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Summary 

The purpose of this work has been to develop tools for fatty acid 
identification, with special emphasis on poly-unsaturated fatty acids and 
trans fatty acids. The work is based on application of gas chromatography 
with mass spectrometric detection and the fatty acids are analysed as fatty 
acid methyl esters (FAME). Various multivariate analytical techniques are 
applied as tools for interpretation of both chromatographic and spectral 
information. The ten papers are divided into five subsections with the 
following topics: 

Identification of FAME from shifts in retention indices: 

Papers I and II describe methods for partial identification of fatty acid 
structure from shifts in retention indices. These methods will basically 
provide information on the polarity (number of double bonds) and the 
chain lengths of the fatty acids. The procedure is not restricted to any 
particular class of fatty acids and may also be used to exclude 
compounds that are not fatty acids. Two-dimensional fatty acid retention 
indices (2D-FARI) are introduced in Paper II.  

Application to trans isomers: 

Papers III and IV are about trans isomers of eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA). Paper III provides data about 
chromatographic properties of the trans isomers of EPA and DHA, 
which can be applied both for identification purposes and for 
optimisation of chromatographic parameters. A practical application of 
the data is shown in Paper IV.  

Prediction of equivalent chain lengths: 

Papers V and VI describe methods for prediction of equivalent chain 
lengths (ECL), which is the retention indices commonly applied for fatty 
acids. Paper V is restricted to polyunsaturated fatty acids with 
methylene-interrupted double bond systems. Paper VI is not restricted 
to a particular class of fatty acids, but 2D-FARI data must be available. 
Thus, the two procedures are complementary methods for ECL 
predictions.  



 III

Identification of FAME from mass spectra: 

Paper VII and VIII are about multivariate analysis of mass spectra of 
FAME. In Paper VII it is shown that trans isomerism in certain positions 
has significant influence on the mass spectra of polyunsaturated fatty 
acids.  In Paper VIIi it is shown that the number of double bonds in 
polyunsaturated fatty acids can be determined from selected ions in the 
mass spectra. 

Deconvolution of overlapping chromatographic peaks: 

Papers IX and X are about techniques for deconvolution of overlapping 
FAME peaks. Transformations for reduction of noise in the mass 
spectra were introduced in Paper IX. The transformations and the 
information from Paper VII about differences in the mass spectra 
caused by trans geometry were utilised for deconcvolution of 
overlapping chromatographic peaks of trans isomers in Paper X. 
Although the focus in this paper is basically on the quantification of the 
isomers, deconvolution of overlapping peaks has relevance also for the 
identification of the analytes because spectra and accurate retention 
times of the compounds are also provided. 
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1. Background 

1.1. Fatty acid structure and nomenclature 

Fatty acids consist of a carboxylic group connected to a carbon chain (Figure 1). 
The carbon chain may be saturated or unsaturated, and may contain carbon branches 
as well as other functional groups. However, the majority of fatty acids in nature 
have unbranched carbon chains with 4–24 carbons, 0–6 double bonds, and no other 
functional groups. Fatty acids with odd-numbered carbon chains are present only in 
minor amounts in most organisms. Minor amounts of fatty acids with carbon chains 
longer than C24 are also present in marine lipids [1,2]. 

Several types of fatty acid nomenclature are common, and naming of fatty acids in 
the literature may vary with what is convenient and with journal policy. Unbranched 
fatty acids are described by the number of carbons followed by the number of 
double bonds. Thus, the saturated fatty acid (SFA) in Figure 1a may be denoted 
‘C16:0’ or ‘16:0’. 

Double bond positions may be described from either end of the molecule. Double 
bond positions given from the methyl end of the carbon chain are commonly 
referred to by ‘ω’ or by ‘n–’. The monounsaturated fatty acid in Figure 1b may be 
denoted as ‘20:1 (ω9)’ or ‘20:1 n–9’, the latter is usually preferred in chemical 
literature [3]. Alternatively, the double bond position may be specified by the 
distance from the carbonyl group as ‘∆11-20:1’ or as ‘11-20:1’. 

Double bonds in polyunsaturated fatty acids (PUFA) are typically separated by a 
single methylene unit (Figure 1c and d). Double bond systems with this regular 
pattern are often referred to as methylene interrupted (MI) double bonds, and PUFA 
with this system will be referred to as MI-PUFA in this text. The term homoallylic 
double bonds is equivalent to MI double bonds. In these cases, the complete 
molecular structure can be described by specifying the number of carbons, the 
number of double bonds and the position of the double bond system. Thus, the 
structures given in Figure 1c and d may be described as ‘18:2 n–6’ or ‘20:5 n–3’. If 
the ‘ω’ or ‘n–’ systems are used for designation of PUFA structure, it is normally 
taken as granted that all double bonds are methylene-interrupted and have cis 
geometry. In cases where the positions are given from the carbonyl group, all 
positions are given also for MI-PUFA and the fatty acids in Figure 1c and d are 
named 9,11-18:2 and 5,8,11,14,17-20:5.  

Double bond systems that do not have the regular methylene interrupted patters may 
have conjugated (Figure 1e) or isolated (Figure 1f and g) double bonds. The latter 
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are often referred to as non-methylene interrupted (NMI) systems. In these cases, it 
is common to specify the distance of all double bonds from the carbonyl group. 

Reference can also be made to specific double bond positions or groups of isomers, 
e.g. ‘n–9 double bonds’, with no assumptions about position or geometry of the rest 
of the double bonds in the molecule. Thus, the isomer shown in Figure 1f has an n–6 
double bond, even though it is separated from the next bond by more than one 
methylene group.  

The terms ‘cis’ and ‘trans’ are commonly applied to describe the geometries of 
double bonds in fatty acids instead of ‘Z’ (zusammen) and ‘E’ (entgegen), which is 
more common in general organic chemistry. The geometries are often described by a 
single letter ‘c’ or ‘ t’, which is combined with the double bond position. The NMI 
fatty acid in Figure 1g can be referred to as 7c,11t-18:2, and the isomer of 18:3 n–3 
with trans geometries in the ∆9 and ∆12 position (Figure 1h) is 9t,12t,15c-18:3. If 
the geometries are not specified, the double bonds are usually expected to have cis 
geometry.   

Fatty acids are sometimes denoted by their systematic names, e.g. 20:4 n–6 is 
referred to as 5,8,11,14-eicosatetraenoic acid and 7c,11t-18:2 may be referred to as 
(Z,E)-7,11-octadienoic acid. Common names, e.g. Arachidonic acid (20:4 n–6), or 
abbreviations for systematic names, e.g. EPA for eicosapentaenoic acid (20:5 n–3) 
or DHA for docosahexaenoic acid (22:6 n–3), are also applied.  

Even though the structures described above cover the majority of common fatty 
acids, there are a large number of less common fatty acids with various structures. 
The carbon chain may contain triple bonds, branches, as well as saturated and 
unsaturated carbon rings [4,5]. Oxygen may be introduced in the carbon chain in 
form of hydroxy groups, oxo groups, furan rings or additional carboxyl groups [4, 
5]. Other heteroatoms may also be present, e.g. halogens [6,7].  

The majority of fatty acids are esterified to larger lipid molecules; only small 
amounts are present in free form in living organisms as well as food matrices. Lipid 
molecules are traditionally classified into neutral and polar lipids. Common neutral 
lipids are triacylglycerols, used as energy reserve in most organisms; wax esters, the 
energy reserve in certain marine species; cholesteryl esters and free fatty acids. In 
most tissues, the majority of polar lipids are phospholipids from cell membranes. 

Fatty acids are mainly analysed by gas chromatography as their corresponding fatty 
acid methyl esters (FAME). The preparation of FAME involves extraction of the 
lipid molecules from the sample matrix, breaking of the ester bonds, and formation 
of methyl esters. The two last steps may be combined by trans-esterifying the lipids 
directly with acid or base in methanolic solution. The process of converting free or 
esterified fatty acids into methyl esters are commonly referred to as methanolysis, 
(trans-) esterification, or methylation. Base-catalysed methods, typically carried out 
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by methanolic NaOH, will not methylate free fatty acids and require anhydrous 
conditions. Several acids are used as catalysts for one-step methylation, including 
H2SO4, HCl and BF3. There are positive and negative aspects with all these 
catalysts. Other fatty acid derivatives than FAME are applied for special purposes. 
An extensive review over fatty acid derivatisation is given in [8]. 

 

Figure 1 Overview over fatty acid structure and nomenclature. 
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1.2. Gas Chromatography 

1.2.1 Principles of separation 

Modern gas chromatography (GC) is typically based on open tubular capillary 
columns varying in length from 10–100 m and with internal diameters from 0.1–
0.5 mm. The principle of separation in open tubular gas chromatography is 
explained in Figure 2. The retention of a compound is determined by its distribution 
between the stationary phase and the mobile phase. The distribution can be 
expressed by the retention factor, k [9]:   

 k = 
amount of solute in stationary phase
amount of solute in mobile phase 

(1) 

k depends on the solubility of the solute in the stationary phase (k increases with 
increased solubility), the thickness of the stationary phase (k increases with 
increased thickness), column diameter (k decreases with increased diameter), and 
the temperature (k decreases with increased temperature).  

As long as k is constant throughout the separation process, it is related to the 
retention time of the compound by the following equation:  

 k = 
tR
tM

’ tR − tM
tM

= k = 
tR
tM

’ tR − tM
tM

= 
 

(2) 

where tR is the elution time of the solute, tM is the elution time of an unretained 
component (hold-up time) and tR’ is the adjusted retention time (tR – tM). k will be 
constant only as long as the temperature is constant. Equation 2 is therefore not 
valid for temperature-programmed gas chromatography.  

Retention as described in Figure 2 and by the equations above is an idealised model, 
where it is assumed that solutes in the stationary phase behave as ideal solutions. 
Deviations from ideal conditions may be caused by surface effects between the 
stationary phase and the carrier gas, uneven distribution and composition of the 
stationary phase, adsorption of the analytes, displacement effects and interactions 
between analytes. Deviations from ideal conditions may be especially large for 
analytes with low volatility and low solubility in the stationary phase or when the 
capacity of the stationary phase is overloaded.  

It should also be emphasized that the proportions shown in Figure 2 do not 
correspond with dimensions in real capillary columns. In modern columns the 
internal diameter is typically 1000 times larger than the thickness of the stationary 
phase. The solutes also elute in broad bands.  



 5

The term ‘carrier gas velocity’ in GC normally refers to the average gas velocity in 
the column, which is the length of the column divided by the elution time for an 
unretained component. Because of the high compressibility of the carrier gas and 
large pressure drop in the column the actual carrier gas velocity is higher in the end 
than at the head of the column.  

 

 

Figure 2 Principle of separation in open tubular gas chromatography. The two 
solutes A and B are separated because they differ in retention factor, 
k. Solute A is equally distributed between the stationary phase and 
the mobile phase (k = 1). Solute B moves faster through the column 
because a larger fraction of the molecules (90%) is in the mobile 
phase (k = 0.11). 

Various parameters related to chromatographic separation are based on the 
assumption that the shapes of chromatographic peaks resemble normal distribution 
curves as shown in Figure 3 [9]. However, non-ideal conditions, like adsorption of 
the analytes to active sites, dead volumes, or incomplete solvation of analytes will 
lead to deviations from a normal distribution, and various alternative peak shape 
models have been proposed [10,11]. Several parameters are used for describing 
asymmetry of peaks [12,13].  

The separation beween two chromatographic peaks, A and B, may be described by 
the peak resolution, Rs, which is defined as: 

 
2 (tR(A) – tR(B))

wb(A) + wb(B)

Rs =
2 ∆tR

wb(A) + wb(B)

=
2 (tR(A) – tR(B))

wb(A) + wb(B)

Rs =
2 ∆tR

wb(A) + wb(B)

=
 

(3) 
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where tR is retention time and wb is the peak width at baseline. The width at baseline 
may be difficult to estimate and the peak width at the half height of the peak, wh, is 
therefore often used as an alternative to wb (Figure 3).    

 

tR(A)

tR(B)

wh=2.355σ

wh

wb=4σwb

Retention time (tR)

∆tR
tR(A)

tR(B)

wh=2.355σ

wh

wb=4σwb

Retention time (tR)

∆tR

 

Figure 3 Two simulated chromatographic peaks (A and B) with retention times 
tR(A) and tR(B). σ is the standard deviation of the normal distribution 
curves. The peak width at baseline is defined as 4σ [9]. The peak 
width at half height is 2.355σ.  

1.2.2. Stationary phases in gas chromatography of fatty acids 

Since the early works of Martin and James on gas chromatographic separation of 
fatty acids with a silicone coated stationary phase [14], a wide range of phases have 
been applied for the separation of free and derivatised fatty acids. The development 
of GC and stationary phase technology for the separation of fatty acids has recently 
been reviewed by Ackman [15]. Today, polar columns are usually preferred for 
separation of complex fatty acid mixtures, especially when highly unsaturated fatty 
acids or trans fatty acids are analysed.  

There are two types of polar phases that dominate: the polyethylene glycol (PEG) 
columns and the cyanopropyl (CNP) columns. The polar functional groups in these 
phases are hydroxy (OH) and cyano (CN) groups. The CNP phases consist of a 
siloxane polymer with cyanopropyl substituents. The cyanopropyl groups are often 
combined with less polar groups, e.g. methyl or phenyl, and CNP columns are 
therefore available in a large range of polarities. PEG is usually not mixed with 
other groups and common PEG columns show little variation in polarity. 

This work is mainly based on the application of cyanopropyl columns, a PEG 
column was applied in parts of Paper IV and an apolar column (100% methyl 
polysiloxane) was applied in parts of Paper X. Two CPN phases have been applied 



 7

in this project. SP-2560 (Supelco, Bellefonte, PA, USA) is a highly polar 100 % 
CNP column. BPX-70 (SGE, Ringwood, Australia) is less polar than SP-2560 and 
has aromatic groups introduced in the polymer backbone.   

