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Summary 

Summary 

Mass spectrometry based proteomics has evolved into a powerful tool in 

characterising proteins and their respective function in the cell. A proteins cellular 

localisation, concentration and activity is regulated by several cellular processes including 

the regulation by protein post-translational modifications (PTMs). PTMs can be viewed as 

cellular switches that enable or disable specific functions for a protein and they represent a 

huge potential in understanding protein pathways in the context of protein and protein 

complex regulation. To date there are over 300 known PTMs which regulate protein 

structure and function, and their characterisation, as well as the discovery of new PTMs, 

have immense implications for cell biological and clinical research. However, the detection 

of PTMs using mass spectrometry is not straightforward. An automatic setup of a mass 

spectrometer traditionally selects the 2-5 most intense peptides for fragmentation and 

identification, leaving the rest, less abundant peptides, to pass. Since the majority of post-

translationally modified peptides are low abundant and therefore probably not selected for 

fragmentation and identification, this is a sub-optimal procedure for detecting PTMs. Based 

on this we wanted to develop bioinformatics software able to increase fragmentation events 

and identifications of post-translationally modified peptides, using a targeted mass 

spectrometry approach. 

This resulted in the development of POSTMan (POST-translational Modification 

analysis). The underlying principle of this software is to compare two LC-MS runs and search 

for post-translationally modified peptides as pairs with their unmodified counterparts, either 

between the two individual LC-MS runs or within one run. POSTMan was designed to be as 

generic as possible, meaning that in principle any PTM irrespective of mass could be 

identified with this software. We applied the software to an acetylated model protein of 

Cytochrome c to verify its capability in identifying the acetylated peptides, as well as the 

tumour suppressor protein p53 to assess the PTM patterns of acetylation and propionylation. 

Propionylation was recently discovered as a novel in vivo PTM both on histones and 

non-histone proteins. The biological role of propionylation however, is currently unknown. 

Propionylation as an in vivo PTM, as well as its possible involvement in p53 regulation, was 

addressed using POSTMan and immunoblotting. Novel pan-specific anti-propionyllysine 

antibodies were raised, characterised and utilized in the study of p53 propionylation. These 
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antibodies showed specificity for propionyllysine with no cross reaction to acetyllysine, and 

will be important reagents that can be used for global proteomic investigation of 

propionylation as a regulatory PTM. 
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1 Introduction 

1.1 Mass spectrometry based proteomics 

Over a decade ago, in 1996, Marc Wilkins introduced the term “proteome” as the “total 

protein complement of a genome” (Wilkins et al, 1996b). The proteome is dynamic, highly 

regulated and in constant change in respect to cell type, cell cycle, stimuli, and other tissue 

or organ specific factors. There is a multitude of regulatory processes taking place 

simultaneously in the cell: Synthesis and degradation of proteins, protein transport, gene 

transcription and translation, exocytosis and endocytotic mechanisms to name a few. The 

cell therefore requires exquisite regulation of these proteins to successfully orchestrate 

these processes. Prominent mechanisms of protein regulation include post-translational 

modifications (PTMs) by other proteins, protein cleavages and thus activation of new 

functions, localisation of proteins in different cell compartments and translocation between 

them, all which contribute to the final concentration, location and activity of each protein. 

Altered behaviour of proteins due to regulation, or lack of such, results in a myriad of 

pathological conditions; proteins are for this reason the primary targets for drug design. 

Understanding protein structure, function, regulation and interaction with other proteins is 

essential in biomedical research with the aim of understanding and curing disease. This huge 

regulatory dynamic presents technological challenges for the proteomic researcher, and 

proteomic experiments need to be interpreted in the context of the right cell conditions.  

Up until 15 years ago, Edman degradation was the only established method to 

reliably determine the amino acid sequence of a protein. Peptides with a maximum length of 

20-40 amino acids were sequenced in an iterative manner by removing N-terminal amino 

acids one by one and identified by ultra-violet high performance liquid chromatography (UV-

HPLC). This required the protein to be pure, for example from 2-dimensional poly-acrylamide 

gel electrophoresis (2D-PAGE), and contain a free N-terminus. However, the majority of all 

proteins have their N-terminus blocked by for example a formyl, acetyl or acyl group. These 

proteins had to be first cleaved to produce peptides with free N-terminus and then one or 

more could be purified and now sequenced. The introduction of mass spectrometry based 

proteomics however has enabled moving from the analysis of single proteins to analysing 

the entire population of expressed proteins in a cell, the proteome (Wilkins et al, 1996a). 
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Mass spectrometry based proteomics includes the use of annotated genomes for 

peptide and protein identification. Annotated genomes are a prerequisite for high-

throughput proteomics, while in the cases of un-annotated genomes it is limited by time-

consuming peptide de novo sequencing. The high-throughput sequencing of genomes 

together with recent improvements in instrumentation, both mass spectrometers and liquid 

chromatography (presented later), are the major technological advances for proteomics-

based research. Mass spectrometry based proteomics is usually divided into “top-down” and 

“bottom-up” proteomics. There exists some ambiguity about the usage of these two terms, 

but the most common usage describes top-down as a protein centric method where 

proteins are identified by mass spectrometry without the use of proteolytic enzymes. 

Bottom-up proteomics on the other hand describes a peptide centric method where 

proteins are cleaved by proteolytic enzymes, for example trypsin, and identified by the 

presence of their respective peptides. This latter proteomic approach is mostly used in large 

scale proteomics experiments due to its robustness to complex protein mixtures and is the 

method chosen for this thesis. To a large degree the complexity of the peptide mixture 

dictates which method of generating peptide ions (ionisation) would be most suitable. 

Matrix-assisted laser desorption ionization (MALDI) instruments are suitable for low 

complexity peptide mixtures whereas HPLC coupled electrospray ionization (ESI) instruments 

are ideal for highly complex peptide mixtures. In addition, a number of different mass 

analysers exist: quadrupole (Q), time-of-flight (ToF) tube, ion-trap and orbitrap to mention a 

few. Mass analysers can be used in different combinations inside the instrument, creating a 

tandem mass spectrometer. When peptides are analysed using a single mass analyser the 

data is termed MS1 and the spectrum an MS spectrum. When peptides are analysed by two 

mass analysers (and usually but not necessarily fragmented in between) the data is termed 

MS2 and the obtained spectrum an MS/MS spectrum. In order to fragment the peptides and 

generate MS/MS spectra a tandem mass spectrometer is needed. 

1.1.1 Matrix-assisted laser desorption ionization time-of-flight instruments in 

proteomics 

MALDI-ToF instruments have for more than a decade been the cornerstone of peptide and 

protein mass spectrometry, and represents an improvement on the soft laser desorption 

(SLD) work by Koichi Tanaka in 1987. Using SLD, Tanaka was able to ionise biomolecules up 
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to 34 kDa whereas further experiments with different matrices, laser wavelengths and laser 

types enabled MALDI to ionise even larger biomolecules. The principles of MALDI analysis 

rely on the transfer of energy from a laser source to the peptides embedded within a 

defined crystal structure or matrix. Peptides are embedded in the matrix and placed on a 

steel target plate to air dry. Inside the source of the mass spectrometer a laser beam fires 

high energy photons onto the matrix-peptide structure which absorbs this energy, 

evaporates and thus desorbs the peptides embedded in the matrix. The matrix catalyses the 

transfer of energy from the laser beam to the peptides, generating ionised peptides. 

Predominantly singly charged ion species are generated using MALDI and this allows 

relatively simple determination of peptide mass. A mass spectrum of all ionised peptides 

from a protein is termed a peptide mass fingerprint (PMF) and the masses for all the 

peptides therein can be searched against publically available protein databases for 

identification of the protein. However, if the protein is not in the database, for example due 

to non-existing annotated genomes, the protein can not be identified this way. If the 

instrument used is a tandem mass spectrometer, peptides can be selected for fragmentation 

either with collision induced dissociation (CID) or post-source decay resulting in a MS/MS 

fragment spectrum where the amino acid sequence can be determined. A detailed 

description of fragmentation theory and nomenclature is beyond the scope of this thesis; 

the reader is referred to excellent literature covering this topic (Roepstorff & Fohlman, 1984). 

However it is worth noting that a significant advantage of MALDI is its capacity to generate 

and detect low-mass ions during the fragmentation of peptides. In the low-mass region 

amino acids, dipeptides and immonium-ions can be observed. Immonium-ions are ions 

resulting from an internal peptide cleavage during fragmentation and specific immonium-

ions and further fragments of these have previously been used to determine the presence of 

PTMs on specific amino acids within the peptide sequence (Kim et al, 2002). A significant 

disadvantage of MALDI is its capacity for high throughput analysis of peptides. MALDI is 

limited to low complexity peptide mixtures for the reason that all different peptides are 

detected in the same spectrum making ion suppression and reliable peak detection a 

problem. For further reading, a nice introduction to MALDI mass spectrometry has been 

published by Bonk and Humeny (Bonk & Humeny, 2001). 
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1.1.2 Electrospray hybrid quadrupole time-of-flight instruments in 

proteomics 

A complementary method to MALDI for generating peptides as ions in the gas phase is ESI. 

Electrospray as ionization technique of peptides was developed by John Bennett Fenn in 

1988; one year after SLD had its breakthrough. The big advantage over MALDI instruments is 

its readily coupling with HPLC and ionisation of peptides in solution. Peptides or complex 

peptide mixtures can be separated on a HPLC and eluted from the HPLC column straight into 

a spray needle. This separation of peptides is usually performed as reverse phase 

chromatography where the solution used for peptide elution is organic, for example 

methanol or acetonitrile, both being ideal mass spectrometry friendly eluents. In the 

presence of an applied voltage, positive charge is concentrated at the needle tip causing 

peptide ionisation in solution due to the low pH. The spray needle produces small droplets 

of solution which, during several bursts into smaller droplets, finally leaves the charge on the 

peptide itself. This is how peptides are ionised and transformed into the gaseous phase. ESI 

produces predominantly multiply charged (two or more protons per peptide) peptides 

compared with predominantly singly charged peptides generated using MALDI (see Section 

1.1.1). This results in variations of charge states for every peptide, dividing the total intensity 

of a peptide on the different charge states, an issue that reduces sensitivity and increases 

spectrum complexity. This issue is relevant to the results and development of the software 

described in the main body of this thesis. 

Most standard analyses apply data dependent acquisition (DDA) methods. Under 

these conditions ESI-QToF (hybrid quadrupole time-of-flight) instruments are configured to 

alternate between MS and MS/MS mode repeatedly throughout the elution. This produces 

one MS scan of all the peptides present at that time point (survey scan) followed by 

fragmentation scans of typically the 2-5 most intense peptides present in the survey scan 

before a new cycle starts over. This allows for automatic fragmentation of several peptides 

during elution and provides a comprehensive set of data for identification of the proteome. 

For further reading, an excellent introduction to QToF mass spectrometry has been 

published by Chernushevich et al.(Chernushevich et al, 2001). 
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1.1.3 On-line peptide separation using high performance liquid 

chromatography in proteomics 

HPLC had its breakthrough during the 1970s and is today one of the most widely used 

analytical separation techniques. It has the ability to separate, identify and quantitate most, 

if not all, compounds that are present in a sample dissolved in liquid. In proteomics HPLC is 

used for peptide and/or protein separation, either off-line or on-line coupled to a mass 

spectrometer. Off-line HPLC allows for the use of non MS-friendly, non-high-throughput 

methods like salt-containing buffers, extensive gradients and multi-dimensional orthogonal 

fractionation. In on-line HPLC the mass spectrometer is directly coupled to the HPLC via the 

ESI source providing separation of peptides based on peptide properties like hydrophobicity 

before analysis in the mass spectrometer. This allows the analysis of very complex peptide 

mixtures such as cell lysates and provides an extra separation dimension to mass 

spectrometry. The peptides are separated leading to reduction in complexity. This allows the 

mass spectrometer to select more peptides for fragmentation and increases the number of 

total peptides fragmented. Mass spectrometry data acquired with a HPLC in front is termed 

LC-MS data. Furthermore, the mass, retention time and elution profile of every peptide can 

be utilized to extract information contributing to the verification of the peptide sequence. 

This has been utilized in the development of “accurate mass tag” (AMT) databases where 

the peptide mass and normalised retention time is stored with the peptide identity (May et 

al, 2007; Smith et al, 2002). An unknown peptide can be matched with this database by its 

retention time and mass, leading to sequence identification. Furthermore, peptides with 

PTMs can be distinguished by a difference in retention time. For example, a phosphorylated 

peptide tends to elute later in reverse-phase chromatography than its non-phosphorylated 

counter peptide. We exploited this characteristic in the presented studies and this will be 

discussed later. 

It is important if not crucial to have reliable, reproducible chromatography if these 

co-ordinates are to be used as a comparative means of analysis from run to run. If not, 

technical issues can cause retention time drifts between two samples and result in poor 

comparison if not corrected using LC-alignment algorithms.  
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1.1.4 Liquid chromatography alignment 

The software developed in this thesis is designed to compare successive liquid 

chromatography (LC) runs and therefore relies heavily on optimal chromatography 

conditions as well as the ability to generate reproducible chromatograms from run to run. 

This is not trivial as there are a number of issues which need to be considered. In practice 

there is always drift between two or more LC-MS datasets, either they are produced as 

successive samples or produced at completely different time points. However, the difference 

can be minimized by limiting the time between the analyses and keeping as many conditions 

as stable as possible, for example temperature and solvent composition. LC-MS data can be 

complicated by technical drifts in both mass-to-charge (m/z) and retention time of the 

peptides, the latter being the most predominant. LC drifts are caused by continuous 

accumulation of packing and contamination of the HPLC column, pressure and temperature 

fluctuations as well as instrument and flow rate stability. Inter- and intra-day variations in 

peptide elution time can cause poor comparison between samples, due to both linear and 

non-linear distortion of elution patterns. An example is shown in Figure 1-1. To compensate 

for HPLC drift between samples, alignment algorithms have to be applied. Several different 

approaches have been described in the literature and recently reviewed by Vandenbogaert 

et al. (Vandenbogaert et al, 2008). In brief, alignment approaches can be divided into two 

categories: Alignment of total-ion-count (TIC) or alignment of peptide features after 

processing and identification of the most important peptides. The aim is, independent of the 

method applied, to shift the retention time of peptides in one or more datasets in such a 

way that the datasets can be compared. 
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Figure 1-1. LC-alignment. Two chromatograms of the same sample where the bottom chromatogram has a 6 

minutes negative drift. L1 denotes the 6 minutes drift in the beginning of elution, while L2 shows that the 

drift at the end of elution has changed from 6 minutes to 3 minutes. The drift is therefore not linear, and the 

peptide separation pattern throughout the chromatogram is also evidently distorted. 

1.1.5 PTM detection using mass spectrometry 

As mentioned above (see Section 1.1.2), the traditional operation of a HPLC coupled ESI 

instrument is to perform a MS survey scan followed by 2-5 MS/MS scans on the most 

abundant peptides. This is termed Data Dependent Acquisition (DDA) and serves as a good 

mean to sequence and identify as many peptides as possible during elution from the HPLC. 

When complex peptide mixtures are used, for example cell lysates, the number of peptides 

identified depends mainly on the instrument speed and the separating capacity of the 

column. But even with the most sophisticated state-of-the-art mass spectrometers, the low 

abundant peptides in a complex mixture will be lost when operating in DDA mode, leading to 

a systematic undersampling of peptide identifications (Figure 1-2). Proteins often suffer from 

sub-stoichiometric modifications; meaning that of the total amount of a specific protein only 

a few percent is modified in the cell. A cell lysate which has been digested and separated on 

HPLC prior to mass spectrometry has many peptides with a varying abundance, in which the 

post translationally modified peptides typically are low abundant species. In traditional DDA 

instrument operation, since only the 2-5 most abundant peptides are selected for 

fragmentation, the low abundant, and possibly post-translationally modified, peptides are 

often not selected for fragmentation. To address this, we wanted to develop bioinformatics 

software and increase the number of fragmented peptides with PTMs by targeted analysis. 

This software we have called POSTMan (POST-translational Modification analysis). Along 

similar lines other bioinformatic routes have also been chosen to address the same goal. 
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Figure 1-2. Peptide undersampling during mass spectrometry analysis operating in DDA mode. The three 

most abundant peptides (green circles) are chosen for fragmentation where the low abundant peptides (red 

circles) are lost. Peptides carrying PTMs are usually in the “red population” due to sub-stoichiometric 

modification. 

1.2 Current bioinformatics software developed for proteomics and PTM 

detection 

Bioinformatics has an enormous task in proteomics. From the second the peptide is 

recorded as a signal in the mass spectrometer the software takes over from upstream 

processing events. Bioinformatics software need to be designed to cope with several issues: 

Different proprietary MS file formats, the MS signal need to be filtered from the background 

noise, detected as a peak, de-isotoped to identify the monoisotopic m/z-value of the peptide, 

charge de-convoluted to find the correct mass of the peptide and, if to be compared, aligned 

in respect to retention time, intensity normalised and matched with another peptide within 

the same or a different sample. Furthermore, software search engines assign sequence 

identities to the peptides and cluster them together to provide protein information which 

can be further analysed by cluster analyses which groups the MS inferred proteins together 

in protein complexes and pathways using further software.  

Within this myriad of bioinformatics software there are existing programs designed 

to optimize detection of PTMs in mass spectrometry data. For example the search engine 

Mascot (Perkins et al, 1999) has the ability to include a set of PTMs in the search for a 

peptide sequence identity, in addition to error tolerant searching. Other softwares utilize 

mass differences between peptides to detect PTMs. Programs like P-Mod (Hansen et al, 

2005) matches MS/MS spectra to in silico generated spectra using sequence information, 

Da 
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ModifiComb (Savitski et al, 2006) matches identified MS/MS spectra to unidentified MS/MS 

spectra to reveal modified versions of the same peptide and Peptoscope (Potthast et al, 

2007) introducing the Mass Distance Fingerprint (MDF), all take advantage of mass 

differences. The MDF in Peptoscope is determined by looking at mass differences of peptide 

precursors to globally assess modifications present in the sample. However, the current 

limitation of the previously listed programs is that they all operate on MS2 level information 

(that is the information about only those peptides that were selected for fragmentation, 

usually only the abundant peptides). The programs listed utilize either the precursor mass of 

these peptides or the fragment data in the MS/MS spectra. This MS2 data represents a 

subset, the most abundant, of all features present in an LC-MS run and is, for this reason and 

reasons mentioned in Section 1.1.3, likely not to include the majority of possibly post-

translationally modified peptides. Software capable of using MS1 level information (that is 

information about all peptides present in the sample, regardless of fragmentation) to extract 

possible post-translationally modified peptides and then target these peptides for 

fragmentation would not be restricted to only the most abundant peptides, and would be 

ideal as a tool to identify PTMs. 

1.3 Biological applications of increased PTM detection 

PTMs regulate protein function, stability, degradation, activation and cell localisation (Sims 

& Reinberg, 2008; Tate, 2008). They also represent a huge potential in understanding 

protein pathways in the context of protein and protein complex regulation. Developing 

proteomic and bioinformatic tools to interrogate the vast array of existing PTMs (there are 

currently over 300 known PTMs which regulate protein structure and function) which are 

known to contribute to protein function and in addition revealing new PTMs has immense 

implications for cell biological and clinical research. POSTMan was originally designed to 

interrogate MS data to reveal PTMs such as acetylated peptides. The program however has 

broader applications, enabling the identification of several PTMs. In the course of these 

experiments we were able to identify a novel, and at the time uncharacterised PTM, 

propionylation. We therefore sought to address the possibility that propionylation occurs in 

vivo and ask the question, how prevalent is this PTM as a regulator of protein function? 

These studies used as a model protein the tumour suppressor protein p53, and we applied 

POSTMan as well as biochemical methods to the identification of propionylated lysine 
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residues on p53. Propionyl-lysine specific antibodies have been raised and provide an 

important reagent for global proteomic investigation of propionylation as a regulatory PTM. 

The following sections therefore highlight relevant aspects of PTMs and the regulation of 

p53 and finally introduce current limited data describing propionylation as an in vivo protein 

PTM. 

