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INTRODUCTION  
 

TRANSGLUTAMINASES  
 

THE FAMILY OF TRANSGLUTAMINASES  
 
Transglutaminases (TGases) (EC 2.3.2.13) are a family of evolutionary conserved enzymes found 

in almost all living organisms. Their primary function is the formation of covalent cross-links 

within and between peptides and proteins. This activity is Ca2+ dependent and specifically targets 

glutamine residues which are cross-linked to primary amines, creating very stable iso-peptide 

bonds.   

 

Whereas most prokaryotes only have one TGase isoform, the human organism encodes nine 

isoforms of which eight are believed to exert cross-linking activity (Table 1) [1]. Six of the nine 

human TGase genes are located within two gene clusters; transglutaminase 2 (TG2), TG3 and 

TG6 are encoded on chromosome 20q11-12 while TG5, TG7 and 4.2 are encoded on 

chromosome 15q15 [2]. This suggests a close relationship and a recent evolution of several of the 

human TGase isoforms.  

 

Transglutaminase cross-linking activity serves numerous of biological functions in the human 

body, from skin barrier formation and blood clotting to extracellular matrix assembly. Although 

some of the TGases remain to be fully characterized on the protein level, it appears that their 

biological functions both can be interrelated and strictly isoform specific. Some TGases are 

ubiquitously expressed, others are found only in certain tissues or cellular compartments, and 

some are zymogens requiring proteolytic activation (Table 1). Together with differences in 

substrate specificities, this should allow for a tight regulation and coordination of the collective 

transglutaminase activity in the human body. 
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Table 1 Members of the human transglutaminase family [3-9]  1Only tissues of high expression level are 

listed 2 Thrombin activated 3 Protease activated 4 No transglutaminase activity. Table 1 is modified from 

[1]..  
 
 

TRANSGLUTAMINASE 2 
 

Transglutaminase 2 (TG2) is the extraordinary member of the transglutaminase family. It is by 

far the most studied and best characterized isoform, and since its discovery in 1957 [10] a vast 

array of biological functions have been ascribed to this protein. Some of these functions are 

interrelated while others could well have been performed by completely unrelated proteins. 

 

Biochemistry of TG2  
 
Structure and conformation 

TG2 is a monomeric protein with no reported posttranslational modifications and no disulfide 

bonds in its native state [11]. Similar to most of its family members, the enzyme consists of four 

domains; an N-terminal domain (harboring a fibronectin binding site) followed by a large, 

catalytic domain (harboring the active site C277) which is connected to two C-terminal �-barrel 

domains through a solvent exposed loop (Fig.1A). TG2 is an allosteric enzyme and both 

enzymatic activity and conformation is regulated by binding of the small ligands GTP (Ki 

~90μM) and Ca2+ (Ka ~1mM) [12]. The GTP bound form of the enzyme assumes a compact 

conformation and is catalytically inactive [13]. In the absence of GTP and in the presence of 
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Ca2+, the enzyme will assume a more open conformation where the active site is exposed and the 

enzyme is catalytically active. The open and closed conformation can be resolved by native 

polyacrylamide gel electrophoresis (nPAGE) [14, 15].  

 

 

 
 

 
Figure 1 Structure and conformation of TG2 A) TG2 consists of 4 domains; an N-terminal �-

sandwich domain (dark red), the catalytic core domain (blue) and two C-terminal �-barrels (light green 

and light yellow) connected via a solvent exposed loop (orange). The dramatic change in conformation 

between the two crystal structures includes major peptide backbone changes within the catalytic domain 

of the enzyme.B) The peptide-like inhibitor Acetyl-P(Don)LPF-NH2 is covalently linked to the active site 

C277 (red). Incoming acyl-acceptor substrates are believed to enter from the opposite side through a 

hydrophobic tunnel formed by the flexible indole groups of W241 and W332 (light green).The proline 

residue in +2 of the inhibitor war head group DON induces a remarkably good fit of the inhibitor to the 

active site. Figures are modified from[16, 17].  

 

Two crystal structures have been reported for TG2, displaying dramatically different 

conformations (Fig.1A). Liu et.al described the enzyme in the closed GDP bound conformation 



Introduction 

 10

[16], while Pinkas et.al recently reported an open, fully extended conformation [17]. In the closed 

conformation, the active site is filled by the 1st C-terminal �-barrel (Fig.1A, light green), and 

Y516 forms a hydrogen bond with C277 which stabilizes this conformation [15, 16]. In the open 

conformation, the active site is occupied by an irreversible, peptide-like inhibitor, suggesting that 

this conformation represents the thioester linked enzyme-substrate intermediate (Fig.1B, see next 

section). Interestingly, this conformation harbors a vicinal disulfide bond between C370 and 

C371. No function has yet been ascribed to this bond. Although not catalytically active, TG2 can 

still assume an open conformation in the absence of Ca2+ (as resolved by nPAGE). This suggests 

that small, but undoubtedly important, changes in conformation must be induced upon binding of 

Ca2+. TG2 in a Ca2+ bound conformation remains to be crystallized and resolved.  

 
Enzymatic activity   

Most transglutaminases, including TG2, utilizes a papain-like cysteine-histidine-aspartate 

catalytic triad (C277, H335, A358 in TG2) to catalyze deamidation and transamidation [18]. In 

the presence of Ca2+, the active site cysteine thiol-group (C277) will perform a nucleophilic 

attack on the �-carboxamide group of a glutamine residue side chain (Fig.2). A thioester bond is 

formed between the glutamine residue side chain and the cysteine upon release of the first 

product, ammonia. The thioester linked TG2-substrate complex is then attacked by a nucleophilic 

primary amine (transamidation) or a water molecule (deamidation) displacing the enzyme and 

releasing a transamidated or deamidated product. Transamidation and deamidation is generally 

believed to be the rate-limiting step of the enzymatic reaction, although this remains disputed 

[19-22]. Transamidation has traditionally been regarded as the preferred reaction for TG2 where 

the presence of primary amines would efficiently inhibit deamidation. TG2 can also act as an iso-

peptidase and further hydrolyze transamidated products introducing an indirect route of 

deamidation. This is however not a favored reaction and has so far only been demonstrated for 

transamidated products of small, primary amines [23, 24].  



Introduction 

 11

 
 
Figure 2 Enzymatic activity of TG2 The catalysis follows a modified Ping-Pong mechanism [22] 

where the active site C277 attacks the glutamine residue side chain of an acyl-donor substrate and forms 

a covalent thioester enzyme-substrate intermediate upon release of the first reaction product, ammonia 

(acylation). The thioester complex is then attacked by an incoming primary amine (acyl-acceptor) or a 

water molecule which displaces the enzyme upon release of a transamidated or deamidated product 

(deacylation). The enzyme can further hydrolyze the transamidated product to a deamidated product (iso-

peptidase activity). (R1, R2; polypeptide or protein, R3; NH2, CH3, peptide or protein) Figure is modified 

from [25].  

 

 
Substrate specificity 

Glutamine residues are the only amino acids which can act as acyl-donor substrates for TG2. 

