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Abstract

Background: In obesity, impaired adipose tissue function may promote secondary disease through ectopic lipid
accumulation and excess release of adipokines, resulting in systemic low-grade inflammation, insulin resistance and organ
dysfunction. However, several of the genes regulating adipose tissue function in obesity are yet to be identified.

Methodology/Principal Findings: In order to identify novel candidate genes that may regulate adipose tissue function, we
analyzed global gene expression in abdominal subcutaneous adipose tissue before and one year after bariatric surgery
(biliopancreatic diversion with duodenal switch, BPD/DS) (n = 16). Adipose tissue from lean healthy individuals was also
analyzed (n = 13). Two different microarray platforms (AB 1700 and Illumina) were used to measure the differential gene
expression, and the results were further validated by qPCR. Surgery reduced BMI from 53.3 to 33.1 kg/m2. The majority of
differentially expressed genes were down-regulated after profound fat loss, including transcription factors involved in stress
response, inflammation, and immune cell function (e.g., FOS, JUN, ETS, C/EBPB, C/EBPD). Interestingly, a distinct set of genes
was up-regulated after fat loss, including homeobox transcription factors (IRX3, IRX5, HOXA5, HOXA9, HOXB5, HOXC6,
EMX2, PRRX1) and extracellular matrix structural proteins (COL1A1, COL1A2, COL3A1, COL5A1, COL6A3).

Conclusions/Significance: The data demonstrate a marked switch of transcription factors in adipose tissue after profound
fat loss, providing new molecular insight into a dichotomy between stress response and metabolically favorable tissue
development. Our findings implicate homeobox transcription factors as important regulators of adipose tissue function.
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Introduction

Obesity has reached epidemic proportions and is associated

with increased risk of type 2 diabetes, cardiovascular diseases,

several forms of cancer, and other diseases [1]. As a potent

endocrine organ as well as the body’s primary energy storage

reserve, adipose tissue plays key roles in systemic metabolism [2].

The pathogenic potential of adipose tissue is conferred by changes

in morphology and cellular functions that involve local inflam-

mation, aberrant hormonal signaling and adipokine secretion, and

altered lipid storage dynamics [3,4]. While adipocyte turnover

appears to be tightly regulated [5], obesity may result from a

combination of adipocyte hypertrophy and hyperplasia with

varying contributions by these processes in different individuals

[6]. Recent studies have indicated that hypertrophy may promote

inflammation and dysfunctional adipose tissue via hypoxia and

aberrant extracellular matrix remodeling [7,8,9]. Moreover,

hypertrophy was found to be associated with a reduced adipocyte

turnover [6]. It has been proposed that limited recruitment and

development of adipocytes, and thereby reduced ability to expand

the adipose tissue during energy surplus, may promote ectopic

lipid accumulation and adverse effects on other organs [3,10,11].

Previous studies have demonstrated a marked increase in the

expression of pro-inflammatory genes in adipose tissue in obesity

[12,13]. While isolated adipocytes show an increased inflammatory

gene expression profile [14], increased infiltration and activation of

non-fat cells, such as macrophages, may propagate local inflam-

mation in adipose tissue [13,15] and promote aberrant extracellular
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matrix remodeling [16]. Analyses of adipose tissue before and three

months after gastric bypass surgery revealed a reduction in

macrophages and altered expression of genes regulating inflamma-

tion and extracellular matrix [8,17]. Moreover, adipose tissue gene

expression is responsive to dietary intervention. Energy-restricted

diets have been shown to improve the inflammatory profile [13] and

to down-regulate genes involved in extracellular matrix [18] and

production of polyunsaturated fatty acids [19]. It has also been

demonstrated that dietary modification alters gene expression in

adipose tissue irrespective of weight loss [20]. Interestingly,

differences in adipose tissue gene regulation were observed

depending on individual responses to caloric restriction [21].

Due to their profound fat loss, morbidly obese patients

undergoing bariatric surgery represent a powerful model for

studying changes in adipose tissue biology. Among the different

forms of bariatric surgery, the biliopancreatic diversion with

duodenal switch (BPD/DS) induces the most rapid and pronounced

fat loss [22], and loss of excess fat is especially rapid within the first

year of surgery [23]. Hence, we have analyzed global gene

expression in subcutaneous abdominal adipose tissue (SAT) from

16 morbidly obese subjects before and one year after BPD/DS. To

obtain a reference of normal expression values, we also included

adipose tissue from 13 lean healthy controls undergoing inguinal

hernia repair. The aim of the study was to identify novel candidate

genes that may regulate adipose tissue function.

Materials and Methods

Ethics statement
Each enrolled subject gave their written consent after being

informed about the study and legal rights. The study was approved

by the Western Norway Regional Committee for Medical

Research Ethics (REK).

Subjects and adipose tissue biopsy
Anthropometric and biochemical data were recorded for

patients before and one year after bariatric surgery (biliopancreatic

diversion with duodenal switch) between 2003 and 2007. Biopsies

of subcutaneous adipose tissue were collected from 16 patients (12

women) per-operatively and one year after surgery, and from 13

lean healthy control subjects who underwent inguinal hernia

repair (6 women). Each biopsy was gently pressed flat in a sealable

polyethylene bag, immediately transferred into liquid nitrogen,

and stored at 280uC. Bariatric patients with Norwegian

Caucasian origin and morbid obesity (BMI.45) were included.

Average BMI was 53.3 kg/m2 (range 47 to 61) and average age

was 39.3610.9 (range 23 to 62 years). Fasting glucose,

triglycerides, total-, HDL- and LDL cholesterol, insulin, insulin

C-peptide, and CRP were measured in serum, and HbA1C was

measured in EDTA blood (Table 1). Significance values of

anthropometric and biochemical data were calculated using

paired-samples T-test. Seven of the bariatric patients were diabetic

before surgery, and one patient continued on a low dose of insulin

one year after surgery (Table S1). Inclusion criteria for the healthy

lean control subjects were BMI,27 and no history of disorders or

drug abuse. The control subjects had an average BMI of

23.062.48 (range 18.5 to 26.8) and an average age of

47.6617.1 (range 20 to 77 years). All the measured fasting serum

values of the control subjects (glucose, triglycerides, total-, HDL-

and LDL cholesterol, insulin, insulin C-peptide) were within the

normal range, except three CRP values (6, 8 and 18 mg/L).

