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SUMMARY

Cell growth, differentiation and signaling are important processes needed for cell 

survival. These processes are mediated by binding of growth factors to receptors on the 

cell membrane. One group of such receptors is the ErbB proteins, which are involved in 

a wide array of different cellular functions. There are four different ErbB proteins, 

EGFR, ErbB2, ErbB3 and ErbB4. The ErbB proteins dimerize with and activate each 

other, leading to activation of intracellular signaling pathways. Downregulation of the 

receptors from the plasma membrane and a subsequent degradation is an important way 

to attenuate the signaling. EGFR is known to be downregulated by endocytosis through 

clathrin-coated pits, and ubiquitination has been suggested to be important for 

endocytosis. For the other receptors the mechanism of endocytosis is not clear. ErbB 

proteins have been shown to be related to a range of different cancer types. 

Dysregulation of ErbB proteins can lead to aberrant signaling and increased cell growth 

and survival. Knowledge about their regulation is therefore important to be able to 

target these cancers with specific drugs.  

All papers in this work concern endocytosis of the ErbB proteins. ErbB2 is endocytosis 

resistant, and this ability also affects EGFR in heterodimers with ErbB2. We studied 

these dimers and found that a reason why ErbB2 inhibits endocytosis of EGFR is that it 

retains EGFR at the plasma membrane by prohibiting EGF-induced formation of 

clathrin-coated pits (Paper I). We continued by investigating whether this might also be 

the case for ErbB3, which is also reported to be endocytosis impaired but we did not 

find the same correlation. In contrast, we found that endocytosis of ErbB3 was a 

constitutive process dependent on clathrin (Paper II). We also investigated the 

endocytosis of ErbB2 itself by inducing its endocytosis with the benzoquinone 

ansamycin Geldanamycin (GA). Also in this case we found a clear correlation between 

endocytosis and the nature of the heterodimerization partner. In contrast to cell 

expressing only ErbB2, cells co-expressing EGFR and/or ErbB3 showed a significant 

increase in the rate of GA-induced endocytosis of ErbB2 (Paper III). Finally, we 

investigated the importance of ubiquitin for endocytosis of EGFR and our results 

support that ubiquitination of EGFR is important for its endocytosis (Paper IV).  
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1 INTRODUCTION

All living organisms are products of repeated rounds of cell divisions. The processes of 

growth, cell division and differentiation are crucial in early steps of development, but 

also in adult living organisms cell division is a prerequisite for life. There is a 

continuous need for growth and renewal of cells and every second several millions of 

new cells are produced. If all cell divisions stopped, we would die within a few days 

(Alberts 2002). The signals for cell growth and division are mediated by growth factors. 

A growth factor is a naturally occurring protein capable of stimulating cell proliferation 

and cell differentiation. They are produced by the cells in the organism itself or supplied 

by food. These growth factors, or growth factor receptor ligands, bind more or less 

specific growth factor receptors located on the cell membrane, and the growth factor 

receptors then transmit a signal to the interior of the cell. This is a way of transmitting 

signals between cells, or in the cell itself by binding its own produced ligands. This 

process must be under tight control not only to sustain the need for cell renewal, but 

also to stop cell division when not needed any longer. Excessive cell divisions can lead 

to oncogenesis. 

One major group of growth factor receptors is the ErbB protein group, named so 

because of their homology to the erythroblastoma viral protein, v-erbB. The ErbB 

protein group comprises four members with close sequence homology: Epidermal 

growth factor receptor (EGFR, also termed ErbB1 or HER1) ErbB2 (also termed HER2 

or Neu), ErbB3 (or HER3) and ErbB4 (or HER4). There are 14 different ligands able to 

bind one or more of the four ErbB proteins. Aberrant regulation of all four of these 

growth factor receptors has been correlated with human cancers (Hynes et al. 2005).  

There are several ways in which aberrant regulation of ErbB proteins might be involved 

in cancer. First, the cells may overexpress the receptor, leading to increased signaling. 

This can be a result of gene amplification and/or altered transcription and translation. 

Second, deletions or mutations in the gene encoding the receptor may occur. The result 

can be a receptor that is either constitutively active and/or a receptor that escapes 

downregulation, again leading to increased signaling. Co-overexpression of a receptor 
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and its ligand is a third way that can lead to increased signaling. The final output of all 

these possible ways of having increased or changed signaling may give the cells new 

properties like increased growth, prolonged survival and/or enhanced migration 

(reviewed in Zandi et al. 2007). Attenuation of ErbB signaling is therefore a key to 

avoid cancer. Downregulation by endocytosis and subsequent degradation of the 

receptors is a major way of mediating attenuation. All the ErbB proteins except for 

EGFR are reported to be endocytosis-impaired and their regulation is therefore an 

important issue.  

1.1 THE ERBB FAMILY MEMBERS

The ErbB proteins and their ligands are expressed in almost all kinds of tissues and 

serve important physiological functions. They were first found to be important in 

neurons and are still also referred to as neu-receptors. In addition to their importance in 

neuronal migration in the brain and in the synapses, they are also important in the 

mammary gland and for proper development of the heart of embryos (reviewed in 

Burden et al. 1997). The ErbB proteins comprise four extracellular domains (Figure 1 

A). L1 and L2 bind to ligand and the cysteine rich regions CR1 and CR2 mediate 

dimerization. An intracellular kinase domain with tyrosine kinase activity is localized in 

the N-terminal part of the intracellular domain. The ErbB proteins can obtain two 

alternative conformations, the closed or autoinhibited conformation (accessible for 

ligand binding and with CR-domains embedded in the molecule) and the open 

conformation (not accessible for further ligand binding and with the dimerization arm 

exposed) (Ogiso et al. 2002). Binding of ligand stabilizes the closed conformation and 

thereby dimerization of receptors, promoting tyrosine phosphorylation by the tyrosine 

kinase domains (Figure 1B). Receptor phosphorylation is the primary step initiating the 

cascade of intracellular signaling.  

EGFR it the most extensively studied of the four ErbB proteins and much is known 

about its signaling and attenuation. However, despite the similar structures, not all 

information is applicable to the other ErbB proteins. This introduction will first contain 

a short part on each ErbB protein before signaling and downregulation will be discussed 
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in more detail for EGFR, with discrepancies to the other receptors specified where 

knowledge is available. 

1.1.1 EGFR 

Structural properties of EGFR 

Of the four ErbB proteins, EGFR was the first receptor to be discovered. Epidermal 

growth factor (EGF), was discovered in the early sixties (Cohen 1962; Cohen 1964) and 

some years later ErbB1 was discovered to be its receptor (Carpenter et al. 1978). Now 

the receptor is most often referred to as EGFR. EGFR is a highly glycosylated 170 kDa 

protein which in addition to EGF has six other ligands (Figure 2), all of them affecting 

EGFR in a distinct way (reviewed in Yarden 2001a). When bound to a ligand, the 

dimerization arm is exposed. This mediates dimerization, either homodimerization or 

heterodimerization with one of the other ErbB proteins.  

Figure 1. The general structure of ErbB proteins. A. The receptors comprise two ligand 
binding domains (L1 and L2) that mediate interaction with ligand and two cyctein rich 
domains (CR1 and CR2) that mediate interaction with another receptor. In the intracellular 
region, the receptor comprises a kinase domain with kinase activity. B. Upon ligand binding 
and dimerization the C-terminal tails are phosphorylated by the intrinsic or neighbouring 
kinase domain.  
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Regulation and trafficking of EGFR 

Upon binding of a ligand to EGFR, the receptor is activated and taken into the cell 

mainly by clathrin-mediated endocytosis. The nature of the ligand can determine the 

fate of the receptor -either recycling or degradation. The attachment of ubiquitin 

molecules to the receptor is necessary for degradation and is mediated by the ubiquitin 

ligase Cbl, which is recruited to the EGFR upon activation. (Levkowitz et al. 1996; 

Waterman et al. 2002). The binding between EGF and EGFR is stable in endosomes 

and the EGF-bound form of EGFR remains ubiquitinated on endosomes, translocated to 

inner vesicles of multivesicular bodies (MVBs) and eventually degraded in lysosomes  

(reviewed in Sorkin et al. 2002). Stimulation with EGF thus reduces the half life of the 

receptor from ~10 hours (Citri et al. 2002) to 1.5 – 2 hours (Huang et al. 2006). In 

contrast, when EGFR is endocytosed upon binding transforming growth factor-  (TGF-

), the acidic pH in endosomes mediates detachment of TGF-  from the receptor (Ebner 

Figure 2. The ErbB protein family. The ErbB proteins have distinct propertied. ErbB1, 
ErbB3 and ErbB4 bind a distinct set of ligands, whereas ErbB2 does not bind any ligand. The 
receptors contain an intracellular kinase domain, but the kinase activity of ErbB3 is impaired. 
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et al. 1991; French et al. 1995), which in turn leads to deubiquitination (Alwan et al. 

2003) and therefore reduced ability for EGFR to bind to the endosomal sorting 

machinery. The EGFR is then recycled back to the plasma membrane (section 1.6.2).  

EGFR and cancer 

The EGFR is involved in various cancer forms (Prenzel et al. 2001; Zandi et al. 2007) 

resulting from both overexpression and mutations of the receptor. Overexpression of the 

EGFR has been found to correlate with decreased survival in head and neck, bladder, 

cervical, oesophageal and ovarian cancers (Nicholson et al. 2001). Several variants of 

mutated EGFR have been detected in various cancers. One of the most studied mutated 

forms of EGFR is the EGFRvIII. In this variant of EGFR, the exons encoding the L1 

and  of the CR1 domain are deleted (Wong et al. 1992). The receptor is constitutively 

phosphorylated and escapes downregulation due to impaired endocytosis and increased 

recycling (Grandal et al. 2007) caused by inefficient ubiquitination (Han et al. 2006; 

Grandal et al. 2007).  A range of other changes have been found within the EGFR gene, 

including point mutations, deletions and duplications (reviewed in Zandi et al. 2007). 

Many of the EGFR variants containing deletions lack all or parts of the extracellular 

domain which impairs the ligand-induced downregulation (Wong et al. 1992; Frederick 

et al. 2000). Antibodies that bind to EGFR and inhibit its ligand binding, and thus 

signaling, have been used for treatment of cells overexpressing EGFR (Goldstein et al. 

1995; Narita et al. 2001). One such antibody, which has been approved for clinical use, 

is Cetuximab. The antibody binds to the extracellular L2 domain (Li et al. 2005) and has 

anti-tumor effects in combination with chemotherapy or radiotherapy (Baselga 2001; 

Prewett et al. 2002). To target the kinase activity of the EGFR in cancer cells, tyrosine 

kinase inhibitors that disrupt the activation of EGFR are used. Two examples that are 

approved for clinical use are Gefitinib and Erlotinib (reviewed in Arora et al. 2005).  
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1.1.2 ERBB2

Structural properties of ErbB2 

Because of the tethered structure of the 185 kDa ErbB2, this receptor can not bind 

ligand (Klapper et al. 1999; Garrett et al. 2003). In spite of this apparent deficiency, the 

special structure of ErbB2 makes it particularly frequent in severe cancer forms. First, it 

has its dimerization arm constitutively exposed (Figure 2) similar to the ligand bound 

form of EGFR and ErbB3 (Schlessinger 2002; Garrett et al. 2003). This property makes 

ErbB2 the preferred heterodimerization partner in the receptor family (Sliwkowski et al. 

