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Foundations of finite element methods

for wave equations of Maxwell type∗

Snorre H. Christiansen†‡

Abstract

The first part of the paper is an overview of the theory of approx-
imation of wave equations by Galerkin methods. It treats convergence
theory for linear second order evolution equations and includes studies
of consistency and eigenvalue approximation. We emphasize differential
operators, such as the curl, which have large kernels and use L2 stable
interpolators preserving them. The second part is devoted to a frame-
work for the construction of finite element spaces of differential forms on
cellular complexes. Material on homological and tensor algebra as well as
differential and discrete geometry is included. Whitney forms, their duals,
their high order versions, their tensor products and their hp-versions all
fit.

Introduction

The Yee scheme [62] is a very efficient finite difference scheme for sim-
ulating the initial/boundary value problem for Maxwell’s equations. It
is used in many industrial codes for problems ranging from antenna de-
sign, to electromagnetic compatibility and to medical imaging. However
it is only second order accurate, it treats boundary conditions in a rough
way (stair-casing) and it is not clear how it should be formulated for
anisotropic materials. All three problems can be addressed in the finite
element framework. For electromagnetics, mixed finite elements [53] [49]
[50] [15], have been found to give the best results.

Finite elements come with a natural way of deriving error estimates.
Stability of the method is linked to energy conservation, which is almost
automatic for variational Galerkin methods. Charge conservation is also
ensured weakly by these methods. Through stability, the convergence
of the method is reduced to the problem of estimating errors of best
approximation on the finite element space. They are usually obtained
from interpolation operators.
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The main drawback of the finite element method is that the mass
matrix is not diagonal leading to (linearly) implicit methods. In some
circumstances a procedure known as mass-lumping solves this problem.
In particular one can recover the Yee scheme in this way.

One of the reasons for the success of the Yee scheme and mixed finite
elements is that they respect the geometry of Maxwell’s equations [12] [59].
The matrix of the differential operators grad, curl and div in the standard
basis of lowest order mixed finite elements are the incidence matrices of
algebraic topology. Mixed finite elements are equipped with interpolation
operators which behave well with respect to these differential operators:
they form commuting diagrams linking continuous and discrete complexes
of spaces.

The present paper is divided in two parts. The first part is devoted
to convergence analysis of the Galerkin method for waves assuming just
some basic properties of the discretization spaces. We start with the vari-
ational (weak) formulation of wave equations, adopting a general frame-
work that covers scalar waves as well as electromagnetic waves. Con-
vergence is proved using energy estimates, with an emphasis on rough
data. Then we study consistency, which is the theoretical foundation for
mass-lumping. Finally we treat the eigenvalue problem, basing the theory
on the existence of L2 stable interpolators vanishing on the kernel of the
bilinear form.

The second part is devoted to the construction of finite element spaces.
We first review some tools from algebraic topology, such as the long exact
sequence and the five lemma, and tensor algebra including the Kunneth
theorem. Then we introduce differential forms which enables one to treat
the grad, curl and div operators in a uniform manner, as well as boundary
conditions for various types of fields. Finally we develop a framework for
the construction and study of finite element spaces of differential forms on
cellular complexes as in [23]. The dual of a simplicial complex is not a sim-
plicial complex, nor is the product of two simplicial complexes. However
duals and products of cellular complexes are again cellular complexes, so
that we gain some flexibility from this level of generality. Tensor products
of high order Whitney forms, which correspond to mixed finite elements
on products of simplexes, fit the framework as well as the dual finite el-
ements introduced in [18]. Even hp-finite elements [35] and projection
based interpolation are accommodated.

A number of surveys on these topics have been published in the last
years, in particular [40], [42], [48] and [5]. The algebra can be found in
textbooks but is most often mixed with considerations on homology (e.g.
singular) and modules. The claim to originality of the present study, if
any, is the emphasis on rough data through L2 stable interpolation and
the introduction of general constructions on cellular complexes.

1 Analysis of the finite element method
for waves

1.1 Linear wave equations

When dealing with a time dependent quantity u we denote its first and
second time derivatives by u̇ and ü respectively. Let U be an open bounded
domain in Rn. The linear wave equation for a function u : R × U → R,
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with forcing term f : R× U → R is:

ü = ∆u+ f, (1)

where ∆ is the Laplace operator on U . We will consider homogeneous
Dirichlet boundary conditions, namely u(t, x) = 0 for all t ∈ R and x ∈
∂U . Initial conditions u0 and u̇0 are supplied for u(0) and u̇(0). Our point
of view is that u0, u̇0 and f constitute the data of the problem whereas u
is the unknown function we want to compute a reasonable approximation
of. It will be necessary to interpret both the wave equation and initial-
value/boundary conditions in a weak sense (not pointwise).

The L2 scalar product is denoted 〈·, ·〉 both on functions and vec-
torfields on U (assuming the standard scalar product on vectors in Rn).
Recall that for smooth functions u, v satisfying the Dirichlet boundary
condition we have:

〈∆u, v〉 = −〈gradu, grad v〉.

The energy of u at time t is:

E(u)(t) = 1/2〈u̇(t), u̇(t)〉+ 1/2〈gradu(t), gradu(t)〉.

When the forcing term f is 0, energy is conserved, for smooth enough so-
lutions. We will always deal with finite energy solutions, that is, functions
for which E(u) is essentially bounded.

The weak formulation of (1) in space, is to require that u(t) ∈ H1
0(U)

and for all test-functions u′:

〈ü(t), u′〉 = −〈gradu(t), gradu′〉+ 〈f(t), u′〉. (2)

It remains to give a meaning to ü(t) and the initial conditions. We solve:
given u0 ∈ H1

0(U) and u̇0 ∈ L2(U) find:

u ∈ C([0, T ]; H1
0(U)) ∩ C1([0, T ]; L2(U)),

satisfying the initial conditions and such that (2) holds in some sense. For
instance we can require that for all u′ ∈ C2

0 ([0, T [; H1
0(U)):Z

〈u(t), ü′(t)〉dt+〈u̇0, u
′(0)〉 − 〈u0, u̇

′(0)〉 =

−
Z
〈gradu(t), gradu′(t)〉dt+

Z
〈f(t), u′(t)〉dt.

When f ∈ L1([0, T ]; L2(U)), this problem has a unique solution. This can
be proved by the Galerkin method, to which we now turn our attention.

More generally we consider the following situation. Let H be a Hilbert
space with scalar product 〈·, ·〉 and norm |·|. SupposeH contains a Hilbert
space X which is dense and such that the inclusion X → H is continuous.
The wave equation (1) corresponds to the choices H = L2(U) equipped
with the standard L2 product and X = H1

0(U). Suppose a is a continuous
symmetric bilinear form on X such that for all u ∈ X:

a(u, u) ≥ 0, (3)

and:

〈·, ·〉+ a(·, ·) is coercive on X.
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The scalar wave equation corresponds to the choice:

a(u, v) =

Z
gradu · grad v.

Notice that we allow a to have a possibly infinite-dimensional kernel. This
will be the case when we apply the abstract setting to Maxwell’s equations.
As a compatible norm on X we can take the one defined by:

‖u‖2 = 〈u, u〉+ a(u, u).

We are interested in the initial value problem for the second order
evolution equation:

∀u′ ∈ X 〈ü, u′〉 = −a(u, u′) + 〈f, u′〉, (4)

Given u0 ∈ X and u̇0 ∈ H as well as f ∈ L1([0, T ];H) we look for
u ∈ C([0, T ];X) ∩ C1([0, T ];H) such that for all u′ ∈ C2

0 ([0, T [;X):Z
〈u(t), ü′(t)〉dt+〈u̇0, u

′(0)〉 − 〈u0, u̇
′(0)〉 =

−
Z
a(u(t), u′(t))dt+

Z
〈f(t), u′(t)〉dt.

We call this the abstract wave equation. The energy of a function u is
defined by :

E(u)(t) = 1/2〈u̇(t), u̇(t)〉+ 1/2a(u(t), u(t)).

This level of generality includes wave equations in media with variable,
possibly discontinuous, coefficients and also the Maxwell’s equations. We
sketch this last point.

We work with an open domain U in R3, filled with vacuum. The
unknowns are two time-dependent vectorfields E and B on U called the
electric and magnetic field. The first pair of Maxwell’s equations is:

Ḃ = − curlE,

divB = 0.

The second pair is:

Ė = curlB + J,

divE = Q.