A typical elution pattern of a reference mixture with saturated and cis unsaturated 
FAME on BPX-70 is shown in Figure 4. In general, FAMEs with the same number 
of carbon atoms elute according to the number of double bonds. However, because 
n–3 PUFA are retained more strongly than n–6 PUFA, 20:4 n–6 elutes before 20:3 
n–3. As shown for C20 and C22, there is a substantial overlap between the different 
chain lengths. In real samples of marine origin there will be corresponding broad 
regions of C16 and C18 because 16:4, 18:4 and 18:5 can be present. Because of the 
overlap in chain lengths, the identification of fatty acids from retention times is a 
difficult task. The picture is further complicated by the presence of odd-chain 
PUFA, e.g. 21:5 n–3, which is present in marine lipids [15,16].  

A characteristic feature of CNP phases is that the polarity shows a strong 
dependence on temperature. This attribute is a central issue in Papers I–III. At low 
temperature, the polarity of the BPX-70 phase is lower than the polarity of PEG 
columns [17]. While the properties of PEG columns are nearly unaffected by the 
temperature, the polarity of BPX-70 increases linearly with increasing temperatures 
[17] and BPX-70 is considerably more polar than PEG columns at the temperatures 
typically applied for analyses of FAME (>140 °C). The effects of varying 
chromatographic conditions on the elution pattern are shown in Paper II.  

 

Figure 4 Elution pattern of a FAME reference mixture (GLC-461, Nu-Chek 
Prep, Elysian, MN, USA) on BPX-70. The chromatographic 
parameters are as described for program 1 in Paper II. 
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1.2.3. Retention indices and ECL values 

On a retention index scale, the chromatographic retention of a compound is 
described relative to the retention of a series of homologues. The most common 
system is the Kovats indices [18], where n-alkanes are applied as reference 
compounds. At isothermal conditions there is a linear relationship between log tR’ 
and the number of carbon atoms in homologous series, and the retention index, I, for 
a compound, x, can be calculated by: 

 I(x) = 100n
log tR(x) – log tR(z)

log tR(z+n) – log tR(z)

+ 100z
’ ’

’ ’
I(x) = 100n

log tR(x) – log tR(z)

log tR(z+n) – log tR(z)

+ 100z
’ ’

’ ’
 

(4) 

where tR’ is adjusted retention times of the compound of interest and two n-alkanes 
eluting on each side of the compound, z represents the number of carbon atoms in 
the n-alkane eluting before x, and n is the difference in carbon atoms between the 
two n-alkane references. For maximal accuracy, it is recommended that n is one. 
Kovats indices acquired at isothermal conditions are assumed to be invariant to 
differences in column dimensions and carrier gas flow, but are highly dependent on 
the stationary phase and also influenced by the oven temperature. Thus, I acquired at 
a certain stationary phase at a certain temperature is a characteristic property for a 
compound that can be used for identification purposes.  

The use of retention indices has been extended to temperature-programmed gas 
chromatography, where there exists an approximately linear relationship between 
retention times and the number of carbon atoms in a homologous series. In 
temperature programmed GC, I is generally calculated by the van den Dool and 
Kratz formula [19]: 

 I(x) = 100n
tR(x) – tR(z)

tR(z+n) – tR(z)

+ 100zI(x) = 100n
tR(x) – tR(z)

tR(z+n) – tR(z)

+ 100z
 

(5) 

The parameters n, x and z are the same as in Equation 4. Equation 5 gives the same 
results whether applied with gross retention times or adjusted retention times. As for 
Equation 4, it is recommended that n is one. In addition to application of the 
equations above, various approaches based on higher order regressions and other 
approaches are applied [20–23, Paper I–II].  

Although isothermal retention indices are assumed to be independent of carrier gas 
flow, column dimensions and phase ratios, temperature programmed indices are not. 
Increased temperature gradient, column length or phase ratio, or decreased carrier 
gas flow rate, will move I in the same direction as increased temperature in 
isothermal chromatography [24]. 

Although Kovats indices are the dominating general-purpose retention index system, 
a large number of alternative series with other calibration compounds than n-alkanes 
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have been applied for special purposes. The motivations for using other calibration 
standards than alkanes are basically the following: 

• n-alkanes cannot be detected by several common detection methods such as 
negative ion chemical ionisation mass spectrometry, electron capture 
detectors and element specific detectors. 

• Retention indices based on molecules with the same functional groups as the 
analytes of interest are often more reproducible, and vary less with 
chromatographic conditions than indices based on n-alkanes [25]. 

• A second calibration mixture of n-alkanes is not necessary if the retention 
index scale is defined by some of the analytes of interest. 

• n-alkanes have poor chromatographic properties on highly polar stationary 
phases. 

Alternative retention indices for various purposes have been extensively reviewed 
elsewhere [26,27]. The most successful approach may be the use of equivalent chain 
lengths (ECL) [28] for fatty acid analysis. The ECL system is based on saturated 
unbranched FAMEs as reference compounds and ECL values for the references are 
by definition equal to the number of carbons in the alkyl chain. Thus, ECL for 
compound x at isothermal conditions can be calculated by: 

 ECL(x) = n
log tR(x) – log tR(z)

log tR(z+n) – log tR(z)

+ z
’ ’

’ ’
ECL(x) = n

log tR(x) – log tR(z)

log tR(z+n) – log tR(z)

+ z
’ ’

’ ’
 

(6) 

where tR’ is adjusted retention times of the compound of interest, x, and two 
saturated FAMEs eluting on each side of the compound. z represents the number of 
carbon atoms in the carbon chain of the saturated FAME eluting before x, and n is 
the difference in the number of carbon atoms between the two references. ECL 
values at temperature-programmed GC can be calculated by the same methods as I. 

The fractional chain length is defined as the difference between the ECL value and 
the number of carbons in the fatty acid chain of the FAME molecule and is 
calculated by: 

   FCL(x) = ECL(x) – NC(x) (7) 

where NC is the number of carbons in the fatty acid chain. It follows from the 
definition of ECL that FCL of the saturated unbranched FAMEs are zero. The 
unsaturated FAMEs, which on polar columns elute after the saturated FAME with 
the same number of carbons, have positive FCL values and FCL is used as an 
indication of the polarity of a fatty acid.  
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1.2.4. Identification of fatty acids from retention times and ECL-values 

Various strategies have been applied for the prediction of chromatographic 
properties of fatty acids that are not available as reference compounds. A much used 
strategy has been to assume that members in the same homologous series will have 
similar behaviour relative to the saturated analogues, i.e. members in a homologous 
series have almost identical FCL values. These relationships have been widely 
applied in isothermal chromatography, where fatty acids are identified from parallel 
lines drawn between members of the same homologous series in plots of ECL 
values or log tR’ against the number of carbons in the molecule [29–31]. The 
assumption of similar FCL values for members in the same homologous series can 
be expected to be accurate as long as interactions between the carbonyl group and 
the double bond system can be neglected, but may give inaccurate predictions for 
molecules with double bonds close to the carbonyl group. 

Accurate prediction of ECL values is more challenging with temperature-
programmed chromatography than with isothermal chromatography, particularly 
with CNP phases where the assumption of constant FCL within a homologous series 
is inaccurate. Because the heaviest members in the series elute at higher temperature 
than lighter homologues they elute from a column that appears to be more polar, and 
the FCL values may therefore increase with chain length within the series.  

Another strategy for prediction of ECL values has been to assume that the influence 
of double bonds are additive, and that FCL values of PUFAs can be predicted by 
summing the FCL values of monounsaturated fatty acids with double bonds in the 
corresponding positions [32–35] or by adding FCLs for monoenes to FCLs of other 
PUFAs [34,35], e.g. FCL for 18:3 n–3 is predicted by summing FCL for 18:2 n–6 
and FCL for 18:1 n–3. The accuracies of these calculations are low because MI 
double bonds behave differently than the sum of the corresponding isolated double 
bonds, and additional correction factors must be introduced [32–35]. The 
availability of relevant FCL data for the monoenes are also limited. Alternative 
methods for prediction of ECL values are proposed in Papers V and VI. 

1.3. Mass spectrometry of fatty acids 

1.3.1. Principles of mass spectrometry  

In mass spectrometry (MS) with electron impact (EI) ionisation the molecules in gas 
phase are bombarded with high-energy electrons and form radical cations. Unstable 
radical cations will decompose in the mass spectrometer and the degree of 
fragmentation depends on how well the molecule can stabilise the positive charge. 
The resulting fragments are separated according to their mass-to-charge ratio (m/z). 
The charge of the detected fragments can be assumed to be +1, and their masses will 
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therefore be known. The molecular weight can be told from the molecular ion (M+), 
and the fragmentation pattern can give important information about functional 
groups and isomerism.  

1.3.2. Mass spectrometry of fatty acid methyl esters  

The number of carbons and number of double bonds can easily be determined from 
high quality mass spectra of FAME, at least for analytes with zero to three MI 
double bonds. The molecular ions are usually visible, and the distributions of 
fragments with low masses show characteristic patterns. Examples of mass spectra 
of common C18 FAMEs are given in Figure 5a to e. The most important ions are 
listed in Paper VIII and a brief summary is given below. 

In normal (unbranched) saturated fatty acids, fragmentation is dominated by the 
McLafferty rearrangement giving the base peak at m/z 74. Abundant peaks at m/z 
87, 143, 199 and 255 arise from loss of the neutral aliphatic radicals with the 
general formula [(CH2)nCOOCH3]

+ [36]. The molecular ion (m/z 298 in Figure 5a) 
is usually abundant.   

Double bonds in linear alkenes and unsaturated fatty acid methyl esters tend to 
migrate in the molecular ion prior to fragmentation, making the determination of 
double bond position in unsaturated fatty acids uncertain. There are therefore no 
ions that serve to indicate the position or the stereochemistry of the double bond in 
monoenes [36,37]. The spectrum of 18:1 n–9 is shown in Figure 5b. The 
fragmentation pattern in monoenes is dominated by a series of ions with the formula 
[CnH2n–1]

+ (m/z 55, 69, 83, and 97). The Molecular ion is seen at m/z 296. The more 
abundant peaks at 264 and 265, arising from loss of methanol and methoxy radical, 
may also serve as indicators for molecular weight in low quality spectra [37].  

The spectrum of 18:2 n–6 is shown in Figure 5c. In MI dienes a series of ions 
[CnH2n–3]

+ (m/z 67, 81, 95, 109) dominate the spectrum at low masses. The [CnH2n–

1]
+ series is also abundant at masses 55 and 69. The molecular ion (m/z 294) is more 

abundant than in monoenes. Loss of methoxy radical is also seen at m/z 263. 

The spectrum of 18:3 n–6 is shown in Figure 5d. In MI-PUFA the series [CnH2n–5]
+ 

dominates the pattern with abundant fragments at m/z 79, 93, 107 and 121. The 
[CnH2n–3]

+ series is also abundant (m/z 67, 81, 95 and 109). Fragments from the 
[CnH2n–1]

+ series are seen at m/z 55 and 69. In MI-PUFA (not including dienes) there 
are rules for predicting the position of the double bond system from diagnostic ions. 
The position of the first double bond counted from the methyl end of the carbon 
chain can be determined from the ions [Cn+5H2n+8]

+• where n is the number of 
carbons from the methyl end to the first double bond. Thus, n–3, n–6 and n–9 
families will have abundant ions of m/z 108, 150 and 192 respectively [38–40].  
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Figure 5 Electron impact mass spectra of selected C18 fatty acid methyl 
esters. (See also Figure 21) 
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It has also been reported that the position of the first double bond counted from the 
carbonyl group can be determined from the ions [Cn+6O2H2n+6]

+• where n is the 
distance from the carbonyl group to the first double bond (∆-position) [38,39]. MI-
PUFA with the first double bonds in the ∆6 or ∆9 positions would have abundant 
ions of m/z 194 and 236 respectively. The diagnostic ions used for determination of 
the double bond positions relative to the carbonyl group and to the methyl end of the 
carbon chain will be referred to as α- and ω-ions respectively. Their abundances in 
electron impact (EI) mass spectra are often low, but can be considerably enhanced 
with reduction of the ionization energy [39].  

Mass spectra of several NMI trienes are presented in [41]. These spectra show 
different patterns in the lower mass region than MI-PUFA. m/z 79, usually the base 
peak in MI-PUFA, is suppressed and both m/z 67 and 81 are of higher abundance. 

1.3.3. Alternative derivatives and ionization modes 

Although FAME give some information about fatty acid structure, more informative 
spectra about positional isomerism are often achieved using other derivatives. By 
introducing a nitrogen containing ring in the molecule, the molecular ion is 
stabilised and double bond migration is reduced. Pyrrolidide, picolinyl and dimethyl 
oxazoline (DMOX) derivatives are especially useful for determination double bond 
positions in fatty acids [42–46].  

The spectrum of the 18:1 n–9 picolinyl ester is shown in Figure 6a. Fragmentation 
of the carbon chain in the fatty acids gives rise to a series of abundant ions spaced 
by 14 atomic mass units (AMU). The position of the double bond can be determined 
from the gap of 26 AMU between m/z 234 and 260. The abundant ions with m/z 
220, 274 and 288 are also of diagnostic importance.  

Similar patterns can be applied for the determination of double bond positions also 
in more unsaturated fatty acids. However, the signals from diagnostic ions are 
usually weaker and the number of interfering ions from other fragments increase 
with the number of double bonds. This can be seen in the spectra of 18:3 n–3, 20:5 
n–3 and 22:6 n–3 in Figure 6b–d. Thus, interpretation of spectra from highly 
unsaturated fatty acids is challenging. Since unknown fatty acids are rarely among 
the most abundant in a lipid sample it is often difficult to acquire pure spectra of 
sufficient quality. 
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Figure 6 Electron impact mass spectra of selected fatty acid picolinyl esters 
reproduced with permission from [41]. 
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More distinctive fragmentation patterns in EI-MS can often be obtained by 
derivatisation of the double bonds. Common procedures are deuteration, silylation 
[47], or preparation of dimethyl disulfide adducts [48–51]. However, many of these 
methods are not suitable for complex mixtures because of incomplete reactions, side 
reactions or decomposition of derivatives at high temperatures. Some of the 
methods substantially increase the weight of the isomers, which may cause problems 
with analysis of C20 and C22 fatty acids by GC. Thorough reviews of these and 
other methods for determination of double bond positions are given elsewhere [8, 
52–54]. 

