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Summary

The purpose of this work has been to develop tools for fatty acid
identification, with special emphasis on poly-unsaturated fatty acids and
trans fatty acids. The work is based on application of gas chromatography
with mass spectrometric detection and the fatty acids are analysed as fatty
acid methyl esters (FAME). Various multivariate analytical techniques are
applied as tools for interpretation of both chromatographic and spectral
information. The ten papers are divided into five subsections with the
following topics:

Identification of FAME from shifts in retention indices:

Papers | and Il describe methods for partial identification of fatty acid
structure from shifts in retention indices. These methods will basically
provide information on the polarity (number of double bonds) and the
chain lengths of the fatty acids. The procedure is not restricted to any
particular class of fatty acids and may also be used to exclude
compounds that are not fatty acids. Two-dimensional fatty acid retention
indices (2D-FARI) are introduced in Paper I

Application to trans isomers:

Papers 1l and IV are about trans isomers of eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA). Paper Ill provides data about
chromatographic properties of the trans isomers of EPA and DHA,
which can be applied both for identification purposes and for
optimisation of chromatographic parameters. A practical application of
the data is shown in Paper IV.

Prediction of equivalent chain lengths:

Papers V and VI describe methods for prediction of equivalent chain
lengths (ECL), which is the retention indices commonly applied for fatty
acids. Paper V is restricted to polyunsaturated fatty acids with
methylene-interrupted double bond systems. Paper VI is not restricted
to a particular class of fatty acids, but 2D-FARI data must be available.
Thus, the two procedures are complementary methods for ECL
predictions.



Identification of FAME from mass spectra:

Paper VII and VIII are about multivariate analysis of mass spectra of
FAME. In Paper VIl it is shown that trans isomerism in certain positions
has significant influence on the mass spectra of polyunsaturated fatty
acids. In Paper VIli it is shown that the number of double bonds in
polyunsaturated fatty acids can be determined from selected ions in the
mass spectra.

Deconvolution of overlapping chromatographic peaks:

Papers IX and X are about techniques for deconvolution of overlapping
FAME peaks. Transformations for reduction of noise in the mass
spectra were introduced in Paper IX. The transformations and the
information from Paper VII about differences in the mass spectra
caused by trans geometry were utilised for deconcvolution of
overlapping chromatographic peaks of trans isomers in Paper X.
Although the focus in this paper is basically on the quantification of the
iIsomers, deconvolution of overlapping peaks has relevance also for the
identification of the analytes because spectra and accurate retention
times of the compounds are also provided.
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1. Background

1.1. Fatty acid structure and nomenclature

Fatty acids consist of a carboxylic group connedte@ carbon chain (Figure 1).
The carbon chain may be saturated or unsaturateédnay contain carbon branches
as well as other functional groups. However, thgonts of fatty acids in nature
have unbranched carbon chains with 4-24 carborgsdOuble bonds, and no other
functional groups. Fatty acids with odd-numberedbea chains are present only in
minor amounts in most organisms. Minor amountsattf/facids with carbon chains
longer than C24 are also present in marine liplo][

Several types of fatty acid nomenclature are comraod naming of fatty acids in
the literature may vary with what is convenient anth journal policy. Unbranched

fatty acids are described by the number of cardotiewed by the number of

double bonds. Thus, the saturated fatty acid (SBAfigure 1la may be denoted
‘C16:0’ or ‘16:0'.

Double bond positions may be described from eitdrat of the molecule. Double
bond positions given from the methyl end of theboar chain are commonly
referred to by @ or by ‘n—. The monounsaturated fatty acid in Figure 1b rbay
denoted as ‘20:1uf0)’ or ‘20:1 n-9’, the latter is usually preferred in chemical
literature [3]. Alternatively, the double bond pomh may be specified by the
distance from the carbonyl group @4.1-20:1" or as ‘11-20:1".

Double bonds in polyunsaturated fatty acids (PURBA9 typically separated by a
single methylene unit (Figure 1c and d). Double doegstems with this regular
pattern are often referred to methylene interrupte(Ml) double bonds, and PUFA
with this system will be referred to as MI-PUFAthis text. The ternmomoallylic
double bonds is equivalent to Ml double bonds. Hese cases, the complete
molecular structure can be described by specifyimg number of carbons, the
number of double bonds and the position of the Bollond system. Thus, the
structures given in Figure 1c and d may be destrése'18:2n-6" or ‘20:5n-3'. If
the ‘w or ‘n- systems are used for designation of PUFA stregtiris normally
taken as granted that all double bonds are metiylderrupted and haveis
geometry. In cases where the positions are givem fthe carbonyl group, all
positions are given also for MI-PUFA and the fadtyids in Figure 1c and d are
named 9,11-18:2 and 5,8,11,14,17-20:5.

Double bond systems that do not have the regulényieme interrupted patters may
have conjugated (Figure 1e) or isolated (Figurarid g) double bonds. The latter
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are often referred to as non-methylene interrugiédl) systems. In these cases, it
is common to specify the distance of all doubledsofnom the carbonyl group.

Reference can also be made to specific double posttions or groups of isomers,
e.g. ‘=9 double bonds’, with no assumptions about posibiogeometry of the rest
of the double bonds in the molecule. Thus, the eoshown in Figure 1f has ar6
double bond, even though it is separated from te bond by more than one
methylene group.

The terms ¢is’ and trans are commonly applied to describe the geometries o
double bonds in fatty acids instead @f (zusammen) andE’ (entgegen), which is
more common in general organic chemistry. The gé&oeseare often described by a
single letter ¢' or ‘t’, which is combined with the double bond positidine NMI
fatty acid in Figure 1g can be referred to ad1-18:2, and the isomer of 18r8-3
with trans geometries in tha9 andA12 position (Figure 1h) ist32t,15¢-18:3. If
the geometries are not specified, the double banelsisually expected to haues
geometry.

Fatty acids are sometimes denoted by their sysiernaimes,e.g. 20:4 n—6 is
referred to as 5,8,11,14-eicosatetraenoic acid7aridi-18:2 may be referred to as
(Z,E)-7,11-octadienoic acid. Common namegy. Arachidonic acid (20:4+6), or
abbreviations for systematic namesy. EPA for eicosapentaenoic acid (20:53)
or DHA for docosahexaenoic acid (2263), are also applied.

Even though the structures described above cowemthjority of common fatty

acids, there are a large number of less commow dattls with various structures.
The carbon chain may contain triple bonds, branchsswell as saturated and
unsaturated carbon rings [4,5]. Oxygen may be dhiced in the carbon chain in
form of hydroxy groups, oxo groups, furan ringsaoditional carboxyl groups [4,

5]. Other heteroatoms may also be presegthalogens [6]].

The majority of fatty acids are esterified to lardgid molecules; only small
amounts are present in free form in living orgarsisas well as food matrices. Lipid
molecules are traditionally classified into neutadl polar lipids. Common neutral
lipids are triacylglycerols, used as energy res@rvaost organisms; wax esters, the
energy reserve in certain marine species; cholg¢ststers and free fatty acids. In
most tissues, the majority of polar lipids are gitadipids from cell membranes.

Fatty acids are mainly analysed by gas chromatbgrap their corresponding fatty
acid methyl esters (FAME). The preparation of FANlMolves extraction of the

lipid molecules from the sample matrix, breakinglé ester bonds, and formation
of methyl esters. The two last steps may be condbinyetrans-esterifying the lipids

directly with acid or base in methanolic solutidine process of converting free or
esterified fatty acids into methyl esters are comiynoeferred to as methanolysis,
(trans-) esterification, or methylation. Base-caat methods, typically carried out
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by methanolic NaOH, will not methylate free fattgids and require anhydrous
conditions. Several acids are used as catalystsrferstep methylation, including
H,SO,, HCl and BR. There are positive and negative aspects withtredke
catalysts. Other fatty acid derivatives than FAME applied for special purposes.
An extensive review over fatty acid derivatisatismgiven in [8].
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1.2. Gas Chromatography

1.2.1 Principles of separation

Modern gas chromatography (GC) is typically basedopen tubular capillary
columns varying in length from 10-100 m and witkemal diameters from 0.1-
0.5 mm. The principle of separation in open tubuims chromatography is
explained in Figure 2. The retention of a compoisndetermined by its distribution
between the stationary phase and the mobile phHse. distribution can be
expressed by the retention factof9]:

K= amount of solute in stationary phase
~ amount of solute in mobile phase

(1)

k depends on the solubility of the solute in theistatry phasek(increases with
increased solubility), the thickness of the statignphase K increases with
increased thickness), column diameterdécreases with increased diameter), and
the temperaturek(decreases with increased temperature).

As long ask is constant throughout the separation process felated to the
retention time of the compound by the following ation:

— tr _ Rty
k== (2)
wheretg is the elution time of the solutg, is the elution time of an unretained
component (hold-up time) ang' is the adjusted retention timé& ¢ ty). k will be
constant only as long as the temperature is condfuation 2 is therefore not
valid for temperature-programmed gas chromatography

Retention as described in Figure 2 and by the emmsabove is an idealised model,
where it is assumed that solutes in the statiopagse behave as ideal solutions.
Deviations from ideal conditions may be caused infase effects between the

stationary phase and the carrier gas, uneven ldisbh and composition of the

stationary phase, adsorption of the analytes, aligphent effects and interactions
between analytes. Deviations from ideal conditiomsy be especially large for

analytes with low volatility and low solubility ithe stationary phase or when the
capacity of the stationary phase is overloaded.

It should also be emphasized that the proportidm®va in Figure 2 do not

correspond with dimensions in real capillary colgmin modern columns the
internal diameter is typically 1000 times largeariithe thickness of the stationary
phase. The solutes also elute in broad bands.
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The term ‘carrier gas velocity’ in GC normally regdo the average gas velocity in
the column, which is the length of the column deddby the elution time for an

unretained component. Because of the high comjibigsiof the carrier gas and

large pressure drop in the column the actual agagas velocity is higher in the end
than at the head of the column.

=1 =1
k=1 k=3
° . O T °
Stationary phase <. . :::s"i'.g.: g o
.,ﬁ‘ “‘;.. ’o.‘.- ?}.’:* .0‘-
________ > = .. ‘o :‘“ .. c.’%c.'&'ﬁ :o‘
: : :".‘* % . :":".‘:o. o
__________ > .‘:. o3 0.0:(’ .'
% 14 . .’3".4& ’.? °
Po . .‘.‘ ‘;E %°
____. _______ > °° :.‘. ..’.0. *e lzg.’ . .
Carrier gas flow oo 00N R cipn 2,
___________ | g B ..9:. ° ".‘>0. “.'
o L e
L) .“.O'. A .."\o':.o. °
—————————— > ° f.:' 052 o> 8o
A ." L sd.‘tg.:.::
° L 1) ° °
-------- > CUHES i PN 0
Seeal .g::.g:;“',-s'
° ° .'o. 0 ‘.
RN TR
Solute A Solute B

Figure 2 Principle of separation in open tubular gas chromatography. The two
solutes A and B are separated because they differ in retention factor,
k. Solute A is equally distributed between the stationary phase and
the mobile phase (k = 1). Solute B moves faster through the column
because a larger fraction of the molecules (90%) is in the mobile
phase (k = 0.11).

Various parameters related to chromatographic aépar are based on the
assumption that the shapes of chromatographic pesksnble normal distribution

curves as shown in Figure 3 [9]. However, non-iceadditions, like adsorption of

the analytes to active sites, dead volumes, omipbdete solvation of analytes will

lead to deviations from a normal distribution, aratious alternative peak shape
models have been proposed [10,11]. Several paresnate used for describing
asymmetry of peaks [12,13].

The separation beween two chromatographic peaks)dAB, may be described by
the peak resolutiorR, which is defined as:

2 (top —t 2 At
RS - ( R(A) R(B)) — R (3)

Wha) T Wh) Wha) + Wog)
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wheretg is retention time andy, is the peak width at baseline. The width at baselin
may be difficult to estimate and the peak widtkhat half height of the peaW, is
therefore often used as an alternativeigg¢Figure 3)

tre)

Retention timetf)

Figure 3  Two simulated chromatographic peaks (A and B) with retention times
trea) and tre). 0 is the standard deviation of the normal distribution
curves. The peak width at baseline is defined as 40 [9]. The peak
width at half height is 2.3550.

1.2.2. Stationary phases in gas chromatography of fatty acids

Since the early works of Martin and James on gasncatographic separation of
fatty acids with a silicone coated stationary pHd<ié, a wide range of phases have
been applied for the separation of free and deswdtfatty acids. The development
of GC and stationary phase technology for the sejosr of fatty acids has recently
been reviewed by Ackman [15]. Today, polar colunams usually preferred for
separation of complex fatty acid mixtures, espgciahen highly unsaturated fatty
acids ortransfatty acids are analysed.

There are two types of polar phases that dominhé& polyethylene glycol (PEG)
columns and the cyanopropyl (CNP) columns. Therpoliactional groups in these
phases are hydroxy (OH) and cyano (CN) groups. CN®& phases consist of a
siloxane polymer with cyanopropyl substituents. Tiranopropyl groups are often
combined with less polar groups,g. methyl or phenyl, and CNP columns are
therefore available in a large range of polaritleEG is usually not mixed with
other groups and common PEG columns show littleatian in polarity.

This work is mainly based on the application of nyaropyl columns, a PEG
column was applied in parts of Paper IV and an apoblumn (100% methyl
polysiloxane) was applied in parts of Paper X. T®8N phases have been applied
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in this project. SP-2560 (Supelco, Bellefonte, R/SA) is a highly polar 100 %
CNP column. BPX-70 (SGE, Ringwood, Australia) isslgpolar than SP-2560 and
has aromatic groups introduced in the polymer bac&b

A typical elution pattern of a reference mixturetwsaturated andis unsaturated
FAME on BPX-70 is shown in Figure 4. In general NFAs with the same number
of carbon atoms elute according to the number ablobonds. However, because
n—3 PUFA are retained more strongly thas6 PUFA, 20:4n—6 elutes before 20:3
n—3. As shown for C20 and C22, there is a substamterlap between the different
chain lengths. In real samples of marine origirréhaill be corresponding broad
regions of C16 and C18 because 16:4, 18:4 andcEi%e present. Because of the
overlap in chain lengths, the identification oftyahcids from retention times is a
difficult task. The picture is further complicatdy the presence of odd-chain
PUFA, e.g.21:5n-3, which is present in marine lipids [15,16].

A characteristic feature of CNP phases is that plodarity shows a strong
dependence on temperature. This attribute is aataasue in Papers I-lll. At low
temperature, the polarity of the BPX-70 phase wgelothan the polarity of PEG
columns [17]. While the properties of PEG colummns aearly unaffected by the
temperature, the polarity of BPX-70 increases lilyeaith increasing temperatures
[17] and BPX-70 is considerably more polar than Rieamns at the temperatures
typically applied for analyses of FAME (>140 °C)hd effects of varying
chromatographic conditions on the elution patteenstlnown in Paper Il.

10:0
12:0

8:0
14:0
14:1 n-5
15:0
16:0

16:1 n-7

17:0

17:1 n-7

18:0
18:1 n-9
20:0 -

~18:3 n-3
20:1 n-9

18:2 n-6
18:3 n-6
20:2 n-6
3
4
20

2

2
22:5n-3
22:6 n-3

b O U U U L

10 12 14 16 18 20 22 24 26 28 30 32 34 36 min

Figure 4 Elution pattern of a FAME reference mixture (GLC-461, Nu-Chek
Prep, Elysian, MN, USA) on BPX-70. The chromatographic
parameters are as described for program 1 in Paper Il.
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1.2.3. Retention indices and ECL values

On a retention index scale, the chromatographientetn of a compound is
described relative to the retention of a serieh@hologues. The most common
system is the Kovats indices [18], whenealkanes are applied as reference
compounds. At isothermal conditions there is adinelationship between lag’
and the number of carbon atoms in homologous sennekthe retention indek,for

a compoundx, can be calculated by:

log t;, — logt;
lpy = 100 —— 2 =94 100 (@)

wherety’ is adjusted retention times of the compound ¢érest and two-alkanes
eluting on each side of the compouadgpresents the number of carbon atoms in
the n-alkane eluting beforg, andn is the difference in carbon atoms between the
two n-alkane references. For maximal accuracy, it i®smeoended thah is one.
Kovats indices acquired at isothermal conditions assumed to be invariant to
differences in column dimensions and carrier gaw flbbut are highly dependent on
the stationary phase and also influenced by the teraperature. Thusacquired at

a certain stationary phase at a certain temperausecharacteristic property for a
compound that can be used for identification puegos

The use of retention indices has been extende@rnpdrature-programmed gas
chromatography, where there exists an approximdiedar relationship between
retention times and the number of carbon atoms ihomologous series. In
temperature programmed GCjs generally calculated by the van den Dool and
Kratz formula [19]:

tR _tR
Iy = 100 — 2 4 100 (5)

R(z+n) — tR(z)

The parameters, x andz are the same as in Equation 4. Equation 5 givesdme
results whether applied with gross retention timeadjusted retention times. As for
Equation 4, it is recommended thatis one. In addition to application of the
equations above, various approaches based on higtler regressions and other
approaches are applied [20-23, Paper I-I1].

Although isothermal retention indices are assunoeblet independent of carrier gas
flow, column dimensions and phase ratios, tempezgitogrammed indices are not.
Increased temperature gradient, column length as@hatio, or decreased carrier
gas flow rate, will movel in the same direction as increased temperature in
isothermal chromatography [24].