The right hand side are a time-dependent scalar field Q called charge and
a time-dependent vector field J called current.

Notice that we must have conservation of charge:

Q̇ = div J. (5)

The first pair of equations guarantees the existence (at least on simply
connected domains) of a magnetic potential A which is a time dependent
vectorfield on U such that:

E = −Ȧ,
B = curlA.
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The first pair of equations is then automatically satisfied. The second pair
of equations can be written in terms of A:

Ä = − curl curlA− J, (6)

div Ȧ = −Q. (7)

Notice that if the divergence constraint (7) is satisfied initially, then the
evolution equation (6) and the conservation of charge (5) guarantee that
the divergence constraint is satisfied at all times. The usual boundary
condition for A is that its tangential component AT on ∂U should vanish.
Then E also has zero tangential component on ∂U – this is the perfect
conductor boundary condition.

The second order evolution equation (6) can be cast into the above
framework. We take H to be the space of square integrable vector fields
equipped with its usual scalar product. We define:

X = {u ∈ H : curlu ∈ H and uT = 0},

It is a non-trivial fact that the vanishing of the tangential component uT

of u on the boundary makes sense in this topology [48]. The bilinear form
a is defined on X by:

a(u, v) = 〈curlu, curl v〉.

1.2 Convergence theory for linear equations

We now study the construction of approximate solutions to the abstract
wave equation by the Galerkin method. The literature on the topic in-
cludes [46], [47], [31] and [63]. I was particularly inspired by [42].

We suppose we are given a family (Xh) of finite dimensional subspaces
of X with the property that for all v ∈ X:

lim
h→0

inf
vh∈Xh

‖v − vh‖X = 0.

We now look for uh ∈ C1([0, T ];Xh) such that u̇h is absolutely continuous
and for almost every t ∈ [0, T ] we have:

∀u′ ∈ Xh 〈üh(t), u′〉 = −a(uh(t), u′) + 〈f(t), u′〉. (8)

Initial conditions are approximated in Xh. This problem has a unique
solution by ODE theory.

The first result is a stability estimate. We denote the time-derivative
of a quantity U , by U•. We have:

E(uh)
•(t) = 〈f(t), u̇h(t)〉 ≤ 21/2|f(t)|E(u)(t)1/2.

From this it follows that:

E(u)(t)1/2 − E(u)(0)1/2 ≤ 1/21/2

Z t

0

|f(s)|ds. (9)

From the stability one can conclude that at a subsequence converges weak-
star in the space of bounded energy functions:

{u ∈ L∞([0, T ];X) : u̇ ∈ L∞([0, T ];H)}, (10)

where the time derivative is defined a priori in the sense of X-valued
distributions.
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One can show that the weak limit is a solution. Proving uniqueness and
continuity/differentiability of the solution requires extra work. Assuming
now that these results for the continuous problem have been established
we wish to examine the strong convergence of uh to u in the natural norm
provided by the energy.

Set eh = u− uh. We have for any e′ ∈ Xh:

〈ëh(t), e′〉+ a(eh(t), e
′) = 0.

Let vh be any smooth enough function [0, T ] → Xh. At almost every
time t we have:

E(u)• = 〈ëh, u̇− u̇h〉+ a(eh, u̇− u̇h),

= 〈ëh, u̇− v̇h〉+ a(eh, u̇− v̇h),

= 〈ėh, u̇− v̇h〉• − 〈ėh, ü− v̈h〉+ a(eh, u̇− v̇h). (11)

The two last terms are bounded by:

|ėh| |ü−v̈h|+a(eh, eh)1/2a(u̇−v̇h, u̇−v̇h)1/2 ≤ 2E(eh)
1/2E(u̇−v̇h)1/2. (12)

Inserting this in (11) and integrating gives:

E(eh)(t)−E(eh)(0) ≤
h
〈ėh, u̇− v̇h〉

it
0
+2
“Z t

0

E(eh)
”1/2“Z t

0

E(u̇− v̇h)
”1/2

.

(13)
The first term on the right hand side is bounded by:

2E(eh)(t)
1/2E(u− vh)(t)

1/2 + 2E(eh)(0)1/2E(u− vh)(0)1/2.

Thus we get:

(1/2)E(eh)(t) ≤2E(u− vh)(t) + 2E(eh)(0) + E(u− vh)(0)+Z t

0

E(eh) +

Z t

0

E(u̇− v̇h).

Gronwall’s lemma then shows that there is C depending only on T such
that:

sup
0≤t≤T

E(eh)(t) ≤ C
“
E(eh)(0) + sup

0≤t≤T
E(u− vh)(t) +

Z T

0

E(u̇− v̇h)(s)ds
”
.

(14)
For any p denote:

X p = {u ∈ Cp([0, T ];X) : u(p+1) ∈ C([0, T ];H)}.

We also define:

X p
h = {u ∈ Cp+1([0, T ];Xh)}.

One checks that for all p and for all u ∈ X p one has :

lim
h→0

inf
vh∈X

p
h

‖u− vh‖Xp = 0.

To get convergence in (14) it is therefore enough to have u in X 1.
This is a stronger condition than just to be in the energy space X 0. It is
guaranteed if the data is more regular than we assumed initially: u̇(0) ∈
X, ü(0) ∈ H and ḟ ∈ L1(0, T ;H) will do, since then u̇ satisfies an abstract
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wave equation, with finite energy initial data and with forcing term ḟ .
Remark also that if u(0) is in the domain of a, that is u(0) ∈ X and :

sup
u′∈X

|a(u(0), u′)|/|u′| < +∞,

then the abstract wave equation for u guarantees that the condition ü(0) ∈
H is satisfied.

Finally since we have stability in X 0 for data of the type u0 ∈ X,
u̇0 ∈ H and f ∈ L1(0, T ;H), and norm-convergence in X 0 for a dense
subset of these, we get norm-convergence in X 0 in general.

Orders of convergence are usually deduced from (14) by assuming a
certain amount of extra regularity on the data, deducing regularity of
u in various Sobolev spaces, letting vh = Πhu for a certain Xh-valued
interpolation operator Πh and using known error estimates for u − Πhu
given this Sobolev regularity of u.

We now turn to time discretization of (8). We will consider only
the most popular scheme which is the leap-frog scheme, also called the
Störmer-Verlet scheme. The time-step is denoted ∆t. Approximations
unh ≈ uh(n∆t) are obtained by the recursion formula (for the time being
we omit the subscript h):

〈u
n+1 − 2un + un−1

(∆t)2
, u′〉 = −a(un, u′) + 〈fn, u′〉. (15)

Here we put fn = f(n∆t). Inserting:

u′ = un+1 − un−1 = (un+1 − un) + (un − un−1),

into this formula gives:

|u
n+1 − un

∆t
|2 − |u

n − un−1

∆t
|2 =− a(un, un+1) + a(un, un−1)+ (16)

〈fn, un+1 − un−1〉. (17)

We introduce the discrete energy of (un):

En+1/2 = 1/2|u
n+1 − un

∆t
|2 + 1/2a(un, un+1).

When f is zero it is conserved. Unfortunately it need not even be positive
due to the second term. We can write:

2a(un, un+1) = a(un+1, un+1) + a(un, un)− a(un+1 − un, un+1 − un).

We wish to control the third term on the right hand side. In finite element
theory, if h denotes the mesh-width (the largest diameter of a cell of a
given mesh), and a is the bilinear form associated with a second order
operator (so is continuous on H1(U)) there exists a constant C > 0 such
that for all h and all u, v ∈ Xh:

a(u, v) ≤ Ch−2|u| |v|.

Such bounds are called inverse estimates. Notice that the bound blows up
as h → 0, in accordance with the possible non-continuity of a on L2(U).
We henceforth suppose that such an estimate exists in our abstract setting.
Suppose also that with this constant C, ∆t is chosen so small that:

1− Ch−2(∆t)2/2 ≥ δ > 0.
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In finite element theory the interpretation is that ∆t must be smaller
than something comparable to the mesh-width h. It is known as the CFL
condition. Then we have:

En+1/2 ≥ δ/2|u
n+1 − un

∆t
|2 + 1/4(a(un+1, un+1) + a(un, un)),

consisting of non-negative terms.

From (16) we deduce:

2(En+1/2 − En−1/2) = 〈fn, un+1 − un〉+ 〈fn, un − un−1〉,
≤ (2/δ)1/2∆t|fn|((En+1/2)1/2 + (En−1/2)1/2).