1994; Yarden 2001b; Yarden et al. 2001). Second, it seems that a wider range of 

phospho-tyrosine binding proteins are recruited to this receptor compared to the other 

receptors in the family (Jones et al. 2006). Third, when overexpressed, ErbB2 is 

reported to increase binding affinity of heterodimerization partners and thus sustain 

signaling from heterodimers (Karunagaran et al. 1996) and also to lower the ligand 

specificity of the dimerization partner (Alimandi et al. 1997; Pinkas-Kramarski et al. 

1998; Wang et al. 1998). Fourth, when overexpressed, ErbB2 is found to be 

constitutively activated (Yuste et al. 2005). Finally, ErbB2 escapes downregulation 

(Sorkin et al. 1993; Baulida et al. 1996; Austin et al. 2004; Hommelgaard et al. 2004; 

Longva et al. 2005). The ability also affects EGFR in heterodimers with ErbB2 

(Muthuswamy et al. 1999; Wang et al. 1999; Worthylake et al. 1999), giving these 

heterodimers prolonged time to signal. ErbB2 has been claimed not to be able to 

homodimerize (Burgess et al. 2003), but was recently found in homodimers as a result 

of high overexpression in breast cancer cells (Yang et al. 2007).  

Regulation and trafficking of ErbB2 

In contrast to EGFR for which Cbl is the main ubiquitin ligase, the chaperone 

interacting protein (CHIP) is involved in ubiquitination of ErbB2 (Xu et al. 2002; Zhou 

et al. 2003). Even though the half-life of ErbB2 is reported as shorter than that of non-

stimulated EGFR, between 4 hours (Citri et al. 2002) and 7 hours (Baulida et al. 1996; 

Nielsen et al. 2003), it still inhibits endocytosis of the EGFR. The reason why ErbB2 is 

endocytosis resistant and what makes it interfere with the endocytosis of activated 

EGFR is currently not understood. There are indications that it may be a result of the 

localization to areas outside clathrin-coated pits (Hommelgaard et al. 2004; Offterdinger 
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Figure 3. Simplified model of Hsp90 cycling. 
Hsp90 (blue) cycles between two conformations, the 
ATP bound and the ADP/Hsp70/CHIP-bound. GA 
stabilizes the Hsp70/CHIP bound form. 

et al. 2007) or that there are some signals for endocytosis missing in the C-terminal of 

ErbB2 (Sorkin et al. 1993). The stability of ErbB2 is constantly dependent on 

interaction with heat shock protein 90 (Hsp90) (Citri et al. 2002). GA binds to and 

inhibits the stabilizing action of Hsp90 (Xu et al. 2001) and is shown to reduce ErbB2 

half-life from 4 hours to approximately 1.5 hours (Citri et al. 2002). It is shown that 

Hsp90 cycles between two conformations, an ATP and an ADP bound form (reviewed 

in Powers et al. 2007). When in the ADP-bound form Hsp90 also associates with among 

others Hsp70 and CHIP and this form mediates destabilization of client proteins by 

ubiquitination which target the proteins for proteasomal degradation (reviewed in 

Murata et al. 2001). GA stabilizes 

the ADP and Hsp70 bound form of 

Hsp90 (Figure 3) (reviewed in Isaacs 

et al. 2003). Upon GA-treatment, 

ErbB2 is downregulated by 

mechanisms not fully understood. It 

is shown that ErbB2 is ubiquitinated 

by CHIP upon GA-treatment 

(Mimnaugh et al. 1996) and also that 

GA induces recruitment of CHIP to 

ErbB2 (Xu et al. 2002). Several other steps have also been reported, including 

endocytosis (Longva et al. 2005) and either lysosomal or proteazomal degradation 

(Mimnaugh et al. 1996; Lerdrup et al. 2006). The detailed mechanism of GA-induced 

downregulation of ErbB2 is not known and has been addressed in Paper III. 

ErbB2 and cancer  

ErbB2 is overexpressed in 20-30 % of breast and ovarian tumors (Witton et al. 2003; 

Abd El-Rehim et al. 2004), but is also found overexpressed in bladder, colon, pancreas, 

gastric and endometrial tumors (Junttila et al. 2003; Holbro et al. 2004; Roskoski 2004). 

In these cancers, ErbB2 has been linked to therapeutic resistance and poor prognosis 

(Ross et al. 2003). For this reason, ErbB2 has been considered an important therapeutic 

target for several years. Several drugs and antibodies are used clinically to target ErbB2. 

Two examples are Trastuzumab (or Herceptin) which inhibits signaling from ErbB2 and 
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Pertuzumab (or Omnitarg) that inhibits dimerization of ErbB2 and thereby its signaling  

(reviewed in Hynes et al. 2005). Also derivates of GA seem promising in treatment of 

cancer cells with overexpression of ErbB2 (Neckers 2002). 

1.1.3 ERBB3

Structural properties of ErbB3 

ErbB3 (with a molecular weight of 180 kDa) differs from EGFR, ErbB2 and ErbB4 in 

that it contains a mutation in the kinase domain making the receptor kinase dead or 

kinase defective (Guy et al. 1994; Sliwkowski et al. 1994). ErbB3 can interact with two 

of the neuregulin ligands (also called heregulins), NRG1 and NRG2 (Figure 2).  ErbB3 

is reported not to homodimerize in response to heregulin binding (Berger et al. 2004). 

For this reason, and since the kinase activity is impaired, it depends on a 

heterodimerization partner in order to be activated (Kim et al. 1998). 

Regulation and trafficking of ErbB3 

As ErbB2, also ErbB3 is considered to be endocytosis impaired (Baulida et al. 1996; 

Waterman et al. 1998) as internalization of heregulin is slow compared to 

internalization of EGF (Baulida et al. 1997). Whether the slow rate of endocytosis also 

affects EGFR in EGFR/ErbB3 dimers is not known and was part of the investigation in 

Paper II. There is evidence that heregulin, and thus possibly ErbB3, is more effectively 

recycled after internalization than both EGF and TGF-  (Waterman et al. 1998). ErbB3 

does not contain binding sites for Cbl, but instead binds another ubiquitin ligase called 

Nrdp1. Nrdp1 promotes degradation of ErbB3, possibly proteasome-dependently 

(Diamonti et al. 2002; Qiu et al. 2002). The specific binding site of Nrdp1 has not been 

determined, but is localized to a region between the kinase domain and the 

transmembrane domain (Bouyain et al. 2007). The expression level of Nrdp1 has been 

shown to be positively effected by heregulin, thereby providing a sort of ‘ligand 

induced’ ubiquitination and downregulation of ErbB3 (Cao et al. 2007). However, there 

are also reports concluding that heregulin does not significantly affect downregulation 

of ErbB3 (Baulida et al. 1997; Qiu et al. 2002). The reason for this discrepancy may be 

differences in Nrdp1 expression. Tumors overexpressing ErbB3 was in 70 % of the 

cases correlated with suppressed level of Nrdp1 (Yen et al. 2006), rendering Nrdp1-
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mediated ErbB3 degradation dysfunctional. Heregulin is also reported to dissolve 

constitutive oligomers of ErbB3 (Landgraf et al. 2000; Kani et al. 2005), although a 

more recent report argues that heregulin makes ErbB3 cluster at the plasma membrane 

(Yang et al. 2007). There are thus a lot of unanswered questions concerning endocytosis 

and regulation of ErbB3. Endocytosis of ErbB3 is investigated in Paper II. 

ErbB3 and cancer  

ErbB3 has been found to be overexpressed in multiple forms of cancers like colon, 

bladder and prostate cancers and it is reported that ErbB3 overexpression occurs in 63 

% of breast tumors (Yen et al. 2006). There are still no known mutations or gene 

amplification detected for ErbB3  (reviewed in Sweeney et al. 2006). Recent studies 

also indicate that overexpression of ErbB3 correlates with metastases and reduced 

survival (Witton et al. 2003; Wiseman et al. 2005). ErbB3/ErbB2 dimers are particularly 

potent in mitogenic signaling (Wallasch et al. 1995; Pinkas-Kramarski et al. 1996) and 

many ErbB2 positive tumors are also positive for ErbB3 (Naidu et al. 1998; deFazio et 

al. 2000; Bieche et al. 2003; Holbro et al. 2003), giving these two receptors a special 

relation. There are several reasons for their potency  (reviewed in Citri et al. 2003). 

First, they activate signaling pathways necessary for proliferation and survival. Second, 

they display no or low ligand-induced downregulation (Baulida et al. 1997). Third, they 

have a slow rate of ligand dissociation (Sliwkowski et al. 1994; Tzahar et al. 1996) and 

fourth, the presence of ErbB2 widens the spectrum of ligands that can bind to ErbB3 

(Alimandi et al. 1997; Pinkas-Kramarski et al. 1998; Wang et al. 1998).  

1.1.4 ERBB4

General overview 

ErbB4 is the least studied of the four ErbB proteins. It binds a wide range of different 

ligands (Figure 2) and it has an active kinase domain. Although there is only one gene 

encoding ErbB4 (Zimonjic et al. 1995), several ErbB4 isoform have been described and 

are probably a result of alternative RNA splicing (Elenius et al. 1997; Elenius et al. 

1999; Rio et al. 2000). The ligand-induced endocytosis of ErbB4 is slow, and the half-

life of a chimeric receptor of EGFR/ErbB4 (EGFR extracellular domain and ErbB4 

intracellular domain) was determined to 6 hours in non-stimulated cells and 5.5 hours in 
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EGF-treated cells (Baulida et al. 1996) ErbB4 is unable to recruit Cbl (Levkowitz et al. 

1996), but it might, as ErbB3, be regulated by Nrdp1, since overexpression of Nrdp1 

was reported to reduce the level of ErbB4 (Diamonti et al. 2002). ErbB4 is upon ligand 

binding, proteolytically cleaved, generating an 80 kDa protein (s80) that translocates to 

the nucleus where it is frequently observed in cancer cells. In the nucleus, s80 can 

promote transcription by functioning as a chaperone that facilitates nuclear entry of 

different transcription factors (Ni et al. 2001; Omerovic et al. 2004; Williams et al. 

2004; Aqeilan et al. 2005). The role of ErbB4 in human cancer is debated. 

Overexpression has been reported in childhood medulloblastoma where it correlates 

with aggressive tumor type and metastases (Gilbertson et al. 1997; Gilbertson et al. 

2001). However, ErbB4 has also been reported to inhibit proliferation and was recently 

suggested do be a tumor suppressor (Suo et al. 2002; Williams et al. 2003; Barnes et al. 

2005). A more recent study does, however, correlate expression of ErbB4 with severe, 

metastatic and vascular invasive cancers in a high number of breast carcinomas (Abd 

El-Rehim et al. 2004).  

Although all ErbB proteins have different functions and can give distinct outcome upon 

overexpression, it has been difficult to assign a certain property to one receptor in 

particular, as they are often overexpressed together. Furthermore, their interplay is 

significant. It is therefore recommended that an expression profile of all ErbB members 

should be determined to decide on treatment of individual cancers (Witton et al. 2003; 

Zaczek et al. 2005).  