Although Kovats indices are the dominating generapose retention index system,
a large number of alternative series with otheibcalion compounds thamalkanes
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have been applied for special purposes. The maivafor using other calibration
standards than alkanes are basically the following:

* n-alkanes cannot be detected by several commontabetenethods such as
negative ion chemical ionisation mass spectromeglgctron capture
detectors and element specific detectors.

* Retention indices based on molecules with the dam&tional groups as the
analytes of interest are often more reproduciblegd aary less with
chromatographic conditions than indices based-alkanes [25].

* A second calibration mixture of-alkanes is not necessary if the retention
index scale is defined by some of the analytestefest.

* n-alkanes have poor chromatographic properties ghhyipolar stationary
phases.

Alternative retention indices for various purposese been extensively reviewed
elsewhere [26,27]. The most successful approachbmdlye use of equivalent chain
lengths (ECL) [28] for fatty acid analysis. The EGistem is based on saturated
unbranched FAMEs as reference compounds and EQlevdbr the references are
by definition equal to the number of carbons in #ikyl chain. Thus, ECL for
compoundx at isothermal conditions can be calculated by:

log t|;2(2+n) —log tEa(z)

(6)

ECLy, =n

where ty’ is adjusted retention times of the compound dkriest,x, and two
saturated FAMEs eluting on each side of the comgozirepresents the number of
carbon atoms in the carbon chain of the saturaf@dBE-eluting beforex, andn is
the difference in the number of carbon atoms betwibe two references. ECL
values at temperature-programmed GC can be cadcutatthe same methodslas

The fractional chain length is defined as the d#fee between the ECL value and
the number of carbons in the fatty acid chain & #AME molecule and is
calculated by:

FCly = ECLy — NGy (7)

where NC is the number of carbons in the fatty astidin. It follows from the

definition of ECL that FCL of the saturated unbriaed FAMEs are zero. The
unsaturated FAMESs, which on polar columns eluteratie saturated FAME with
the same number of carbons, have positive FCL sahrel FCL is used as an
indication of the polarity of a fatty acid.
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1.2.4. Identification of fatty acids from retention times and ECL-values

Various strategies have been applied for the ptiedicof chromatographic
properties of fatty acids that are not availableedisrence compounds. A much used
strategy has been to assume that members in the lsamologous series will have
similar behaviour relative to the saturated anadsgue. members in a homologous
series have almost identical FCL values. Thesetioakhips have been widely
applied in isothermal chromatography, where fatigs are identified from parallel
lines drawn between members of the same homologetiss in plots of ECL
values or logtg’ against the number of carbons in the molecule-89. The
assumption of similar FCL values for members in ghene homologous series can
be expected to be accurate as long as interadbetweeen the carbonyl group and
the double bond system can be neglected, but meyigaccurate predictions for
molecules with double bonds close to the carborolig.

Accurate prediction of ECL values is more challeggiwith temperature-
programmed chromatography than with isothermal rolatography, particularly
with CNP phases where the assumption of constahtvithin a homologous series
is inaccurate. Because the heaviest members iseties elute at higher temperature
than lighter homologues they elute from a colunat #ppears to be more polar, and
the FCL values may therefore increase with chaigtle within the series.

Another strategy for prediction of ECL values hagito assume that the influence
of double bonds are additive, and that FCL valueBWFAs can be predicted by
summing the FCL values of monounsaturated fattgisawiith double bonds in the
corresponding positions [32—35] or by adding FClusrhonoenes to FCLs of other
PUFAs [34,35],e.9. FCL for 18:3n-3 is predicted by summing FCL for 18126
and FCL for 18:1n-3. The accuracies of these calculations are lovalmse Ml
double bonds behave differently than the sum ofctireesponding isolated double
bonds, and additional correction factors must b&oduced [32-35]. The
availability of relevant FCL data for the monoerag also limited. Alternative
methods for prediction of ECL values are proposedapers V and VI.

1.3. Mass spectrometry of fatty acids

1.3.1. Principles of mass spectrometry

In mass spectrometry (MS) with electron impact (&hisation the molecules in gas
phase are bombarded with high-energy electrond@and radical cations. Unstable
radical cations will decompose in the mass speadtemand the degree of
fragmentation depends on how well the molecule stahilise the positive charge.
The resulting fragments are separated accordinigeio mass-to-charge ratiouz).

The charge of the detected fragments can be assioned+1, and their masses will
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therefore be known. The molecular weight can be tiam the molecular ion (),
and the fragmentation pattern can give importafbrimation about functional
groups and isomerism.

1.3.2. Mass spectrometry of fatty acid methyl esters

The number of carbons and number of double bordsasily be determined from
high quality mass spectra of FAME, at least forlyea with zero to three M
double bonds. The molecular ions are usually wsiléind the distributions of
fragments with low masses show characteristic petteExamples of mass spectra
of common C18 FAMEs are given in Figure 5a to ee Tiost important ions are
listed in Paper VIl and a brief summary is givesidov.

In normal (unbranched) saturated fatty acids, fraggation is dominated by the
McLafferty rearrangement giving the base peakn&t 74. Abundant peaks at/z
87, 143, 199 and 255 arise from loss of the neuwliphatic radicals with the
general formula [(CH,COOCH;]" [36]. The molecular ionnf/z 298 in Figure 5a)
is usually abundant.

Double bonds in linear alkenes and unsaturateg¢ fatid methyl esters tend to
migrate in the molecular ion prior to fragmentatiomaking the determination of
double bond position in unsaturated fatty acidseuain. There are therefore no
ions that serve to indicate the position or theestehemistry of the double bond in
monoenes [36,37]. The spectrum of 1&19 is shown in Figure 5b. The
fragmentation pattern in monoenes is dominated $8ri@s of ions with the formula
[CH2nq" (M/255, 69, 83, and 97). The Molecular ion is seem&t296. The more
abundant peaks at 264 and 265, arising from logsethanol and methoxy radical,
may also serve as indicators for molecular weighow quality spectra [37].

The spectrum of 18:2-6 is shown in Figure 5c. In Ml dienes a series afsi
[CiH2n-d™ (M/z67, 81, 95, 109) dominate the spectrum at low assEhe [GH.,,—
1]" series is also abundant at masses 55 and 69. dleeutar ion (n/z294) is more
abundant than in monoenes. Loss of methoxy ratiaso seen ah/z263.

The spectrum of 18:8-6 is shown in Figure 5d. In MI-PUFA the seriesHig, 4"
dominates the pattern with abundant fragments/at79, 93, 107 and 121. The
[C.Han-d" series is also abundanhfz 67, 81, 95 and 109). Fragments from the
[C.H2n_q" series are seenmt’z55 and 69. In MI-PUFA (not including dienes) there
are rules for predicting the position of the douflrbed system from diagnostic ions.
The position of the first double bond counted frdme methyl end of the carbon
chain can be determined from the ions,..8...d" where n is the number of
carbons from the methyl end to the first double dbohhus,n-3, n-6 andn-9
families will have abundant ions of/z108, 150 and 192 respectively [38—40].
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Figure 5 Electron impact mass spectra of selected C18 fatty acid methyl
esters. (See also Figure 21)
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It has also been reported that the position offitise double bond counted from the
carbonyl group can be determined from the ions.d®Hn:d™ Where n is the
distance from the carbonyl group to the first deubbbnd {-position) [38,39]. MI-
PUFA with the first double bonds in ti&6 or A9 positions would have abundant
ions ofm/z194 and 236 respectively. The diagnostic ions Gieedetermination of
the double bond positions relative to the carbgnglp and to the methyl end of the
carbon chain will be referred to as andw-ions respectively. Their abundances in
electron impact (EI) mass spectra are often low,clan be considerably enhanced
with reduction of the ionization energy [39].

Mass spectra of several NMI trienes are presemieffii]. These spectra show
different patterns in the lower mass region tharRMIFA. m/z79, usually the base
peak in MI-PUFA, is suppressed and botlz67 and 81 are of higher abundance.

1.3.3. Alternative derivatives and ionization modes

Although FAME give some information about fattydsiructure, more informative
spectra about positional isomerism are often aeuiavsing other derivatives. By
introducing a nitrogen containing ring in the malk; the molecular ion is
stabilised and double bond migration is reducedrdfglide, picolinyl and dimethyl

oxazoline (DMOX) derivatives are especially usdful determination double bond
positions in fatty acids [42—46].

The spectrum of the 18119 picolinyl ester is shown in Figure 6a. Fragmeatat
of the carbon chain in the fatty acids gives risa tseries of abundant ions spaced
by 14 atomic mass units (AMU). The position of td@ible bond can be determined
from the gap of 26 AMU betweem/z 234 and 260. The abundant ions witifz
220, 274 and 288 are also of diagnostic importance.

Similar patterns can be applied for the determimatif double bond positions also
in more unsaturated fatty acids. However, the d$ggfi@m diagnostic ions are
usually weaker and the number of interfering iorm ¥ other fragments increase
with the number of double bonds. This can be sedha spectra of 18:3-3, 20:5
n-3 and 22:6n-3 in Figure 6b—d. Thus, interpretation of spectrant highly
unsaturated fatty acids is challenging. Since umknéatty acids are rarely among
the most abundant in a lipid sample it is ofterficlifit to acquire pure spectra of
sufficient quality.
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reproduced with permission from [41].
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More distinctive fragmentation patterns in EI-MSncaften be obtained by

derivatisation of the double bonds. Common procesiare deuteration, silylation

[47], or preparation of dimethyl disulfide adduf48-51]. However, many of these
methods are not suitable for complex mixtures beeaf incomplete reactions, side
reactions or decomposition of derivatives at higimperatures. Some of the
methods substantially increase the weight of tomess, which may cause problems
with analysis of C20 and C22 fatty acids by GC. ibugh reviews of these and
other methods for determination of double bond tomss are given elsewhere [8,
52-54].

An alternative to electron impact mass spectromistp use chemical ionization
(CI). In CI-MS, the charge is transferred to thalgtes from an ionized reactant
gas. Common reactant gases are methane [55,56litésste [57] ammonia [57] and
acetonitrile [39,58-60]. Protons are abstractednfrine reagent gas leading to
abundant [M+1] ions. In some cases the entire reactant molesulebstracted.
Because the ionisation energy is lower, theress feagmentation with CI-MS than
with EI-MS and the molecular weight can usuallydstermined from the [M+1]
ions [55,56] or higher masses if larger parts efrégmctant ions are absorbed.

Because there is less fragmentation, there areallygrmo diagnostic ions that may
provide information about the double bond positianth methane as reagent gas
[56]. However, it has been shown that thendw ions used for determination of
the double bond position in PUFA are abundant ins@éctra of FAME when
acetonitrile is applied as reactant gas [39]. & hso been shown that acetonitrile
CI-MS spectra of FAME contain diagnostic ions foe {positions and geometries of
double bonds in conjugated linoleic acid [59].

1.3.4. Visual and multivariate interpretation of mass spectra

Mass spectra of unknown compounds are usuallypreged by visual inspection of
the presence or absence of certain i@ng, the diagnostic ions for double bond
positions in Figures 5 and 6. This method has tedeawbacks. If the diagnostic
ions are weak, spectra of high quality are requifdtbre are also many cases where
there exist no diagnostic ions,g. the position of double bonds in monoenoic
FAME or the geometry of double bonds cannot berdeteed from the presence or
absence of ions. There is also a human factorwedplvisual interpretation of mass
spectra requires a skilled interpreter and thegs®es often time consuming.

An alternative strategy is to analyse the spectith wmathematical methods that
better utilize small differences in the relativeportions of the masses. Multivariate
analysis of spectra is essential in interpretatbmear-infrared (NIR) spectra [61]
and has also found widespread use with infra-rBdl [62], ultra-violet (UV) [63],
nuclear magnetic resonance [61] and fluoresceneetrsp[61, 64].
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The use of multivariate interpretation is more peaiatic with mass spectra than
with optical methods. While the signals from a agrtfunctional group will appear
at (or near) the same wavelengths in for exampleNR and UV spectra, the
signals in mass spectra are often from loss oftfonal groups. Thus, signals that
can be associated with the functional group mayappt differentn/z depending
on the structure of the rest of the molecule. Iditamh, the fragmentation in mass
spectrometry is often dominated by fragmentationth&f carbon skeleton of the
molecule, and small differences in the carbon cotiviey may give rise to large
differences in the mass spectra. To a certain éedihese problems can be solved
by transformation of the spectra to nspectral feature§65—69].

In molecules with long straight-chain carbon skaist such as most FAME, The El
spectra are dominated by a series of low-masstlatsare always present. lons in
this region are suitable for multivariate interptain, and El spectra of FAME and
similar molecules can be analysed without priongfarmations. The double bond
positions in monoenoic fatty acid ethyl esters t@mninstance be determined from
multivariate regression on the spectra, even thdhgre are no diagnostic ions (in
the classical sense) for the positions [70]. Simalpproaches have also been used
for the determination of double bond positions ionmunsaturated acetates [71,72]
and long chain alcohols [71]. Another example ig ildentification oftrans
geometry in unsaturated fatty acids [73]. An adagatwith the statistical approach
is that the reliability of the identification car lzalculated from the error estimates
of the regression or classification. Classic vismahss spectral interpretation
provides no such information.

1.4. Multivariate methods

Various forms of multivariate mathematical methosisch as principal component
analysis (PCA) or partial least squares regred$t0$R), are applied in Papers I-X.
A brief introduction to these methods is given belo

1.4.1. The nature and representation of multivariate data

In datasets with a large number of variables wften difficult to achieve a good
picture of the nature of the data and the cor@tabetween the variables. One or
two variables can be illustrated on a single s@rfig@ay.a paper or screen), typically
in the form of a one-dimensional bar plot or a wmensional xy-scatterplot. A
third variable can be plotted in three-dimensiorgk-scatterplots, which is a
projection of the three dimensions onto a two-disi@mal surface.

When the number of variables increase beyond thmeest people will have
problems perceiving the structure of the data. AMber of methods exist that aim at
reducing the dimensionality in systems with mangialdes. Most methods use the
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correlation between the original variables to redtie dimensionality. The original
multi-dimensional space may be projected onto $ledtatent variable469,74].

1.4.2. Matrices and vectors

Data are often given in matrices where the valoeséverabbjects(or cases) are
described by several measured variables. Such axnmeillustrated in Figure 7,
where eight variables have been measured for ErtshjEach number in the matrix
is referred to as amlement each variable is represented bga@umn vectorand
each sample by@w vector

Column vectors and row vectors can be multipliga: product is a matrix with
dimensions corresponding to the number of elemiantise column vector and the
row vector. The multiplication of two vectorsp', giving the outer-productis
illustrated in Figure 8. There is also smer-productof the two vectors that is a
scalar found by't. Brief reviews of common matrix and vector compiotss used
in chemometrics are given in [69,75].

ViV, V3 Vg Vg Vg V7 Vg
01
0,
O3
04
Os
Og
07
Og
Og

row vector (p T)

column vector (t)

O19

Figure 7 10 x 8 matrix, X, with column vector t, row vector, pT and element, e.
By convention, vectors are column vectors, the superscript, |, on p'
means transposed and denotes that pT is a row vector.

x row vector (p ) — Mat”X
(X)

column vector (t)

Figure 8 Vector multiplication, tp', giving the outer-product, X.
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1.4.3. Principal component analysis (PCA)

Principal component analysis (PCA) is a techniqoe dxtracting structure from
high-dimensional datasets. The original variables @ojected to latent variables,
which in PCA is callegrincipal component$PC). The principle of PCA is briefly
described below; a comprehensive tutorial on PCdivien in [76].

As illustrated in Figure 8, multiplication of a cohn vector and a score vector gives
a matrix. Matrices can therefore be explained lig s& column and row vectors.
When extracting the first principal component tlealgs to find the column vector
and the row vector that gives the best representati the variation in the original
matrix, M. These two vectors, which is callsdore vectoandloading vectoris the
first principal component; (Figure 9).

With real analytical dataC; will never give a perfect description & and there
will be a residual matri¥,, which is found by subtracting each elemenCinfrom
the corresponding elementif:

E,=M -C;=M —tp’ (8)

Another way to describe the extraction®@f is that the algorithm seeks for the set
of score and loading vectors that will minimiEe

The second principal componefll; is extracted fronkE; and the residual matrix,
is calculated front; andC.,:

Ez = El— C2 (9)

The procedure can be repeated until the numberiméipal components equals the
least of the numbers of variables or objects.

When the correlations between the variables argelaithe first principal
components will explain a large portion of the tatariance inM. After extraction
of principal components, the score vectors conthi@ information about the
relationships between the objects and the loadeaovs contain information about
relationships between the original variables.

The original objects and variables can be invewdy plots of score vectors
against score vectors and loading vectors agawasting vectors. Such plots are
referred to as score plots and loading plots resdz. An example is illustrated in
Figure 10, where score vector 1 is plotted agaoste vector 2, and loading vector
1 are plotted against loading vector 2 in ordingrgcatterplots.
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Figure 10  Score plot and loading plot.

Some experience is needed to interpret PC-plotsa bew simple rules can often be
applied. Assuming that the displayed principal congnts represent a large portion
of the variance, objects that are close in scootspre also close in the original
multi-dimensional space. Thus, the distance betweembjects in the score plots is
a measure of the similarity between objects. Insttare plot in Figure 10 there are
two classes of objects, five objects in the secguaddrant that are similar, and a
second class of objects in the fourth quadrant #éhatdifferent from these. The
single sample in quadrant three is not relatedyood the groups.