Targeting of glutamine residues in peptides is strongly governed by the primary sequence 

flanking the glutamine residue [22]. Preferred sequence motifs for peptide substrates have been 

identified both through peptide library approaches and phage-display library assays which all 

have reported a remarkably strong influence of proline residue positioning. This was first 

described by Vader et.al [26], who addressed deamidation of gluten peptides by guinea pig TG2, 

and reported that a proline residue in position +2 of a glutamine residue was extremely beneficial 

while proline in +1 and +3 completely protected against targeting. A similar observation was 

made almost simultaneously by Fleckenstein et.al [27], who addressed guinea pig TG2 mediated 
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transamidation of scanning peptide libraries. This “proline effect” has later been reproduced for 

human TG2 using phage display peptide libraries [28, 29]. Taken together, these studies indicate 

that the sequence -QXP(hydrophobic)- appears to be a highly preferred motif for peptide 

substrate targeting by TG2. Glutamine targeting in intact protein substrates will in addition be 

influenced by the secondary and tertiary structure of the protein. While TG2 is highly specific in 

its acyl-donor substrate targeting, a wide range of primary amines can act as acyl-acceptor 

substrates for transamidation. However, the primary amine group should preferably be followed 

by an un-branched hydrocarbon chain of at least 3 carbon atoms [22, 30]. This requirement 

ensures that only the �-amine group of lysine residues can be cross-linked while peptide and 

protein N-termini will not be targeted by TG2. Transamidation to lysine residues creates very 

stable iso-peptide bonds within and between peptides and proteins. Cross-linking of proteins can 

also occur using both ends of bivalent small primary amines like spermidine. A long list of small 

biogenic amines have been identified as acyl-acceptor substrates for TG2 and other TGases 

(spermidine, putrescine, histamine, and serotonin and more) [24, 31-34], although the role of 

these amines in relation to TG2 cross-linking activity remains to be elucidated.  
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Biology of TG2 
 
Expression and localization 

TG2 is constitutively expressed in several tissues. It is most abundant in the liver and small 

intestine but can be up-regulated in most cell types and tissues in response to tissue injury and 

stress signals [35, 36]. Increased TG2 expression is often observed upon cell differentiation and 

maturation of for example macrophages and dendritic cells [37-39]. A major fraction of the 

enzyme is localized in the cytosol (~80%) while smaller amounts can be found in the nucleus and 

mitochondria [1, 40, 41]. TG2 is also excreted, despite lacking both stabilizing disulfide bonds 

and a leader sequence commonly required for excreted proteins. Once externalized, TG2 can 

either stay associated with the cell surface or become deposited in the extracellular matrix protein 

network where it binds tightly to fibronectin [42-44]. The localization of the enzyme appears by 

large to determine its biological function [1, 45].  

 

 
A multifunctional protein  

TG2 in the extracellular matrix (ECM) is primarily believed to act as a cross-linking enzyme 

where numerous of proteins have been identified as substrates [43]. This activity is of pivotal 

importance during tissue injury and wound healing due to the formation of mechanically and 

proteolytically stable iso-peptide bonds [46]. The Ca2+ concentration in the ECM fluctuates in the 

millimolar (0.5-3mM) range which is sufficient for constitutive activation of TG2 enzymatic 

activity in vitro. However, a recent report showed that extracellular TG2 is inactive under normal 

conditions but transiently activated upon tissue damage [47]. It is not clear whether this burst of 

activity derives from newly excreted or released enzyme, or reactivation of the enzyme pool 

already localized in the ECM.  

 

TG2 in the cell cytosol has been ascribed a multitude of functions. The Ca2+-deficient and GTP-

rich environment will mainly keep the transglutaminase activity of TG2 quiescent. TG2 not only 

binds but also hydrolyzes GTP and can act as a small G protein, activating phospholipase C by 

the �-1B adrenergic receptor [48]. Studies with TG2 knock out mice have revealed a role in 

macrophage phagocytosis and clearance of apoptotic cells [49, 50] and TG2 is reported to have 

both pro-apoptotic and anti-apoptotic functions depending on its conformation and cellular 
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localization [45, 51]. A recent report indicated that TG2 turnover in the cytosol can be regulated 

by SUMOylation, which prevents ubiquitylation and proteosomal degradation [52]. Although 

originally characterized in vitro, TG2 also exerts a protein disulfide isomerase (PDI) activity 

recently described to play a role in regulation of mitochondrial respiratory chain function [40, 

53]. The PDI activity is independent of the active site C277, indicating that TG2 must harbor 

additional reactive cysteine residues. Although usually quiescent, intracellular TG2 can also exert 

cross-linking activity. A rise in intracellular Ca2+ during apoptosis activates TG2 and induces 

massive cross-linking of cellular proteins to reduce leakage and tissue inflammation [54-56]. 

Further, TG2 can cross-link or deamidate proteins like �,�-crystalline, vimetine and various heat 

shock proteins [57-60], and can also transamidate small GTPases of the Rho family (RhoA, 

RhoB, Rcb) rendering them constitutively active [61, 62]. Rho activity plays an important role in 

mitosis, cell adhesion and migration [63, 64], thereby relating the transglutaminase activity of 

cytosolic TG2 to these events.  

 

RhoA activation can also be mediated through cell surface associated TG2 (csTG2) which can 

specifically associate with �1 and �3-integrins and thereby act as a co-receptor for fibronectin 

[65]. This induces integrin clustering and formation of focal adhesion points which in turn 

activates RhoA and promotes cell adhesion and migration [66]. Integrin-associated csTG2 can be 

found in podosomes of monocytes adhering to and migrating on fibronectin [67] suggesting that 

csTG2 mainly is found in specialized structures in adherent or migrating cells. CsTG2 can also 

associate with heparane sulphate chains of proteoglycans like syndecan-4, introducing a second, 

integrin independent function in cell adhesion and migration [68]. Notably, exogenous TG2 can 

also associate with cell surfaces as addition of soluble fibronectin-TG2 complexes could improve 

adhesion of fibroblasts [68, 69]. Although not yet demonstrated, this suggests that TG2 already 

deposited in the ECM can associate with and perhaps also be taken up by migrating cells.  

 

The mechanism behind TG2 cell surface deposition is not clear although TG2 can associate with 

underglycosylated �-integrins which indicates association already within the cell [65]. Turnover 

is, at least in part, regulated by constitutive endocytosis together with low-density lipoprotein-like 

receptor 1 (LPR1) and integrins where the integrins are recycled while csTG2 will undergo 

lysosomal degradation [70]. Although not required for cell surface localization, enzymatic 

activity seems to be necessary for deposition of TG2 into the ECM [71] and a recent report 
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indicated that TG2 activity, and cell surface versus ECM deposition, might in fact be regulated by 

TG2 nitrosylation [72]. Whether csTG2 generally is active is not clear but this is likely to depend 

both on cell type and binding partners. Further, we have limited knowledge on the true abundance 

of csTG2 as few antibodies are considered to efficiently recognize TG2 in its cell surface 

associated context. Reports using a novel monoclonal antibody specific for csTG2 indicated 

abundant expression on most cell-types, in contrast to observations made with other TG2 specific 

antibodies which typically give no or only weak staining of cell surfaces [73].  

 
TG2 in disease 

TG2 has been implicated in multiple disorders affecting most organs from the central nervous 

system to liver, eyes and bone tissue [74-77]. The role of the enzyme is however poorly 

understood in most of the cases. The use of transgenic mouse models and TG2 knock out mice 

are emerging as valuable tools to further decipher TG2 biology which is a prerequisite to 

understand its role in disease [78].  
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GLUTEN SENSITIVE DISEASES 
 

Gluten sensitive diseases (GSDs) are a collective term embracing diseases induced by the 

ingestion of dietary gluten, where symptoms are alleviated upon removal of gluten from the diet 

[79]. Of these, celiac disease is the most frequent and best characterized.  

 

CELIAC DISEASE 

Clinical aspects 
Celiac disease (CD) is a chronic inflammatory disorder of the small intestine caused by an 

inappropriate immune response towards the environmental antigen gluten from wheat and related 

proteins from rye and barley [80]. The disease is characterized by infiltration of intraepithelial 

lymphocytes (IELs), villous atrophy, flattening of the mucosa and crypt hyperplasia giving 

symptoms like diarrhea, malnutrition and fatigue [81-83]. Disease onset spans from 1-2 years of 

age (upon introduction of gluten in the diet) till late adult life. The disease is prevalent among 

Caucasians (1:100) [84, 85] although this number is likely to be underestimated as adults in 

particular might present with only weak or diffuse symptoms rendering them undiagnosed [86].  

 

Genetics 
The genetic factor of CD became evident from the strong heritability of the disease and 

concordance in twins [87, 88]. The strongest association comes from the HLA haplotypes 

DQA1*05, DQB1*02 and DQA1*03, DQB1*0302 encoding the MHC class II molecules DQ2.5 

and DQ8 [89]; more than 90% of CD patients are DQ2 or DQ8 positive. However, of all 

DQ2/DQ8 positive individuals in the population (30%), only a fraction develop CD [90]. Thus, 

DQ2/DQ8 seems necessary but not sufficient and additional factors must be crucial to precipitate 

the disease. In fact, the HLA-association is believed to account for only 50% of the genetic risk 

[91] and several non-HLA candidate genes have been identified through genome wide 

association scans [92]. Follow up studies have identified additional genes, and several of these 

have now been replicated on the population level [93, 94]. The individual risk contributions from 

these genes are minute compared to HLA, making them difficult to identify in small population 

studies. Importantly, most of them play a functional role in the immune system [93] suggesting 
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that a sum of genetic factors is required. Identification of the causal variants and functional 

analysis of these gene polymorphisms are expected to shed new light on the pathogenesis of CD.  