1.2 LIGAND BINDING AND RECEPTOR DIMERIZATION

In the absence of ligand, the ErbB proteins are in general thought to be monomeric, and 

the receptors adopt the tethered or closed conformation, inhibiting dimerization (Cho et 

al. 2002; Ferguson et al. 2003; Bouyain et al. 2005). The binding of ligand to EGFR 

induces a conformational change and stabilizes the open conformation of the receptor, 

easing dimerization and oligomerization, and thus phosphorylation (Schlessinger 2002)  

(reviewed in Burgess et al. 2003; Dawson et al. 2007). ErbB2 is an exception since its 

constitutively open structure prohibits ligand binding, and thus ligand-induced 
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dimerization is induced through its dimerization partner  (reviewed in Yarden et al. 

2001). The receptors have traditionally been considered unable to dimerize in the 

absence of ligand, but there is evidence that a small fraction of the receptors exist in a 

open conformation also in the absent of ligand, making dimerization possible also in 

unstimulated cells, and especially in cells overexpressing the receptors (Yu et al. 2002; 

Klein et al. 2004). There are arguments, however, that simply adopting the open 

conformation is not sufficient for dimerization (Dawson et al. 2007).  

1.3 THE PLASMA MEMBRANE 

The papers included in this thesis are all focused on endocytosis of the ErbB proteins. 

To understand mechanisms of endocytosis, knowledge about the molecular composition 

of the plasma membrane is important. The plasma membrane consists of a double layer 

of lipids (including saturated and non-saturated fatty acids, cholesterol, sphingolipids 

and phosphoinositides (PIs)) and proteins, and the two layers are held together by non-

covalent interactions (Figure 4). The lipids and proteins are organized into distinct areas 

and form regions of specific function  (reviewed in Brown et al. 1998).  

Figure 4. The lipid bilayer constituting the plasma membrane. The plasma membrane 
consists of an outer and inner layer of saturated and non-saturated fatty acids. The lipid polar 
heads face towards the cell surface or the cell interior and the nonpolar fatty acid chains face 
towards the other lipid layer. Proteins are also inserted in the membrane, along with accessory 
lipids like phosphoinositides (PIs) and cholesterol. Extracelluarly, most proteins contain sugar-
chains. 
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1.3.1 PHOSPHOINISITIDES

The PIs of the cellular membranes come in different forms. Phosphorylation of one to 

three hydroxyl groups of the inositol-ring (position 3, 4 or 5), give rise to up to seven 

possible PIs  (reviewed in Di Paolo et al. 2006). Several different protein domains, like 

FYVE, PH, PX, ENTH and ANTH domains, bind specific PIs (reviewed in Lemmon 

2003). The distribution pattern of the different PIs to specific areas within the cell may 

therefore determine the localization of a protein (see Simonsen et al. 2001 for a review 

of the function of the PIs in each membrane compartment). PI(4,5)P2 (or PIP2) is the PI 

most abundant at the plasma membrane and is necessary to recruit proteins important 

for endocytosis, like adaptor protein 2 (AP2) and epsin (Zoncu et al. 2007). PI(3)P is 

abundant in the early endosomes and  targets early endosome antigen-1 (EEA1) to this 

compartment (Stenmark et al. 1996). PI(3)P is also important for endosomal sorting of 

proteins (Raiborg et al. 2001). Specific PI kinases (like PI(3)kinase) or phosphatases 

(like PTEN) can convert a PI from one form to another, thus making a new docking site 

for a PI-interacting protein. Membrane-localized proteins, including ErbB proteins, can 

be indirectly linked to a specific membrane compartment through interaction with a PI-

interacting protein, like AP2 at the plasma membrane or AP1, which is localized to 

endosomes and the trans golgi network (TGN) (see Robinson 2004 for a review on 

adaptor proteins).  

1.3.2 LOCALIZATION OF ERBB PROTEINS AT THE PLASMA MEMBRANE

The plasma membrane contains ‘floating’ areas rich in sphingolipids and cholesterol 

named rafts. In rafts, the fatty acids have a more ordered and extended conformation, 

possibly because of a higher concentration of saturated fatty acids (Lichtenberg et al. 

2005). The association of caveolin with specific lipid rafts gives them a characteristic 

curved morphology and thereby forms a caveola (Kirkham et al. 2005). The caveolae 

invaginate and forms flask shaped structures, but their degree of internalization has been 

debated (see section 1.5.1) It has been reported that EGFR is localized to caveolae in 

unstimulated cells (Mineo et al. 1999; Smart et al. 1999) and that upon ligand binding, 

EGFR migrates out of caveolae (Mineo et al. 1999) and into the clathrin-coated pits (see 

section 1.5.1). The translocation of EGFR from caveolae was reported to depend on an 
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active receptor kinase domain and required activated protein kinase C (PKC) (Mineo et 

al. 1999). Others have, however, concluded that EGFR is not concentrated in caveolae 

and the results were obtained both by fractionation studies (Waugh et al. 1999) and by 

immuno electron microscopy studies (Ringerike et al. 2002). For the other ErbB 

proteins, little is known about the localization at the plasma membrane. However, it has 

been suggested that ErbB2 is localized to caveolae but fails to migrate out of these 

structures upon EGF stimulation (Mineo et al. 1999) and that it is raft-associated at 

membrane protrusions (Hommelgaard et al. 2004). A contradicting report says that 

ErbB2 and ErbB4 upon heregulin stimulation migrates from the bulk membrane and 

into caveolae or rafts (Zhou et al. 2001). 

1.4 SIGNALING THROUGH ERBB PROTEINS

When dimers are formed, the intrinsic tyrosine kinase of the receptors is activated, 

promoting phosphorylation of the receptor tails (Sherrill et al. 1999). In each receptor, 

distinct tyrosines are phosphorylated and serve as docking sites for cytosolic signaling 

proteins containing Src-homology 2 (SH2) domains or phosphotyrosine-binding (PTB) 

domains (Figure 5). The recruited proteins include kinases that can phosphorylate serine 

and threonine residues and further increase the amount of docking sites. The pattern of 

phosphorylation is determined by the nature of the ligand and the dimerization partner 

and decides the outcome of the signaling process (Olayioye et al. 2000). Two major 

signaling pathways activated by the ErbB proteins are the mitogen-activated protein 

kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3K) pathway. 

Depending on different phosphorylation patterns, the signaling mediates different 

cellular outcomes such as apoptosis, cell survival, migration, growth, adhesion or 

differentiation  (reviewed in Yarden et al. 2001; Zahnow 2006).   
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1.4.1 THE MAPK PATHWAY

Following activation of the EGFR, the SH2 domain of growth factor receptor-bound 

protein 2 (Grb2) binds directly to EGFR phosphotyrosine (pY) 1068 and/or 1086 

(Batzer et al. 1994) or indirectly through phosphorylated Shc (Figure 5) (Sasaoka et al. 

1994). Shc binds via its PTB domain to EGFR pY 1148 mediating activation of Shc 

(Figure 6). The binding of Grb2 and Shc recruits the nucleotide exchange factor SOS 

which mediates nucleotide exchange of Ras-GDP to Ras-GTP and thus Ras activation  

(reviewed in Nimnual et al. 2002). Activated Ras further activates the serine/threonine 

kinase Raf-1 (Hallberg et al. 1994) which activates MAP/Erk kinase (MEK). MEK 

eventually activates the MAPKs Erk1 and Erk2. Erk1 and Erk2 can enter the nucleus 

and activate transcription factors of specific genes  (reviewed in Kolch 2000).  

1.4.2 THE PLC  AND PI3K PATHWAYS

Phospholipase C  (PLC ) is an enzyme which upon activation catalyzes hydroslysis of 

PIP2 to form 1,2-diacylglycerol (DAG) and inositol-(1,3,5)-trisphosphate (IP3). PLC

binds directly to phosphotyrosines in EGFR and ErbB2 (Figure 5) and the receptors 

Figure 5. Ligand-induced phosphorylation sites in the C-terminal tails of the ErbB proteins. 
When receptors are activated, they are phosphorylated at the indicated tyrosine residues. The
phosphotyrosines recruit different phosphotyrosine binding proteins involved in transmitting 
signaling or mediating receptor downregulation. The figure is based on (Olayioye et al. 2000) and 
(Hynes et al. 2005) 
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Figure 6. Signaling path-ways activated by EGFR. Three main 
signaling pathways of ErbB proteins are the MAPK pathway 
activating the MAPK Erk, the PI3K-Akt-pathway activating Akt 
and the STAT pathway. Activation of PLC  is also involved in 
important steps mediating signaling. The signaling pathways can 
lead to phosphorylation of proteins entering the nucleus and 
affecting gene transcription. The figure is from (Zandi et al. 
2007) and the figure legend is modified.

promote PLC  activation 

(Figure 6). IP3 mediates 

calcium release from 

intracellular stores, affecting 

a range of calcium-

dependent enzymes, while 

DAG promotes activation of 

the serine/threonine kinase 

protein kinase C (PKC). 

PI3K is another kinase 

involved in the signaling 

from ErbB proteins. The p85 

subunit of PI3K can be 

recruited to Cbl upon EGFR 

activation (Hartley et al. 

1995; Fang et al. 2001), but 

the main way of activation is 

through the six binding sites 

for p85 in ErbB3 (Figure 5) 

(Ram et al. 2000). Upon 

binding of p85 to ErbB3, p85 

is brought close to the active 

kinase domain of an ErbB3 heterodimerization partner and is activated by this 

dimerization partner. PI3K catalyses the phosphorylation of the 3’ position of the 

inositol-ring of PIs and can generate PI(3,4,5)P3 (PIP3). PIP3 is a binding site for the 

serine-threonine kinase Akt, thus recruiting Akt to the plasma membrane and thereby 

promoting its activation (Figure 2Figure 6). Akt is involved in regulation of several 

proteins affecting cell survival and proliferation  (reviewed in Vivanco et al. 2002).  

1.4.3 THE JAK AND STAT PAHWAYS

The STAT proteins are inactive transcription factors which are constitutively associated 

with EGFR (Figure 6). The STAT proteins may be activated upon activation of EGFR 
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(Olayioye et al. 1999; Xia et al. 2002) and JAK  (reviewed in Leonard 2001) or possibly 

by Src (Figure 6) (Olayioye et al. 1999; Kloth et al. 2003). Upon activation, the STAT 

proteins translocate to the nucleus as homo- or heterodimers (Jorissen et al. 2003). 

1.4.4 SRC-MEDIATED PHOSPHORYLATION 

Src and other cytosolic tyrosine kinases are also involved in the signal transduction 

from the ErbB proteins. Src does not bind directly to the ligand-mediated 

phosphorylation sites of EGFR, but there is evidence that it phosphorylates tyrosine 

residues of the EGFR (such as Y890, Y920, Y845 and Y1101) thereby producing 

docking sites for the p85 subunit of PI3K as well as docking sites for Src itself 

(Lombardo et al. 1995; Stover et al. 1995; Biscardi et al. 1999). Src also phosphorylates 

and activates PI3K directly and thus activates the PI3K-pathway (Shoelson et al. 1993). 