In the loading plots, variables that lie in the sadirection from the origin tend to
be positively correlated, variables that lie in opipe directions are negatively
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correlated, and variables that are locatetlt®Ceach other are uncorrelated. In the
loading plot there are three groups of variablest #wre closely related. The

variables in the second quadrant are negativelyelaed to the variables in the

fourth quadrant, while the two variables in therdhgquadrant are uncorrelated to
these.

Usually the two first principal components are ipteted this way. When
interpreting score and loading plots, it is impottéo consider the portion of the
variance that is explained by the two principal poments because important
information may also be present in other componerasious validation methods
indicate whether the principal components repredata structure or random noise.

1.4.4. Multivariate regression techniques

Multivariate regression techniques are applied wheasponse variablg, is to be
explained from a number of x-variables, (X, ..., X,), often denoted asdependent
variablesor predictors From algebra it is known that when the numbesashples
equals the number of variables, exact solutions begjound. In matrix notations
this can be written as:

y =Xb (120)

wherey is a vector holding the values of the responsebbr andb is the vector
holding the coefficients that describe the reladlup between the response vegtor
and the matrixX. b can be found by inverting th matrix and multiplying by:

b=X"y (11)

When the number of samples is lower than the nunaberariables, the set of
equations has an infinite number of solutions;rtierix X is not quadratic and not
invertible. When there are more samples than beasathe best estimate forcan
be found by multivariate regression techniques. oidinary multiple linear
regression (MLR)b is found by the following equation:

b=X"X)"*X"y (12)

MLR has certain limitations, particularly when thember of variables is large, or
when the degree of correlation between the varsablebetween the samples is
large. When spectra are used as x-variables, thd&wuof variables is usually large
(often hundreds). In these cases the number opleans typically lower than the
number of variables and MLR gives no solution. G@rece between the variables
or objects may lead to poor estimatestobecause the matrixX(X) is rank
deficient or ill-conditioned [77] (see Section 2p.
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The above-mentioned drawbacks of MLR may be sobyedpplying latent-variable
techniques. In principal component regression (RCiRg X-matrix is first

decomposed by PCA, which reduces the original nurobevariables to a lower
number of principal components. An MLR is then lohse the PCA score vectors.

An important attribute of PCR s illustrated in &g 9. After the first principal
component is extracted, PC1 is subtracted fromd#ia matrix before PC2 is
extracted. Thus, PC2 cannot contain the samenmdoon as PC1; PC3 cannot
contain information explained by PC2 and so on. Gdwvariance between principal
component scores is zerorthogonality; correlation between the variables is
therefore no problem when the PC scores are useariables in MLR.

PLSR is a similar technique to PCR, but there ismaportant difference in the
extraction of the latent variables: in principahgmonent regression, the extraction
algorithm extracts latent variables that explainmagh as possible of the variation
in the X-matrix. In PLSR the algorithm extracts latentigbles that explain as
much as possible of the common variance betweeXthmatrix and they-vector.
PLSR is therefore a more powerful regression tephe)i fewer PLS components
than PCs are often needed to obtain good estinatds PLS scores and loadings
are often more easy to interpret than scores aadiigs from PCA. For these
reasons, PLSR are often preferred over PCR, phatiguwhen the number of
variables is large. Comprehensive reviews of PL&Ryaven in [77-79].

1.4.5. Variable weighting

The pretreatment of variables is important in |ateariable methods. When latent
variables are extracted, the variables with largdstolute variance will have the
largest influence on the models. When the diffeednetween the variables is large,
a few variables will dominate the models, whileevthare poorly explained. These
problems can be solved by proper weighting of theables.

The most common solution is standardisation. Eaofable is divided by its own
standard deviation; the result is variables withndard deviations equal to one.
Standardisation should be used with care. Variablds low variance often have a
low signal-to-noise ratio in analytical chemisteyg. parts of spectra where there is
little signal. Because of the low absolute varignstandardisation leads to
multiplication by a large number and amplificatminthe noise.

Other weighting procedures include division by énghmetic mean of the variable
or using the logarithm or roots of each variablgbt&action of the mearcéntring
of each variable is normally performed before PCAnaltivariate regressions.



22

1.4.6. Error estimates and validation

The accuracy of multivariate regression models poediction of a response
variable,y, should be validated by a suitable method. Commadiation methods
are use of test sets and cross-validation techsique

In the test set method, the dataset is separdiea icalibration set (training set) and
a test set. The regression model is built on theabb in the calibration set and
applied for prediction of the response variable tfug objects in the test set. The
model is evaluated by comparing predictgg and ‘true’ ;) values of the response
variable for the objects in the test set. The dijen the test set are typically
randomly selected, but may also be data that ageir@cl at different time or at

different conditions than the calibration setgy. when the stability of models are
evaluated. The drawback with test set validatioth# the model is calibrated and
validated on only a part of the available data a&ne results may be highly

dependent on single objects in small datasets.

In cross-validation, the objects in the originatadet are partitioned intosubsets.
A single subset is selected as validation set &wedmodel is calibrated on the
remaining k-1 subsets. The model is then applied for calanabfy, for the
objects in the validation subset. The procedureepeated until all subsets have
been used as validation sets and the final modeksaluated from the residuals
(Yo—y:) of all objects combined. Thus, with cross valioiat all objects are utilised in
validation of the model. It is often common to ketqual to the number of samples;
this is frequently referred to as leave-one-outssrwvalidation or full cross
validation. Cross validation techniqgues may oveinese the accuracy of the
models in cases where the objects have a ‘class dilstribution or if there are
replicate objects in the dataset, because the tsbjecthe validation set may be
represented in the calibration set by their repdis@r objects in the same class.

Various parameters are applied for evaluation oflehperformance. Bia$, is the
average residuals:

N
= ﬁz ypn ytn (13)

n=1

Significant bias means that the model is systeralitiover-estimating or under-
estimatingy,. This may for instance occur if the model is eaédd with a test-set in
cases where there has been a drift in the system.

Standard error of prediction (SEP) is the standandation of the residuals:
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N
SEP :-\/ ﬁ Zl Ypn— Yen- 0) (14)
n=

Since there is a correction for bias in this formUEP will be unaffected by the
bias and is a good estimate of the overall errdy an cases where the bias is
negligible. A more general error estimate that alscounts for the bias is root mean
square error of prediction (RMSEP):

N
1
RMSEP :'\/W Z Yon—Yen)? (15)
n=1

Standard error of calibration (SEC) and root mequased error of calibration
(RMSEC) are calculated by the same formulas as &&#P RMSEP, but on
calibration residuals (the calibration set and datibn set are identical). The
correlation coefficient r) or the coefficient of determinatiorr?( for a linear
regression betweey andy; may also serve as a rough indication of the pi@tisf

a regression model. However, this is only an indicaf correlation betweey, and
y; and will not account for bias or slopes differéoimn 1.

1.5. Multivariate deconvolution methods

Even with modern capillary chromatographic columesmplete resolution of all
analytes in a chromatogram may not be achieveduddyy detectors that provide
spectral informatione.g. GC-MS or liquid chromatography (LC) with diodeayr
UV detection, there are several possibilities foamtification of overlapping peaks.
In cases of full selectivityi.e. when all analytes have a signal at one or more
wavelengths or ions that is absent in the otherytws in the peak cluster,
quantification of the overlapping peaks is a tiivésk if the selective signals have a
sufficient signal-to-noise ratio.

But the information in the spectra may be usedgigantification also in situations
without selectivity, even with severely overlappipgaks. If standards or pure
spectra of the analytes are available the problerag be solved by regression.
Another solution, which does not require that refee spectra are available, is
multivariate deconvolution of the overlapping chiedographic peaks.

1.5.1. Theory of multivariate deconvolution

The purpose of multivariate curve resolution methsdto decompose the raw data
matrix, X, into matrices containing pure spect®@l, in row vectors and pure
chromatographic profile€;, in column vectors (Equation 16 and Figure 11).
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X =CS' +E (16)

X has the dimensiohlxM, C has the dimensioflxA andS' has the dimension
AxM. N is the number of data points in the chromatog@nofile (number of
spectra measured) aMlis the dimension of the spectra (number of wagtlenor

masses)A is the number of analytes in the peak cludtes the error matrix, which
has the same dimensionXasEach analyte in the system is represented byusnco

vector, ¢, describing the chromatographic profile and a r@etor, s, describing

the spectrum, and Equation 16 can be rewritten as:

X =308 +E (17)

Assuming thak is small enough to be neglected, estimateS oéin be found from
estimates o0& by the following equation:

C =Xs(s's)™ (18)
Similarly, estimates o8’ can be found from estimates®f
s’ =('c)'c'X (19)

The estimates of andS' can be obtained by several approaches, which hpugh
can be divided into direct and iterative methodghke direct methods the pattern of
peak overlap is typically analysed by evolving ¢actnalysis (EFA) [80,81],
modifications of EFA, such as the fixed-size moviagndow EFA [82] or
eigenstructure tracking analysis [83]. Other methosuch as latent projective
graphs (LPG) [84], may also be applied. The ovepagiern reveals where pure
spectra or chromatographic profiles can be foumd], eomplete resolutions can
often be achieved by the application of Equatiorod89 or by using information
from zero-concentration windows to find estimates@ andS'. This can be done
by rotating the scores and loadings from PCA irstingates ofC andS'

CS'=TRR'P’ (20)

R is aAxA rotation matrix,T is the PCA score vectors and has the same dimensio
as C. P' is the PCA loading vectors with the same dimersiasS'. Various
procedures for findingR are described and compared elsewhere [80,81,84—86]

In the iterative methods initial estimates Gfor S' are refined in a repetitive
manner until a convergence criterion is met. Theaéiqns above (18-20) are often
involved in one or several steps in the proced@@od initial estimates, which can
be obtained by several methods [87-92], are esdefline initial estimates are
refined by applying constraints on the estimate€ agindS". Common constraints
are positivity inC andS™ and unimodality irC, i.e. each chromatographic peak@n
has only one maximum. Common iterative procedaresalternating regression
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[93], iterative target transformation factor an@y494] and Gentle [95]. If
available, information from several samples camrdmabined to give more accurate
results [96,97].

X = §,XC,+ S,XC, + S3XCg

Resolution >

gy, ;
&) ‘on tine
"9ths ctention

R

Figure 11 The purpose of multivariate deconvolution is to find the pure
chromatographic profiles, C, and pure spectra, S, from raw-data, X.

1.5.2. Determination of the number of components

The mathematical definition of theank of a matrix is the number of linearly
independent rows or columns. Taking the noise eatasideration, a more practical
definition is that the rank equals the number otdes that are significantly different
from the noise. The rank of the raw data equalsrtaeimum number of spectra and
chromatographic profiles that can be resolved franpeak cluster by a self-
modelling deconvolution method. Ideally, the ramkhe raw data matriXX, should
therefore be equal to the number of analytes. &év@ctors may reduce the rank of
the system and hinder successful resolution. Timk fa reduced if there are
compounds with identical spectra or spectra thatlimear combinations of other
spectra. The rank is also reduced if two chromaioigic peaks are completely
overlapping. Consequently, there must be a cedaiomatographic resolution, and
a certain difference between the spectra to actgeweessful deconvolution.

A large number of methods are used to estimatauh&er of significant factors of
a data matrix. The various methods are thoroughhewed elsewhere [75]. There
is probably no general method that can be appbeds$timation of the number of
compounds in GC-MS peak clusters because the maiterns differ between
instruments and between different applicationshensame instrument.
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1.5.3. Noise

In any real chromatographic data, various typesm$e will be present and may
hinder successful resolution. Noise in chromatolgi@apsystems is typically
heteroscedastic; the noise increases with sigrexigih. The expected accuracy and
precision of a chromatographic peak are commonjyessed in per cent of the
peak area, meaning that the noise is expectedctease proportionally with the
peak size. The heteroscedastic noise may give unatec results when peaks with
large differences in size are resolved. Becausseenfiom the large peaks in a
system will also influence the smaller peaks, tm@ant of noise relative to the peak
size of smaller peaks will be large, and lead &mcaurate quantification of these.
Thus, the limits of detection or accurate quardiiien of an analyte will not only
depend on the peak size of the analyte, but wslb @lepend on the size of other
peaks in the cluster.

Another effect that may limit the possibility ofs@ution is thescan-effec{98,99,
Paper IX]. As can be seen from Equation 17, thexgples of multivariate
deconvolution methods require that the spectrunarofanalyte is described by a
single vectors', and the spectrum should therefore be constaimgithre elution of

a pure peak. Quadrupole and sector mass spectmnagte scanning instruments,
where the ions are recorded in sequence. The ctyatien in the detector changes
during the time interval between the first and I ions recorded in a scan. This
leads to ‘false’ correlations between ions that @dose in the scanning sequence.
The scan effect may lead to overestimation of thmlmer of components in a peak
cluster (the rank) and may also hinder successflution of peaks with similar
spectra, even if the number of compounds is cdyrestimated. Possible solutions
for reduction of the scan effect are given in Pdper
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2. ldentification of FAME from shifts in ECL-values

This chapter is a discussion of Papers | and llicwiboth deal with the use of
temperature induced shifts in ECL values for thentdication of FAME. The
strong dependence of the polarity of the cyanodrppgses on temperature is an
essential issue in both papers.

2.1. Temperature induced shifts in ECL-values

A method for the identification of fatty acid methgsters based on the analysis of
shifts in ECL values is described in Paper I. I§ baen shown that the polarity of
cyanopropyl phases is temperature dependent [1d] that ECL-values of
unsaturated fatty acids increase with temperatar¢ghese columns [100-102]. In
temperature-programmed GC, increased temperatadiegits or decreased carrier
gas flow will increase the elution temperature afcanpound, and therefore have
similar effects as increased temperature in isataéchromatography. This can be
seen in the chromatograms in Figure 12, which coegpéhe elution patterns of
FAME analysed with two different programs on theXBFO phase. The difference
in ECL value for the highly unsaturated fatty a2t6 n—3 is as high as 0.45 ECL
units. The differences for less unsaturated fatigsaare smaller, only 0.10 ECL
units for 24:1n-9.

In the work described in Paper |, the effects ofyway start temperature,
temperature gradients and column flow in lineargerature programs on the BPX-
70 phase were analysed. The factors were varieal fll factorial 3-design as
shown in Figure 13. Chromatographic parameterslaseribed in detail in Paper I.
PCA (with programs as objects and fatty acids ambkes) of the ECL values of 27
FAMEs with different chain lengths and number otidie bonds showed that the
two first principal components explained 99% of thariance and that four
programs adequately span the variation in the da{&ee Figure 1 in Paper 1). The
four programs and the centre point in the desigrewrerefore selected as a suitable
set of programs and applied for further studiePaper |1-IV. These programs are
referred to as thstandard program# the remaining discussion.

PCA on ECLs acquired with the standard programt) the fatty acids as objects
and the programs as variables, gave score plotgewtiee fatty acids were
distributed according to the chain lengths and remalb double bonds. An example
from Paper | is shown in Figure 14. The patterrthis figure is similar to the
retention maps of FAME that are acquired by two<hsional gas chromatography
(GC x GC) [103]. In Paper I it is also shown tha¢ number of carbons and the
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number of double bonds in FAME can be determinedhbitivariate regression on
the ECL data from the five standard programs.

22:3n-3
24:0
234 ni6 22503 55613
24:1n-9
i A 1 1 L | IECL
23.8 24 242 243 246 24,8 25.2 254 256
22:3n-3
n AECL=0.10 AECL=0.45
24:0
22:4 n-6 .
22803 ordn3
24:% n-9 25:0 :
L Z LN } | L Al | 2.1 | | ECL
238 24 242 24.4 246 24.8 25 252 25.4 256

Figure 12  Elution pattern from ECL 23.8 to 25.6 with two different temperature
and flow programs on BPX-70. Upper chromatogram: Start temp.
160 °C, temp. gradient 2 °C/min, column flow 26 cm/sec; lower
chromatogram: Start temp. 190 °C, temp. gradient 4 °C/min, column
flow 18 cm/sec. Further details are given in Paper Il.
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Figure 13 Levels used in 3* factorial design used in the study of ECL-shifts on a
60 m BPX-70 column. Red spots mark the standard programs (1-5)
that were selected for further studies in Paper I-VI.
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Figure 14 PCA score plot of ECL values of C18—C24 FAMEs as objects.
Variables were the five standard programs. Broken lines indicate the
number of double bonds; solid lines indicate the n—3 and n—6 series.
Green circles are fatty acids in the reference mixture GLC-461. Blue
circles are tentatively identified marine fatty acids. PCA was
performed on unweighted and mean centred variables. Further
details are given in Paper I.

2.2. Two-dimensional fatty acid retention indices

A problem with identification based on plots likegire 14 is the lack of stability.
Principal components are ‘abstract factors’ thatl@r the properties of a given
object relative to the other objects in the dataset with scales that has no direct
chemical meaning. Thus, the score values of eathdaid on the two components
(PC1 and PC2) depends on which fatty acids thap@sent in the dataset, and will
also vary with drift in stationary phase properti@sd other chromatographic
conditions. Because of this instability it is diffit to identify compounds by
comparisons with previously acquired retention data

The solution is to stabilise the system by definireention indices in two
dimensions; two-dimensional fatty acid retentiondices (2D-FARI) were
introduced in Paper II. Traditional retention indeystems like Kovats indices or
ECL values are typically based on a series of hogues where the only difference
between the references is a single property, ndynitae chain length of the
compounds. In a two-dimensional retention indexesyss the references must also
vary in a second property. For fatty acids, an obsichoice would be to base the



30

system on the number afs double bonds in addition to the chain length. €hes
properties are also the two effects that are bggamed by the plot in Figure 14.