1.3.1 The tumour suppressor protein p53 

The tumour suppressor protein p53 is a transcription factor of 44 kDa, short-lived, non-

abundant and shown to be highly regulated by PTMs (Sims & Reinberg, 2008). It was for this 

reason we chose to use p53 as a model protein for analysis by POSTMan. p53 is involved in 

cell proliferation, angiogenesis, senescence, DNA repair, cell cycle arrest and apoptosis and is 

therefore a key regulator of cell fate. p53 is the most frequently mutated gene in human 

cancers. In 50% of all human cancers p53 is lost or expressed as an inactive mutant (Toledo 

& Wahl, 2006). Its tumour suppressor function is based on evidence from genetic 

experiments showing that p53 knock-out mice develop tumours with high frequency (Levine, 

1997). p53 was first characterised as “The guardian of the genome” (Lane, 1992) due to its 

anti-proliferative response to DNA damage or checkpoint failure. p53 can also be dangerous 

to the cell: It is capable of killing cells via transcription-dependent and transcription-

independent manners in the nucleus and mitochondria respectively (Mihara et al, 2003; 

Vousden & Lu, 2002). Transcription-dependent p53 mediated apoptosis includes activation 

of pro-apoptotic genes like the BH3-only (Bcl2 homology 3) proteins Puma (p53 upregulated 

modulator of apoptosis) and Noxa, Bax (Bcl2 associated X protein), p53-AIP (p53-regulated 

apoptosis-inducing protein), Apaf-1 (apoptotic peptidase activating factor 1), and PERP (p53 

apoptosis effector related to PMP-22) and also transcriptional repression of anti-apoptotic 

genes like Bcl2 and IAPs (inhibitors of apoptosis) ((Johnstone et al, 2002), and references 

herein). The transcription-independent p53-mediated apoptosis includes translocation of a 

fraction of p53 to mitochondria where it can directly induce permeablisation of the outer 

mitochondrial membrane by complexing with BclXL and Bcl2 proteins; providing Cytochrome 

c release and following caspase cascade activation (Mihara et al, 2003). 

p53 is heavily regulated by PTMs. In normal, unstressed cells p53 exist at low 

concentrations with a half-life of 5-30 minutes (Moll & Petrenko, 2003). This is mostly due to 

its constant degradation mediated by the p53 interacting protein MDM2 (Murine double 
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minute 2). MDM2 is an ubiquitin ligase and contributes to the ubiquitination of p53 and 

subsequent targeting for degradation by the proteasome. In response to stress signals p53 is 

rapidly stabilised by inhibiting this continuous degradation resulting in an increase in cellular 

p53 levels with an extended half-life up to several hours. The stabilisation of p53 is a 

hallmark of many cellular stress pathways and enhances the p53 transcriptional activity. 

Upon such activation p53 initiates transcription of specific genes in response to the nature of 

the signal; so-called p53 responsive elements. p53 receives different stress signals via PTMs 

on distinct amino acids within its sequence activating p53 as a transcription factor and 

initiating defined downstream cellular programs. For example, if the pool of ribonucleoside 

triphosphate gets too low or there are too few ribosomes to sustain the cell cycle, p53 is 

activated and cell cycle progression is arrested (Harris & Levine, 2005). Under hypoxic 

conditions, p53 is activated resulting in cell cycle arrest, senescence or apoptosis (Harris & 

Levine, 2005). In receiving these signals p53 can be phosphorylated, acetylated, methylated, 

ubiquitinated, sumoylated, neddylated (Riley & Maher, 2007) and propionylated (Arntzen et 

al. unpublished data, (Cheng et al, 2008)) in a combinatorial fashion (Figure 1-3). For 

example, Lys372 alone can either be acetylated (Gu & Roeder, 1997; Liu et al, 1999), 

ubiquitinated (Desterro et al, 2000; Rodriguez et al, 2000), methylated (Chuikov et al, 2004) 

or neddylated (Xirodimas et al, 2004) and the presence of one of these lysine modifications 

on this lysine precludes the conjugation by another modification. The post-translational 

regulation of p53 is initiated by a number of kinases (ATM (Ataxia telangiectasia mutated), 

ATR (Ataxia telangiectasia and Rad3-related protein), Chk1, Chk2), acetyl transferases (CBP 

(CREB-binding protein), p300, PCAF, TRAF (TNF receptor-associated factor)), methylases, 

ubiquitin ligases (MDM2, Cop-1 (constitutive photomorphogenic protein), Pirh-2 (p53-

induced RING-H2 protein)), sumo ligases, and recently discovered propionyl transferases 

(Arntzen et al. unpublished data, (Cheng et al, 2008; Leemhuis et al, 2008)). In addition, a 

number of phosphatases, deacetylases, ubiquitinases and inhibitors of ubiquitin ligases also 

regulate p53 function by removing the PTMs. The ubiquitin ligase MDM2 is the key regulator 

of p53 and is involved in 60% of the seven negative and three positive feedback loops of p53.  
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Figure 1-3. C-terminal domain of tumour suppressor protein p53. p53 is substrate for numerous PTMs: It can 

be phosphorylated (P), acetylated (Ac), methylated (Me), ubiquitinated (Ub), sumoylated (S), neddylated (N) 

and propionylated (not shown in figure). All contributing to the diverse and complex regulation of p53. 

Figure is borrowed from (Sims & Reinberg, 2008). 

1.3.2 Propionylation as a lysine post-translational modification 

The repertoire of lysine PTMs has recently been extended to include propionylation and 

butyrylation. Mass spectrometry was used to identify peptides carrying propionylated and 

butyrylated lysine residues from histone H4 (HH4) in vitro and in vivo (Chen et al, 2007). The 

modification of HH4 was catalysed in vitro by the acetyltransferases p300 and CREB-binding 

protein (CBP). In the same report p300 and CBP were also capable of in vitro propionylating 

and butyrylating p53 at Lys319 and Lys320. These propionylated and butyrylated lysines from 

both HH4 and p53 are also known sites of acetylation in these proteins suggesting that like 

acetylation, propionylated and butyrylated lysine residues may have functional significance 

in vivo. In another report, the acetyltransferase P/CAF was suggested to possess 

propionyltransferase activity in vitro (Leemhuis et al, 2008). A peptide similar to the histone 

H3 (HH3) N-terminal tail was incubated with propionyl-CoA in the presence or absence of 

P/CAF. Using mass spectrometry a peptide mass shift of 56 Da corresponding to a propionyl 

group was observed in the presence of P/CAF but not in its absence. Furthermore, P/CAF 

was only able to propionylate Lys14 on HH3, the same site known to be acetylated by P/CAF 

(Schiltz et al, 1999). Enzymes that catalyse the removal of propionyl groups are at current 

date not known, but histone deacetylases (HDACs) from rat liver has shown 

depropionylation activity (Riester et al, 2004), as well as members of the sirtuin family of 

HDACs (Garrity et al, 2007). 

1.4 Thesis aims 

Detection of specific PTMs is not always straightforward. In mass-spectrometry based 

proteomics, several softwares have been designed to enhance PTM detection. However, 
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they are currently hampered by their limitation to MS2 data. Software capable of using MS1 

data to extract possible post-translationally modified peptides would not be restricted to 

only the most abundant peptides, as MS2 data is, and would therefore be a more optimal 

tool in PTM detection. Based on this rationale, we wanted to develop such a software and 

use this to elucidate PTMs on the tumour suppressor protein p53. Furthermore, 

propionylation was recently reported as a novel in vivo protein PTM. We wanted therefore 

to generate and characterise novel antibodies to enhance detection of in vivo propionylated 

proteins. 

This master thesis had three aims:  

 First aim was to develop bioinformatics software designed to enhance detection of 

post-translationally modified peptides using mass spectrometry. This resulted in the 

software POSTMan (POST-translational Modification analysis). 

 Second aim was to use POSTMan to complement biochemical methods to assess the 

PTM pattern of the tumour suppressor protein p53, with emphasis on acetylation 

and propionylation, the latter being a novel PTM with currently unknown functional 

significance. 

 The third aim was to raise specific anti-propionyllysine antibodies to complement 

existing proteomic tools to unravel the functional significance of propionylation as a 

global PTM. 
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2 Materials 

 
Table 2-1 Materials used in cell culture  

Material Supplier 

2-propanol Riedel-De Haën, Honeywell, Seeze, Germany 

Bürker chamber Superior Marienfeld, Lauda-Königshofen, Germany 

Calcium chloride dihydrate, CaCl2.2H2O Sigma Aldrich, St.Louis, MO, USA 

CryoTube™ Vials Nunc, Thermo Fisher Scientific, NY, USA 

Dimethyl sulfoxide (DMSO) Sigma Aldrich, St.Louis, MO, USA 

Dulbecco’s modified eagle’s medium (DMEM) Sigma Aldrich, St.Louis, MO, USA 

Fetal bovine serum (FBS) Invitrogen, Carlsbad, CA, USA 

HEBS buffer, 2x: 
274 mM NaCl 
10 mM KCl 
140 µM Na2HPO4.2H2O 
1.1 mM dextrose = D+ glucose 
42 mM HEPES 
Adjust pH to ~7 with 2 M NaOH and test for 
precipitate size. 

 
Fluka, Sigma Aldrich, St.Louis, MO, USA 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 
Sigma Aldrich, St.Louis, MO, USA 
Sigma Aldrich, St.Louis, MO, USA 
Fluka, Sigma Aldrich, St.Louis, MO, USA 

HEK293T lysis buffer, 1x: 
50 mM Tris(hydroxymethyl)-aminmethan 
50 mM KCl 
10 mM EDTA 
Adjust pH to 8.0 with HCl 
1% Nonidet P-40 (NP-40) 
Complete Mini Protease inhibitor cocktail 
1 µM Tricostatin A 
10 mM Nicotinamide 

 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 
GE Healthcare, Chalfont St. Giles, UK 
Merck KGaA, Darmstadt, Germany 
USB corporation, Cleveland, OH, USA 
Roche Applied Science, Basel, Switzerland 
Sigma Aldrich, St.Louis, MO, USA 
Sigma Aldrich, St.Louis, MO, USA 

HeLa lysis buffer: 
RIPA buffer 
Complete Mini Protease inhibitor cocktail 
1 µM Tricostatin A 
10 mM Nicotinamide 

 
(see below) 
Roche Applied Science, Basel, Switzerland 
Sigma Aldrich, St.Louis, MO, USA 
Sigma Aldrich, St.Louis, MO, USA 

Lipofectamine 2000 Invitrogen, Carlsbad, CA, USA 

Nicotinamide Sigma Aldrich, St.Louis, MO, USA 

Optimem Invitrogen, Carlsbad, CA, USA 

Pencillin-Streptomycin Sigma Aldrich, St.Louis, MO, USA 

Phosphate buffered saline (PBS) 10x, pH 7.0 Gibco, Invitrogen, Carlsbad, CA, USA 

RIPA buffer: 
50 mM Tris(hydroxymethyl)-aminmethan 
150 mM NaCl 
Adjust pH to 8.0 with HCl 
0.5% Deoxycholate (DOC) 
1% Nonidet P-40 (NP-40) 
0.1% SDS 

 
Merck KGaA, Darmstadt, Germany 
Fluka, Sigma Aldrich, St.Louis, MO, USA 
Merck KGaA, Darmstadt, Germany 
Fluka, Sigma Aldrich, St.Louis, MO, USA 
USB corporation, Cleveland, OH, USA 
Merck KGaA, Darmstadt, Germany 

RPMI Invitrogen, Carlsbad, CA, USA 

Trichostatin A Sigma Aldrich, St.Louis, MO, USA 

Trypsin-EDTA solution Sigma Aldrich, St.Louis, MO, USA 

Water bath, Lauda Ecoline 011 Lauda, Dipl.Ing Houm AS, Oslo, Norway 

 
 



 

19 

 

Materials 

Table 2-2 Cell lines 

Material Supplier 

HEK293T cells 
Human embryonic kidney cell line 

The German resource centre for biological material, 
Braunschweig, Germany 

HeLa cells 
Human cervical cancer epithelial cell line  

The German resource centre for biological material, 
Braunschweig, Germany 

 
Table 2-3 Plasmids used in cell culture  

Material Supplier 

HA-p300 Kind gift from Dr. Nullin Divecha, Paterson Institute 
for Cancer Research, The University of Manchester, 
England 

pCMVβ-p300 Kind gift from Dr. Marit Bakke, Institute of 
Biomedicine, University of Bergen, Norway 

 
Table 2-4 Materials used in protein gel electrophoresis  

Material Supplier 

Acetic acid Fluka, Sigma Aldrich, St.Louis, MO, USA 

Bovine serum albumin (BSA), Cohn V fraction Sigma Aldrich, St.Louis, MO, USA 

Develop solution (silver staining): 
283 mM Na2CO3 

26 μM Na2S2O3 

0.02% Formaldehyde 

 
Sigma Aldrich, St.Louis, MO, USA 
Sigma Aldrich, St.Louis, MO, USA 
Fluka, Sigma Aldrich, St.Louis, MO, USA 

Ethanol Arcus AS, Oslo, Norway 

Filter, 0.45 mm Schleicher & Schuell MicroScience GmbH, Dassel, 
Germany 

HEK293T lysis buffer, 1x See Table 2-1 Materials used in cell culture 

HeLa lysis buffer See Table 2-2 Materials used in cell culture 

Novex mini-cell Invitrogen, Carlsbad, CA, USA 

NuPAGE® 4-12% Bis-Tris gels Invitrogen, Carlsbad, CA, USA 

NuPAGE® MOPS SDS running buffer, 20x Invitrogen, Carlsbad, CA, USA 

PhastGel™ Blue R GE Healthcare, Chalfont St. Giles, UK 

Pierce® BCA protein assay kit Pierce biotechnology, Rockford, IL, USA 

SDS-PAGE sample buffer, 1x: 
80 mM Tris(hydroxymethyl)-aminmethan 
50 mM DTT  
Adjust pH to 6.8 with HCl 
2% SDS 
10% Glycerol 
0.025% Bromphenol blue 

 
Merck KGaA, Darmstadt, Germany 
Sigma Aldrich, St.Louis, MO, USA 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 
J.T. Baker, Mallinckrodt Baker B.V., Deventer, The 
Netherlands 

Sea blue®Plus2 pre-stained protein standard Invitrogen, Carlsbad, CA, USA 

Silvernitrate, AgNO3 Fluka, Sigma Aldrich, St.Louis, MO, USA 

Sodiumthiosulphate, Na2S2O3 Sigma Aldrich, St.Louis, MO, USA 
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Table 2-5 Materials used in western blotting 

Material Supplier 

Bovine serum albumin (BSA), Cohn V fraction Sigma Aldrich, St.Louis, MO, USA 

Instant skimmed milk powder Sainsbury’s supermarkets Ltd. London, UK 

Methanol, Chromasolv® (MeOH) Sigma Aldrich, St.Louis, MO, USA 

Nitrocellulose transfer membranes, Protran® Whatman® Gmbh, Dussel, Germany 

NuPAGE® Transfer buffer, 20x Invitrogen, Carlsbad, CA, USA 

Ponceau S Sigma Aldrich, St.Louis, MO, USA 

Super Signal® West pico Chemiluminescent substrate Pierce, Rockford, IL, USA 

Tris buffered saline tween, 1x: 
20 mM Tris(hydroxymethyl)-aminmethan 
300 mM NaCl 
Adjust pH to 7.4 with HCl 
0.2% Tween-20 

 
Merck KGaA, Darmstadt, Germany 
Fluka, Sigma Aldrich, St.Louis, MO, USA 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 

XCell II™ blot module Invitrogen, Carlsbad, CA, USA 

 
Table 2-6 Antibodies used in western blotting and immunoprecipitation  

Material Supplier Dilution Host Method 

Anti acetyl lysine Biomol International, LP, Plymouth 
Meeting, PA, USA  

1:500 Rabbit WB 

Anti acetyl lysine Cell Signaling Technology®, Inc., 
Danvers, MA, USA 

1:500 Rabbit WB 

Anti acetyl lysine ImmuneChem pharmaceuticals, 
Burnaby, Canada 

1:500 Rabbit WB 

Anti acetyl lysine Upstate Cell Signaling solutions, Lake 
Placid, NY, USA 

1:500 Rabbit WB 

Anti actin Sigma Aldrich, St.Louis, MO, USA 1:5000 Mouse WB 

Anti mouse, horse raddish 
peroxidase conjugated 

Jackson Immuno Research Europe 
Ltd., Suffolk, UK 

1:10 000 Goat WB 

Anti p53 (DO-1), 10x Santa Cruz Biotechnology, Inc., Santa 
Cruz, CA, USA 

 Mouse IP 

Anti p53 (DO-12) Invented by Jean-Christope Bourdon 
University of Dundee, UK and 
produced by Borek Vojtesek, 
Masaryk  memorial Cancer Institute, 
Czech Republic 

1:1000 Mouse WB 

Anti p53 acetyl Lys382 Cell Signaling Technology®, Inc., 
Danvers, MA, USA 

1:1000 Rabbit WB 

Anti propionyl lysine Invented by Clive D’Santos, Institute 
of Biomedicine, University of Bergen, 
Norway 

1:1000 Rabbit WB 

Anti rabbit, horse raddish 
peroxidase conjugated 

Jackson Immuno Research Europe 
Ltd., Suffolk, UK 

1:10 000 Goat WB 
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Table 2-7 Materials used in immunoprecipitation 

Material Supplier 

Dimethyl pimelimidate dihydrochloride (DMP) Sigma Aldrich, St.Louis, MO, USA 

Ethanolamine: 
0.2 M Ethanolamine 
Adjust pH to 9.0 with HCl 

 
Sigma Aldrich, St.Louis, MO, USA 
Merck KGaA, Darmstadt, Germany 

Hamilton syringe tip, gauge 22/2”/3 Hamilton Company, Reno, NV, USA 

HEK293T lysis buffer, 1x See Table 2-1 Materials used in cell culture 

HEK293T lysis buffer, 5x: 
250 mM Tris(hydroxymethyl)-aminmethan 
250 mM KCl 
50 mM EDTA 
Adjust pH to 8.0 with HCl 
5% Nonidet P-40 (NP-40) 

 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 
GE Healthcare, Chalfont St. Giles, UK  
Merck KGaA, Darmstadt, Germany 
USB corporation, Cleveland, OH, USA 

Mouse IgG Zymed Laboratories, Inc., South San Fransisco, CA, 
USA 

Phosphate buffered saline, 10x, pH 7.0 Gibco, Invitrogen, Carlsbad, CA, USA 

pH-paper, 0-14 Merck KGaA, Darmstadt, Germany 

Protein G agarose beads Invitrogen, Carlsbad, CA, USA 

SDS-PAGE sample buffer See Table 2-3 Materials used in protein gel 
electrophoresis 

Sodium hydroxide, NaOH, 50% Fluka, Sigma Aldrich, St.Louis, MO, USA 

Sodium tetraborate buffer: 
0.2 M Na2B4O7.10H2O 
Adjust pH to 9.0 with NaOH 

 
Sigma Aldrich, St.Louis, MO, USA 
Fluka, Sigma Aldrich, St.Louis, MO, USA 

 
Table 2-8 Materials used for mass shift induction  

Material Supplier 

Bovine serum albumin (BSA), Fatty acid free Sigma Aldrich, St.Louis, MO, USA 

Dithiothreitol (DTT) Sigma Aldrich, St.Louis, MO, USA 

Human recombinant HA-SIRT1 Kind gift from Dr. Nullin Divecha, Paterson Institute 
for Cancer Research, The University of Manchester, 
England 

Magnesium chloride, MgCl2.6H2O Sigma Aldrich, St.Louis, MO, USA 

N-hydroxysuccinimide acetyl ester Kind gift from Pieter van der Veken, Department of 
Medicinal Chemistry, University of Antwerp, Belgium 

N-hydroxysuccinimide buteryl ester Kind gift from Pieter van der Veken, Department of 
Medicinal Chemistry, University of Antwerp, Belgium 

N-hydroxysuccinimide propionyl ester Kind gift from Pieter van der Veken, Department of 
Medicinal Chemistry, University of Antwerp, Belgium 

Recombinant p53 Sigma Aldrich, St.Louis, MO, USA 

SDS-PAGE sample buffer See Table 2-4 Materials used in protein gel 
electrophoresis 

Sodium carbonate buffer: 
0.1 M Na2CO3  
Adjust pH to 8.4 with HCl 

 
Sigma Aldrich, St.Louis, MO, USA 
Merck KGaA, Darmstadt, Germany 

Trifluoroacetic acid (TFA) Fluka, Sigma Aldrich, St.Louis, MO, USA 

Tris-HCl: 
0.2 M Tris(hydroxymethyl)-aminmethan 
Adjust pH to 9.6 with HCl 

 
Merck KGaA, Darmstadt, Germany 
Merck KGaA, Darmstadt, Germany 

β-NAD
+
 Sigma Aldrich, St.Louis, MO, USA 
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Table 2-9 Materials used in mass spectrometry  

Material Supplier 

Acetonitile (ACN) Riedel-De Haën, Honeywell, Seeze, Germany 

Ammonium bicarbonate, NH4HCO3 Sigma Aldrich, St.Louis, MO, USA 

C18 Empore™ membrane 3M, Maplewood, MN, USA 

D10 pipet tips Gilson, Inc., Middleton, WI, USA 

Dithiothreitol (DTT) Sigma Aldrich, St.Louis, MO, USA 

Formic acid (FA) Fluka, Sigma Aldrich, St.Louis, MO, USA 

Gel loader tips Eppendorf, Hamburg, Germany 

Hamilton syringe tip, size 22/2”/3 and 16/2”/3 Hamilton company, Reno, NV, USA 

Idoacetamide Sigma Aldrich, St.Louis, MO, USA 

Matrix (α-cyanno-4-hydroxycinnamic acid) Agilent Technologies, Inc., Santa Clara, CA, USA 

