-scale variations in the
coefficients of K [15].

The motivation behind the multiscale methods is
precisely to capture these local sub-scale variations
within coarse-scale basis functions (i.e. within the
coarse space of the corresponding operator Ac), by
solving local PDEs on �′

i with pre-described boundary
conditions. By solving extended local problems, e.g. by
an oversampling procedure [9, 18], the local PDE-based
fields on �′

i are made less sensitive to the boundary
approximations, and the sub-scale information along
∂�′

i can also be well captured.
In Section 3.4, we will show how the interface

probing technique can be applied to capture a few
PDE-based fields governed by pre-defined boundary
conditions on extended local domains. The difference
from oversampling and global methods is that the local
solutions are applied to approximate the Schur comple-
ment SEB, rather than the basis functions.

3.2 Tangential component approximation

A frequently applied approximation for the multiscale
methods, the reduced boundary condition (see [10, 11,

18, 20]), is to approximate the tangential flow along
each local boundary. For the elliptic problem on regular
Cartesian grids and with isotropic medium, the tangen-
tial flow along the boundary is found by discretising the
elliptic equation (Eq. 1) directly along each local edge.
As far as we know, the reduced boundary condition
has only been applied to regular Cartesian grids, and
it is not clear how to extend it to non-K-orthogonal
grids. In order to test the reduced boundary condition
within the MCDD framework, we discretise the ellip-
tic equation (Eq. 1) along the local boundaries by a
two-point flux approximation method. We denote the
tridiagonal approximation resulting from the reduced
boundary condition by SRBC

EE . The preconditioner is
denoted MCDD-RBC.

An equivalent approximation for regular Cartesian
grids is the tangential component approximation, dis-
cussed in [28, 31]. This is an approximation to the first
term of Eq. 10. Essentially, the tangential component
(TC) approximation splits CEE = CT

EE + CN
EE, where

CN
EE is a diagonal matrix containing the contribution

to normal flow arising from the coupling between edge
and internal nodes. By neglecting the flow normal to
the local boundaries, the tangential component approx-
imation is defined as

STC
EE = CT

EE. (17)

The matrix STC
EE is tridiagonal when the edge nodes

on the dual coarse grid have a natural numbering along
each individual interface, and the expression is valid
for general grids. We denote the resulting precondi-
tioner, MCDD-TC. In the case of K-orthogonal fine
grid, STC

EE = SRBC
EE .

3.3 Probing technique

The interface probing technique (see [7] and references
therein) represents a more general approach for ap-
proximating the flow on the boundary. The aim is to
approximate the Schur complement matrix SEE by a
low-bandwidth matrix ŜEE, such that

ŜEEvi = SEEvi = wi, (18)

for some linearly independent probing vectors vi. The
method was motivated by the observation that the
Schur complement matrix often has a banded structure,
where the Schur complement elements decay rapidly
away from the diagonal. In fact, it has been shown
by Golub [14] that |Sij| = O

(|i − j|−2
)
, for i 	= j. The
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probing vectors suggested in [7] for approximating the
n-diagonal matrix SnP

EE are

vi =
∑

j=imod(n)

e j. (19)

In the case of tridiagonal probing, the probing vec-
tors are v1 = [1 0 0 1 0 0 · · · ]T , v2 = [0 1 0 0 1 0 · · · ]T

and v3 = [0 0 1 0 0 1 · · · ]T . While these probing vec-
tors are linearly independent, Eq. 18 can be shown to
yield a unique tridiagonal approximation ŜEE. Note
also that Eq. 18 does not require the explicit formu-
lation of the full matrix SEE, which would be expen-
sive; only those dimensions associated with the probing
vectors vi need to be calculated. In the case of three
probing vectors, three local Dirichlet problems needs
to be solved.

The interface probing technique can also be thought
of as an efficient way of incorporating fine-scale prop-
erties into the coarse-scale operator. Indeed, since the
sum of the probing vectors represented by Eq. 19 equals
1, property 15 is naturally satisfied. We will denote the
probing vectors of Eq. 19 as oscillating probing vectors
because of their form and since they are designed to
capture the fine-scale oscillations of the residual. We
refer to MCDD-3P and MCDD-5P as the MCDD pre-
conditioners, using SnP

EE with n = 3 and 5, respectively.