The reference mixture GLC-461 spiked with 22133 and additional saturated
FAMEs was used as calibration sample and analysiéldl tve same standard
programs that were selected in Paper | (Figure E8)L values for the standard
programs were used in multivariate regression nsott@ prediction of the chain
length and the number of double bonds in the FAMERe calibration sample. The
predictedvalues from these multivariate models were theslieg to define the two
retention index scales, FARland FARE. The values that define the retention
indices are given in Table 2 in Paper Il. Becatgevilues that define the scales are
predicted values, they are not exactly the changtle and the number of double
bonds, but the values explain these two factorsuhded to the nearest integers.
Predicted values from the multivariate regressiaueh were applied to define the
scales, instead of true values, because valuesdhdte accurately explained by the
ECL data from the standard programs will give aengiable system.

2D-FARI values are acquired by analysing the refeeesample and other samples
using the five standard programs. Multivariate esgron is then applied to find the
relationship between the ECL data for the stang@ograms and the defined 2D-
FARI values for the compounds in the reference un&xtThe regression models are
thereafter applied to predict 2D-FARI values fohat FAMEs from their ECL
values acquired using the five programs. This mtace aligns all FAMEs relative
to the reference compounds and the results camdsemqted by ‘maps’ as shown in
Figure 15.

In the 2D-FARI map in Figure 15 the fatty acids g@sitioned within squares
according to the chain length and the number obtobonds. However, there are
exceptions for FAMESs wittrans double bonds and FAMEs with a terminal double
bond -1). The special behaviour ¢rfans fatty acids on CNP phases is discussed
further in Section 3.

The polarity of CNP phases will often decrease witle. The length of a capillary

column may also decrease with time because it reayezessary to cut a piece of
the column each time the column is installed in @@ because the first meters of
the columns may degrade if ‘dirty’ samples aredtgd. Thus, old columns may be
several meters shorter than new columns, and haliefore have higher carrier gas
velocity than new columns when used with identiopdctor pressures.

The data shown in Figure 15 are from two BPX-70ugwuis with different
properties; the difference in ECL for 22163 acquired on the two columns is 0.08
to 0.09. This is approximately equal to the widthaopeak at the baseline. It is
shown in Paper Il and in Figure 15 that the 2D-Fa\Rie relatively robust towards
differences in column properties and also thatZbBbeFARI data can be estimated
from programs with different temperature and flosttings. The 2D-FARI data for
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the BPX-70 phase could also be estimated from E&th dcquired on a more polar
CNP phase (SP-2560) but with some reduction inracgu

With ECL values and other one-dimensional retentiodices, changes in
chromatographic conditions will have largest effent the most unsaturated
compounds (see Figure 12). 2D-FARIs are robust rdsvéhese changes because
information about the polarity (number of doublentis) of the compounds is
present in the data matrix applied in the regressitis information will not be
present in ECL data from a single chromatograpbit and a similar robustness
towards changes in the chromatographic conditioasnat be achieved from
ordinary univariate retention data.

It may seem unnecessary and inconvenient to useamy as five different GC
programs to calculate the two-dimensional datavds shown in Paper | that the
information in the dataset from the five prograras be explained (99.99%) by two
principal components and that the information altbatchain length and number of
double bonds in FAME can be achieved by compaiiegBCL data from only two
programs. Thus, it can be argued that there angtam significant dimensions in
the data. However, using more programs will inceghe stability of the method. In
complex mixtures there is also a risk of chromadpgic overlap that may hinder
accurate calculation of the ECL data. If a compowverlaps in one or more
chromatograms it will still be possible to calcelaiccurate 2D-FARI data based on
the remaining programs. More than two programs alkmw outlier detection by
multivariate methods like PCA.
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Figure 15 2D-FARI of FAME analysed on two different BPX-70 columns. The
values are the same as shown in Paper Il (Figure 5). Green crosses
mark values that are given by definition for FAMES in the calibration
sample. Red and blue spots mark results acquired on ‘new’ and ‘old’
column, respectively. Trans fatty acids and n—1 fatty acids are shown
on yellow background.
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3. Application to trans isomers

This section is basically a discussion of Papdrant 1V, but also includes some
data from Paper | and Il. The geometries of thebtebonds in PUFA are essential
for the chromatographic behaviour of the compouitds. often assumed thétans
isomers elute before the corresponduig isomers on highly polar CNP phases.
This assumption seems valid for monoenes, diengsnast tetraenes. However, the
picture is more complicated with more unsaturateéRs.

The effect of increased temperature on CNP phasesuch less fotrans double
bonds than focis double bonds. This has been shown for monoendg fiidl can
also be seen by comparing ECL values from Papdoilitrans andcis isomers of
EPA and DHA withcis monoenes for the two standard programs referredsto
Program 1 and 5 (See detailed discussion in P&per |

The different behaviour afis andtrans double bonds has implications both for the
identification of trans fatty acids from retention data and for optimisatiof
chromatographic elution patternstodinsfatty acids. A PCA score plot of ECL data
of cis andtransisomers of 18:1n-9, 18:2n-6, 18:3n-6 and 18:3n-3 that were
acquired with the standard programs is shown imutfei@ in Paper I. In this case,
there is no variation in the chain length in theadat and the fatty acids are
distributed according to the numberai$ andtransdouble bonds.

The effect oftrans double bonds is also visible in the 2D-FARI magFigure 15
where the FARJ values oftrans 16:1 and alkans 18:2 indicate that the effect of a
transdouble bond is slightly less than half the effafch cis double bond. 2D-FARI
data for alleis and alltrans EPA and DHA are given in Paper lll; the FAR/Malues
of the alltransisomers were only 27 and 28 % of the values feralhcis isomers.

3.1. Retention data for trans isomers of EPA and DHA

In Paper Il the different behaviour ofs andtrans double bonds were utilised for
optimisation of the elution patterns isbmers of EPA and DHA with one and two
trans double bonds (irans and 2trans isomers). These highly unsaturated fatty
acids are abundant in fish oils and other maripieldi. Geometrical isomerisation of
double bonds occurs at high temperature processingdible oils and the
isomerisation rates increase with the number of boubonds [104,105].
Geometrical isomers of these fatty acids have lveported in processed fish oll
[106,107] and also in rat liver as a consequenametbbolism otransisomers of
18:3 [108,109].
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Accurate quantification ofrans isomers of EPA and DHA requires that tinens
isomers are chromatographically separated fronallheis isomers. The geometries
of double bonds have limited influence on the revenin GC, and with the high
number of possible isomers it is likely that oneseveraktransisomers will overlap
with the allcisisomer. Thetransisomers can be separated from thecalisomers
by LC or thin-layer chromatography (TLC) on stadoyn phases impregnated with
silver ions. However, the main purpose of the wiegorted in Paper Il was to
search for resolution windows on CNP phases thatvalirect analysis of theans
isomers by a single GC analysis.

The allcis isomer and isomers with one and twans double bonds of EPA and
DHA were analysed with the five standard prografmee relationships between the
ECL values of the altis isomers and thdrans isomers were found by linear
regression and the regression lines are showngur&il6. As can be expected, the
ECLs of thetransisomers increase with the ECLs of the@ad-isomers, but with
less steep slopes. It can also be seen that thesstid isomers with the same number
of transdouble bonds are nearly parallel.

The slopes in Figure 16 show that it is possiblentive the alkis isomers relative
to thetransisomers by changing the temperature and flow c¢mmdi, but isomers
with the same number ¢fansdouble bonds cannot be moved relative to eaclr.othe
The largest resolution is found where the distdbeteveen the red line (representing
the allcisisomer) and the other lines is maximised.

Sufficient resolution Rs=1) requires a distance between the isomers of
approximately 0.05 ECL units (see Paper Il forafle). There exist no windows
that will provide this resolution between the @B- and the Zrans isomers.
However the amounts of tPans isomers are formed in a much lower rate than 1-
trans isomers and the amounts in real samples can becegto be negligible
[107,110].

The best resolution between ait EPA and the Irans isomers is in the area
between Program 1 and 4. Program 1 also proviceddbkt resolution of adlis and
1-trans DHA, but the regression lines indicate that resofuwill be better for
programs with lower ECL value for the alils isomer. This can be achieved by
lowering the temperature gradient or increasing ¢bumn flow. However, it
should be emphasised that the selection of chragrebic conditions is often a
trade-off between separation efficiency and theetirequired for the analysis.
Lower temperature gradients will increase the amslyime; too high carrier gas
flow will give loss of column efficiency and redutseensitivity for MS detectors.

The properties of the EPA and DHA isomers were atsestigated on SP-2560,
which showed similar correlations between thecaland thetrans isomers (see
Paper Il for details). The most notable differeneeere that SP-2560 separated four
1-trans EPA isomers and that it was not possible to aehmwfficient resolution
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between the altis isomer and the first frans isomer eluting after the atlis
isomer. It was therefore concluded that BPX-70 im@re suitable column for
analysis of these isomers. However, in subsequadies on thermally isomerised
EPA and DHA concentrates [110], it was found thalyaminor amounts of this
isomer is formed and that there is also a problenmaterlap between 204-3 and
the first 1trans EPA isomer on BPX-70 (Figure 17). The overlap lestw20:4-3
and the Itrans EPA isomer is difficult to avoid by changing thkereamatographic
parameters because the two compounds have thensemier ofcis double bonds.
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Figure 16 ECL of geometrical isomers of 20:5 n-3 [a] and 22:6 n-3 [b] (vertical
axis) as functions of the ECL of the all-cis isomers (horizontal axis)
on a BPX-70 column. Vertical lines mark the ECL values of the all-cis
isomers acquired with the standard programs. Background data and
equations for the regression lines are given in Paper lIl.
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3.2. Application of the retention data for trans isomers of
EPA and DHA

The data for the retention behaviour of thensisomers of EPA and DHA found in
Paper Il can be applied both for identificationtbé isomers and for optimisation
of chromatographic conditions. Paper IV is abownitfication of trans isomers
formed as artefacts in acid catalysed preparatioRAME from marine tissues.
Both the regression lines and the 2D-FARI data fi@aper Ill were applied for
identification of the artefacts.

Because Figure 16b suggests that the best resoligiachieved with low ECL
values for alleis DHA, a temperature program with a low temperatragient (1.0
°C/min) was selected. This gave ECL for @l-EPA of 22.49 and altis DHA of
24.85. Even though the applied program gave ECluesloutside the region
investigated in Paper lll, the predicted retentiomes for thetrans isomers
(converted from ECL values) show fairly good matafth the experimental
retention of the Xransreference compounds (Figure 2 in Paper IV). Tigeassion
lines in Figure 16 can therefore be extrapolatedarmas outside (but near) the
investigated region with acceptable accuracy.

The data from Paper Il have also been appliedd®ntification of isomers formed
in heated EPA and DHA ethyl ester concentrates][Ctdfomatograms of neat and
thermally isomerised EPA and DHA are shown in Fegli? together with trans
isomers. DHA was analysed with the same conditesmspplied in Paper IV and
ECL of the alleis DHA isomer was similar as in Paper IV (24.85). ERAsS
analysed with a program expected to give optimablgion of the alkis and 1-
trans isomers with ECL of the altis EPA of 22.63. There were good match
between predicted and experimental retention tifoesthe lirans isomers and
there were also correspondence between predictemtion times for Zrans
iIsomers and minor compounds formed by thermal isisagon (Figure 17).
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EPA and DHA concentrates analysed on BPX-70. [a] and [b] are Neat

concentrates, [c] and [d] are thermally isomerised concentrates. [e] and
[f] are 1-trans references. Triangles mark predicted retention times
based ECL of the all-cis isomers and the equations given in Paper lll.
The GC temperature programs was similar to the standard programs
but with start temperature of 180 °C (EPA isomers) and 160 °C (DHA
isomers), gradients of 1 °C/min and carrier gas velocity of 26 cm/sec

[110].
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4. Prediction of equivalent chain lengths

This chapter is a discussion of Papers V-VI, wlach about the prediction of ECL
values. There are basically two reasons why priediadf retention indices is of

interest. Accurate prediction of retention indicemy be a valuable tool for

identification of unknown compounds that is not illde as standards. Since
several compounds may have identical or near icantetention times, matching

retention indices will not confirm the identity afcompound. However, models that
predict retention indices (or retention times) rbayan effective tool for elimination

of alternatives or incorrect tentative identificets.

A second reason to develop models for predictioneténtion indices is related to
optimisation of elution patterns. In complex samsgike marine fatty acids there is
large risk of chromatographic overlap and suitabference samples that contain all
compounds of interest may not be available. Withdet® that predict retention

indices it is possible to test whether a given cooma will be resolved or hidden

under other peaks.

Various approaches have been applied for the grediof retention indices. These
can roughly be divided into three classes:

Type |: Models based on experimentally determiradts-solvent interactions.

Type II: Models based directly on the molecularusture or parameters
calculated from the molecular structure.

Type lll: Models based on group additivity.

The first type of models are based on setssolute descriptorswhich are
experimentally determined parameters describingtbperties of each analyte, and
experimentally determineghase constant®r solvent descriptods which describe
the properties of the stationary phases. Retentidices can be estimated by
equations as shown below:

| =axA +bxB +cxC ... + nxN (21)

wherea, b, ¢, ..., n are solute descriptors ad B, C, ..., N are phase constants.
Thus, there is one solute descriptor matching gdase constant. Typical models
include 3 to 6 parameters of each type [111,11B¢ models may also be expanded
by inclusion of other parameters describing theteoproperties, like boiling points
or the retention index on squalane [111,113]. Tlstnaommon systems of solute-
solvent interactions are the concepts of Rorsclenditil3,114], McReynolds [115]
and Abraham [112].
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This type of models has several limitations. Thanndrawback is that the data

required for the calculations may not be availalllee solute descriptors are

available mainly for relatively small molecules.€elbse of phase constants is also
questionable; as shown in Section 2, the propedies phase are not necessarily
constant.

The alternative to models based on experimentatgrchined solute and solvent
descriptors is to base the models directly on argesn of the molecular structure
or on parameters estimated from the structure (TypMathematical models of the
relationships between the retention propertiesthndstructures of compounds are
often referred to as quantitative structure-retemtrelationships (QSRR). The
challenge in QSRR is often to find relevant matht&rah descriptions of the
structure of a molecule that can be applied asabkbes in the models. A
mathematical description of the structure is pdssitor simple systems like
unbranched fatty acids with methylene-interruptexiilide bonds. Other simple
systems that can be described in a similar waydameins [116] polychlorinated
biphenyl ethers [117] and simple hydrocarbons [11dpwever, with more
complicated molecules with several functional gupr for general models that
cover a wide range of functional groups and possisiructures, a relevant
mathematical description of the molecule is notsgme. This problem may be
circumvented by basing the models on suitable nudeaescriptors, such as molar
volumes, electron donating properties, polarizgbiind dipole moments that is
estimated from quantum chemical calculations. Aydanumber of parameters are
typically calculated in the initial stage and sednundred parameters are often
evaluated before the models are refined by a daitadriable selection procedure
[119].

Models based on molecular structure will usually apply any descriptors of the
stationary phase properties, but will instead usali#ration set of compounds with
known retention indices and a multivariate reg@ssnethod €.g. PLSR or neural
networks) to find the relations between the molacdlescriptors and the retention
indices. The multivariate model is then appliedptedict the retention indices of
other compounds from their structure. Thus, they @{perimentally determined
parameters in these models are usually the retentidices of the calibration
compounds. The drawbacks of these models are libaadcuracies, especially of
models that cover a large range of functional gsp@pe often limited, and that the
calculations of the descriptors and the final msdetuire computational power.

Retention indices may also be estimated by assufoingtional group additivity
(Type IIl), i.e. the presence of a functional group will have thens effect in
different molecules. Models of this type are usubtised on the number of carbons
and contributions from ‘group retention factors2(t122]. Estimation of FCL
values of PUFAs by summing the FCL values of moesenith the double bonds
in the corresponding positions [33-35,123] canlbssified as a Type lll approach.
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It should be emphasised that there are approabheda not fit nicely into the three
categories described above, and there are alsopdesiuthat can be described as
hybrids, e.g. models that include both experimentally and thecaty derived
molecular descriptors.

Two different approaches for prediction of ECL veduhave been evaluated in
Paper V and VI. The work in Paper V predicts theLE@E PUFA from simple
descriptors of the molecular structure and candsembed as a Type Il approach.
The work in Paper VI predicts ECL from 2D-FARI valj which can be described
as experimentally determined solute descriptorsvéd@r, the models are based on
regressions on a calibration set instead of statjophase descriptors and therefore
have elements from both the type | and type |l apphes.

4.1. Prediction of ECL values of MI-PUFA from the
molecular structure

In Paper V multivariate regression models were iedpio predict ECL values for
methyl esters of PUFA. In PUFA with MI double bondt cis geometry, the
molecular structure can be described by only thgameters: the chain length, the
number of double bonds and the position of the @oliond system. It is well
known that all three parameters will influence E@L values of the PUFA and it
was evaluated whether precise models for predicfdaCL and FCL values could
be based solely on these three parameters.