 

The immune response towards gluten  
In contrast to most immune mediated diseases, the major antigen in CD is known. The disease is 

precipitated by the ingestion of gluten, and removal of gluten from the diet usually leads to 

complete recovery [95]. This is currently the only treatment for the disease. Gluten is the 

collective term for wheat storage proteins which can be further divided into gliadins and 

glutenins based on their solubility. Both fractions can elicit an immune response in celiac disease 

patients. Gluten proteins are extremely rich in glutamine (30%) and proline (15%) residues, the 

latter making them highly resistant towards intestinal digestive enzymes and brush border 

proteases [96-98]. Incomplete digestion leaves large polypeptides which can enter the lamina 

propria and be taken up by antigen presenting cells (APCs) [98]. It is still not clear how these 

peptides traverse from the intestinal lumen to the lamina propria, although several mechanisms 

have been suggested [99-101]. Importantly, some gluten peptides can induce innate immune 

responses. Several studies have focused on the �-gliadin derived peptide p31-43, which is not 

recognized by CD4+ T cells but has a multitude of other functions, from increasing the number of 

IELs, induction of MIC and IL-15 to activation of MAP kinases [102-105]. However, the 

underlying mechanism remains to be elucidated and no receptor for p31-43 has so far been 

described. A very recent study reported toll-like receptor-4 stimulatory capacity of different parts 

of gluten, suggesting that several gluten derived peptides can trigger innate immune responses by 

more than one mechanism (Junker et.al, 13th International Celiac Disease Symposium, 

Amsterdam, April 2009).  

 

Due to their proline-induced secondary structure, gliadin peptides are remarkably well 

accommodated by the disease associated DQ2 and DQ8 allowing efficient presentation of 

peptides to gluten reactive CD4+ T cells [106]. Importantly, gliadin peptide binding affinity to 

DQ2 or DQ8 is strongly enhanced by the presence of negative charges in certain positions. These 

are introduced by TG2, which catalyzes highly specific deamidation of selected glutamine 

residues. As peptide-MHC affinity and peptide off-rate is of pivotal importance during T-cell 

activation, deamidation is likely to be crucial to mount an efficient T-cell response towards gluten 
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[107, 108]. The gluten specific T-cell response in CD is dominated by interferon-� producing 

CD4+ cells which dictate the inflammation in the celiac lesion [109]. Isolation and in vitro 

culturing of T-cell lines from small intestinal biopsies from celiac disease patients has facilitated 

the identification of several dominant gluten T-cell epitopes which drive this response [110-115]. 

CD patients also develop a humoral immune response, i.e. a B-cell response, towards gluten. 

Although antibodies towards native gluten peptides also can be found in healthy individuals, IgA 

towards deamidated gluten is emerging as a disease specific marker [116, 117]. A well 

established hallmark of CD is however the gluten-dependent production of IgA or IgG anti-TG2 

autoantibodies, introducing TG2 as the major auto-antigen of the disease [118]. These 

antibodies are highly disease specific and are used as a diagnostic tool [119-121].  

 

 

DERMATITIS HERPETIFORMIS  
 
The prevalence of extra-intestinal disease manifestations in response to gluten is increasingly 

appreciated [122]. The most frequent manifestation is dermatitis herpetiformis (DH), a skin 

disorder characterized by sub-epidermal blistering predominantly affecting skin around the major 

joints [123]. These symptoms usually disappear upon removal of gluten from the diet. DH has a 

strong HLA association similar to CD and has been referred to as “celiac disease of the skin” 

[124]. Although approximately 30% of DH patients never experience intestinal symptoms, they 

frequently have increased number of IELs in the small intestine, which is reminiscent of latent or 

silent celiac disease [125]. Compared to CD, DH has a rather late onset with a mean age of 38 

years [126].  

 

Most DH patients have circulating anti-TG2 autoantibodies, but in addition they frequently have 

autoantibodies specific for another TGase isoform, TG3 [79, 127].The presence of IgA deposits 

in the dermal papillae of the skin is pathognomonic for DH and is used in diagnosis of the disease 

[128].  
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GLUTEN ATAXIA 
 
Gluten can also induce neurological symptoms like ataxia in some individuals, giving rise to the 

term gluten ataxia (GA) [129, 130]. GA has been reported in 12-15% of CD patients and 12-41% 

of patients with ataxia of unknown origin [131, 132]. GA also has a late onset with a median age 

of 54 years [129]. The ataxia is believed to be caused by antibody mediated irreversible damage 

to Purkinje cells in the cerebellum; hence the symptoms in GA are not necessarily alleviated upon 

removal of gluten from the diet [129, 133-136]. Further, as brain biopsies can only be obtained 

from dead patients, the diagnosis of GA is both difficult and controversial [137]. 

 

As with DH, patients with GA may or may not have small intestinal symptoms but most patients 

have circulating anti-TG2 antibodies. Notably, GA patient were recently been found to have 

autoantibodies reactive towards a newly identified transglutaminase isoform, TG6 [8]. Thus, it 

appears that TG2 is not the only transglutaminase implicated in GSDs.  
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TRANSGLUTAMINASES IN GLUTEN SENSITIVE DISEASES 
 

TRANSGLUTAMINASE 2 IN CELIAC DISEASE  
 

TG2-mediated post translational modification of gluten peptides  
TG2-catalyzed deamidation is likely to be crucial for the T-cell response towards gluten peptides 

in celiac disease and inhibition of this activity is expected to have therapeutic benefits [112, 138, 

139]. Gluten peptides are in fact remarkably good peptide substrates for TG2 [12]. TG2 exerts 

highly specific targeting of only certain glutamine residues within peptides harboring gluten T-

cell epitopes and the order of preference seems to mirror the frequency of T-cell responses 

towards various epitopes in celiac disease patients [12, 26, 27, 140]. The glutamine residue 

targeting is primarily governed by proline residues which are very frequent in gluten peptides. 

Proline in position +2 is particularly favorable as it induces a perfect fit of the peptide substrate 

with the active site of the enzyme [17]. Peptide deamidation in vivo should however be 

disfavored by the ample amounts of primary amines present on sites of TG2 expression. The 

relative amount of deamidation was however shown to increase with decreasing pH, suggesting 

that TG2 activity in low pH compartments like the small intestinal brush border or early 

endosomes could circumvent this problem although no published data has so far indicated this 

[27]. Thus, the importance of TG2 activity in the immune response towards gluten is clearly 

established, but we still lack knowledge on how and where this activity occurs.  

 

TG2 autoantibodies 
The gluten-dependent production of IgA (and IgG) anti-TG2 autoantibodies is a hallmark of CD. 

The autoantibodies are produced locally in the small intestine and can be detected in the 

circulation and in intestinal deposits where they bind TG2 in the ECM and the endothelium of 

small blood vessels [141-143]. Despite a continuous increase in the number of reported functions 

of these autoantibodies (from angiogenesis to cell cycle regulation and differentiation) no clear 

consensus has yet emerged [144-146]. An increasing body of evidence suggests that most of the 

observed effects could be mediated via RhoA although further studies are required to delineate 

this. Notably, several groups have addressed whether the autoantibodies can influence the 

catalytic activity of TG2. Esposito et.al  [147] reported a dose dependent inhibition of TG2 
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transamidation using affinity purified IgA and IgG from CD patient sera, whereas no inhibition 

was observed using purified IgG from control subjects. Dieterich et.al [148] reported no 

difference in the inhibitory capacity of total IgA purified from CD patients and control subjects. 