Phosphorylation by Src seems to be particularly important for ErbB2. A recent paper 

indicates that the Src-mediated phosphorylation of Y877 mediates a conformational 

change in ErbB2 by twisting a loop of the receptor closer to the ErbB2 kinase domain, 

promoting further phosphorylation of ErbB2  (Xu et al. 2007).  

1.5 ENDOCYTOSIS OF ERBB PROTEINS 

To attenuate the signaling mediated by the activated ErbB proteins, the proteins can be 

downregulated from the plasma membrane by endocytosis. Endocytosis is a process 

where the cells absorb material into intracellular vesicles by engulfing the material with 

the plasma membrane. The vesicles formed, fuse and make larger endosomes where the 

cargo is sorted either for recycling back to the plasma membrane or for degradation in 

lysosomes. Endocytosis is divided into two main forms, phagocytosis and pinocytosis 

(Figure 7). Phagocytosis is often restricted to certain cell types, like phagocytes, and 

involves uptake of large particles like bacteria. Pinocytosis is the uptake of fluids and 

solutes and occurs in all cell types. Pinocytosis can be divided in four main 

mechanisms. Macropinocytosis is achieved by membrane ruffling and is often induced 

in cells upon stimulation, for instance by growth factors. The three remaining forms of 

pinocytosis all involve inward budding of the plasma membrane and includes caveolin-

mediated endocytosis, clathrin mediated endocytosis (CME) and clathrin- and caveolin 
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independent endocytosis  (reviewed in Conner et al. 2003a). The best characterized 

form of endocytosis is CME. This is the main way for EGFR (Carpentier et al. 1982; 

Hanover et al. 1984; Kazazic et al. 2006) and GA-treated ErbB2 to enter the cell 

(Pedersen et al. In press). The way ErbB3 is endocytosed has so far been unclear and 

has been studied in Paper II.  

1.5.1 CLATHRIN-MEDIATED ENDOCYTOSIS

CME occurs constitutively in all mammalian cells and is crucial for communication 

between cells during tissue and organ development (Di Fiore et al. 2001; Seto et al. 

2002). CME is important for the synaptic transmission in neurons (De Camilli et al. 

1996), and by downregulating proteins in neurons it may also control the strength of the 

synaptic transmission and thereby play a role in learning and memory (Beattie et al. 

2000; Traub 2003). CME is also important for various kinds of receptor-mediated 

endocytosis, including endocytosis of the EGFR (Figure 8). Clathrin assembles into a 

trimeric structure, and each clathrin triskelion contains three heavy chains (CHC) and 

three light chains (CLC) (Figure 8 A)  (reviewed in Edeling et al. 2006). This three-

legged unit is able to form a lattice with other clathrin triskeliae. The domain at the end 

of each leg can interact with adaptor proteins needed for endocytosis. Adaptor proteins 

form a link between the membrane, clathrin and the proteins that are to be transported 

into the clathrin coat (reviewed in Traub 2003).  

Figure 7. The different pathways of endocytosis. The different pathways of endocytosis can 
be divided into two main classes, phagocytosis and pinocytosis. Figure is taken from (Conner 
et al. 2003a) and figure legend is modified. 
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The main adaptor protein complex involved in CME is AP2. AP1, AP3 and AP4 are 

also involved in clathrin coat formation, but they are important for the sorting events at 

endosomes and TGN rather than at the plasma membrane. AP2 has four structural 

subunits, , 2, μ2, and 2 (Figure 8B) and interacts with clathrin (through its 2

subunit), PIs (through its -subunit) and with cargo (through its μ2-subunit) 

(Kirchhausen et al. 1997; Praefcke et al. 2004). The binding to cargo occurs through 

distinct AP2-binding sorting signals (section 1.5.3). The two large subunits of AP2, 

and 2, are each composed of two domains linked through a flexible hinge region, the 

N-terminal core and the C-terminal ear. The ear of the AP2 -subunit has been shown to 

interact with several other proteins, some of which also interact with clathrin and serve 

as adaptor proteins themselves. Examples are Dab2, CALM, AP180, epsin and Eps15 

(EGFR-pathway substrate-15)  (reviewed in Traub 2003).  

Figure 8. Clathrin-mediated endocytosis. (A-C) The main components of the clathrin-coated 
pit are clathrin, AP2 and dynamin. See text for details. (D) The receptor is transported into the 
CCP and the membrane is invaginated. After pinching off, the components of the clathrin coat 
disassociate and are reused for subsequent internalization steps. The figure is from (Conner et al. 
2003a), and both figure and figure legend is modified.
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Epsin is localized to clathrin-coated pits (Stang et al. 2004) and binds to the membrane 

through its ENTH domain which interacts with PIP2 (Ford et al. 2002; Itoh et al. 2005). 

Epsin also interacts with clathrin and AP2 and has been proposed to function as an 

adaptor protein (reviewed in Wendland 2002). Epsin has also been reported to mediate 

membrane curvature (Ford et al. 2002). In addition it contains multiple ubiquitin 

interacting motifs (UIMs), and it has therefore been suggested that epsin may function 

to sort ubiquitinated cargo for clathrin-mediated endocytosis (Barriere et al. 2006; 

Duncan et al. 2006; Hawryluk et al. 2006). Epsin interacts with the Eps15 homology 

(EH) domain of Eps15. Eps15 is also localized to the clathrin-coated pit and 

additionally interacts with AP2 and ubiquitin. The role of Eps15 in endocytosis is not 

clear, but it is thought to act together with epsin to sort ubiquitinated cargo into the 

clathrin coat (Chen et al. 1998; Hawryluk et al. 2006). The importance of Eps15 and 

AP2 for endocytosis of EGFR has been studied by overexpression of Eps15 with a 

mutated EH-domain (Eps15EH29). Eps15EH29 do not localize to the plasma membrane 

and also sequesters AP2 from its plasma membrane localization (Benmerah et al. 1999; 

Benmerah et al. 2000). Removal of AP2 dissolves the existing clathrin coats and by this 

approach it is found that upon EGF-incubation, new clathrin-coated pits are formed at 

the plasma membrane (Johannessen et al. 2006). These coats are thus formed in the 

absence of AP2 and Eps15, and this indicates that these two proteins are not essential 

for EGFR endocytosis. In contrast, Grb2, which is also involved in signaling from 

EGFR (section 1.4.1), is important for endocytosis of EGFR (Jiang et al. 2003a; Huang 

et al. 2004; Huang et al. 2005), possibly because of its role in recruitment of EGFR into 

clathrin-coated pits (Stang et al. 2004). Grb2 is recruited to the EGF-induced clathrin 

coats and confirms the importance of this protein for endocytosis of EGFR 

(Johannessen et al. 2006). 

Dynamin is a protein required for CME, but it is also required for caveolin-mediated 

endocytosis and some clathrin- and caveolin-independent endocytic pathways (Hinshaw 

2000; Sever et al. 2000). Dynamin contains a pleckstrin homology (PH) domain that can 

interact with PIP2 in the plasma membrane (Figure 8C). By interaction between 

individual dynamin molecules (through domains like the GTPase effector domain) and 

with other endocytic proteins (through prolin rich sequences), dynamin forms rings 
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around an invaginated membrane to mediate its pinching off (Figure 8D) (reviewed in 

Conner et al. 2003a).  

1.5.2 CAVEOLIN-MEDIATED ENDOCYTOSIS

Caveolae have been suggested to be involved in constitutive endocytosis in endothelial 

cells (Henley et al. 1998; Oh et al. 1998) and in endocytosis of glycosyl-

phosphatidylinositol (GPI) -anchored proteins and cross-linked gangliosides like GM1 

(Parton et al. 1994; Kurzchalia et al. 1999). However, there are contradicting reports 

saying that caveolae are immobile structures (Thomsen et al. 2002; Pelkmans et al. 

2005; Kazazic et al. 2006) and that internalization of GPI-anchored proteins is very 

slow (Johannes et al. 2002). Endocytosis via caveolae can, however, be triggered for 

example by simian virus 40 (Pelkmans et al. 2001; Pelkmans et al. 2002; Tagawa et al. 

2005), cross-linking of membrane receptors (Hommelgaard et al. 2005), or incubation 

with the phosphatase inhibitor okadaic acid (Parton et al. 1994). It is reported that 

EGFR can be internalized through caveolae (Sigismund et al. 2005), but this finding is 

contradicted in a report showing that EGF does not trigger mobilization of caveolae 

(Kazazic et al. 2006). 

1.5.3 SIGNALS FOR ENDOCYTOSIS 

Transmembrane proteins often carry an endocytic signal localized in the intracellular 

part of the protein. These signals are often di-leucine-based or tyrosine-based (Heilker 

et al. 1999; Bonifacino et al. 2003; Traub 2003). These motifs are recognized by 

endocytic adaptor proteins that guide their movement into clathrin-coated pits for 

internalization. An example of a common tyrosine-based motif is the YXX  motif 

(where X is any amino acid and  is a bulky, hydrophobic amino acid). All four of the 

adaptor complexes (AP-1 to AP-4) bind this motif through their μ subunit (Robinson 

2004). The requirement of such a motif for internalization varies for different proteins, 

but for the transferrin receptor the motif is shown to be required for its internalization 

(Motley et al. 2003). Also the EGFR contains an AP2-interacting YXX  motif 

(Nesterov et al. 1995a; Sorkin et al. 1996; Huang et al. 2003) as well as a di-leucine 

motif that can interact with AP2 (Huang et al. 2003). The role of the interaction between 

EGFR and AP2 is debated, but it seems that the interaction may facilitate, but is not  
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required for endocytosis of EGFR (Nesterov et al. 1995b; Conner et al. 2003b; Motley 

et al. 2003; Huang et al. 2004). Thus, AP2 plays a more important role for 

internalization of the transferrin receptor than for the EGFR (Johannessen et al. 2006). 

Additional signals such as ubiquitination may be of importance for internalization of 

EGFR.  

1.5.4 UBIQUITIN IN ENDOCYTOSIS

Upon activation of the EGFR, Cbl is recruited to the EGFR either directly through the 

Cbl PTB domain or indirectly through binding of Grb2 (Levkowitz et al. 1996; 

Waterman et al. 2002). Upon binding to EGFR, directly or indirectly, Cbl is activated 

and mediates ubiquitination of lysine residues of the EGFR by multiple 

monoubiquitination or by polyubiquitination (Levkowitz et al. 1999; Huang et al. 2006). 

It has been suggested that ubiquitination may serve as a signal for endocytosis of EGFR 

(Levkowitz et al. 1998; Miyake et al. 1998; Stang et al. 2004) but whether this involves 

mono-, multiple mono- or polyubiquitination is currently not clear as there are 

indications in different directions (Raiborg et al. 2002b; Haglund et al. 2003; Hawryluk 

et al. 2006).  

Several reports have shown that reduced ubiquitination inhibits EGFR endocytosis. 

Upon overexpression of the Cbl-and ubiquitin-interacting protein T-cell ubiquitin ligand 

(TULA), the ligand-induced endocytosis and degradation of EGFR is impaired 

(Feshchenko et al. 2004; Kowanetz et al. 2004). The mechanism behind this inhibition 

by TULA, and thus the role of ubiquitination in EGFR endocytosis, was further 

investigated in Paper IV. Likewise, expressing different mutant forms of Cbl and 

overexpression of the Cbl-binding protein Sprouty have been reported to inhibit ligand-

induced ubiquitination and endocytosis of the EGFR (Thien et al. 2001; Wong et al. 