As shown in Section 1.1, the positions in the deu®nd system in MI-PUFA can
be given both as the distance from the carbonyugr@-position) and as the
distance from the methyl end-position). It is also well known from the studiefs
monoenes that the relationships between double positions and ECL values are
not linear [32,124,125]. Shifts in positions haweited effect close to the centre of
the carbon chain, while the effects increase subatly as the double bonds
approaches either of the ends. A common trick todlgasuch non-linearities by
linear methods is to include higher order termgaagbles [77].

Both A- and n-positions and the higher order terms fofand n were therefore
included in the models as separate variables amghenformance of models based
on various selections of the variables was invastid. For general models it was
necessary to include both tlaeposition and then-position and the higher order
termsA?, A®, A* andn?. For models restricted t0-3 andn-6 isomers it was not
necessary to include theposition among the variables. The highest resglf@d
the most accurate models were below 0.06 ECL uaits,k, RMSEP was below
0.030.
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Figure 18 Distribution of the residuals (blue curve) compared to the
chromatographic peak width (red curve) for model 19e in Paper V.
The peak width is estimated from 20:5 n—3. Residuals of the single
fatty acids are shown with yellow dots. The intervals indicate 95 and
99 % of the area of the error distribution curve. RMSEP = 0.027.

There was a good correlation between predictedeapdrimental ECL values with
slopes near one armd of 0.9999. However, practical applications of misdier
prediction of retention indices require very higltaracy to be of any use and the
accuracy are better illustrated if the residuadéscampared to the width of a peak, as
in Figure 18. Some of the residuals are outsideatiea covered by the estimated
chromatographic peak width (red curve), which metias a predicted ECL value
for a given compound may be outside the area cdvbyethe chromatographic
peak. The intervals of the error distribution cummay be used to set limits for
rejection of tentative identifications. In the cas@own in Figure 18, the
identification of a compound may for instance bgcted if the ECL of the
chromatographic peak is more than 0.072 or 0.05& dwrom the predicted value
(99 and 95% intervals, respectively).

Both ECL and FCL values were applied as dependenables in the models in

Paper Ill. The residuals were almost identical.fédnt regression methods were
also applied. PCR and PLSR, methods based on laeables, gave approximately
equal RMSEP, while MLR gave poorer predictions.

The regressions were tested on ECL data from tliferent GC programs

(standard programs 1, 3 and 5). The residuals alelsobased on different GC
programs were correlatede. fatty acids with a large positive residual on nede
based on one program had large positive residuasarlels based on the other two
programs. These correlations should not be prakémt accuracy of the ECL data
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was the limiting factor for the accuracy of the ralsd Because there is systematic
variation in the ECLs that is not explained by liest models, it should be room for
further improvements.

4.2. Prediction of ECL values from 2D-FARI data

Since the two-dimensional fatty acid retention aedi are calculated from the ECL
values acquired at different chromatographic cookt the two values contain
information about how the ECL values will change thwivariations in
chromatographic parameters. Prediction of ECL wafuem 2D-FARI is described
in Paper VI.

A reference sample containing fatty acids with 28R values defined in Table 2
in Paper Il was analysed with various GC programg the ECL values were
calculated for the compounds in the reference sanmfplmultivariate calibration
was then used to find the relationship betweerRid-ARI (x-variables) and ECL
(y-variable) for the FAMEs in the reference samglbe multivariate calibration
model was thereafter applied to predict the EClothfer FAMEs from their 2D-
FARI values.

Since the 2D-FARI values for the FAMEs in the cadiibn sample are given by
definition, the only information necessary to cédte the ECL value for a
compound run under identical conditions as thebcation sample is the 2D-FARI
values for the compound, which may be acquired fpoaviously reported data.

Results for prediction of ECLs for various fattyidecwith 0-5 double bonds (All

data from Paper VI) are shown in Figure 19. Thaigt®n errors of the models

based on 2D-FARI values are much smaller than aediwith the models based on
the molecular structure (Figure 18). The RMSEP erfiggal models (large range of
ECL) based on the 2D-FARI values was less than tha&fRMSEP for the best
models in Paper V. However, it is difficult to ma&edirect comparison of the two
approaches because the predictions were basedferedi compounds. There are
also differences in the validation procedures. Misthe models in Paper V were
validated by cross-validation, while the modelsdaasn 2D-FARI are validated on
test-sets.

The calibration sample contains only saturatedasdnsaturated fatty acids. It was
therefore a question how accurate the models wallliot the ECLs of other types of
fatty acids. Becausgans double bonds show a different behaviour with respe
the ECL shifts required for calculation of 2D-FARian cis double bonds, the
method was tested also drans isomers of EPA and DHA. The errors for the
predicted ECL values of thans isomers were lower than the errors for the
unsaturated fatty acids.
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Figure 19 Distribution of the residuals (blue curve) for ECL data predicted from
2D-FARI values compared to the chromatographic peak width. The
peak width (red curve) is estimated from 20:5 n—3. Residuals of the
single fatty acids are shown with yellow dots. The intervals indicate
95 and 99 % of the area of the error distribution curve. RMSEP =
0.012 (Redrawn from Fig. 1a in Paper VI)
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5. Identification of FAME from mass spectra

This chapter is a discussion of Papers VII-VIll,iethare about application of
multivariate analysis for identification of PUFAofn mass spectra of FAME. PCA
is applied in Paper VII to distinguish betweeis and trans isomers of PUFA.
Multivariate regression (PLSR and MLR) is applied Paper VIII for the
determination of the number of double bonds in PUFA

5.1. Identification of trans double bonds in PUFA

Transisomers of fatty acids analysed by gas chromatdyrape usually identified
from retention data or occasionally by applicatadninfrared detectors [126—-130].
Several reviews have been published on the toBit{133].

Little attention has been paid to the possibletifieation of transgeometry in fatty
acids by MS. However, it has been shown that geaiccomponent analysis can
distinguish between small differences in mass specf picolinyl esters of
geometric isomers of monounsaturated fatty aci@$. [Differences have also been
found between CI spectra oifs andtrans FAME isomers [60]. It has been shown
thatcis andtrans geometry in aliphatic chains can be detected bW&I[134], and
differences between the spectra @$ and trans monoenoic FAME have been
observed when the double bond is close to the ogflgpoup [135,136].

The analysis otis andtrans isomers of PUFA with MI double bond systems in
Paper VII showed surprisingly large discriminatmaused by the geometries of the
double bonds. A PCA score plot of the mass spedtgeometrical isomers in 18:3
n-3 is shown in Figure 20. The main variance in thtaset, 77% explained by PC1,
is caused by differences in the geometry of thérabdouble bond. There is also a
clear discrimination along PC2, which is causeddifyerences in the terminal
double bond. There was no clear discrimination edusy the geometry of th&9
double bond.

The effect oftrans geometry in the central double bond in the trisygtem can be
seen in Figure 21 where the ait 18:3n-3 is compared to the isomer wittans
geometry in theAl2 position. The most notable difference is tHare is a
substantial reduction of thm/z 79 ion, which is normally the base peak in PUFA
with three or more MI double bonds. Furthermores thagnostic ions for the
position of the double bond system [38—4@]ahdw ions, Figure 5d) are reduced
and thea-ion is not visible above the background. Similasults were also
achieved with 18:3-6, 20:3n-3 and 22:3n-3. Isomers of 20:3 and 22:3 that
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differed only in the geometry of the double bondnest the carbonyl group were

also separated by PCA (Paper VII).

Ag
0
9t,12c,15c-18:3 (closed) 9t,12t,15c-18:3 (closed)
<>o 9c,12c,15c-18:3 (open) 9c,12t,15c-18:3 (open)
-
PC2 (77%)
9t,12c,15t-18:3 (closed) 9t,12t,15t-18:3 (closed) 3
© 9c,12c,15t-18:3 (open) 9c,12t,15t-18:3 (open)
Y
Figure 20 PCA score plot of geometrical 18:3 n—3 isomers (Reproduced from
Paper VII).
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PCA score plot of geometrical 18:3 n—3 isomers. (From Paper VII)
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The trans isomers of 20:4-6 and 22:4n-6 were also investigated in Paper VII.
Because of the low number of peaks that were cdelplaesolved by GC,
conclusive results about the methylene-interrupgédchenes could not be achieved.
However, similar reductions im/z 79 were also observed in tetraenes witns
double bonds and observations orrdis isomers with tentative identifications
from the retention times showed the following:

1) Transgeometry in the second double bond counted framibthyl end led
to a substantial decrease or disappearance aof-ibe.

2) Transgeometry in the second double bond counted franc#rbonyl group
led to a substantial decrease or disappearante afibn.

3) Absence or low abundance of both thandw ions was accompanied by a
large reduction im/z79.

4) Absence or low abundance of one of these iorns acaompanied by less
reduction inm/z79.

More unsaturated fatty acids was not investigateaper VII, butransisomers of
20:5n-3 and 22:6-3 were analysed in full-scan mode in connectiom whe work
described in Paper lll. It is known from the an@ys trienes thatrans geometry in
then-3 andn-6 positions lead to a substantial reduction inr#tention time, while
trans geometry in the other positions have little effectmay give slightly higher
retention times [137-139, Paper I-VII]. Thdaransisomers of EPA and DHA with
lowest retention times are therefore expected tthbesomers witlirans geometry
in the n—3 position and the second peaks is expected thdésbmers withtrans
geometry in then—6 position. Thus, the two first ttans isomers of EPA shown in
Figure 17e are expected to d&7 trans EPA andA14 trans EPA, and the two first
isomers of Itrans DHA in Figure 17f are expected to bd9 trans DHA andA16
trans DHA.

According to the results from Paper \fthns geometry in thex-6 position should
give a significant reduction im/z108 and similar reductions should also be found
in the alltransisomers. Isomers wittrans geometry in then—-3 positions should be
more similar to the altis isomers.

The expected reductions were observed for theals isomers. Relative tm/z79
(base peak in most isomerg)/z 108 was 18 % in altis EPA and 20 % in altis
DHA, and only 6 % in both aliransisomers. Low abundance m/z108 was also
observed for the isomers withans geometry in then—6 double bonds, 5.3 % for
EPA and 5.6 % for DHA. As expected, the levels e isomers withtrans
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geometry in then-3 position was similar to the alis isomers, 19 % for EPA and
22 % for DHA.

Similar reductions in the-ions, which aran/z180 for EPA andn/z166 for DHA,
were also observed in spectra of thet@hs isomers. Thei-ion was 4.5 % relative
tom/z79 in allcis EPA and 1.7 % in alrans EPA. The corresponding values for
all-cis and alltrans DHA were 4.5 % and 1.3 %.

5.2. ldentification of PUFA from selected ions

With scanning mass spectrometers, like sector umstnts and quadrupoles, a
substantially increased sensitivity can be achidweselected ion monitoring (SIM),

where a few ions are monitored instead of the @emtiass spectrum [140]. However,
the selection of a small subset of ions may lealdss of information required for

the identification of the compounds. The purposehef work described in Paper
VIII was to find subsets of ions that contain inf@tion suitable for identification

of fatty acids. The work focused on the determoratof the number of double

bonds in PUFA with MI double bond systems. If theanier of double bonds is

known, the chain length and the position of theld@uond system can usually be
determined from the chromatographic retention tioreSCL values.

As can be seen in Figures 5 and 21, the majorith@fMS signals are from ions
with masses froorm/z50 tom/z 110, while important diagnostic iong-fon, ®-ion,
molecular ion) have high masses and low intensltyis has two important
consequences. The low intensities of diagnostis imean that identification of a
compound requires a high-quality spectrum. Acqugirimigh-quality spectra of
unknown compounds is often difficult, since the wmowns are rarely among the
largest peaks in a chromatogram. Another conseguehthe low abundance in the
higher-mass region is that scanning for diagnastis will ‘waste’ signal strength
because the mass spectrometer is scanning in segibere there are only ions of
low abundance.

5.2.1 Survey of scan spectra

Thirty PUFASs were isolated by silver-ion LC and kgg in the study. Two of these
had NMI double bond systems. In addition, saturatednounsaturated and di-
unsaturated fatty acids were included in the dat#ssurvey of the information in
the dataset in the mass region fromz 50 tom/z110 was performed by PCA. The
score plots are shown in Figure 22a and b. In Ei@2a it can be seen that PUFA
are clearly separated from the other classes, laodtzat NMI-PUFA are separated
from MI-PUFA. It has recently been reported that®P@h selected fragments from
CI-MS spectra of FAME with methane as reagent gag gimilar discriminations
as shown in Figure 22 [56]. It has also been shtvah PCA on EI-MS spectra
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gives a clear separation between dienes with camgagand methylene-interrupted
systems [141].

A recalculation of the MI-PUFA group gave the scplet in Figure 22b. The-3,
n-6 and n-4 groups are clearly separated along PC2. iiHe fatty acids are
positioned between the-3 andn—4 group, but very close to the-3 group. The
separation along PC1 seems to be related toAtpesition of the double bond
system. The\4 (22:5n-6, 22:6n-3, 16:4n-3) andA5 (18:4n-4, 18:5n-1, 20:5n—-
3, 20:4n-6) PUFAs are all positioned to the right in therscplot and fatty acids
with high A-positions are positioned to the left.
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Figure 22 PCA score plots of mass spectra (m/z 50-110) of different fatty acid
classes [a] and PUFA with methylene-interrupted double bonds [b].
SFA: saturated fatty acids, MUFA: monounsaturated fatty acids,
DUFA: diunsaturated fatty acids, NMI-PUFA: polyunsaturated fatty
acids with non-methylene interrupted double bond systems, Mi-
PUFA polyunsaturated fatty acids with methylene interrupted double
bond systems. Fatty acids in the same homologous series are
connected with curves.
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Figure 23  Cross validation predictions versus measured values for a PLSR
model of the number of double bonds from mass spectra (m/z 50—
110) of PUFA. SEP = 0.141. Horizontal lines mark boundaries where
the predicted values will be rounded to an incorrect integer. Redrawn
from Figure 3 in Paper VIII.

The two first principal components, explaining 81o¥%the variance in the dataset,
showed no direct relation to the number of douldads. However, information
about the number of double bonds could be extrabtechultivariate regression.
PLSR was applied to build a model for the predictad the number of double
bonds based on all ions in the'z50-110 dataset. The PLSR model had SEP of
0.141 and bias of 0.01. Predicted versus real sadwe shown in Figure 23. The
model will fail in cases where the predicted valae rounded to an incorrect
integer,i.e. if the prediction error is larger than 0.5. Alktipredicted values were
within these limits. An estimated number of preidicterrors (ENPE) for the model
can be calculated from the area of the error tistion curve that is outside 0.5.
ENPE is only 0.05 % in the case shown in Figure 23.

5.2.2. Selection of ions for SIM

The PLSR on then/z50-110 spectra shows that there is enough infeomai the

spectral region to find an accurate model for tredigtion of the number of double
bonds. The optimal number of PLS-components inRh8R-model gives a rough
indication of the minimum number of ions that mbstincluded in a multivariate
model without loss of accuracy. The residual y-aace for PLSR-models with
different number of PLS-components is shown in FegBb in Paper VIII. The
residuals falls rapidly from zero to four comporgrthere is a minimum at five
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components and a slight increase as more compoaeniscluded. It was therefore
decided to search for suitable SIM combinationsesying MLR-models with three
to six ions. There are 61 ions in the dataset migisses fronm/z50 to 110 and the
number of possible subsets with three, four, find aix ions is 35 990, 521 855,
5949 147 and 55 523 372.

There are several common techniques for selectfothe best combination of
variables such as forward selection, backward ahtion and stepwise regression.
There are also more advanced methods for variablectn, e.g. genetic
algorithms, which have been applied on MS data.[6&wever, there is no
guarantee that these methods will find the bessiplessubset. The optimal subsets
of ions were therefore found by testing every corabon of three to six ions. To
resemble SIM spectra, all subsets were normalisedohstant sum prior to the
regressions. MLR was used as regression methodsal’le computation time,
regressions were not cross validated in the ingedrch but the ten models with
lowest SEC were subsequently cross-validated. SHFS&C for these models were
highly correlated, indicating that the same subsgeisld have been found if cross-
validation had been applied in the initial step.

SEP for the best subset with six ioms/£ 55, 79, 80, 91, 93, 106) gave SEP of
0.132, which was slightly better than SEP for th&R on all ions (Figure 23). The
subset withm/z55, 74, 79, 80, 91, 93 has been applied in lateliess (Papers I, I,
IV, V and VI). The selection of this subset is anmomise where the signal
strength and separation of other fatty acid classe also considered. SEP for this
subset was 0.148, which gave an ENPE of 0.07 %ntaatregarded as acceptable.
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6. Deconvolution of overlapping peaks

A common problem in chromatography is overlappingartially resolved peaks,
which hinders accurate quantification of the ovygpiag compounds. In cases of
severe overlap, it may also be difficult to extrpcire spectra or determine the
retention time. As shown in Section 1.5 there earigheoretical framework for
deconvolution of overlapping peaks if the detegiavides spectra of the analytes,
and several resolution techniques have been deaglop

Multivariate deconvolution techniques are appliedPapers IX and X. The work in
Paper IX is basically about noise and the qualitthe GC-MS data. A method for
reduction of noise from scanning mass spectrométgosoposed in this paper and
applied in Paper X, which shows a practical appbca of multivariate
deconvolution of overlapping geometrical isomerd ®3n-3.