Therefore:

(En+1/2)1/2 − (En−1/2)1/2 ≤ 1/(2δ)1/2|fn|∆t,

yielding:

(En+1/2)1/2 − (E1/2)1/2 ≤ 1/(2δ)1/2
nX
k=1

|fk|∆t.

This is a stability estimate comparable to (9) but we must require that
f is Riemann integrable (with values in H) rather than merely Lebesgue
integrable.

Next we wish to establish convergence. We estimate the distance from
the semidiscrete uh(n∆t) to the fully discrete unh. Set enh = uh(n∆t)−unh.
It turns out that enh satisfies:

〈
en+1
h − 2enh + en−1

h

(∆t)2
, e′〉 = −a(enh, u′) + 〈εnh, e′〉,

with:

εnh =
uh((n+ 1)∆t)− 2uh(n∆t) + uh((n− 1)∆t)

(∆t)2
− üh(n∆t).

Put:

Ên+1/2
h = 1/2|

en+1
h − enh

∆t
|2 + 1/2a(enh, e

n+1
h ).

As before we get:

(Ên+1/2)1/2 − (Ê1/2)1/2 ≤ 1/(2δ)1/2
nX
k=1

|εkh|∆t.

We want to bound εkh. One has the formula:

εkh =

Z 1

0

“
üh((k + s)∆t)− 2üh(k∆t) + üh((k − s)∆t)

”
(1− s)ds. (18)

For any T > 0 if u̇(0) ∈ X, ü(0) ∈ H and ḟ ∈ L1([0, T ];H) we get
convergence of uh to u in C2([0, T ];H). Actually we need to be careful
with the way initial conditions are handled to guarantee this. We need to
choose uh(0) ∈ Xh and u̇h(0) ∈ Xh so that:

uh(0) → u(0) in X, (19)

u̇h(0) → u̇(0) in H, (20)
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but in addition we need that whenever u̇(0) ∈ X and ü(0) ∈ H we have:

u̇h(0) → u̇(0) in X, (21)

üh(0) → ü(0) in H. (22)

To guarantee (20) and (21) we can approximate u̇h(0) using projections
H → Xh which are stable not only in H but also in X. We will comment
later on the construction of such projections for finite element spaces. To
guarantee (19) and (22) we can use the scalar product 〈·, ·〉 + a(·, ·) to
project u(0) to Xh. Then we have for all u′ ∈ Xh:

〈üh(0), u′〉 = −a(uh(0), u′) + 〈f(0), u′〉,
= −a(u(0), u′)− 〈u(0), u′〉+ 〈uh(0), u′〉+ 〈f(0), u′〉,
= 〈ü(0), u′〉 − 〈u(0)− uh(0), u′〉,

from which (22) follows.
Since now uh converges to u in C2([0, T ];H) and ü : [0, T ] → H is

uniformly continuous, we have:

sup{|üh(t′)− üh(t)| : 0 ≤ t, t′ ≤ T and |t′ − t| ≤ ∆t} → 0,

which thanks to (18) gives:

bT/∆tcX
k=1

|εkh|∆t→ 0.

From this one deduces convergence of the linear interpolant of the se-
quence (unh) to u in the space of bounded energy functions defined in (10)
under the CFL condition.

Finally stability for all finite energy initial conditions and Riemann
integrable f together with convergence for a dense subset of such data
imply convergence for all such data.

1.3 Consistency

Usually the bilinear forms involved are not just restricted to the Galerkin
space, they are also approximated. This is necessary when material pa-
rameters vary for instance. It can also have advantages. Equation (15)
requires solving a linear system involving the mass matrix (the matrix
of 〈·, ·〉 in the chosen basis) at each time-step. If the mass matrix can
be approximated by a diagonal matrix, without loss of accuracy, a lot of
work is saved. We investigate such approximations in general. We start
with stationary problems.

Let X,Y be Banach spaces and a a continuous bilinear form X×Y →
R. It induces a map:

A :


X → Y ?,
u 7→ a(u, ·).

If it is invertible the following number is positive:

‖A−1‖−1 = inf
u∈X

sup
v∈Y

|a(u, v)|
‖u‖ ‖v‖ .

Suppose (Xh) and (Yh) are families of finite dimensional subspaces of X
and Y respectively. We suppose dimXh = dimYh. We suppose that (Xh)
is approximating in the sense that:

∀u ∈ X inf
uh∈Xh

‖u− uh‖ → 0,
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We make a similar hypothesis for (Yh). Let ah be bilinear formsXh×Yh →
R.

Given l ∈ Y ? we want to find approximations to the solution u ∈ X
to:

∀v ∈ Y a(u, v) = l(v).

We construct linear forms lh ∈ Y ?h which approximate the restriction of l.
We find uh ∈ Xh such that:

∀v ∈ Yh ah(uh, v) = lh(v). (23)

Two conditions play a crucial role in the analysis of the convergence
of uh: The inf-sup condition [7][14], and consistency [58].

• Inf-sup condition. There is C > 0 such that for all h:

inf
u∈Xh

sup
v∈Yh

|ah(u, v)|
‖u‖ ‖v‖ ≥ 1/C.

• Consistency. For any u ∈ X there is a sequence ũh ∈ Xh such that
ũh → u in X as h→ 0 and:

sup
v∈Yh

|a(u, v)− ah(ũh, v)|
‖v‖ → 0 as h→ 0. (24)

Going back to the analysis of (23), we suppose that the inf-sup condi-
tion and the consistency hold. Choosing ũh ∈ Xh as in the definition of
consistency we have:

‖uh − ũh‖ ≤ C sup
v∈Yh

|ah(uh − ũh, v)|
‖v‖ ,

≤ C sup
v∈Yh

|lh(v)− l(v) + a(u, v)− ah(ũh, v)|
‖v‖ ,

≤ C
“
‖l − lh‖Y ?

h
+ sup
v∈Yh

|a(u, v)− ah(ũh, v)|
‖v‖

”
.

We suppose ‖l − lh‖Y ?
h
→ 0 and obtain uh → u.

A diagonal argument shows that it is enough to ensure the consistency
requirement for all u in a dense subset X0 of X. There usually are such
dense subsets for which one obtains rather explicit rates of convergence
in (24). When the solution to the continuous problem is in such a subset,
the above computation gives convergence rates for uh → u.

Reciprocally if convergence uh → u is to hold for any l ∈ Y ? (with
simply lh = l|Yh) then the inf-sup condition and the consistency must
hold. We prove this. First concerning the inf-sup condition we do the
following. We define the mappings:

Ah :


Xh → Y ?h ,
u 7→ ah(u, ·).

They must be invertible. Let rh : Y ? → Y ?h be the restriction map. We
suppose that for all l ∈ Y ? we have:

A−1
h rhl→ A−1l.

By the uniform boundedness principle there must be C such that for all
h:

‖A−1
h rh‖Y ?→X ≤ C.
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By the Hahn-Banach theorem it follows that:

‖A−1
h ‖Y ?

h
→Xh

≤ C.

This can be rephrased as:

inf
u∈Xh

sup
v∈Yh

|ah(u, v)|
‖u‖ ‖v‖ ≥ 1/C.

So we get the inf-sup condition. That consistency must hold is clear: For
a given u simply let ũh = uh be the discrete solution:

∀v ∈ Yh ah(uh, v) = a(u, v).

Since the inf-sup condition is a stability condition we get an instance
of the Lax equivalence principle: convergence is equivalent to stability and
consistency.

Usually there is C > 0 such that for all h:

∀u ∈ Xh ∀v ∈ Yh |ah(u, v)| ≤ C‖u‖ ‖v‖. (25)

If the method is consistent and this equiboundedness condition holds, we
have that for any u ∈ X and any sequence ũh ∈ Xh such that ũh → u in
X as h→ 0:

sup
v∈Yh

|a(u, v)− ah(ũh, v)|
‖v‖ → 0 as h→ 0. (26)

Reciprocally if this last condition holds then (25) holds and the method
is consistent. Indeed suppose (25) does not hold. Then there are sub-
sequences uh ∈ Xh, vh ∈ Xh such that |ah(uh, vh)| = 1, ‖uh‖ → 0 and
‖vh‖ = 1. This contradicts (26).