An alternative to electron impact mass spectrometry is to use chemical ionization 
(CI). In CI-MS, the charge is transferred to the analytes from an ionized reactant 
gas. Common reactant gases are methane [55,56], isobutane [57] ammonia [57] and 
acetonitrile [39,58–60]. Protons are abstracted from the reagent gas leading to 
abundant [M+1]+ ions. In some cases the entire reactant molecule is abstracted. 
Because the ionisation energy is lower, there is less fragmentation with CI-MS than 
with EI-MS and the molecular weight can usually be determined from the [M+1]+ 
ions [55,56] or higher masses if larger parts of the reactant ions are absorbed.  

Because there is less fragmentation, there are normally no diagnostic ions that may 
provide information about the double bond positions with methane as reagent gas 
[56]. However, it has been shown that the α and ω ions used for determination of 
the double bond position in PUFA are abundant in CI spectra of FAME when 
acetonitrile is applied as reactant gas [39]. It has also been shown that acetonitrile 
CI-MS spectra of FAME contain diagnostic ions for the positions and geometries of 
double bonds in conjugated linoleic acid [59]. 

1.3.4. Visual and multivariate interpretation of mass spectra 

Mass spectra of unknown compounds are usually interpreted by visual inspection of 
the presence or absence of certain ions, e.g. the diagnostic ions for double bond 
positions in Figures 5 and 6. This method has certain drawbacks. If the diagnostic 
ions are weak, spectra of high quality are required. There are also many cases where 
there exist no diagnostic ions, e.g. the position of double bonds in monoenoic 
FAME or the geometry of double bonds cannot be determined from the presence or 
absence of ions. There is also a human factor involved, visual interpretation of mass 
spectra requires a skilled interpreter and the process is often time consuming.   

An alternative strategy is to analyse the spectra with mathematical methods that 
better utilize small differences in the relative proportions of the masses. Multivariate 
analysis of spectra is essential in interpretation of near-infrared (NIR) spectra [61] 
and has also found widespread use with infra-red (IR) [62], ultra-violet (UV) [63], 
nuclear magnetic resonance [61] and fluorescence spectra [61, 64].      



 16

The use of multivariate interpretation is more problematic with mass spectra than 
with optical methods. While the signals from a certain functional group will appear 
at (or near) the same wavelengths in for example IR, NIR and UV spectra, the 
signals in mass spectra are often from loss of functional groups. Thus, signals that 
can be associated with the functional group may appear at different m/z, depending 
on the structure of the rest of the molecule. In addition, the fragmentation in mass 
spectrometry is often dominated by fragmentation of the carbon skeleton of the 
molecule, and small differences in the carbon connectivity may give rise to large 
differences in the mass spectra. To a certain degree, these problems can be solved 
by transformation of the spectra to new spectral features [65–69].       

In molecules with long straight-chain carbon skeletons, such as most FAME, The EI 
spectra are dominated by a series of low-mass ions that are always present. Ions in 
this region are suitable for multivariate interpretation, and EI spectra of FAME and 
similar molecules can be analysed without prior transformations. The double bond 
positions in monoenoic fatty acid ethyl esters can for instance be determined from 
multivariate regression on the spectra, even though there are no diagnostic ions (in 
the classical sense) for the positions [70]. Similar approaches have also been used 
for the determination of double bond positions in monounsaturated acetates [71,72] 
and long chain alcohols [71]. Another example is the identification of trans 
geometry in unsaturated fatty acids [73]. An advantage with the statistical approach 
is that the reliability of the identification can be calculated from the error estimates 
of the regression or classification. Classic visual mass spectral interpretation 
provides no such information. 

1.4. Multivariate methods 

Various forms of multivariate mathematical methods, such as principal component 
analysis (PCA) or partial least squares regression (PLSR), are applied in Papers I–X. 
A brief introduction to these methods is given below. 

1.4.1. The nature and representation of multivariate data 

In datasets with a large number of variables it is often difficult to achieve a good 
picture of the nature of the data and the correlation between the variables. One or 
two variables can be illustrated on a single surface (e.g. a paper or screen), typically 
in the form of a one-dimensional bar plot or a two-dimensional xy-scatterplot.  A 
third variable can be plotted in three-dimensional xyz-scatterplots, which is a 
projection of the three dimensions onto a two-dimensional surface.   

When the number of variables increase beyond three, most people will have 
problems perceiving the structure of the data. A number of methods exist that aim at 
reducing the dimensionality in systems with many variables. Most methods use the 
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correlation between the original variables to reduce the dimensionality. The original 
multi-dimensional space may be projected onto so-called latent variables [69,74]. 

1.4.2. Matrices and vectors 

Data are often given in matrices where the values for several objects (or cases) are 
described by several measured variables. Such a matrix is illustrated in Figure 7, 
where eight variables have been measured for 10 objects. Each number in the matrix 
is referred to as an element, each variable is represented by a column vector and 
each sample by a row vector.    

Column vectors and row vectors can be multiplied; the product is a matrix with 
dimensions corresponding to the number of elements in the column vector and the 
row vector. The multiplication of two vectors, tpT, giving the outer-product is 
illustrated in Figure 8. There is also an inner-product of the two vectors that is a 
scalar found by pTt. Brief reviews of common matrix and vector computations used 
in chemometrics are given in [69,75]. 
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Figure 7 10 x 8 matrix, X, with column vector t, row vector, pT and element, e. 
By convention, vectors are column vectors, the superscript, T, on pT 
means transposed and denotes that pT is a row vector. 
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Figure 8 Vector multiplication,  tpT, giving the outer-product, X. 
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1.4.3. Principal component analysis (PCA) 

Principal component analysis (PCA) is a technique for extracting structure from 
high-dimensional datasets. The original variables are projected to latent variables, 
which in PCA is called principal components (PC). The principle of PCA is briefly 
described below; a comprehensive tutorial on PCA is given in [76]. 

As illustrated in Figure 8, multiplication of a column vector and a score vector gives 
a matrix. Matrices can therefore be explained by sets of column and row vectors. 
When extracting the first principal component the goal is to find the column vector 
and the row vector that gives the best representation of the variation in the original 
matrix, M . These two vectors, which is called score vector and loading vector, is the 
first principal component, C1 (Figure 9). 

With real analytical data, C1 will never give a perfect description of M  and there 
will be a residual matrix E1, which is found by subtracting each element in C1 from 
the corresponding element in M : 

 E1 = M  – C1 = M  – tpT (8) 

Another way to describe the extraction of C1 is that the algorithm seeks for the set 
of score and loading vectors that will minimise E.  

The second principal component, C2 is extracted from E1 and the residual matrix E2 
is calculated from E1 and C2: 

 E2 = E1 – C2  (9) 

The procedure can be repeated until the number of principal components equals the 
least of the numbers of variables or objects. 

When the correlations between the variables are large, the first principal 
components will explain a large portion of the total variance in M . After extraction 
of principal components, the score vectors contain the information about the 
relationships between the objects and the loading vectors contain information about 
relationships between the original variables. 

The original objects and variables can be investigated by plots of score vectors 
against score vectors and loading vectors against loading vectors. Such plots are 
referred to as score plots and loading plots respectively. An example is illustrated in 
Figure 10, where score vector 1 is plotted against score vector 2, and loading vector 
1 are plotted against loading vector 2 in ordinary xy-scatterplots. 
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Figure 9 Matrix decomposition by PCA 
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Figure 10 Score plot and loading plot. 

Some experience is needed to interpret PC-plots, but a few simple rules can often be 
applied. Assuming that the displayed principal components represent a large portion 
of the variance, objects that are close in score plots are also close in the original 
multi-dimensional space. Thus, the distance between the objects in the score plots is 
a measure of the similarity between objects. In the score plot in Figure 10 there are 
two classes of objects, five objects in the second quadrant that are similar, and a 
second class of objects in the fourth quadrant that are different from these.  The 
single sample in quadrant three is not related to any of the groups.  

In the loading plots, variables that lie in the same direction from the origin tend to 
be positively correlated, variables that lie in opposite directions are negatively 
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correlated, and variables that are located 90° to each other are uncorrelated.  In the 
loading plot there are three groups of variables that are closely related.  The 
variables in the second quadrant are negatively correlated to the variables in the 
fourth quadrant, while the two variables in the third quadrant are uncorrelated to 
these.  

Usually the two first principal components are interpreted this way. When 
interpreting score and loading plots, it is important to consider the portion of the 
variance that is explained by the two principal components because important 
information may also be present in other components. Various validation methods 
indicate whether the principal components represent data structure or random noise. 

1.4.4. Multivariate regression techniques 

Multivariate regression techniques are applied when a response variable, y, is to be 
explained from a number of x-variables (x1, x2, …, xn), often denoted as independent 
variables or predictors.  From algebra it is known that when the number of samples 
equals the number of variables, exact solutions may be found. In matrix notations 
this can be written as:   

 y = Xb (10) 

where y is a vector holding the values of the response variable and b is the vector 
holding the coefficients  that describe the relationship between the response vector y 
and the matrix X. b can be found by inverting the X matrix and multiplying by y:   

 b = X–1y (11) 

When the number of samples is lower than the number of variables, the set of 
equations has an infinite number of solutions; the matrix X is not quadratic and not 
invertible.  When there are more samples than variables the best estimate for b can 
be found by multivariate regression techniques. In ordinary multiple linear 
regression (MLR), b is found by the following equation:  

 b = (XTX)–1 XTy (12) 

MLR has certain limitations, particularly when the number of variables is large, or 
when the degree of correlation between the variables or between the samples is 
large. When spectra are used as x-variables, the number of variables is usually large 
(often hundreds).  In these cases the number of samples is typically lower than the 
number of variables and MLR gives no solution. Covariance between the variables 
or objects may lead to poor estimates of b because the matrix (XTX) is rank 
deficient or ill-conditioned [77] (see Section 1.5.2). 
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The above-mentioned drawbacks of MLR may be solved by applying latent-variable 
techniques. In principal component regression (PCR), the X-matrix is first 
decomposed by PCA, which reduces the original number of variables to a lower 
number of principal components. An MLR is then based on the PCA score vectors.   

An important attribute of PCR is illustrated in Figure 9. After the first principal 
component is extracted, PC1 is subtracted from the data matrix before PC2 is 
extracted.  Thus, PC2 cannot contain the same information as PC1; PC3 cannot 
contain information explained by PC2 and so on. The covariance between principal 
component scores is zero (orthogonality); correlation between the variables is 
therefore no problem when the PC scores are used as variables in MLR. 

PLSR is a similar technique to PCR, but there is an important difference in the 
extraction of the latent variables: in principal component regression, the extraction 
algorithm extracts latent variables that explain as much as possible of the variation 
in the X-matrix.  In PLSR the algorithm extracts latent variables that explain as 
much as possible of the common variance between the X-matrix and the y-vector.  
PLSR is therefore a more powerful regression technique; fewer PLS components 
than PCs are often needed to obtain good estimates for b. PLS scores and loadings 
are often more easy to interpret than scores and loadings from PCA. For these 
reasons, PLSR are often preferred over PCR, particularly when the number of 
variables is large. Comprehensive reviews of PLSR are given in [77–79]. 

1.4.5. Variable weighting 

The pretreatment of variables is important in latent-variable methods. When latent 
variables are extracted, the variables with largest absolute variance will have the 
largest influence on the models. When the difference between the variables is large, 
a few variables will dominate the models, while others are poorly explained. These 
problems can be solved by proper weighting of the variables. 

The most common solution is standardisation. Each variable is divided by its own 
standard deviation; the result is variables with standard deviations equal to one. 
Standardisation should be used with care. Variables with low variance often have a 
low signal-to-noise ratio in analytical chemistry, e.g. parts of spectra where there is 
little signal. Because of the low absolute variance, standardisation leads to 
multiplication by a large number and amplification of the noise. 

Other weighting procedures include division by the arithmetic mean of the variable 
or using the logarithm or roots of each variable. Subtraction of the mean (centring) 
of each variable is normally performed before PCA or multivariate regressions. 
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1.4.6. Error estimates and validation  

The accuracy of multivariate regression models for prediction of a response 
variable, y, should be validated by a suitable method. Common validation methods 
are use of test sets and cross-validation techniques.  

In the test set method, the dataset is separated into a calibration set (training set) and 
a test set. The regression model is built on the objects in the calibration set and 
applied for prediction of the response variable for the objects in the test set. The 
model is evaluated by comparing predicted (yp) and ‘true’ (yt) values of the response 
variable for the objects in the test set.  The objects in the test set are typically 
randomly selected, but may also be data that are acquired at different time or at 
different conditions than the calibration set, e.g. when the stability of models are 
evaluated. The drawback with test set validation is that the model is calibrated and 
validated on only a part of the available data and the results may be highly 
dependent on single objects in small datasets.  

In cross-validation, the objects in the original dataset are partitioned into k subsets. 
A single subset is selected as validation set and the model is calibrated on the 
remaining k–1 subsets. The model is then applied for calculation of yp for the 
objects in the validation subset. The procedure is repeated until all subsets have 
been used as validation sets and the final model are evaluated from the residuals 
(yp–yt) of all objects combined. Thus, with cross validation, all objects are utilised in 
validation of the model. It is often common to set k equal to the number of samples; 
this is frequently referred to as leave-one-out cross validation or full cross 
validation. Cross validation techniques may over-estimate the accuracy of the 
models in cases where the objects have a ‘class like’ distribution or if there are 
replicate objects in the dataset, because the objects in the validation set may be 
represented in the calibration set by their replicates or objects in the same class. 