3.4 Solution-based probing vectors

Originally, the interface probing technique was ap-
plied together with oscillating probing vectors, on the
form given by Eq. 19, to approximate the diagonal
structure of SEE. For heterogeneous and anisotropic
problems, there might be strong non-local couplings
between boundary nodes, in which case the local Schur
complement matrix does not have a diagonal structure.
The oscillating probing vectors are designed to capture
the fine-scale oscillations of the residual and therefore
yield robust and good convergence properties for the
iterative process. However, these probing vectors are
not able to capture the correct features of the fine-
scale solution after only one iteration. Motivated by
standard flow-based upscaling strategies, see, e.g. [12],
solution-based probing vectors are introduced to cap-
ture the underlying fine-scale variations within each lo-
cal domain �′

i. Numerical experiments show that these
probing vectors can be used to construct precondition-
ers with better approximation properties for the first
iteration [30].

In order to guarantee that the multiscale precondi-
tioners exactly reproduce constant solutions for gen-

eral grids, we need to consider the probing of SEB =[
SEE SEV

]
(see Eq. 16),

ŜEBvi = SEBvi = wi. (20)

Within an iterative solution process, we never con-
struct the Schur complement matrix SEB explicitly,
nor do we construct the inverse of this matrix. We
only apply the SEB to some residual vectors rB on the
boundary. The multiplication of SEB with a probing
vector v can be regarded as solving a local Dirichlet
problem with boundary values v. Thus, the accuracy of
the preconditioner will depend on how well the probing
vectors vi are able to capture the correct fine-scale
variations on the boundary. For example, the choice
v = 1 will guarantee that the method preserves constant
solutions locally, for general grids.

We compute the solution-based probing vectors vi
SB

on �′
i by solving local flow problems on �i ⊃ �′

i. The
solution-based probing vectors vi

SB are then defined as
the restriction of the local solutions to the local bound-
ary (see Fig. 2). It follows from Eq. 20 that the approxi-
mation ŜEB will be exact for those particular boundary
value problems defined by vi

SB. In this manner, the
interface probing approximation can be constructed
to be accurate for certain pre-defined boundary value
problems.

The resulting multiscale preconditioner shares many
similarities with the oversampling technique, applied
in [9, 11, 13, 19]. In both strategies, a local elliptic
problem is solved on an overlapping domain �i ⊃ �′

i,
in order to reduce the approximation error introduced
by the local boundary conditions. The difference of
this strategy compared with other extended local or
global multiscale methods is that we approximate the
Schur complement, not the local basis functions. Thus,
our multiscale method is formulated as a Schur com-
plement preconditioner, which makes it a convergent
method. Together with solution-based probing vectors,
our preconditioner will be accurate for certain right-
hand sides, in which case it has the additional prop-
erty of an upscaling method. Results from Sandvin (to
be submitted for publication) show that the proposed
method is comparable in accuracy to multiscale control
volume methods using oversampling.

In order to construct robust approximations to SEB,
we must require that the probing vectors are linearly in-
dependent and that the 1-vector is represented through
one or a sum of the probing vectors. A combination of
solution-based and oscillating probing vectors is in our
experience a good choice. In the original framework of
the probing technique, a typical choice of ŜEE would
be a three-diagonal matrix, constructed from three
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Fig. 2 Local domain �′
i

V

I
E

probing vectors, with the same sparsity pattern as the
local discretisation CEE. Thus, each edge segment con-
necting two vertex nodes (see Fig. 2) is decoupled, and
the edge approximation ŜEE can be inverted locally on
the individual edge segments. The approximation ŜEB

is constructed in the same manner, from Eq. 20, filling
only the diagonal elements and the element neighbours
corresponding to the largest couplings in CEB. While
this interface approximation is only based on neighbour
connections, it is a purely algebraic construction and
independent on the underlying geometry. We denote
the interface approximation SN

EB and the corresponding
MCDD preconditioner MCDD-N.

The construction of local approximations ŜEB, in the
case of solution-based probing vectors, can be sensitive
w.r.t. the requirement of linear independent probing
vectors. To make the proposed MCDD-N precondi-
tioner more robust, it is convenient to add a fourth
probing vector and consequently a fourth non-local
coupling. As a fourth coupling in SEB, we choose an
average value, representing the contribution from all
local vertex nodes. Thus, the ŜEV will be a full matrix,
while the ŜEE retain its local structure and can be
inverted locally.