2002; Fong et al. 2003; Stang et al. 2004). It seems that ubiquitination is necessary for 

endocytosis of EGFR, but whether EGFR itself needs to be ubiquitinated is a matter of 

debate. Studies claiming that ubiquitination of EGFR is not required can been 

questioned because the EGFR ubiquitination have not been completely abolished. Even 

a low level of ubiquitination could be sufficient to serve as an internalization signal 

(Shih et al. 2000).  
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Although several reports indicate that inhibited or increased ubiquitination affects 

degradation and not primarily endocytosis of the EGFR (Levkowitz et al. 1998; Duan et 

al. 2003; Jiang et al. 2003b), there are also indications that ubiquitination of EGFR is 

important for its endocytosis. First, it seems that ubiquitination plays a role at the 

plasma membrane, as it is shown that EGF-induced ubiquitination of EGFR occurs at 

the plasma membrane (Stang et al. 2000). Second, it has been suggested that the 

requirement for Grb2 in EGFR endocytosis (Sorkina et al. 2002; Huang et al. 2004; 

Huang et al. 2005) is due to its recruitment of Cbl to EGFR (Waterman et al. 2002; 

Jiang et al. 2003a). Additionally, overexpression of a mutant form of Grb2, not able to 

bind Cbl, inhibits recruitment of EGFR to coated pits (Stang et al. 2004). Third, it has 

been demonstrated that fusion of ubiquitin to a truncated form of EGFR mediates 

constitutive endocytosis (Haglund et al. 2003; Mosesson et al. 2003). Fourth, there are 

indications that Eps15 and epsin, which are proteins harbouring UIMs and localize to 

the clathrin coat, may function as endocytic adaptor proteins (Stang et al. 2000; Traub 

2003; Barriere et al. 2006; Hawryluk et al. 2006). Most recently, however, it was 

reported that mutation of several lysines abolishing EGFR ubiquitination does not 

inhibit endocytosis when the EGFR kinase activity is intact, but does inhibit endocytosis 

when the kinase activity is impaired (Huang et al. 2007).  

1.6 ENDOSOMAL SORTING OF ERBB PROTEINS

1.6.1 THE ENDOSOMAL SORTING MACHINERY

The sorting of ubiquitinated cargo, including EGFR, on sorting endosomes depends on 

several different proteins. Hepatocyte growth factor regulated tyrosine kinase (Hrs) has 

been proposed to initiate the sorting process  (reviewed in Raiborg et al. 2002b). Hrs 

localizes to the endosomal membrane through its FYVE and coil-coil domains and it 

can recruit clathrin in a PI(3)P dependent manner (Raiborg et al. 2001). Hrs also 

interacts with Eps15 and signal-transducing adaptor molecule (STAM) (Asao et al. 

1997; Bean et al. 2000) and these three proteins can interact with ubiquitin through their 

UIM domains (Polo et al. 2002). The complex of Hrs/Eps15/STAM is suggested to 

cooperate in binding and concentration of ubiquitinated cargo while the non-

ubiquitinated proteins will not be retained (Raiborg et al. 2002b). Hrs further interacts 
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with a component of the endosomal sorting complex required for sorting-I (ESCRT-I) 

(Katzmann et al. 2001). Hrs may therefore also be able to indirectly recruit the rest of 

the sorting machinery, ESCRT-II (Babst et al. 2002b) and ESCRT-III (Babst et al. 

2002a).

1.6.2 SORTING OF EGFR 

The transport and sorting on intracellular organelles are also dependent on sorting 

signals and ubiquitination, but the pattern of ubiquitination and the sequence of the 

sorting signals may be different compared to translocation at the plasma membrane. 

Cbl-mediated ubiquitination is shown to be important for sorting of EGFR to inner 

vesicles of MVBs (Levkowitz et al. 1999; Longva et al. 2002; Duan et al. 2003; 

Grovdal et al. 2004). In contrast, endocytosed receptors that are not ubiquitinated are 

not internalized into vesicles of MVBs and are in stead recycled to the plasma 

membrane (Raiborg et al. 2002a), which is the case for the transferrin receptor (Dautry-

Varsat et al. 1983) and TGF-  activated EGFR (Figure 10) (Ebner et al. 1991; French et 

al. 1995; Longva et al. 2002; Alwan et al. 2003). Deubiquitinating enzymes are also 

Figure 9. Endosomal sorting machinery.  Sorting is initiated by Hrs which together with 
STAM and Eps15 can recognize ubiquitinated cargo. Hrs can recruit clathrin and also Vps23 of 
the ESCRT-I complex. The ESCRT-II and ESCRT-III complexes are then recruited eventually 
mediating invagination and scission of the membrane including the cargo. The figure is from 
(Raiborg et al. 2003) and figure legend is modified. 
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important in this process in that 

they can prevent ubiquitin-

mediated degradation of 

proteins. It has been shown that  

the deubiquitinating enzyme 

UBPY (also called Usp8) can 

prevent degradation of the 

EGFR by deubiquitinating the 

EGFR on endosomes (Mizuno 

et al. 2005). A maturation of 

the MVB and the fusion with a 

lysosome is the end of the 

journey for EGFR (Figure 10) 

(Futter et al. 1996). In the 

lysosomes the receptor is 

degraded by lysosomal 

proteases (Authier et al. 1999) 

and the attenuation of signaling 

is fulfilled.  

1.6.3 SORTING OF ERBB2

Whether the mechanism of sorting of ErbB2 and ErbB3 is similar to EGFR is not 

known. Although it is reported that ErbB2 is endocytosis resistant (section 1.1.2), others 

have shown that it recycles (Austin et al. 2004). Recycling is also reported for ErbB3 

(Waterman et al. 1998). However, these results is debated as others have found that both 

ErbB2 (upon GA treatment) and ErbB3 are rapidly degraded upon internalization 

(Mimnaugh et al. 1996; Xu et al. 2001; Qiu et al. 2002; Zhou et al. 2003). CHIP-

mediated ubiquitination and downregulation of ErbB2 can be induced by incubation 

with GA, but whether this ubiquitination serves as a signal for endocytosis or sorting is 

not known. Ubiquitination of ErbB2 by CHIP is reported to result in proteasomal 

degradation of ErbB2 (Mimnaugh et al. 1996), but others have shown that ErbB2 is 

degraded in lysosomes (Austin et al. 2004). The same report also suggested that GA 

Figure 10. Trafficking of EGFR. The receptors are taken in 
through clathrin-coated pits. The forming vesicles fuse to 
endosomes. In the sorting endosome, the receptors that are to 
be recycled are transferred to the recycling endosomes while 
the receptors that are to be degraded are internalized to inner 
vesicles of an MVB. In the lysosomes, the receptors are 
eventually degraded. The figure is based on (Carpenter 
2000).
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only affects the rate of endosomal sorting and not internalization of ErbB2 (Austin et al. 

2004). It has been reported that GA induces internalization of full length ErbB2 which 

is degraded in lysosomes, and that the process is proteasome dependent (Lerdrup et al. 

2006). Other reports say that a cleavage is important before internalization and 

degradation, and possibly the fragments may be degraded by different processes 

(Tikhomirov et al. 2000; Tikhomirov et al. 2001; Tikhomirov et al. 2003; Lerdrup et al. 

2007). Recent findings in our group show that the GA-induced endocytosis is not 

dependent on proteasomal activity, while the sorting for inner vesicles of MVBs is 

(Pedersen et al. In press) 
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2 AIMS OF THE STUDY

When an ErbB protein is activated, it transmits signals to the interior of the cell. A 

major way to attenuate signaling is to downregulate the receptor by endocytosis 

followed by degradation. The expression pattern of the different ErbB proteins varies 

between different cancers and possibly also within one tumor and is important for 

treatment, survival and prognosis. Furthermore, to know how the receptors cooperate is 

important. The main aim of this project has therefore been to investigate endocytic 

mechanisms of the ErbB proteins and to understand what impact they have on the 

endocytosis of each other.  

It is known that ErbB2 escapes downregulation, but there are contradicting reports on 

whether this is caused by inhibition of endocytosis or caused by a rapid recycling upon 

endocytosis. It is also known that ErbB2 has an inhibitory effect on the downregulation 

of EGFR but the reason for this is unclear. Previous publications in our group had 

concluded that ErbB2 was endocytosis deficient. Our first aim was therefore to

investigate the mechanisms responsible for the inhibited endocytosis of ErbB2 and 

thus how ErbB2 inhibits endocytosis of EGFR.  

We had seen that ErbB2 inhibited endocytosis of the EGFR. Since ErbB3 was also 

known to be endocytosis impaired and display inefficient ligand-mediated endocytosis, 

our second aim was to investigate whether ErbB3 inhibits endocytosis of the EGFR

in a similar manner as ErbB2. We also wanted to study trafficking of ErbB3 and the 

mechanism controlling its subcellular localization.  

Since ErbB2 is endocytosis resistant it is difficult to study its trafficking. GA is used to 

induce downregulation of ErbB2 due to the ability of GA to counteract the stabilizing 

function of Hsp90 on ErbB2. Since it was unclear whether GA-induced downregulation 

of ErbB2 was affected by the other ErbB proteins, our third aim was to investigate 

whether GA can induce endocytosis of ErbB2 in cells only expressing ErbB2. By 

comparing this possible GA-induced endocytosis of ErbB2 with cells also expressing 
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EGFR and/or ErbB3, we wanted to study the possible implication of other ErbB 

proteins.

The importance of ubiquitination for endocytosis of EGFR is debated. Some studies 

have concluded that ubiquitination of EGFR is of little importance for endocytosis 

while other studies have concluded differently. Our fourth aim was to investigate 

whether ubiquitination was important for endocytosis of EGFR by overexpressing 

the protein TULA, which is known to inhibit ubiquitination of EGFR by interacting 

with Cbl.  
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3 SUMMARY OF PAPERS

3.1 PAPER I

The inhibitory effect of ErbB2 on epidermal growth factor induced formation of 

clathrin-coated pits correlates with retention of epidermal growth factor receptor- 

ErbB2 oliomeric complexes at the plasma membrane. Camilla Haslekås1, Kamilla 

Breen1, Ketil W. Pedersen, Lene E. Johannessen, Espen Stang and Inger Helene 

Madshus. 