We now return to the wave equation, in its abstract formulation. We
suppose we have constructed bilinear forms:

〈·, ·〉h, ah(·, ·) : Xh ×Xh → R,

with the properties that for some C we have for all h:

∀u ∈ Xh 1/C〈u, u〉 ≤ 〈u, u〉h ≤ C〈u, u〉, (27)

and:
∀u ∈ Xh 1/Ca(u, u) ≤ ah(u, u) ≤ Ca(u, u). (28)

We require 〈·, ·〉h to be a consistent discretization of 〈·, ·〉 with respect to
the H norm and ah(·, ·) to be a consistent discretization of a(·, ·) with
respect to the X norm.

The new semidiscrete equation we solve is:

〈üh(t), u′〉h = −ah(uh(t), u′) + 〈f(t), u′〉. (29)

Notice that we don’t do anything with the f term, though I suppose this
is possible.

Let Eh be the corresponding energy:

Eh(u)(t) = 1/2〈u̇(t), u̇(t)〉h + 1/2ah(u(t), u(t)).

We get stability for this energy as before. Stability for the true energy
follows from the comparison estimates (27) and (28).
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To get convergence we first make the usual extra assumptions that
u(0) ∈ X is in the domain of a, u̇(0) ∈ X and ḟ ∈ L1([0, T ];H). They
guarantee that u ∈ X 1. We compare uh with some function vh : [0, T ] →
Xh. We have:

Eh(uh − vh)
• =〈üh − v̈h, u̇h − v̇h〉h + ah(uh − vh, u̇h − v̇h),

=〈ü, u̇h − v̇h〉 − 〈v̈h, u̇h − v̇h〉h+
a(u, u̇h − v̇h)− ah(vh, u̇h − v̇h).

We can ensure the convergence of vh to u in X 1. We also have bound-
edness of (uh) in the space X 1 by the stability argument applied to the
time-differentiated equation. Consistency augmented by a compactness
argument then shows:

sup
0≤t≤T

Eh(uh − vh)
•(t) → 0.

This gives convergence in X 0. As usual stability for general data and
convergence on a dense subset give convergence in general.

The treatment of the time-discretized case can be carried out along
the path sketched for the case of exact bilinear forms.

Finally we include a proof that the procedure known as mass lumping
gives, on scalar degree one continuous elements, a stable and consistent
discretization of the L2 scalar product on functions. The techniques in-
volved are detailed for instance in [30]. For the extension to higher order
finite element methods see [32], for the case of vectorial finite elements in
relation to the Yee scheme see [47].

The computational domain U ⊆ Rn is equipped with a regular simpli-
cial mesh Th. The space Xh consists of the functions that are continuous
and piecewise affine with respect to Th. The parameter h is identified with
the largest diameter of a cell of Th. We denote by Ih the nodal interpola-
tor, which is defined on continuous functions and is a projection onto Xh.
The mass-lumped L2 product is defined on continuous functions by:

〈u, v〉h =

Z
Ih(uv).

Notice that in the standard basis of Xh, the matrix of this bilinear form
is diagonal. A rather explicit formula is:

〈u, v〉h =
X
T∈Th

|T |
n+ 1

X
x∈T

u(x)v(x).

Here the points x in the sum are the n+ 1 vertices of T .
Consider a reference element T̂ . By equivalence of norms in finite

dimensions and unisolvence of the vertex degrees of freedom on affine
functions, there are constants C,C′ such that for any affine function u on
T :

1/C′
Z
T̂

|u|2 ≤ |T̂ |
n+ 1

X
x∈T̂

|u(x)|2 ≤ C

Z
T̂

|u|2.

Transporting this to all elements T of Th and adding gives, for all h and
all u ∈ Xh:

1/C′〈u, u〉 ≤ 〈u, u〉h ≤ C〈u, u〉,
which ensures stability and equiboundedness.

Let l > n/2, which ensures that Hl(U) is continuously injected into
the space of continuous functions on U . Standard Sobolev norms will be
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denoted ‖ · ‖ whereas seminorms are denoted | · |. We shall prove that
there is C > 0 such that for all u ∈ Hl(U), all h and all v ∈ Xh:

|〈u, v〉 − 〈u, v〉h| ≤ Ch‖u‖Hl(U)‖v‖L2(U). (30)

We want to estimate the errors ET (uv) with ET defined by:

ET (w) =

Z
T

w − |T |
n+ 1

X
x∈T

w(x).

The above integration rule is exact for polynomials of degree at most
1. Working on the reference element, a Bramble Hilbert lemma gives an
estimate of the form, for all w ∈ Hl(T̂ ):

|ET̂ (w)| ≤ C(|w|2H2(T̂ ) + |w|2Hl(T̂ ))
1/2.

We apply a Leibniz rule for differentiation of products. For u ∈ Hl(T̂ )
and v confined to the finite-dimensional space of affine functions on T̂ , we
may deduce:

|ET̂ (uv)| ≤ C(|u|2H1(T̂ ) + · · ·+ |u|2Hl(T̂ ))
1/2‖v‖L2(T̂ ).

Transporting this estimate to a simplex T of diameter h gives:

|ET (uv)| ≤ Ch‖u‖Hl(T ) ‖v‖L2(T ).

Summing these estimates and applying a Cauchy-Schwartz inequality gives
(30).

The same arguments also show:

|〈u, v〉 − 〈u, v〉h| ≤ Ch2‖u‖Hl(U)‖v‖H1(U).

1.4 Eigenvalue approximation

Linear evolution problems are closely linked to eigenvalue problems. For
instance the solution of the wave equation (1) can be expressed quite
simply in terms of the eigenvalues and eigenvectors of the Laplace opera-
tor. Similarly the discrete solutions of the wave equation obtained by the
Galerkin method can be expressed in terms of discrete eigenvalues and
eigenvectors. In this section we comment on the relation between contin-
uous and discrete eigenproblems. The emphasis is on problems of Maxwell
type, for which the bilinear form a will have a large kernel. References
on the subject include [43], [9], [10] and [19]. For p-version finite elements
there are some new developments [33] [41].

We introduce the following notations, which construct a decomposi-
tion of X generalizing the Helmholtz decomposition of vectorfields (into
a gradient and a curl) to our abstract setting. We let W be the kernel of
a defined by:

W = {u ∈ X : ∀u′ ∈ X a(u, u′) = 0}.

Notice that by (3) we have, for all u ∈ X:

u ∈W ⇐⇒ a(u, u) = 0.

We also let V be the orthogonal of W in X with respect to 〈·, ·〉:

V = {u ∈ X : ∀w ∈W 〈u,w〉 = 0}.

13



Thus V and W are closed subspaces of X and:

X = V ⊕W.

We make the additional assumption that the injection V → H is compact
(when V is equipped with the norm inherited from X). In particular we
get a Poincaré-Friedrichs inequality. There is C > 0 such that:

∀v ∈ V a(v, v) ≥ 1/C|v|2. (31)

Coercivity of a on V follows.
Notice that W is a closed subspace of H. Let V be the orthogonal of

W in H with respect to 〈·, ·〉:

V = {u ∈ H : ∀w ∈W 〈u,w〉 = 0}.

The notation is justified by the fact that V is the closure of V in H. We
have the decomposition:

H = V ⊕W.

In H let P denote the projector with range V and kernel W . It is orthog-
onal. Notice that if u ∈ X then Pu ∈ X since u− Pu ∈ W ⊆ X. On X,
P is the projector with range V and kernel W . It is characterized by the
property that for any u ∈ X, Pu is the element of V solving:

∀u′ ∈ V a(Pu, u′) = a(u, u′).

This equation is well posed by (31). When it holds it actually holds for
all u′ ∈ X. Thus we get:

∀u, u′ ∈ X a(Pu, Pu′) = a(u, u′).

In this setting look for pairs (λ, u) ∈ R×X with u 6= 0 such that:

∀u′ ∈ X a(u, u′) = λ〈u, u′〉.

For intance (0, w) is an eigenpair of a for any non-zero w ∈ W ; 0 is an
eigenvalue with associated eigenspace W (when W 6= 0).

We introduce the operator T : H → V defined defined as follows. For
any u ∈ H, Tu is the element of V satisfying:

∀u′ ∈ V a(Tu, u′) = 〈u, u′〉.