Various parameters are applied for evaluation of model performance. Bias, δ, is the 
average residuals: 

 (yp,n – yt,n )Σ
n=1

N
1
Nδ = (yp,n – yt,n )Σ

n=1

N
1
Nδ =

 

(13) 

Significant bias means that the model is systematically over-estimating or under-
estimating yp. This may for instance occur if the model is evaluated with a test-set in 
cases where there has been a drift in the system.  

Standard error of prediction (SEP) is the standard deviation of the residuals: 
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 SEP = (yp,n – yt,n - δ)21
N-1 Σ√ n=1

N

 

(14) 

Since there is a correction for bias in this formula, SEP will be unaffected by the 
bias and is a good estimate of the overall error only in cases where the bias is 
negligible. A more general error estimate that also accounts for the bias is root mean 
square error of prediction (RMSEP): 

 RMSEP = (yp,n – yt,n )21
N Σ√ n=1

N

 

(15) 

Standard error of calibration (SEC) and root mean squared error of calibration 
(RMSEC) are calculated by the same formulas as SEP and RMSEP, but on 
calibration residuals (the calibration set and validation set are identical). The 
correlation coefficient (r) or the coefficient of determination (r2) for a linear 
regression between yp and yt may also serve as a rough indication of the precision of 
a regression model. However, this is only an indicator of correlation between yp and 
yt and will not account for bias or slopes different from 1. 

1.5. Multivariate deconvolution methods 

Even with modern capillary chromatographic columns, complete resolution of all 
analytes in a chromatogram may not be achieved. By using detectors that provide 
spectral information, e.g. GC–MS or liquid chromatography (LC) with diode-array 
UV detection, there are several possibilities for quantification of overlapping peaks. 
In cases of full selectivity, i.e. when all analytes have a signal at one or more 
wavelengths or ions that is absent in the other analytes in the peak cluster, 
quantification of the overlapping peaks is a trivial task if the selective signals have a 
sufficient signal-to-noise ratio.  

But the information in the spectra may be used for quantification also in situations 
without selectivity, even with severely overlapping peaks. If standards or pure 
spectra of the analytes are available the problems may be solved by regression. 
Another solution, which does not require that reference spectra are available, is 
multivariate deconvolution of the overlapping chromatographic peaks.  

1.5.1. Theory of multivariate deconvolution 

The purpose of multivariate curve resolution methods is to decompose the raw data 
matrix, X, into matrices containing pure spectra, ST, in row vectors and pure 
chromatographic profiles, C, in column vectors (Equation 16 and Figure 11).  



 24

 X = CST + E (16) 

X has the dimension N×M, C has the dimension N×A and ST has the dimension 
A×M.  N is the number of data points in the chromatographic profile (number of 
spectra measured) and M is the dimension of the spectra (number of wavelengths or 
masses). A is the number of analytes in the peak cluster. E is the error matrix, which 
has the same dimension as X. Each analyte in the system is represented by a column 
vector, c, describing the chromatographic profile and a row vector, sT, describing 
the spectrum, and Equation 16 can be rewritten as: 

 X =    casa

A

a=1
Σ T + E

 
(17) 

Assuming that E is small enough to be neglected, estimates of C can be found from 
estimates of S by the following equation: 

 C = XS(STS)–1 (18) 

Similarly, estimates of ST can be found from estimates of C: 

 ST = (CTC)–1CTX (19) 

The estimates of C and ST can be obtained by several approaches, which roughly 
can be divided into direct and iterative methods. In the direct methods the pattern of 
peak overlap is typically analysed by evolving factor analysis (EFA) [80,81], 
modifications of EFA, such as the fixed-size moving window EFA [82] or 
eigenstructure tracking analysis [83]. Other methods, such as latent projective 
graphs (LPG) [84], may also be applied. The overlap pattern reveals where pure 
spectra or chromatographic profiles can be found, and complete resolutions can 
often be achieved by the application of Equation 18 or 19 or by using information 
from zero-concentration windows to find estimates for C and ST. This can be done 
by rotating the scores and loadings from PCA into estimates of C and ST: 

 CST = TRR–1PT (20) 

R is a A×A rotation matrix, T is the PCA score vectors and has the same dimension 
as C. PT is the PCA loading vectors with the same dimensions as ST. Various 
procedures for finding R are described and compared elsewhere [80,81,84–86]. 

In the iterative methods initial estimates of C or ST are refined in a repetitive 
manner until a convergence criterion is met. The equations above (18–20) are often 
involved in one or several steps in the procedure. Good initial estimates, which can 
be obtained by several methods [87–92], are essential. The initial estimates are 
refined by applying constraints on the estimates of C and ST. Common constraints 
are positivity in C and ST and unimodality in C, i.e. each chromatographic peak in C 
has only one maximum.  Common iterative procedures are alternating regression 
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[93], iterative target transformation factor analysis [94] and Gentle [95]. If 
available, information from several samples can be combined to give more accurate 
results [96,97]. 
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Figure 11 The purpose of multivariate deconvolution is to find the pure 
chromatographic profiles, C, and pure spectra, S, from raw-data, X. 

1.5.2. Determination of the number of components 

The mathematical definition of the rank of a matrix is the number of linearly 
independent rows or columns. Taking the noise into consideration, a more practical 
definition is that the rank equals the number of factors that are significantly different 
from the noise. The rank of the raw data equals the maximum number of spectra and 
chromatographic profiles that can be resolved from a peak cluster by a self-
modelling deconvolution method. Ideally, the rank of the raw data matrix, X, should 
therefore be equal to the number of analytes. Several factors may reduce the rank of 
the system and hinder successful resolution. The rank is reduced if there are 
compounds with identical spectra or spectra that are linear combinations of other 
spectra. The rank is also reduced if two chromatographic peaks are completely 
overlapping. Consequently, there must be a certain chromatographic resolution, and 
a certain difference between the spectra to achieve successful deconvolution.  

A large number of methods are used to estimate the number of significant factors of 
a data matrix. The various methods are thoroughly reviewed elsewhere [75]. There 
is probably no general method that can be applied for estimation of the number of 
compounds in GC–MS peak clusters because the noise patterns differ between 
instruments and between different applications on the same instrument.  
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1.5.3. Noise 

In any real chromatographic data, various types of noise will be present and may 
hinder successful resolution. Noise in chromatographic systems is typically 
heteroscedastic; the noise increases with signal strength. The expected accuracy and 
precision of a chromatographic peak are commonly expressed in per cent of the 
peak area, meaning that the noise is expected to increase proportionally with the 
peak size. The heteroscedastic noise may give inaccurate results when peaks with 
large differences in size are resolved. Because noise from the large peaks in a 
system will also influence the smaller peaks, the amount of noise relative to the peak 
size of smaller peaks will be large, and lead to inaccurate quantification of these. 
Thus, the limits of detection or accurate quantification of an analyte will not only 
depend on the peak size of the analyte, but will also depend on the size of other 
peaks in the cluster. 

Another effect that may limit the possibility of resolution is the scan-effect [98,99, 
Paper IX]. As can be seen from Equation 17, the principles of multivariate 
deconvolution methods require that the spectrum of an analyte is described by a 
single vector, sT, and the spectrum should therefore be constant during the elution of 
a pure peak. Quadrupole and sector mass spectrometers are scanning instruments, 
where the ions are recorded in sequence. The concentration in the detector changes 
during the time interval between the first and the last ions recorded in a scan. This 
leads to ‘false’ correlations between ions that are close in the scanning sequence. 
The scan effect may lead to overestimation of the number of components in a peak 
cluster (the rank) and may also hinder successful resolution of peaks with similar 
spectra, even if the number of compounds is correctly estimated. Possible solutions 
for reduction of the scan effect are given in Paper IX.   
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2. Identification of FAME from shifts in ECL-values   

This chapter is a discussion of Papers I and II, which both deal with the use of 
temperature induced shifts in ECL values for the identification of FAME. The 
strong dependence of the polarity of the cyanopropyl phases on temperature is an 
essential issue in both papers. 

2.1. Temperature induced shifts in ECL-values 

A method for the identification of fatty acid methyl esters based on the analysis of 
shifts in ECL values is described in Paper I. It has been shown that the polarity of 
cyanopropyl phases is temperature dependent [17] and that ECL-values of 
unsaturated fatty acids increase with temperature on these columns [100–102]. In 
temperature-programmed GC, increased temperature gradients or decreased carrier 
gas flow will increase the elution temperature of a compound, and therefore have 
similar effects as increased temperature in isothermal chromatography. This can be 
seen in the chromatograms in Figure 12, which compares the elution patterns of 
FAME analysed with two different programs on the BPX-70 phase. The difference 
in ECL value for the highly unsaturated fatty acid 22:6 n–3 is as high as 0.45 ECL 
units. The differences for less unsaturated fatty acids are smaller, only 0.10 ECL 
units for 24:1 n–9. 

In the work described in Paper I, the effects of varying start temperature, 
temperature gradients and column flow in linear temperature programs on the BPX-
70 phase were analysed. The factors were varied in a full factorial 33-design as 
shown in Figure 13. Chromatographic parameters are described in detail in Paper I. 
PCA (with programs as objects and fatty acids as variables) of the ECL values of 27 
FAMEs with different chain lengths and number of double bonds showed that the 
two first principal components explained 99% of the variance and that four 
programs adequately span the variation in the dataset (See Figure 1 in Paper I). The 
four programs and the centre point in the design were therefore selected as a suitable 
set of programs and applied for further studies in Paper I–IV. These programs are 
referred to as the standard programs in the remaining discussion. 

PCA on ECLs acquired with the standard programs, with the fatty acids as objects 
and the programs as variables, gave score plots where the fatty acids were 
distributed according to the chain lengths and number of double bonds. An example 
from Paper I is shown in Figure 14. The pattern in this figure is similar to the 
retention maps of FAME that are acquired by two-dimensional gas chromatography 
(GC × GC) [103]. In Paper I it is also shown that the number of carbons and the 
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number of double bonds in FAME can be determined by multivariate regression on 
the ECL data from the five standard programs.  
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Figure 12 Elution pattern from ECL 23.8 to 25.6 with two different temperature 
and flow programs on BPX-70. Upper chromatogram: Start temp. 
160 ° C, temp. gradient 2 ° C/min, column flow 26 cm/sec; lower 
chromatogram: Start temp. 190 ° C, temp. gradient 4 ° C/min, column 
flow 18 cm/sec. Further details are given in Paper II. 
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Figure 13 Levels used in 33 factorial design used in the study of ECL-shifts on a 
60 m BPX-70 column. Red spots mark the standard programs (1–5) 
that were selected for further studies in Paper I–VI.  
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Figure 14 PCA score plot of ECL values of C18–C24 FAMEs as objects. 
Variables were the five standard programs. Broken lines indicate the 
number of double bonds; solid lines indicate the n–3 and n–6 series. 
Green circles are fatty acids in the reference mixture GLC-461. Blue 
circles are tentatively identified marine fatty acids. PCA was 
performed on unweighted and mean centred variables. Further 
details are given in Paper I.  

2.2. Two-dimensional fatty acid retention indices 

A problem with identification based on plots like Figure 14 is the lack of stability. 
Principal components are ‘abstract factors’ that explain the properties of a given 
object relative to the other objects in the dataset, and with scales that has no direct 
chemical meaning. Thus, the score values of each fatty acid on the two components 
(PC1 and PC2) depends on which fatty acids that are present in the dataset, and will 
also vary with drift in stationary phase properties and other chromatographic 
conditions. Because of this instability it is difficult to identify compounds by 
comparisons with previously acquired retention data. 

The solution is to stabilise the system by defining retention indices in two 
dimensions; two-dimensional fatty acid retention indices (2D-FARI) were 
introduced in Paper II. Traditional retention index systems like Kovats indices or 
ECL values are typically based on a series of homologues where the only difference 
between the references is a single property, normally the chain length of the 
compounds. In a two-dimensional retention index system, the references must also 
vary in a second property. For fatty acids, an obvious choice would be to base the 
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system on the number of cis double bonds in addition to the chain length. These 
properties are also the two effects that are best explained by the plot in Figure 14. 

The reference mixture GLC-461 spiked with 22:3 n–3 and additional saturated 
FAMEs was used as calibration sample and analysed with the same standard 
programs that were selected in Paper I (Figure 13). ECL values for the standard 
programs were used in multivariate regression models for prediction of the chain 
length and the number of double bonds in the FAMEs in the calibration sample. The 
predicted values from these multivariate models were then applied to define the two 
retention index scales, FARIA and FARIB. The values that define the retention 
indices are given in Table 2 in Paper II. Because the values that define the scales are 
predicted values, they are not exactly the chain length and the number of double 
bonds, but the values explain these two factors if rounded to the nearest integers. 
Predicted values from the multivariate regression model were applied to define the 
scales, instead of true values, because values that can be accurately explained by the 
ECL data from the standard programs will give a more stable system. 

2D-FARI values are acquired by analysing the reference sample and other samples 
using the five standard programs. Multivariate regression is then applied to find the 
relationship between the ECL data for the standard programs and the defined 2D-
FARI values for the compounds in the reference mixture. The regression models are 
thereafter applied to predict 2D-FARI values for other FAMEs from their ECL 
values acquired using the five programs. This procedure aligns all FAMEs relative 
to the reference compounds and the results can be presented by ‘maps’ as shown in 
Figure 15.   

In the 2D-FARI map in Figure 15 the fatty acids are positioned within squares 
according to the chain length and the number of double bonds. However, there are 
exceptions for FAMEs with trans double bonds and FAMEs with a terminal double 
bond (n–1). The special behaviour of trans fatty acids on CNP phases is discussed 
further in Section 3. 