It has been demonstrated that ErbB2 is endocytosis resistant and that ErbB2 also 

inhibits endocytosis of EGFR in heterodimers. The reason for the inhibition of EGFR 

endocytosis is not understood, and by comparing non-isogenic cell lines different results 

have been obtained. Using isogenic cell lines of porcine aortic endothelial (PAE) cells 

stably transfected with EGFR and ErbB2, we show that upon expressing increasing 

levels of ErbB2, the cells internalized decreasing amounts of EGF. By using immuno-

EM, we found that in cells expressing high levels of ErbB2, the EGFR was retained at 

the plasma membrane after EGF-stimulation. Consistently, there was no increase in 

intracellularly localized EGFR after EGF-stimulation in cells expressing a high level of 

ErbB2. We exclude three possible explanations for the ErbB2 mediated inhibition of 

EGFR-endocytosis. First, we found that there was no increase in recycling of EGF in 

cells co-expressing ErbB2. Second, the activation of EGFR was found to be similar in 

cells with and without ErbB2. Third, ErbB2 is not retained at the plasma membrane 

through its interaction with the protein Erbin, which is suggested to be involved in 

membrane localization. By counting clathrin-coated pits at the plasma membrane, we 

found that while cells expressing only EGFR induced new clathrin-coated pits upon 

EGF-incubation, cells co-expressing EGFR and ErbB2 did not induce formation of new 

clathrin-coated pits. This finding can explain why EGFR-ErbB2 dimers are endocytosis 

resistant.
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3.2 PAPER II

ErbB3 is constitutively endocytosed in a clathrin dependent manner. Kamilla Breen,

Sissel Beate Rønning, Nina Marie Pedersen, Espen Stang and Inger Helene Madshus. 

We and others have shown that overexpression of ErbB2 inhibits endocytosis of EGFR. 

Also ErbB3 has been reported to be endocytosis impaired because of the slow 

internalization rate of heregulin-bound ErbB3 compared to EGF-bound EGFR. We 

therefore wanted to investigate whether ErbB3 had a similar effect as ErbB2 on the 

endocytosis of EGFR. By using three stably transfected cell lines expressing EGFR, 

EGFR/ErbB2 or EGFR/ErbB3, we found that even though ErbB3 existed in active 

heterodimers with EGFR, the endocytosis rate of EGF was only inhibited in cells 

expressing EGFR and ErbB2. By additionally studying the EGF-induced 

downregulation of surface-localized EGFR by flow-cytometry, we conclude that the 

presence of ErbB3 does not inhibit downregulation of EGFR. By studying the sub-

cellular localization of ErbB3, we found that it was localized at the plasma membrane as 

expected, but also that a significant fraction localized intracellularly. Surprisingly, by 

incubating cells with an ErbB3 antibody and subsequently chase the antibody, we found 

that the main part of the intracellularly localized ErbB3 was a result of constitutive 

endocytosis of ErbB3. By overexpressing dominant negative dynamin or by knocking 

down clathrin heavy chain with siRNA, we observed a clear inhibition of the 

constitutive endocytosis of ErbB3. We conclude that ErbB3 can not inhibit endocytosis 

of EGFR because it is itself constitutively endocytosed in a dynamin- and clathrin-

dependent manner. 

3.3 PAPER III

Expression of EGFR or ErbB3 facilitates Geldanamycin-induced downregulation of 

ErbB2. Nina Marie Pedersen1, Kamilla Breen1, Camilla Haslekås, Espen Stang and 

Inger Helene Madshus. 

Although ErbB2 is normally endocytosis deficient, its endocytosis can be induced by 

incubating cells with GA. GA, and derivates of GA, are shown to inhibit growth of 
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cancer cells that overexpress ErbB2. Furthermore, GA is used experimentally to study 

mechanisms involved in downregulation of ErbB2. To investigate a possible role of 

other ErbB proteins in GA-induced endocytosis of ErbB2, we first wanted to investigate 

whether this endocytosis of ErbB2 could be induced when ErbB2 was in a 

homodimeric/-oligomeric form. By using stably transfected cell lines expressing only 

ErbB2, we found that GA-induced downregulation of ErbB2 can occur in cells 

expressing ErbB2 only. However, in cells additionally expressing EGFR and/or ErbB3 

the GA-induced downregulation of ErbB2 was significantly increased. We show that 

this increase is not caused by a GA-induced downregulation of EGFR or ErbB3, or by 

GA-induced phosphorylation of any of the receptors. GA affects the stabilizing function 

of Hsp90 on ErbB2. Hsp90 is a dimeric molecule, and can potentially form a tight 

interaction between ErbB2 molecules and stabilize homodimers/-oligomers more than 

heterodimers/-oligomers. We found, however, that the initial rate of GA-induced 

dissolving of ErbB2 homo-oligomers was the same for ErbB2 containing hetero-

oligomers.  

3.4 PAPER IV 

The Cbl-interacting protein TULA inhibits dynamin-dependent endocytosis. Vibeke 

Bertelsen, Kamilla Breen, Kirsten Sandvig, Espen Stang and Inger Helene Madshus. 

It is known that the T-cell ubiquitin ligand, TULA, interacts with Cbl and inhibits 

ubiquitination of the EGFR. The block in ubiquitination has been suggested to explain 

the TULA-mediated inhibition of EGFR endocytosis. We wanted to investigate the role 

of TULA in EGFR endocytosis in more detail. Surprisingly, we found that in addition to 

inhibiting endocytosis of EGFR, TULA overexpression also inhibited the endocytosis of 

several other proteins such as the transferrin receptor, the low density lipoprotein (LDL) 

receptor, the major histocompatibility complex-I (MHC-I) and CD59. With the 

endocytosis of such a wide range of proteins being inhibited, we speculated that a 

protein involved in several forms of endocytosis was affected by overexpression of 

TULA. One such protein is dynamin. We found that endocytosis of all proteins affected 

by TULA overexpression was also inhibited upon transfection with a dominant negative 
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form of dynamin; their endocytosis is thus dynamin dependent. A protein known not to 

depend on dynamin for endocytosis is the plant toxin ricin. Ricin was, as expected, not 

affected by overexpression of TULA. We also found that the TULA-mediated block in 

endocytosis could be rescued upon overexpression of wt dynamin. Consistently, the 

endocytosis was not inhibited by overexpression of an SH3-mutant of TULA unable to 

bind dynamin (W279L-TULA). In the case of the EGFR, however, the TULA-mediated 

inhibition of ubiquitination and endocytosis was clear both upon co-transfection with 

TULA and wt dynamin and upon transfection with W289L-TULA. This indicates that 

there is a correlation between inhibited ligand-induced ubiquitination of EGFR and 

inhibition of endocytosis of EGFR.  
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4 METHODOLOGICAL CONSIDERATIONS

4.1 EXPERIMENTAL MODEL SYSTEM

Most of the experiments included in this work have been done using PAE cells. The 

PAE cells do not express endogenous ErbB proteins, but were stably transfected with 

different members of the EGFR family, EGFR, ErbB2 and/or ErbB3. When testing how 

the receptors influence each other, it is an advantage of PAE cells that there is no 

background of endogenous ErbB proteins. Additionally, the expression level of the 

receptors is controlled by this approach. For example, when a cell line expressing 

ErbB2 is further transfected with EGFR, the new cell line will have the same level of 

ErbB2 as the original cell line. In Paper III, the expression of ErbB2 in the different cell 

lines is therefore equal, and different ErbB2 expression can be excluded as a reason for 

the different rate of GA-induced endocytosis of ErbB2. An additional advantage of the 

PAE cells is that they are large and have a flattened shape. This makes them convenient 

for microscopy as each cell has a relatively large cytosol for investigation. SKBr3-cells 

are, in contrast to PAE cells, small and circularly shaped. In addition, SKBr3-cells 

express ErbB3 in too low amounts to be detected by the available ErbB3 antibody and 

confocal imaging upon immunostaining (Paper II). It may be argued, however, that the 

PAE cell-lines used are artificial and that they do not represent the situation in cells 

endogenously expressing these receptors. A cell line that originally does not express any 

of the ErbB proteins may lack some of the control systems needed to regulate the 

receptors. However, we have thoroughly tested the localization, dimerization, 

endocytosis and downregulation of the receptors. Nothing implies that there are control 

mechanisms missing. When possible, we confirmed the results obtained in PAE-cells 

using SKBr3 cells.  

However, a disadvantage of the stably transfected PAE cell lines was that expression of 

receptors was not constant over time. For unknown reasons, after a limited number of 

passages, some cells reduced or stopped the expression of the transgene, although the 

antibiotic resistance was still intact. For this reason cells were never grown confluent 

and were kept in culture only for a limited number of passages. The expression levels of 
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receptors were regularly tested by flow cytometry and heterogenic cell populations were 

not used for experiments.  

4.2 ANTIBODY SPECIFICITY

Many of the methods used depend on antigen-antibody interaction. It is therefore crucial 

that the antibodies are specific. By studying a band on a Western blot, it can be 

concluded whether the antibody recognizes a protein of the correct size, and this is an 

indication of specificity. However, in case of the ErbB proteins, their similar molecular 

weights make it difficult to distinguish the receptors based on size. The use of the 

different PAE cell lines was therefore an important tool for testing the ErbB-antibodies. 

Despite the specificity claimed by the manufacturers, several of the antibodies tested 

cross-reacted with other members of the ErbB family, and some antibodies also showed 

reactivity in cells not expressing any of the receptors. These antibodies were of course 

excluded. Specificity was in some cases additionally confirmed upon transient 

transfection with the plasmid encoding the target protein. The different PAE cell lines 

also allowed flow-cytometry and immunocytochemical staining to be used for 

determining antibody specificity. If the antibody bound non-specifically, resulting in a 

high background staining, it was not used for techniques like flow-cytometry or 

immunofluorescence.  

When working with live cells an additional issue to consider, when using antibodies to 

proteins at the cell surface, is the possibility of antibody-induced internalization of the 

protein and/or activation of receptors. Several antibodies have this effect. In Paper IV 

we took advantage of this, using antibody against MHC-I and DC59 to induce their 

internalization. When investigating endocytosis of ErbB3, however, it was important 

that the anti-ErbB3 antibody did not induce endocytosis, as this would disqualify our 

conclusion about constitutive endocytosis of ErbB3. The product sheet following the 

antibody contained a reference to a study showing that the antibody did not induce 

endocytosis or activation of ErbB3 (Chen et al. 1996). To additionally confirm this, we 

tested the surface expression of ErbB3 by flow-cytometry after incubation with this 

ErbB3 antibody. As expected, there was no induction of endocytosis.  
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4.3 FLOW-CYTOMETRY

When measuring the expression level of receptors at the plasma membrane of the cells, 

we exclusively used antibodies against extracellular epitopes. This was done to avoid 

the risk of non-specific binding, which is increased upon permeabilization of cells. 

Permeabilization was avoided also because it gives access to intracellularly localized 

receptors that would influence the results when studying surface localized proteins. 

When investigating downregulation of receptors from the plasma membrane, it is 

important to have saturating concentrations of the antibody. If the epitopes are not 

saturated with antibody, variation in pipetting can affect the fluorescence intensity 

without reflecting a difference in epitope accessibility. We therefore optimized the 

amount of each antibody to obtain saturation.  

4.4 CONFOCAL AND IMMUNO ELECTRON MICROSCOPY

Microscopy, both confocal microscopy and immuno electron microscopy, was used 

throughout this study. When investigating single cells in a microscope, individual cell 

variations can easily be misinterpreted, and inclusion of a high number of cells is 

therefore important. For this reason, quantifications were made. The quantification 

generalizes the results, and by using standard deviations illustrates cellular variation. 