Methanol, Chromasolv® (MeOH) Sigma Aldrich, St.Louis, MO, USA 

Peptide calibration standard II Bruker Daltronics Gmbh, Bremen, Germany 

Scalpel Swann Mortens Ltd. Sheffield England 

Trifluoroacetic acid (TFA) Fluka, Sigma Aldrich, St.Louis, MO, USA 

Trypsin Porcine sequence grade modified Promega, Fitchburg, WI, USA 

Wash buffer: 
50% ACN 
25 mM NH4HCO3 

 
Riedel-De Haën, Honeywell, Seeze, Germany 
Sigma Aldrich, St.Louis, MO, USA 

 
Table 2-10 Technical equipment 

Material Supplier 

Centrifuge for cells, Rotina 35 R Hettich Zentrifugen, Tuttlingen, Germany 

Centrifuge for eppendorf tubes Heraeus, DJB Labcare Ltd., Buckinghamshire, England 

Chemiluminisence camera LAS-3000 Fujifilm Europe GmbH, Dusseldorf, Germany 

Electrophoresis power supply, EPS 601 Amersham biosciences,GE Healthcare, Chalfont St. 
Giles, UK 

Eppendorf thermomixer comfort Eppendorf, Hamburg, Germany 

Gel shaker, IKA® KS 260 basic IKA® Werke, GmbH & Co, Staufen, Germany 

Ground steel MALDI target Bruker Daltonics Gmbh, Bremen, Germany 

Holten Lamin Air, model 1.2 Thermo Fisher Scientific, Inc., Waltham, MA, USA 

MALDI ToF-Tof mass spectrometer Bruker Daltonics GmbH, Bremen, Germany 

Micro wellplate reader, SpectraCount™ Packard, Wolf Laboratories Limited, York, UK 

Milli-Q water system for dd.H2O Millipore A/S, Oslo, Norway 

Nitrogen tank, Locator 8 plus Thermolyne® Sigma Aldrich, St.Louis, MO, USA 

Parafilm Laboratory film Pechiney plastic packaging company, Chicago, IL, USA 

Pipets Gilson, Inc., Middleton, WI, USA 

Q-ToF mass spectrometer Waters Corporation, Milford, MA, USA 

Rotator, model L28 Labinco B.V., Breda, The Netherlands 

Steri-Cycle CO2 cell incubator Forma, Thermo Fisher Scientific, Inc., Waltham, MA, 
USA 

Termaks oven Termaks AS, Bergen, Norway 

Tissue culture dishes Sarstedt AG & Co., Nümbrecht, Germany 

Ultimate 3000 nanoHPLC Dionex Corporation, Sunnyvale, CA, USA 

Vacuum centrifugator 5301 (SpeedVac) Eppendorf, Hamburg, Germany 

Vortex, bench top Gilson, Inc., Middleton, WI, USA 
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Table 2-11 Software and protein databases  

Material Version Application Vendor / Developer 

Chromeleon 6.8 HPLC control Dionex Corporation, Sunnyvale, CA, USA 

Flex analysis 2.4 MALDI analysis Bruker Daltonics Gmbh, Bremen, Germany 

Flex control 2.0 MALDI control Bruker Daltonics Gmbh, Bremen, Germany 

Gimp 2.2 Graphics GNOME project 

Imagereader LAS-
3000 

2.0 Chemiluminescence Fujifilm Europe GmbH, Dusseldorf, Germany 

Mascot 2.1.04 Database searching Matrix science, London, UK 

MassLynx 4.0 Q-ToF control Waters Corporation, Milford, MA, USA 

Masswolf Nov06 MS conversion Seattle Proteome Centre, Institute for 
Systems Biology, Seattle, WA, USA 

mMass 2.4 MALDI analysis Institute of Chemical Technology in Prague, 
the Czech Republic 

MSight 2.A.6 MS visualization Swiss Institute of Bioinformatics, Basel, 
Switzerland 

msInspect 1.2 MS feature extraction Computational Proteomics Laboratory, Fred 
Hutchinsons Cancer Reasearch Center, 
Seattle, WA, USA 

Photoshop 8.0 Graphics Adobe, San Jose, CA, USA 

POSTMan 2.0 Data analysis PROBE, Institute for Biomedicine, University 
of Bergen, Norway 

ProteinLynx 2.2 Q-ToF analysis Waters Corporation, Milford, MA, USA 

Qt 4.3.2 Software development Qt Software, Nokia Corporation, Helsinki, 
Finland 

ReAdW 3.5.4 MS conversion Seattle Proteome Centre, Institute for 
Systems Biology, Seattle, WA, USA 

Swiss-Prot protein 
database 

56.5 Mascot searching Swiss Institute of Bioinformatics, Basel, 
Switzerland and European Bioinformatics 
Institute, Cambridge, UK 

ImageJ 1.41o Image analysis National Institutes of Health, USA 
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3 Methods 

3.1 Development of POSTMan 

3.1.1 Programming language, libraries, and software license 

For the development of POSTMan the programming language C++ was chosen over Java (Sun) 

and Visual Basic (Microsoft) due to its seamless interaction with the Qt libraries (Nokia) and 

the scientific open source Qwt libraries (available from http://qwt.sourceforge.net/); in 

addition to previous experience with the language. POSTMan’s predecessor PTMfinder 

(unpublished data) was also developed in C++ for console use only, and had very limited 

functionality, but served as a proof of principle. C++ itself offers high program operating 

speed due to binary compilation of source files and is the language of choice for software 

performing a high amount of calculations. The Qt libraries allowed for nice graphical user 

interface without extensive programming. Programming of core functions in POSTMan was 

set out to Stix AS and was beyond the scope of this master thesis. As license we chose the 

GNU General Public License version 2 which assure open source also on derivative projects. 

3.1.2 Development of the POSTMan pre-processor 

The POSTMan pre-processor was designed as a standalone process rather than a part of the 

analysis tool. This was to ensure the possibility to operate the analysis tool while the pre-

processor was running. To make POSTMan work with different instruments, several raw file-

formats are accepted through converters. The pre-processor takes advantage of raw-to-

mzXML converters available from Seattle Proteome Centre 

(http://tools.proteomecenter.org/software.php) and integrate the converters for MassLynx 

4.0, MassLynx 4.1, Xcalibur, and Analyst into the software package. Bruker files needs to be 

manually converted into mzXML using CompassXport (Bruker) before they can be used with 

POSTMan. Peak detection and feature finding is performed by passing the mzXML file into 

msInspect available from Fred Hutchinsons Cancer Reasearch Center 

(http://proteomics.fhcrc.org/CPL/msinspect.html) where all peptides are detected and 

assigned peptide properties. msInspect creates a tab-separated-values (tsv) file containing 

detected peptide features: m/z, retention time, de-convoluted mass value, charge, intensity, 

http://qwt.sourceforge.net/
http://tools.proteomecenter.org/software.php
http://proteomics.fhcrc.org/CPL/msinspect.html
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and other peptide related information. These files are the input of the POSTMan analysis 

tool. The POSTMan pre-processor allows batch conversion and feature finding of multiple 

files prior to POSTMan analysis. 

3.1.3 Development of the POSTMan analysis tool 

The POSTMan analysis tool was created to take one or two tsv-files as input and load all 

peptides as spots into the Graphical plot (a plot displaying m/z versus retention time as X 

and Y axis respectively). The peptide intensities are reflected in the colour intensity of the 

spots. Because of the dynamic range of intensities in a single LC-MS-run the 10-logarithm of 

the intensities are used for colour discrimination. Peptides originating from 

reference/untreated file is coloured green while peptides originating from treated file is 

coloured blue. The POSTMan analysis tool was given five essential functions: 1) LC-alignment, 

2) Global PTM assessment, 3) Detection of peptide pairs, 4) Filtering, and 5) Inclusion list 

output. These functions also represent the typical workflow of a POSTMan analysis. The 

pseudo code of these functions are listed in appendix A. 

1) LC-alignment 

POSTMan aligns LC-runs in a two way, semiautomatic, feature-based approach using 

whole or a subset of the data loaded. Exemplar is only multiply charged peptides 

with intensity above 100 counts. First the user can visually slide one run 

superimposed on the other in the time dimension for a coarse linear match. Secondly 

a non-linear computational alignment algorithm can be applied: The first file is 

loaded as a reference file and the second as a modifiable file. The user can now select 

a mass accuracy and LC-accuracy for the alignment of matching peptides between 

the runs. This is accomplished by creating a window X Da wide and Y seconds long 

around every peptide. If a peptide from the other file falls within this window it is 

considered a match. Then the retention time of this peptide and the retention time 

difference between the two peptides (delta retention time) are plotted in the 

alignment graph as a blue dot. When this has been done with all peptides in the 

dataset the time dimension is divided into bins, or time intervals. The size of these 

bins can be selected by the user and the smaller the bins, the finer the alignment. All 

peptides present in the same bin get their delta retention time averaged to give one 

data point. This is displayed as a red connected line in the alignment graph. Due to 
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the nature of feature based LC-alignment there will be some empty bins and there 

will also be peptides matched with wrong or multiple peptides in the other file. 

Smoothing of this data is therefore advantageous. Smoothing is optional and uses a 

moving average algorithm where the user can select the number of smoothing points 

and immediately view the result. When the user is satisfied with tuning the 

alignment parameters, the peptide retention times in the modifiable file is 

transformed by adding a corresponding alignment value derived from the alignment 

graph (positive or negative). This causes the peptides in the Graphical plot to shift 

accordingly. The validation of the alignment is done visually and if additional 

alignment is required a new iteration can be applied. 

2) Global PTM assessment 

The one or two files loaded can be interrogated for mass differences (delta masses) 

in a global blind fashion using the global PTM-finder function in POSTMan. All mass 

and retention time differences between all peptides are calculated and the frequency 

of every mass or every 20 seconds, respectively, are counted. The results are 

displayed as two histograms, one for delta masses and one for delta retention times. 

If there is an overrepresentation of one mass difference, exemplar 42 Da: The 

presence of acetylation or tri-methylation events can be expected. Table 3-1 shows a 

list of common PTMs and their respective mass.  

PTM Monoisotopic mass (Da) 

Acetylation 42.010565 

Propionylation 56.026215 

Phosphorylation 79.966331 

Tri-methylation 42.046950 

Oxidation 15.994915 

 

Table 3-1. The table shows a list of common PTMs and their respective monoisotopic mass. The 

numbers are gathered from the Unimod database of protein modifications for mass spectrometry 

(www.unimod.org). 

 

The peptide decimal mass (digits after the integer value of the mass) will increase 

from .0000 to .9999 when the peptide mass increase (Piening et al, 2006). When the 

peptide mass increase the variance in decimal mass also increase and there is 

therefore a defined mass defect any peptide can possess. Mass differences between 

low mass peptides will distribute around a whole number with a small bandwidth 
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while high mass peptides will have large bandwidth due to the increased variance in 

decimal mass. Due to this fact, mass differences between random peptides will 

distribute around a whole number as a Gaussian distribution, and when the 

frequency is counted there will be an oscillating noise per whole mass due to these 

random matches. To estimate this patterned noise the median of all data in the 

histogram is calculated and a sine filter with amplitude three times the median and 

phase such that a maxima occurs at every whole mass and a minima every half mass 

is drawn. Mass differences with a frequency above this filter are likely to be 

overrepresented and should be investigated further. At this time of POSTMan 

development, the noise is not subtracted, only visualised in the delta mass plot. 

3) Detection of peptide pairs 

a. Pair-matching 

Matching of peptides between LC-runs is the most essential function in POSTMan 

and the foundation for PTM detection. The user can select whether to match 

peptides with equal mass and retention time between runs, or peptides with a 

defined mass difference corresponding to a PTM of interest. During calculations the 

software creates a virtual window shifted X Da from every peptide (where X is the 

desired mass difference), z Da wide (where z is the matching threshold and reflects 

the accuracy of the mass spectrometer used) and y1 to y2 seconds long (where y1 

and y2 are the desired retention time range in which the matching peptide should 

reside. This also reflects the reproducibility of the HPLC used). If a peptide from the 

other file falls within this window it is considered a match and displayed in the 

Graphical plot with a line connecting the two peptides. The two peptides are also 

visible as a table view where they are listed as a pair and the mass and time 

differences are shown for manual validation. It is important to notice that all 

calculations for pair-matching are performed on de-convoluted mass values provided 

by msInspect. This is to ensure that peptides having different charge states in the two 

runs still can be matched as a pair. Exemplar is an acetylated peptide: When 

deacetylated, the basic lysine is free to carry an extra charge and the peptide m/z 

may change, but not the de-convoluted mass value. 
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b. No-pairing and detection of unique peptides 

There might be cases where only one version of a peptide, either modified or 

unmodified, exists in the two datasets. One example of this are small, multiply 

charged and multiply modified peptides, for example acetylated histone peptides. 

When these peptides are deacetylated they can readily carry several more charges so 

that the peptide m/z will shift outside the mass spectrometers lower detection limit. 

In these cases only the modified peptide is present in the untreated sample whereas 

the unmodified is not present in the treated sample. To detect these peptides 

POSTMan can be set to locate all unique peptides (that is peptides that is only 

present in one of the two files) instead of matching pairs. Incorporated is also a 

function to do no-pairing. This is used to apply filters to the dataset without making 

pairs. This is especially useful for global PTM assessment, where the data can be 

filtered by intensity and matched to a FASTA file before subsequent histogram 

analysis. 

4) Filtering 

A number of optional filters are available in POSTMan for filtering prior and after 

pair-matching to limit the number of false positive matches: Charge state cut-off 

filter, relative intensity filter, intensity cut-off filter, direction of chromatographic shift 

filters and FASTA filter. Some filters have been placed before pair-matching to reduce 

the number of peptides for these calculations and thus increase the overall analysis 

speed. 

i) Charge state cut-off filter 

This filter removes all peptides with charge state below a set value prior to pair-

matching. In ESI instruments peptides usually carry multiple charges whereas 

contaminants usually have one charge. By setting this value to one these 

contaminants are removed from calculations prior to pair-matching. However, for 

alignment purposes these contaminants can be useful due to their high intensity 

and consistency in the LC-runs. For inclusion of contaminants this filter can be set 

to zero. During peak picking and feature finding in msInspect some features are 

assigned the charge state zero. These are called “stray ions” and usually consist of 

an ion spike without the isotopic envelope. By setting this filter to zero, these 

stray ions are removed. 
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ii) Relative intensity filter 

This filter disrupts a matched pair if the intensity difference between the two 

peptides is too high. If set to the value 10, peptides with a 10-fold difference can 

still make a pair. This filter can be used when similar peptide intensities between 

runs is expected. However, due to ion suppression during the ionization process 

this filter should be used with caution.  

iii) Intensity cut-off filter 

This filter is a flat background noise filter and is used to remove peptides with low 

intensity prior to pair-matching. It can also be used for creating a subset of the 

data, exemplar displaying only peptides with intensity over 200 counts, for 

alignment or global PTM assessment. 

iv) Direction of chromatographic shift filters 

These filters are useful when the chromatographic effect of the PTM of interest is 

known. We have seen that acetylated peptides that lose their acetyl group tend 

to elute earlier in reversed phase chromatography. This has also shown to be the 

case with phosphopeptides. Oxidized peptides, on the other hand, elutes several 

minutes later than its non-oxidized counterpart. By using these filters to restrict 

the pair-matching to only hydrophilic or hydrophobic chromatographic shifts the 

number of false matches can be utterly reduced. 

v) FASTA filter 

The FASTA function in POSTMan allows a single protein FASTA file to be loaded 

into POSTMan and in silico protease digested. Parameters for digestion are: 

Protease specificity, fixed chemical modification on cysteines, number of missed 

cleavages and a set of common PTMs plus a custom PTM mass. This FASTA filter 

removes all peptides that do not match the theoretical masses of peptides 

belonging to this specific protein prior to pair-matching. This is a powerful filter to 

isolate a single protein for analysis in the context of a complex sample, or to 

remove background interfering peptides in a known protein sample. 

5) Inclusion list output 

The output from POSTMan is a text file, either comma- or tab-separated, containing 

peptide properties of choice: m/z, retention time, charge, de-convoluted mass value, 

mass difference, retention time difference and peptide sequence from FASTA file. 
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This file can be used as the basis for peptide inclusion on any kind of mass 

spectrometer, but requires manual input. A second file can also be compiled from 

POSTMan: An inclusion file compatible with MassLynx 4.0 for direct loading into 

Waters mass spectrometers operated by this software. 

3.2 Cell culture 

3.2.1 General cell culture 

All work with cell culture was performed in sterile environment inside a laminar flow cell 

culture bench equipped with a High Efficiency Particulate Air (HEPA) filter. Incubation of cells 

was performed in a humidified CO2-incubator (Forma) operated at 37 °C and 5% CO2. For 

visualisation of cells an Olympus microscope was used to validate cell viability and 

morphology every time the culture was split. Counting of cells were performed by loading 

7.5 µL cell suspension into two separate spaces in a manual cell counting chamber (Bürker) 

and two squares were counted in each space. The number of cells counted was multiplied by 

104 and the mean of the four rectangles counted was used as the nominal cell count. The cell 

lines used in this thesis are listed in Table 3-2. 

 
Cell line Split ratio / frequency Medium Characteristics 

HeLa 1:5 / 2 days RPMI with 10% FBS, 1% P/S Adherent 

HEK293T 1:5 / 2 days DMEM with 10% FBS, 1% P/S Adherent 

 

Table 3-2. Cell lines used in cell culture experiments 

 

HeLa cells were split at 70-80% confluence: Washed one time with PBS prior to splitting and 

incubated with trypsin/EDTA for one minute. Trypsin solution was removed and fresh 

medium was added and dish tapped to loosen cells. This cell suspension was then split 1:5 

into a new dish. HEK293T cells were split at 70-80% confluence: Washed carefully one time 

with PBS prior to splitting and cells were then loosened by adding fresh medium vigorously 

to make a cell suspension. This cell suspension was then split 1:5 into a new dish.  

3.2.2 Cryostorage of cells and thawing of cells 

For long time storage cells were washed once with PBS, detached with trypsin and 

resuspended in sterile filtered 10% Dimethyl sulfoxide (DMSO), 20% FBS and appropriate 
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medium. Cells were frozen at concentration 5-6 million per tube (1.8 mL). Tubes were placed 

for one day at -80 °C in a box containing 2-propanol for slow temperature decrease before 

being transferred to liquid nitrogen (-196 °C) for long time storage. When an aliquot was 

requested, cells were thawed rapidly on a 37 °C water bath and transferred to fresh 

appropriate medium. Medium was changed next day to remove any DMSO present from the 

storage medium. Cells were then monitored daily for recovery after cryostorage and passed 

at 70-80% confluence. 

3.2.3 Transfection of cell lines and harvesting of cells 

HeLa cells were transfected using the transfection reagent Lipofectamine 2000: On the day 

of transfection the cells were at 80% confluence in a 10 cm dish. 5 µg of pCMVβ-p300 was 

mixed with 500 µL Optimem while 10 µL of Lipofectamine was mixed with 500 µL Optimem. 

The two solutions were incubated separately for 5 minutes before they were mixed and 

incubated again at room temperature for 20 minutes. This mixture was then added drop 

wise to the cells. Four hours after transfection histone deacetylace (HDAC) inhibitors were 

added: 240 nM Trichostatin A (TSA) and 10 mM Nicotinamide (NAM). 23 hours after 

transfection the cells were harvested by removing the medium, washing one time with PBS 

and adding 200 µL of HeLa lysis buffer (Materials, Table 2-1). The dish was scraped to harvest 

all cells and the cell extract was incubated 10 minutes on ice before hard centrifugation (20 

minutes, 16600 x g). The protein amount in the supernatant was determined using 

Bicinchoninic acid (BCA) protein assay (Section 3.3.1) before SDS-PAGE or western blotting 

was performed.  

HEK293T cells were transfected using the Ca2PO4-method: Roughly 10 million cells 

were seeded in a 15 cm dish so that they were 70% confluent on the day of transfection. 10 

µg pcDNA 3.1 (empty vector control) or 10 µg HA-p300 was incubated with 644 µL dd.H2O 

and mixed with 96 µL 2.0 M CaCl2. This DNA mixture was then vigorously mixed with 750 µL 

2x HEBS buffer (Materials, Table 2-1) and immediately added drop wise to the cells. 

Precipitate size was visually validated using the microscope. 12 hours after transfection the 

cells were gently washed once with PBS and new medium was added. 16 hours after 

transfection HDAC inhibitors were added: 1 µM TSA and 10 mM NAM. Cells were harvested 

36 hours after transfection by removing the medium and loosening the cells with cold PBS to 

make a cell suspension. The cells were then washed once with PBS and pelleted by 
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centrifugation (5 minutes, 86 x g). All PBS was removed and small residuals were wiped away 

with tissue paper. 1 mL of HEK293T lysis buffer (Materials, Table 2-1) was added and lysate 

was left on ice for 30 minutes before hard centrifugation (20 minutes, 16600 x g). The 

protein amount in the supernatant was determined using BCA protein assay (Section 3.3.1).  