3.5 Inclusion of global information

For the application of multiphase flow, the elliptic
problem needs to be solved repeatedly in time for
slightly varying tensor coefficients Kij. In this case, we
may afford to spend some extra computational work
initially, to construct an accurate multiscale method for
the time-dependent problem. In [10, 11], they propose
a more accurate multiscale method by incorporating
information from a global fine-scale solution into the
framework of the reduced boundary condition. How-
ever, the reduced boundary condition may not be able
to capture the local variations of the global information
correctly.

The interface probing technique represents a con-
sistent framework for including fine-scale information

into operators on coarser scales. In fact, if one of
the probing vectors is chosen as the exact fine-scale
solution restricted to the boundary, we have not done
any approximations on the solution, and the fine-scale
solution is solved exactly in one iteration.

3.6 Comparison of the two interface approximations

By applying the multiscale method as a preconditioner
for a domain decomposition method, we have for-
mulated each local problem as a Schur complement
problem. In this framework, the reduced boundary
condition, analogous to the tangential component ap-
proximation for K-orthogonal grids, is a purely local
approximation, i.e. an approximation to the first term
in Eq. 10. The algebraic approximation, resulting from
the interface probing technique, can be regarded as a
global approximation to the Schur complement matrix,
where the resulting matrix has a local structure. Let us
consider the tridiagonal probing technique described in
Section 3.3. From the Eqs. 10 and 18, we have that

SEEvi = {
CT

EE + (
CN

EE − CEIC−1
I I CIE

)}
vi

= (
wT)i + (

wN)i
, (21)

where we have split CEE into a tangential component
CT

EE and a normal component CN
EE. While the tangen-

tial component CT
EE has a tridiagonal structure, it is

exactly represented by the 3 probing vectors vi given by
Eq. 19, resulting in the tangential component approxi-
mation. Thus,

S3P
EE = STC

EE + ŜN
EE, (22)

where the second term is an approximation to the flux,
accounting for the normal flow on the boundary. Since

∑
i

vi = 1, (23)

we observe from Eq. 18 that property 15 is satisfied
for all interface probing approximations SnP

EE. However,
from Eq. 21, we observe that the tangential component
approximation only preserves constant solutions locally
whenever

(
CN

EE − CEIC−1
I I CIE

)
1 = 0. (24)

Here, CN
EE is a diagonal matrix corresponding to the

normal flow, where CN
EE1 = −CEI1. Hence,

CEI
(
1 + yI

) = 0, (25)
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where yI can be calculated from

CIIyI = CIE1. (26)

In case of K-orthogonal grid along the domain
boundaries, there are no contributions to the flow
between vertex and internal nodes (CIV = 0), and it
follows that relation 26 is equivalent to a Dirichlet
problem with constant boundary values −1,

[
CII CI B

0 I

] [
yI

yB

]
=

[
0

−1

]
(27)

Thus, yI = −1 and Eq. 25 is satisfied. However,
for general grid structures, CIV 	= 0, and the tan-
gential component approximation does not satisfy
property 15. By probing the SEB (see Eq. 20), the
interface probing technique also satisfies property 16
and exactly reproduces constant potential solutions lo-
cally, for general grid. Moreover, by choosing solution-
based probing vectors, the preconditioner may be
constructed to be exact for any predefined characteri-
sation of the solution.

4 Computational efficiency aspects

The main objective of the multiscale methods is effi-
ciency, and the approximations obtained in Section 3
will often be used directly to solve the reduced coarse-
scale equation (Eq. 13). In the framework of domain
decomposition, we may also use these approximative
systems as coarse-scale preconditioners for solving the
elliptic fine-scale problem iteratively. In this section,
we study the computational work related to these
preconditioners.

4.1 Cost of applying the preconditioners

The MCDD preconditioners discussed in this paper
are non-overlapping and residual free on the internal
degrees of freedom, meaning that the unknowns cor-
responding to internal nodes are solved exactly. For
an iterative solution process, the internal degrees of
freedom need only be resolved once. The degrees of
freedom related to the edge nodes are eliminated by
the different choices of interface approximations ŜEB.
The linear system related to ŜEB is assumed to be
fast to compute. Thus, the main degrees of freedom
are proportional to the number of coarse cells (vertex
nodes), and the efficiency of the iterative procedure
will be measured due to the number of fine-scale solves
needed to solve the coarse-scale equation (Eq. 13).