Affinity purified anti-TG2 autoantibodies from CD patients exerted a dose dependent inhibition 

of transamidation (up to 80% inhibition). This was however deemed insufficient to block 

biologically active deamidating activity. In contrast, more recent work by Király et.al [149] 

indicated that CD anti-TG2 autoantibodies rather enhance the catalytic activity of TG2 by acting 

as chaperones which can stabilize the enzyme in advantageous conformations or by preventing 

otherwise rapid inactivation of the enzyme.  

 

The mechanism behind the production of anti-TG2 autoantibodies remains to be experimentally 

demonstrated although several clues point in the same direction; i) the autoantibodies are only 

found in DQ2-positive individuals, ii) their presence in the circulation depends on the intake of 

gluten, and iii) no TG2-specific T cells have been isolated. Thus, the standing hypothesis is based 

on a hapten-carrier model where TG2-gliadin complexes are taken up by TG2-specific B cells. 

The B cells can then present gliadin peptides to CD4+ T cells, which in return provides the 

necessary help to the B cells [150]. Two types of TG2-gliadin complexes can be formed. 

Transient thioester bound enzyme-substrate complexes are formed during catalysis which for 

gluten peptides have been found to be unusually stable [12]. TG2 can also create very stable iso-

peptide linked complexes by cross-link gliadin peptides to six of its own lysine residues [151].  

 

ROLE OF OTHER TRANSGLUTAMINASES IN GLUTEN SENSITIVE DISEASES  
 
DH patients typically have circulating antibodies which can be subdivided into populations which 

recognize TG2, are cross-reactive with TG2 and TG3 or primarily recognize TG3 [79]. IgA 

deposits in the dermal papillae co-localizes with TG3 but not TG2 [79]. Indeed, TG3 is primarily 

expressed in the skin but not at the site of the antibody deposits, indicating that the complexes 

derive from the circulation. The gluten dependent antibody production and isotype suggest an 

intestinal origin. Although it is not clear whether TG3 is expressed in the small intestine, TG3 is 

now considered the main autoantigen of DH.  
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The diagnosis of GA is less straightforward than DH and CD and little is therefore known about 

the lesion and pathology of GA. Most GA patients have anti-TG2 autoantibodies. In addition they 

frequently have antibodies with high avidity for the recently identified TGase isoform TG6 [8]. 

Hadjivassiliou et.al also described the co-localization of IgA and TG6 within cerebellar structures 

in brain biopsies from deceased GA patients. TG6 was suggested to predominantly be expressed 

in neuronal cells. However, TG6 expression in control tissue did not overlap with immune 

complex deposits in GA, suggesting that also these immune complexes derive from circulation 

[8]. This paper was however the first to describe TG6 on the protein level and very little is 

therefore known about the expression, activity and role of TG6 in health and disease. 
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AIM OF THESIS 
 

The overall aim of this thesis is to address various aspects of TG2 biochemistry to further 

improve our understanding of its role in celiac disease. In addition, related transglutaminase 

isoforms, now emerging as putative players in other gluten sensitive diseases, are briefly touched 

upon. More specifically, we aimed to focus on the following topics; 

 

• TG2 mediated deamidation of gluten peptides is pivotal in celiac disease. Yet, acyl-

acceptors are expected to be abundant in an in vivo setting. To shed light on this, we 

wished to address the still incompletely understood process of peptide substrate 

deamidation in the presence of acyl-acceptor substrates under various reaction conditions.   

 

• Regulation of TG2 enzymatic activity is poorly understood. In relation to this, we looked 

at the reversible oxidative inactivation of TG2 which is likely to be relevant for regulation 

of TG2 activity in the ECM.  

 

• We further wished to study the conformation of cell surface TG2 to better understand the 

biological function and role of TG2 at this location.  

 

• Finally, we aimed to address whether the closely related isoforms TG3 and TG6 share the 

ability of TG2 to utilize gluten peptides as substrates and whether their activity and 

expression indicates an active role of these isoforms in the gluten sensitive diseases DH 

and GA.  
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METHODOLOGICAL CONSIDERATIONS 
 
Recombinant human transglutaminases  

All the recombinant human transglutaminases used in this thesis were expressed in E.coli. His6-

tagged recombinant human TG2 was expressed in BL21 competent E.coli and purified according 

to Piper et.al [12]. The plasmid was a kind gift from Chaitan Khosla, Stanford University. TG2 

produced in this system is typically highly active with reproducible batch-to-batch yield and level 

of activity. Plasmids encoding TG2 mutant constructs (C230A, C370A and C371A) were a kind 

gift from Daniel Pinkas, Stanford University. The mutants were expressed and purified similar to 

wild type TG2 except for the over night induction step which was performed at 22°C. TG3 and 

TG6 were provided by Daniel Aeschlimann, Cardiff University and were produced as described 

by Hadjivassiliou et.al [8]. Production of recombinant proteins in E.coli can potentially introduce 

aberrant modifications and disulfide bridges due to altered folding environment compared to 

eukaryotic cells, although this has not been reported for recombinant TG2.  

 
Determination of TG2 enzymatic activity by quantification of reaction products  

TG2 enzymatic activity and kinetic parameters are typically determined by quantification of one 

of its three reaction products; ammonia, deamidated or transamidated product. Ammonia is 

typically measured indirectly in a coupled assay developed by Keillor et.al [152] where 

glutamate dehydrogenase couples ammonium (produced by TG2) to ketoglutarate, forming 

glutamate upon consumption of NADH. The decrease in NADH is monitored 

spectrophotometricaly and serves as the readout. Although this method requires a large sample 

volume and therefore large amounts of enzyme and substrates per sample, it is typically 

performed in a high throughput 96well plate set-up making it suitable for determination of kinetic 

parameters. Transamidation is typically quantified by the incorporation of radioactively or 

fluorescently labeled acyl-acceptor substrates (3H-putresine or monodansylcadaverin) into acyl-

donor substrates like dimethylcaseine. This assay does not take into account any concomitant 

deamidation which might occur. Deamidation of peptide substrates can be quantified by mass 

spectrometry or capillary electrophoresis (CE). Quantification by mass spectrometry (MS) is 

rapid and requires small sample amounts, but is not suitable for quantification of very low 

percentages of deamidation (<5%) which might cause problems for accurate determination of 

Vmax values.  
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Alternatively, simultaneous monitoring of deamidation and transamidation can be performed 

by CE-LIF (Laser induced fluorescence) detection. This allows the simultaneous monitoring of 

both reaction pathways and is therefore more correct than quantification of only transamidated 

product. This method was established by Fleckenstein et.al [27] and was used in paper I. 

Detection of only fluorescently labeled compound ensures a very high specificity and sensitivity. 

This method is however not sufficiently high-throughput for facile determination of kinetic 

parameters for multiple substrates compared to for example the ammonium release assay. 

Further, fluorescence labeling of the acyl-donor substrates is required. Introduction of large 

hydrophobic fluorescence groups will affect peptide solubility and can even change the substrate 

properties of some peptides; N-terminal labeling of the gluten peptide DQ2-�-I with FITC (FITC-

QLQPFPQPQLPYP) actually introduces a second deamidation site (most likely at the N-terminal 

Q) in addition to the normally targeted -QLP- (J. Stamnæs, unpublished observation). Similar 

substrate behavior was however observed for the FITC-labeled peptides used in paper I and their 

unlabeled analogs. These peptides harbored only one glutamine residue.  

 
Immunoprecipitation and protein identification by mass spectrometry 

Mass spectrometry has over the last decades emerged as the gold standard for protein 

identification. Mohan et.al initially isolated the antigen of mAb 6B9 by immunoprecipitation 

from cell surface biotinylated cells followed by SDS-PAGE, western blotting and streptavidin 

detection which revealed one band of approximately 80kDa. Identification of this band was 

performed by affinity purification followed by SDS-PAGE, in-gel digestion with trypsin and LC-

MS (ESI Q-ToF). The MS and MSMS spectra were searched against the NCBI protein databank 

using the search engine MASCOT which gave positive identification of a single peptide deriving 

from TG2. In paper II we also performed immunoprecipitation using 6B9 and were able to isolate 

an 80kDa antigen which after in-gel trypsin digestion and mass spectrometry (MALDI-ToF/ToF) 

repeatedly resulted in 4 prominent tryptic peptides which were not present in control samples. 