3.3 Protein gel electrophoresis 

3.3.1 Bicinchoninic acid protein assay 

Pierce® BCA protein assay kit was used to estimate the protein concentration in samples and 

performed as described in the user manual with one exception: Only 1, 2 or 3 µL of sample 

was used. The mean of these three replicates (if none were outside the linearity of the 

method) were used as the protein concentration. In brief, 200 μL reaction buffer (according 

to the manufactures instructions) was mixed with 2 µL sample in a microplate and incubated 

at 37 °C for 30 minutes. Absorbance was read using a spectrometer (Packard) operating at 

562 nm. As standard curve, Bovine serum albumin (BSA) was prepared at concentrations 0 

µg/2 µL, 2.5 µg/2 µL, 5 µg/2 µL, 10 µg/2 µL, and 15 µg/2 µL in the same buffer as the lysates. 

3.3.2 One-dimensional SDS-PAGE 

Protein extracts were solubilised in SDS-PAGE sample buffer and boiled at 95 °C for 5 

minutes followed by centrifugation (16600 x g, 4 °C) for 5 minutes and loaded with a 

Hamilton syringe onto pre-casted SDS-PAGE 4-12% gradient gels. The first lane on all gels 

was set aside for a molecular weight standard. Gel electrophoresis was performed with 

constant voltage (200 V) for 50 minutes at room temperature with MOPS running buffer. 

Gels for mass spectrometric analysis were immediately incubated in Coomassie blue staining 

solution (Section 3.4.1) for protein visualisation, while gels for western blotting were 

immediately processed for transfer (Section 3.5). 

3.4 Staining of gels 

3.4.1 Coomassie blue 

A 0.2% stock solution of Coomassie stain was prepared as follows: One PhastGel brilliant 

blue tablet was dissolved in 80 mL dd.H2O and stirred for 5 minutes. 120 mL of 100% ethanol 

was added and stirred until all colour was solved. The solution was then filtered through a 
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0.45 mm filter. The 0.1% working solution was prepared by mixing one volume stock solution 

with one volume 20% acetic acid. Gels were soaked in Coomassie blue stain for one hour and 

then destained three times one hour in 30% ethanol, 10% acetic acid or 5% ethanol, 7.5% 

acetic acid for overnight destaining followed by four times 15 minutes washing with dd.H2O. 

3.4.2 Silver 

Gels for silver staining were washed three times for 15 minutes in water followed by 

incubation for 120 seconds in 1.3 mM sodium thiosulfate. The sodium thiosulfate was 

rapidly removed by three fast washes with dd.H2O. The gels were subsequently incubated in 

11.8 mM silver nitrate at 4˚C for 30 minutes. The silver nitrate was rapidly removed by three 

fast washes with dd.H2O before gels were incubated in Develop solution (Materials, Table 2-

4) until protein bands appeared. The reaction was stopped by incubation in 10% acetic acid 

for 10 minutes followed by storage in a 1% acetic acid solution. 

3.5 Western blotting 

Proteins were separated on 1D SDS-PAGE 4-12% gels and transferred onto nitrocellulose 

membranes at 4 °C with constant voltage (14 V) for 18-20 hours in Transfer buffer containing 

10% MeOH. Transfer efficiency was tested by staining the gels with Coomassie blue for the 

presence of remaining proteins. Membranes were quickly stained with Ponceau S for 2 

minutes and washed with dd.H2O until protein bands appeared. Depending on the 

experiment, the membranes were cut into desired fractions, typically two lanes in size to be 

able to probe for several antibodies per membrane, before being washed in TBST for ten 

minutes. Blocking was performed with 5% non-fat dry milk at room temperature for one 

hour followed by a quick rinse in TBST. Primary antibodies were diluted in TBST containing 5% 

BSA to the concentrations listed in Materials, Table 2-6. Primary antibody incubation was for 

one hour at room temperature followed by three washes for five minutes in TBST. Secondary 

antibodies were diluted in TBST containing 0.8% BSA to the concentration 1:10000. 

Secondary antibody incubation was for one hour at room temperature followed by four 

washes for ten minutes in TBST. Membranes were incubated in Super Signal for five minutes 

and images were developed using a chemiluminescence sensitive camera, LAS-3000 

(Fujifilm). Protein standards on blots were visualised by taking a visible-light photo of the 
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membranes and overlaid with the chemiluminescence image in the graphical software 

package Gimp version 2.2. 

3.6 Anti-propionyl antibody design and characterisation 

A pan-specific anti-propionyl lysine antibody was generated commercially (SBS Genetech): 

Two rabbits were immunised with the peptide PrKGGKGGPrKGGPrKGGKGGPrKGG (PrK = 

propionyl lysine) linked to Keyhole limpet hemocyanin (KLH) which is strongly immunogenic. 

The peptide sequence was selected with every second lysine propionylated (every one lysine 

being propionylated would render a too hydrophobic peptide confounding water solubility) 

and glycines (no side chain structure) as spacer residues between the lysines. Rabbit serum 

was collected separately as pre-immunization, first bleed (4 weeks), second bleed (8 weeks), 

and third bleed (10 week). The titer was 25000:1. The serum from the third bleed was used 

for antibody characterisation, labelled 7-1 for the first rabbit and 7-2 for the second rabbit. 

Due to an initial high background signal when testing these antibodies for western blot 

analysis, the composition of TBST were altered to optimize removal of unspecific antibody 

binding. The optimal composition of TBST (that produced lowest background signal) is listed 

in Materials Table 2-5, and the same composition was used for all other antibodies as well. 

3.7 Immunoprecipitation 

3.7.1 Cross-linking of the anti-p53 DO-1 antibody 

Protein G agarose beads were washed in PBS four times and 100 µL packed beads were 

incubated with 10 µL 10x anti-p53 DO-1 antibody in 1 mL PBS containing 5 µL 5x lysis buffer 

for one hour at room temperature. Beads were subsequently washed three times in 0.2 M, 

pH 9.0 sodium tetraborate buffer and then incubated in 1 mL of the same buffer containing 

20 mM dimethyl pimelimidate dihydrochloride for covalent cross-linking of lysines and pH 

adjusted with 50% NaOH to pH just above 9.0 using pH-paper. Beads were then left for one 

hour incubation on rotator at room temperature. Subsequently, beads were washed four 

times in 0.2M, pH 9.0 ethanolamine and incubated overnight in 1 mL of this buffer at 4 °C on 

rotator. Next day the beads were washed four times with PBS and stored in fridge (4 °C). 

Every time an aliquot was to be used, the beads were washed three times with PBS to 

remove any loose antibody. 
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3.7.2 Immunoprecipitation of p53 

To reduce the number of unspecific proteins binding to the antibody or the protein G 

agarose beads a pre-clear was performed: 10 µL packed beads of pre-coupled mouse IgG on 

Protein G agarose beads was added to one mL of cell lysate for one hour at 4 °C. Pre-clear 

was only performed on samples for mass spectrometric analysis. Samples for subsequent 

western blotting were not pre-cleared. Cross-linked DO-1 beads were washed three times in 

PBS to remove any unbound antibody before 10 µL of these packed beads were added to 

one mL lysed cell extract. Immunoprecipitation was then performed at 4 °C overnight before 

the beads were washed one time with 1x HEK293T lysis buffer (Materials, Table 2-7). 

Another mL of 1x HEK293T lysis buffer was added to the beads and everything was 

transferred to a new eppendorf tube to remove unspecific proteins bound to the plastic. The 

last drops of liquid were removed with a Hamilton syringe before addition of SDS-PAGE 

sample buffer. 

3.8 Induction of mass shifts 

3.8.1 Chemical derivatisation of proteins 

N-hydroxysuccinimide (NHS) esters were a kind gift from Pieter van der Veken, University of 

Antwerp. One µg of BSA or recombinant p53 was solved in 0.1 M Tris-HCl pH 9.6, 10% 

acetonitrile (ACN) and NHS-treated with 100x molar excess of the moles of lysines present in 

the protein to be derivatised.  

 

Protein Amount Molar mass Number of lysines Reagent needed 

p53 1 µg 43700 g/mol 20 46 nmol 

BSA 1 µg 66000 g/mol 69 105 nmol 

 

Table 3-3. Amount of reagent (NHS ester) needed for derivatisation of proteins 

 

The correct amount of either N-hydroxysuccinimide-acetyl ester, N-hydroxysuccinimide-

propionyl ester, or N-hydroxysuccinimide-buteryl ester (Table 3-3) was added and the 

mixture incubated at room temperature. Reaction was stopped after one hour by adding 

SDS-PAGE sample buffer and samples were subjected to SDS-PAGE. 
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3.8.2 Silent Information Regulator 2 deacetylation assay 

Glycerol stocks of human recombinant deacetylase HA-tagged Silent mating type 

information regulation 2 homolog (SIRT1) were a kind gift from Dr. Nullin Divecha, The 

University of Manchester. Proteins were solubilised in 0.1 M sodium carbonate buffer pH 8.4, 

5 mM MgCl2.6H2O, and 2 mM DTT containing 2 µL SIRT1 in the absence or presence of 1.5 

mM β-NAD+ and incubated for one hour at 35 °C. Samples were acidified to a final 

concentration of 1% trifluoroacetic acid (TFA) to stop reaction. Samples were then cleaned 

on C18 stage-tips prior to mass spectrometric analysis. 

3.9 Mass spectrometry 

3.9.1 In-gel digestion of proteins for mass spectrometric analysis 

Bands of interest from Coomassie blue stained gels were excised into cubes of about 1 mm3 

using a scalpel and washed two times 20 minutes in Wash buffer (see Materials, Table 2-9) 

on shaker. Gel pieces were soaked in 100% ACN for two minutes and left for air drying. 10 

mM DTT in 100 mM Ammonium bicarbonate was added to the dried gel pieces and they 

were incubated for 45 minutes at 56 °C on shaker to induce reduction of proteins. For 

cysteine alkylation gel pieces were cooled by centrifugation (16600 x g, 4 °C, one minute), 

supernatant removed and immediately added 55 mM iodacetamide in 100 mM ammonium 

bicarbonate. Alkylation was performed for 30 minutes in the dark at room temperature. Gel 

pieces were washed two times 20 minutes in Wash buffer on a shaker and air dried as 

before and rehydrated with 30 µL 6 ng/μL Trypsin in 50 mM ammonium bicarbonate 

containing 2% ACN for 30 minutes on ice prior to overnight digestion at 37 °C on a shaker. 

The next morning the supernatant was set aside and the remaining peptides were extracted 

from the gel pieces by incubation with 1% TFA for 20 minutes on a shaker. This supernatant 

was combined with the first. Then the gel pieces were incubated with 0.1% TFA in 60% ACN 

for 20 minutes on shaker and supernatants combined as previously. Supernatants were then 

placed in a vacuum concentrator to remove the organic content by vaporisation. Samples 

were finally subject for Sir2 deacetylation assay (Section 3.8.2) prior to POSTMan analysis. 
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3.9.2 Peptide clean-up on C18 stage-tips and MALDI spotting 

A Hamilton syringe needle was used to plunge out reversed phase C18 material (3M): For 

QToF analysis gauge size 16/2”/3 was used and the material placed into a D10 pipette tip. 

For MALDI analysis gauge size 22/2”/3 was used and the material placed into a gel loader tip. 

The material was then activated by addition of 100% MeOH and further wetted by 60% ACN, 

0.1% TFA using a disposable syringe to apply pressure and thus generate a slow liquid flow 

through the C18 material. The C18 material was further equilibrated in the same way with 1% 

TFA and samples were applied. After a slow-flow binding of peptides passing through the 

column, the column was washed with 0.1% TFA and air dried. Elution of peptides for QToF 

analysis: Peptides were eluted into eppendorf tubes with 100% ACN followed by 

vaporisation in a vacuum centrifugator. Peptides were then solubilised in 2% ACN in 0.2% 

formic acid (FA) for loading onto nanoHPLC coupled mass spectrometry. Elution of peptides 

for MALDI analysis: Peptides were eluted with 1.5 µL 6 mg/mL matrix (α-cyanno-4-

hydroxycinnamic acid) solved in 60% ACN, 15% MeOH, 0.1% TFA straight onto a MALDI 

target plate. In a neighbouring spot a mass calibrator (Peptide calibration standard II) was 

placed for external calibration of the MALDI mass spectrometer. The target plate was left for 

air drying for five minutes before loaded into the MALDI instrument. 

3.9.3 MALDI-ToF-ToF 

A MALDI-ToF-ToF (Bruker Ultraflex II) operating in positive ion reflectron mode and 

equipped with a 337 nm N2-laser was used for validation of peptide derivatisation induced 

mass shifts and SIRT1 induced mass shifts. After spotting onto the MALDI target plate and 

loading into the instrument, the standard peptide calibration II containing Bradykinin 1-7 

([M+H]+ 757.3992 Da), Angiotensin II ([M+H]+ 1046.5420 Da), Angiotensin I ([M+H]+ 

1296.6853 Da), Substance P ([M+H]+ 1347.7361 Da), Bombesin ([M+H]+ 1619.8230 Da), 

Renin Substrate ([M+H]+ 1758.9326 Da), ACTH clip 1-17 ([M+H]+ 2093.0868 Da), ACTH clip 

18-39 ([M+H]+ 2465.1990 Da) and Somatostatin 28 ([M+H]+ 3147.4714 Da) was used for 

external calibration of the instrument, though only for adjacent samples on the target. MS1 

spectra of the samples were obtained by combining individual spectra from 600 laser shots 

and calibrated against the adjacent calibrator spot. Generation of figures from the obtained 

spectra was performed using the open source mass spectrometry tool mMass version 2.4. 
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3.9.4 nanoHPLC-ESI-QToF 

A QToF Ultima Global (Waters) operating in positive ion mode was equipped with an 

Ultimate 3000 HPLC (Dionex) in front for peptide separation and subsequent fragmentation 

and detection in the mass spectrometer. The samples were injected onto a C18 trapping 

column in isocratic conditions (2% ACN, 0.2% FA) delivered by the loading pump operating at 

25 µL/min. After three minutes the flow from the nanopump (300 nL/min) was switched in-

line with the trapping column and allowed for trap column back flushing for highest peptide 

sensitivity. The nanopump delivered a biphasic gradient from 5% to 95% B over 44 minutes 

followed by 95% B for 9 minutes for complete peptide elution. Solution A was 2% ACN in 0.1% 

FA and solution B was 90% ACN in 0.1% FA. The QToF was operated in MS1 mode for 

POSTMan analysis and in DDA mode with inclusion list generated from POSTMan for 

targeted peptide fragmentation (MS/MS). The scan time in MS1 mode was 3.9 seconds to 

ensure high sensitivity on parent ions and scan time in DDA mode was up to 10 seconds to 

generate high-quality fragmentation spectra. MS/MS spectra were background subtracted, 

smoothed and centroided using the ProteinLynx 2.2 software with default settings, and peak 

lists for database search were generated. 

3.9.5 Protein database interrogation 

For identification of peptides the search engine Mascot (Perkins et al, 1999) was utilized with 

tryptic specificity and three to five missed cleavages allowed. Carbamidomethyl cysteine was 

set as fixed structural modification and variable structural modifications as follows: 

Oxidation of methionines, deamidation of glutamic and aspartic acid, acetylation and 

propionylation of lysines, and phosphorylation of serines and threonines where applicable. 

Peptide accuracy tolerance window was mainly set to 75 ppm on precursor ions and 0.5 Da 

on fragmentation ions, but for one particular experiment where the instrument calibration 

was poor an MS1 accuracy of 200 ppm was allowed. The protein database used was the non-

redundant Swiss-Prot version 56.5. 
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4 Results 

The results in this master thesis are presented as two major parts. The first part (4.1) 

presents results from the development of the mass spectrometry software POSTMan. This 

includes the background principles incorporating mass and time shifts of peptides and 

demonstrates the basic features of the software using a model protein. In addition, 

strengths and limitations of the software are presented when the software is applied to real 

biological samples. The second part (4.2) focuses on the identification of PTMs residing on 

the tumour suppressor protein p53, specifically acetylation and propionylation. The 

characterisation of a novel pan-specific anti-propionyllysine antibody is covered here and in 

addition we make a comparison between PTM detection by western blotting and a 

bioinformatics approach using POSTMan leading to a number of conclusions. 

Results from Section 4-1, together with additional data not presented in this master thesis, 

have been accepted for publication in the journal Proteomics (2009). 

4.1 Detection of PTMs on p53 and other proteins using POSTMan 

4.1.1 Chemical derivatisation of peptides induce a mass difference and shift 

in retention time readily detected by HPLC-coupled mass spectrometry 

A prerequisite for POSTMan to successfully detect PTMs is the ability to induce a mass shift 

in a subset of the peptides under analysis. It is this mass shift, preferentially together with a 

shift in retention time, which is the detection tag in POSTMan. Such a mass shift can be 

induced by chemical or enzymatic methods which specifically alter the mass of peptides 

habouring a defined PTM. Two PTMs were targeted for analysis in these studies: Lysine 

acetylation, causing a peptide mass shift of 42.01056 Da, and lysine propionylation, causing 

a mass shift of 56.02622 Da. For the study of acetylated and propionylated peptides two 

strategies were used to induce mass shifts: The first was a chemical derivatisation using 

highly reactant N-hydroxysuccinimide (NHS) esters of either acetic or propionic acid to 

chemically label lysines with acetyl and propionyl groups, respectively. The second was 

enzymatic removal of these groups accomplished by the deacetylase SIRT1, which also 

showed depropionylase activity at least at the peptide level. Initial experiments were 

performed with bovine serum albumin (BSA) as substrate. BSA is a protein often used in 
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mass spectrometry: Tryptic peptides are numerous, it is cheap and readily available. It was 

therefore natural to establish the chemical experiments with BSA as a substrate before 

progressing to other proteins like p53. 

4.1.1.1 Derivatisation of BSA with NHS-compounds 

BSA was derivatised in the absence (control) or presence of 100x molar excess of acetyl-NHS 

or propionyl-NHS esters. The treated proteins were then separated by SDS-PAGE which 

resulted in different molecular weights (Mw) for BSA depending on the reagent used (Figure 

4-1). Underivatised BSA migrated with an apparent Mw of 67 kDa (Figure 4-1, lane 1), 

acetylated BSA resulted in an apparent increase in Mw (Figure 4-1, lane 2) compared with 

the underivatised sample, while propionylated BSA ran with an intermediate Mw (Figure 4-1, 

lane 3). SDS-PAGE separated underivatised from derivatised BSA, and ensured that the 

protein sample used in downstream chemistries was free of contaminating underivatised 

BSA species.  

 

Figure 4-1. Coomassie blue stained SDS-PAGE showing underivatised BSA (lane 1), BSA derivatised with 

acetyl-NHS (Lane 2) and propionyl-NHS (Lane 3). Protein bands were excised from the gel and in-gel digested 

with trypsin. 

 

These gel bands were excised and following trypsin cleavage of derivatised and non-

derivatised BSA, several peptides were detected using MALDI-ToF mass spectrometry. A 

number of unique peptides were observed in the derivatised samples (Table 4-1). These 

peptides all contained internal lysine residues within their sequence.  
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BSA peptide sequence 
Theoretical 
mass (Da) 

Observed mass (Da) 

AcBSA n x Ac PrBSA n x Pr 

SLGKVGTR 816.49 858.44 1 872.55 1 

EKVLTSSAR 989.55 1031.55 1 nd  

ALKAWSVAR 1000.59 1042.59 1 1056.69 1 

CASIQKFGER, (1xCam) 1194.58 1236.61 1 1250.73 1 

KVPQVSTPTLVEVSR 1638.93 1680.98 1 1695.06 1 

LRCASIQKFGERALK, (1xCam) 1775.98 1817.92 1 nd  

LCVLHEKTPVSEKVTKCCTESLVNR, (3xCam) 2986.5 3112.58 3 3154.69 3 

EYEATLEECCAKDDPHACYSTVFDKLK, (3xCam) 3278.42 3320.66 1 nd  

 

Table 4-1. Internal lysine containing peptides uniquely observed when BSA was derivatised. BSA was 

derivatised with either acetyl-NHS or propionyl-NHS esters before in-gel trypsin cleavage. Several peptides 

unique to acetylated BSA (AcBSA) and propionylated BSA (PrBSA) could be detected using MALDI-ToF mass 

spectrometry. All unique peptides contained internal lysine residues (highlighted) and were detected in their 

acetylated or propionylated form respectively. Cam = carbamidomethyl-cysteine, nd = not detected. 