Homeostasis model assessment (HOMA) index, a measure of

insulin resistance where a value of 1 is optimal, was calculated as

fasting serum insulin (mIU/L)6glucose (mmol/L)/22.5.

Randomization of samples
To avoid systematic bias due to batch/lot and processing

variability, bariatric surgery samples and control samples were

balanced and randomized in each of the following steps: adipose

tissue homogenization, RNA extraction, labeling, and microarray

hybridization. Pre- and post-surgery pairs of adipose tissue samples

were handled simultaneously.

Homogenization and RNA extraction
Approximately 200–300 mg of frozen adipose tissue was sliced

on dry ice and transferred to 2 ml microcentrifuge tubes with

Table 1. Anthropometric and biochemical data of 16 subjects before and one year after bariatric surgery (BPD/DS).

n = 16 (12 women) Mean pre Mean post Mean p-value

surgery ± SD surgery ± SD change ± SD (change)

Body weight (kg) 155.4624.4 96.3619.5 59.1619.6 ,0.0001

BMI (kg/m2) 53.364.3 33.165.0 20.265.6 ,0.0001

SBP (mmHg) 142.9614.1 126.3616.9 16.7621.4 0.0071

DBP (mmHg) 82.3612.4 76.667.2 5.7614.5 0.1370

Glucose (mmol/L) 6.6561.66 5.1360.68 1.5261.40 0.0009

HbA1C (percent) 6.8161.68 5.0160.61 1.8061.42 0.0002

Cholesterol (mmol/L) 4.7560.88 3.4460.69 1.3160.77 ,0.0001

TG (mmol/L) 1.6160.57 1.2660.66 0.3560.56 0.0292

HDL (mmol/L) 1.0760.27 0.9960.27 0.0860.21 0.1710

LDL (mmol/L) 3.3660.76 2.2060.70 1.1660.67 ,0.0001

Insulin (mIU/L) 27.55618.95 6.3965.60 21.16617.66 0.0004

C-peptide (nmol/L) 1.2960.70 1.0061.09 0.2961.36 0.4180

CRP (mg/L) 18.27611.98 3.4762.61 14.80611.20 ,0.0001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TG, triglycerides; HDL, high-density lipoprotein; LDL, low-density lipoprotein; C-
peptide, Insulin C-peptide; CRP, C-reactive protein.
doi:10.1371/journal.pone.0011033.t001
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round bottom (Eppendorf). One ml lysing buffer (Qiazol, Qiagen)

and a 5 mm metal bead (Millipore) were added and immediately

followed by homogenization in a TissueLyser (Qiagen), with

shaking three times for 2 minutes at a frequency of 25 Hz. The

lysates were stored at 280uC. RNA from the adipose tissue was

extracted using the RNeasy Lipid Tissue Midi Kit (Qiagen)

according to the manufacturer protocol, and samples were treated

with the RNase-Free DNase Set (Qiagen). Amount and quality of

the extracted RNA were measured by the NanoDropH ND-1000

spectrophotometer (NanoDrop Technologies, USA) and the

Agilent 2100 Bioanalyzer (Agilent Technologies, USA).

Illumina iScan system
A pilot microarray study of adipose tissue from 9 of the patients

before and after surgery was performed using the Applied

Biosystems (AB) 1700 Expression Array system (Text S1). The

main microarray experiment was performed using the Illumina

iScan, which is based upon fluorescence detection of biotin-labeled

cRNA. Using the Illumina TotalPrep RNA Amplification Kit

(version 280508, Applied Biosystems/Ambion, USA), 300ng of

total RNA from each sample was reversely transcribed, amplified

and Biotin-16-UTP–labeled. The amount (15–52 mg) and quality

of labeled cRNA were measured using both the NanoDrop

spectrophotometer and Agilent 2100 Bioanalyzer. 750ng of biotin-

labeled cRNA was hybridized to the HumanRef-8 v.3 Illumina

Sentrix BeadChip according to manufacturer’s instructions. The

HumanRef-8 v.3 BeadChip targets approximately 24,500 anno-

tated RefSeq transcripts and covers 18,631 unique curated genes.

Microarray data extraction and analysis
Quality control and preprocessing. Bead summary data

was imported into GenomeStudio to remove control probes and to

produce a text file containing the signal and detection p-values per

probe for all samples. The text file was imported into J-Express Pro

v.2.7, and signal intensity values were quantile normalized [24]

and log transformed (base 2). Correspondence Analysis (CA) [25]

and hierarchical clustering with Pearson Correlation as a distance

measure were performed to look for global trends in the data. In

the CA plot, the microarray data for genes and samples are

projected onto a two-dimensional plane defined by the first and

second principal components. The first principal component

(along the x-axis) explains most of the total chi square, the second

principal component explains second most of the total chi square.

Samples that are close together in the plot have more similarity

than samples further apart. The plots revealed sample Pre_11 as

an outlier. Technical measures showed that this sample had lower

yield from the labeling step than the other samples, and most of

the signals were higher, including the P95, P05 and negative

control signals. Therefore, the samples of patient 11 were removed

from the dataset before further analysis.

Analysis of differentially expressed genes. Significance

Analysis of Microarrays (SAM) [26] was used to look for

differentially expressed genes. To obtain manageable datasets,

differentially expressed genes were defined by fold change $1.5

and q-value = 0. Protein ANalysis THrough Evolutionary

Relationships (PANTHER) (dated July 15th 2009, www.

pantherdb.org) was then used to search for over-represented

functional categories among the differentially expressed genes.

PANTHER describes genes in terms of biological processes,

molecular functions, and pathways in hierarchies up to three

levels. Each entry has an equivalent in Gene Ontology (www.

geneontology.org). The Bonferroni correction for multiple testing

was used in the calculation of PANTHER p-values.

The microarray data are MIAME compliant and are available

in ArrayExpress with accession numbers E-TABM-862 (Illumina

data) and E-TABM-864 (AB 1700 data).