The polarity of CNP phases will often decrease with time. The length of a capillary 
column may also decrease with time because it may be necessary to cut a piece of 
the column each time the column is installed in the GC because the first meters of 
the columns may degrade if ‘dirty’ samples are injected. Thus, old columns may be 
several meters shorter than new columns, and will therefore have higher carrier gas 
velocity than new columns when used with identical injector pressures.  

The data shown in Figure 15 are from two BPX-70 columns with different 
properties; the difference in ECL for 22:6 n–3 acquired on the two columns is 0.08 
to 0.09. This is approximately equal to the width of a peak at the baseline. It is 
shown in Paper II and in Figure 15 that the 2D-FARIs are relatively robust towards 
differences in column properties and also that the 2D-FARI data can be estimated 
from programs with different temperature and flow settings. The 2D-FARI data for 
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the BPX-70 phase could also be estimated from ECL data acquired on a more polar 
CNP phase (SP-2560) but with some reduction in accuracy. 

With ECL values and other one-dimensional retention indices, changes in 
chromatographic conditions will have largest effect on the most unsaturated 
compounds (see Figure 12). 2D-FARIs are robust towards these changes because 
information about the polarity (number of double bonds) of the compounds is 
present in the data matrix applied in the regression. This information will not be 
present in ECL data from a single chromatographic run and a similar robustness 
towards changes in the chromatographic conditions cannot be achieved from 
ordinary univariate retention data.  

It may seem unnecessary and inconvenient to use as many as five different GC 
programs to calculate the two-dimensional data. It was shown in Paper I that the 
information in the dataset from the five programs can be explained (99.99%) by two 
principal components and that the information about the chain length and number of 
double bonds in FAME can be achieved by comparing the ECL data from only two 
programs. Thus, it can be argued that there are only two significant dimensions in 
the data. However, using more programs will increase the stability of the method. In 
complex mixtures there is also a risk of chromatographic overlap that may hinder 
accurate calculation of the ECL data. If a compound overlaps in one or more 
chromatograms it will still be possible to calculate accurate 2D-FARI data based on 
the remaining programs. More than two programs also allow outlier detection by 
multivariate methods like PCA. 
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Figure 15 2D-FARI of FAME analysed on two different BPX-70 columns. The 
values are the same as shown in Paper II (Figure 5). Green crosses 
mark values that are given by definition for FAMEs in the calibration 
sample. Red and blue spots mark results acquired on ‘new’ and ‘old’ 
column, respectively. Trans fatty acids and n–1 fatty acids are shown 
on yellow background. 
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3. Application to  trans  isomers 

This section is basically a discussion of Papers III and IV, but also includes some 
data from Paper I and II. The geometries of the double bonds in PUFA are essential 
for the chromatographic behaviour of the compounds. It is often assumed that trans 
isomers elute before the corresponding cis isomers on highly polar CNP phases. 
This assumption seems valid for monoenes, dienes and most tetraenes. However, the 
picture is more complicated with more unsaturated PUFAs. 

The effect of increased temperature on CNP phases is much less for trans double 
bonds than for cis double bonds. This has been shown for monoenes [101] and can 
also be seen by comparing ECL values from Paper III for trans and cis isomers of 
EPA and DHA with cis monoenes for the two standard programs referred to as 
Program 1 and 5 (See detailed discussion in Paper III).  

The different behaviour of cis and trans double bonds has implications both for the 
identification of trans fatty acids from retention data and for optimisation of 
chromatographic elution patterns of trans fatty acids. A PCA score plot of ECL data 
of cis and trans isomers of 18:1 n–9, 18:2 n–6, 18:3 n–6 and 18:3 n–3 that were 
acquired with the standard programs is shown in Figure 3 in Paper I. In this case, 
there is no variation in the chain length in the dataset and the fatty acids are 
distributed according to the number of cis and trans double bonds.  

The effect of trans double bonds is also visible in the 2D-FARI map in Figure 15 
where the FARIB values of trans 16:1 and all-trans 18:2 indicate that the effect of a 
trans double bond is slightly less than half the effect of a cis double bond. 2D-FARI 
data for all-cis and all-trans EPA and DHA are given in Paper III; the FARIB values 
of the all-trans isomers were only 27 and 28 % of the values for the all-cis isomers.  

3.1. Retention data for trans isomers of EPA and DHA 

In Paper III the different behaviour of cis and trans double bonds were utilised for 
optimisation of the elution patterns of isomers of EPA and DHA with one and two 
trans double bonds (1-trans and 2-trans isomers). These highly unsaturated fatty 
acids are abundant in fish oils and other marine lipids. Geometrical isomerisation of 
double bonds occurs at high temperature processing of edible oils and the 
isomerisation rates increase with the number of double bonds [104,105]. 
Geometrical isomers of these fatty acids have been reported in processed fish oil 
[106,107] and also in rat liver as a consequence of metabolism of trans isomers of 
18:3 [108,109].  
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Accurate quantification of trans isomers of EPA and DHA requires that the trans 
isomers are chromatographically separated from the all-cis isomers. The geometries 
of double bonds have limited influence on the retention in GC, and with the high 
number of possible isomers it is likely that one or several trans isomers will overlap 
with the all-cis isomer. The trans isomers can be separated from the all-cis isomers 
by LC or thin-layer chromatography (TLC) on stationary phases impregnated with 
silver ions. However, the main purpose of the work reported in Paper III was to 
search for resolution windows on CNP phases that allow direct analysis of the trans 
isomers by a single GC analysis.  

The all-cis isomer and isomers with one and two trans double bonds of EPA and 
DHA were analysed with the five standard programs. The relationships between the 
ECL values of the all-cis isomers and the trans isomers were found by linear 
regression and the regression lines are shown in Figure 16. As can be expected, the 
ECLs of the trans isomers increase with the ECLs of the all-cis isomers, but with 
less steep slopes. It can also be seen that the slopes of isomers with the same number 
of trans double bonds are nearly parallel.  

The slopes in Figure 16 show that it is possible to move the all-cis isomers relative 
to the trans isomers by changing the temperature and flow conditions, but isomers 
with the same number of trans double bonds cannot be moved relative to each other. 
The largest resolution is found where the distance between the red line (representing 
the all-cis isomer) and the other lines is maximised.  

Sufficient resolution (Rs = 1) requires a distance between the isomers of 
approximately 0.05 ECL units (see Paper III for details). There exist no windows 
that will provide this resolution between the all-cis and the 2-trans isomers. 
However the amounts of 2-trans isomers are formed in a much lower rate than 1-
trans isomers and the amounts in real samples can be expected to be negligible 
[107,110].  

The best resolution between all-cis EPA and the 1-trans isomers is in the area 
between Program 1 and 4. Program 1 also provided the best resolution of all-cis and 
1-trans DHA, but the regression lines indicate that resolution will be better for 
programs with lower ECL value for the all-cis isomer. This can be achieved by 
lowering the temperature gradient or increasing the column flow. However, it 
should be emphasised that the selection of chromatographic conditions is often a 
trade-off between separation efficiency and the time required for the analysis. 
Lower temperature gradients will increase the analysis time; too high carrier gas 
flow will give loss of column efficiency and reduced sensitivity for MS detectors. 

The properties of the EPA and DHA isomers were also investigated on SP-2560, 
which showed similar correlations between the all-cis and the trans isomers (see 
Paper III for details). The most notable differences were that SP-2560 separated four 
1-trans EPA isomers and that it was not possible to achieve sufficient resolution 
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between the all-cis isomer and the first 1-trans isomer eluting after the all-cis 
isomer. It was therefore concluded that BPX-70 is a more suitable column for 
analysis of these isomers. However, in subsequent studies on thermally isomerised 
EPA and DHA concentrates [110], it was found that only minor amounts of this 
isomer is formed and that there is also a problematic overlap between 20:4 n–3 and 
the first 1-trans EPA isomer on BPX-70 (Figure 17). The overlap between 20:4 n–3 
and the 1-trans EPA isomer is difficult to avoid by changing the chromatographic 
parameters because the two compounds have the same number of cis double bonds.  
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Figure 16 ECL of geometrical isomers of 20:5 n–3 [a] and 22:6 n–3 [b] (vertical 
axis) as functions of the ECL of the all-cis isomers (horizontal axis) 
on a BPX-70 column. Vertical lines mark the ECL values of the all-cis 
isomers acquired with the standard programs. Background data and 
equations for the regression lines are given in Paper III. 
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3.2. Application of the retention data for trans isomers of 
EPA and DHA 

The data for the retention behaviour of the trans isomers of EPA and DHA found in 
Paper III can be applied both for identification of the isomers and for optimisation 
of chromatographic conditions. Paper IV is about identification of trans isomers 
formed as artefacts in acid catalysed preparation of FAME from marine tissues. 
Both the regression lines and the 2D-FARI data from Paper III were applied for 
identification of the artefacts. 

Because Figure 16b suggests that the best resolution is achieved with low ECL 
values for all-cis DHA, a temperature program with a low temperature gradient (1.0 
°C/min) was selected. This gave ECL for all-cis EPA of 22.49 and all-cis DHA of 
24.85. Even though the applied program gave ECL values outside the region 
investigated in Paper III, the predicted retention times for the trans isomers 
(converted from ECL values) show fairly good match with the experimental 
retention of the 1-trans reference compounds (Figure 2 in Paper IV). The regression 
lines in Figure 16 can therefore be extrapolated to areas outside (but near) the 
investigated region with acceptable accuracy. 

The data from Paper III have also been applied for identification of isomers formed 
in heated EPA and DHA ethyl ester concentrates [110] Chromatograms of neat and 
thermally isomerised EPA and DHA are shown in Figure 17 together with 1-trans 
isomers. DHA was analysed with the same conditions as applied in Paper IV and 
ECL of the all-cis DHA isomer was similar as in Paper IV (24.85). EPA was 
analysed with a program expected to give optimal resolution of the all-cis and 1-
trans isomers with ECL of the all-cis EPA of 22.63. There were good match 
between predicted and experimental retention times for the 1-trans isomers and 
there were also correspondence between predicted retention times for 2-trans 
isomers and minor compounds formed by thermal isomerisation (Figure 17).  
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Figure 17 EPA and DHA concentrates analysed on BPX-70. [a] and [b] are Neat 
concentrates, [c] and [d] are thermally isomerised concentrates. [e] and 
[f] are 1-trans references. Triangles mark predicted retention times 
based ECL of the all-cis isomers and the equations given in Paper III. 
The GC temperature programs was similar to the standard programs 
but with start temperature of 180 ° C (EPA isomers) and 160 ° C (DHA 
isomers), gradients of 1 ° C/min and carrier gas velocity of 26 cm/sec 

                    [110].         
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4. Prediction of equivalent chain lengths 

This chapter is a discussion of Papers V–VI, which are about the prediction of ECL 
values. There are basically two reasons why prediction of retention indices is of 
interest. Accurate prediction of retention indices may be a valuable tool for 
identification of unknown compounds that is not available as standards. Since 
several compounds may have identical or near identical retention times, matching 
retention indices will not confirm the identity of a compound. However, models that 
predict retention indices (or retention times) may be an effective tool for elimination 
of alternatives or incorrect tentative identifications. 

A second reason to develop models for prediction of retention indices is related to 
optimisation of elution patterns. In complex samples like marine fatty acids there is 
large risk of chromatographic overlap and suitable reference samples that contain all 
compounds of interest may not be available. With models that predict retention 
indices it is possible to test whether a given compound will be resolved or hidden 
under other peaks.  

Various approaches have been applied for the prediction of retention indices. These 
can roughly be divided into three classes: 

Type I: Models based on experimentally determined solute-solvent interactions.  

Type II: Models based directly on the molecular structure or parameters 
calculated from the molecular structure.   

Type III: Models based on group additivity. 

The first type of models are based on sets of solute descriptors, which are 
experimentally determined parameters describing the properties of each analyte, and 
experimentally determined phase constants (or solvent descriptors), which describe 
the properties of the stationary phases. Retention indices can be estimated by 
equations as shown below:  

 I = a×A + b×B + c×C … + n×N (21) 

where a, b, c, …, n are solute descriptors and A, B, C, …, N are phase constants. 
Thus, there is one solute descriptor matching each phase constant. Typical models 
include 3 to 6 parameters of each type [111,112]. The models may also be expanded 
by inclusion of other parameters describing the solute properties, like boiling points 
or the retention index on squalane [111,113]. The most common systems of solute-
solvent interactions are the concepts of Rorschneider [113,114], McReynolds [115] 
and Abraham [112].  
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This type of models has several limitations. The main drawback is that the data 
required for the calculations may not be available. The solute descriptors are 
available mainly for relatively small molecules. The use of phase constants is also 
questionable; as shown in Section 2, the properties of a phase are not necessarily 
constant.   

The alternative to models based on experimentally determined solute and solvent 
descriptors is to base the models directly on a description of the molecular structure 
or on parameters estimated from the structure (Type II). Mathematical models of the 
relationships between the retention properties and the structures of compounds are 
often referred to as quantitative structure-retention relationships (QSRR). The 
challenge in QSRR is often to find relevant mathematical descriptions of the 
structure of a molecule that can be applied as variables in the models. A 
mathematical description of the structure is possible for simple systems like 
unbranched fatty acids with methylene-interrupted double bonds. Other simple 
systems that can be described in a similar way are dioxins [116] polychlorinated 
biphenyl ethers [117] and simple hydrocarbons [118]. However, with more 
complicated molecules with several functional groups, or for general models that 
cover a wide range of functional groups and possible structures, a relevant 
mathematical description of the molecule is not possible. This problem may be 
circumvented by basing the models on suitable molecular descriptors, such as molar 
volumes, electron donating properties, polarizability and dipole moments that is 
estimated from quantum chemical calculations. A large number of parameters are 
typically calculated in the initial stage and several hundred parameters are often 
evaluated before the models are refined by a suitable variable selection procedure 
[119].  