These peptides were found to derive from CD44, while no TG2 derived peptides were identified.  

 

Identification of only one or four tryptic peptides from an in-gel protein digestion is very little. 

The low number of peptides can be due to several factors, from poor enzyme digestion due low 

amounts of protein, use of silver staining, loss of peptides in the work up process, poorly 
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calibrated mass spectrometers or the use of different search parameters when performing 

databank searches [153]. The discrepancy in protein identified is however more difficult to 

understand and can only be explained if one protein co-precipitates with the other. This is not an 

unlikely explanation, as TG2 associates with heparane sulfate chains of syndecan-4 and might 

therefore also associate with similar side chains of CD44. Nevertheless, it is puzzling that no 

CD44 derived peptides were identified from the original samples. However, the original 

identification of TG2 as the antigen of mAb 6B9 was not confirmed by use of other methods, in 

comparison with our identification of CD44 as the antigen of mAb 6B9.  

 

Flow cytometry staining of CD44 transfectants and bone marrow derived mononuclear 
cells   

Verification of CD44 as the antigen of mAb 6B9 was performed by flow cytometry staining by 

comparing the staining pattern of mAb 6B9 with that of a well characterized anti-CD44 mAb 

MEM-263. Staining of Jurkat cells stably transfected with the most common splice variant of 

human CD44 conjugated to EGFP (CD44s-eGFP) was compared to control transfectants [154]. 

We also stained bone marrow derived mononucleated cells where expression of CD44 can be 

visualized as a very distinct and unique staining pattern [155]. As both experiments were 

performed with human cells, there is still a remote possibility that 6B9 recognizes an epitope of 

csTG2 which is dependent on CD44 co-expression. This can only be ruled out using murine cells 

transfected with human CD44, as 6B9 was reported not to stain murine cells.  

 
Oxidation of TG2 
In vitro oxidation of TG2 was performed by prolonged exposure to air or by incubation with 

various ratios of reduced and oxidized glutathione (GSH and GSSG). Treatment with GSH/GSSG 

can result in not only disulfide formation within proteins but also formation of GSH adducts. The 

presence of disulfide linked peptides and GSH adducts was assessed by MALDI ToF mass 

spectrometry. As a similar oxidation pattern was observed for TG2 oxidized by air and by 

treatment with GSH and GSSG, it is reasonable to assume that oxidation of TG2 in the presence 

of GSH and GSSG primarily results in intramolecular disulfide formation and not formation of 

stable GSH-adducts. No further oxidation (sulfenic or sulfonic acid) was observed.  
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SUMMARY OF PAPERS 
 

In paper I we investigated the simultaneous deamidation and transamidation of TG2 peptide 

substrates in the presence of a primary amine. We observed that both events will occur in the 

presence of a primary amine and that good peptide substrates are less prone to direct deamidation 

due to rapid and facile transamidation. Poor peptide substrates have a higher ratio of deamidation 

to transamidation due to less transamidation. Further, the ratio of deamidation to transamidation 

was dependent on the reaction conditions and concentration of active enzyme. At higher 

concentrations of enzyme, good substrates were prone also to indirect deamidation through 

hydrolysis of transamidated product. These data demonstrate that deamidation of peptide 

substrates can occur under most reaction conditions and that detailed knowledge on TG2 

expression and activity regulation in vivo is essential to predict the outcome of the enzymatic 

reaction.  

 

In paper II, we report that the monoclonal antibody 6B9 described to be specific for cell surface 

transglutaminase 2 instead recognizes the cell surface proteoglycan CD44. We present results 

from a series of experiments which show that 6B9 does not recognize recombinant TG2 in any 

context, and that TG2 cannot be isolated through immunoprecipitation. Rather, we repeatedly 

identified peptides deriving from the glycoprotein CD44. Finally, we show that 6B9 only stains 

CD44 positive cells and not CD44 negative cells and that staining of bone marrow derived 

mononuclear cells is identical with 6B9 and with a well characterized CD44 specific mAb.   

 

DH and GA patients have circulating IgA antibodies specific for TG3 and TG6 respectively. In 

paper III we addressed whether TG3 and TG6 can actively contribute to the gluten dependent 

production of these antibodies. We show that that both TG3 and TG6 can accommodate gluten 

peptides as substrates and specifically deamidate gluten T-cell epitopes. Further, both TG3 and 

TG6 were able to form covalent complexes with gluten, although to less extent than TG2. Our 

findings indicate that TG3 and TG6 might contribute to their own autoantibody production in DH 

and GA as suggested for TG2 in CD. This supports the notion that the anti-TG3 response in DH 

and anti-TG6 response in GA is the result of immune responses primarily directed against these 

enzymes and not against TG2. 
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UNPUBLISHED RESULTS  

Oxidative inactivation of TG2 
 

How TG2 activity is regulated in vivo is not known. We do however known that TG2 can be 

inactivated through reversible oxidation where enzymatic activity can be recovered upon 

treatment with reducing agents like DTT [156]. Thus, disulfide bridge formation must play a 

crucial role. TG2 has no reported disulfide bridges in its native state [11]. Several decades ago, 

extensive work by Folk and co-workers indicated that oxidative inactivation of TG2 does not 

involve the active site C277 [157-159]. It is difficult to extract a clear mechanism from this work 

but the findings are in line with more recent reports describing TG2 as a PDI where also this 

activity was independent of the active site cysteine [53]. This implies that TG2 also harbors other 

reactive cysteine residues. Intriguingly, a vicinal disulfide bond (between C370 and C371) was 

reported in the crystal structure of TG2 believed to represent the open and active conformation of 

the enzyme.  

 

A recent report showed that extracellular TG2 in vivo is inactive during homeostasis [47]. 

Considering the oxidative environment in the extracellular space, oxidation of TG2 presents a 

plausible mechanism for inactivation. Intrigued by this possibility and the conflicting data in the 

literature, we aimed to identify cysteine residues involved in oxidative inactivation of TG2 and to 

determine the role of the vicinal disulfide bond reported in the crystal structure. Initially, we 

observed that TG2 subjected to prolonged gel filtration in the absence of reducing agents became 

inactive. This inactive TG2 migrated in nPAGE with an open conformation and could not assume 

a closed conformation upon incubation with GTP (Fig.3A). Treatment with DTT could partially 

recover both enzymatic activity and the ability to assume a closed conformation (Fig.3A, B).  

 

To identify cysteine residues labile for oxidation, TG2 was incubated with various ratios of 

reduced and oxidized glutathione (GSH and GSSG) followed by trichloroacetic acid/ acetone 

precipitation and alkylation of all free cysteine residues with iodoacetamide (IAM, +57Da). After 

separation by SDS-PAGE, any disulfides present were reduced with DTT and alkylated with 

iodoacetic acid (IAA, +58Da) giving a mass difference of one Da between reduced and oxidized 

cysteine residues. Oxidation was then quantified by mass spectrometry analysis of trypsin 

digested TG2 samples.  
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Figure 3 Oxidation of TG2 A) TG2 conformation visualized by nPAGE after pre-treatment with 0mM 

DTT (a) or 30mM DTT (b)for 30min room temperature  followed by 1h incubation with 500μM GTP and 

1mM Mg2+. 1= fresh enzyme, 2= inhibitor bound enzyme [17], 3= enzyme oxidized by prolonged gel 

filtration. Closed conformation recovered by DTT treatment is indicated by *. B) DTT treatment of 

oxidized TG2 (20mM DTT, 4°C, 2h or 4h) could partially recover enzymatic activity (% deamidation after 

60min compared to activity of fresh enzyme (ctr) using 20μM DQ2-�-II and 0.1μg/μl enzyme). C) MALDI-

ToF mass spectra revealing the isotopic envelope of IAM and IAA labeled tryptic peptides harboring the 

indicated cysteine residues from control and oxidized (0.24mM GSH/2mM GSSG) samples. Mass shift due 

to oxidation indicated as *. D) Quantification of oxidation of C370 and C371 upon GSH/GSSG titration. 