Validation of microarray data by qPCR
Ten genes were selected for validation by quantitative real-time

RT-PCR (qPCR). The analysis was performed on a subset of the

samples corresponding to the AB 1700 microarray analysis (pre-

versus post-surgery, n = 9). cDNA synthesis was performed using

the Transcriptor First Strand cDNA Synthesis Kit (Roche) (1 mg

RNA per sample), followed by quantitative real-time RT-PCR

with the LightCycler480 Probes Master kit and the Light-

Cycler480 rapid thermal cycler system (Roche Applied Science).

Target gene expression was quantified relative to the constitutive

control gene TATA-binding protein (TBP) using specific Universal

ProbeLibrary (UPL) probes and target-specific primers (Table S5).

Target genes were amplified in duplex with TBP using the UPL

Human TBP Gene Assay (Roche) with the exception of HOXA5,

HOXB5, and IRX5 as a duplex run could not be performed for

these genes. Instead, calculations were made with mean TBP

values from five of the duplex runs. Efficiency of the transcripts

was measured using standard curves with 1:5 dilutions of an

adipose tissue sample with concentrated cDNA. Negative controls

were prepared by replacing the mRNA template with PCR-grade

H2O. RT-PCR was performed according to the optimized

protocol (Roche Applied Science). Fold change in mRNA

expression was calculated pair-wise for each patient using the

crossing point (CP) for each sample (triplicate) and the amplifi-

cation efficiency for the transcript. The mRNA expressions were

found to be non-linear and are presented as geometric mean with

95% confidence intervals (CI).

Genomatix Gene2Promoter analysis
Genes whose promoters contain potential binding sites for

homeobox transcription factors were identified using the Gene2-

Promoter software provided by Genomatix (http://www.genomatix.

de/). Genes with a differential expression after bariatric surgery

(152 up-regulated and 469 down-regulated) were input for the

analysis. The software retrieved human gene promoters for each

gene, and the data were filtered in order to extract genes with one

or more binding sites for selected homeobox transcription factors.

Results

Clinical and biochemical characteristics
The average age of the bariatric patients before surgery and of

the lean controls was 39.3610.9 and 44.0617.5 years, respec-

tively. Average BMI of the bariatric patients was reduced by

20.2 kg/m2 one year after surgery (Table 1). Average BMI of the

lean control subjects was 23.0 kg/m2. As expected, there was an

improvement in glucose homeostasis and cardiovascular risk

profile (Table 1). Six of the 16 bariatric patients had clear

indications of manifest diabetes before surgery, assessed by fasting

glucose values and diabetes history. Four of the patients were

taking exogenous insulin prior to the surgery, and only one

continued on a low dose after surgery (Table S1). Comparison of

the average homeostasis model assessment (HOMA) index of the

patients before and after surgery (8.666.41 versus 1.561.33, p-

value = 0.0003) indicated a marked reversal of insulin resistance.

Average HOMA index of the control subjects was 1.360.65.

Before surgery there was sign of a low-grade inflammation

evaluated by C-reactive protein (CRP), and this was reversed

after fat loss.

Gene Expression after Fat Loss
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Marked shift in global gene expression after fat loss
Microarray analysis revealed a substantial and highly consistent

change in adipose tissue gene expression after surgery. Corre-

spondence Analysis [25], which projects the differences in global

gene expression in a two-dimensional plot, showed a clear-cut

separation of the samples from the three groups (pre-surgery, post-

surgery, and controls) (Figure 1). The first principal component,

representing the largest component variance in the dataset

(10.69%), showed that all the pre-operative samples grouped

together, clearly separated from the post-operative and control

samples. One exception was the post-operative sample of patient

17, which grouped together with the pre-operative samples. The

second principal component, representing the second largest

component variance in the dataset (6.36%), revealed that the

control samples grouped together separately from the post-surgery

samples.

Fat loss overall resulted in a down-regulation of genes in adipose

tissue. Among the 621 differentially expressed genes using Illumina

microarrays, 469 genes were down-regulated and 152 were up-

regulated after surgery (Dataset S1). Strikingly, ninety-six of the

100 most differentially expressed genes showed a reduced

expression after fat loss. Examples of strongly down-regulated

genes included IL6 (Entrez Gene 3569), IL8 (Entrez Gene 3576),

IL1B (Entrez Gene 3553), CCL2/MCP1 (Entrez Gene 6347),

SOCS3 (Entrez Gene 9021), HIF1A (Entrez Gene 3091), PTGS2/

COX-2 (Entrez Gene 5743) and NAMPT/VISFATIN (Entrez

Gene 10135) (Table S2), which have previously been described in

the context of obesity. Well-known genes involved in lipid

metabolism were among the most differentially expressed single

genes post-operatively, including LDLR (Entrez Gene 3949) and

CH25H (Entrez Gene 9023) (down-regulated) and APOE (Entrez

Gene 348), APOC1 (Entrez Gene 341) and SREBF1/SREBP-1c

(Entrez Gene 6720) (up-regulated) (Table S2).

To test whether the use of medication or the presence of

diabetes might affect the results, we analyzed the data excluding

subjects on medication or with diabetes (n = 7). We found similar

fold change values as when including all subjects, showing no clear

effects of diabetes or medication on the global gene expression

(data not shown).

Switch from immunity and defense to developmental
processes

Next, we searched for over-represented functional categories

among the most differentially expressed genes using Protein

ANalysis THrough Evolutionary Relationships (PANTHER)

(dated July 15th 2009, www.pantherdb.org). We found that the

PANTHER Biological Process functional categories Immunity

and defense and Signal transduction were strongly over-repre-

sented among down-regulated genes post-surgery (Figure 2). Over-

represented sub-categories in the Immunity and defense category

included Cytokine/chemokine mediated immunity, Macrophage

mediated immunity, Granulocyte mediated immunity, and Stress

response. Signal transduction sub-categories included Cell surface

mediated signal transduction, Cytokine and chemokine mediated

signaling pathway, and Cell communication. Interestingly, the

analysis of up-regulated genes identified Developmental processes

as the only PANTHER Biological Process category that was

significantly over-represented post-operatively (Figure 2).