Models based on molecular structure will usually not apply any descriptors of the 
stationary phase properties, but will instead use a calibration set of compounds with 
known retention indices and a multivariate regression method (e.g. PLSR or neural 
networks) to find the relations between the molecular descriptors and the retention 
indices. The multivariate model is then applied to predict the retention indices of 
other compounds from their structure. Thus, the only experimentally determined 
parameters in these models are usually the retention indices of the calibration 
compounds. The drawbacks of these models are that the accuracies, especially of 
models that cover a large range of functional groups, are often limited, and that the 
calculations of the descriptors and the final models require computational power.     

Retention indices may also be estimated by assuming functional group additivity 
(Type III), i.e. the presence of a functional group will have the same effect in 
different molecules. Models of this type are usually based on the number of carbons 
and contributions from ‘group retention factors’ [120–122]. Estimation of FCL 
values of PUFAs by summing the FCL values of monoenes with the double bonds 
in the corresponding positions [33–35,123] can be classified as a Type III approach.  



 40

It should be emphasised that there are approaches that do not fit nicely into the three 
categories described above, and there are also examples that can be described as 
hybrids, e.g. models that include both experimentally and theoretically derived 
molecular descriptors.  

Two different approaches for prediction of ECL values have been evaluated in 
Paper V and VI. The work in Paper V predicts the ECL of PUFA from simple 
descriptors of the molecular structure and can be described as a Type II approach. 
The work in Paper VI predicts ECL from 2D-FARI values, which can be described 
as experimentally determined solute descriptors. However, the models are based on 
regressions on a calibration set instead of stationary phase descriptors and therefore 
have elements from both the type I and type II approaches.  

4.1. Prediction of ECL values of MI-PUFA from the 
molecular structure 

In Paper V multivariate regression models were applied to predict ECL values for 
methyl esters of PUFA. In PUFA with MI double bonds of cis geometry, the 
molecular structure can be described by only three parameters: the chain length, the 
number of double bonds and the position of the double bond system. It is well 
known that all three parameters will influence the ECL values of the PUFA and it 
was evaluated whether precise models for prediction of ECL and FCL values could 
be based solely on these three parameters. 

As shown in Section 1.1, the positions in the double bond system in MI-PUFA can 
be given both as the distance from the carbonyl group (∆-position) and as the 
distance from the methyl end (n-position). It is also well known from the studies of 
monoenes that the relationships between double bond positions and ECL values are 
not linear [32,124,125]. Shifts in positions have limited effect close to the centre of 
the carbon chain, while the effects increase substantially as the double bonds 
approaches either of the ends. A common trick to handle such non-linearities by 
linear methods is to include higher order terms as variables [77].  

Both ∆- and n-positions and the higher order terms of ∆ and n were therefore 
included in the models as separate variables and the performance of models based 
on various selections of the variables was investigated. For general models it was 
necessary to include both the ∆-position and the n-position and the higher order 
terms ∆2, ∆3, ∆4 and n2. For models restricted to n–3 and n–6 isomers it was not 
necessary to include the n-position among the variables. The highest residuals for 
the most accurate models were below 0.06 ECL units, and RMSEP was below 
0.030.  
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Figure 18 Distribution of the residuals (blue curve) compared to the 
chromatographic peak width (red curve) for model 19e in Paper V. 
The peak width is estimated from 20:5 n–3. Residuals of the single 
fatty acids are shown with yellow dots. The intervals indicate 95 and 
99 % of the area of the error distribution curve.  RMSEP = 0.027. 

There was a good correlation between predicted and experimental ECL values with 
slopes near one and r2 of 0.9999. However, practical applications of models for 
prediction of retention indices require very high accuracy to be of any use and the 
accuracy are better illustrated if the residuals are compared to the width of a peak, as 
in Figure 18. Some of the residuals are outside the area covered by the estimated 
chromatographic peak width (red curve), which means that a predicted ECL value 
for a given compound may be outside the area covered by the chromatographic 
peak. The intervals of the error distribution curve may be used to set limits for 
rejection of tentative identifications. In the case shown in Figure 18, the 
identification of a compound may for instance be rejected if the ECL of the 
chromatographic peak is more than 0.072 or 0.055 units from the predicted value 
(99 and 95% intervals, respectively).    

Both ECL and FCL values were applied as dependent variables in the models in 
Paper III. The residuals were almost identical. Different regression methods were 
also applied. PCR and PLSR, methods based on latent variables, gave approximately 
equal RMSEP, while MLR gave poorer predictions.  

The regressions were tested on ECL data from three different GC programs 
(standard programs 1, 3 and 5). The residuals of models based on different GC 
programs were correlated, i.e. fatty acids with a large positive residual on models 
based on one program had large positive residuals on models based on the other two 
programs. These correlations should not be present if the accuracy of the ECL data 
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was the limiting factor for the accuracy of the models. Because there is systematic 
variation in the ECLs that is not explained by the best models, it should be room for 
further improvements. 

4.2. Prediction of ECL values from 2D-FARI data 

Since the two-dimensional fatty acid retention indices are calculated from the ECL 
values acquired at different chromatographic conditions, the two values contain 
information about how the ECL values will change with variations in 
chromatographic parameters. Prediction of ECL values from 2D-FARI is described 
in Paper VI. 

A reference sample containing fatty acids with 2D-FARI values defined in Table 2 
in Paper II was analysed with various GC programs and the ECL values were 
calculated for the compounds in the reference sample. A multivariate calibration 
was then used to find the relationship between the 2D-FARI (x-variables) and ECL 
(y-variable) for the FAMEs in the reference sample. The multivariate calibration 
model was thereafter applied to predict the ECL of other FAMEs from their 2D-
FARI values. 

Since the 2D-FARI values for the FAMEs in the calibration sample are given by 
definition, the only information necessary to calculate the ECL value for a 
compound run under identical conditions as the calibration sample is the 2D-FARI 
values for the compound, which may be acquired from previously reported data. 

Results for prediction of ECLs for various fatty acids with 0–5 double bonds (All 
data from Paper VI) are shown in Figure 19. The prediction errors of the models 
based on 2D-FARI values are much smaller than achieved with the models based on 
the molecular structure (Figure 18). The RMSEP of general models (large range of 
ECL) based on the 2D-FARI values was less than half the RMSEP for the best 
models in Paper V. However, it is difficult to make a direct comparison of the two 
approaches because the predictions were based on different compounds. There are 
also differences in the validation procedures. Most of the models in Paper V were 
validated by cross-validation, while the models based on 2D-FARI are validated on 
test-sets. 

The calibration sample contains only saturated and cis unsaturated fatty acids. It was 
therefore a question how accurate the models will predict the ECLs of other types of 
fatty acids. Because trans double bonds show a different behaviour with respect to 
the ECL shifts required for calculation of 2D-FARI than cis double bonds, the 
method was tested also on trans isomers of EPA and DHA. The errors for the 
predicted ECL values of the trans isomers were lower than the errors for the cis 
unsaturated fatty acids.   
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Figure 19 Distribution of the residuals (blue curve) for ECL data predicted from 
2D-FARI values compared to the chromatographic peak width. The 
peak width (red curve) is estimated from 20:5 n–3. Residuals of the 
single fatty acids are shown with yellow dots. The intervals indicate 
95 and 99 % of the area of the error distribution curve.  RMSEP = 
0.012 (Redrawn from Fig. 1a in Paper VI) 
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5. Identification of FAME from mass spectra 

This chapter is a discussion of Papers VII–VIII, which are about application of 
multivariate analysis for identification of PUFA from mass spectra of FAME. PCA 
is applied in Paper VII to distinguish between cis and trans isomers of PUFA. 
Multivariate regression (PLSR and MLR) is applied in Paper VIII for the 
determination of the number of double bonds in PUFA.  

5.1. Identification of trans double bonds in PUFA  

Trans isomers of fatty acids analysed by gas chromatography are usually identified 
from retention data or occasionally by application of infrared detectors [126–130]. 
Several reviews have been published on the topic [131–133].  

Little attention has been paid to the possible identification of trans geometry in fatty 
acids by MS. However, it has been shown that principal component analysis can 
distinguish between small differences in mass spectra of picolinyl esters of 
geometric isomers of monounsaturated fatty acids [73]. Differences have also been 
found between CI spectra of cis and trans FAME isomers [60]. It has been shown 
that cis and trans geometry in aliphatic chains can be detected by EI-MS [134], and 
differences between the spectra of cis and trans monoenoic FAME have been 
observed when the double bond is close to the carbonyl group [135,136].  

The analysis of cis and trans isomers of PUFA with MI double bond systems in 
Paper VII showed surprisingly large discrimination caused by the geometries of the 
double bonds. A PCA score plot of the mass spectra of geometrical isomers in 18:3 
n–3 is shown in Figure 20. The main variance in the dataset, 77% explained by PC1, 
is caused by differences in the geometry of the central double bond. There is also a 
clear discrimination along PC2, which is caused by differences in the terminal 
double bond. There was no clear discrimination caused by the geometry of the ∆9 
double bond.  

The effect of trans geometry in the central double bond in the triene system can be 
seen in Figure 21 where the all-cis 18:3 n–3 is compared to the isomer with trans 
geometry in the ∆12 position.  The most notable difference is that there is a 
substantial reduction of the m/z 79 ion, which is normally the base peak in PUFA 
with three or more MI double bonds. Furthermore, the diagnostic ions for the 
position of the double bond system [38–40] (α and ω ions, Figure 5d) are reduced 
and the α-ion is not visible above the background. Similar results were also 
achieved with 18:3 n–6, 20:3 n–3 and 22:3 n–3. Isomers of 20:3 and 22:3 that 
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differed only in the geometry of the double bond nearest the carbonyl group were 
also separated by PCA (Paper VII).  
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Figure 20 PCA score plot of geometrical 18:3 n–3 isomers (Reproduced from 
Paper VII). 
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Figure 21 PCA score plot of geometrical 18:3 n–3 isomers. (From Paper VII) 
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The trans isomers of 20:4 n–6 and 22:4 n–6 were also investigated in Paper VII. 
Because of the low number of peaks that were completely resolved by GC, 
conclusive results about the methylene-interrupted tetraenes could not be achieved. 
However, similar reductions in m/z 79 were also observed in tetraenes with trans 
double bonds and observations on 1-trans isomers with tentative identifications 
from the retention times showed the following:  

1) Trans geometry in the second double bond counted from the methyl end led 
to a substantial decrease or disappearance of the ω-ion.  

2) Trans geometry in the second double bond counted from the carbonyl group 
led to a substantial decrease or disappearance of the α-ion.  

3) Absence or low abundance of both the α and ω ions was accompanied by a 
large reduction in m/z 79.  

4) Absence or low abundance of one of these ions was accompanied by less 
reduction in m/z 79. 

More unsaturated fatty acids was not investigated in Paper VII, but trans isomers of 
20:5 n–3 and 22:6 n–3 were analysed in full-scan mode in connection with the work 
described in Paper III. It is known from the analysis of trienes that trans geometry in 
the n–3 and n–6 positions lead to a substantial reduction in the retention time, while 
trans geometry in the other positions have little effect or may give slightly higher 
retention times [137–139, Paper I-VII]. The 1-trans isomers of EPA and DHA with 
lowest retention times are therefore expected to be the isomers with trans geometry 
in the n–3 position and the second peaks is expected to be the isomers with trans 
geometry in the n–6 position. Thus, the two first 1-trans isomers of EPA shown in 
Figure 17e are expected to be ∆17 trans EPA and ∆14 trans EPA, and the two first 
isomers of 1-trans DHA in Figure 17f are expected to be ∆19 trans DHA and ∆16 
trans DHA. 

According to the results from Paper VII trans geometry in the n–6 position should 
give a significant reduction in m/z 108 and similar reductions should also be found 
in the all-trans isomers. Isomers with trans geometry in the n–3 positions should be 
more similar to the all-cis isomers. 

The expected reductions were observed for the all-trans isomers. Relative to m/z 79 
(base peak in most isomers), m/z 108 was 18 % in all-cis EPA and 20 % in all-cis 
DHA, and only 6 % in both all-trans isomers. Low abundance in m/z 108 was also 
observed for the isomers with trans geometry in the n–6 double bonds, 5.3 % for 
EPA and 5.6 % for DHA. As expected, the levels in the isomers with trans 
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geometry in the n–3 position was similar to the all-cis isomers, 19 % for EPA and 
22 % for DHA.  

Similar reductions in the α-ions, which are m/z 180 for EPA and m/z 166 for DHA, 
were also observed in spectra of the all-trans isomers. The α-ion was 4.5 % relative 
to m/z 79 in all-cis EPA and 1.7 % in all-trans EPA. The corresponding values for 
all-cis and all-trans DHA were 4.5 % and 1.3 %.  

5.2. Identification of PUFA from selected ions  

With scanning mass spectrometers, like sector instruments and quadrupoles, a 
substantially increased sensitivity can be achieved by selected ion monitoring (SIM), 
where a few ions are monitored instead of the entire mass spectrum [140]. However, 
the selection of a small subset of ions may lead to loss of information required for 
the identification of the compounds. The purpose of the work described in Paper 
VIII was to find subsets of ions that contain information suitable for identification 
of fatty acids. The work focused on the determination of the number of double 
bonds in PUFA with MI double bond systems. If the number of double bonds is 
known, the chain length and the position of the double bond system can usually be 
determined from the chromatographic retention times or ECL values. 

As can be seen in Figures 5 and 21, the majority of the MS signals are from ions 
with masses from m/z 50 to m/z 110, while important diagnostic ions (α-ion, ω-ion, 
molecular ion) have high masses and low intensity. This has two important 
consequences. The low intensities of diagnostic ions mean that identification of a 
compound requires a high-quality spectrum. Acquiring high-quality spectra of 
unknown compounds is often difficult, since the unknowns are rarely among the 
largest peaks in a chromatogram. Another consequence of the low abundance in the 
higher-mass region is that scanning for diagnostic ions will ‘waste’ signal strength 
because the mass spectrometer is scanning in regions where there are only ions of 
low abundance. 