The major computational cost involves C−1
I I applied

to vectors xi. These operations require solving the local
fine-scale problem

CIIyi = xi. (28)

The solution vectors yi can be stored and reused
in an iterative process. On each local domain �′

i, we
have four degrees of freedom, one related to each
vertex node. Thus, the left-hand side of the coarse-
scale equation (Eq. 13) requires solving four fine-scale
problems of the form (Eq. 28). The solutions yi may
be stored as coarse-scale basis functions. For each new
iteration, we only need to solve one fine-scale problem
corresponding to the new right-hand side term (resid-
ual). In practice, we will only update the residual locally
on the boundary, in regions where the residual is large.

If the purpose is to solve the coarse-scale equation
(Eq. 13) only, the right-hand side term pI correspond-
ing to internal source terms on the fine scale has to
be interpolated onto the vertex nodes. This requires
solving two additional local fine-scale problems on each
local domain where pI 	= 0. In the case of K-orthogonal
fine grid, SV E = CV E, and we only need to solve one
additional local fine-scale problem.

4.2 Cost of constructing the interface approximations

The accuracy and efficiency of the different MCDD
preconditioners lie in the construction of ŜEB. In this
study, we have only considered low-band approxima-
tions ŜEB, for which the system ŜEByi = xi is fast to
compute. There is, however, an initial cost related to
the construction of some of these approximations. For
the tangential component approximation and the re-
duced boundary condition approximation, ŜEB can be
constructed directly from the global system matrix C of
the fine-scale equation (Eq. 5). The probing technique
(see Eq. 18) requires solving one fine-scale problem
per probing vector, i.e. 3 and 5 fine-scale problems
for the construction of S3P

EB and S5P
EB, respectively. The

same applies to SN
EB. However, the fine-scale problems

Table 1 Number of fine-scale solves related to the different
MCDD preconditioners

STC
EB SRBC

EB S3P
EB S5P

EB SN
EB

Interface approximation 0 0 3 5 3–5a

Multiscale method 4 4 7 9 7–9a

For each new iteration +1 +1 +1 +1 +1

aThe fine-scale problems related to the solution-based probing
vectors can be larger, depending on the size of the overlapping
region, on which they are computed
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related to the construction of the solution-based prob-
ing vectors might be larger, depending on the size of the
overlapping region on which they are computed.

All interface approximations can be reused in an
iterative process. An overview of the cost related to
each of the preconditioners is summarized in Table 1.

5 Numerical experiments and results

The MCDD preconditioners described in the previ-
ous subsections are tested for several test problems,
involving both irregular grids and heterogeneous per-
meability fields. The different preconditioners will be
compared with respect to the accuracy of the first
iteration (equivalent to upscaling) and the number of
fine-scale solves to obtain a certain tolerance value for
the error (fine-scale solver). While there is an initial
cost related to the construction of the precondition-
ers discussed in Section 4, we choose to compare the
preconditioners with respect to the number of local
fine-scale solves rather than the number of iterations.
The global fine-scale solution will here serve as the
reference solution for the approximated solutions.

For the iterative scheme, we apply the precondi-
tioned generalized minimal residual (GMRES) [29],
where we compare the efficiency of the different MCDD
preconditioners based on the tangential component
approximation (MCDD-TC), the reduced boundary
condition (MCDD-RBC), the tridiagonal and penta-
diagonal probing technique (MCDD-3P and MCDD-
5P) and the interface probing technique based on
neighbour connections (MCDD-N(n)). Here, n is the
number of overlapping sub-domains, used to compute
the solution-based probing vectors. For the numerical
results of MCDD-N, we have considered two solution-
based and two oscillatory (see Eq. 19) probing vectors.
The two solution-based vectors are constructed, so to
capture the principal flow in the horizontal and vertical
direction, respectively. As boundary conditions for the
overlapping domain, we have applied a unit pressure
drop in one direction and no-flow conditions in the
other. The MCDD preconditioners are also compared
to the unpreconditioned GMRES method, referred
to as MCDD-unprec. For large linear systems, the
GMRES algorithm requires large information storage,
and a restarted version of GMRES may improve the
efficiency of the algorithm. For our numerical experi-
ments, we do not consider restarts.