6.1. The scan effect

As shown in Section 1.5, the principles of multiaée deconvolution methods
require that the spectrum of an analyte is desgrilyea single vectos' (Equation
17) and the spectrum should therefore be constaribhgl the elution of a peak.
Concentration differences in scanning mass speetiens during a scan lead to
overestimation of the last ions relative to thestfiions in a scan when the
concentration in the detector is increasing (befgreak maximum), and
overestimation of the first ions relative to thetlons when the concentration in the
detector is decreasing (after peak maximum). In K&~ narrow peaks and
relatively slow scan speeds often lead to large-$gascan variations in the spectra.
An example of GC-MS SIM mode of a pure fatty adahdard is shown in Figure
24.

This scan-effect can be reduced by using high szi@s. However, this may lead to
reduced sensitivity. The effects of increased sassin SIM analyses of six ions on
the HP-5972 mass spectrometer are illustratedgargi25. After each scanned ion,
there is a short time interval, tiger-ion time lag where signals are not recorded.
There is a similar larger time lag between two sc#émeinter-scan time lagThese
time lags are constant and were estimated to banti460 ms respectively [Paper
IX]. Reduction of thedwell time the time each ion is recorded, leads to loss of
signal because the time where no ions are recongegilase relative to the total scan
time.
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Figure 24

Figure 25
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Scan effect illustrated by analysis of a pure peak (18:1 n-9 fatty acid
methyl ester) analysed with a frequency of 1.36 scans/sec. The bar
plot of the masses illustrates how the spectrum changes from the
start (a) to the end (c) of the pure peak. The applied instrument (HP-
5972, Agilent) scans from the highest to the lowest mass.
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Effect of increasing the frequency (scans per second) on the HP-
5972 MS detector in SIM mode. Yellow areas represent time when
signals are detected; grey areas represent the inter-ion time lags (14
ms) and inter-scan time lags (60 ms) when no ions are recorded.
Decreasing the dwell times (the time each ion is recorded) from 100
to 10 ms leads to 60 % reduction of the signal.

The scan effect can also be reduced by correciiotiee chromatographic direction
[98,99,142]. The difference in signal abundancea &sction of time for a specific
ion in a spectrum, is calculated by interpolatiathvthe signal in the next recorded
spectrum. If the time lag between the detectioneath ion in the spectrum is
known, the signals may be corrected as if all imese recorded simultaneously.
Details are given in the references [98,99,142]s hiethod has several drawbacks.
One is that the shape of the concentration prafdenot be accurately modelled
with linear interpolation. It has been proposeduse a second order interpolation

from three consecutive spectra to reduce this proljb8].
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A second problem is that the correction procedwesdnot distinguish between
differences caused by the scan effect and diffe@®maused by the presence of a
second analyte in the spectrum. Consequently, tloeedure may correct for
differences that are not caused by the scan efiethils about the data-acquisition
must also be known. It is essential to know whetherinstrument scans from the
highest to the lowest mass or in the reverse dme&nd corrections for the inter-
scan time lag should also be considered.

An alternative solution for reduction of the scdieet is proposed in Paper IX. The
method utilizes that mass spectra are non-contmspectra, as opposed to, for
example, UV, IR or NIR spectra. Two consecutive seasin the spectrum are
measured almost simultaneously; the scan effectieasfore limited influence on

the ratio of these masses. Since a mass specfrumon-continuous it can be
expressed as ratios of consecutive masses withssitof information, but the scan
effect is removed or significantly reduced.

Every spectrum is transformed by dividing the isignof each ion by the intensity
of the ion scanned immediately after. The intensityhe last ion recorded in the
scan is set to 1. If the inter-scan time lag is lmynpared to total scan-time it is
advisable to divide the abundance of the lastiothié scan by the abundance of the
first ion recorded in the next scan. The transfdioma may also be applied in the
reverse direction. After the transformation, eaobcsrum is normalised to have the
same total abundance as the corresponding spertrilva untransformed data.

These transformations also have drawbacks andationis. If there are ions in the
scan with no signal (except background noise) nihise will be amplified because
of division by a noisy signal with abundance nearoz For this reason, these
transformations are most feasible for SIM analydfesnalytes with similar spectra.
The transformations in the spectral direction waéltiically change the spectra, so
they will be less suitable for identification puges. However, after the resolution,
the original spectr&§, may be recovered by combining the spectral polevith
untransformed in Equation 19.

A latent projective graph (LPG) [84] is a PCA scetet of the raw data matrix,
with scan numbers (or retention times) as objeatsraasses (or wave numbers) as
variables (See Figure 11). LPG is performed on nined data. Noise free pure
peaks will be projected as a straight line in LR€8duse the spectra of a pure peak
differ only in the total signal strength. LPGs @foat closely eluting 18:1 FAME
(Rs=1.27) are shown in Figure 26. Before ratio-tfameation of the spectra
(Figure 26a) the peaks appears as two loops betaeigeain variation in the data is
the scan-effect and not the difference betweenspeetra of the two compounds.
After transformation (Figure 26b), the peaks arejgmted as two straight lines
because the scan-effect is removed.
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Deconvolution of the two monoenes with more sewtm®matographic overlapgr({
= 0.68) is shown in Figure 27. Deconvolution of th@ransformedX failed and
gave two profiles with double peak maxima. Decouatioh of the transforme&
gave to separate peaks with one maximum each. &¢@H] was applied as
deconvolution method in this case because the mealbes not force unimodality
(one maximum) on the chromatographic profiles.
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Figure 26  Latent projective graphs of 18:1 n—9 and 18:1 n—7 fatty acid
methyl esters before [a] and after [b] transformation of the SIM
spectra to ratios. Chromatographic resolution, R, is 1.27
(Reproduced from Paper IX).
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Figure 27  The results of multivariate deconvolution by Gentle [95] of 18:1 n—9
and 18:1 n—7 FAMEs before [a] and after [b] transformation of the
SIM spectra to ratios. Chromatographic resolution, Rs, is 0.68
(Reproduced from Paper IX).

6.2. Multivariate deconvolution of overlapping 18:3
isomers

The spectral transformations proposed in Paper ewapplied in Paper X for
resolution of overlapping peaks of 18:3 geometrisainers.

Because of the similarity in structure and physpraberties, complete separation of
geometrical 18:31-3 isomers is hard to achieve. The most difficuiotations are
between the 12,15 and ©,12c,1% isomers [143-145, Paper | andVll], and
between the @12,15c and 9,12c,15c isomers [143,144,146,147,Paper | and VII].
Peak overlaps betweerc,22,15 and 9,12c,1%t have also been observed [143—
146,148]. The quantification of these isomers may forther complicated by
overlap with other FAMEs, such as C20 fatty acid45,148-150] or gamma-
linolenic acid (€,9¢,12c-18:3) [145,151,Paper | and VII].
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It was shown in Paper VIl that the geometry of ttentral double bond has
significant influence on the mass spectra of tlemers. This means that all the
resolution problems mentioned above involves twomisrs with significant
differences in the mass spectra. These differecaede utilised for deconvolution
of the overlapping peaks by multivariate methodswined in Section 1.5.

The elution patterns of all geometrical isomerd&f3n-3 and alleis 18:3n-6 with
two different temperature programs on BPX-70 amnshin Figure 28. There are
five clusters of overlapping isomers, one with ¢éhisomers and four with two
isomers.

The data were recorded by SIM-MS and the signals dach ion and the

deconvoluted chromatographic profiles for clus&tsand a2 are shown in Figure
29; resolution of the other clusters are shownapd? X. Overlapping compounds
in GC-MS can often be quantified from selectivesiare. ions that are present in
the spectrum in only one of the overlapping compisutdowever, in this case there
are no selective ions and none of the ions shovea profile for any of the co-

eluting peaks

Since there are no selective ions, no good startaes of the chromatographic
profiles, C, can be found and the resolution must be baseaditiel estimates o5
(the purest spectra). Estimates ®fwvere found by a modified Borgen procedure
according to [92] and the estimates ©f and S were refined by the iterative
procedure Gentle [95].

Mixtures of the isomers in various proportions wensed to evaluate the
quantitative accuracy of the deconvolutions. Wi fexceptionst® was >0.99 for
the correlation between predicted and expectedsandee resolution of the cluster
with three compounds were less precise, @ndas in one case as low as 0.86. As
can be seen in Figure 29b, there is no region & dhromatogram where the
6c,9c,12c isomer is present without interference of the ott@mpounds. This will
lead to poorer start estimates®for cluster al than for the other clusters. Furthe
details about the quantitative results are givelRaper X.

The estimation of the correct number of peaks vattk analysis was not considered
an issue in this case because all deconvolutiopenfermed on problems where the
number of peaks is known. In ‘real’ samples witbhnerised linolenic acid, the

presence or absence of a certain isomer will ndynb& known from the presence
of other isomers in the sample. However, the nunbesignificant components is a
limitation for the number of compounds that candmolved from one cluster.

Previous studies of the mass spectra of all eightrgetric isomers of linolenic acid

(Paper VII) indicated that situations as descrilme8ection 1.5.2, where the spectra
are identical or linear combinations of other spgatnay occur in peak clusters of
linolenic acid isomers. When normalised mass spestre analysed by PCA, the
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two first principal components explained 94% of tfaiance, and the remaining
principal components showed no systematic structiitdés indicates that the

number of significant factors in a peak clustertmiinolenic acid isomers will be

maximum three. The number of linolenic acid isomersa peak cluster should
therefore be kept as low as possible, and shouléxoeed three. The resolution of
a peak cluster containingc@2,15-18:3, 9,12c,1%-18:3 and §12,15c-18:3 is

shown in Paper IX.

[a] 9t,12t,15¢+ 6¢,9¢,12¢c+ 9¢,12¢,15t
Cluster al
9c,12t,15¢+9t,12¢,15¢
Cluster a2
9t,12c,15t
9c,12t,15t
_/\/\ 9c,12¢,15¢
—r r r - 1 r 1 r T T T T LA
16.6 6.8 T7.0 17.2 [min]
[b] 9t,12¢,15t+6¢,9¢c,12¢
Cluster bl
9t,[12t,15c+9¢,12¢,15t
Cluster b2
9¢,12t,15¢+9t,12¢,15¢
Cluster b3
9c,12t,151
_/\ 9c,12¢,15¢
2%5 = : : —" 270 275 [min]

Figure 28 Co-elution patters of 18:3 n—3 geometrical isomers with different
programs on BPX-70. Additional details are given in Paper X.
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[a]

m/z 55— 9c¢,12t,15¢-18:3 —

m/z 67— 9t,12¢,15¢-18:3 —

tR .................. Itr; ..................
[b]

m/z 55— ot,12t,15¢-18:3 —

m/z 67— 6¢,9¢,12¢-18:3 —

m/z 79— 9c,12¢,15t-18:3 ——

m/z 80—

miz 91—
m/z 95—

Figure 29 Resolution of cluster a2 [a] and al [b] in Figure 28. The
chromatographic traces of each ion is shown to the left and the
deconvoluted profiles to the right.
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7. General discussion

The object of this work has not been to devise megd method for fatty acid
identifications, but to extend the number of toasilable to the analytical chemist
working with fatty acids. The various methods maydpplied alone or combined,
also with existing methodology for fatty acid indiéoation. Much of the work
described in Papers I-VIII provides tools and infation that can be applied only
on sub-classes of FAME. The strengths, limitatiand possible applications of the
methods will be briefly discussed in this section.

7.1. Limitations and advantages of identification by
mathematical models

Identification of compounds based on mathematicatlefs has certain strengths
and drawbacks compared to the alternatives. Thé impertant drawback by using
multivariate models is that the models are onlydvah a similar sub-set of samples
as applied in the calibrations. It is thereforecesial to know whether the model can
be applied on a given spectrum or a set of retentidices. The PLSR models for
identification of the number of double bonds in &aband VIII can for instance be
expected to fail if applied otmans fatty acids or fatty acids with NMI double bond
systems. To a certain degree, such problems cawmvbecome by a suitable
screening or classification method to reject conmaisuthat cannot be applied in the
regression models, like the application of PCA be tpectra in Paper VIII.
However, there can be cases where such screenidglsnwill fail or cannot be
applied.

The main advantage of using mathematical modeisaisthey are highly efficient
compared to the alternatives. ‘Manual’ interpretatof spectra and other available
information are time consuming, while PCA or regies on a large number of
spectra may take fractions of a second. Anothgamdge is that a mathematical
approach may provide more objective estimates @frdiiability of the results than
manual interpretation of data. Mathematical methods/ also be applied in so-
called ‘expert systems’ for interpretation of tregalthat reduce the need of a trained
operator [152].

7.2. About ‘positive’ and ‘tentative’ identification

All the multivariate models for identification pwges in Papers I, V, VI and Vi
provide different types of error estimates for thecuracy or reliability of the
predicted result. However, it should be emphasihad the error estimates of the
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models are not the same as estimates of the piipabat a certain compound is
correctly identified. For reasons explained bel@stimates for the reliability of
identifications can rarely be calculated.

Proposed identifications from the multivariate misdshould not be regarded as
positive identifications of compounds. This is r@ofproblem that is restricted to
identifications based on statistics. In many com@gstems it may be argued that
positive identifications of compounds are not polgsiand that all identifications

should be regarded as tentative. There are numeesasiples of incorrect

‘identifications’ of chemical compounds by chron@@phic and spectroscopic
techniques. Some examples regarding fatty acidgiaes in [15].

Especially matching retention times or retentiodiées of an unknown compound
and reference compound should not be regardedpascéh of the identity of the
unknown. The risk of false identifications can beduced by analysing the
compounds on two or more columns with differentistery phases, but there is
still a risk that compounds with highly similarwsttures will not be separated.

A similar problem exists with identifications basaal mass spectrometry. The mass
spectrum of a given compound may be tentativelytiied by a match with a
reference spectrum in a mass spectral library. G&msnot be regarded as a proof of
the identity since there may exist other compouwnitls similar mass spectra that are
not present in the spectral library.

It is generally not possible to estimate the phoiig that there are other
compounds in a given sample that have identicehtetn times or similar spectra
as the reference. Thus, the probability that a @amg is correctly identified cannot
be estimated, with the possible exceptions for Engystemsd.g. low molecular
weight compounds) where the required informatiooudlall possible alternatives is
available [153].

The identification of a compound is more relialfl& is based on the combination
of chromatographic and spectral information. Howewane cannot expect that
compounds that have very similar mass speetigi,geometrical isomers, will be
chromatographically separated. The problem of a&aige unambiguous
identifications, even in some very simple systesthoroughly discussed in [154].

7.3. Possible applications

7.3.1. Use of retention indices

Papers | and Il describe methods for partial ideation of fatty acid structure
from shifts in ECL values. The methods will badiggdrovide information on the
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polarity (number of double bonds) and the chairglles of the fatty acids. The
method is not restricted to any particular clastaty acids and may also be used to
exclude compounds that is not fatty acids,g. certain hydrocarbons or
dimethylacetals that may appear in FAME chromatogrfl55,156].

Papers Il and IV are restricted tansisomers of 20:51-3 and 22:6-3. Although
the main purpose of Paper lll was to provide ddtat tcould be used for
optimisation of the elution patterns of the isoméng paper also provide 2D-FARI
data that are suitable for identification of thenpmunds and equations that can be
used to predict the ECL values of ttnans isomer if the ECL value for the atis
isomer is known.

Papers V and VI describe methods for predictionEGIL values. Paper V is
restricted to PUFA with MI double bond systems. é?ayl is not restricted to a
particular class of fatty acids, but the 2D-FARIues must be available. Thus, the
two methods may be regarded as complementary netfoydECL predictions.
There will be cases where only one of the methads e applied, there will be
cases where both methods can be applied, andwliele cases where none on the
methods can be applied. Although the focus in theseks has been on
identification of fatty acids, models that predi€€CL values are of value also in
method development, because it is possible to éerebromatographic overlaps of
compounds that are not at hand when the chromatbgraparameters are
optimised.

An advantage of methods based on retention indgdkat the reliability of the
methods is not dependent on the amounts of the @onals (as long as the peak is
detected). In contrast, methods based on spedfi@mation require spectra of a
certain quality, which are often not available sincinidentified peaks in
chromatograms are often small.

7.3.2. Mass spectra

Paper VIl and VIII are about multivariate analysfsEl mass spectra of FAME. In
Paper VII it was shown thdtans isomerism in certain positions has significant
impact on the mass spectra of PUFA with MI dould@ad systems. These results
are relevant for the work in Paper VIII where itsvshown that the number of
double bonds in MI-PUFA can be determined from el# ions in the mass
spectra. The effects of thans geometry on the mass spectra mean that the models
in Paper VIII may not be valid for certairans fatty acids. The results from Paper
VIl are also a part of the basis for the work ip&aX, where it was shown that the
differences in the spectra caused by thens geometry is large enough for
deconvolution of overlappingansisomers.
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7.3.3. Multivariate deconvolutions of chromatographic peaks

Papers IX and X deal with techniques for deconwotuiof overlapping FAME

peaks. Although the focus in Paper X was basicatlythe quantification of the
isomers, deconvolution of overlapping peaks hasevegice also for the
identification of the compounds because accuratentien times necessary for
calculation of ECL values can be acquired from thsolved chromatographic
profiles. Multivariate deconvolutions were applidfind correct retention times of
overlapping peaks in Paper II.

The multivariate deconvolution techniques also mlevthe spectra of the
overlapping compounds. It has not been tested whétle deconvoluted spectra are
accurate enough to be used for instance in thevaudte regressions in Paper VIII,
but deconvoluted spectra will usually be identifieg a search against a spectral
database (not shown in the papers). The deconenluiiechniques and rank
estimates (Section 1.5.2 and 4.2) are also efficaois to verify if chromatographic
peaks are pure.