5.2.1 Survey of scan spectra 

Thirty PUFAs were isolated by silver-ion LC and applied in the study. Two of these 
had NMI double bond systems. In addition, saturated, monounsaturated and di-
unsaturated fatty acids were included in the dataset. A survey of the information in 
the dataset in the mass region from m/z 50 to m/z 110 was performed by PCA. The 
score plots are shown in Figure 22a and b. In Figure 22a it can be seen that PUFA 
are clearly separated from the other classes, and also that NMI-PUFA are separated 
from MI-PUFA. It has recently been reported that PCA on selected fragments from 
CI-MS spectra of FAME with methane as reagent gas gave similar discriminations 
as shown in Figure 22 [56]. It has also been shown that PCA on EI-MS spectra 
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gives a clear separation between dienes with conjugated and methylene-interrupted 
systems [141].  

A recalculation of the MI-PUFA group gave the score plot in Figure 22b. The n–3, 
n–6 and n–4 groups are clearly separated along PC2. The n–1 fatty acids are 
positioned between the n–3 and n–4 group, but very close to the n–3 group. The 
separation along PC1 seems to be related to the ∆-position of the double bond 
system. The ∆4 (22:5 n–6, 22:6 n–3, 16:4 n–3) and ∆5 (18:4 n–4, 18:5 n–1, 20:5 n–
3, 20:4 n–6) PUFAs are all positioned to the right in the score plot and fatty acids 
with high ∆-positions are positioned to the left.  
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Figure 22 PCA score plots of mass spectra (m/z 50–110) of different fatty acid 
classes [a] and PUFA with methylene-interrupted double bonds [b]. 
SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, 
DUFA: diunsaturated fatty acids, NMI-PUFA: polyunsaturated fatty 
acids with non-methylene interrupted double bond systems, MI-
PUFA polyunsaturated fatty acids with methylene interrupted double 
bond systems. Fatty acids in the same homologous series are 
connected with curves.  
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Figure 23 Cross validation predictions versus measured values for a PLSR 
model of the number of double bonds from mass spectra (m/z 50–
110) of PUFA. SEP = 0.141. Horizontal lines mark boundaries where 
the predicted values will be rounded to an incorrect integer. Redrawn 
from Figure 3 in Paper VIII. 

The two first principal components, explaining 81 % of the variance in the dataset, 
showed no direct relation to the number of double bonds. However, information 
about the number of double bonds could be extracted by multivariate regression. 
PLSR was applied to build a model for the prediction of the number of double 
bonds based on all ions in the m/z 50–110 dataset. The PLSR model had SEP of 
0.141 and bias of 0.01. Predicted versus real values are shown in Figure 23. The 
model will fail in cases where the predicted values are rounded to an incorrect 
integer, i.e. if the prediction error is larger than 0.5. All the predicted values were 
within these limits. An estimated number of prediction errors (ENPE) for the model 
can be calculated from the area of the error distribution curve that is outside 0.5. 
ENPE is only 0.05 % in the case shown in Figure 23.    

5.2.2. Selection of ions for SIM 

The PLSR on the m/z 50–110 spectra shows that there is enough information in the 
spectral region to find an accurate model for the prediction of the number of double 
bonds. The optimal number of PLS-components in the PLSR-model gives a rough 
indication of the minimum number of ions that must be included in a multivariate 
model without loss of accuracy. The residual y-variance for PLSR-models with 
different number of PLS-components is shown in Figure 3b in Paper VIII.  The 
residuals falls rapidly from zero to four components, there is a minimum at five 
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components and a slight increase as more components are included. It was therefore 
decided to search for suitable SIM combinations by testing MLR-models with three 
to six ions. There are 61 ions in the dataset with masses from m/z 50 to 110 and the 
number of possible subsets with three, four, five and six ions is 35 990, 521 855, 
5 949 147 and 55 523 372.  

There are several common techniques for selection of the best combination of 
variables such as forward selection, backward elimination and stepwise regression. 
There are also more advanced methods for variable selection, e.g. genetic 
algorithms, which have been applied on MS data [66]. However, there is no 
guarantee that these methods will find the best possible subset. The optimal subsets 
of ions were therefore found by testing every combination of three to six ions. To 
resemble SIM spectra, all subsets were normalised to constant sum prior to the 
regressions. MLR was used as regression method. To save computation time, 
regressions were not cross validated in the initial search but the ten models with 
lowest SEC were subsequently cross-validated. SEP and SEC for these models were 
highly correlated, indicating that the same subsets would have been found if cross-
validation had been applied in the initial step. 

SEP for the best subset with six ions (m/z 55, 79, 80, 91, 93, 106) gave SEP of 
0.132, which was slightly better than SEP for the PLSR on all ions (Figure 23). The 
subset with m/z 55, 74, 79, 80, 91, 93 has been applied in later studies (Papers II, III, 
IV, V and VI). The selection of this subset is a compromise where the signal 
strength and separation of other fatty acid classes were also considered. SEP for this 
subset was 0.148, which gave an ENPE of 0.07 % that was regarded as acceptable. 
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6. Deconvolution of overlapping peaks 

A common problem in chromatography is overlapping or partially resolved peaks, 
which hinders accurate quantification of the overlapping compounds. In cases of 
severe overlap, it may also be difficult to extract pure spectra or determine the 
retention time. As shown in Section 1.5 there exist a theoretical framework for 
deconvolution of overlapping peaks if the detector provides spectra of the analytes, 
and several resolution techniques have been developed.  

Multivariate deconvolution techniques are applied in Papers IX and X. The work in 
Paper IX is basically about noise and the quality of the GC–MS data. A method for 
reduction of noise from scanning mass spectrometers is proposed in this paper and 
applied in Paper X, which shows a practical application of multivariate 
deconvolution of overlapping geometrical isomers of 18:3 n–3. 

6.1. The scan effect    

As shown in Section 1.5, the principles of multivariate deconvolution methods 
require that the spectrum of an analyte is described by a single vector, sT (Equation 
17) and the spectrum should therefore be constant during the elution of a peak. 
Concentration differences in scanning mass spectrometers during a scan lead to 
overestimation of the last ions relative to the first ions in a scan when the 
concentration in the detector is increasing (before peak maximum), and 
overestimation of the first ions relative to the last ions when the concentration in the 
detector is decreasing (after peak maximum). In GC–MS, narrow peaks and 
relatively slow scan speeds often lead to large scan-to-scan variations in the spectra. 
An example of GC–MS SIM mode of a pure fatty acid standard is shown in Figure 
24.  

This scan-effect can be reduced by using high scan rates. However, this may lead to 
reduced sensitivity. The effects of increased scan rate in SIM analyses of six ions on 
the HP-5972 mass spectrometer are illustrated in Figure 25. After each scanned ion, 
there is a short time interval, the inter-ion time lag, where signals are not recorded. 
There is a similar larger time lag between two scans, the inter-scan time lag. These 
time lags are constant and were estimated to be 14 and 60 ms respectively [Paper 
IX]. Reduction of the dwell time, the time each ion is recorded, leads to loss of 
signal because the time where no ions are recorded increase relative to the total scan 
time. 



 52

 

14
.6

33

14
.6

45

14
.6

58

14
.6

70

14
.6

82

14
.6

94

14
.7

06

14
.7

19

14
.7

31

14
.7

43
14

.7
55

14
.7

68

14
.7

80

14
.7

92

14
.8

04

0

10

20

30

40

55 57 69 74 81 84
m/z

A
bu

nd
an

ce
(%

 o
fs

um
)

0

10

20

30

40

0

10

20

30

40

55 57 69 74 81 84
m/z

A
bu

nd
an

ce
(%

 o
fs

um
)

Scan direction

Time

18:1 n-9

m
in

a
b

c
a c

b

 

Figure 24 Scan effect illustrated by analysis of a pure peak (18:1 n–9 fatty acid 
methyl ester) analysed with a frequency of 1.36 scans/sec. The bar 
plot of the masses illustrates how the spectrum changes from the 
start (a) to the end (c) of the pure peak. The applied instrument (HP-
5972, Agilent) scans from the highest to the lowest mass. 
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Figure 25 Effect of increasing the frequency (scans per second) on the HP-
5972 MS detector in SIM mode. Yellow areas represent time when 
signals are detected; grey areas represent the inter-ion time lags (14 
ms) and inter-scan time lags (60 ms) when no ions are recorded. 
Decreasing the dwell times (the time each ion is recorded) from 100 
to 10 ms leads to 60 % reduction of the signal.  

The scan effect can also be reduced by corrections in the chromatographic direction 
[98,99,142]. The difference in signal abundance, as a function of time for a specific 
ion in a spectrum, is calculated by interpolation with the signal in the next recorded 
spectrum. If the time lag between the detection of each ion in the spectrum is 
known, the signals may be corrected as if all ions were recorded simultaneously. 
Details are given in the references [98,99,142]. This method has several drawbacks. 
One is that the shape of the concentration profile cannot be accurately modelled 
with linear interpolation. It has been proposed to use a second order interpolation 
from three consecutive spectra to reduce this problem [98].  
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A second problem is that the correction procedure does not distinguish between 
differences caused by the scan effect and differences caused by the presence of a 
second analyte in the spectrum. Consequently, the procedure may correct for 
differences that are not caused by the scan effect. Details about the data-acquisition 
must also be known. It is essential to know whether the instrument scans from the 
highest to the lowest mass or in the reverse direction and corrections for the inter-
scan time lag should also be considered.  

An alternative solution for reduction of the scan effect is proposed in Paper IX. The 
method utilizes that mass spectra are non-continuous spectra, as opposed to, for 
example, UV, IR or NIR spectra. Two consecutive masses in the spectrum are 
measured almost simultaneously; the scan effect has therefore limited influence on 
the ratio of these masses.  Since a mass spectrum is non-continuous it can be 
expressed as ratios of consecutive masses without loss of information, but the scan 
effect is removed or significantly reduced.  

Every spectrum is transformed by dividing the intensity of each ion by the intensity 
of the ion scanned immediately after. The intensity of the last ion recorded in the 
scan is set to 1. If the inter-scan time lag is low compared to total scan-time it is 
advisable to divide the abundance of the last ion in the scan by the abundance of the 
first ion recorded in the next scan. The transformations may also be applied in the 
reverse direction. After the transformation, each spectrum is normalised to have the 
same total abundance as the corresponding spectrum in the untransformed data. 

These transformations also have drawbacks and limitations. If there are ions in the 
scan with no signal (except background noise), the noise will be amplified because 
of division by a noisy signal with abundance near zero. For this reason, these 
transformations are most feasible for SIM analyses of analytes with similar spectra. 
The transformations in the spectral direction will radically change the spectra, so 
they will be less suitable for identification purposes. However, after the resolution, 
the original spectra, S, may be recovered by combining the spectral profiles C with 
untransformed X in Equation 19. 

A latent projective graph (LPG) [84] is a PCA score plot of the raw data matrix, X, 
with scan numbers (or retention times) as objects and masses (or wave numbers) as 
variables (See Figure 11). LPG is performed on uncentred data. Noise free pure 
peaks will be projected as a straight line in LPG because the spectra of a pure peak 
differ only in the total signal strength. LPGs of two closely eluting 18:1 FAME 
(Rs = 1.27) are shown in Figure 26. Before ratio-transformation of the spectra 
(Figure 26a) the peaks appears as two loops because the main variation in the data is 
the scan-effect and not the difference between the spectra of the two compounds. 
After transformation (Figure 26b), the peaks are projected as two straight lines 
because the scan-effect is removed.  
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Deconvolution of the two monoenes with more severe chromatographic overlap (Rs 
= 0.68) is shown in Figure 27. Deconvolution of the untransformed X failed and 
gave two profiles with double peak maxima. Deconvolution of the transformed X 
gave to separate peaks with one maximum each. Gentle [95] was applied as 
deconvolution method in this case because the method does not force unimodality 
(one maximum) on the chromatographic profiles.  

 

[a] 

0.0 2.0 4.0 6.0 8.0 10.0 ××××104
-10.0

-5.0

0.0

5.0

10.0
××××103

5
6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

4

P
C

-2

PC-1

0.0 2.0 4.0 6.0 8.0 10.0 ××××1040.0 2.0 4.0 6.0 8.0 10.0 ××××104
-10.0

-5.0

0.0

5.0

10.0

-10.0

-5.0

0.0

5.0

10.0
××××103

5
6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

4

P
C

-2

PC-1

 

[b] 

0.0 5.0 10.0 15.0 ××××104
-10.0

-5.0

0.0

5.0

10.0
××××103

4 5
6

7

8

9

1011

12

13

14
15
16 17

18

19

20 21

22

2324

25
2627

P
C

-2

PC-1

0.0 5.0 10.0 15.0 ××××104
0.0 5.0 10.0 15.0 ××××104

-10.0

-5.0

0.0

5.0

10.0

-10.0

-5.0

0.0

5.0

10.0
××××103

4 5
6

7

8

9

1011

12

13

14
15
16 17

18

19

20 21

22

2324

25
2627

P
C

-2

PC-1

 

Figure 26 Latent projective graphs of 18:1 n–9 and 18:1 n–7 fatty acid 
methyl esters before [a] and after [b] transformation of the SIM 
spectra to ratios. Chromatographic resolution, Rs, is 1.27 
(Reproduced from Paper IX). 
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Figure 27 The results of multivariate deconvolution by Gentle [95] of 18:1 n–9 
and 18:1 n–7 FAMEs before [a] and after [b] transformation of the 
SIM spectra to ratios. Chromatographic resolution, Rs, is 0.68 
(Reproduced from Paper IX). 

6.2. Multivariate deconvolution of overlapping 18:3 
isomers  

The spectral transformations proposed in Paper IX were applied in Paper X for 
resolution of overlapping peaks of 18:3 geometrical isomers.  