 

Figure 4-2 shows the MALDI spectrum in the m/z range between 1000 and 1070 highlighting 

the effect of derivatisation on BSA. Underivatised BSA resulted in few prominent peptides 

within this range (Figure 4-2, blue spectrum). However tryptic cleavage of derivatised BSA 

resulted in intense ions at [M+H]+ 1043.59 Da (acetylated-BSA Figure 4-2, green spectrum) 

and [M+H]+ 1057.69 Da (propionylated-BSA Figure 4-2, orange spectrum). Sequence analysis 

resulted in these peptide ions matching the acetylated and propionylated mass values of the 

peptide ALKAWSVAR with [M+H]+ 1001.59 Da respectively. This peptide contains one lysine 

residue at position 3 from the N-terminus. Normally trypsin would cleave at this position, 

unless the residue is blocked by a modification. The epsilon amino group of this lysine is 

likely to be the derivatised (acetylated or propionylated) residue within this sequence. We 

can exclude that the N-terminal amino group is derivatised as the protein was derivatised 

before exposure to the protease. 
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Figure 4-2. The BSA peptide ALKAWSVAR [M+H]
+
 1001.59 Da from derivatised and non-derivatised BSA. The 

blue spectrum corresponds to non-derivatised BSA: the peptide is not present. The green spectrum 

corresponds to acetyl-NHS derivatised BSA: the peptide is present with one acetyl group [M+H]
+
 1043.59 Da. 

The orange spectrum corresponds to propionyl-NHS derivatised BSA: the peptide is present with one 

propionyl group [M+H]
+ 

1057.69 Da. The figure was generated using the open source mass spectrometry tool 

mMass (Strohalm et al, 2008). 

4.1.1.2 The NAD dependent deacetylase SIRT1 can deacetylate and depropionylate 

derivatised BSA 

The same BSA peptide mixture was further incubated in the presence of the deacetylase 

SIRT1 and its co-factor β-NAD+. The peptide ALKAWSVAR with [M+H]+ 1001.61 Da was visible 

in both derivatised (acetylated and propionylated) samples, whereas the labelled versions of 

this peptide ([M+H]+ 1043.59 Da and [M+H]+ 1057.69 Da for acetylated and propionylated 

version respectively) were not detected under these conditions (Figure 4-3, green and 

orange spectrum). This verifies that the deacetylase SIRT1 can remove acetyl groups (42.01 

Da) and propionyl groups (56.03 Da) from peptides. 
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Figure 4-3. The BSA peptide ALKAWSVAR [M+H]

+
 1001.61 Da from NHS treated BSA and additional treatment 

with SIRT1. The blue spectrum corresponds to non-derivatised BSA treated with SIRT1: the peptide is not 

present. The green spectrum corresponds to acetyl-NHS derivatised BSA treated with SIRT1: the peptide is 

present without the acetyl group at [M+H]
+
 1001.61 Da. The orange spectrum corresponds to propionyl-NHS 

derivatised BSA treated with SIRT1: the peptide is present without the propionyl group at [M+H]
+ 

1001.61 Da. 

The figure was generated using the open source mass spectrometry tool mMass (Strohalm et al, 2008). 

4.1.1.3 Chemically acetylated and propionylated peptides have different physical 

characteristics to the underivatised/parent peptides. 

The addition or removal of acetyl or propionyl groups changes a peptides physical properties; 

mass, charge state and hydrophobicity are all changed by such chemical treatment. To 

determine the charge state shift and hydrophobicity shift caused by addition/removal of 

these functional groups, HPLC-ESI mass spectrometry was used due to the presence of 

multiply charged peptide species generated during ESI and peptide separation based on 

hydrophobicity. The raw MS1-files from acetyl-NHS derivatised BSA and acetyl-NHS 

derivatised BSA subsequently treated with SIRT1 for deacetylation were plotted as two 

dimensional maps with m/z and retention time on the X- and Y-axis respectively, and 

overlaid using the software MSight. Figure 4-4 shows the BSA peptide ALKAWSVAR in its 

acetylated and deacetylated version with retention time difference of +5.8 minutes for the 

acetylated version. The isotopic envelope of the peptides was also clearly visible in these 

plots. All acetylated peptides we encountered in this study eluted later in C18 

chromatography than its non-acetylated counterpart. 
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Figure 4-4. The BSA peptide ALKAWSVAR shown during elution from C18 HPLC-ESI mass spectrometry. MS1-

raw files from acetylated and deacetylated BSA were drawn as two dimensional maps with m/z and 

retention time on the X- and Y-axis respectively, and superimposed using the software MSight. The BSA 

peptide ALKAWSVAR is shown in its deacetylated version (A) at [M+2H]
2+

 501.29 Da and its acetylated 

version [M+2H]
2+

 522.29 Da. The elution time difference between the two peptides is 5.8 minutes. 

  

When deacetylated (Figure 4-4,A), not only a shift in mass and retention time was observed, 

but also a reduction in intensity of this doubly charged peptide by 30% due to the presence 

of an additional triply charged version of the same peptide, ALKAWSVAR at [M+3H]3+ 334.53 

Da (data not shown). Deacetylation can thus also induce a shift in the peptide’s charge state, 

most likely due to the presence of an unblocked lysine capable of carrying another charge. 

This raises an important issue for pairing peptides, acetylated and deacetylated, as done in 

POSTMan: The algorithm should have the capability to pair peptides independent of charge 

state. 

4.1.2 POSTMan development and proof of principle 

The above data demonstrate that we can specifically manipulate the acetylation and 

propionylation status of a set of peptides. Chemically derivatised BSA peptides can be 

deacetylated and depropionylated in vitro by the enzyme SIRT1 and we can now apply this 

reagent to deacetylate in vivo acetylated peptides. BSA was ideal as a substrate for 

establishing and optimising the above chemical experiments. In the following experiments 
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acetylated equine Cytochrome c (Sigma-Aldrich) has been used instead with the role as an in 

vivo acetylated model protein. 

Comparing the SIRT1 treated peptide mixture with the original starting material i.e. 

with intact acetylated peptides, should reveal differences in peptide patterns in only those 

peptides which have been deacetylated. Based on this we developed POSTMan (described in 

Methods) as a tool that can automatically detect this shift in mass and retention time 

between two samples and create a list of candidate acetylated peptides (an inclusion file) 

that can be used for targeted MS/MS in a subsequent analysis. During the course of 

development of the software, we realised that not only acetylation and propionylation could 

be detected this way, but in principle any kind of PTM, as long as the mass of the modified 

peptides could be altered. For example, the mass of phosphorylated peptides can also be 

specifically altered by using alkaline phosphatase to remove the phosphate group; this is 

however not included in this thesis but briefly touched upon in the Discussion-section. 

4.1.2.1 POSTMan workflow 

The typical workflow of a POSTMan experiment includes either gel or chromatography based 

separation of proteins followed by proteolytic digestion of the proteins. The samples are 

then split in two: One kept as an untreated control and the other treated to specifically 

affect peptides carrying a specific PTM. The compound used can for example be an enzyme 

or specific chemistry that targets the PTM of interest. After HPLC-coupled ESI-MS analysis 

the two files are loaded into POSTMan and compared to detect mass and retention time 

shifts. A list of possibly modified peptides is automatically generated. Finally, these peptides 

are targeted for fragmentation in a second round of analysis. Figure 4-5 depicts the typical 

POSTMan workflow.  
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Figure 4-5. Typical workflow of a POSTMan experiment. A sample containing peptides with PTMs is 

proteolytically digested and split in two portions, one kept untreated and the other treated to shift mass and 

retention time of only the PTM-carrying peptides. Samples are analysed successively on HPLC-coupled ESI-

MS operated in MS1 mode and, after peak detection and feature finding in the POSTMan pre-processor, the 

files are loaded into the POSTMan analysis tool for comparison. Pairs are automatically detected and an 

inclusion list for targeted MS/MS is compiled. The high quality MS/MS spectra from targeted analysis 

confirm or disconfirm the presence of PTMs. 

4.1.2.2 POSTMan can identify acetylated peptides from the in vivo acetylated 

Cytochrome c 

We used acetylated equine Cytochrome c (AcCytC) as a model protein for the POSTMan 

development and proof of principle. This protein has previously been used to identify 

immonium ions specific for and characteristic of acetylated lysine residues (Kim et al, 2002). 

A tryptic peptide sample of AcCytC was split in two and incubated with SIRT1 in the presence 

or absence of β-NAD+. After C18 clean-up (see Methods 3.9.2) the peptide mixtures were 

analysed successively by LC-MS (Q-ToF) and loaded into the POSTMan pre-processor for data 

conversion and feature detection. The pre-processor output was subsequently loaded into 

the POSTMan analysis tool and filtered so that only peptides with intensity above 50 counts 

were shown. These peptides were used for aligning the samples in the retention time 
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dimension first manually for a coarse match by sliding one run superimposed on the other 

for a visual best fit, and secondly automatic with bin size 50 seconds and 6 smooth points 

(Figure 4-6). 

 

 
 

Figure 4-6. Automatic non-linear retention time alignment between the two samples AcCytC and AcCytC 

treated with SIRT1. The data subset used for alignment contained only peptides with intensity above 50 

counts. 

 

When “Apply alignment” was clicked, the retention time of all peptides in the treated 

dataset were added a value (positive or negative) according to the alignment graph (Figure 

4-6, red line). Peptides with mass differences of 42.01056 Da and within a retention time 

window of zero to 450 seconds were paired (Figure 4-7). Peptides with intensity less than 50 

counts and/or singly charged peptide ions were excluded from analysis. Furthermore, 

peptides with a hydrophobic shift (elutes later in C18 chromatography) after treatment with 

SIRT1 were excluded from analysis. This latter filtering step is because peptides that lose 

their acetyl groups tend to elute earlier than its acetylated counter peptide.  
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Figure 4-7. POSTMan main window showing acetylated Cytochrome c untreated (green) and after treatment 

with the NAD
+
 dependent deacetylase SIRT1 (blue). Peptides with mass differences of 42.01056 Da and 

within a retention time window from 0 to 450 seconds were paired (black lines connecting peptides). Peptide 

species with intensity below 50 counts and/or singly charged ions were excluded from analysis. Peptide pairs 

with a hydrophobic shift after treatment were rejected. 

 

This produced 132 peptide pairs and the output was saved as a MassLynx inclusion file. This 

file was loaded directly into the MassLynx software for targeted MS/MS analysis. 36 peptide 

ions were targeted successfully where 17 peptide queries identified 12 unique peptides and 

9 sites of acetylation in AcCytC. A portion of the untreated sample was also analysed in 

conventional DDA mode for comparison where 13 peptide queries identified 10 unique 

peptides and the same 9 sites of acetylation. In POSTMan analysis followed by targeted 

MS/MS more time can be spent on every precursor ion thereby providing higher quality 

spectra. The quality increase of MS/MS spectra in favour of POSTMan is evident by the 

Mascot scores in Table 4-2. 
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Peptide Residue # Site of acetylation 
Mascot ion score 

DDA POSTMan 

HKTGPNLHGLFGR 27 - 39 28 82 82 

KTGQAPGFTYTDANK 40 - 54 40 68 78 

KTGQAPGFTYTDANKNK 40 - 56 40, 54 - 45 

TGQAPGFTYTDANKNK 41 - 56 54 34 48 

EETLMEYLENPKK 62 - 74 73 33 72, 59 

YIPGTKMIFAGIK 75 - 87 80 32 72, 61 

MIFAGIKK 81 - 88 87 - 33, 25 

MIFAGIKKK 81 - 89 87, 88 28, 29 nd 

MIFAGIKKKTER 81 - 92 87, 88, 89 35 nd 

KKTEREDLIAYLK 88 - 100 88, 89 - 68 

KTEREDLIAYLK 89 - 100 89 26, 46 58 

KTEREDLIAYLKK 89 - 101 89, 100 - 47, 22, 30 

TEREDLIAYLKK 90 - 101 100 21, 25 33 

EDLIAYLKK 93 - 101 100 29 51 
 

Table 4-2. Tryptic peptides of acetylated Cytochrome c were analysed either by DDA or using POSTMan to 

analyse the same sample after treatment with the NAD
+
 dependant deacetylase SIRT1, combined with 

targeted fragmentation. Only peptides which differed by 42.01056 ± 0.1 Da were searched. This included 

doubly acetylated peptides where only one of the acetyl groups was removed and paired with the singly 

acetylated isoform e.g. peptide KTGQAPGFTYTDANKNK. DDA analysis of the sample identified 10 unique 

acetylated peptides and 9 sites of acetylation from a total of 13 peptide queries. POSTMan analysis identified 

12 unique acetylated peptides and 9 sites of acetylation from 17 peptide queries. Targeted analysis resulted 

in higher Mascot scores of peptides. It is important to note that the two peptides MIFAGIKKK and 

MIFAGIKKKTER (nd = not determined) were not selected in the POSTMan inclusion list because they differed 

in mass by 84.02112 Da (2x acetylated) and 126.03168 Da (3x acetylated) respectively and not the defined 

mass of 42.01056 Da used in this search. Searching for masses 84.02112 Da and 126.03168 Da however does 

recognise these peptides (data not shown).  

 

Among the peptides selected for targeted MS/MS was the peptide EETLMEYLENPKK (see 

Table 4-2). This peptide shifted charge state from [M+2H]2+ to [M+3H]3+ after treatment with 

SIRT1 due to the removal of an acetyl group and thus the presence of a free lysine. This 

produced an m/z shift of 291.45 Da instead of 42.01056 Da; however POSTMan was still able 

to create a peptide pair utilizing the de-convoluted mass value rather than the m/z ratio for 

the peptides (Figure 4-8). 
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Figure 4-8. The peptide EETLMEYLENPacKK from acetylated Cytochrome c (AcCytC) shifted charge state from 

[M+2H]
2+

 to [M+3H]
3+

 after treatment with the NAD
+
 dependant deacetylase SIRT1. This produced an m/z 

shift of 291.45 Da and retention time difference of 5.1 minutes; far off the 42.01056 Da that was the 

POSTMan search parameter. Still POSTMan could make a pair of these peptides by utilizing their de-

convoluted mass values instead of the m/z ratios. The y-series fragment ions from y1 to y11 were identified 

in both MS/MS spectra and highlighted with bold. The site of acetylation can readily be seen at Lys12 (Lys73 

in AcCytC). RT = retention time. 

4.1.3 Detection of acetylation sites on histones using POSTMan 

In order to see if POSTMan would be able to find acetylated peptide species in the 

background of a cell lysate, human epithelial HeLa cells were transfected with the 

acetyltransferase p300 in the presence of the Histone deacetylase (HDAC) class I and II 

inhibitor Tricostatin A (TSA) and the HDAC class III inhibitor Nicotinamide (NAM). Lysates 

from both conditions were separated by SDS-PAGE and further immunoblotted with a pan-

specific anti-acetyllysine antibody (ImmuneChem). This resulted in an increase in acetylation 

events as shown in Figure 4-9, lane 5 and 6. Five bands corresponding to acetylated proteins 

as detected by the antibody with similar molecular weight on the coomassie stained gel as 

on the western blot (see Figure 4-9, rectangles) were excised and in-gel digested with trypsin. 



 

51 

 

Results 

Peptide samples were split in two and treated with SIRT1 in the presence or absence of β-

NAD+ while a third equivalent portion of untreated material was set aside for DDA analysis. 

Samples were analysed by LC-MS QToF, operated in DDA mode, and by POSTMan analysis. 

For samples 1, 2 and 3 the peptide complexity was extremely high, which is consistent with 

the fact that these samples were extracted from the densest region on the gel with several 

proteins per molecular weight unit. No acetylated proteins could be detected in these three 

samples, either with DDA or POSTMan analysis. POSTMan analysis did however match 

several peptides with mass differences of 42.01056 Da as candidate acetylated peptides, but 

targeted MS/MS was unable to confirm this. This underlines that even with the use of 

sophisticated proteomic software, sample pre-fractionation must be performed in order to 

find the modified peptides present at sub-stoichiometric levels when using mass 

spectrometry. 

 

 
 

Figure 4-9. HeLa cells were transfected with the acetyltransferase p300 in the presence of histone 

deacetylase inhibitors Tricostatin A and Nicotinamide. An immunoblot with pan-specific anti-acetyllysine 

antibody (ImmuneChem) shows several proteins being acetylated in response to p300 overexpression. 

Coomassie stained proteins with corresponding molecular weight to the acetylated proteins detected by 

western analyses were excised, trypsin digested and analysed by LC-MS in DDA mode and with POSTMan. 

 

In samples 4 and 5, the peptide complexity was lower and DDA analysis identified 6 and 7 

unique proteins respectively with 2 peptides or more. Amongst these, two proteins were 

identified with acetylated peptides and presented here. In sample 4, Histone H3-like protein 



 

52 

 

Results 

was identified by two peptides where the doubly acetylated peptide acKQLATacKAAR at 

[M+2H]2+ 535.82 Da identified two sites of acetylation: Lys19 and Lys24. Furthermore, in 

sample 5, Histone H2B type 1 was identified by three peptides where the quadruply 

acetylated peptide acKGSacKacKAVTacKAQK at [M+2H]2+ 721.43 Da identified four sites of 

acetylation: Lys13, Lys16, Lys17 and Lys21. POSTMan analysis of these samples did however 

not detect these two acetylpeptides as pairs with their deacetylated versions due to very 

large charge state differences. The peptide acKQLATacKAAR from Histone H3-like protein, 

when deacetylated by SIRT1 to KQLATKAAR, could not be detected at its theoretic mass 

[M+2H]2+ 493.81 Da or [M+3H]3+ 329.54 Da which would be necessary for POSTMan to 

detect them as a pair. This is most likely because this peptide now can carry four charges and 

would ionise outside of the mass range of the mass spectrometer. This is also the case with 

the peptide acKGSacKacKAVTacKAQK from Histone H2B type 1: Its deacetylated peptide 

version KGSKKAVTKAQK expected at [M+2H]2+ 637.41 Da, [M+3H]3+ 425.27 Da or [M+4H]4+ 

319.21 Da was not detected. This peptide could readily carry five charges and now falls 

outside the range of the mass spectrometer. However, at a later stage and by applying the 

“find unique peptides” function in POSTMan (see Method Section 3.1.3.3b), these two 

peptides were recognised as potentially acetylated candidates (data not shown), but this 

function in POSTMan had not yet been developed at the time of analysis.  

4.1.4 Detection of multiple PTMs on p53 using POSTMan  

A proteomic study of acetylation and propionylation sites on the tumour suppressor protein 

p53 in response to p300 and SIRT1 overexpression were performed by Clive D’Santos on a 

Fourier Transform (FT) mass spectrometer (see appendix B). In brief, HEK293 cells were 

either transfected with empty vector as control (sample A), p300 (sample B) or a 

combination of p300 and SIRT1 (sample C). p53 was immunoprecipitated using anti-p53 DO-

1 antibody and separated by SDS-PAGE. Bands corresponding to p53 were excised and in-gel 

digested with trypsin. The peptides were finally analysed on an FT mass spectrometer. The 

raw files were converted to POSTMan input files using the POSTMan pre-processor and 

further filtered by msInspect to only keep peptides with intensity above 90 counts (50 for 

sample C due to less material), charge between 2 and 5, and the minimum number of 

detected peaks per peptide was 2. This was done using msInspect and not POSTMan due to 

the extreme number of detected features from FT data and the nature of programming used 
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in the two programs. The samples were then subsequently analysed in POSTMan for global 

PTM assessment and only peptide masses that matched an in silico digest of p53 with the 

following parameters were considered: Tryptic enzyme specificity with 3 missed cleavages 

allowed, fixed structural modification on cysteine: carbamidomethyl, and variable structural 

modifications: Acetylation and propionylation of lysines, phosphorylation of serines and 

threonines, oxidation of methionines. The remaining peptides were counted in a histogram 

of delta masses with intervals of 0.010 Da (Figure 4-10). 

 

 
 
Figure 4-10. HEK293 cells were transfected with empty vector as control (A), the acetyltransferase p300 (B) 

and a combination of the acetyltransferase p300 and the deacetylase SIRT1 (C). The deltamasses of peptides 

matching an in silico digest of p53 were counted in a histogram with intervals of 0.010 Da. The random noise 

was estimated to 80 counts for sample A and B, and 30 counts for sample C (red lines). 

 

The number of detected peptides with delta masses corresponding to acetylation, 

propionylation and phosphorylation were counted, background (noise) subtracted and 

normalised to the number of total peptides matching the same peptides determined by in 

silico digestion of p53. The linear noise estimate (a straight line connecting the sine wave 

maxima described in Methods Section 3.1.3.2) was 80, 80 and 30 for sample A, B and C 

respectively (Figure 4-10, red line). The histogram results showed a noticeable increase of 

2.8% acetylation events, 1.0% propionylation events and 2.0% phosphorylation events in 

response to p300 overexpression (Table 4-3).  
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 A B C 

p300 - + + 

SIRT1 - - + 

Acetylation, 42 Da 48 / 2.3% 97 / 5.1% 19 / 1.6% 

Propionylation, 56 Da 24 / 1.2% 42 / 2.2% 16 / 1.4% 

Phosphorylation, 80 Da 42 / 2.0% 76 / 4.0% 42 / 3.6% 

Total peptides matching the 
in silico digest 

2086 1915 1162 

 

Table 4-3. HEK293 cells were transfected with empty vector as control (A), the acetyltransferase p300 (B) and 

a combination of the acetyltransferase p300 and the deacetylase SIRT1 (C). The number of detected 

deltamasses of peptides matching an in silico digest of p53 were counted for acetylation, propionylation and 

phosphorylation and background subtracted (the first number). The count was further normalised to the 

number of total peptides matching the same in silico digest (the second number, in percent). 