That T is well defined and continuous follows from the coercivity on V of
a, compare with (31). If we consider T to be an operator H → H it is
immediate that T is compact and symmetric. Thus H has an orthonormal
basis consisting of eigenvectors in X. The eigenspace of 0 is W (when
W 6= 0). The non-zero eigenvalues of T correspond to elements of V and
can be ordered in a decreasing sequence converging to 0. Moreover λ is
a non-zero eigenvalue of a iff 1/λ is a non-zero eigenvalue of T and the
corresponding eigenspaces are the same.

Discrete eigenvalues are defined as follows. For each h we look for
pairs (λ, u) ∈ R×Xh with u 6= 0 such that:

∀u′ ∈ Xh a(u, u′) = λ〈u, u′〉.

In general this eigenvalue problem is not so well-behaved: there are
cases where discrete eigenvalues cluster as h→ 0 at values which are not
eigenvalues of the continuous problem (this cannot happen if W is finite
dimensional). The approximation of eigenvalues requires more proper-
ties of the Galerkin spaces than does the approximation of the evolution
problem. We make the following assumption:
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• There are projectors Πh : H → H with rangeXh which are uniformly
bounded in H and have the property that W is mapped to W .

We define:

Wh = {u ∈ Xh : ∀u′ ∈ Xh a(u, u′) = 0},

and:

Vh = {u ∈ Xh : ∀w ∈Wh 〈u,w〉 = 0}.

Thus we have decompositions:

Xh = Vh ⊕Wh.

We have that Wh = Xh ∩W , but a crucial point is that Vh need not be
a subspace of V . Using our assumption we shall prove that Vh is close to
V , in a precise sense.

We have by the approximation property of (Xh) – which holds in X
and therefore in H by density – and the uniform boundedness of the
projectors Πh:

∀u ∈ H Πhu→ u in H.

Since the injection V → H is compact, there is a sequence εh converging
to 0 as h→ 0 such that:

∀u ∈ V ∀h |u−Πhu| ≤ εh‖u‖.

Choose vh in Vh. We aim to prove that vh − Pvh is small. Write:

|vh − Pvh| ≤ |vh −ΠhPvh|+ |Pvh −ΠhPvh|.

We have:

|Pvh −ΠhPvh| ≤ εh‖Pvh‖ ≤ εh‖vh‖.

Remark that vh − Pvh ∈W so, by our hypothesis on Πh, we have:

vh −ΠhPvh = Πh(vh − Pvh) ∈Wh.

Therefore vh and Pvh are both orthogonal to vh −ΠhPvh:

|vh −ΠhPvh|2 = 〈vh −ΠhPvh, Pvh −ΠhPvh〉,
≤ |vh −ΠhPvh| |Pvh −ΠhPvh|,

so that:

|vh −ΠhPvh| ≤ |Pvh −ΠhPvh|.

Thus we get:

|vh − Pvh| ≤ 2|Pvh −ΠhPvh| ≤ 2εh‖vh‖.

In particular:

‖vh − Pvh‖ ≤ 2εh‖vh‖.

This property can be rephrased in terms of gaps between subspaces of
X:

δ(Vh, V ) ≤ 2εh.

Since a is coercive on V it follows that there is C such that for all h:

∀vh ∈ Vh a(vh, vh) ≥ 1/C‖vh‖2, (32)
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More precisely we can write, for all small enough h and all vh ∈ Vh:

a(vh, vh) = a(Pvh, Pvh),

≥ 1/C‖Pvh‖2,

≥ 1/C(1− 2εh)
2‖vh‖2.

Estimate (32) follows for small h. For a finite number of large h one uses
non-negativity of a.

We introduce the discrete analogue of T , which is the map Th : H → Vh
taking any u ∈ H to the element Thu ∈ Vh such that:

∀u′ ∈ Vh a(Thu, u
′) = 〈u, u′〉.

The operator Th has finite-dimensional range and is symmetric. Remark
that λ is a non-zero discrete eigenvalue (of a on Xh) iff 1/λ is a non-zero
eigenvalue of Th. The corresponding eigenspaces are the same. In order
to relate the discrete eigenvalues of a to the continuous ones, we aim to
prove:

‖T − Th‖H→H → 0. (33)

Let Ph : X → Vh be the projector defined by, for all u ∈ X, Phu is the
element of Vh such that:

∀u′ ∈ Vh a(Phu, u
′) = a(u, u′).

This equation then holds for all u′ ∈ Xh. Notice that we have, for all
u ∈ H all h and all u′ ∈ Vh:

a(Thu, u
′) = 〈u, u′〉 = a(Tu, u′) = a(PhTu, u

′).

Therefore:

Th = PhT.

Now we remark that T : H → V is compact. Indeed if (un) converges
weakly to 0 in H then we have already claimed that (Tun) converges
strongly to 0 in H (compactness of T : H → H). In addition:

a(Tun, Tun) = 〈un, Tun〉 → 0.

Therefore (Tun) converges strongly to 0 inX. This shows that T : H → V
is compact.

Choose u ∈ V . We shall prove that Phu→ u in X. Let uh be elements
of Xh converging to u. The following is a Cea type argument.

‖u− PPhu‖2 ≤ Ca(u− PPhu, u− PPhu),

≤ Ca(u− Phu, u− Phu),

≤ Ca(u− Phu, u− uh),

≤ Ca(u− PPhu, u− uh),

≤ C‖u− PPhu‖ ‖u− uh‖.

Hence:

‖u− PPhu‖ ≤ C‖u− uh‖ → 0.

We also have stability of Ph by (32). Hence:

‖Phu− PPhu‖ ≤ Cεh‖u‖ → 0.
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Combining the above estimates gives:

‖u− Phu‖ → 0.

Compactness of T : H → V and pointwise convergence of Ph : V → X
combine to prove that:

‖T − Th‖H→X → 0,

which is slightly stronger than we need. Whenever (33) holds we have (see
[8]) that for any δ > 0 not is the spectrum of T , the eigenvalues of Th which
are above δ can be split into sets, each set converging to an eigenvalue
of T (in the sense of Hausdorff distance). If one such set converges to
say λ the sum of the corresponding discrete eigenspaces converges to the
continuous eigenspace of λ (in the sense of gaps between subspaces of H).

2 Construction of finite element spaces

We expressed Maxwell’s equations in terms of vectorfields. The relevant
operators on scalar and vectorfields are the gradient, the curl and the
divergence. For any of these three operators op one defines:

Hop = {u ∈ L2 : opu ∈ L2}.

We then have a diagram of spaces linked by operators:

Hgrad
grad // Hcurl

curl // Hdiv
div // H

An important property is that the compositions of any two consecutive
operators is 0. One says that the spaces form a complex.

To obtain good discretizations of Maxwell’s equations one now tends
not only to construct subspaces X1

h of Hcurl but also subspaces X0
h of

Hgrad, X2
h of Hdiv and X3

h of H, also forming, for each h a complex for
the same operators. Moreover one wishes to relate the two complexes by
projections onto these subspaces, forming a commuting diagram:

Hgrad
grad //

Π0
h

��

Hcurl
curl //

Π1
h

��

Hdiv
div //

Π2
h

��

H

Π3
h

��
X0
h

grad // X1
h

curl // X2
h

div // X3
h

Commutativity of the diagram means that one can follow the arrows along
any path between two spaces and still obtain the same operator between
these spaces.

We first give some results concerning such diagrams of complexes and
tensor product constructions. Then we recall the definition and basic
properties of differential forms on manifolds. They provide a more flexible
framework than vector fields. We also define cochains associated with
decompositions of space into cells which are at the basis of discretizations.
Finally we apply these concepts to the construction of spaces Xk

h as above.
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2.1 Algebra

Homological algebra We now recall some definitions and facts from
homological algebra, and refer the reader to Lang [45] and Gelfand-Manin
[36] for thorough expositions. In this paper by a complex we mean a
sequence A• of vectorspaces equipped with linear operators dk : Ak →
Ak+1 called differentials and satisfying, for each k, dk+1dk = 0. The
cohomology group HkA• is (the vectorspace) defined by:

HkA• = (ker dk : Ak → Ak+1)/(im dk−1 : Ak−1 → Ak)

Most often the index k in dk is dropped and the complex is represented
by a diagram:

· · · → Ak−1 → Ak → Ak+1 → · · · ,
where it is implicit that the arrows represent instances of the differential
d.

A complex A• is said to be exact at an index k if HkA• = 0, or
equivalently:

ker dk : Ak → Ak+1 = im dk−1 : Ak−1 → Ak.

It is said to be exact if it is exact at each index where the cohomology
group is defined.