Over-represented PANTHER Molecular Function categories

post-operatively included Signalling molecule, Receptor, Tran-

scription factor, and Extracellular matrix (Figure 3). Genes

belonging to Signalling molecule, Receptor, and Transcription

factor were strongly over-expressed pre-surgery compared to post-

operation and controls. Interestingly, our data revealed a switch in

the expression of transcription factors, from a high expression of

stress response related factors such as FOS (Entrez Gene 2353),

JUN (Entrez Gene 3725), CEBPB (Entrez Gene 1051), CEBPD

(Entrez Gene 1052), ETS1 (Entrez Gene 2113) and ETS2 (Entrez

Gene 2114) in the morbidly obese state, to an increased expression

of homeobox genes after surgery (Table 2 and 3, Table S3). The

expression levels of homeobox genes (IRX3 (Entrez Gene 79191),

IRX5 (Entrez Gene 10265), HOXA5 (Entrez Gene 3202),

HOXA9 (Entrez Gene 3205), HOXB5 (Entrez Gene 3215),

HOXC6 (Entrez Gene 3223), EMX2 (Entrez Gene 2018)) after

surgery approximated the expression levels in healthy controls,

except PRRX1 (Entrez Gene 5396) which was expressed at a

higher level in post-surgery samples than in controls (Table 3).

Finally, we found considerably higher expression levels of

extracellular matrix genes (e.g. COL1A1 (Entrez Gene 1277),

COL1A2 (Entrez Gene 1278), COL3A1 (Entrez Gene 1281),

COL5A1 (Entrez Gene 1289), COL6A3 (Entrez Gene 1293)) post-

surgery, whereas the expression levels were more similar in control

and pre-surgery biopsies (Table 4, Table S3).

Validation of results by AB 1700 microarrays and qPCR
To validate the results, we compared the Illumina microarray

analysis to the AB 1700 microarray analysis (n = 9). The AB 1700

data confirmed the results (Figure S1, Dataset S2). Significance

Analysis of Microarrays (SAM) identified 710 genes that were

differentially expressed, of which 499 were down-regulated and

211 were up-regulated after surgery. As in the Illumina analysis,

close to all of the top 100 differentially expressed genes were down-

regulated after surgery (three up-regulated). Moreover, we also

performed qPCR on the eight most significantly up-regulated

homeobox transcription factors, in addition to COL1A1 (most up-

regulated gene) and COL6A3 (recently connected with obesity).

Figure 1. Correspondence Analysis showing projection of
samples before and after bariatric surgery and lean healthy
controls. The first principal component (10.69% component variance)
separated the pre-operative samples from the post-operative and
control samples, and the second principal component (6.36%
component variance) separated the post-operative from control
samples. The post-operative sample of patient 17 was similar to the
pre-operative samples, suggesting an overall unaltered gene expression
pattern after surgery for this patient. A technical error may have
occurred, but we cannot rule out a unique gene expression pattern in
the adipose tissue of this patient.
doi:10.1371/journal.pone.0011033.g001
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The qPCR analysis showed highly consistent results to the

microarray analyses (Table 5).

Altered metabolic processes in bariatric patients
Based on the strong down-regulation, and since surgery

normalized the biochemical parameters, we asked whether the

gene expression levels after surgery might be similar to lean

controls despite a higher BMI (33 versus 23). Comparing pre-

surgery samples to controls we found 861 differentially expressed

genes (244 more expressed and 617 less expressed in control

samples). PANTHER functional analysis showed a high degree of

similarity to the pre- versus post-surgery comparison (Figure 2 and

3). Moreover, the comparison of post-surgery samples to controls

revealed 254 differentially expressed genes (78 more expressed and

176 less expressed in control patient samples) (Dataset S3).

Functional analysis showed a distinct over-representation post-

operatively of the Immunity and defense sub-categories B-cell, T-

cell, and natural killer cell mediated immunity, and also the

Figure 2. Functional categorization of differentially expressed genes in subcutaneous adipose tissue after fat loss (Biological
Process). PANTHER was used to search for over-represented Biological Process categories among the most differentially expressed genes (q-
value = 0, fold change $1.5), comparing adipose tissue before versus after bariatric surgery (n = 16) and versus controls (n = 13). The color intensity
displays the statistical significance (2log p-value) of over- and under-represented PANTHER functional categories. A p-value,0.01 with Bonferroni
correction for multiple testing was used as inclusion criterion for categories. Numbers presented in the table indicate the percentage of genes within
a gene set that map to the given category, e.g. 18% of the 469 down-regulated genes map to the biological process ‘Immunity and defense’. The first
column states the overall distribution of a term among all human NCBI genes (25,431), e.g. 5% of the genes are expected to map to ‘Immunity and
defense’, hence this category is significantly over-represented among the down-regulated genes. Ref, reference (based on all human NCBI genes);
Pre, pre-surgery biopsies; Post, post-surgery biopsies; Ctr, biopsies of lean controls; Arrow up, up-regulated/more expressed genes; Arrow down,
down-regulated/less expressed genes.
doi:10.1371/journal.pone.0011033.g002
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category Proteolysis (Figure 2), suggesting that these processes

were not normalized after surgery. Moreover, the expression of

several genes involved in metabolic processes was higher in the

lean controls, including genes categorized to Fatty acid metabo-

lism, Amino acid metabolism, Carbohydrate metabolism, and

Coenzyme and prosthetic group metabolism (Figure 2). Of

particular note, genes encoding oxidoreductases, including

dehydrogenases, were expressed at higher levels in controls than

in post-surgery subjects (Figure 3, Table 6).

Promoter analysis of potential homeobox target genes
To further analyze the potential functions of homeobox

transcription factors in adipose tissue, we performed promoter

analysis of the most differentially expressed genes pre- versus post-

surgery. Between eight and 48% of the genes contained one or

more homeobox binding sites, depending on the homeobox

transcription factor (Table 7). Many individual genes contained

binding sites for several of the homeobox transcription factors

(Table S6). We also examined genes with homeobox binding sites

that were enriched in specific functional categories. The analysis

revealed a high number of genes with homeobox binding sites in

the PANTHER Molecular Function categories Transcription

factor, Extracellular matrix, Signaling molecule, Select regulatory

molecule and Receptor (Table 8, Table S7 and S8).

Discussion

In this study we have shown that profound fat loss substantially

alters the global gene expression profile of adipose tissue. To our

knowledge, this is the first microarray study on adipose tissue

obtained from patients treated with BPD/DS, the most effective

bariatric surgical procedure for fat loss [22]. The prospective design

and paired analysis reduces potential effects of genetic individuality.