 

When SIRT1 is overexpressed together with p300 the percentage of acetylated peptides is 

reduced to below background. In contrast, the percentages of propionylated and 

phosphorylated peptides were reduced in C compared to B but remained above background. 

This may suggest that SIRT1 preferentially removes acetyl groups over propionyl groups, but 

the comparison may also be impaired by the low number of peptides overall in sample C. 

The percentage of phosphorylated peptides is not the same in A, B and C. This corroborates 

potential crosstalk between acetylation and phosphorylation in the regulation of p53; 

otherwise the phosphorylation percentage would serve as a convenient control between the 

three conditions. 

4.2 Detection of PTMs on p53 and other proteins using antibodies 

4.2.1 The pan-specific anti-propionyllysine antibody characterisation 

Several commercial pan-specific anti-acetyllysine antibodies are available, many of them 

being used routinely to detect in vivo acetylation in cells (Kim et al, 2006; Solomon et al, 

2006). Recently, propionylation was identified as a new in vivo PTM (Chen et al, 2007; Cheng 

et al, 2008), and in the light of this we wanted to assess if the commercial anti-acetyllysine 

antibodies cross-reacted with propionylated lysines due to the minimal structural difference 

between acetyl and propionyl groups. From this point of view we generated a custom, pan-

specific anti-propionyllysine antibody (see Methods, Section 3.8) and characterised this 

reagent in terms of its specificity for propionyl groups. The affinity of this antibody with 
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respect to propionyl groups was compared with commercially available acetyllysine 

antibodies. 

4.2.1.1 Pre and post rabbit immunisation 

The pan-specific anti-propionyllysine antibody was used to detect propionylation in human 

embryonic kidney cells, HEK293T. Cells were grown in the presence of HDAC inhibitors TSA 

and NAM which together inhibit all three classes of HDACs. To validate the specificity of the 

pan-specific anti-propionyl antibody the rabbit serum pre-immunisation was used together 

with anti-propionyllysine antibody, 7-1. A complete cell lysate was separated by SDS-PAGE 

and western blotted for comparison between the pre and post immune sera. Several bands 

specific for the post rabbit immunisation serum could be detected (Figure 4-11, red arrows). 

 

 
 
Figure 4-11. HEK293T cells were grown in the presence of the HDAC inhibitors TSA and NAM. 50 μg complete 

cell lysate was separated by SDS-PAGE and western blotted with sera pre- and post- rabbit immunisation to 

validate specificity of the anti-propionyllysine antibody 7-1. Unique bands were detected with the post 

immunisation serum and the most prominent are indicated with red arrows. 
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4.2.1.2 Antibody specificity and sensitivity 

Exposed ε-amino groups of lysine residues on the recombinant tumour suppressor protein 

p53 (Sigma-Aldrich) were chemically derivatised with NHS-acetyl ester, NHS-propionyl ester 

and NHS-butyryl ester and 5 ng (114 fmol) of each of the modified proteins were separated 

by SDS-PAGE. Western blotting of the gel separated proteins was performed using a panel of 

commercial antibodies as well as two pan-specific anti-propionyllysine antibodies 7-1 and 7-

2 raised in this study (see Methods, Section 3.6). A comparison of the different blots of 

recombinant p53, labelled and wild type (WT), is shown in Figure 4-12. For loading control 

50 ng of proteins was used and the SDS-PAGE gel was stained with silver. The pan-specific 

commercial antibodies, with exception of the one from Upstate, showed cross-reaction with 

propionylated p53 and to some extent butyrylated p53. The two pan-specific anti-propionyl 

antibodies 7-1 and 7-2 showed cross-reaction with butyrylated p53, but no cross-reaction 

with acetylated p53. Upon chemical labelling all exposed lysines are expected to be labelled. 

It is therefore likely that the protein undergoes some conformational change due to the 

extensive labelling. This is also evident with the anti-p53 (DO-1) antibody. This antibody 

predominantly recognised WT p53 and did not recognise much of the labelled p53 variants. 

The anti-p53 Lys382Ac antibody should only recognise p53 when acetylated at Lys382, but 

showed no signal with either WT or any labelled variant. Either Lys382 was not available for 

chemical labelling or the antibody epitope was masked due to the heavy labelling and 

therefore the anti-p53 Lys382Ac antibody could not recognise it. To truly test if this antibody 

shows any cross-reaction to propionyl and butyryl groups on Lys382, p53 should be labelled 

on that particular site only, but that is not possible with this chemical approach.  
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Figure 4-12. Recombinant tumour suppressor protein p53 was chemically labelled with acetyl, propionyl and 

butyryl groups on all exposed ε-amino groups of lysines and blotted with a panel of commercial antibodies: 

pan-specific anti-acetyllysine (ImmuneChem Pharmaceuticals, Biomol International, Cell Signaling 

Technology, Upstate Cell Signaling), anti-p53 DO-1 (Santa Cruz), anti-p53 Lys382 acetylated (Cell Signaling 

Technology), as well as our own two pan-specific anti-propionyllysine antibodies (7-1 and 7-2). WT = wild 

type, AcK = acetyllysine, PrK = propionyllysine. 

 

All pan-specific anti-acetyllysine antibodies were used in the concentration 1:500 while the 

anti-propionyllysine antibodies 7-1 and 7-2 were used in 1:1000. Five ng of protein could 

readily be detected by the propionyl antibodies, at the same signal intensity as anti-

acetyllysine from ImmuneChem. In the following experiments, only the 7-1 propionyl 

antibody has been used. 

4.2.2 p53 immunoprecipitations 

4.2.2.1 HEK293T cells overexpressing the acetyltransferase p300 

HEK293T cells were transfected with either empty vector or the acetyltransferase p300. 

Endogenous p53 was immunoprecipitated from each of these cell samples and the 

immunoprecipitates were analysed by western blotting and mass spectrometry (Figure 4-13). 

Western blotting of the p53 immunoprecipitates with the pan-specific anti-propionyllysine 

antibody 7-1 resulted in an intense signal in the sample transfected with p300, but not in the 
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expected molecular weight range of p53. Re-blotting with anti-p53 DO-12 antibody revealed 

that p53 in HEK293T cells migrated in the 47 kDa area, suggesting that the signal recorded by 

the anti-propionyllysine antibody did not originate from p53. Further re-blotting with pan-

specific anti-acetyllysine antibody showed a signal in the sample transfected with p300 in 

the expected p53 molecular weight range. Lys382 of p53 has been previously reported to be 

acetylated by p300 (Abraham et al, 2000; Gu & Roeder, 1997; Liu et al, 1999), and it would 

therefore be interesting to western blot these immunoprecipitates with an anti-p53 Lys382 

acetylated antibody to verify if this is the case in this experiment also. In summary, western 

blotting showed that p53 was acetylated but not propionylated at least under these 

conditions. 

 

 
 

Figure 4-13. HEK293T cells were transfected with empty vector (-) or the acetyltransferase p300 (+). 

Endogenous p53 was immunoprecipitated (IP) and 90% of the material was separated by SDS-PAGE for mass 

spectrometry analysis and the remaining 10% was separated by SDS-PAGE for western immunoblotting 

analysis. Western blots were performed with the pan-specific anti-propionyllysine antibody (PrK, 7-1), pan-

specific anti-acetyllysine antibody (AcK, Biomol International) and anti-p53 DO-12. Red numbered boxes 

indicate samples subjected for mass spectrometric analysis. 

 

When the p53 immunoprecipitates were separated by SDS-PAGE, several bands were visible 

by coomassie staining. Two bands (1 and 2) specific for the sample transfected with p300 
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were excised in addition to the bands at 47 kDa (3 and 4) from both immunoprecipitates 

(Figure 4-13, red numbered boxes). Samples were in-gel digested and analysed by a QToF 

mass spectrometer operated in DDA mode for protein identification (Table 4-4). p53 was 

identified in samples 3 and 4 as expected compared to the western blots, but no p53-

peptides identified sites of acetylation or propionylation.
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Sample Protein Identification Accession 
number 

Mascot 
score 

Unique 
peptides 

Modifications 

1 Myosin-9 
Myosin-10 
Myosin-14 

MYH9_HUMAN 
MYH10_HUMAN 
MYH14_HUMAN 

4985 
3746 
1695 

69 
42 
16 

Lys1145ac, Ser1943ph 
Ser1956ph 

2 Myosin-9 
Non-POU domain-containing octamer-binding protein 
Myosin-10 
UPF0027 protein C22orf28 
Keratin, type II cytoskeletal 1 
Vimentin 
Protein RCC2 
Aspartyl-tRNA synthetase, cytoplasmic 
Cleavage and polyadenylation specificity factor subunit 7 

MYH9_HUMAN 
NONO_HUMAN 
MYH10_HUMAN 
CV028_HUMAN 
K2C1_HUMAN 
VIME_HUMAN 
RCC2_HUMAN 
SYDC_HUMAN 
CPSF7_HUMAN 

1278 
513 
478 
399 
337 
129 
113 
102 
94 

20 
9 
6 
7 
4 
2 
2 
2 
2 

 

3 Tumour suppressor protein p53 
Heterogeneous nuclear ribonucleoprotein H 
Myosin-9 
Trifunctional enzyme subunit beta 
60S ribosomal protein L4 
Elongation factor 1-gamma 
Keratin, type II cytoskeletal 1 
Alpha-enolase 
Proliferation-associated protein 2G4 

P53_HUMAN 
HNRH1_HUMAN 
MYH9_HUMAN 
ECHB_HUMAN 
RL4_HUMAN 
EF1G_HUMAN 
K2C1_HUMAN 
ENOA_HUMAN 
PA2G4_HUMAN 

541 
274 
246 
176 
133 
112 
111 
108 
95 

9 
4 
4 
3 
3 
2 
2 
2 
2 

 

4 Tumour suppressor protein p53 
Alpha-enolase 
Elongation factor 1-alpha 1 

P53_HUMAN 
ENOA_HUMAN 
EF1A1_HUMAN 

479 
114 
95 

9 
2 
2 

 

Table 4-4. Protein identification using a QToF mass spectrometer operated in DDA mode on samples from HEK293T cells transfected with empty vector or the 

acetyltransferase p300. Protein identifications are based on a minimum of two peptides with individual ion-score above the Mascot cut-off threshold of p=0.05. Sample 

numbers refer to red numbered boxes in Figure 4-13. In this particular experiment the peptide accuracy tolerance window was set to 200 ppm due to a wrong calibration 

in the QToF mass spectrometer. 
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A portion of sample 3 was also analysed by POSTMan in order to detect sites of acetylation 

shown by the western blot with anti-acetyllysine antibody. However, no target MS/MS 

spectra from a POSTMan generated output file could verify sites of acetylation. A portion of 

sample 2 was in the same way analysed by POSTMan in order to detect any site of 

propionylation, either on one of the already identified proteins, or a new protein. No sites 

could be verified by targeted MS/MS. This is most likely due to lower sensitivity of the mass 

spectrometer compared to western blotting. In addition, the fact that one rather faint band 

was split in four portions for: 1) Protein identification using DDA mode, 2 and 3) Untreated 

and treated with the deacetylase SIRT1 and analysed in MS1 mode, and 4) Targeted analysis 

of candidate peptides with an inclusion list compiled from POSTMan which all limit the 

amount of starting material for analysis. 

4.2.2.2 HEK293T cells treated with Etoposide 

To elucidate the acetylation and propionylation response of p53 to the DNA damaging agent 

Etoposide, HEK293T cells were incubated in the presence or absence of 10 µM Etoposide for 

5 hours. One hour after treatment, the HDAC inhibitors TSA and NAM were added. Cells 

were lysed with HEK293T lysis buffer (see Materials, Table 2-1) and endogenous p53 was 

immunoprecipitated using the anti-p53 DO-1 antibody. The immunoprecipitates were 

separated by SDS-PAGE and subjected to western blot analysis (Figure 4-14).  
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Figure 4-14. HEK293T cells were incubated in the presence or absence of the DNA damaging agent Etoposide 

for 5 hours. Endogenous p53 was immunoprecipitated (IP) and analysed by western blotting. Western blots 

were performed with the pan-specific anti-propionyllysine antibody (PrK, 7-1), pan-specific anti-acetyllysine 

antibody (AcK, Cell Signaling), anti-p53 Lys382 acetylated and anti-p53 DO-12. Red arrow indicates protein 

used for quantitation (Table 4-5) and correction for different loading amounts between the two conditions. 

Blue arrow indicates protein at 47 kDa (see text). 

 

Western blotting with anti-p53 DO-12 detected a prominent band migrating below the 51 

kDa (Figure 4-14, blue arrow), which showed an unequal sample loading with an increased 

amount in the sample from unstimulated cells. Unfortunately, no quantitation of this band 

on the blots could be performed due to immunoblot saturation, even with lower exposure 

times; otherwise the different loading could be compensated for and the correct signal be 

retrieved for the same band recognised by the anti-p53 Lys382Ac antibody. A signal around 

53 kDa (Figure 4-14, red arrow) could be observed for all antibodies and seemed to be 

similar (in the same area on the gel) to that in Figure 4-13 for anti-propionyllysine. All three 

p53-specific antibodies (anti-p53 DO-1 used for immunoprecipitation, anti-p53 DO-12 and 

anti-p53 Lys382Ac) recognised this protein at a lower intensity than the one below 51 kDa, 

suggesting that it might be a variant of p53. This signal was not saturated and could be 

quantitated with the open source software ImageJ (available from 

http://rsb.info.nih.gov/ij/index.html) (Table 4-5). From this quantitation, when the unequal 

loading was corrected for, acetylation at Lys382 showed an increase by a factor of 1.7 in 
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response to Etoposide treatment. This corroborates previously reported data for this specific 

residue (Solomon et al, 2006). As for the pan-specific anti-acetyllysine antibody the increase 

in acetylation was by a factor of 1.5. This antibody however, is neither as specific nor 

sensitive as the anti- p53 Lys382Ac antibody, but points to the same conclusion; an increase 

in acetylation events in response to Etoposide treatment. The pan-specific anti-

propionyllysine antibody also showed an increase in response to Etoposide treatment by a 

factor of 1.4, indicating that propionylation of p53 could be stress related (see Discussion). 

 

Etoposide DO-12 p53 Lys382Ac acK Cell.Sig. prK 7.1 

- 16044 4947 6028 14958 

+ 9028 4863 4974 12080 

+ (corrected) 16044 8642 8839 21468 

ratio 1 1.7 1.5 1.4 

 

Table 4-5. Quantitation of immunoblot signal from a protein at 53 kDa from Figure 4-14, red arrow. 

Immunoblot quantitation was performed with the software ImageJ using the same rectangular shape for all 

bands. The numbers represent the integrated density in the rectangular shape. 

 

To elucidate acetylation and propionylation response of all proteins from the HEK293T cells 

to the DNA damaging agent Etoposide, the lysates after p53 immunoprecipitation were 

analysed by western blotting (Figure 4-15). Western blots were performed with a panel of 

antibodies as before: anti-actin for loading control, anti-p53 DO-12, anti-p53 Lys382 

acetylated, pan-specific anti-acetyllysine and the pan-specific anti-propionyllysine antibody 

7-1. The actin loading control showed equal loading and underlines the fact that 

immunoprecipitations can be difficult to get 1:1 (refer loading differences in Figure 4-14) 

even with equal amount of protein and reagents used. In response to Etoposide treatment a 

slight increase in p53 Lys382 acetylation can be observed, as also seen in Figure 4-14 and 

Table 4-5 when correcting for loading. No other visible acetylation and propionylation 

response to Etoposide are apparent in these blots.  
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Figure 4-15. HEK293T cells grown in the presence of HDAC inhibitors were stimulated with the DNA 

damaging agent Etoposide for 5 hours. Endogenous p53 was immunoprecipitated and the remaining lysate 

was separated by SDS-PAGE followed by westen blot analysis with a panel of commercial antibodies: anti-

p53 DO-12, anti-p53 Lys382 acetylated, pan-specific anti-acetyllysine (AcK, Cell Signaling) as well as the pan-

specific anti-propionyllysine antibody (PrK, 7-1). 
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5 Discussion 

Identifying and understanding the mechanisms regulating the plethora of PTMs in any given 

cellular system is crucial in understanding protein pathways and cellular physiology, and a 

systematic detection of PTMs has immense relevance to basal biology. As mentioned in the 

introduction, many programs for use in proteomics have been developed to contribute to 

PTM identification, but they currently are restricted to MS2 data providing a sub-optimal 

approach for detecting PTMs. The first and main aim of this thesis was therefore to develop 

bioinformatics software able to enhance detection of PTMs by increasing fragmentation 

events and identifications of post-translationally modified peptides, utilizing MS1 

information. This will be discussed in Section 5.1. 

In addition to the development of software to address PTM research from a mass 

spectrometry perspective, we also focused specifically on the PTMs acetylation and 

propionylation, and applied our software to assess these PTMs in the context of a cellular 

lysate and also in response to stress. To date the functional role of propionylation is not 

known and propionylation as an in vivo PTM, as well as its possible involvement in p53 

regulation, was addressed and will be discussed in Section 5.2. 

5.1 POSTMan as a tool in PTM detection 

5.1.1 Current status and functions in POSTMan 

POSTMan was developed with the specific aim of identifying post-translationally modified 

peptides as pairs of peptides with their unmodified counterparts. The software was designed 

to be as generic as possible, meaning that in principle any PTM irrespective of mass could be 

identified with this software. The major strength of POSTMan in comparison to other 

bioinformatics software used for PTM detection is that POSTMan works on MS1 data. MS1 

data include all peptides, both possibly modified and unmodified peptides, whereas MS2 

data are traditionally limited to the most abundant fraction of the peptides, usually 

unmodified. Unfortunately, MS1 data also include all contaminants and background ions, 

challenging the detection of PTMs. Appropriate background subtraction, peak detection, 

feature finding, de-isotoping and de-convolution are therefore crucial steps before analysis 

using POSTMan.  
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Furthermore, stable chromatography and/or proper LC-alignment are of enormous 

relevance for pairing peptides across samples, either in POSTMan for discovery of PTMs or in 

other applications like label-free quantitation or biomarker discovery. Distortions in peptide 

separation patterns between runs can lead to peptide mismatches and plenty of different 

approaches to remedy this have been published, as nicely reviewed in (America & 

Cordewener, 2008; Listgarten & Emili, 2005; Vandenbogaert et al, 2008). The method chosen 

for POSTMan operates on feature data and is a mixture of a manual and an automatic 

alignment, providing the user with control over the process. The quality of alignment of 

feature data is indisputably dependent on peak detection, feature finding and mass accuracy. 

Failure in correct assignment of feature properties, or low mass accuracy data, will impair 

the alignment. Using the m/z threshold setting in POSTMan the user can compensate for low 

mass accuracy, but this also increases the chance of matching “wrong” peptides across 

samples. The POSTMan automatic alignment algorithm is quite similar to the standard 

moving average algorithm. Instead of defining a set number of data points to use for 

smoothing, bins with variable number of data points are used. This means that peptide-

dense regions during elution acquire the same weighting as peptide-thin regions. Whether 

this represents a better way of aligning the data remains to be verified, but the approach 

was initially chosen because of its ease of implementation. Further smoothing of the already 

“bin-smoothed data” was later implemented using the standard moving average algorithm. 

This algorithm is a simple approach where the data point ± n smooth points are averaged 

without weighting. For that reason the Savitzky-Golay smoothing algorithm (Savitzky & Golay, 

1964) are in many cases preferred. Moving average will damage the data by removing 

narrow peaks, but on the other hand, LC-drifts are not likely consistent of consecutive 

narrow peaks, but rather a soft non-linear slope, and moving average smoothing, and/or our 

derivative, should therefore be applicable. 

 When proper pre-processing and alignment is taken into account, POSTMan can 

work under optimal conditions. The underlying principle of POSTMan is to compare two LC-

MS runs and search for peptide pairs, either between the two individual runs or within one 

run. Detection of peptide differences in mass, hydrophobicity and/or charge state can be 

useful in biomarker discovery and, as we have applied it, in PTM analysis. In our experiments 

the runs to be compared were treated to induce a mass shift in a subset of the peptides 

within the peptide mixture. This was achieved by splitting the sample consisting of possibly 
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modified peptides as well as unmodified peptides, into two equal portions. One portion was 

thereafter treated in a way so that only the peptides with PTMs get a mass change. Any 

change in mass, either by the addition or subtraction of a chemical moiety also results in a 

change in hydrophobicity of the peptide. The mass shift can be accomplished enzymatically, 

for example using a deacetylase, and we took advantage of the deacetylase SIRT1 in our 

experiments which showed specific removal of acetyl and propionyl groups from acetylated 

and propionylated peptides respectively. After treatment with SIRT1 the peptides showed no 

residual modified peptide suggesting a complete removal of the functional groups. This 

chemistry served as a convenient standardisation strategy for correct identification of PTMs 

using POSTMan and optimisation of the software. Furthermore, removal of a specific 

chemical moiety can directly impact on the peptides ability to ionise during ESI. Lysine 

residues are excellent carriers of charge due to their basic nature, but when blocked by a 

PTM this ability is reduced. When the blocking PTM is removed as result of a specific 

treatment this ability is restored providing the peptide with more charges during ionisation. 