Relative amount of reduced C370C371 (�), reduced C371 and oxidized C370 (�) and oxidized 

C370C371 (�) after 3h incubation at 30°C. Activity (�) is given as % deamidation 2h after addition of 
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100 μM DQ2-�-II and 5mM Ca2+ to oxidized samples (30min and 1h not shown). E) Oxidation after 

30min at 37°C in the presence of 250μM DQ2-�-II and 5mM Ca2+.  

 

We found that three cysteine residues, C230, C370 and C371, were more susceptible to oxidation 

than other solvent exposed cysteine residues (Fig 3C). The active site C277 was not found to be 

oxidized under these conditions (Fig.3C). Interestingly, C370 was found to participate in two 

disulfide bonds, either with C230 or its neighbor C371 (data not shown). C370 was consistently 

more oxidized than C371 (quantified by MSMS of 1481 m/z, data not shown). This was observed 

in TG2 oxidized both in the presence and absence of GSH/GSSG and can therefore not simply be 

due to stable C370-GSH adduct formation (no C370-GSH adduct could be observed in MALDI-

ToF). Thus, it is likely that a fraction of C370 is engaged in a disulfide bond with C230 while 

another fraction is occupied in a vicinal disulfide bond with C371. Quantifying the percentage of 

free versus oxidized C370 and C371 upon GSH/GSSG titration suggested that the C370-C230 

disulfide is formed at less oxidizing conditions (Fig. 3D, grey squares, only C370 oxidized) than 

the vicinal disulfide bond between C370 and C371 which increasingly dominated under very 

oxidizing conditions (Fig.3D, white squares, both C370 and C371 oxidized).  

 

To address whether the presence of these disulfides influenced enzymatic activity, peptide 

substrate and Ca2+ was added to samples of oxidized TG2 and deamidation was quantified after 

various time points. The level of deamidation was found to correlate with the percentage of 

reduced C370 and C371 still present upon addition of substrate, suggesting that these cysteine 

residues must be in a reduced form in the active enzyme (Fig.3D). On the other hand, the crystal 

structure harboring the vicinal disulfide suggested that this bond could be a part of the transient 

thioesther enzyme-substrate intermediate. As TG2 was reported to have a high steady-state active 

site occupancy [12], GSH/GSSG titration was performed in the presence of saturating amounts of 

peptide substrate (250μM DQ2-�-II, KM = 70μM [12]) and 5mM Ca2+. This should allow for 

isolation of thioester complexes. However, no accumulation of the vicinal disulfide bond was 

observed upon enzymatic turnover (Fig.3E). Thus, the vicinal disulfide bond is not likely to be a 

part of the active state of the enzyme.  

 

To further establish the role of these three cysteine residues, recombinant TG2 mutants were 

expressed (C230A, C370A and C371A). While the activity of C230A and C370A were 
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comparable to wild type (WT) enzyme, C371A was inactive (data not shown). If the vicinal 

disulfide bond would be critical for oxidative inactivation of TG2, both C370A and C371A, who 

cannot form this bond, should be protected from inactivation. As C371A already was inactive, 

only C370A was used for further experiments. Surprisingly, also C370A was inactivated over 

time upon oxidation with GSH/GSSG. However, this could be due to rapid glutathionylation of 

C230 which might result in steric hindrance of the active site (data not shown). Further, C230A 

was also inactivated upon oxidation. Again, enzymatic activity correlated with the relative 

amount of reduced C370 and C371. Interestingly, formation of the vicinal disulfide bond in 

C230A mutant required stronger oxidizing conditions than in wild type enzyme (Fig.4A-C). Thus, 

although C230 is not essential for vicinal disulfide bond formation in the presence of 

GSH/GSSG, it seems to facilitate formation of this disulfide bond in the wild type enzyme. 

 

 
Figure 4 Differential oxidation of TG2 mutants WT (A) and C230A (B) oxidation after 1h at 37°C 

showing relative amount of reduced C370C371 (�), reduced C371 and oxidized C370 (�) and oxidized 

C370C371 (�). C) Comparison of WT (�) and C230A (�) oxidized C370C371. Values given are means 

with SD as error bars. 

 

The effect of calcium on oxidation is challenging to address as TG2 is prone to extensive self 

cross-linking. To circumvent this, Ca2+ titration was performed in the presence of saturating 

amounts of peptide substrate. In these experiments, increasing amounts of Ca2+ seemed to protect 

against oxidation (Fig.5A). As the lack of oxidation could both be due to binding of Ca2+ and/or 

catalytic turnover of the enzyme, Ca2+ titration was performed in the absence of substrate using a 

TG2 active site mutant (Fig.5B). Again, Ca2+ clearly protected against oxidation with a dramatic 

change around 1-3 mM Ca2+ which is close to the Ka of Ca2+ [12]. It is important however to 

keep in mind that TG2 active site mutants show impaired GTP binding and will not readily 
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assume a closed conformation in nPAGE. They might therefore differ from wild type enzyme 

also in other aspects [15]. Notably, the presence of saturating amounts of substrate in the absence 

of Ca2+ also had a slight protective effect against oxidation (data not shown).  

 
Figure 5 Effect of Ca2+ on oxidation A) The effect of Ca2+ on oxidation of WT enzyme (30min at 37°C) in 

the presence 250μM DQ2-�-II. B) The effect of Ca2+ on oxidation of C277S (3h at 30°C).Graphs show 

relative amount of reduced C370C371 (�), reduced C371 and oxidized C370 (�) and oxidized 

C370C371 (�). 
 

In summary, these data demonstrate that oxidative inactivation of TG2 involves a cysteine triad 

consisting of C230, C370 and C371 and seems independent of the active site C277. The vicinal 

disulfide bond reported by Pinkas et.al does not seem to be part of the active conformation of the 

enzyme, rather the opposite. The presence of substrate and high amounts of Ca2+ could protect 

against oxidation of TG2 in these experimental settings. While the adjacent cysteine pair is found 

in several TGase isoforms (TG1, TG4, TG5 and TG7), C230 is unique for TG2. This residue 

seemed to play a role in the formation of the vicinal disulfide and could itself form a disulfide 

with C370. However, the order of events and the mechanism underlying the formation and 

breakage of these bonds cannot be elucidated from the current data. We can only speculate 

whether C230 might facilitate breakage of the vicinal bond under reducing conditions or 

alternatively induce enzyme inactivation under relatively mild oxidative conditions. Further, it is 

not clear whether the vicinal disulfide bond alone is responsible for “locking” the enzyme in an 

open conformation. However, this conformation can clearly be induced by oxidation, 

independent of active site occupancy. Further experiments are required to elucidate these 

remaining questions.  
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DISCUSSION 
 

Transglutaminase 2 in celiac disease  
Several TGases are implicated in human diseases [1]. Not surprisingly, TG2 is the most 

frequently suggested culprit, spanning a long list from Parkinson and Alzheimer disease, 

arthrosclerosis and cancer to gluten sensitive diseases like CD. Its functional role is however 

often not established [78].  

 

The main function of TG2 in CD is on the other hand well characterized, where specific 

deamidation of gluten T-cell epitopes is pivotal to initiate and maintain a pathogenic immune 

response towards gluten. Epitopes preferentially targeted by TG2 are more frequently recognized 

by T cells from the small intestine of CD patients than other epitopes [140]. Further, stimulation 

of small intestinal biopsies with non-deamidated gluten peptides give rise to T-cell lines specific 

for deamidated gluten peptides as a result of TG2 activity in situ [139]. Thus, the importance of 

TG2 enzymatic activity in CD is undisputable, and inhibition of this enzyme is an attractive 

therapeutic option. However, several aspects of TG2 biology are incompletely characterized. This 

prevents us from fully understanding the role of TG2 in CD, which is a prerequisite for 

intervention.   