Our analysis revealed a marked switch of transcription factor usage,

from a high expression of factors such as FOS, JUN, CEBPB,

CEBPD, ETS1 and ETS2 in the morbidly obese state, to an

increased expression of homeobox genes after profound fat loss. This

switch of transcription factor profiles was associated with a strong

reduction in inflammation and an increase in collagen expression.

Figure 3. Functional categorization of differentially expressed genes in subcutaneous adipose tissue after fat loss (Molecular
Function). PANTHER was used to search for over-represented Molecular Function categories among the most differentially expressed genes (q-
value = 0, fold change $1.5), comparing adipose tissue before versus after bariatric surgery (n = 16) and versus controls (n = 13). The color intensity
displays the statistical significance (2log p-value) of over- and under-represented PANTHER functional categories. A p-value,0.01 with Bonferroni
correction for multiple testing was used as inclusion criterion for categories. Numbers presented in the table indicate the percentage of genes within
a gene set that map to the given category, e.g. 8% of the 469 down-regulated genes map to the molecular function ‘Signalling molecule’. The first
column states the overall distribution of a term among all human NCBI genes (25,431), e.g. 3% of the genes are expected to map to ‘Signalling
molecule’, hence this category is significantly over-represented among the down-regulated genes. Ref, reference (based on all human NCBI genes);
Pre, pre-surgery biopsies; Post, post-surgery biopsies; Ctr, biopsies of lean controls; Arrow up, up-regulated/more expressed genes; Arrow down,
down-regulated/less expressed genes.
doi:10.1371/journal.pone.0011033.g003

Gene Expression after Fat Loss
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Improved treatment of obesity-related diseases requires a better

characterization of molecular mechanisms that determine adipose

tissue function. Transcription factors mediate cellular responses to

environmental and physiologic stimuli and intracellular signaling

cascades. The homeobox genes constitute a special group of highly

conserved transcription factors, characterized by a common DNA

binding motif, the homeodomain, usually comprising 60 amino

acids. Transcription factors encoded by the homeobox genes are

master regulators of developmental patterning and segment

diversification along the antero-posterior axis in every animal

[27]. As targets of endocrine stimuli, they also regulate a host of

processes related to normal and abnormal tissue development and

function in adults [28]. However, the downstream homeobox

target genes are largely unknown [29]. Moreover, little is known

about the functions of homeobox genes in relation to obesity,

though it has been suggested that they affect processes that are

integral to adipose tissue function, such as adipogenesis [30,31]. A

total of 235 homeobox genes were recently proposed to be

functional, categorized into eleven classes subdivided in 102

families [32].

Global gene expression studies comparing subcutaneous and

visceral adipose tissue have revealed depot-specific expression of

homeobox genes [33,34]. These observations have raised the

possibility that differential homeobox gene expression contributes

to an increased disease risk associated with visceral obesity. The

present study shows that the expression of several homeobox genes

is responsive to fat loss, shedding new light on a potentially

important role of homeobox transcription in adipose tissue.

However, it is unclear at this time whether and to what extent

homeobox transcription factors may promote fat loss, improve

adipose tissue function, and/or simply respond to changes in

adipose tissue mass. In the latter scenario, homeobox transcription

Table 2. Down-regulated genes in adipose tissue after profound fat loss (PANTHER category Other transcription factor, q-
value = 0).

Signal Intensity FC

Gene Definition Pre Post Ctr Post/Pre

BATF3 basic leucine zipper transcription factor, ATF-like 3 418 209 179 21.98

CEBPB CCAAT/enhancer binding protein (C/EBP), beta 12662 6983 6217 21.83

CEBPD CCAAT/enhancer binding protein (C/EBP), delta 5840 1917 2094 23.23

ELF1 E74-like factor 1 (ets domain transcription factor) 2180 1425 1141 21.52

ETS1 v-ets erythroblastosis virus E26 oncogene homolog 1 3414 2113 2059 21.61

ETS2 v-ets erythroblastosis virus E26 oncogene homolog 2 1782 632 561 23.06

FOS v-fos 12716 1193 1196 224.77

FOSB FBJ murine osteosarcoma viral oncogene homolog B 25252 2392 970 253.39

FOSL1 FOS-like antigen 1 509 186 162 22.59

FOSL2 FOS-like antigen 2 308 192 187 21.60

FOXC1 forkhead box C1 2787 1119 942 22.63

IFI16 interferon, gamma-inducible protein 16 2630 1382 857 21.84

IRF1 interferon regulatory factor 1 3073 864 636 23.64

IRF7 interferon regulatory factor 7, transcript variant b 852 430 346 22.03

JUN jun oncogene 8097 1773 1496 25.20

JUNB jun B proto-oncogene 2005 319 236 27.58

JUND jun D proto-oncogene 20307 9053 9233 22.33

LITAF lipopolysaccharide-induced TNF factor 4585 2879 2871 21.63

MAFF v-maf (avian), transcript variant 1 367 189 178 21.93

MNDA myeloid cell nuclear differentiation antigen 572 277 185 22.06

NFATC1 nuclear factor of activated T-cells, transcript var 1 548 237 228 22.28

NFE2 nuclear factor (erythroid-derived 2), 45kDa 411 185 153 22.27

NFE2L2 nuclear factor (erythroid-derived 2)-like 2 2001 1351 1180 21.50

NFIL3 nuclear factor, interleukin 3 regulated 1601 447 349 23.90

RFX2 regulatory factor X, 2, transcript variant 2 317 199 202 21.55

SERTAD1 SERTA domain containing 1 2745 565 448 25.65

SMAD7 SMAD family member 7 354 228 268 21.53

SPRY1 sprouty homolog 1 (Drosophila), transcript variant 1 6884 3739 2578 21.85

SPRY4 sprouty homolog 4 (Drosophila) 665 385 350 21.78

TEAD4 TEA domain family member 4, transcript variant 3 465 227 232 21.98

TSC22D1 TSC22 domain family, member 1, transcript variant 2 1511 835 1022 21.80

TSC22D2 TSC22 domain family, member 2 2082 783 591 22.79

Post, post-surgery; Pre, pre-surgery; Ctr, lean healthy controls; FC, fold change (based on log-transformed data).
doi:10.1371/journal.pone.0011033.t002
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Table 3. Up-regulated genes in adipose tissue after profound fat loss (PANTHER category Developmental processes, q-value = 0).