When EM-results were quantified, sectioned cells were chosen in a systematic random 

fashion, reducing the problem of cell variations. Each quantification experiment was 

performed on a minimum of three separate grids. Confocal microscopy can also be used 

to compare fluorescence intensity, although some pitfalls should be considered. When 

comparing data from different samples, the labelling conditions and microscope settings 

should be the same for all samples. There is also a risk of bleaching the fluorochrome 

and pictures should be taken before the sample is significantly bleached. As this method 

is not very sensitive, it is not well suited for quantification. Quantifications were 

therefore only used when a clear difference was observed, such as when studying 

internalization of EGF in cells expressing or not expressing ErbB2 (Paper I).  
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4.5 QUANTIFYING WESTERN BLOTS

Western blotting is a semi-quantitative method, and quantification should be done with 

precaution. However, Western blotting is often the best or only way to obtain 

quantitative data. Depending on the quality of the Western blots, different background 

settings are needed, and depending on the background settings, it may be crucial to 

make the regions of interest (ROIs) the same size. Values obtained can vary 

significantly depending on these settings. Incorrect values can also be the result if the 

pixels are saturated or if there is too much protein in the membrane, leading to complete 

consumption of substrate and thus reduced signal. All quantifications have therefore 

been made with care, and always compared with the visual image. All values were 

adjusted according to a loading control, and all ROIs compared with each other were of 

the same size.  

4.6 DOWNREGULATION OF PROTEINS USING SIRNA

The use of RNA interference by short interfering RNA (siRNA) is a relatively new 

method for downregulation of proteins in biomedical research. The biological 

phenomenon of siRNA sequences in post-translational gene silencing was discovered in 

1999 by Hamilton and coworkers (Hamilton et al. 1999), and synthetic siRNA was 

shortly thereafter shown to induce gene silencing in mammalian cells (Elbashir et al. 

2001). A problem with siRNA is off-target effects. The introduced siRNA may bind to 

mRNAs with similar sequences as the target mRNA, leading to problems interpreting 

the results, and to potential toxicity. By using thoroughly tested target sequences that do 

not bind to other mRNAs, the off-targeting effect can be minimized. An additional 

approach is to use several different sequences in parallel and to verify that they all give 

the same result. By introduction of too much RNA, the cell may misinterpret the RNA 

as a viral product and induce an immune response. By always including the same 

amount of a control sequence in parallel in the assay, the possible effect of an immune 

response and the potential toxicity of the transfection reagent can be monitored in the 

control cells.  
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4.7 TRANSIENT TRANSFECTION AND OVEREXPRESSION OF PROTEINS

Transient transfection of cells to overexpress a protein of interest is an important tool to 

study interaction partners, function and localization of gene products of interest. When 

highly overexpressed, however, proteins may aggregate and/or have a different 

localization than when they are moderately expressed. Interpretation concerning 

localization under such conditions should therefore be avoided. Upon overexpression, 

an observed phenotype may be the result of a function of the overexpressed protein, but 

may also be the result of endogenous proteins being sequestered by the overexpressed 

protein. However, upon overexpression of TULA (Paper IV), we took advantage of the 

ability of TULA to sequester Cbl in order to study the effect of Cbl-depletion on 

endocytosis of EGFR.  

4.8 BIOTINYLATION ASSAY

Biotinylation of plasma membrane proteins is a convenient way to study their 

internalization, and was used in Paper II to study internalization of ErbB3. In contrast to 

flow cytometry, where endocytosis is studied indirectly by the decrease in protein 

amount at the plasma membrane, the biotinylation assay detects internalized proteins 

directly by precipitation of the biotin-labelled internalized proteins. The biotinylation 

assay also has the advantage that cell surface proteins are labelled with a biotin-

molecule bound to a monovalent reactive group, and therefore no clustering of proteins 

will be induced. Clustering can happen with antibodies or di- or polyvalent cross-

linkers. The amount of internalized protein is compared with two controls. A negative 

control contains cells that are not chased and represents the low background level of 

biotin left on the cell surface after the stripping procedure. To minimize the background, 

the stripping or reduction was done thoroughly and three times. The positive control 

contains cells that have not been stripped and represents the total amount of biotin-

labelled protein. Since these two controls are always included, there is no risk that 

retaining surface-localized protein interferes with the result. 
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5 DISCUSSION

The papers included in this thesis contribute new information concerning endocytosis of 

ErbB proteins. Endocytosis of ErbB proteins is a vast and complicated field of biology 

and a large amount of new knowledge is continuously being reported. The fact that 

contradictory publications are frequently generated makes the field even more 

complicated to understand. Contradictory publications are probably mainly a result of 

differences in experimental setup and use of different reagents and cell lines.  

5.1 IMPAIRED DOWNREGULATION OF ERBB2

5.1.1 IMPAIRED ENDOCYTOSIS VERSUS RAPID RECYCLING

In Paper I we show that the downregulation of ErbB2 is impaired. Impaired 

downregulation could be a result of impaired endocytosis or of rapid recycling upon 

endocytosis. It has been reported that ErbB2, instead of being endocytosis impaired, is 

efficiently recycled (Austin et al. 2004), and further that overexpression of ErbB2 also 

causes increased recycling of EGF and EGFR (Lenferink et al. 1998; Worthylake et al. 

1999; Hendriks et al. 2003). However, although ErbB2 increased the rate of EGFR 

recycling, the main inhibitory effect of ErbB2 on EGFR endocytosis was by Hendriks 

and colleagues judged to be caused by the impaired endocytosis of ErbB2 (Hendriks et 

al. 2003). Several other studies have also concluded that ErbB2 is endocytosis resistant 

(Sorkin et al. 1993; Wang et al. 1999; Hommelgaard et al. 2004; Longva et al. 2005; 

Lerdrup et al. 2006). In Paper I, we confirmed that ErbB2 was endocytosis resistant and 

further showed that its heterodimerization with the EGFR also inhibited ligand-induced 

downregulation of the EGFR. The inhibited downregulation of EGFR in cells 

overexpressing ErbB2 was not due to rapid recycling of EGFR/ErbB2 complexes, as 

incubation of cells with monensin did not cause accumulation of EGFR or ErbB2 

intracellularly. We therefore conclude that ErbB2 is an endocytosis resistant receptor.  
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5.1.2 IMPAIRED ENDOCYTOSIS OF ERBB2

The reason why ErbB2 is endocytosis resistant is still unclear. There are indications that 

the endocytosis resistance of ErbB2 is a result of its localization to lipid rafts on 

membrane protrusions and to other areas outside clathrin-coated pits (Hommelgaard et 

al. 2004; Offterdinger et al. 2007), and that signals for endocytosis are missing in its 

cytoplasmic tail (Sorkin et al. 1993). In addition to what we showed in Paper I, several 

previous studies have shown that the presence of ErbB2 affects downregulation of 

EGFR (Muthuswamy et al. 1999; Wang et al. 1999; Worthylake et al. 1999). We found 

that EGF-induced clathrin-coated pits were absent in cells co-expressing EGFR and 

ErbB2 (Paper I), but since the detailed mechanisms in the formation of clathrin-coated 

pits is not understood, it is difficult to investigate what differentiates ErbB2 from EGFR 

in this respect. It is, for example, still not known whether EGF-induced clathrin-coated 

pits are formed around the activated receptor, or if the receptor moves into a preformed 

coated pit formed in another area of the plasma membrane. One possible explanation for 

the endocytosis resistance of ErbB2 could be that binding of ErbB2 to a specific protein 

or lipid may inhibit formation of clathrin-coated pits or alternatively restrain ErbB2 to 

certain areas of the plasma membrane, and inhibit its translocation into clathrin-coated 

pits. One protein that interacts with the C-terminal part of ErbB2 (Borg et al. 2000) and 

is suggested to affect endocytosis of ErbB2 is Erbin (Jaulin-Bastard et al. 2001; Birrane 

et al. 2003). However, as we showed in Paper I, interaction with Erbin cannot explain 

the endocytosis resistance of ErbB2. Our data demonstrates that an ErbB2 mutant, 

which lacks the Erbin interacting domain, also was endocytosis resistant. Hsp90 may be 

a protein that directly inhibits endocytosis. It is reported that Hsp90 inhibits ErbB2 

heterodimerization and that Hsp90 dissociates from ErbB2 following ligand-induced 

heterodimerization (Citri et al. 2004). The loss of Hsp90 has been reported to result in 

increased kinase activity of ErbB2 (Citri et al. 2004) and has also been reported to 

increase Src-mediated phosphorylation of ErbB2 (Xu et al. 2007). The binding of 

Hsp90 may thus also inhibit ubiquitination and/or other modifications of ErbB2 

(discussed in section 5.3). 

Although the lack of a modification could explain why ErbB2 does not localize to the 

clathrin coat, it does not explain why the EGFR in an EGFR/ErbB2 heterodimer can not 
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recruit the proteins needed for coat formation and/or localization. Therefore, it seems 

likely that a protein needed for the formation of clathrin-coated pits, or needed for the 

recruitment of EGFR into such coated pits, is not recruited to the EGFR/ErbB2 

heterodimer. Either such a protein needs to be recruited to both receptors within the 

dimer in order to properly serve its function, or ErbB2 somehow inhibits the recruitment 

of the protein to EGFR by sterical hindrance or by the presence (or absence) of a 

specific tyrosine phosphorylation induced (or not induced) by ErbB2. It is also possible 

that a specific down-stream signal needed for the formation of or recruitment of the 

EGFR into clathrin coats at the plasma membrane is not induced from EGFR/ErbB2 

heterodimers.  

5.2 GA-INDUCED DOWNREGULATION OF ERBB2

In order to elucidate the mechanisms behind the endocytosis resistance of ErbB2, GA 

has been an important tool to increase the rate of ErbB2 downregulation. When Hsp70 

and CHIP bind to the GA-induced ADP-bound like state of Hsp90 (see Figure 3), 

ErbB2 is ubiquitinated and subsequently internalized and degraded. Whether Hsp90 

dissociates from this complex after GA binding is unclear. It is reported that GA 

induces dissociation of Hsp90 (Xu et al. 2001; Xu et al. 2002) although this does not fit 

with the existing models of Hsp90 cycling (Isaacs et al. 2003; Powers et al. 2007). 

There are also contradictory reports on where in the cell GA predominantly affects 

trafficking of ErbB2. These contradicting results are based on the understanding of 

ErbB2 trafficking, whether it is endocytosis resistant or whether it rapidly recycles, and 

thus whether GA induces endocytosis (Lerdrup et al. 2006; Lerdrup et al. 2007) or 

increased endosomal sorting for degradation (Austin et al. 2004). Based on confocal 

studies of ErbB2 localization in cells treated with monensin, it has previously been 

concluded that ErbB2 is not rapidly recycled but is endocytosis resistant (Longva et al. 