       

Enzymatic activity 
It is not clear how gluten peptides can enter the celiac lesion and whether the peptides are 

restricted to cellular compartments of APCs or if they “flow freely” in the lamina propria. Even 

though the location remains unknown, the peptides are likely to encounter active TG2 at sites 

with ample amounts of primary amines. Transglutaminase-mediated deamidation has long been 

considered an unspecific side-reaction. Notably, the relative amount of deamidation has been 

demonstrated to increase upon decreasing pH [27], an observation which could be explained as 

follows: The TG2-substrate thioester intermediate formed upon acylation of the enzyme will be 

attacked by a primary amine or a water molecule resulting in a transamidated or deamidated 

product. Transamidation is believed to occur through a general base catalyzed mechanism [19, 

27] where the primary amine group of incoming acyl-acceptors is suggested to be deprotonated 

by a histidine residue, presumably the catalytic triad member H335. Deprotonation enables the 
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amine to perform a nucleophihlic attack. A decrease in pH results in increased protonation of the 

histidine which would result in less deprotonated amine accessible for transamidation [19, 27]. 

The rate of deamidation was on the other hand not influenced by pH [27]. Notably, H335 is also 

required to deprotonate the active site thiol group upon enzyme acylation and thioester formation. 

Increased protonation of H335 due to changes in pH should therefore also reduce the overall 

activity. The enzymatic activity of TG2 was however unchanged over a pH range of 6.0-8.0 

suggesting that a basic amino acid residue different from H335 must be responsible for acyl-

acceptor deprononation prior to the nucleophilic attack [19].  

 

Recently, deamidation was also suggested to be a substrate dependent event, as selective 

deamidation and transamidation of two different glutamine residues within the same protein was 

observed [160]. In paper I we demonstrated that the ratio of deamidation to transamidation can be 

substrate dependent also for peptides, as good peptide substrates (e.g. -QXP-) were more prone to 

transamidation while poorer substrates (e.g. -QXF-) were less prone to transamidation whilst 

more or less retaining their level of deamidated. This could suggest that the enzyme-substrate 

complex of a good substrate differs from that of a poor substrate. Indeed, the most recent crystal 

structure of TG2 describe an exceptionally good fit of the preferred TG2 substrate motif -

QXP(hydrophobic)- to the active site of the enzyme [17]. Once bound to the active site, the “fit” 

of a peptide substrate might influence the accessibility for incoming primary amines and hence 

the level of transamidation whereas small and abundant water molecules easily can gain access 

independent of the substrate sequence. Notably, an unusual set of slow-binding TG2 inhibitors 

were found to display differential properties depending on the substrate, suggesting that different 

substrates also might induce slight differences in enzyme conformation [161].  

 

We also demonstrated that TG2 can cleave iso-peptide bonds between two peptide substrates, 

introducing an indirect route for deamidation. This was primarily observed for readily 

transamidated, good peptide substrates at high concentrations of active enzyme. This suggests 

that TG2 might be able to release not only gluten peptides cross-linked to small biogenic amines, 

but also peptides cross-linked to for example ECM proteins [24, 162]. In conclusion, work 

presented in this thesis together with previous reports clearly demonstrates that deamidated 

gluten T-cell epitopes can accumulate under most assay conditions. However, the in vivo 
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implications are not clear until the level and regulation of TG2 activity is characterized in a 

biological setting.   

 

Regulation of enzymatic activity  
Siegel et.al [47] recently demonstrated that TG2 in the ECM is inactive during homeostasis. 

Although several mechanisms can explain this observation, oxidation is an attractive alternative 

considering that the active site of TG2 is a cysteine residue and that the protein has no reported 

disulfide bridges in its native state. Lai et al demonstrated reversible inactivation of TG2 by 

calcium-dependent nitrosylation of several cysteine residues [163]. In fact Telci and co-workers 

recently reported that both TG2 activity and ECM deposition can be modulated by nitrosylation 

although it was not clear whether this was due to cysteine and tyrosine nitrosylation [72]. Folk 

and co-workers reported both calcium dependent and calcium independent reversible, oxidative 

inactivation of TG2 independent of the active site cysteine [157-159] indicating that TG2 activity 

in the ECM might be regulated by multiple mechanisms.  

 

We have demonstrated that oxidative inactivation of TG2 at low concentrations or in the absence 

of calcium correlate with the oxidation of three cysteine residues C370, C371, C230 but was not 

found to involve the active site C277. Oxidation of TG2 resulted in loss of enzymatic activity and 

loss of ability to assume a closed conformation in the presence of GTP. The loss of activity 

correlated with disulfide bond formation between C370-C371 and C230-C370 where formation 

of C230-C370 seemed to facilitate formation of the vicinal bond. Further studies are however 

required to confirm this. While an adjacent cysteine pair is found in several TGases, C230 is only 

found in TG2 but is conserved in several species. It is therefore tempting to speculate whether 

oxidative inactivation of TG2 differs from that of other TGase isoforms.  

 

Loss of enzymatic activity correlated with the loss of reduced C370 and C371. The vicinal 

disulfide bond is not present in native, active enzyme and did not accumulate upon enzymatic 

turnover. Thus, the vicinal disulfide bond does not seem to be part of the active form or 

conformation of the enzyme. One can question whether the reported crystal structure of TG2 in 

an open conformation harboring this disulfide bond might not represent the true active form of 

the enzyme. However, the conformational differences between active and inactive enzyme could 
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be subtle as ligand free enzyme (i.e. not bound to Ca2+, GTP or substrate), enzyme with the active 

site occupied by inhibitors or iodoacetamide (J.Stamnæs, unpublished observation) and oxidized 

enzyme can all assume an open conformation as resolved by nPAGE, suggesting that multiple 

variations of this conformation exists. Notably, crystallization of the “open conformation” was 

performed in the absence of reducing agents in contrast to crystallization of the closed, GDP 

bound conformation where 5mM DTT was included in every step [16, 17]. Incorporation of DTT 

in the work up process could perhaps confirm whether the reported open conformation indeed 

represents the true TG2-substrate thioester complex conformation.  

 

In line with previous findings, we observed that saturating amounts of Ca2+ and saturating 

amounts of substrate could protect TG2 from oxidation [158, 164], suggesting that a temporary or 

local increase in Ca2+ and substrate concentrations might prevent an otherwise rapid, oxidative 

inactivation of TG2 upon deposition in the ECM. This might also be relevant in CD if unusually 

high amounts of good peptide substrates such as gluten peptides would continuously be present 

together with TG2 in the lamina propria. However, further studies must be conducted to 

determine if oxidation indeed is the cause for inactivation of ECM associated TG2 in vivo.   

 

The curious case of cell surface TG2 
CD IgA autoantibodies towards TG2 are found in deposits in the endomysium, hence their 

original description as anti endomysial antibodies. These antibodies also react with the 

myofibroblast-derived extracellular matrix localized underneath the epithelium in the small 

intestine. They give no staining of cell surfaces, similar to most commercially available 

monoclonal anti-TG2 antibodies [141]. Thus, while TG2 is readily recognized in the cytosol or 

ECM it seems to be poorly recognized in its cell surface context, suggesting that csTG2 displays 

a shielded or altered conformation compared to ECM TG2. The lack of cell surface staining 

would also indicate that any auto-reactive B cells in CD recognizing csTG2 must have been 

efficiently deleted.  

 

The isolation and characterization of the monoclonal antibody 6B9 from a mouse immunized 

with intact human T cells introduced a tool for specific targeting of csTG2 [73]. Indeed, 6B9 did 

not recognize ECM associated TG2, but gave abundant cell surface staining of most cell types. 
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This antibody was subsequently used in several studies, implicating csTG2 in innate immune 

responses towards gluten and more specifically in transepithelial migration of CD8+ T cells [73, 

103]. However, endocytosis of csTG2-gliadin complexes on dendritic cells could not be 

demonstrated by use of 6B9. Further, TG2 could not be detected in luminal IgA-antigen 

complexes of CD patients using 6B9 [101, 165]. We wished to utilize this antibody as a tool to 

study the conformation of csTG2 to shed light on the lack of autoreactivity towards this TG2 

conformation in CD. Despite thorough effort we were not able observe binding of 6B9 to 

recombinant human TG2 or to isolate TG2 in immunoprecipitation experiments. Surprisingly, we 

found that 6B9 rather recognized CD44, an abundant cell surface proteoglycan well known to be 

implicated in for example lymphocyte migration [166]. The original characterization of 6B9 as 

specific for csTG2 was founded on the identification of a single TG2 derived tryptic peptide from 

an immunoprecipitated band of 80kDa. Notably, TG2 was recently shown to interact with 

heparan sulfate side chains, which could explain a potential co-immunoprecipitation of TG2 with 

CD44 [68].  