Signal Intensity FC

Gene Definition Pre Post Ctr Post/Pre

ANG angiogenin, transcript variant 2 1266 2083 2577 1.65

BHLHB5 basic helix-loop-helix domain containing, class B, 5 265 444 246 1.64

CD34 CD34 antigen, transcript variant 2 1711 2698 2348 1.59

CRABP2 cellular retinoic acid binding protein 2 460 823 504 1.72

GSDML gasdermin-like (GSDML), transcript variant 1 283 531 711 1.76

IGLL1 immunoglobulin lambda-like polypeptide 1, trans var 1 1228 5219 317 3.61

IL11RA interleukin 11 receptor, alpha, transcript variant 1 1350 2177 1528 1.62

KIT v-kit 344 640 376 1.78

PCDH18 protocadherin 18 1125 2690 2430 2.33

PRICKLE1 prickle homolog 1 (Drosophila) 364 599 472 1.65

THRA thyroid hormone receptor, alpha, transcript variant 2 316 636 396 1.82

Homeobox transcription factor

EMX2 empty spiracles homeobox 2 244 404 312 1.63

MEOX2 mesenchyme homeobox 2 223 335 365 1.54

HOXA5 homeobox A5 801 1853 1608 2.38

HOXA9 homeobox A9 217 506 445 2.29

HOXB5 homeobox B5 308 466 465 1.52

HOXC6 homeobox C6, transcript variant 1 1243 2290 1988 1.86

IRX3 iroquois homeobox 3 532 1196 1007 2.10

IRX5 iroquois homeobox protein 5 166 254 228 1.50

PRRX1 paired related homeobox 1, transcript variant pmx-1a 2418 4251 2120 1.76

Post, post-surgery; Pre, pre-surgery; Ctr, lean healthy controls; FC, fold change (based on log-transformed data).
doi:10.1371/journal.pone.0011033.t003

Table 4. Up-regulated genes in adipose tissue after profound fat loss (PANTHER category Extracellular matrix, q-value = 0).

Signal Intensity FC

Gene Definition Pre Post Ctr Post/Pre

CLEC3B* C-type lectin domain family 3, member B 3084 5104 4686 1.58

COL1A1 collagen, type I, alpha 1 1607 9727 2847 6.25

COL1A2 collagen, type I, alpha 2 2648 10595 3999 4.22

COL3A1 collagen, type III, alpha 1 7101 13956 7696 2.11

COL5A1* collagen, type V, alpha 1 1408 2346 1595 1.62

COL6A3 collagen, type VI, alpha 3, transcript variant 1 3409 5433 3349 1.60

COL6A3 collagen, type VI, alpha 3, transcript variant 3 5416 9027 5594 1.67

FLRT2 fibronectin leucine rich transmembrane protein 2 312 516 381 1.63

ISLR immunoglobulin superfamily L-rich repeat, trans var 1 493 869 630 1.73

KIAA0644 KIAA0644 gene product 241 471 403 1.91

LRRC17* leucine rich repeat containing 17, transcript variant 2 259 751 526 2.78

LRRC17* leucine rich repeat containing 17, transcript variant 1 175 316 253 1.76

MMP23B matrix metallopeptidase 23B 286 606 377 2.03

PCOLCE procollagen C-endopeptidase enhancer 878 1906 1052 2.10

PODN* Podocan 1805 2904 2148 1.62

*Also represented in the category Developmental processes.
Post, post-surgery; Pre, pre-surgery; Ctr, lean healthy controls; FC, fold change (based on log-transformed data).
doi:10.1371/journal.pone.0011033.t004
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factors may mediate the induction of factors involved in adipose

tissue remodeling. A role for homeobox genes in tissue

regeneration and repair has been observed [35]. Conceivably,

the suggested role for homeobox genes in fibroblast differentiation

[36] and adipogenesis [30,31] may also point towards an

involvement in adipose tissue development and adipocyte

turnover. Functional studies of homeobox genes in preadipocytes

as well as in earlier adipocyte precursor cells may lead to

important new knowledge about adipose tissue biology. Our

promoter analysis points towards a role for homeobox transcrip-

tion factors in regulating a host of other transcription factors and a

variety of molecular functions. Moreover, our study highlights the

possibility that homeobox transcription factors may mitigate

inflammation, or that a low expression during obesity may

predispose to inflammation because of a reduced capability of

tissue repair. Such a protective role for homeobox genes was

demonstrated in the lungs of Hoxa5 knock-out mice, which were

characterized by a perpetuated infiltration of activated macro-

phages [37].

The extracellular matrix is integral to tissue biology, and

alteration of its functions has been implicated in a host of chronic

conditions including obesity [8,18]. In the present study of adipose

tissue we found a strong over-expression in morbid obesity of

several fibrogenic factors, including macrophage-secreted factors

[16], ETS transcription factors [38], hypoxia-inducible factor

(HIF)-1A [9], plasminogen activator inhibitor (PAI)-1/SERPINE1

(Entrez Gene 5054) [39], tenascin C (TNC) (Entrez Gene 3371)

[40], serum/glucocorticoid kinase (SGK) (Entrez Gene 6446) [41],

and connective tissue growth factor (CTGF/CCN2) (Entrez Gene

1490) [38]. It has been proposed that the inflammation and

dysfunction of adipose tissue in obesity results from hypoxia-

mediated fibrosis, which may promote adipocyte necrosis during

continued adipocyte expansion [9]. A possible link between

Table 5. Validation of selected genes by qPCR.

Fold change (Post/Pre)

Illumina AB 1700 qPCR qPCR

(n = 16) (n = 9) (n = 9) 95% CI

COL1A1 6.25 8.20 2.35 1.32–4.17

COL6A3var1+3 1.63 1.32 1.20 0.70–2.04

EMX2 1.63 3.18 1.92 1.53–2.40

HOXA5 2.38 1.05 2.07 1.65–2.60

HOXA9 2.29 1.94 2.23 1.62–3.07

HOXB5 1.52 3.28 2.03 1.46–2.82

HOXC6 1.86 1.23 1.93 1.63–2.29

IRX3 2.10 3.22 3.59 2.23–5.76

IRX5 1.50 2.76 2.41 1.64–3.53

PRRX1 1.76 1.45 1.53 1.20–1.96

Post, post-surgery; Pre, pre-surgery; Illumina, Illumina microarrays; AB 1700, AB
1700 microarrays; qPCR, quantitative real-time RT-PCR; CI, confidence interval.
doi:10.1371/journal.pone.0011033.t005

Table 6. Up-regulated genes in adipose tissue of lean healthy controls versus post-surgery subjects (Oxidoreductase, q-value = 0).