Example 2.1 The complex A0 → A1 → 0 is exact iff the first arrow is
surjective.
The complex 0 → A0 → A1 is exact iff the second arrow is injective.
If B ⊆ A we have an exact sequence 0 → B → A→ A/B → 0.
If C = A⊕B we also have an exact sequence of the form 0 → A→ C →
B → 0.

Remark 2.1 If we have an exact sequence of finite dimensional spaces
0 → A → B → C → 0 we have dimA − dimB + dimC = 0 and any
two terms of the sequence determine the third term up to isomorphism. A
similar result holds for longer exact sequences.

If A• and B• are two complexes, a morphism of complexes f• : A• →
B•, is a sequence of linear operators fk : Ak → Bk such that the following
diagrams commute:

Ak //

fk

��

Ak+1

fk+1

��
Bk // Bk+1

Proposition 2.1 A morphism of complexes f• : A• → B• induces a
sequence of linear maps Hkf• : HkA• → HkB•: to the class of u ∈ ker dk :
Ak → Ak+1 we associate the class of fku.

– Proof: This is based on two facts:
If u ∈ Ak satisfies dku = 0 then dkfku = fk+1dku = 0.
Also if u = dk−1v for some v ∈ Ak−1 then fku = fkdk−1v = dk−1fk−1v

with fk−1v ∈ Bk−1, hence the class of u determines the class of fku. �
We have that Hk(f•g•) = (Hkf•)(Hkg•) and Hk(id) = id.
As an illustration of the above concepts we notice:

Remark 2.2 Suppose A• is a complex and, for each k, Bk is a sub-
space of Ak such that the differential Ak → Ak+1 induces differentials
Bk → Bk+1 by restriction. Suppose furthermore we have projections
pk : Ak → Bk commuting with the differential. Then p• induces sur-
jections in cohomology.
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– Proof: If u ∈ Bk satisfies du = 0 then u ∈ Ak satisfies du = 0 and
pu = u. �

Given two morphisms of complexes f•, g• : A• → B•, a homotopy
operator from f• to g• is a family h• of linear operators hk : Ak → Bk−1

such that:
gk − fk = hk+1dk + dk−1hk.

Proposition 2.2 If f• and g• are homotopic in the sense that a homo-
topy operator exists from one to the other, they induce the same maps
HkA• → HkB•.

– Proof: Pick u ∈ Ak such that du = 0. Then gu− fu = dhu so gu and
fu determine the same class modulo dBk−1 in HkB•. �

Recall that if α : A→ A′ then cokerα = A′/(αA).
We will use the snake lemma:

Lemma 2.1 Suppose we have a commuting diagram:

A
f //

α

��

B
g //

β

��

C //

γ

��

0

0 // A′
f ′ // B′

g′ // C′

We suppose each row is exact. Then we have a well-defined morphism:

δ : ker γ → cokerα.

It is defined on any w ∈ C such that γw = 0, by taking first any reciprocal
v of w by g, then mapping v to v′ = βv, then taking the reciprocal u′ of
v′ by f ′ and finally considering the equivalence class of u′ modulo αA.

– Proof: Pick w ∈ C such that dw = 0 and choose v ∈ B such that
gv = w.
We have g′βv = αgv = dw = 0, so there is u′ ∈ A′ such that f ′u′ = βv.
If we had chosen v̂ ∈ B instead of v, we would have obtained say û′ ∈ A′.
We have g(v̂ − v) = 0 so v̂ − v = fu for a u ∈ A.
Then f ′(û′ − u′) = β(v̂ − v) = βfu = f ′αu, so û′ − u′ = αu. �

Theorem 2.3 Suppose we are given three complexes A•, B• and C•, and
morphisms of complexes f• : A• → B• and g• : B• → C•, providing for
each k a short exact sequence:

0 → Ak → Bk → Ck → 0.

Then one can construct a long exact sequence linking the cohomology
groups:

HkA• // HkB• // HkC•

ttiiiiiiiiiiiiiiiiiiii

Hk+1A• // Hk+1B• // Hk+1C•

Here the first, second, fourth and fifth arrows are the natural ones and the
third, diagonal, one – called connecting morphism and usually denoted δk

– is constructed by the snake lemma.

– Proof: We denote by fk and gk the maps fk : Ak → Bk and gk : Bk →
Ck. The proof consists of a series of straightforward verifications, to the
effect that we have a complex and that it is exact.
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Exactness at HkB•:
Pick vk ∈ Bk such that dvk = 0 and gkvk = dwk−1 for some wk−1 ∈ Ck−1.
Choose vk−1 ∈ Bk−1 such that gk−1vk−1 = wk−1.
We have gk(vk − dvk−1) = dwk−1 − dgk−1vk−1 = 0.
Put vk − dvk−1 = fkuk for some uk ∈ Ak.
We have fk+1duk = dfkuk = d(vk − dvk−1) = 0, hence duk = 0.

Construction of δk:
Recall that given wk ∈ Ck such that dwk = 0 we choose any vk ∈ Bk such
that gkvk = wk. Then we take the uk+1 ∈ Ak+1 such that fk+1uk+1 =
dvk, and consider the class of uk+1.
If wk = dwk−1 for some wk−1 ∈ Ck−1 we have wk−1 = gk−1vk−1 with
vk−1 ∈ Bk−1. Then gkdvk−1 = dgk−1vk−1 = dwk−1 = wk, so we may
suppose vk = dvk−1. Then dvk = ddvk−1 = 0 so uk+1 = 0.
Remark also that fk+2duk+1 = dfk+1uk+1 = ddvk = 0, so duk+1 = 0.

Concerning δkHkg•:
If wk = gkvk for an vk such that dvk = 0, then fk+1uk+1 = dvk = 0 so
uk+1 = 0, hence the composition is zero.
If uk+1 = duk for some uk ∈ Ak, then gk(vk − fkuk) = wk and d(vk −
fkuk) = dvk − fk+1duk = dvk − fk+1uk+1 = 0.

Concerning Hk+1f•δk:
We have fk+1uk+1 = dvk hence the composition is zero.
If fk+1uk+1 = dvk for some vk ∈ Bk, then dgkvk = gk+1dvk = gk+1fk+1uk+1 =
0 and δkgkvk = uk+1. �

Such proofs are called diagram chasing.

Example 2.2 If we are given a morphism of complexes g• : B• → C•

consisting of surjections and define Ak to be the kernel of gk, we remark
that A• is a subcomplex of B• called the kernel complex, which has trivial
cohomology if and only if g• induces isomorphisms in cohomology HkB• →
HkC•.

Example 2.3 Suppose A• is a complex. Define Zk, Bk ⊆ Ak by:

Zk = {u ∈ Ak : du = 0},
Bk = {du : u ∈ Ak−1}.

These are both subcomplexes of A• and their differentials are the 0 mor-
phisms. We have short exact sequences:

0 → Zk → Ak → Bk+1 → 0.

Moreover the arrows here are morphisms of complexes. We thus get a long
exact sequence:

· · ·Bk → Zk → HkA• → Bk+1 → Zk+1 · · ·

It turns out that the connecting morphism is the inclusion Bk ⊆ Zk which
is injective, so we get exact sequences:

0 → Bk → Zk → HkA• → 0.

which confirm, if need be, that:

HkA• ' Zk/Bk.

Remark 2.3 Suppose we have an exact sequence:

A1
φ // A2 // A3 // A4

ψ // A5.
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Then we have a short exact sequence:

0 → cokerφ→ A3 → kerψ → 0.

In particular, full knowledge of the connecting morphism associated with a
short exact sequence of complexes determines the cohomology of the middle
complex.

The construction of the connecting morphism δ has the following prop-
erty. Suppose that the above situation holds for complexes A•

0, B
•
0 and

C•
0 (with f•0 and g•0) and also for A•

1, B
•
1 and C•

1 (with f•1 and g•1). Sup-
pose furthermore that we have morphisms of complexes α• : A•

0 → A•
1,

β• : B•
0 → B•

1 and γ• : C•
0 → C•

1 intertwining f•1 with f•0 and g•1 with g•0 .
Explicitly we have commuting diagrams:

0 // Ak0
fk
0 //

αk

��

Bk0
gk
0 //

βk

��

Ck0
//

γk

��

0

0 // Ak1
fk
1 // Bk1

gk
1 // Ck1 // 0

Then the following diagram commutes:

HkC•
0

δk
0 //

Hkγ•

��

Hk+1A•
0

Hk+1α•

��
HkC•

1

δk
1 // Hk+1A•

1

(This property is a functoriality property of δ.)
The following result is known as the five lemma.