Monotonicity For the fine-scale discretisation, we
consider the multipoint flux approximation (MPFA)

method as described in [2]. More precisely, we have
applied the MPFA O-method, which guarantees con-
tinuity of flux over each interface and continuity in
pressure at the mid-point of each interface. For general
quadrilateral grids, the discretisation will lead to a nine-
point stencil on the fine scale. For K-orthogonal fine
grid, the method will reduce to a five-point scheme
similar to the two-point flux approximation method.
In any case, the coarse-scale operators resulting from
the various MCDD preconditioners will in general be
nine-point stencils. Common for all these stencils is that
they do not guarantee monotone methods [27] and may
produce non-physical oscillations on the coarse scale
for certain anisotropies on the coarse scale. This may
again lead to incorrect flow fields on the fine scale.
The solution can, however, be improved through local
iterations on the fine scale. Monotonicity of the coarse-
scale operator for the MSFV method has been studied
in [17]. A compact coarse-scale operator with improved
monotonicity properties was proposed, which reduces
to a seven-point stencil in the limit of homogeneous
permeability. However, the compact operator did not
lead to improved robustness for the MCDD precondi-
tioners when solving heterogeneous flow problems on
irregular grids.

Error norms For the accuracy of the multiscale so-
lution in potential and flux after one iteration, we

p
=

1

p
=

0

no-flow

no-flow

Fig. 3 Computational mesh. The figure shows a 50 × 50 irregular
Cartesian grid on the fine scale. The degree of perturbation for
this grid is ε = 0.4. The bold faces show the coarse-scale grid,
where we have applied a uniform coarsening of 5 × 5 grid cells
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consider the error in L∞-norm, as it relates to
monotonicity. We denote

δu = ‖ u1 − u∞ ‖∞
max (u∞) − min (u∞)

, (29)

δ f = ‖ f 1 − f ∞ ‖∞
max ( f ∞) − min ( f ∞)

, (30)

as the multiscale errors for the potential u and the flux
f , respectively. In Eqs. 29 and 30, u1 and f 1 represent
the approximated multiscale solutions (solutions after
one iteration), while u∞ and f ∞ represent the con-
verged fine-scale solutions for potential and flux. The
reconstruction of a mass conservative flux on the fine
scale is performed by a post-processing step similar
to the MSFV method. The errors within the GMRES
algorithm is evaluated in the L2-norm.

Grids The MCDD preconditioners are tested on ir-
regular rough grids. These grids are generated by ran-

dom perturbations on the uniform Cartesian grid. If we
consider x to be the coordinates of the initial uniform
grid, irregular fine grids are generated by

xε = x + εrh, (31)

where h is the fine-grid cell size of the initial uniform
grid, r ∈ [−1, 1] is a random variable and ε ∈ [0, 0.5] is
the degree of perturbation. Figure 3 shows one example
of a simulation grid, where ε = 0.4.

5.1 Uniform flow on rough grids

We first consider the elliptic problem (Eq. 1), where we
neglect the source terms (q = 0) and apply a homoge-
neous and isotropic permeability tensor with diagonal
elements, k = 1. We use no-flow boundary conditions
on the top and bottom boundary and a unit pressure
drop in the horizontal direction, as shown in Fig. 3.
From the choice of boundary conditions, the flow on
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Fig. 4 A comparison of the different MCDD preconditioners for
the elliptic problem with constant coefficient. Here, the horizon-
tal axis represent the degree of roughness for the irregular grid.
a The spectral condition number and c the number of fine-scale

solves to meet a tolerance of 10−8 for the different precondition-
ers. In b and d, we plot the multiscale error, measured in L∞-
norm, obtained after one iteration with GMRES. All results are
means of 50 realisations of random generated rough grids
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the fine scale will be uniform. We will solve the homo-
geneous problem on irregular grids, to study the grid
dependence of the different MCDD preconditioners.
From the construction of control volume methods for
elliptic problems, the expression for the flux depends
on both geometry and the permeability tensor K, where
perturbations on the grid will have similar effects as
perturbing K.