Signal Intensity FC

Gene Definition Pre Post Ctr Ctr/Post

ALDH1L1 aldehyde dehydrogenase 1 family, member L1 666 845 1504 1.91

ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) 5430 5705 9662 1.71

ASPH aspartate beta-hydroxylase, transcript variant 1 824 558 877 1.62

CYB5A cytochrome b5 type A (microsomal) 5401 7024 10780 1.55

ECHDC3 enoyl Coenzyme A hydratase domain containing 3 1638 1686 3745 2.31

ECHS1 enoyl Coenzyme A hydratase, short chain, 1 (mitoch) 3167 3433 5864 1.72

HADH hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl- coenzyme A thiolase/enoyl-Coenzyme A
hydratase (trifunctional protein), alpha subunit

4908 6078 9840 1.63

MAOA monoamine oxidase A 5771 6082 9997 1.69

PECR peroxisomal trans-2-enoyl-CoA reductase 1063 1172 1911 1.66

PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, var1 604 378 676 1.75

PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2, var2 4692 3101 4711 1.56

SC5DL sterol-C5-desaturase-like 765 797 1527 1.89

SEPW1 selenoprotein W, 1 1451 1093 1675 1.56

Post, post-surgery; Ctr, lean healthy controls; FC, fold change (based on log-transformed data).
doi:10.1371/journal.pone.0011033.t006

Table 7. Number of differentially expressed genes with
binding sites for selected homeobox transcription factors.

Homeobox Up-Regulated Down-Regulated

TF Genes (152) Genes (469)

EMX2 14 (9%) 40 (9%)

HOXA5 44 (29%) 116 (25%)

HOXA9 59 (39%) 224 (48%)

HOXB5 28 (18%) 75 (16%)

HOXC6 37 (24%) 102 (22%)

IRX3 34 (22%) 73 (16%)

IRX5 51 (34%) 145 (31%)

PRRX1 13 (9%) 36 (8%)

One or more 110 (72%) 344 (73%)

doi:10.1371/journal.pone.0011033.t007
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adipose tissue collagen and metabolic health was demonstrated in

collagen VI knock-out mice, which were protected from metabolic

derangements despite a massive increase in fat mass [42]. In

addition, a recent study found a positive correlation between

adipose tissue COL6A3 mRNA and body-mass index in humans

and suggested that increased collagen VI expression may promote

adipose tissue inflammation [43]. Of note, although we found a

significant mean increase in COL6A3 expression after fat loss,

some patients showed a higher expression in obesity, suggesting

some inter-individual variation. Nonetheless, our finding that

collagen gene expression was reduced in obesity relative to normal

controls and after profound fat loss appears to conflict with these

studies, and with the proposed negative impact of adipose tissue

collagen on metabolic health. It should be noted that a previous

study found no reversal of adipose tissue fibrosis in morbidly obese

patients three months after gastric bypass surgery [8], suggesting

that metabolic health can improve despite adipose tissue fibrosis

being irreversible. It is conceivable that adipose tissue fibrosis

impairs tissue function only during energy surplus, which is

unlikely in the post-operative and malabsorptive state. Moreover,

excessive collagen deposition may mainly occur in the presence of

chronic cellular stress such as hypoxia and inflammatory responses

[44,45]. Contrary to pro-inflammatory transcription factors, there

is evidence from mice suggesting that homeobox transcription

factors promote normal tissue repair, despite a substantial increase

in collagen synthesis and deposition [46]. Taken together, it is

possible that a switch from pro-inflammatory transcription factors

to homeobox transcription factors enables a metabolically

favorable remodeling of adipose tissue after profound fat loss.

The amount of down-regulated genes and the degree of down-

regulation were not as high in a previous study of differential gene

expression after Roux-en-Y gastric bypass [17], which may be

explained by the longer duration of our study (one year versus

three months). Importantly, we did not employ a very low calorie

diet (VLCD) prior to surgery, and post-surgery biopsies were

obtained when fat loss began to plateau. We believe that the

profound fat loss of our subjects represents close to the largest

change in adipose tissue biology that can be obtained with current

obesity treatment. The marked down-regulation in the pilot study

prompted us to determine whether gene expression may be

reduced to a below-normal level after such profound fat loss. By

also including lean controls in the main study, we found that most

genes returned to a normal level post-surgery despite a higher BMI

than in lean controls (33.1 versus 23.0 kg/m2). In this regard, it is

interesting to note that insulin sensitivity measures in weight-stable

bariatric patients one year post-surgery were closer to lean subjects

than to weight-matched controls [47]. Also of note we found a

normalization of local markers of insulin resistance in adipose

tissue, such as SOCS3 and IRS1 [48,49]. Furthermore, the

inflammatory gene expression in adipose tissue of obese

subjects after a 28-day VLCD was more similar to lean than

obese subjects [13]. On the other hand, in the present study many

genes involved in metabolic processes did not reach the same

expression level post-surgery as in lean controls, suggesting an

effect of the higher BMI or other factors in the post-surgery state.

This observation encourages further study of the identified

metabolic genes in the post-operative state, and weight-matched

controls should be used.

We found some variation between the pilot and main study.

The higher number of patients in the main study yielded a higher

statistical significance, revealing over-representation of PAN-

THER categories such as Extracellular matrix structural protein,

which in the pilot study did not meet the strict significance

criterion (p-value,0.01 with Bonferroni correction). In the

PANTHER analysis we used fold change $1.5 and q-value = 0

as inclusion criteria for differentially expressed genes. Several of

the same homeobox genes were differentially expressed with fold

change $1.5 in the pilot study as in the main study, though only

IRX3, IRX5, HOXC9 (Entrez Gene 3225), HOXC10 (Entrez

Gene 3226) and NANOG (Entrez Gene 79923) also met the q-

value = 0 criterion (Table S4). Moreover, variation in fold change

values in the two analyses may be ascribed to the different

detection systems. The chemiluminescence based AB expression

array system is more sensitive and covers a broader range of signal

intensities than the fluorescence based Illumina system. The

combination of two microarray platforms strengthens our

database.