 

Our data speak strongly against any reactivity of mAb 6B9 towards TG2. Thus, functions 

ascribed to csTG2 using this antibody should be revised. Perhaps more importantly, also negative 

findings using this antibody should be reconsidered. Although not likely to be an indispensable 

player, a substantial body of literature indicates that csTG2 mainly is present in structures 

involved in cell adhesion and migration. Known to be massively up-regulated upon 

differentiation of professional APCs like DCs, internalization of active csTG2 and gluten by 

professional APCs still represents an attractive but unproven route for efficient uptake of gluten 

in CD. Further effort should therefore be made to characterize not only csTG2 abundance but 

also its state of activity.  

 

Gluten sensitive diseases and transglutaminase redundancy 
TG2 is not the only isoform implicated in gluten sensitive diseases. Its closest relatives TG3 and 

TG6 are now regarded as the main autoantigens in dermatitis herpetiformis (DH) and gluten 

ataxia (GA) where at least in DH the production autoantibodies depends on the intake of gluten. 

Typically, DH patients have antibody populations which primarily recognize TG2, are cross-

reactive with TG2 and TG3 or which have high avidity (and are thus seemingly specific) for 
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TG3. A similar situation was reported for TG6 in GA. Two mechanisms can explain the 

involvement of TG3 and TG6. The “specific” antibody populations could result from epitope 

spreading where TG3 and TG6 are merely passive targets of the immune response. However, as 

the antibody production is gluten dependent (and assumingly also T-cell dependent) these B-cells 

must retain sufficient affinity for TG2 to be able to internalize TG2-gliadin complexes required to 

obtain T-cell help from gluten reactive T cells. Alternatively, if these antibodies are directed 

against TG3 and TG6, active participation from these isoforms is required, similar to TG2 in CD. 

We show that TG3 and TG6 are indeed able to accommodate gluten peptides as substrates and 

that TG3 and TG6 can form thioester and iso-peptide linked complexes with gluten, although less 

efficiently than TG2. Nevertheless, the activity of TG3 and TG6 could be of relevance for DH 

and GA in an in vivo setting where little is known about activity and regulation of any of the 

TGase isoforms. A prerequisite for active involvement of TG3 and TG6 is however their 

expression at sites where they can encounter gluten; that is either in the small intestine or in cells 

migrating to the small intestine. Although preliminary results seem to indicate intestinal 

expression of both TG3 and TG6 (D.Aeschlimann, personal communication) further studies must 

be conducted to confirm this.  

 

Comparisons of transglutaminase isoform by in vitro experiments does not necessary reflect their 

relation in vivo. Nevertheless, observing that several TGase isoforms can perform similar tasks 

supports the notion that the fine regulation of TGase activity in vivo to a large extend derives 

from the differential expression of the various isoforms [1]. The fact that TG2 knock out mice 

have a seemingly unaffected and surprisingly normal phenotype despite the vast number of 

functions ascribed to TG2 could suggest a certain functional redundancy among the 

transglutaminases [167, 168]. Indeed, transglutaminase activity has been reported in TG2 knock 

out mice at sites where such activity normally is ascribed to TG2 [169]. Some TGase isoforms (at 

least TG3) also seem to be up-regulated in TG2 knock out mice [2]. It is tempting to speculate 

whether some of the functions of TG2 therefore can be accounted for by other isoforms. This has 

however not yet been reported. More importantly, the presence (and perhaps increased expression 

and activity) of other TGase isoforms should be taken into consideration before conclusions are 

drawn from studies in TG2 knock out mice [78]. Similarly, one should be cautious when defining 

TG2 biology through the use of non-isoform specific substrates and inhibitors [170].   
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CONCLUDING REMARKS AND FUTURE PERSPECTIVES 
 

Celiac disease is one of the best characterized and best understood human, immunological 

diseases. The major genetic (HLA) and environmental (gluten) factors are known and the 

immune response and pathogenesis is by now fairly well characterized. The disease itself is not 

associated with a dramatic increase in mortality but serves as an important model to understand 

immune mediated diseases and autoimmunity as a whole. Yet, there are several unanswered 

questions; in particular how and why the disease is initiated. The combined effort of numerous 

research groups world wide will undoubtedly make advances in the following years, and 

functional studies of recently identified disease associated genes are expected to shed new light 

on the disease pathogenesis.    

 

More than a decade after the identification of TG2 as the celiac disease auto-antigen, followed by 

the discovery of its pivotal role in gluten modification, little is known for sure about the activity, 

conformation, localization and function of TG2 in the celiac lesion. Throughout these years, a 

steadily increasing number of functions have been ascribed to this single enzyme and yet it seems 

to be completely dispensable in animal models. This apparent discrepancy can only contribute to 

confound our understanding of TG2 biology.  

 

This thesis has aimed to delineate aspects of TG2 biochemistry important to understand its role in 

CD and has provided new information on enzymatic activity and regulation thereof, enzyme 

abundance and potential redundancy among the TGase family members in GSDs. Extrapolation 

of biochemical properties to biological systems always requires caution but they are nevertheless 

pivotal to define a framework of possibilities and limitations for later in vivo studies.  

 

But what lies ahead? With fear of exaggerating, I feel that much of past and current research on 

TG2 falls within two major groups. The first consists of a large body of literature primarily 

describing biochemical properties like conformation, activity and ligand binding. The second 

group forms an ever-increasing list of studies reporting a putative role for TG2 somewhere 

somehow in complex biological systems, often lacking any mechanistic explanation. With a few 

recent exceptions [45, 47], the “in-between” studies systematically addressing issues like binding 
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partners, cellular localization and regulation of activity have so far been scarce or little 

convincing. I think many questions can be answered from such studies. They will however 

require highly specific tools where the development of isoform specific inhibitors and antibodies 

will be pivotal. I hope and believe that future efforts will enable us to draw lines between all the 

scattered dots made up by past and present literature on TG2. Hopefully, a picture we all can 

agree upon will emerge.  

 

In celiac disease, a better understanding of TG2 biology should allow for specific targeting and 

inhibition of TG2 enzymatic activity, thereby introducing a long sought pharmacological therapy 

for this disease.  
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Erratum 
 

Thesis  

p. 4 line 4: “the Norwegian Research Council” was changed to “the Research Council of Norway” 

p. 5, the following abbreviations were added; “APC, antigen presenting cell; CE, capillary 

electrophoresis; LIF, laser induced fluorescence; PDI, protein disulfide isomerase.” 

p. 9 figure legend, line 3: “(light green and light blue)” was changed to “(light green and light yellow)”  

p. 21 line 2: “In contrast, Deiterich et.al [148] reported no difference in the inhibitory capacity of IgA 

purified from CD patients and control subjects. Purified anti-TG2 autoantibodies from CD patients 

exerted a dose dependent inhibition of transamidation but were unable to completely block activity. The 

authors questioned the in vivo relevance of this inhibition due to the high level of residual activity.”  

was changed to  

“Dieterich et.al [148] reported no difference in the inhibitory capacity of total IgA purified from CD 

patients and control subjects. Affinity purified anti-TG2 autoantibodies from CD patients exerted a dose 

dependent inhibition of transamidation (up to 80% inhibition). This was however deemed insufficient to 

block biologically active deamidating activity.” 

p. 31 line 6: (>50%~15min) was changed to (data not shown) 

p. 32 figure legend, line 2: C277A wash changed to C277S 

p. 36 line 11 from bottom: “Their staining pattern corresponds to with the ECM of the epithelial 

substratum and with endothelial cells of small capillaries” was changed to “These antibodies also react 

with the myofibroblast-derived extracellular matrix localized underneath the epithelium in the small 

intestine.” 

p. 39 line 10 “, followed by discovery…” was changed to “, followed by the discovery…” 

Dots and commas were corrected throughout the thesis 

 

Paper I  

p. 1806, section 2.4: should read “Separations were performed at 20 kV at 25 °C with the electro-osmotic 

flow running from the anode to the cathode” 
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