Figure 4a shows the comparison of the spectral con-
dition number for the fine-scale system, when applying
the different MCDD preconditioners. We observe that
the preconditioners based on oscillatory probing vec-
tors (MCDD-3P and MCDD-5P) result in significantly
lower condition numbers than the preconditioners
based on harmonic (MCDD-RBC) and solution-based
vectors (MCDD-N). We also observe that the MCDD-
3P and MCDD-5P preconditioners are more robust
with respect to perturbations on the fine-scale grid, for
perturbations up to about 40% of the fine-grid cell
size. This indicates that the interface approximations,
commonly used for multiscale and upscaling methods,
are not as well suited as multiscale preconditioners
for the fine-scale problem. For perturbations above
40% of the fine-grid cell size, none of the low-band
approximations for the Schur complement discussed in
this paper are robust. Such rough grids will include non-
convex and highly distorted grid cells (see Fig. 3).

In Fig. 4b, we show the number of fine-scale solves,
required to solve the homogeneous fine-scale problem.
For Cartesian grid (ε = 0), the local tangential flow
approximations used in MCDD-RBC and MCDD-TC
reduce to the exact linear boundary conditions, and the
problem is solved exactly in one iteration. However, for
perturbed grids (ε > 0), the interface probing approxi-
mation used in (MCDD-3P and MCDD-5P) are more
robust, and the preconditioners need about the same
amount of computational work. The MCDD-N precon-
ditioner is designed as an upscaling technique and is
not suited as a preconditioner for the iterative scheme.
Note also that the MCDD-TC preconditioner, which
is a consistent approximation to the tangential flow
along perturbed local boundaries, is less accurate than
the inconsistent two-point flux approximation used in
MCDD-RBC.

In some cases, we cannot afford to iterate on the
fine-scale solution, and we would like to reconstruct
a fine-scale approximation from the solution of the
coarse-scale problem. This is equivalent with one iter-
ation on the fine-scale solution. Figure 4b, d show the
accuracy of the multiscale solutions, obtained after one
iteration on the fine-scale solution. While the oscillat-
ing probing vectors used in MCDD-3P and MCDD-5P
result in more robust approximations for the iterative

process, they are not as well suited for upscaling. The
reduced boundary approximation (MCDD-RBC) has
previously shown to be accurate for problems involving
regular Cartesian grids; however, it is not as accurate
for problems involving irregular grid. By introducing
solution-based probing vectors in MCDD-N, we are
able to obtain much more accurate approximations to
the fine-scale solution at first iteration, for problems
involving irregular grids.

5.2 Heterogeneous problems on rough grids

Next, we consider elliptic problems with variable coef-
ficients k(x). We consider isotropic, log-normal per-
meability on the fine scale, as shown in Fig. 5. Local
sub-scale heterogeneities may introduce strong non-
local couplings between boundary unknowns on the
local sub-domains, as discussed in Section 3.4, which are
more difficult to capture within local interface approx-
imations. From Fig. 6, we see that the MCDD precon-
ditioners resulting from the interface probing technique
are able to better capture these non-local couplings and
are more robust with respect to fine-scale perturbations
on the fine grid. The tangential component approxima-
tion is not able to capture the correct flow normal to
these local boundaries and has a larger dependency on
the degree of perturbation ε. The multiscale methods
have shown to have difficulties with capturing large
anisotropies in the fine-scale flow field, especially for
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0.5

1

1.5

Fig. 5 A generated log-normal permeability field, with standard
deviation of 0.5 and a correlation length of 3 fine-grid cells in both
x- and y-direction. The figure shows the base 10 logarithm of the
permeability
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Fig. 6 The number of fine-scale solves needed to reach a tol-
erance of 10−8 when solving the elliptic problem for heteroge-
neous log-normal permeability when applying different MCDD
preconditioners. The horizontal axis represents the degree of
roughness for the perturbed grid. All results are mean values
from 20 realisations of permeability fields and 20 realisations of
randomly generated rough grids

problems with diagonal channels going through corner
cells of the local sub-domains [22]. This is because the
coupling, CV I , between vertex and internal nodes, is

neglected in the tangential component approximation.
For problems involving irregular grids, MCDD-RBC
and MCDD-TC do not preserve constant solution (see
Section 3.6). By placing a high permeable channel be-
tween two opposite corners of the global fine grid,
the tangential approximation (MCDD-TC and MCDD-
RBC) is not able to capture the diagonal flow over
the vertex nodes and requires solving many more fine-
scale problems (iterations), even for Cartesian grid.
The interface probing approximation is based on an
algebraic approximation to the Schur complement and
is more or less independent upon the geometry and
principle directions on the fine scale. In Fig. 7a, b,
we again observe that the MCDD-N preconditioner
in general provides more accurate approximations to
the solution after one iteration. The results in Fig. 7b
even show that the interface probing technique, using
oscillating probing vectors, results in more accurate
approximations to the multiscale flux on the fine scale
than the more commonly used tangential component
approximation. As for regular upscaling techniques, the
quality of the solution-based probing vectors depends
on the induced local boundary conditions and the size
of the overlapping domains.