7.3.4. Combination of techniques

The various techniques are more informative whemhkined than when applied
separately. As shown in Paper VIII, PCA on the nsgmectra may reveal whether a
compound is a PUFA with a MI double bond systema lhigh-quality full-scan
mass spectrum is available, the number of doubtelbonay be revealed from the
molecular ion, which is usually abundant in specdfe&FAME with zero to three
double bonds. Alternatively, the number of doubtnds in MI-PUFA may be
determined by regressions as shown in Paper \likak also shown in this paper
that PCA gave a class separation according to ts#tign of the double bond
system; there is especially a good discriminatietwieen n—3 and n—6 PUFA, which
are the two dominating PUFA classes in both temiedstnd marine lipids.

If the total number of double bonds is determine@A on retention index shifts
(Paper 1) or the 2D-FARI method (Paper 1) may edvuethere istrans geometry in

one or several double bonds. Finally, tentativentifieations may be verified by
comparing the ECL of the unknown peak with exped&tl calculated by the
methods proposed in Paper V in the case of MI-PUki#l Paper VI if 2D-FARI

values are available from previous analyses os#me compounds.

It is also possible use library searches on 2D-F#dRlies from previously identified
compounds in the same way as library searcheseafermed on mass spectra. A
library search of 2D-FARI values will give complemary information to library
searches of mass spectra. As can be seen by cogpagure 22b and Figure 15,
compounds that have similar mass spe&rg, members of the same homologous
series, are clearly separated in the 2D-FARI phat @ompounds with similar 2D-
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FARI values (same number of carbons and double $dmat different in double
bond positions) have clearly different mass spectra

7.4. Concluding remarks

There are a number of well established analytieahiques for fatty acid analysis
by GC-MS, such as the use of nitrogen containingvatves of the hydroxyl
group, e.g. picolinyl [42—-44] and DMOX [45-46] derivatives thare applied for
determination of the position of double bonds amigeo functional groups. The
number and positions of double bonds can also berdmed by derivatisation of
the double bond<.g. hydrogenation with deuterium, silylation [47], preparation
of dimethyl disulfide adducts [48,49]. Pre-fract@ions of the samples by LC or
TLC are also techniques of importance. The mainbdezks of the above methods
are that pre-fractionation of samples, preparatafn derivatives and visual
interpretation of mass spectra are time consumpeyations, and also that some
derivatives have poor chromatographic properties.

Even though there are more reliable methods fawy fatid identification, the
majority of the fatty acid analyses are still penied with a single gas
chromatographic separation of FAME with flame i@tian detection (FID) that
provides no spectral information. The main reasamthiis is the simplicity of the
FAME preparation and speed of analysis.

Analysis of FAME by electron impact GC-MS can bgamled as a compromise
between the use of FID and more thorough but labsriechniques for fatty acid
identification. GC-MS of FAME will in general prale less reliable identifications
than, for example, GC-MS of picolinyl esters. Hoaeuhe cost of the analyses
will be comparable to GC-FID.



64

8. References

1 Rezanka, T. and Votruba, J. (2002) Chromatograpkery long-chain fatty
acids from animal and plant kingdomsal. Chim. Actal65, 273—-297.
2 Kakela, R., Ackman, R.G. and Hyvérinen, H. (1998jy long chain

polyunsaturated fatty acids in the blubber of rohgeals (Phoca hispida sp.) from
Laike Saimaa, Lake Ladoga, The Baltic Sea, andsB@igenLipids 30, 725—
731.

3 Anon. (1978) The nomenclature of lipids.Lipid Res19, 114-128.
Spitzer, V. (1999) Screening analyses of unknovea sels.Fett/lipid 101, 2—-19.

5 Brondz, 1. (2002) Development of fatty acid as&yby high-performance liquid
chromatography, gas chromatography, and relatéahitggees Anal. Chim. Acta
465, 1-37.

6 Mu, H., Wesén, C. and Sundin, P. (1997) Halogehtdtty acids. 1. Formation
and occurrence in lipid3rAC, Trends Anal. Cheni6, 266—-274.

7 Dembitsky, V.M. and Srebnik, M. (2002) Naturaldgenated fatty acids: their
analogues and derivativd2ogr. Lipid Res41, 315-367.

8 Rosenfeld, J.M. (2002) Application of analytidarivatizations to the
guanttitative and qualitative determination ofyatids.Anal. Chim. Actal65,
93-100.

9 Ettre, L.S. (1993) Nomenclature for chromatographye Appl. Chent5, 819—
872.

10 Pap, T.L. and Papai, Z. (2001) Application oesv mathematical function for
describing chromatographic peaésChromatogr. 230, 53—60.

11 Papai, Z. and Pap, T.L. (2002) Determinatioolmbmatographic peak
parameters by non-linear curve fitting using staé momentsAnalyst127,
494-498.

12 Papai, Z. and Pap, T.L. (2002) Analysis of pesknmetry in chromatography.
Chromatogr. A053 31-38.

13 Ettre, L.S. (2003) More peak asymmetry calculatldd-GC Europel6, 192—
193.

14 James, A.T. and Martin, J.P. (1952) Gas-liqaidippon chromatography: The
separation and micro-estimation of volatile faityda from formic acid to
dodecanoic acidBiochem. J50, 679-690.

15 Ackman, R.G. (2002) The gas chromatograph iotjwa analyses of common
and uncommon fatty acids for the®2dentury.Anal. Chim. Actat65, 175-192.

16 Mayzaud, P. and Ackman, R.G. (1978) The 6,95,28 Heneicosapentaenoic
acid of seal oilLipids 13, 24-28.

17 Castello, G., Vezzani, S. and D’Amato, G. (19Qff@ct of temperature on the
polarity of some stationary phases for gas chrography.J. Chromatogr. A’79,
275-286.



65

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Kovats, E. (1958) Gas-chromatographishe Chaialdring organischer
Verbindungen. Teil 1. Retentionsindices aliphat&gdHalogenide, Alkohole,
Aldehyde und Ketonddelv. Chim. Actatl, 1915-1932.

van den Dool, H. and Kratz, P.D. (1963) A gelimton of the retention index
system including linear temperature programmedigagd partition
chromatographyd. Chromatogrl1, 463—-471.

Heeg, F.J., Zinburg, R., Neu, H.-J. and BallstdnK. (1979) Berechnung von
Retentionsindices auf der Grundlage eines niclater® Zusammenhanges
zwischen Nettoretentionzeit und Kolhlenstoffzahi mflkanen.
Chromatographial2, 451-458.

Lebron-Aguilar, R., Quintanilla-Lépez, J.E. &&drcia-Dominguez, J.A. (2002)
Improving the accuracy of Kovats retention indisesothermal gas
chromatographyd. Chromatogr. 245, 185-194.

Gonzales, F.R., Alessandrini, J.L. and NardAdJ. (1998) Considerations on
the dependence of gas-liquid chromatographic retetf n-alkanes with the
carbon numberd. Chromatogr. 810, 105-117.

Garcia-Dominguez, J.A. and Santiuste, J.M. (L@@bic splines compared with
other methods for the calculation of programmedpemature retention indices.
Chromatographie82, 116-124.

Gonzalez, F.R. and Nardillo, A.M. (1999) Retentindex in temperature-
programmed gas chromatograpbyChromatogr. 842, 29-49.

Mjgs, S.A., Meier, S. and Boitsov, S. (2006) ytkenol retention indices.
Chromatogr. AL123 98-105.

Castello, G. (1999) Retention index systemserAktives to the n-alkanes as
calibration standards. Chromatogr. 842 51-64.

Evans, M.B. (1989) Recent developments in tlsechaomatographic retention
index schemel. Chromatogr472, 93-127.

Miwa, T.K., Mikolajczak, K.L., Earle, F.R. andaf, I.A. (1960) Gas
chromatographic characterization of fatty aciisal. Chem32, 1739-1742.

James, A.T. (1959) Determination of the degfaeeaturation of long chain
fatty acids by gas-liquid chromatograpldy Chromatogr2, 552-561.

Ackman, R.G. (1963) Influence of column tempam®in the gas-liquid
chromatographic separation of methyl esters of fattds on polyester substrates.
J. Gas Chromatogr, 11-16.

Ackman, R.G. (1963) Structural correlation ofaiturated fatty acid esters
through graphical comparison of gas-liquid chrorgedphic retention times on a
polyester substratd. Am. Oil Chem. Sod0, 558-564.

Barve, J.A., Gunstone, F.D., Jacobsberg, F.&Vdinlow, P. (1972) Behaviour
of all the methyl octadecenoates and octadecynoategentation
chromatography and gas-liquid chromatogra@tyem. Phys. Lipid8, 117-126.

Ackman, R.G. and Hooper, S.N. (1973) Addiditivf retention data for
ethylenic functions in aliphatic fatty acids. I. i&pon L.J. Chromatogr86, 73—
81.



66

34

35

36

37

38

39

40

41
42

43

44

45

46

a7

48

Ackman, R.G., Manzer, A. and Joseph, J. (19&#h)ative identification of an
unusual naturally-occuring polyenoic fatty aciddayculations from precision
open-tubular GLC and structural element retentiata Chromatographiav,
107-114.

Sebedio, J.-L. and Ackman, R.G. (1982) Calomtatif GLC retention data for
some accessiblexg isomeric cis-unsaturated fatty acidsChromatogr. Sci0,

231-234.

Odham, G. and Stenhagen, E. (1972) Fatty dadgvaller, G.R., (Ed.)
Biochemical Applications of Mass Spectromepy. 211-228. N.Y. (U.S.A)):
Wiley.

Christie, W.W. (1989) Gas Chromatography — Mgeesctrometry and fatty acids.
In: Christie, W.W., (Ed.\5as Chromatography and Lipidsp. 161-184. Ayr,
Scotland: The Oily Press

Holman, R.T. and Rahm, J.J. (1966) Analysisdradacterization of
polyunsaturated fatty acidBrog. Fats Lipid®, 13-90.

Brauner, A., Budziewicz, H. and Boland, W. (1p8udies in chemical
ionization mass spectrometry. 5. localization ahlegonjugated triene and
tetraene units in aliphatic-compoun@g. Mass Spectronl7, 161-164.

Fellenberg, A.J., Johnson, D.W., Poulus, A. @hdrp, P. (1987) Simple mass
spectrometric differentiation of the n-3, n-6 anfél series of methylene
interrupted polyenoic acidBiomed. Environ. Mass Spectrobd, 127-130.

Christie, W.W.The Lipid Library(www.lipidlibrary.co.uk)

Harvey, D.J. (1992) Mass spectrometry of pigdland other nitrogen-containing
derivatives of fatty acids. In: Christie, W.W., (EAdvances in Lipid
Methodology — ongop. 19—-80. Ayr (Scotland): The Oily Press.

Christie, W.W., Brechany, E.Y., Johnson, S.Rl Helman, R. (1986) A
comparison of pyrollidide and picolinyl ester datives for the identification of
fatty acids in natural samples by gas chromatographiss spectrometrizipids
21, 657-661.

Harvey, D.J. (1984) Picolinyl derivatives foetstructural determination of fatty
acids by mass spectrometry: Applications to polyenoids, hydroxy acids, di-
acids and related compoun@&somed. Mass Spectrorl, 340-347.

Zhang, J.Y., Yu, Q.T., Liu, B.N. and Huang, Z(H#988) Chemical modification
in mass spectrometry IV — 2-alkenyl-4,4-dimethyloodines as derivatives for the
double bond location of long-chain olefinic aciBsomed. Environ. Mass
Spectrom15, 33-44.

Spitzer, V. (1997) Structure analysis of fattida by gas chromatography — low
resolution electron impact mass spectrometry af thé-dimethyloxazoline
derivativesProg. Lipid Res35, 387-408.

Choi, M.H. and Chung, B.C. (2000) Diagnostigfreentation of saturated and
unsaturated fatty acids by gas chromatography-s@sstrometry with
pentafluorophenyldimethylsilyl derivatizatioAnal. Biochem277, 271-273.

Tanaka, T., Shibata, K., Hino, H., Murashitg,Klayama, M. and Satouchi, K.



67

49

50

51

52

53

54

55

56

57

58

59

60

61

(1997) Purification and gas chromatographic-masstspmetric characterization
of non-methylene interrupted fatty acids incorpedan rat liver.J. Chromatogr.
B 700 1-8.

Scribe, O., Guezennec, J., Dagaut, J., Pe@md_Saliot, A. (1988) Identification
of the position and the stereochemistry of the tbbnd in monounsaturated
fatty acid methyl esters by gas chromatography/rapsstrometry of dimethyl
disulfide derivativesAnal. Chem60, 928—-931.

Sato, D., Ando, Y., Tsujimoto, R. and Kawas#ki]. (2001) Identification of
novel nonmethylene-interrupted fatty acids, 7E18E227E,13E,17Z2-20:3,
9E,15E,197-22:3, and 4Z,9E15E19Z-22:4 in ophiuraift®ittle star) lipids.
Lipids 36, 1371-1375.

Imbs, A.B. and Rodkina, S. (2005) Trans pos#iathylenic bonds in two
dominant isomers of eicosapentaenoic acid fronfréshwater sponge
Baicalospongia bacilliferd.ipids 40, 963—968.

Schmitz, B. and Klein, R.A. (1986) Mass specttin localization of carbon-
carbon double bonds: A critical revie@hem. Phys. Lipid39, 285-311.

Minnikin, D.E. (1978) Location of double bondsdacyclopropane rings in fatty
acids by mass spectrometGhem. Phys. Lipid21, 313-347.

Christie, W.W. (1998) Gas chromatography-masstspmetry methods for
structural analysis of fatty acidsipids 33, 343—-353.

Dodds, E.D., McCoy, M.R., Rea, L.D. and KennikM. (2005) Proton transfer
chemical ionization mass spectrometry of fatty an&thyl esters separated by
gas chromatography: quantitative aspdgets. J. Lipid Sci. Technol07, 560—
564.

Dayhuff, E. and Wells, M.J.M. (2005) Identificat of fatty acids in fishes
collected from the Ohio River using gas chromatplgyamass spectrometry in
chemical ionization and electron impact modes<Chromatogr. A1098 144—
149.

Plattner, R.D., Gardner, H.W. and Kleiman, R83) Chemical ionization mass
spectrometry of fatty acids: The effect of funcabgroups on the CI spectra.
Am. Oil Chem. So&0, 1298-1303.

van Pelt, C.K., Carpenter, B.K. and Brenna, (L999) Studies of structure and
mechanism in acetonitrile chemical ionization tandeass spectrometry of
polyunsaturated fatty acids methyl estdrsAm. Mass Spectrorh0, 1253-1262.

Michaud, A.L., Yurawecz, M.P., Delmonte, P., ICBrA., Bauman, D.E. and
Brenna, J.T. (2003) Identification and characteigraof conjugated fatty acid
methyl esters of mixed double bond geometry byaigtle chemical ionization
tandem mass spectrometAnal. Chem75, 4925-4930.

van Pelt, C.K. and Brenna, T. (1999) Acetomtahemical ionization tandem
mass spectrometry to locate double bonds in pofturated fatty acid methyl
estersAnal. Chem71, 1981-1989.

Bro, R., van den Berg, F., Thybo, A., Andersem., Jargensen, B.M. and
Andersen, H. (2002) Multivariate data analysis &sohin advanced quality
monitoring in the food production chaifirends Food Sci. Techndl3, 235-244.



68

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78

79

Werther, W. and Varmuza, K. (1992) Exploratoayadanalysis of infrared
spectraFres. J. Anal. Chen344, 223-226.

Fang, G. and Liu, N. (2001) Determination ohe¢igssential amino acids in
mixtures by chemometrics-spectrophotometry withsmarationAnal. Chim.
Acta445, 245-253.

Ho, C.N, Christian, G.D. and Davidson, E.R. @Xpplication of the method of
rank annihilation to quantitative analyses of medtinponent fluorescence data
from the video fluorometeAnal. Chem50, 1108-1113.

Demuth, W., Karlovits, M. and Varmuza, K. (20&pectral similarity versus
structural similarity: mass spectrometAnal. Chim. Act®16, 75-85.

Yoshida, H., Leardi, R., Funatsu, K. and Varmizg2001) Feature selection by
genetic algorithms for mass spectral classifidraal. Chim. Actat46, 485-494.

Werther, W., Lohninger, H., Stancl, F. and VarayK. (1994) Classification of
mass spectra. A comparison of yes/no classificatiethods for the recognition
of simple structural propertie€hemom. Int. Lab. Sy&2, 63-74.

Scsibrany, H. and Varmuza, K. (1992) Commontsubires in groups of
compounds exhibiting similar mass speces. J. Anal. Chen44, 220-222.

Brakstad, F. (1995) The feasibility of latentiables applied to GC-MS data.
Chemom. Int. Lab. Syt9, 157-176.

Brakstad, F. (1993) Accurate determination aftde bond position in mono-
unsaturated straight-chain fatty acid ethyl edrers conventional electron
impact mass spectra by quantitative spectrum-streichodellingChemom. Int.
Lab. Syst19, 87-100.

Leonhardt, B.A., DeVilbiss, E.D. and Klun, J(A983) Gas chromatographic
mass spectrometric indication of double bond parsith monounsaturated
primary acetates and alcohols without derivatizaiarg. Mass Spectroni8, 9—
11.

Lanne, B.S., Appelgrn, M. and Bergstrom, G. g)98etermination of the double
bond position in monounsaturated acetates fromn thass spectr@nal. Chem.
57,1621-1625.