Because of the similarity in structure and physical properties, complete separation of 
geometrical 18:3 n–3 isomers is hard to achieve. The most difficult resolutions are 
between the 9t,12t,15c and 9c,12c,15t isomers [143–145, Paper I andVII], and 
between the 9c,12t,15c and 9t,12c,15c isomers [143,144,146,147,Paper I and VII]. 
Peak overlaps between 9c,12t,15t and 9t,12c,15t have also been observed [143–
146,148]. The quantification of these isomers may be further complicated by 
overlap with other FAMEs, such as C20 fatty acids [145,148–150] or gamma-
linolenic acid (6c,9c,12c-18:3) [145,151,Paper I  and VII]. 
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It was shown in Paper VII that the geometry of the central double bond has 
significant influence on the mass spectra of the isomers. This means that all the 
resolution problems mentioned above involves two isomers with significant 
differences in the mass spectra. These differences can be utilised for deconvolution 
of the overlapping peaks by multivariate methods as outlined in Section 1.5. 

The elution patterns of all geometrical isomers of 18:3 n–3 and all-cis 18:3 n–6 with 
two different temperature programs on BPX-70 are shown in Figure 28. There are 
five clusters of overlapping isomers, one with three isomers and four with two 
isomers.  

The data were recorded by SIM-MS and the signals for each ion and the 
deconvoluted chromatographic profiles for clusters a1 and a2 are shown in Figure 
29; resolution of the other clusters are shown in Paper X. Overlapping compounds 
in GC–MS can often be quantified from selective ions, i.e. ions that are present in 
the spectrum in only one of the overlapping compounds. However, in this case there 
are no selective ions and none of the ions show a clear profile for any of the co-
eluting peaks  

Since there are no selective ions, no good start-estimates of the chromatographic 
profiles, C, can be found and the resolution must be based on initial estimates of S 
(the purest spectra). Estimates of S were found by a modified Borgen procedure 
according to [92] and the estimates of C and S were refined by the iterative 
procedure Gentle [95]. 

Mixtures of the isomers in various proportions were used to evaluate the 
quantitative accuracy of the deconvolutions. With few exceptions, r2 was >0.99 for 
the correlation between predicted and expected areas. The resolution of the cluster 
with three compounds were less precise, and r2 was in one case as low as 0.86. As 
can be seen in Figure 29b, there is no region in the chromatogram where the 
6c,9c,12c isomer is present without interference of the other compounds. This will 
lead to poorer start estimates of S for cluster a1 than for the other clusters. Further 
details about the quantitative results are given in Paper X.     

The estimation of the correct number of peaks with rank analysis was not considered 
an issue in this case because all deconvolution are performed on problems where the 
number of peaks is known. In ‘real’ samples with isomerised linolenic acid, the 
presence or absence of a certain isomer will normally be known from the presence 
of other isomers in the sample. However, the number of significant components is a 
limitation for the number of compounds that can be resolved from one cluster. 

Previous studies of the mass spectra of all eight geometric isomers of linolenic acid 
(Paper VII) indicated that situations as described in Section 1.5.2, where the spectra 
are identical or linear combinations of other spectra, may occur in peak clusters of 
linolenic acid isomers. When normalised mass spectra were analysed by PCA, the 
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two first principal components explained 94% of the variance, and the remaining 
principal components showed no systematic structure. This indicates that the 
number of significant factors in a peak cluster with linolenic acid isomers will be 
maximum three. The number of linolenic acid isomers in a peak cluster should 
therefore be kept as low as possible, and should not exceed three. The resolution of 
a peak cluster containing 9c,12t,15t-18:3, 9t,12c,15t-18:3 and 9t,12t,15c-18:3 is 
shown in Paper IX.  
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Figure 28 Co-elution patters of 18:3 n–3 geometrical isomers with different 
programs on BPX-70. Additional details are given in Paper X.  
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Figure 29 Resolution of cluster a2 [a] and a1 [b] in Figure 28. The 
chromatographic traces of each ion is shown to the left and the 
deconvoluted profiles to the right. 
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7. General discussion 

The object of this work has not been to devise a general method for fatty acid 
identifications, but to extend the number of tools available to the analytical chemist 
working with fatty acids. The various methods may be applied alone or combined, 
also with existing methodology for fatty acid indentification. Much of the work 
described in Papers I–VIII provides tools and information that can be applied only 
on sub-classes of FAME. The strengths, limitations and possible applications of the 
methods will be briefly discussed in this section. 

7.1. Limitations and advantages of identification by 
mathematical models 

Identification of compounds based on mathematical models has certain strengths 
and drawbacks compared to the alternatives. The most important drawback by using 
multivariate models is that the models are only valid on a similar sub-set of samples 
as applied in the calibrations. It is therefore essential to know whether the model can 
be applied on a given spectrum or a set of retention indices. The PLSR models for 
identification of the number of double bonds in Paper I and VIII can for instance be 
expected to fail if applied on trans fatty acids or fatty acids with NMI double bond 
systems. To a certain degree, such problems can be overcome by a suitable 
screening or classification method to reject compounds that cannot be applied in the 
regression models, like the application of PCA on the spectra in Paper VIII.  
However, there can be cases where such screening models will fail or cannot be 
applied.  

The main advantage of using mathematical models is that they are highly efficient 
compared to the alternatives. ‘Manual’ interpretation of spectra and other available 
information are time consuming, while PCA or regression on a large number of 
spectra may take fractions of a second.  Another advantage is that a mathematical 
approach may provide more objective estimates of the reliability of the results than 
manual interpretation of data. Mathematical methods may also be applied in so-
called ‘expert systems’ for interpretation of the data that reduce the need of a trained 
operator [152].    

7.2. About ‘positive’ and ‘tentative’ identification 

All the multivariate models for identification purposes in Papers I, V, VI and VIII 
provide different types of error estimates for the accuracy or reliability of the 
predicted result. However, it should be emphasized that the error estimates of the 
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models are not the same as estimates of the probability that a certain compound is 
correctly identified. For reasons explained below, estimates for the reliability of 
identifications can rarely be calculated.    

Proposed identifications from the multivariate models should not be regarded as 
positive identifications of compounds. This is not a problem that is restricted to 
identifications based on statistics. In many complex systems it may be argued that 
positive identifications of compounds are not possible and that all identifications 
should be regarded as tentative. There are numerous examples of incorrect 
‘identifications’ of chemical compounds by chromatographic and spectroscopic 
techniques. Some examples regarding fatty acids are given in [15].  

Especially matching retention times or retention indices of an unknown compound 
and reference compound should not be regarded as a proof of the identity of the 
unknown. The risk of false identifications can be reduced by analysing the 
compounds on two or more columns with different stationary phases, but there is 
still a risk that compounds with highly similar structures will not be separated.  

A similar problem exists with identifications based on mass spectrometry. The mass 
spectrum of a given compound may be tentatively identified by a match with a 
reference spectrum in a mass spectral library. This can not be regarded as a proof of 
the identity since there may exist other compounds with similar mass spectra that are 
not present in the spectral library. 

 It is generally not possible to estimate the probability that there are other 
compounds in a given sample that have identical retention times or similar spectra 
as the reference. Thus, the probability that a compound is correctly identified cannot 
be estimated, with the possible exceptions for simple systems (e.g. low molecular 
weight compounds) where the required information about all possible alternatives is 
available [153].  

The identification of a compound is more reliable if it is based on the combination 
of chromatographic and spectral information. However, one cannot expect that 
compounds that have very similar mass spectra, e.g. geometrical isomers, will be 
chromatographically separated. The problem of achieving unambiguous 
identifications, even in some very simple systems, is thoroughly discussed in [154]. 

7.3. Possible applications 

7.3.1. Use of retention indices 

Papers I and II describe methods for partial identification of fatty acid structure 
from shifts in ECL values. The methods will basically provide information on the 
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polarity (number of double bonds) and the chain lengths of the fatty acids. The 
method is not restricted to any particular class of fatty acids and may also be used to 
exclude compounds that is not fatty acids, e.g. certain hydrocarbons or 
dimethylacetals that may appear in FAME chromatograms [155,156].    

Papers III and IV are restricted to trans isomers of 20:5 n–3 and 22:6 n–3. Although 
the main purpose of Paper III was to provide data that could be used for 
optimisation of the elution patterns of the isomers, the paper also provide 2D-FARI 
data that are suitable for identification of the compounds and equations that can be 
used to predict the ECL values of the trans isomer if the ECL value for the all-cis 
isomer is known. 

Papers V and VI describe methods for prediction of ECL values. Paper V is 
restricted to PUFA with MI double bond systems. Paper VI is not restricted to a 
particular class of fatty acids, but the 2D-FARI values must be available. Thus, the 
two methods may be regarded as complementary methods for ECL predictions. 
There will be cases where only one of the methods can be applied, there will be 
cases where both methods can be applied, and there will be cases where none on the 
methods can be applied. Although the focus in these works has been on 
identification of fatty acids, models that predict ECL values are of value also in 
method development, because it is possible to foresee chromatographic overlaps of 
compounds that are not at hand when the chromatographic parameters are 
optimised. 

An advantage of methods based on retention indices is that the reliability of the 
methods is not dependent on the amounts of the compounds (as long as the peak is 
detected). In contrast, methods based on spectral information require spectra of a 
certain quality, which are often not available since unidentified peaks in 
chromatograms are often small.  

7.3.2. Mass spectra 

Paper VII and VIII are about multivariate analysis of EI mass spectra of FAME. In 
Paper VII it was shown that trans isomerism in certain positions has significant 
impact on the mass spectra of PUFA with MI double bond systems. These results 
are relevant for the work in Paper VIII where it was shown that the number of 
double bonds in MI-PUFA can be determined from selected ions in the mass 
spectra. The effects of the trans geometry on the mass spectra mean that the models 
in Paper VIII may not be valid for certain trans fatty acids. The results from Paper 
VII are also a part of the basis for the work in Paper X, where it was shown that the 
differences in the spectra caused by the trans geometry is large enough for 
deconvolution of overlapping trans isomers.  



 62

7.3.3. Multivariate deconvolutions of chromatographic peaks 

Papers IX and X deal with techniques for deconvolution of overlapping FAME 
peaks. Although the focus in Paper X was basically on the quantification of the 
isomers, deconvolution of overlapping peaks has relevance also for the 
identification of the compounds because accurate retention times necessary for 
calculation of ECL values can be acquired from the resolved chromatographic 
profiles. Multivariate deconvolutions were applied to find correct retention times of 
overlapping peaks in Paper II.  

The multivariate deconvolution techniques also provide the spectra of the 
overlapping compounds. It has not been tested whether the deconvoluted spectra are 
accurate enough to be used for instance in the multivariate regressions in Paper VIII, 
but deconvoluted spectra will usually be identified by a search against a spectral 
database (not shown in the papers). The deconvolution techniques and rank 
estimates (Section 1.5.2 and 4.2) are also efficient tools to verify if chromatographic 
peaks are pure.   

7.3.4. Combination of techniques 

The various techniques are more informative when combined than when applied 
separately. As shown in Paper VIII, PCA on the mass spectra may reveal whether a 
compound is a PUFA with a MI double bond system. If a high-quality full-scan 
mass spectrum is available, the number of double bonds may be revealed from the 
molecular ion, which is usually abundant in spectra of FAME with zero to three 
double bonds. Alternatively, the number of double bonds in MI-PUFA may be 
determined by regressions as shown in Paper VIII. It was also shown in this paper 
that PCA gave a class separation according to the position of the double bond 
system; there is especially a good discrimination between n–3 and n–6 PUFA, which 
are the two dominating PUFA classes in both terrestrial and marine lipids.   

If the total number of double bonds is determined, PCA on retention index shifts 
(Paper I) or the 2D-FARI method (Paper II) may reveal if there is trans geometry in 
one or several double bonds. Finally, tentative identifications may be verified by 
comparing the ECL of the unknown peak with expected ECL calculated by the 
methods proposed in Paper V in the case of MI-PUFA, and Paper VI if 2D-FARI 
values are available from previous analyses of the same compounds.  

It is also possible use library searches on 2D-FARI values from previously identified 
compounds in the same way as library searches are performed on mass spectra. A 
library search of 2D-FARI values will give complementary information to library 
searches of mass spectra. As can be seen by comparing Figure 22b and Figure 15, 
compounds that have similar mass spectra, e.g. members of the same homologous 
series, are clearly separated in the 2D-FARI plot and compounds with similar 2D-
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FARI values (same number of carbons and double bonds, but different in double 
bond positions) have clearly different mass spectra. 

7.4. Concluding remarks 

There are a number of well established analytical techniques for fatty acid analysis 
by GC–MS, such as the use of nitrogen containing derivatives of the hydroxyl 
group, e.g. picolinyl [42–44] and DMOX [45–46] derivatives that are applied for 
determination of the position of double bonds and other functional groups. The 
number and positions of double bonds can also be determined by derivatisation of 
the double bonds, e.g. hydrogenation with deuterium, silylation [47], or preparation 
of dimethyl disulfide adducts [48,49]. Pre-fractionations of the samples by LC or 
TLC are also techniques of importance. The main drawbacks of the above methods 
are that pre-fractionation of samples, preparation of derivatives and visual 
interpretation of mass spectra are time consuming operations, and also that some 
derivatives have poor chromatographic properties.  

Even though there are more reliable methods for fatty acid identification, the 
majority of the fatty acid analyses are still performed with a single gas 
chromatographic separation of FAME with flame ionization detection (FID) that 
provides no spectral information. The main reason for this is the simplicity of the 
FAME preparation and speed of analysis.     

Analysis of FAME by electron impact GC–MS can be regarded as a compromise 
between the use of FID and more thorough but laborious techniques for fatty acid 
identification. GC–MS of FAME will in general provide less reliable identifications 
than, for example, GC–MS of picolinyl esters. However, the cost of the analyses 
will be comparable to GC-FID.  
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