5.3 Realistic porous media

In realistic porous media, we might be faced with
complex geological layers, where the fine-scale per-
meability has long and anisotropic correlation lengths.
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Fig. 7 Upscaling of log-normal permeability. The figures show
the accuracy of the multiscale solution obtained after one iter-
ation. In a, we plot the L∞-error of the potential, and b shows

the L∞-error of the flux. All results are the truncated (80%)
mean values from 20 realisations of permeability fields and 20
realisations of randomly generated rough grids
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We consider the two-dimensional cross sections cor-
responding to the top and bottom layer of the 10th
SPE comparative solution project [8] (see Fig. 8a, b).
This test case is aimed at comparing different upscaling
procedures and has been extensively used for testing
multiscale methods. While the geometry is a simple
uniform Cartesian grid, the permeability contrasts are
rather challenging for reservoir simulators. The model
for each layer consists of a 60 × 220 uniform Cartesian
fine grid. To test the multiscale preconditioners, we
further apply a 12 × 20 coarse grid. We use similar
boundary conditions as in the previous test cases. The
top layer is a Tarbert formation, while the bottom layer
is fluvial. From the bottom layer (Fig. 8b), we clearly
see channels with long correlation lengths throughout
the reservoir. These channelized flow paths will result
in anisotropic permeability on the coarse scale.

In Table 2, we compare the efficiency of the precon-
ditioners based on the tangential flow approximation
(MCDD-RBC) and the interface probing approxima-
tion (MCDD-3P and MCDD-5P). Since the simulation
grid is K-orthogonal, the MCDD-TC and MCDD-RBC
are equivalent formulations. Thus, we only report the
results of the MCDD-RBC. For the top layer (Tarbert
formation; see Fig. 8a), there are quite large correlation
lengths in the fine-scale permeability, with small sub-
scale variations on each coarse block. All the precondi-
tioners give quite good results for this problem. Note
that even though the construction of the MCDD-3P
and MCDD-5P requires solving 3 and 5 local fine-
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Fig. 8 Base 10 logarithm of permeability for the bottom and top
layer of the SPE 10th comparative solution project. Here, a shows
layer 1 (top) and b layer 85 (bottom)

Table 2 Number of fine-scale solves needed to reach a tolerance
10−8 in the L2-norm

Layer MCDD-RBC MCDD-3P MCDD-5P

1 33 30 30
85 347 167 146

scale problems initially, they are still more efficient for
solving the fine-scale problem iteratively. The bottom
layer contains a fine-scale permeability with anisotropic
correlation lengths. This channelized reservoir does not
have a clear scale separation, which makes it more
challenging to construct efficient multilevel precondi-
tioners. Our results clearly show that the oscillating
vectors of the interface probing technique (MCDD-
3P and MCDD-5P) are better suited for capturing the
high-frequency error in the solution for channelized
flow.

Table 3 shows the accuracy of the multiscale so-
lution (first iteration). The results from layer 1 (top
layer) show that we can construct quite accurate mul-
tiscale approximations to the fine-scale solution after
only one iteration. Thus, there exists an exact rep-
resentation of the flow on the coarse scale. By in-
creasing the region of the overlap, the solution within
the target region is less effected by the boundary
conditions and more determined by the local vari-
ations in the fine-scale permeability. Thus, different
boundary value problems will give more similar re-
sults, and the solution-based probing vectors can get
close to linearly dependent. This may result in an ill-
conditioned system for computing the interface approx-
imation of MCDD-N, in which case we will have to
reduce the number of solution-based probing vectors.
A natural extension, which is beyond the scope of
this paper, is to adapt the overlapping regions based
on the fine-scale residual. This idea has been studied
in [26].