Alterations in adipose tissue gene expression after bariatric

surgery may partly be due to changes in the cellular composition of

the tissue. In this regard, it is noteworthy that we obtained biopsies

by surgical excision. Surgical biopsy was demonstrated to be

superior to the needle biopsy technique, as the latter incompletely

extracts the stromal vascular fraction [50]. Stromal vascular cells

include non-adipose cell types such as preadipocytes, macrophages

and lymphocytes that are integral to adipose tissue biology and

whose functions are altered in obesity [8,15,16,17,51,52,53]. The

strong down-regulation of gene expression in our study may partly

reflect a reduced number and/or activity of these cell types, in

particular immune cells. On the other hand, the genes with an

increased expression after surgery are more likely to be actively up-

regulated in cells whose phenotypes are altered by profound fat

loss, including adipocytes, preadipocytes, and fibroblasts.

In summary, a switch from stress response to increased

expression of homeobox transcription factors may represent a

mechanism whereby adipose tissue function improves after fat loss

and is maintained in normal tissue. Our results encourage further

study of the potential roles for homeobox genes in regulating

adipose tissue function.

Supporting Information

Table S1 Medication in 16 patients before and one year after

bariatric surgery.

Found at: doi:10.1371/journal.pone.0011033.s001 (0.01 MB

PDF)

Table S2 Expression values of selected genes previously

implicated in obesity, and that were differentially expressed in

adipose tissue one year after bariatric surgery.

Found at: doi:10.1371/journal.pone.0011033.s002 (0.01 MB

PDF)

Table 8. Number of genes in over-represented PANTHER
categories with binding sites for one or more of the
homeobox transcription factors.

PANTHER Molecular Function Up-regulated Down-regulated

Molecular function unclassified 23 (68%) 108 (96%)

Transcription factor 17 (74%) 67 (99%)

Extracellular matrix 7 (44%) 6 (98%)

Signalling molecule 7 (100%) 37 (95%)

Select regulatory molecule 6 (74%) 35 (97%)

Receptor 5 (31%) 41 (84%)

*Percent of total number of genes in each category (Figure 3, Post/Pre).
doi:10.1371/journal.pone.0011033.t008
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Table S3 Description of differentially expressed genes in adipose

tissue before versus after bariatric surgery, belonging to the

PANTHER functional categories Other transcription factor,

Developmental Processes, Homeobox transcription factor and

Extracellular Matrix.

Found at: doi:10.1371/journal.pone.0011033.s003 (0.02 MB

PDF)

Table S4 Differentially expressed homeobox transcription

factors in adipose tissue.

Found at: doi:10.1371/journal.pone.0011033.s004 (0.02 MB

PDF)

Table S5 Forward and reverse primers and UPL probes used for

qPCR.

Found at: doi:10.1371/journal.pone.0011033.s005 (0.01 MB

PDF)

Table S6 Down-regulated genes in adipose tissue after bariatric

surgery that contain one or more binding sites for one or more

homeobox transcription factors.

Found at: doi:10.1371/journal.pone.0011033.s006 (0.03 MB

PDF)

Table S7 Up-regulated genes in adipose tissue after bariatric

surgery that contain one or more binding sites for one or more

homeobox transcription factors.

Found at: doi:10.1371/journal.pone.0011033.s007 (0.01 MB

PDF)

Table S8 PANTHER categories enriched with differentially

expressed genes that contain one or more binding sites for one or

more homeobox transcription factors.

Found at: doi:10.1371/journal.pone.0011033.s008 (0.02 MB

PDF)

Text S1 Materials and methods (AB 1700 Expression Array

system)

Found at: doi:10.1371/journal.pone.0011033.s009 (0.03 MB

DOC)

Figure S1 Functional categorization of differentially expressed

genes in adipose tissue after fat loss (AB 1700, n = 9). PANTHER

was used to search for over-represented functional categories

among the most differentially expressed genes (q-value = 0, fold

change at least 1.5). The color intensity displays the statistical

significance (2log p-value) of over- and under-represented

PANTHER functional categories. Red color signifies an over-

representation of genes mapping to a certain term, blue color an

under-representation and white a representation as expected based

on the overall distribution on the array. A p-value,0.01 was used

as inclusion criterion for categories, with Bonferroni correction for

multiple testing. Numbers presented in the table indicate the

percentage of genes within a gene set that map to the given

category, e.g. 18% of the 499 down-regulated genes map to the

biological process ‘Immunity and defense’. The first column states

the overall distribution of a term among all human NCBI genes

(25,431), e.g. 5% of the genes are expected to map to ‘Immunity

and defense’, hence this category is significantly over-represented

among the down-regulated genes. Of note, unlike the Illumina

data, the data showed an up-regulation of genes involved in B-cell

and antibody-mediated immunity (e.g. immunoglobulins). How-

ever, the majority of these genes had records that were

discontinued in the Entrez Gene database or were listed as

hypothetical proteins. Ref, reference (based on all human NCBI

genes); Pre, pre-surgery biopsies; Post, post-surgery biopsies; Ctr,

lean controls; Arrow up, up-regulated/more expressed genes;

Arrow down, down-regulated/less expressed genes (e.g. arrow up

in Ctr/Post signifies higher expression in Ctr).

Found at: doi:10.1371/journal.pone.0011033.s010 (0.48 MB

TIF)

Dataset S1 Illumina microarray analysis of adipose tissue before

versus one year after bariatric surgery.

Found at: doi:10.1371/journal.pone.0011033.s011 (7.15 MB

XLS)

Dataset S2 AB 1700 microarray analysis of adipose tissue before

versus one year after bariatric surgery.

Found at: doi:10.1371/journal.pone.0011033.s012 (8.84 MB

XLS)

Dataset S3 Illumina microarray analysis of adipose tissue

comparing morbidly obese and lean subjects.

Found at: doi:10.1371/journal.pone.0011033.s013 (7.22 MB

XLS)
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