Leth, T. (1997) Chemometric analysis of masstsp®f cis and trans fatty acid
picolinyl estersZ. Lebensm. Unters. Forsch2A5 111-115.

Christie, O.H. (1995) Introduction to multivaganethodology, an alternative
way?Chemom. Int. Lab. Sys9, 177-188.

Malinowski, E.N. (2002fractor Analysis in Chemistrgrd edn. NY (USA):
Wiley.

Wold, S., Esbensen, K. and Geladi, P. (198 HcRral Component Analysis.
Chemom. Int. Lab. Syst, 37-52.

Martens, H. and Naes, T. (19Miltivariate Calibration NY (USA): Wiley.

Manne, R. (1987) Analysis of two partial-leagtt@res algorithms for
multivariate calibrationChemom. Int. Lab. Sy&, 187-197.

Kvalheim, O.M. and Karstang, T.V. (1989) Intetation of latent variable



69

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

regression model€hemom. Int. Lab. Syst, 39-51.

Maeder, M. (1987) Evolving factor analysis floe resolution of overlapping
chromatographic peak8nal. Chem59, 527-530.

Maeder, M. and Zilian, A. (1988) Evolving facealysis, a new multivariate
technique in chromatograph@hemom. Int. Lab. Syst, 205-213.

Keller, H.R. and Massart, D.L. (1991) Peak puridntrol in liquid
chromatography with photodiode-array detection fixed size moving window
evolving factor analysisAnal. Chim. Act&246, 379-390.

Toft, J. and Kvalheim, O. (1993) Eigenstructwaeking analysis for revealing
noise pattern and lokal rank in instrumental pesfilApplication to transmittance
and absorbance IR spectroscopiiemom. Int. Lab. Sydt9, 65-73.

Kvalheim, O.M. and Liang, Y.-Z. (1992) Heuriséicolving latent projections:
Resolving two-way multicomponent data. 1. Selettjdatent-projective graph,
datascope, local rank, and unique resolutéoral. Chem64, 936—-946.

Liang, Y.-Z. and Kvalheim, O.M. (1994) Diagnoaisd resolution of
multiwavelength chromatograms by rank map, orthagyprojections and
sequential rank analysi&nal. Chim. Act&92 5-15.

Grung, B. and Kvalheim, O.M. (1995) Resolutiémulticomponent profiles
with partial selectivity. A comparison of direct theds.Chemom. Int. Lab. Syst.
29, 75-87.

Malinowski, E.R. (1982) Obtaining the key setygfical vectors by factor
analysis and subsequent isolation of componentrspémal. Chim. Actd 34,
129-137.

Schostack, K.J. and Malinowski, E.R. (1989) &reld set selection by iterative
key set factor analysi€hemom. Int. Lab. Sy, 21-29.

Windig, W. and Guilment, J. (1991) Interactiedfsnodelling mixture analysis.
Anal. Chem63, 1425-1432.

de Juan, A., van den Bogaert, F., Cuesta Sanehand Massart, D.L. (1996)
Application of the needle algorithm for explorat@nyalysis and resolution of
HPLC-DAD dataChemom. Int. Lab. Sys§3, 133-145.

Cuesta Sanchez, F., Toft, J., van den Bogaean®Massart, D.L. (1996)
Orthogonal projection approach applied to peaktpassessmenfnal. Chem.
68, 79-85.

Grande, B.-V. and Manne, R. (2000) Use of contydar finding pure variables
in two-way data from mixture€hemom. Int. Lab. Sy&0, 19-33.

Karjalainen, E. (1989) The spectrum reconstoagtroblem. Use of alternating
regression for unexpected spectral componentsardimensional
spectroscopie€hemom. Int. Lab. Syst, 31-38.

Vandeginste, B.G.M., Derks, W. and Kateman,1@8%) Multicomponent self-
modelling curve resolution in the high-performafiqaid chromatography by
iterative target transformation analysigal. Chim. Actd 73 253-264.

Manne, R. and Grande, B.-V. (2000) Resolutiotwofway data from
hyphenated chromatography by means of elementaryxnr@nsformations.



70

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Chemom. Int. Lab. Sy&i0, 35-46.

Tauler, R., Smilde, A. and Kowalski, B. (199%)etivity, local rank, three-way
data analysis and ambiguity in multivariate curmalgsis.J. Chemom9, 31-58.

Peré-Trepat, E., Lacorte, S. and Tauler, R.5280lving liquid chromatography
mass spectrometry coelution problems in the arsabfsenvironmental samples
by multivariate curve resolutiuod. Chromatogr. A096 111-122.

Keller, H.R., Massart, D.L., Kiechle, P. andiEF (1992) Effect on scan time on
the methods based on evolving factor analysigjimdi chromatographyAnal.
Chim. Acta256, 125-131.

Keller, H.R. and Massart, D.L. (1992) Artefaictgvolving factor analysis-based
methods for peak purity control in liquid chromataghy with diode-array
detectionAnal. Chim. Act&263 21-28.

Krupcik, J. and Bohov, P. (1985) Use of eq@mathain lengths for the
characterization of fatty acid methyl esters sepdray linear temperature-
programmed gas chromatograpbyChromatogr346, 33—42.

Thompson, R.H. (1997) Direct measurement af todins- and cis-octadecenoic
fatty acids based on a gas-liquid chromatograplgscseparation of trans-18:1
and cis-18:1 fatty acid methyl esteisChromatogr. Sci35, 536-544.

Bannon, C.D., Craske, J.D. and Norman, L.M88) Effect of overload of
capillary gas-liquid chromatographic column on éogiivalent chain lengths of
c18 unsaturated fatty acid methyl estér<Chromatogr. A147, 43-52.

Western, R.J., Lau, S.S.G., Marriot, P.J. aitidNs, P.D. (2002) Positional and
geometric isomer separation of FAME by comprehengiD GC.Lipids 37,
715-724.

Hénon, G., Kemény, Z., Recseg, K., ZwobadanB.Kovari, K. (1999)
Deodorization of vegetable oils. Part I: Modellithg geometrical isomerization
of polyunsaturated fatty acids. Am. Oil Chem. So@5, 73-81.

Kemeény, Z., Recseg, K., Hénon, G., Kovari, ikd Zwobada, F. (2001)
Deodorization of vegetable oils: Prediction of sgolyunsaturated fatty acid
contentJ. Am. Oil Chem. So@8, 973-979.

Wijesundera, R.C., Ratanayake, W.M.N. and AckriraG. (1989)
Eicosapentaenoic acid geometrical isomer artifiackeeated fish oil esterd. Am.
Oil Chem. Sod56, 1822-1830.

Fournier, V., Destalllats, F., Juanéda, P.nBipF., Lambelet, P., Sébédio, J.L.
and Berdeux, O. (2006) Thermal degradation of lomgi polyunsaturated fatty
acids during deodorization of fish oilsur. J. Lipi Sci. TechnolL08 33—-42.

Chardigny, J.-M., Sebedio, J.-L., Grandgir&.d Martine, L., Berdeaux, O. and
Vatele, J.-M. (1996) Identification of novel trasemers of 20:5n-3 in liver lipids
of rats fed a heated ollipids 31, 165-168.

Chardigny, J.-M., Blond, J.-P., Bretillon, Mager, E., Poullain, D., Martine, L.,
Vatéle, J.-M., Noél, J.-P. and Sébédio, J.-L. (3¥Ranversion of 18:3 d9 cis, 12
cis, 15 trans in rat liver microsomeéspids 32, 731-735.

Mjgs, S.A. and Solvang, M. (2006) Geometrisamerisation of EPA and DHA



71

111

112

113

114

115

116

117

118

119

120

121

122

123

124

at high temperaturekur. J. Lipid Sci. Technol08 589-597.

Poole, C.F., Kollie, T.O. and Poole, S.K. (19R2cent advances in solvation
models for stationary phase characterization aagbtadiction of retention in gas
chromatographyChromatographie84, 281-302.

Abraham, M.H., Whiting, G.S., Doherty, R.M. &iduely, W. (1990) Hydrogen
bonding. XV. A new characterisation of the McReyl®¥ 7-stationary phase set.
J. Chromatogr518 329-348.

Rorschneider, L. (1965) Die Vorausbereichnumg @aschromatographischen
Retentionzeiten aus Statistisch Ermittelten “Ptiéen”.J. Chromatogrl7, 1—
12.

Rorschneider, L. (1966) Eine Methode zur Charaderung von
gaschromatographischen TrennflissigkeifeitChromatogr22, 6-22.

McReynolds, W.0O. (1970) Characterization of sdiouid phasesl.
Chromatogr. Sci8, 685—691.

Liang, X., Wang, W., Wu, W., Schramm, K.W., lKelmann, B. and Kettrup, A.
(2000) Quantitative relationships between chronvaiolgic retentions and
molecular structures of polychlorinated dibenzoigxths (PCDDS).
Chemospherdl, 923-929.

Rayne, S. and lkonmomu, M.G. (2003) Prediagag chromatographic retention
times for the 209 polybrominated diphenyl ethergaorersJ. Chromatogr. A
1016 235-248.

Yin, C., Liu, W., Li, Z., Pan, Z., Lin, T. arthang, M. (2001) Chemometrics to
chemical modelling: Structural coding in hydrocarb@nd retention indices of
gas chromatography. Sep. Sci4, 213-220.

Garkani-Nejad, Z., Karlovits, M., Demuth, Wtingofl, T., Vycudilik, W., Jalali-
Heravi, M. and Varmuza, K. (2004) Prediction of ghsomatographic retention
indices of a diverse set of toxicologically relevaompoundsJ. Chromatogr. A
1028 287-295.

Peng, C.T., Ding, S.F., Hua, R.L. and Yang, Z1088) Prediction of retention
indexes. I. Structure retention index relationsimpapolar columnsl.
Chromatogr436, 137-172.

Peng, C.T., Yang, Z.C. and Ding, S.F. (199&pPRtion of retention indices II.
Structure-retention relationships on polar colundn€hromatogr586, 85—-112.

Zenkevich, I.G., Moeder, M., Koeller, G. andhfaler, S. (2004) Using new
structurally related additive schemes in the pmdation of gas chromatographic
retention indices of polychlorinated hydroxybiphksngn HP-5 stationary phase.
J. Chromatogr. AL025 227-236.

Wijesundera, R.C. and Ackman, R.G. (1989) Eatadu of calculation of ECL
values for cis and trans isomers of some diethyl€20 fatty acids: Mono- and
diethylenic capillary GLC data for the liquid phaseP-2340, Supelcowax-10,
and SPB-1J. Chromatogr. Sc7, 399-404.

Christie, W.W. (1988) Equivalent chain-lengttisnethyl ester derivatives of
fatty acids on Gas chromatograplyChromatogr447, 305-314.



72

125

126

127
128

129

130

131

132

133

134

135

136

137

138

139

Scholfield, C.R. and Dutton, H.J. (1970) Ga®wctatographic equivalent chain
lengths of isomeric methyl octadecenoates and eciembates]. Am. Oil Chem.
Soc.47, 1-2.

Mossoba, M.M., McDonald, R.E. and Prosser, A1R93) Gas
chromatographic/matrix isolation/fourier transfoimfrared spectroscopic
determination of trans-monounsaturated and satlifatyy acid methyl esters in
partially hydrogenated menhaden dilAgric. Food Chen#d1, 1998-2002.

Mossoba, M.M. (1993) Applications of capillary GCHR. Inform 4, 854—859.

Wabhl, H.G., Habel, S.-Y., Schmieder, N. andldk, H.M. (1994) Identification
of cis/trans isomers of methyl esters and oxazalerévatives of unsaturated fatty
acids using GC-FTIR-MSI. High Resol. Chromatogt.7, 543-548.

Mossoba, M.M., McDonald, R.E., Roach, J.A.gErhut, D.D., Yurawecz,
M.P. and Sehat, N. (1997) Spectral conformatiomasfs monounsaturated1g

fatty acid positional isomerd. Am. Oil Chem. So@4, 125-130.

Sémon, E., Ferary, S., Auger, J. and Le QUdré(1998) Gas chromatography—
fourier transform infrared spectrometry of fattyosc New applications with a
direct deposition interfacd. Am. Oil Chem. Soé5, 101-105.

Firestone, D. and Sheppard, A. (1992) Detertiinaf trans fatty acids. In:
Christie, W.W., (Ed.Advances in Lipid Methodology — qmg. 173-322. Ayr,
Scotland: The Oily Press.

Ratanayake, W.M.N. (1998) Analysis of trang/fatids. In: Sébédio, J.L. and
Christie, W.W., (Eds.Trans fatty acids in human nutritippp. 115-161.
Dundee, Scotland: The Oily Press.

Ledoux, M., Laloux, L. and Wolff, R.L. (2000nAlytical methods for
determination of trans-C18 fatty acid isomers itkrfat. A review.Analusis28,
402-412.

Natalis, P. (1965) Geometrical isomerism andsspectralass spectrometry —
A NATO advanced study institute on theory, desighagpplications, Glasgow,
August 1964 (ed: R.l.Reed), Academic PBE¥3%-398.

Hallgren, B. (1959) The mass spectra of mailedte, methyl linoleate and
methyl linolenateActa Chem. Scand3, 845-847.

Ryhage, R., Stallberg-Stenhagen, S. and Stenhk&g (1961) Methyl esters of
a,B-unsaturated long-chain acids. On the structu@23-phthienoic acidArkiv
for Kemil8, 179-194.

Juanéda, P., Sebedio, J.L. and Christie, W1®84) Complete separation of the
geometrical isomers of linolenic acid by high pemiance liquid chromatography
with a silver ion columnJ. High Resol. Chromatogt7, 321-324.

Wolff, R.L. (1993) Heat-induced geometricalns®yization of alpha-linolenic
acid: Effect of temperature and heating time onaghygearance of individual
isomers.J. Am. Oil Chem. So@0, 425-430.

Wolff, R.L., Nour, M. and Bayard, C.C. (199@rtrcipation of the cis-12
ethylenic bond to cis-trans isomerization of thre®iand cis-15 ethylenic bonds
in heated alpha-linolenic acid. Am. Oil Chem. So@3, 327-332.



73

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Turnhofer, S. and Vetter, W. (2005) A gas clatmgraphy/electron impact
ionization-mass spectrometry-selected ion monigpnethod for the determining
the fatty acid pattern in food after formation afty acid methyl esters. Agric.
Food Chem53, 8896—8903.

Mjgs, S.A. and Pettersen, J. (20@dproved methods for analysis of fatty acid
isomers. SSF report series A 1B&rwegian Herring Oil and Meal Industry’s
Research Institute, Bergen (Norway).

Karjalainen, E.K. and Karjalainen, U.P. (19B@}a analysis for hyphenated
techniqguesAmsterdam (The Netherlands): Elsevier.

Grandgirard, A., Julliard, F., Prevost, J. Sethedio, J.L. (1987) Preparation of
geometrical isomers of linolenic aciél. Am. Oil Chem. So64, 1434-1440.

Wolff, R.L. (1992) Resolution of linolenic aay@ometrical isomers by gas-liquid
chromatography on a capillary column coated will®@% cyanopropyl
polysiloxane film (CP Sil-88)J. Chromatogr. Sci30, 17-22.

Ratanayake, V.M.N. and Beare-Rogers, J.L. (1P8@blems of analyzing C18
cis- and trans-fatty acids of margarine on the S8z apillary columnJ.
Chromatogr. Sci28, 633—-639.

Rakoff, H. and Emken, E. (1982) Synthesis an@qrties of methyl 9,12,15-
octadecatrienoate geometric isomé&kem. Phys. Lipid31, 215-225.

Wolff, R.L. and Sebedio, J.L. (1991) Geometrisamers of linolenic acid in
low-calorie spreads marketed in FranteAm. Oil Chem. So068, 719-725.

Wolff, R.L. (1992) Trans-polyunsaturated fatyds in French edible rapeseed
and soybean oilg. Am. Oil Chem. So069, 106-110.

Wolff, R.L. (1993) Further studies on artiflaigeometrical isomers of alpha-
linolenic acid in edible linolenic acid-containings. J. Am. Oil Chem. So@0,
219-224.

Wolff, R.L. (1994) Analysis of alpha-linoleracid geometrical isomers in
deodorized oils by capillary gas-liquid chromatgdnaon cyanoalkyl
polysiloxane stationary phases: A note of cautlo®m. Oil Chem. So@1, 907—
909.

Wolff, R.L. and Sébédio, J.-L. (1994) Charaetgron of gamma-linolenic acid
geometrical isomers in borage oil subjected to treatments (deodorization).
Am. Oil Chem. So@.1, 117-126.

Peris, M. (2002) Present and future of expestiesns in food analysignal.
Chim. Acta454, 1-11.

Zenkevich, 1.G. (2001) Interpretation of retentindices in gas chromatography
for establishing structures of isomeric productal&flarenes radical
chlorination.Russ. J. Org. Cher37, 270-280.

Zenkevich, 1.G. (2001) Comparative charcteiiradf conditions for unambigous
chromatographic identification of organic substandeAnal. Chemb6, 915—
924.

Kayama, M. and Mankura, M. (1998) Natural oleuicals in marine fishes.
Inform 9, 794-799.



74

156 Caruso, U (199@imple analysis of plasmalogens in erythrocytesgugas
chromatography/mass spectrometry with selectedrionitoring acquisition.
Rapid Commun. Mass Spectrohf), 1283-1285.