By utilizing de-convoluted mass values rather than m/z values POSTMan is still able to detect 

peptide pairs in these cases. 

The model protein acetylated Cytochrome c (AcCytC) was used as a proof of principle. 

This protein has been used previously to identify acetylated sites using mass spectrometry 

(Kim et al, 2002). The protein comes as an acetylated protein in which over 60% of the 

residues are acetylated; however the specific residues are not defined. Presumably this 

implies that there exist a heterogeneous population of acetylated sites within this sample 

and we applied POSTMan to identify as many sites as possible based on the POSTMan 

workflow. In parallel the tryptic peptides were analysed by a DDA analysis. Nine sites (13 

fragmentation events) of acetylation in AcCytC were initially identified using traditional (DDA) 

setup of the mass spectrometer. Using the POSTMan workflow and targeted MS/MS, the 

same nine sites of acetylation were detected, but with an increased number of 

fragmentation events of acetylated peptides (17 fragmentation events) and higher quality 

MS/MS spectra. These data demonstrate that POSTMan can detect true sites of acetylation, 

increase the number of acetylated peptides fragmented and even increase the quality, and 

therefore also reliability, in the MS/MS identifications. 

The histogram function of POSTMan provides a new angle in PTM detection. All 

peptides present in one sample are compared to all peptides present in a parallel sample. All 
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mass differences (delta masses) and retention time differences (delta RT) are computed. If 

there is an overrepresentation of a specific delta mass, it is likely that this delta mass 

corresponds to a specific PTM, overrepresented in the dataset. An application of this could 

be a global PTM search, looking at all modifications at the same time. This provides unbiased 

search for modifications, but due to the high number of calculations and data points 

(including random noise) this is at present not applicable for very low abundant 

modifications. Modifications with high prevalence like oxidation of methionine as well as 

loss of ammonia can be distinguished from background (data not shown). We anticipate that 

further refinement of the algorithm will allow the analysis of low abundance peptides in the 

same manner that is presently possible with PTMs such as oxidised methionine residues. 

One way of accomplishing this could be to subtract the patterned noise generated by 

random peptide matches (see Methods, Section 3.1.3.2), but this is not implemented in the 

current version of POSTMan. Another approach, currently possible, is to limit the number of 

background peptides by filtering all data to match an in silico digest of a FASTA protein with 

a number of modifications allowed. This reduces the background in such a way that low 

abundant modifications can be observed (see Results, Section 4.1.4), but restrains the PTM 

detection to a predefined set of allowed modifications and only one protein examined. 

Under these conditions POSTMan can provide semi-quantitative information about low 

abundant modification events. This provides unique information about the PTM pattern of a 

specific protein, but it is important to stress at this point that the data being analysed is mass 

differences on precursor mass only, and not actual identification of modifications in MS/MS 

spectra. For validation of the PTMs, these peptides should be targeted for MS/MS in a 

subsequent run. 

5.1.2 Areas for further improvement in POSTMan 

The development of the software has raised a number of important issues that are currently 

being addressed. These areas are discussed here and provide the platform for further 

development of the software. The most obvious challenge of POSTMan lies in the exact 

same place as its major strength, the MS1 data. This unfiltered data, consistent of peptides 

with multiple charge states, contaminants and background ions, represents the data 

foundation in POSTMan. When the number of features increases, the frequency of a specific 

mass difference, by random, also increase. This means in practice that the more complex the 
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sample, the higher the number of false-positive matches. This was most obvious in our 

attempts to identify acetylated peptides from HeLa cells overexpressing p300 without prior 

fractionation other than 1D SDS-PAGE. POSTMan analysis could recognise peptides as 

acetylated candidates; however we were unable to provide fragmentation data to confirm 

this finding. This strongly emphasises the need of pre-fractionation of complex samples even 

when sophisticated software is utilized. 

Identification of PTMs using POSTMan requires the sample to be split in three 

portions: One untreated portion, one treated portion and one portion for subsequent 

targeted analysis by fragmentation of candidate peptides in an inclusion list. This division of 

sample material will of course reduce the signal of the peptides of interest and represents a 

trade-off. Should analysis be performed in DDA mode with hope that the modified peptides 

are intense enough to be selected for fragmentation? Or should the sample be divided and 

focus set on a subset of the peptides therein? POSTMan was never intended to replace DDA 

acquisitions, but rather represent an alternative tool to focus on already identified proteins 

and to enhance PTM detection on them. At present there is to our knowledge no alternative 

to this approach. 

Successful targeting of peptides in subsequent analysis is a prerequisite for POSTMan 

analysis. This however, is not always straightforward and currently represents a challenge. 

Despite increasingly stable nanoflow chromatographic systems, a working LC-alignment 

algorithm and known issues about mass, retention time and charge state shifts, the mass 

spectrometer may still encounter problems performing targeted acquisitions. If the inclusion 

file contains co-eluting peptides or if the time set for targeted acquisition is too long, some 

peptides in the inclusion file will not be targeted for fragmentation. The optimal conditions 

for a targeted approach must be determined empirically with the mass spectrometer used 

and this type of analysis benefits from sensitive mass spectrometers with short duty cycle so 

that no peptide in the inclusion file is neglected. 

5.1.3 Using POSTMan to detect phosphorylated peptides 

Phosphorylation on serine and threonine residues is a labile modification often difficult to 

identify by mass spectrometry. In addition to the sub-stoichiometric protein modifications, 

sub-optimal enrichment strategies and fragmentation issues has been pointed out as 

reasons for poor identifications (Ulintz et al, 2009). Although POSTMan cannot improve 
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phosphopeptide fragmentation, it can be helpful in locating the phosphopeptides within the 

sample. Then, in a subsequent targeted MS/MS acquisition, the candidate phosphopeptides 

can spend longer time in the collision cell, or alternative collision energies can be applied, to 

enhance fragmentation. In recently published data (Arntzen et al, 2009) not included in this 

thesis, we demonstrated that targeted analysis of phosphopeptides from phenylalanine 

hydroxylase indeed can be achieved using POSTMan.  

5.1.4 A possible use of POSTMan to differentiate between tri-methylated 

and acetylated peptides 

High end state-of-the-art mass spectrometers are able to produce MS data with resolution 

around 40000-60000 in standard operation mode, whereas older instruments common to 

most proteomic labs, like the QToF used in this thesis, reaches only 8000–10000 in standard 

operation mode. The resolution required to discriminate between tri-methylation 

(42.046950 Da) and acetylation (42.01056 Da) is at least 27000 for a peak at 1000 Da, a 

number unreachable for many labs. Although high resolution instruments and immonium 

ion interrogation has improved the PTM differentiation (Zhang et al, 2004), POSTMan offers 

an additional way of determining this. In a sample containing both modified and unmodified 

peptides one can in many cases find both variants of a peptide, i.e. with and without the 

modification. In all experiments covered in this thesis the non-acetylated peptides were 

observed to elute earlier than their acetylated counter peptide during reverse phase 

chromatography. According to Black (Black & Mould, 1991), who performed calculations on 

hydrophobicity values for a range of modified amino acids, the hydrophobic value of 

acetylated lysine and tri-methylated lysine are on either side of an un-modified lysine. This 

implies that the retention time shifts of an acetylated peptide and a tri-methylated peptide 

in respect to a non-modified peptide are in opposite directions. POSTMan can filter peptide 

pairs based on the direction of hydrophobicity shifts, and this therefore represents a 

possible approach for the discrimination of these two modifications. This procedure would 

require the same sample to be loaded both as untreated and treated sample within 

POSTMan. Furthermore, to be absolutely sure which of the two PTMs it is, one could treat 

the sample with a deacetylase which should only produce mass shifts of 42 Da for acetylated 

peptides and not the tri-methylated peptides (given that the deacetylase does not possess 

any demethylase function). 
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5.1.5 POSTMan summary 

The first aim of this thesis was to develop bioinformatics software able to enhance detection 

of post-translationally modified peptides using mass spectrometry. This includes increasing 

the fragmentation events of these peptides leading to more identification of peptides 

harbouring PTMs. In the DDA analysis of AcCytC, 13 fragmentation events originated from 

modified peptides, whereas 17 fragmentation events originated from modified peptides 

using POSTMan. In both analyses the same nine sites of acetylation were identified. 

POSTMan not only proved to correctly identify the modified peptides from MS1 data, but 

also increased the quality of and the reliability in the MS/MS identifications. The current 

version of POSTMan therefore fulfils the criteria we set as the first aim of this thesis.  

Although POSTMan fulfils our criteria there are a number of issues to improve upon, 

such as division of sample material and successful targeting of peptides. It is therefore 

important to stress that POSTMan was not intended to replace traditional DDA acquisitions 

but rather complement existing methods at PTM analysis. It has its major strengths on 

relatively simple protein mixtures where the identity of the protein(s) is known or can be 

derived quickly. This is mainly due to the powerful FASTA filtering of peptides. However, it 

has at present limited applications in samples which are of an extremely complex nature. 

Therefore, to utilize the full potential of POSTMan we have outlined a few ‘good practices’ 

that should be considered:  

(i) Experimental and technical deviations in the activity of enzyme preparations and 

chemistries can contribute to poor reproducibility.  

(ii) As a rule the chromatography and analysis should be performed as a consecutive 

series of measurements in order to minimize technical drift at both the MS and LC 

level. 

(iii) The alignment and pair-matching procedures will benefit from data derived from high 

mass accuracy instruments coupled with stable chromatographic systems. 

(iv) POSTMan is ideally suited to the analysis of single proteins or relatively simple protein 

mixtures. We have found that analysis of complex peptide digests generally results in 

a high percentage of false-positive pairs, confounding subsequent targeted analysis.  

Furthermore, POSTMan is still a work in progress and developers in the proteomics 

community are welcome to further improve upon the software in new areas or in those 
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highlighted above. Since the public release of POSTMan through http://www.probe.uib.no 

and publication in the journal Proteomics, POSTMan has been downloaded 59 times from 

four continents, and we anticipate that it will be used for identification of many different 

PTMs ranging from small mass differences caused by citrullination to large mass differences 

caused by ubiquitination. In addition, due to the strengths of MS1 data we expect that more 

software utilizing this MS-level information will appear in the near future. 

5.2 Propionylation as an in vivo post-translational modification 

5.2.1 Characterisation of novel pan-specific anti-propionyllysine antibodies 

Since propionylation just recently was discovered to be a novel PTM (Chen et al, 2007; Cheng 

et al, 2008), no commercial antibodies yet exist to detect propionylated proteins. The 

availability of such reagents is crucial in order to interrogate individual proteins as well as 

complex protein mixtures for their propionylation status and how this changes in response 

to physiological stimuli. We wanted therefore to generate specific anti-propionyllysine 

antibodies to complement existing tools to unravel the functional significance of 

propionylation as a PTM. Due to the minimal structural difference between acetyl, propionyl 

and butyryl, pan-specific antibodies targeting these lysine modifications are expected to 

show some cross-reaction. Three of the commercially available anti-acetyllysine antibodies 

we tested showed cross-reaction to propionyllysine using recombinant p53 as model protein. 

Some of these antibodies are used routinely to identify acetylated proteins (Kim et al, 2006; 

Solomon et al, 2006), but with the recent data describing propionylation as a novel in vivo 

protein modification, the data described here suggest that these antibodies should now be 

used with a degree of caution. We established that the novel anti-propionyllysine antibodies 

generated here showed no cross-reaction with acetyllysine under these conditions, allowing 

us to use them as a tool in identifying propionylated proteins, unambiguously identifying 

specific bands as candidate propionylated proteins rather than acetylated proteins. However, 

we did observe a significant cross-reaction with butyryllysine. Butyrylation has been 

described in the literature as an in vivo modification (Chen et al, 2007), and at present we 

cannot exclude the possibility that we are observing butyrylated proteins. 

HDACs have been suggested as proteins catalysing the removal of propionyl groups 

(Cheng et al, 2008; Garrity et al, 2007; Riester et al, 2004). This is itself an intriguing aspect of 

http://www.probe.uib.no/
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dual functionality of this family of enzymes that may have important physiological 

consequences. In our experiments cells were therefore grown in the presence of HDAC 

inhibitors and probed for propionylation using these novel antibodies as well as with rabbit 

serum pre-immunization. These results showed several proteins specifically recognised by 

the post immunization serum 7-1 (see Results, Section 4.2.1.1), further verifying its use as a 

tool to identify propionylated proteins. 

5.2.2 Modification pattern of the tumour suppressor protein p53 

The second aim of this thesis was to assess the modification pattern of p53, with emphasis 

on acetylation and propionylation, using both a bioinformatics (POSTMan) and biochemical 

(immunoprecipitation/western blotting) approach. We showed, using the histogram 

function of POSTMan (see Results, Table 4-3), that overexpression of p300 in HEK293 cells 

lead to an increase of 2.8% acetylation events and 1% propionylation events on endogenous 

p53. p300 and CBP has shown in vivo propionylation of p53 as well as autoproionylation 

(Cheng et al, 2008). Our result corroborates this published data suggesting an in vivo 

propionyltransferase function of p300 with p53 as substrate. In the same report, Cheng and 

co-workers showed that depropionylation of p53 and p300 was catalysed by the NAD+-

dependent histone deacetylase (HDAC) SIRT1, a member of the sirtuin family of HDACs. In 

our experiments, overexpression of p300 together with SIRT1 lead to a noticeable reduction 

of acetylation events on p53, but not as distinct in regard to propionylation. Our data 

therefore corroborate Cheng’s data in that depropionylation is catalysed by SIRT1, but in 

addition, they suggest that lysine-acetylation of p53 is a preferential substrate for SIRT1, 

over lysine-propionylation. Immunoprecipitations and western blots of endogenous p53 

demonstrated that p300 indeed increased acetylation events on p53 (Figure 4-13, lane 6 and 

7), in addition to increase propionylation events of an unknown protein about 8 kDa above 

p53. A certain identity of this protein could unfortunately not be verified by mass 

spectrometry in this experiment, but Figure 4-14 suggests that it could be a variant of p53, 

for example an ubiquitinated version. This would be an interesting finding, since the 

propionylation of this protein seems to be specific for the heavy version. 

In response to genotoxic stress p53 is stabilised and depending of the severity of the 

lesions either DNA repair mechanisms are activated or the cell commits to apoptotic 

pathways. During this stabilisation of p53 key lysine residues are acetylated, for example 
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Lys382: This residue is an in vivo target for SIRT1 regulation (Vaziri et al, 2001). To date, no 

functional role of propionylation is known, and with the regulation of p53 by acetylation in 

mind we wanted to study both acetylation and propionylation of endogenous p53 in 

response to DNA damage. Furthermore it is clear from proteins such as p53, which are 

heavily modified by multiple PTMs, that there exists a protein PTM code (Sims & Reinberg, 

2008). Combinations of PTMs rather than individual modifications at specific residues are 

most likely to be responsible for the overall regulation of the protein. This is also a potential 

strength in POSTMan. Initial experiments to address this utilized the DNA damaging agent 

Etoposide, a compound that directly binds to and inhibits DNA Topoisomerase II resulting in 

the accumulation of double-strand DNA breaks. Figure 4-14 and Table 4-5, when adjusted for 

loading amount, suggests that p53 propionylation together with acetylation increase in 

response to Etoposide-induced DNA damage. Western blot analysis of the lysates after p53 

was immunoprecipitated (Figure 4-15) still show an Etoposide-dependent acetylation of 

Lys382 of p53, suggesting that not all p53 was removed by immunoprecipitation. No 

Etoposide-dependent propionylation however can be observed in this blot, but note that 

this was performed in the background of a multitude of other proteins (a cell lysate) and 

what was left of p53 could be below the detection limit of the pan-specific antibody. In 

contrast, the anti-p53 Lys328 acetylated antibody is highly specific and it is expected to pick 

up very low signals. But worth noting is the multitude of bands which seems to be 

propionylated in response to HDAC inhibitors (Figure 4-15, lane 10 and 11). This suggests 

that HDACs in general terms could be able to remove propionyl groups, concurrent with 

published data. It would be interesting to repeat these experiments and grow the cells both 

in the presence or absence of HDAC inhibitors, or even different classes of HDAC inhibitors, 

to elucidate if this truly is the case and which class of HDAC has most predominant 

depropionylase activity. Moreover, the propionylated proteins are not the same as those 

being acetylated (Figure 4-15, lane 8 and 9) raising the possibility that propionylation not 

only occurs instead of acetylation on the same sites, but as a distinct modification on a 

specific set of proteins. 

Propionyl-CoA has been proposed as the likely propionyl donor for protein 

propionylation. In vitro the acetyltransferases p300, CREB-binding protein (CBP) and P/CAF 

were capable of propionylating histones using propionyl-CoA as substrate (Chen et al, 2007; 

Leemhuis et al, 2008), but whether this is also the case in vivo is not known nor whether 



 

75 

 

Discussion 

propionylation is a tightly regulated PTM with a distinct function in the cell. One hypothesis 

is that propionylation may reflect the cellular level of propionyl-CoA. Propionyl-CoA levels 

are altered by the breakdown rate of the amino acids methionine, valine and isoleucine and 

also the β-oxidation of odd-carbon fatty acids. Conditions that increase the pool of cellular 

propionyl-CoA levels, for example a high intake of dietary odd-carbon fatty acids, could 

result in the propionylation of target proteins such as transcription factors resulting in the 

transcription of specific target genes in response to these environmental changes; in this 

case an increase in the levels of dietary odd-carbon fatty acids. A precedent for this kind of 

dietary regulation exists with the Sirtuin family of deacetylases. The deacetylase activity of 

these enzymes is absolutely dependent on the co-factor NAD+. NAD+ is derived from the 

oxidation of fat and under conditions of starvation cellular NAD+ levels are reduced, lowering 

the overall cellular activity of specific Sirtuin deacetylases. This has a direct impact on 

protein complexes responsible for chromatin remodelling (Sirtuins are often components of 

these complexes) and thus the transcription of specific genes that respond to conditions of 

low dietary fat intake. The long term consequences of this are an increase in longevity 

(ageing) in a low dietary intake environment. Indeed in model organisms (flies, worms and 

yeast) knockdown of specific sirtuin genes results in an increase of up to 50% in the life-span 

of these organisms (Chen & Guarente, 2007; Guarente & Kenyon, 2000). Along similar lines, 

growing cells in the presence of propionate, a short-chain fatty acid and a product of fibre 

fermentation in the gut, could alter the cellular level of propionyl-CoA and further effect the 

rate of propionylation events. This could allow us to study the specific targets and their sites 

of propionylation. Interestingly, the risk of developing colorectal cancer has been linked to 

dietary fibre intake (Bingham et al, 2003). Propionate and butyrate have been shown to 

inhibit HDACs, the latter being considered the most potent HDAC inhibitor. Butyrate not only 

inhibits HDACs leading to more acetylation, but also increases the available pool of acetyl-

CoA via the β-oxidation pathway. Propionate on the other hand, is not as potent as butyrate 

in HDAC inhibition, but does not contribute to the acetyl-CoA pool. Both propionate and 

butyrate has been shown to induce hyperacetylation of histones leading to transcription of 

many genes including the cyclin-dependent kinase (Cdk) inhibitor p21 and cause growth 

arrest and differentiation in human colon carcinoma cells; pathways known to be regulated 

by p53 (Blottiere et al, 2003; Hinnebusch et al, 2002). Whether propionylation of p53, as a 

direct response to increased cellular levels of propionyl-CoA, was involved in this matter 
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remains to be elucidated. According to Leemhuis, histone propionylation may be a novel 

epigenetic mark for cellular metabolism; as acetylation, the charge neutralization by 

propionylation of histones may lead to changes in chromatin structure and promote gene 

transcription (Leemhuis et al, 2008). Our data suggests that propionylation of the non-

histone protein p53 may occur in response to double-strand DNA breaks. This could point for 

a functional role for propionylation, contributing to the already complex regulation of p53, 

being a stress marker in the same way as acetylation. This could mean that propionylation 

on specific residues within the p53 sequence would cause a defined set of genes to be 

transcribed, different genes than those transcribed when p53 is acetylated, whether it is on 

the same residues or not.  

A systematic further study of p53 propionylation is needed to validate these 

speculations and help answering important questions. One experiment to do would be to 

induce cellular stress in many different ways and screen for p53 propionylation and 

acetylation patterns. By stimulating cells with Etoposide, UV-radiation, gamma-radiation and 

H2O2 we could be able to set propionylation into a specific group of DNA damage responses. 