2005). In Paper I, we also conclude that ErbB2 is endocytosis resistant. Therefore, the 

GA-induced downregulation of ErbB2 shown in Paper III must be a GA-induced 

endocytosis of ErbB2 rather than an inhibited recycling. 
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5.2.1 GA-INDUCED ENDOCYTOSIS OF ERBB2 IN HOMO- VERSUS HETERODIMERS

When studying the effect of GA on endocytosis of ErbB2, we found that GA induced 

downregulation of ErbB2 in cells expressing ErbB2 only (Paper III). We also found that 

the rate of downregulation was increased in cells additionally expressing EGFR and/or 

ErbB3 (Paper III). Why expression of EGFR or ErbB3 causes increased GA-induced 

downregulation of ErbB2 is not known, but the following two models could be 

proposed: 

A) GA-treatment is inefficient in cells containing ErbB2 only. A low efficiency of 

GA on ErbB2 homodimers/-oligomers may have different explanations. The 

Hsp90-complex in a homodimer/-oligomer might be less available to GA 

because the ErbB2-Hsp90 association might be tighter or Hsp90 may be 

shielded between two ErbB2 molecules. In line with this idea, Hsp90 molecules 

exist in dimers (Richter et al. 2001; Pearl et al. 2006; Powers et al. 2006), and  

may bind two ErbB2 molecules simultaneously and thus stabilize ErbB2 

homodimers more efficiently than heterodimers. We tested this possibility by 

measuring the initial effect of GA on ErbB2 homooligomers versus ErbB2 

heterooligomers, but found that they appeared to be dissolved with similar 

kinetics.

B) GA-treatment is similarly efficient in cells expressing only ErbB2 and in cells 

expressing an additional ErbB protein, but the action of GA is not sufficient for 

internalization of ErbB2. A heterodimerization partner may recruit an accessory 

protein needed for efficient internalization of ErbB2 after GA-treatment.  

Although the presence of EGFR or ErbB3 facilitates GA-induced downregulation of 

ErbB2, neither of these two receptors follows ErbB2 in GA-induced internalization 

(Paper III), suggesting that the dimers are dissolved before internalization.  
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5.3 THE ROLE OF UBIQUITIN IN ERBB PROTEIN ENDOCYTOSIS 

Whether the GA-induced endocytosis of ErbB2 is a result of CHIP-mediated 

ubiquitination (Mimnaugh et al. 1996; Xu et al. 2002), or whether there are other 

mechanisms involved in its endocytosis is not clear. We investigated phosphorylation, 

but found that GA had no effect on the phosphorylation status of the ErbB proteins. 

There are at present no reports on GA-induced recruitment of additional proteins that 

may be candidates for induction of endocytosis. In agreement with previous findings 

(Mimnaugh et al. 1996; Xu et al. 2002), we found that ErbB2 was ubiquitinated upon 

treatment with GA (unpublished results). The correlation between ubiquitination and 

endocytosis is thus observed both for GA-induced endocytosis of ErbB2 and for ligand-

induced endocytosis of EGFR. This might indicate that ubiquitination, as consequence 

of GA-treatment, can induce endocytosis of ErbB2. 

For EGFR, the role of ubiquitination in endocytosis has been studied in more detail, and 

although there are no absolute proofs that ubiquitination of EGFR is required for its 

endocytosis, a sum of correlations points in that direction. There are several reports that 

reduced ubiquitination inhibits EGFR endocytosis. Examples are overexpression of Cbl 

mutants (Thien et al. 2001) and the Cbl-binding proteins TULA (Feshchenko et al. 

2004; Kowanetz et al. 2004) and Sprouty (Wong et al. 2002; Fong et al. 2003; Stang et 

al. 2004) (see section 1.5.3). It was suggested that overexpression of TULA specifically 

inhibited endocytosis of EGFR by sequestering Cbl. In Paper IV, however, we 

demonstrated that overexpression of TULA inhibited several forms of endocytosis, 

including clathrin independent pathways, by sequestering dynamin. However, 

endocytosis of all proteins found to be inhibited by TULA overexpression, except the 

EGFR, were rescued upon overexpression of dynamin. This shows that Cbl, and thus 

probably ubiquitination, is required for EGFR endocytosis.  

Cbl has been suggested to play roles in regulation of EGFR which are independent of 

the Cbl ubiquitin ligase activity. Phosphorylated Cbl is suggested to mediate 

recruitment of the CIN85-endophilin complex to the activated EGFR and thereby to 

regulate EGFR endocytosis (Soubeyran et al 2002) through endophilin’s possible ability 

to induce plasma membrane curvature  (reviewed in Reutens et al. 2002). There are, 
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however, several arguments against the importance of this role of Cbl in endocytosis. 

First, overexpression of dominant negative CIN85, or Cbl with mutated CIN85 binding 

sites, does not have a specific or essential effect on endocytosis of the EGFR (Jiang et 

al. 2003b). Second, EGFR internalization mediated by the Cbl RING finger domain, 

constituting the ubiquitin ligase activity, is four times more effective than 

internalization mediated by the Cbl C-terminal domain, interacting with the CIN85-

endophilin complex (Huang et al. 2005). Third, the activity of endophilin mediating 

increased membrane curvature has been suggested to be a result of an experimental 

artefact (Gallop et al. 2005). The effects we have seen upon sequestering of Cbl (Paper 

IV) are therefore likely correlating with the ubiquitin ligase activity of Cbl. 

5.4 ENDOCYTOSIS OF ERBB3

5.4.1 ERBB3, ENDOCYTOSIS IMPAIRED OR CONSTITUTIVELY ENDOCYTOSED?

The internalization of heregulin in cells expressing ErbB3 is slow compared to 

internalization of ligands that bind to the EGFR, and it has therefore been concluded 

that ErbB3 is endocytosis impaired (Baulida et al. 1996; Baulida et al. 1997 ; Waterman 

et al. 1998). There are also reports concluding that heregulin does not significantly 

affect downregulation of ErbB3 (Baulida et al. 1997; Qiu et al. 2002). The finding that 

ErbB3 is constitutively endocytosed (Paper II) is not contradictory to these reports, but 

rather explains why the internalization rate of heregulin is ‘slow’ compared to EGF;  

ligand-induced endocytosis is more rapid and efficient than constitutive endocytosis. 

The constitutive endocytosis observed in Paper II may thus also explain why the level 

of ErbB3 is not affected by exposure to ligand. In our study we used cells expressing 

both EGFR and ErbB3 and found a constitutive heterodimerization between ErbB3 and 

EGFR. It can be argued that a possible low level of constitutive EGFR-induced 

activation of ErbB3 might induce the observed constitutive endocytosis of ErbB3, and 

that the endocytosis is an artefact due to the high expression levels of the receptors. 

However, as many cancer cells overexpress both receptors (Citri et al. 2003), the effect 

overexpressed receptors may have on each other is clearly biologically relevant.   
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5.4.2 EGFR ENDOCYTOSIS IS NOT AFFECTED BY ERBB3

We found that overexpression of ErbB3, in contrast to overexpression of ErbB2, did not 

affect ligand induced endocytosis of EGFR. We can, however, not exclude that an 

inhibition of EGFR endocytosis could occur if the expression level of ErbB3 at the 

plasma membrane had been higher. Indeed, the level of ErbB2 at the plasma membrane 

in the PAE.EGFR.ErbB2 cells is significantly higher than the level of ErbB3 in the 

PAE.EGFR.ErbB3 cells. However, when selecting clones of cells transfected with 

ErbB3, we could not find cells with ErbB3 expression levels as high as found for 

ErbB2. As the half-life of ErbB3 is relatively short and as ErbB3 apparently readily 

enters clathrin-coated pits for internalization, it may not be expected to restrict the 

endocytosis of EGFR, even if expressed at high levels at the plasma membrane.  

5.5 CONCLUSIONS AND PERSPECTIVES

5.5.1 ENDOCYTOSIS OF ERBB2

We conclude that ErbB2 is endocytosis resistant and that EGFR/ErbB2 heterodimers are 

not able to induce clathrin-coated pits upon incubation with EGF (Paper I). Since it is 

not known in detail what mediates localization of the EGFR to clathrin-coated pits, it is 

difficult to predict the reason for the ErbB2 induced inhibition. However, by 

investigating interaction partners of EGFR homodimers versus proteins interacting with 

heterodimers of ErbB2, possible differences might be found. Such studies are currently 

going on in our group. We also conclud that although GA can induce endocytosis of 

ErbB2 in cells expressing ErbB2 only, the presence of EGFR or ErbB3 makes the 

downregulation more efficient. Why the presence of EGFR and/or ErbB3 affects GA-

induced endocytosis of ErbB2 is still unclear, and also in this case further studies of 

interaction partners of the different ErbB proteins are of high priority.  

5.5.2 ENDOCYTOSIS OF ERBB3

We conclude that ErbB3 is constitutively localized both to the plasma membrane and to 

EEA1-positive endosomes. We further conclude that this is because ErbB3 is 

constitutively endocytosed in a clathrin-dependent manner. A further investigation of 
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this endocytosis is currently going on. This includes investigating whether the clathrin 

mediated endocytosis of ErbB3 depends on some of the same adaptors as EGFR, such 

as epsin and AP2. An additional important issue will be to compare the obtained results 

with results in cells expressing ErbB3 only. Such studies will elucidate the possible role 

of EGFR as heterodimerization partner and provide an answer to whether a constitutive 

association with, and phosphorylation induced by, EGFR is of importance. Because of 

the high constant level of intracellularly localized ErbB3, one could speculate that 

ErbB3 may play a more significant role intracellularly than EGFR and ErbB2 do. 

Intracellular signaling is shown to occur for EGFR (Wang et al. 2002), and the duration 

of MAPK signaling is reported to vary according to how EGFR is sorted following 

endocytosis (Malerod et al. 2007). Although ErbB3 is kinase deficient, it contains 

several phosphorylation sites that recruit e.g. the p85 subunit of PI3K (see Figure 5) 

after transphosphorylation. PI3K may potentially sustain intracellular signaling if ErbB3 

is subsequently endocytosed in the absence of the heterodimerization partner. The 

importance of the intracellularly localized ErbB3 and the possible factors regulating 

ErbB3 localization and internalization, both on the plasma membrane and on 

endosomes, are of great interest for future studies. 

5.5.3 UBIQUITINATION AND ENDOCYTOSIS

We conclude that overexpression of TULA inhibits dynamin dependent endocytosis. 

This finding has implications for further studies using TULA as a tool to mediate 

sequestering of Cbl, but may also be of interest for studies of the endogenous role of 

TULA in T-cells. We further conclude that the binding of TULA to dynamin is not the 

only reason for the inhibition of EGFR endocytosis. The inhibition of EGFR 

endocytosis is also caused by TULA binding to Cbl, and reveals a correlation between 

inhibition of ubiquitination and inhibition of EGFR endocytosis. Further investigation 

on the role of ubiquitination in endocytosis of the EGFR is currently going on in our 

group and includes mutation of ubiquitination sites in EGFR and chemical inhibition of 

ubiquitination. Unpublished data obtained in our group demonstrate that epsin mediates 

recruitment of ubiquitinated EGFR into clathrin-coated pits at the plasma membrane. As 

ubiquitination may be of importance in GA-induced endocytosis of ErbB2, studying a 

possible role of epsin is therefore interesting also in the endocytosis of this receptor. 
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The role of GA-induced ubiquitination can further be investigated by RNAi-mediated 

knock-down of CHIP or by inhibiting ubiquitination chemically. Also for ErbB3 it is 

reported that ubiquitination, mediated by Nrdp1, affects its downregulation (Diamonti et 

al. 2002; Qiu et al. 2002). It also is possible that ubiquitination of ErbB3 may correlate 

with endocytosis, and investigating a possible role of epsin also in endocytosis of ErbB3 

is therefore of interest. 
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