Lemma 2.2 Suppose we have a commuting diagram:

A1 //

f1

��

A2 //

f2

��

A3 //

f3

��

A4 //

f4

��

A5

f5

��
B1 // B2 // B3 // B4 // B5

where each row is exact. If f1, f2, f4 and f5 are isomorphisms, then f3

is also an isomorphism.

– Proof: We let ui denote elements ofAi and vi those ofBi. All horizontal
arrows are denoted d. We prove:

If f1 is surjective and f2, f4 are injective, then f3 is injective:
Suppose f3u3 = 0. Then f4du3 = df3u3 = 0 hence du3 = 0. Put
u3 = du2.
We have df2u2 = f3du2 = f3u3 = 0. Put f2u2 = dv1.
We have f2du1 = df1u1 = dy1 = f2u2. Hence du1 = u2.
We have u3 = ddu1 = 0.

If f5 is injective and f2, f4 are surjective, then f3 is surjective:
Pick v3. Write dv3 = f4u4.
We have f5du4 = df4u4 = ddv3 = 0 hence du4 = 0. Put u4 = du3.
We have dv3 = f4u4 = f4du3 = df3u3 hence v3 − f3u3 = dv2 and
v2 = f2u2.
We have v3 = f3u3 − dv2 = f3u3 − df2u2 = f3(u3 − du2). �
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Multilinear algebra and tensor products Differential forms (which
will be defined later) involve multilinear maps on the tangent spaces of a
manifold. The tensor products of multilinear maps provides a convenient
tool for studying such maps. Moreover differential forms on a product
manifold have a special structure best described in terms of tensor prod-
ucts of spaces.

If U is a vector space U? denotes its dual. If U and V are vectorspaces
L(U, V ) is the space of linear maps U → V . If U , V and W are vec-
torspaces B(U, V ;W ) is the space of bilinear maps U × V → W . Recall
that if b : U × V → W is bilinear, b(U, V ) designates the subspace of W
generated by elements of the form b(u, v), with u ∈ U and v ∈ V .

Let U , V be vectorspaces. We say that (W,⊗) is a tensorproduct of U
and V , if W is a vectorspace and ⊗ : U × V →W is bilinear and for any
W ′ and any b : U × V →W ′ there is a unique β : W →W ′ such that for
all u ∈ U and all v ∈ V :

b(u, v) = β(u⊗ v).

Thus tensorproducts, when they exist, are unique up to canonical isomor-
phism.

Remark 2.4 (W,⊗) is a tensorproduct of U and V iff the following two
conditions hold. First, for any free families (ui)i∈I in U and (vj)j∈J in
V , the family (ui ⊗ vj)(i,j)∈I×J is free in W . Second, the vectorspace W
is generated by elements of the form u⊗ v for u ∈ U and v ∈ V .

Let U , V be vectorspaces. Put W = B(U, V )? and define, for u ∈ U ,
v ∈ V and b ∈ B(U, V ):

(u⊗ v)(b) = b(u, v).

Then ⊗ : U × V → W is bilinear and (U ⊗ V,⊗) is a tensorproduct of U
and V . Thus tensorproducts exist. Unless otherwise specified this is the
tensorproduct we will use.

When U , V and W are vectorspaces and a tensor product of U and V
is chosen, we have a canonical isomorphism:

L(U ⊗ V,W ) → B(U, V ;W ).

Let V be a vectorspace. Lk(V ) denotes the space of k-linear maps
V k → R. In particular L1(V ) is the dual of V , also denoted V ?.

If u ∈ Lk(V ) and v ∈ Ll(V ) then u⊗ v ∈ Lk+l(V ) is defined by:

u⊗ v(ξ1, · · · , ξk+l) = u(ξ1, · · · , ξk)v(ξk+1, · · · , ξk+l).

Lemma 2.3 If (ui)i∈I is free in Lk(V ) and (vj)j∈J is free in Ll(V ) then
the family (ui ⊗ vj)(i,j)∈I×J is free in Lk+l(V ).

Comparing dimensions we find that if V is finite-dimensional (Lk+l(V ),⊗)
is a tensorproduct of Lk(V ) and Ll(V ).

Suppose fi : Ui → Vi for i = 0, 1. Define f0 ⊗ f1 : U0 ⊗ U1 → V0 ⊗ V1

by:

(f0 ⊗ f1)(u0 ⊗ u1) = (f0u0)⊗ (f1u1).

It is called the Kronecker product of f0 and f1. When all spaces are finite
dimensional, L(U0 ⊗ U1, V0 ⊗ V1) equipped with the Kronecker product,
is indeed a tensor product of L(U0, V0) and L(U1, V1)
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Remark 2.5 If b : U ×V → Z is bilinear any w ∈ b(U, V ) can be written
w =

P
ij λijb(ui, vj) with (ui) and (vj) free.

The following canonical isomorphisms are useful. If U ⊆ V we have
for any W :

(V ⊗W )/(U ⊗W ) ' (V/U)⊗W.

If Ui ⊆ Vi for i = 0, 1 we have:

(V0 ⊕ V1)/(U0 ⊕ U1) ' (V0/U0)⊕ (V1/U1).

An element u ∈ Lk(V ) is alternating iff for any permutation σ ∈ Sk:

u(ξσ1 , · · · , ξσk ) = ε(σ)u(ξ1, · · · , ξk).

The subspace of Lk(V ) consisting of alternating forms is denoted Lka(V ).
The canonical projection in Lk(V ) onto Lka(V ) is denoted αk.

(αku)(ξ1, · · · , ξk) =
1

k!

X
σ

ε(σ)u(ξσ1 , · · · , ξσk ),

where the sum extends over the set of permutations of {1, · · · , k}.
The wedge product of u ∈ Lka(V ) and v ∈ Lla(V ) is u ∧ v ∈ Lk+la (V )

defined by:

u ∧ v =
(k + l)!

k! l!
αk+l(u⊗ v).

The wedge product is bilinear and associative. We have, for ui ∈ V ?:

(u1 ∧ · · · ∧ uk)(ξ1, · · · , ξk) =
X
σ

ε(σ)u1(ξσ1) · · ·uk(ξσk ).

Moreover if u ∈ Lka(V ) and v ∈ Lla(V ):

v ∧ u = (−1)klu ∧ v.

This property is known as graded commutativity.
Suppose V is n-dimensional. If (ei)1≤i≤n is a basis of V ? then the

following family is a basis of Ak(V ):

ei1 ∧ · · · ∧ eik for 1 ≤ i1 < · · · < ik ≤ n.

It may be regarded as being indexed by the set of subsets of {1, · · · , n}
with cardinality k. In particular:

dimLka(V ) =

 
n

k

!
.

If F : V0 → V1 is linear and u ∈ Lk(V1) then F ?u ∈ Lk(V0) is defined
by:

F ?u(ξ1, · · · , ξk) = u(Fξ1, · · · , F ξk).
If u ∈ Lka(V1) then F ?u ∈ Lka(V0).

Suppose V = V0 ⊕ V1. Let P0 be the projection onto V0 with kernel
V1 and P1 be the projection onto V1 with kernel V0. Then the spaces
P ?0 Lk0a (V0)⊗ P ?1 Lk1a (V1) are in direct sum.

Proposition 2.4 With a slight abuse of notations, the following map is
an isomorphism:

αk :
M

k0+k1=k

Lk0a (V0)⊗ Lk1a (V1) → Lka(V ).
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– Proof: Prove injectivity and remark that, by the formula:

X
k0+k1=k

 
n0

k0

! 
n1

k1

!
=

 
n

k

!
,

where n = n0 + n1, the dimensions are equal. �
A scalar product on V is a g ∈ L2(V ) which is symmetric and positive

definite. It induces a scalar product on V ? by requiring that u 7→ g(u, ·)
is an isometry. In other words if l, l′ ∈ V ? are represented as l = g(u, ·)
and l′ = g(u′, ·) then we define g(l, l′) = g(u, u′). There is a unique scalar
product on multilinear forms such that:

g(u1 ⊗ · · · ⊗ uk, v1 ⊗ · · · ⊗ vk) = g(u1, v1) · · · g(uk, vk).

If we restrict this scalar product to alternating forms we notice:

g(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = k!
X
σ

ε(σ)g(u1, vσ1) · · · g(uk, vσk ).