This would provide information on if propionylation truly is a DNA damage stress marker or 

not. Furthermore, stress stimuli can be induced at different time points through the cell 

cycle, different stages of differentiation and different organelles (for example nuclei and 

mitochondria) all providing useful information and helping us understanding the biological 

role of protein propionylation.  

5.2.3 Propionylation summary 

Protein propionylation as being a novel in vivo PTM is a completely new field of research and 

has an enormous potential in the years to come. A few research groups have so far focused 

on this subject and we anticipate that more information regarding the functional role of 

propionylation is to be unravelled in the near future. The second aim of this thesis was to 

elucidate the PTM pattern of p53 with emphasis on acetylation and propionylation. Our data 

indicate that propionylation of p53 may be related to genotoxic stress, but needs to be 

further validated with more experiments, as outlined above.  

The third aim of this thesis was to raise specific anti-propionyllysine antibodies to 

complement existing proteomic tools to unravel the functional significance of propionylation 

as a global PTM. The novel antibodies generated in this study showed no cross reaction with 
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acetyllysine and will serve as unique tools in characterising protein propionylation in the cell. 

The study of low abundant protein PTMs like propionylation will require clever protein 

separation strategies, well designed antibodies and bioinformatics software designed for 

PTM characterisation as proteomic tools. Clearly these antibodies together with POSTMan 

have shown individually to have great potential as proteomic tools that will help in 

understanding the function of propionylation. This thesis has contributed with data which 

has opened up a completely new area of research and a number of experiments have been 

outlined above that will contribute to further knowledge about propionylation as a protein 

post-translational modification. 



 

78 

 

References 

6 References 

 
Abraham J, Kelly J, Thibault P, Benchimol S (2000) Post-translational modification of p53 
protein in response to ionizing radiation analyzed by mass spectrometry. J Mol Biol 295(4): 
853-864 
 
America AH, Cordewener JH (2008) Comparative LC-MS: a landscape of peaks and valleys. 
Proteomics 8(4): 731-749 
 
Arntzen MO, Osland CL, Raa CR, Kopperud R, Doskeland SO, Lewis AE, D'Santos CS (2009) 
POSTMan (POST-translational modification analysis), a software application for PTM 
discovery. Proteomics 9(5): 1400-1406 
 
Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, Norat T, Clavel-Chapelon F, Kesse E, 
Nieters A, Boeing H, Tjonneland A, Overvad K, Martinez C, Dorronsoro M, Gonzalez CA, Key 
TJ, Trichopoulou A, Naska A, Vineis P, Tumino R, Krogh V, Bueno-de-Mesquita HB, Peeters PH, 
Berglund G, Hallmans G, Lund E, Skeie G, Kaaks R, Riboli E (2003) Dietary fibre in food and 
protection against colorectal cancer in the European Prospective Investigation into Cancer 
and Nutrition (EPIC): an observational study. Lancet 361(9368): 1496-1501 
 
Black SD, Mould DR (1991) Development of hydrophobicity parameters to analyze proteins 
which bear post- or cotranslational modifications. Anal Biochem 193(1): 72-82 
 
Blottiere HM, Buecher B, Galmiche JP, Cherbut C (2003) Molecular analysis of the effect of 
short-chain fatty acids on intestinal cell proliferation. Proc Nutr Soc 62(1): 101-106 
 
Bonk T, Humeny A (2001) MALDI-TOF-MS analysis of protein and DNA. Neuroscientist 7(1): 6-
12 
 
Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends 
Mol Med 13(2): 64-71 
 
Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) 
Lysine propionylation and butyrylation are novel post-translational modifications in histones. 
Mol Cell Proteomics 6(5): 812-819 
 
Cheng Z, Tang Y, Chen Y, Kim S, Liu H, Li SS, Gu W, Zhao Y (2008) Molecular characterization 
of propionyllysines in non-histone proteins. Mol Cell Proteomics 
 
Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-
flight mass spectrometry. J Mass Spectrom 36(8): 849-865 
 
Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, 
Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p53 activity through lysine 
methylation. Nature 432(7015): 353-360 



 

79 

 

References 

 
Desterro JM, Rodriguez MS, Hay RT (2000) Regulation of transcription factors by protein 
degradation. Cell Mol Life Sci 57(8-9): 1207-1219 
 
Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC (2007) N-lysine 
propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem 282(41): 
30239-30245 
 
Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of 
the p53 C-terminal domain. Cell 90(4): 595-606 
 
Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. 
Nature 408(6809): 255-262 
 
Hansen BT, Davey SW, Ham AJ, Liebler DC (2005) P-Mod: an algorithm and software to map 
modifications to peptide sequences using tandem MS data. J Proteome Res 4(2): 358-368 
 
Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. 
Oncogene 24(17): 2899-2908 
 
Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA (2002) The effects of short-chain fatty 
acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J 
Nutr 132(5): 1012-1017 
 
Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and 
chemotherapy. Cell 108(2): 153-164 
 
Kim JY, Kim KW, Kwon HJ, Lee DW, Yoo JS (2002) Probing lysine acetylation with a 
modification-specific marker ion using high-performance liquid 
chromatography/electrospray-mass spectrometry with collision-induced dissociation. Anal 
Chem 74(21): 5443-5449 
 
Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White 
M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by 
a proteomics survey. Mol Cell 23(4): 607-618 
 
Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381): 15-16 
 
Leemhuis H, Packman LC, Nightingale KP, Hollfelder F (2008) The human histone 
acetyltransferase P/CAF is a promiscuous histone propionyltransferase. Chembiochem 9(4): 
499-503 
 
Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88(3): 323-331 
 
Listgarten J, Emili A (2005) Statistical and computational methods for comparative proteomic 
profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4(4): 
419-434 



 

80 

 

References 

 
Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) 
p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA 
damage. Mol Cell Biol 19(2): 1202-1209 
 
May D, Fitzgibbon M, Liu Y, Holzman T, Eng J, Kemp CJ, Whiteaker J, Paulovich A, McIntosh M 
(2007) A platform for accurate mass and time analyses of mass spectrometry data. J 
Proteome Res 6(7): 2685-2694 
 
Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a 
direct apoptogenic role at the mitochondria. Molecular cell 11(3): 577-590 
 
Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14): 1001-1008 
 
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification 
by searching sequence databases using mass spectrometry data. Electrophoresis 20(18): 
3551-3567 
 
Piening BD, Wang P, Bangur CS, Whiteaker J, Zhang H, Feng LC, Keane JF, Eng JK, Tang H, 
Prakash A, McIntosh MW, Paulovich A (2006) Quality control metrics for LC-MS feature 
detection tools demonstrated on Saccharomyces cerevisiae proteomic profiles. J Proteome 
Res 5(7): 1527-1534 
 
Potthast F, Gerrits B, Hakkinen J, Rutishauser D, Ahrens CH, Roschitzki B, Baerenfaller K, 
Munton RP, Walther P, Gehrig P, Seif P, Seeberger PH, Schlapbach R (2007) The Mass 
Distance Fingerprint: a statistical framework for de novo detection of predominant 
modifications using high-accuracy mass spectrometry. J Chromatogr B Analyt Technol 
Biomed Life Sci 854(1-2): 173-182 
 
Riester D, Wegener D, Hildmann C, Schwienhorst A (2004) Members of the histone 
deacetylase superfamily differ in substrate specificity towards small synthetic substrates. 
Biochem Biophys Res Commun 324(3): 1116-1123 
 
Riley KJ, Maher LJ, 3rd (2007) p53 RNA interactions: new clues in an old mystery. RNA 13(11): 
1825-1833 
 
Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT (2000) Multiple C-terminal lysine 
residues target p53 for ubiquitin-proteasome-mediated degradation. Mol Cell Biol 20(22): 
8458-8467 
 
Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in 
mass spectra of peptides. Biomed Mass Spectrom 11(11): 601 
 
Savitski MM, Nielsen ML, Zubarev RA (2006) ModifiComb, a new proteomic tool for mapping 
substoichiometric post-translational modifications, finding novel types of modifications, and 
fingerprinting complex protein mixtures. Mol Cell Proteomics 5(5): 935-948 
 



 

81 

 

References 

Savitzky A, Golay MJE (1964) Smoothing and Differentiation of Data by Simplified Least 
Squares Procedures. Anal Chem 36(8): 1627-1639 
 
Schiltz RL, Mizzen CA, Vassilev A, Cook RG, Allis CD, Nakatani Y (1999) Overlapping but 
distinct patterns of histone acetylation by the human coactivators p300 and PCAF within 
nucleosomal substrates. J Biol Chem 274(3): 1189-1192 
 
Sims RJ, 3rd, Reinberg D (2008) Is there a code embedded in proteins that is based on post-
translational modifications? Nat Rev Mol Cell Biol 9(10): 815-820 
 
Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR 
(2002) An accurate mass tag strategy for quantitative and high-throughput proteome 
measurements. Proteomics 2(5): 513-523 
 
Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ (2006) 
Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival 
following DNA damage. Mol Cell Biol 26(1): 28-38 
 
Strohalm M, Hassman M, Kosata B, Kodicek M (2008) mMass data miner: an open source 
alternative for mass spectrometric data analysis. Rapid Commun Mass Spectrom 22(6): 905-
908 
 
Tate EW (2008) Recent advances in chemical proteomics: exploring the post-translational 
proteome. J Chem Biol 1(1-4): 17-26 
 
Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. 
Nat Rev Cancer 6(12): 909-923 
 
Ulintz PJ, Yocum AK, Bodenmiller B, Aebersold R, Andrews PC, Nesvizhskii AI (2009) 
Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide 
identification. J Proteome Res 8(2): 887-899 
 
Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM, Zhang R, Aittokallio T, Schwikowski B (2008) 
Alignment of LC-MS images, with applications to biomarker discovery and protein 
identification. Proteomics 8(4): 650-672 
 
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) 
hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107(2): 149-159 
 
Vousden KH, Lu X (2002) Live or let die: the cell's response to p53. Nature reviews 2(8): 594-
604 
 
Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, 
Humphery-Smith I, Williams KL, Hochstrasser DF (1996a) From proteins to proteomes: large 
scale protein identification by two-dimensional electrophoresis and amino acid analysis. 
Biotechnology (N Y) 14(1): 61-65 
 



 

82 

 

References 

Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams 
KL (1996b) Progress with proteome projects: why all proteins expressed by a genome should 
be identified and how to do it. Biotechnol Genet Eng Rev 13: 19-50 
 
Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 
conjugation of p53 inhibits its transcriptional activity. Cell 118(1): 83-97 
 
Zhang K, Yau PM, Chandrasekhar B, New R, Kondrat R, Imai BS, Bradbury ME (2004) 
Differentiation between peptides containing acetylated or tri-methylated lysines by mass 
spectrometry: an application for determining lysine 9 acetylation and methylation of histone 
H3. Proteomics 4(1): 1-10 
 
 



 

83 

 

Appendix A 

Appendix A: Pseudo code of algorithms in POSTMan 

A.1 General algorithms 

A.1.1  Making peptide pairs 

A.1.1.1  Equal mass algorithm 

 

//Algorithm to match peptides between untreated and treated sample as a pair 

//when there is no mass difference between them 

 

FOR all the peptides in the untreated sample 

 FOR all the peptides in the treated sample 

  CALCULATE mass difference 

  IF ABSOLUTE(mass difference) > set mass threshold value 

   REJECT this peptide combination as a peptide pair 

  ELSE 

   STORE this combination as a pair 

  END IF 

 END FOR 

END FOR 

 

A.1.1.2  Modified mass algorithm 

 

//Algorithm to match peptides between untreated and treated sample as a pair 

//when there is a defined mass difference between them 

 

FOR all the peptides in the untreated sample 

 FOR all the peptides in the treated sample 

  CALCULATE mass difference 

  IF mass difference > (modification mass + set mass threshold value) 

  OR IF mass difference < (modification mass - set mass threshold value) 

   REJECT this peptide combination as a peptide pair 

  ELSE 

   STORE this combination as a pair 

  END IF 

 END FOR 

END FOR 

 

A.1.2  LC-alignment algorithm 

 
//Algorithm to align two LC-MS samples in the time dimension 

//Needed due to non-linear drifts in LC elution time between successive samples 

//Corrects the retention time of peptides in the treated file with the untreated as reference 

// 

//RT = retention time 

//vector = container holding a point (RT) and a length/direction (ΔRT)  

 

//Store all the alignment vectors 

FOR all the peptides in the untreated sample 

 FOR all the peptides in the treated sample 

 IF the two peptides (treated & untreated) have similar m/z AND RT AND charge 

  STORE the RT of the treated peptide 

  STORE the ΔRT of the two peptides 

 END IF 

 END FOR 

END FOR 

 

//Sort the vectors based on RT 
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SORT list of vectors 

 

//Draw all the vectors as points in the map 

DRAW list of vectors 

 

//Iterate over all the vectors and bin them 

FOR all the vectors in the list 

 BIN vectors in RT intervals based on the set binsize 

 AVERAGE ΔRT in every bin 

END FOR 

 

//Display the averaged, binned data 

DRAW line between averaged vectors, one datapoint per bin 

 

//Optional smoothing of the averaged, binned data 

//Uses the moving average algorithm 

SMOOTH moving_average_algorithm(binned data) 

 

//Transformation of retention times in treated data file 

FOR all the peptides in the treated sample 

 TRANSFORM RT based on alignment 

END FOR 

 

A.2  Filters 

A.2.1  Elimination filters 

A.2.1.1  Intensity cut-off filter 

 

//Filter to remove peptides in both samples that have intensity below a set value 

 

FOR all the peptides in the untreated file 

 IF peptide intensity is below the set value 

  REMOVE this peptide from further calculations 

 END IF 

END FOR 

FOR all the peptides in the treated file 

 IF peptide intensity is below the set value 

  REMOVE this peptide from further calculations 

 END IF 

END FOR 

A.2.1.2  Charge cut-off filter 

 

//Filter to remove peptides in both samples that have charge below a set value 

 

FOR all the peptides in the untreated file 

 IF peptide charge is below the set value 

  REMOVE this peptide from further calculations 

 END IF 

END FOR 

FOR all the peptides in the treated file 

 IF peptide charge is below the set value 

  REMOVE this peptide from further calculations 

 END IF 

END FOR 

A.2.1.3  FASTA filter 

 

//Filter to remove peptides in both samples that do not have a mass correlating with a mass 

//from an in silico digest of a loaded FASTA file 

 

//In silico digest of the loaded FASTA file 

DIGEST FASTA file based on set parameters and store all possible peptides 



 

85 

 

Appendix A 

APPLY modifications to the peptides and store all peptide variants 

REMOVE duplicates 

CALCULATE mass of all peptides including their modifications 

 

FOR all the peptides in the untreated file 

 IF peptide mass does not correlate with any calculated mass from FASTA file 

  REMOVE this peptide from further calculations 

 END IF 

END FOR 

FOR all the peptides in the treated file 

 IF peptide mass does not correlate with any calculated mass from FASTA file 

  REMOVE this peptide from further calculations 

 END IF 

END FOR 

 

A.2.2  Pair-matching filters 

A.2.2.1  Relative intensity filter 

 
//Filter to check peptide-pairs for their relative intensity 

//If the intensity ratio is higher than the set value the pair is rejected 

 

FOR all the peptides in the untreated file 

 FOR all the peptides in the treated file 

  IF intensity ratio between peptides > set value 

   REJECT this peptide combination as a peptide pair 

  ELSE 

   STORE this combination as a pair 

  END IF 

 END FOR 

END FOR 

 

A.2.2.2  Retention time range filter 

 
//Filter to check peptide-pairs for their retention time difference 

//If the unsigned distance in retention time is outside a set range the pair is rejected 

 

FOR all the peptides in the untreated file 

 FOR all the peptides in the treated file 

  IF ABSOLUTE(ΔRT) between peptides > set max value or < set min value 

   REJECT this peptide combination as a peptide pair 

  ELSE 

   STORE this combination as a pair 

  END IF 

 END FOR 

END FOR 

 

A.2.2.3  Direction of chromatographic shift filters 

 
//Filters to check peptide-pairs for the direction of RT shifts 

 

//Prohibition of hydrophobic retention time shifts filter 

//If the RT of the treated peptide is larger than the RT of the untreated the pair is rejected 

 

FOR all the peptides in the untreated file 

 FOR all the peptides in the treated file 

  IF RT(treated) > RT(untreated) 

   REJECT this peptide combination as a peptide pair 

  ELSE 

   STORE this combination as a pair 

  END IF 

 END FOR 

END FOR 
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//Prohibition of hydrophilic retention time shifts filter 

//If the RT of the treated peptide is smaller than the RT of the untreated the pair 

//is rejected 

 

FOR all the peptides in the untreated file 

 FOR all the peptides in the treated file 

  IF RT(treated) < RT(untreated) 

   REJECT this peptide combination as a peptide pair 

  ELSE 

   STORE this combination as a pair 

  END IF 

 END FOR 

END FOR 
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Appendix B: Supplementary methods 

These methods are from the work of Dr. Clive D’Santos where endogenous p53 was studied 

and p300 was overexpressed, either alone or in combination with the deacetylase SIRT1. 

Refer Results, Section 4.1.4. 

Cell culture and immunoprecipitation of p53 

HEK293T cells were grown in DMEM with 10% foetal calf serum plus penicillin/streptomycin 

in 5% CO2 at 37 °C and were routinely passaged at 60% confluence. Cells were transfected 

with 10 μg of HA-p300 alone or together with 10 μg of FLAG-SIRT1. Cells were maintained 

for two days and then lysed in 1 mL of lysis buffer (50 mM Tris pH 8.0, 10 mM EDTA, 5 mM 

KCl, 1% NP-40) in the presence of deacetylases inhibitors (10 mM NAM and 1 μM TSA). 

Cleared supernatants were subjected to immunoprecipitation first with an anti-p53 antibody 

(DO-1, Santa Cruz) overnight followed by immunoprecipitation with anti-HA antibody (clone 

12CA5) for two hours. The beads from each of the immunoprecipitiations were solubilised in 

35 µL of SDS-PAGE loading buffer and 5 µL of the beads subjected to SDS-PAGE for western 

blotting. Total levels of p300 and SIRT1 were estimated using the anti-HA or FLAG antibody, 

while acetylation levels of p53 were assessed using a polyclonal antibody specific for 

acetylated Lys382 (Upstate biotechnology). Acetylation of p300 was assessed by western 

blotting using a pan specific anti-acetyl lysine antibody (Cell signalling technology). The 

remaining immunoprecipitations were subjected to SDS-PAGE, coomassie staining and the 

relevant protein bands were excised and subjected to analysis by mass spectrometry. 

SDS-PAGE and in-gel digestion 

Proteins were separated by one-dimensional SDS-PAGE using NuPage® Novex Bis-Tris gels 

and NuPage MES-SDS running buffer (Invitrogen) according to the manufacturer's 

instructions. The gel was stained with Coomassie using Colloidal Blue Staining kit 

(Invitrogen). Protein bands were excised and subjected to in-gel tryptic digestion. Briefly the 

gel pieces were destained and washed, and after dithiothreitol reduction and iodoacetamide 

alkylation, the proteins were digested with porcine trypsin (modified sequencing grade; 

Promega, Madison, WI) overnight at 37 °C. The resulting tryptic peptides were removed and 

the gel pieces further extracted with washing in 10% FA. The two peptide extracts were 
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combined and analysed by mass spectrometry or subjected to deacetylase treatment prior 

to MS analysis. 

nano LC-ESI LTQ-FT MS/MS 

Nanoscale liquid chromatography tandem mass spectrometry (nano-HPLC-MS/MS) FTMS 

(fourier transform mass spectrometry) experiments were performed on an Agilent 1100 

nanoflow system (Agilent Technologies) connected to a 7-Tesla Finnigan LTQ-FT mass 

spectrometer (Thermo Electron, Bremen, Germany) equipped with a nanoelectrospray ion 

source. Loading was accomplished by using a flow rate of 5 μL/min onto a homemade 2 cm 

fused silica pre-column (100 μm i.d.; 375 μm o.d.; Resprosil C18-AQ, 3 μm (Ammerbuch-

Entringen, DE) using autosampler. Sequential elution of peptides was accomplished using a 

linear gradient from Solution A (0.6% acetic acid) to 50% of Solution B (80% acetonitrile; 

0.5% acetic acid) in 40 minutes over the pre-column inline with a homemade 20-25 cm 

resolving column (50 μm i.d.; 375 μm o.d.; Resprosil C18-AQ, 3 μm (Ammerbuch-Entringen, 

DE). The mass spectrometer was operated in DDA mode to automatically switch between 

MS and MS/MS acquisition. Survey Full scan MS spectra (from m/z 350-1500) were acquired 

in the FT-ICR with resolution R=100000 at m/z 400 (after accumulation to a target value of 

2000000 in the linear ion trap). The two most intense ions were sequentially isolated and 

fragmented in the linear ion trap using collision induced dissociation at a target value of 

10000. 