In the results for layer 85 (bottom layer), the
anisotropies in the upscaled permeability produce non-
physical oscillations in the solution for the coarse scale.
In fact, the coarse-scale operators, for all the tested
multiscale methods, fail to meet the requirements for
monotonicity [28]. For completeness, we also tested the
multiscale control volume method with linear bound-
ary conditions as well as the MCDD-N preconditioner
including global information. The MSFV method using
linear boundary conditions has shown to give smaller
errors then the MSFV method using reduced bound-
ary conditions, for some problems involving highly
anisotropic porous media [23]. By including global in-
formation in the MCDD-N preconditioners, the local
approximations ŜEB exactly reproduces the fine-scale
flow field. However, these preconditioners also yield
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Table 3 The error of the multiscale solution after one iteration, measured in the L∞-norm

Layer MCDD-RBC MCDD-3P MCDD-5P MCDD-N(1) MCDD-N(2) MCDD-N(3)

1 (u) 0.15 0.14 0.19 0.032 0.043 0.018
1 (f) 0.069 0.098 0.12 0.012 0.014 0.037
85 (u) 0.47 11 155 2.6 0.54 0.53
85 (f) 0.43 0.58 8.1 2.8 0.26 0.17

Here, (u) denotes the fine-scale potential solution and ( f ) the fine-scale flux

non-monotone coarse-scale operators and non-physical
oscillations in the coarse-scale potential solution.
Table 3 shows the large errors in the fine-scale potential
solution, caused by non-physical oscillations on the
coarse scale. These oscillations in turn result in wrong
boundary conditions for the recalculation of fine-scale
fluxes. As it is known that there exist cases where
no nine-point scheme is monotone [21], changing the
discretisation scheme might not be enough. In order to
construct accurate upscaling methods for problems with
anisotropic coarse-scale permeability, one approach
might be to adapt the coarse-scale grid to the principal
directions of the flow on the coarse scale. However,
it is not clear how to construct a coarse grid which
will guarantee monotonicity. In any case, we would
need a robust multiscale framework which can handle
simulations on general grids.

6 Conclusion

We have tested the efficiency and accuracy of MCDD
preconditioners for two-dimensional heterogeneous el-
liptic problems on irregular grids. In the case of solv-
ing only one iteration, the MCDD preconditioners are
similar to standard multiscale control volume methods
where only the global coarse-scale equation is solved.
Since we approximate the Schur complement, rather
than the local basis functions, the proposed multi-
scale methodology is convergent to the fine scale. Our
numerical experiments have shown that the reduced
boundary condition (MCDD-RBC), commonly applied
for constructing multiscale methods, is not robust with
respect to perturbations on the fine scale. In the case of
non-K-orthogonal grids, the reduced boundary condi-
tion does not preserve constant solutions, which makes
it unsuitable for constructing multiscale precondition-
ers for flow problems on irregular grid structures or
anisotropic permeability.

We have presented a more robust multiscale frame-
work, based on the interface probing technique, for
solving heterogeneous elliptic problems on irregular
grids. While the MCDD-3P and MCDD-5P, using oscil-
lating probing vectors, act as more efficient multiscale

preconditioners for the fine-scale problem, solution-
based probing vectors can be constructed (MCDD-N)
to give a more accurate representation of the coarse
scale. Both of these preconditioners are purely alge-
braic upscaling techniques; thus, they are independent
upon geometry and extendible to multiscale simula-
tions on unstructured grids. Moreover, the interface
probing technique can be seen as a more consistent
way of incorporating global fine-scale information into
the coarse-scale basis functions, as it is designed to
exactly reproduce the solution of given boundary value
problems.

When applied as a preconditioner for Krylov-type
algorithms, the objective is to efficiently reduce the
residual. At first iteration, the residual vector is exactly
equal to the boundary conditions provided by the right-
hand side vector p. Thus, multiscale methods based
on global information are accurate. After the first it-
eration, the residual is proportional to the error and
is similar to oscillating noise. Thus, a simple fine-scale
preconditioner, which effectively smooths the error, is
to be preferred.

For certain anisotropy relations on the coarse scale,
it is not possible to construct monotone nine-point
stencils on the coarse scale. Thus, we may need to
iterate on the fine-scale residual, in order to reduce the
non-physical oscillations produced by the coarse scale.
The MCDD preconditioners can be adapted to serve
as either an accurate approximation to the coarse-scale
problem (multiscale method) or an efficient precondi-
tioner for the fine-scale problem.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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