Actually one scales this scalar product and define:

g(u1 ∧ · · · ∧ uk, v1 ∧ · · · ∧ vk) = det g(ui, vj).

With this scaling, if (ei)1≤i≤n is an orthonormal basis of V ?, then the
family:

ei1 ∧ · · · ∧ eik for 1 ≤ i1 < · · · < ik ≤ n,

indexed by subsets of {1, · · · , n} of cardinality k, is orthonormal in Lka(V ).
A scalar product and an orientation of V give rise to a volume form

ω, namely the determinant in any orthonormal oriented basis. Suppose
dim(V ) = n. The Hodge star is the map F : Lka(V ) → Ln−ka (V ) uniquely
determined by:

u ∧ Fv = g(u, v)ω.

If (ei)1≤i≤n is an orthonormal basis of V ? then for any set i1 < · · · < ik
with complement j1 < · · · < jn−k we have:

F(ei1 ∧ · · · ∧ eik ) = ε(I, J)ej1 ∧ · · · ∧ ejn−k ,

where ε(I, J) is the sign of the permutation (i1, · · · , ik, j1, · · · , jn−k).
One checks that: FF = ±id and F

′ = ±F.
We now turn to the interplay between tensorproducts and homological

algebra.
A graded vectorspace is a sequence A• = (Ak)k∈Z of vector spaces,

identified with the space:

A =
M
k

Ak.

Thus a complex is a particular kind of graded vectorspace, as well as the
family of its cohomology groups. The map H taking a complex to its
cohomology sequence is a functor from complexes to graded vectorspaces.

If F and G are graded vectorspaces, their tensor product is by defini-
tion the graded vectorspace defined by:

(F ⊗G)l =
M
k

F k ⊗Gl−k,

and
(u⊗ v)l =

X
k

uk ⊗ ul−k.
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If F and G are both complexes (i.e. they are equipped with differen-
tials) then F ⊗G is a complex when equipped with the differential defined
on F k ⊗Gl−k by:

d(u⊗ v) = (du)⊗ v + (−1)ku⊗ (dv).

If A is graded we introduce the map σ : A → A defined on Ak by
σu = (−1)ku. Thus σσ = idA and if A is equipped with a differential d
we notice that dσ = −σd.

With this definition we can write for any u ∈ F and v ∈ G:

d(u⊗ v) = (du)⊗ v + (σu)⊗ (dv).

This gives a proof that this is indeed a differential:

dd(u⊗ v) = d((du)⊗ v + (σu)⊗ (dv)),

= ddu⊗ v + (σdu+ dσu)⊗ (dv) + (σσu)⊗ (ddv),

= 0.

Remark 2.6 Suppose Fi and Gi are complexes for i = 0, 1 and fi : Fi →
Gi are morphisms of complexes. Then the Kronecker product f0 ⊗ f1 is a
morphism of complexes F0 ⊗ F1 → G0 ⊗G1.

The following is the algebraic Kunneth theorem.

Theorem 2.5 We have a canonical isomorphism:

H(F )⊗H(G) ' H(F ⊗G).

– Proof: We will use the following remark. Suppose that A is a graded
vectorspace equipped with the 0 differential. Then A ⊗ G has the differ-
ential:

d : Ak ⊗Gl−k → Ak ⊗Gl+1−k with u⊗ v 7→ (−1)ku⊗ dv.

Thus we get:
Hl(A⊗G) ' (A⊗H(G))l.

Return now to the case of F⊗G. Recalling the construction of Example
2.3, we denote by Bk, Zk ⊆ F k the image and kernel of the differential of
F . We have short exact sequences:

0 → Zk → F k → Bk+1 → 0.

Tensoring with the identity of Gl−k we get short exact sequences, for each
l:

0 →
M
k

Zk ⊗Gl−k →
M
k

F k ⊗Gl−k →
M
k

Bk+1 ⊗Gl−k → 0.

Thus we have a short exact sequence of complexes:

0 → (Z ⊗G)• → (F ⊗G)• → (B ⊗G)•+1 → 0

It gives a long exact sequence:

Hl(B ⊗G) → Hl(Z ⊗G) → Hl(F ⊗G) → Hl+1(B ⊗G) → Hl+1(Z ⊗G).

Using the above remark we get:

(B⊗H(G))l → (Z⊗H(G))l → Hl(F⊗G) → (B⊗H(G))l+1 → (Z⊗H(G))l+1
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The connecting morphism, appearing here as the first and last arrow, is
the Kronecker product of the inclusion Bk ⊆ Zk with the identity of H(G).
It is injective. Thus we get short exact sequences:

0 → (B ⊗H(G))l → (Z ⊗H(G))l → Hl(F ⊗G) → 0.

But we have:

(Z ⊗H(G))l/(B ⊗H(G))l '
M
k

(Zk/Bk)⊗Hl−k(G).

Thus we get:
Hl(F ⊗G) ' (H(F )⊗H(G))l,

which is what we want. �

2.2 Differential geometry

In this section we outline continuous geometry (differential forms), dis-
crete geometry (cellular complexes) and the relation between the two.
For details see [44], [61], [54] and [13].

Continuous geometry Let M be a topological space. A chart on
M is a continuous map F : U → M where U is open in some normed
vector (half–) space, such that F (U) is open in M and the induced map
U → F (U) is a homeomorphism. An atlas on M is a family of charts
Fi : Ui →M such that the sets Fi(Ui) cover M .

A manifold is a topological space equipped with an atlas. Suppose
(Fi : Ui → M) is an atlas. Put Vi = F (Ui) and Vij = Vi ∩ Vj . The atlas
is said to be differentiable if the maps:

Fji = F−1
j Fi : F−1

i (Vij) → F−1
j (Vij),

are differentiable. These maps are called transition maps.
Put Vijk = Vi ∩ Vj ∩ Vk. Then, on F−1

i (Vijk), we have well defined
maps satisfying:

Fki = FkjFji.

Notice also that:
Fii = id.

The manifold M can be identified with the disjoint union ∪i∈I{i} × Ui
quotiented by the finest relation such that:

(i, x) ∼ (j, Fji(x)),

whenever Fji is defined on x. Explicitly an identification is well-defined
by:

(i, x) 7→ Fi(x).

The tangent manifold is the disjoint union ∪i∈I{i}×Ui×V quotiented
by the relation:

(i, x, ξ) ∼ (j, Fji(x),DFji(x)ξ).

The canonical projection π : TM →M is well defined by:

π(i, x, ξ) = (i, x).

The tangent space of M at x is TxM = π−1(x). It is a vector space.

Remark 2.7 Tangent map.
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The space of smooth functions M → R is denoted F(M).
A vectorfield on M is a smooth map X : M → TM such that πX =

idM . In other words it is an object which to any x ∈ M associates an
element Xx ∈ TxM . The space of vectorfields on M is denoted V(M).

A differential form of degree k on a manifold M is an object which
to every point x associates an element ux ∈ Lka(TxM). Such an object is
also called a k-form. The space of smooth k-forms is denoted Ωk(M). If
u ∈ Ωk(M) and v ∈ Ωl(M) then their wedge product is u ∧ v ∈ Ωk+l(M)
defined pointwise. Explicitly:

(u∧ v)x(ξ1, · · · , ξk+l) =
1

k!l!

X
σ

ε(σ)ux(ξσ1 , · · · , ξσk )vx(ξσk+1 , · · · , ξσk+l),

where the sum extends over all permutations.
If F : M → N and u ∈ Ωk(N), the pull-back of u to N is denoted F ?u

and defined by:

(F ?u)x(ξ1, · · · , ξk) = uF (x)(DF (x)ξ1, · · · ,DF (x)ξk).

In other words:
(F ?u)x = DF (x)?uF (x).

If F0 : M0 →M1 and F1 : M1 →M2 then (F1F0)
? = F ?0 F

?
1 .

Let U be open in a vector space V . An element u ∈ Ωk(U) can be
considered as a map U → Lka(V ). Its total (or Fréchet) derivative is a
map:

Du : U → L(V,Lka(V )) ⊆ Lk+1(V ).

The exterior derivative d : Ωk(U) → Ωk+1(U) is defined by:

(du)x(ξ0, · · · , ξk) =

kX
i=0

(−1)i(Du)x(ξi, ξ0, · · · , ξ̂i, · · · , ξk).

In other words:
du = (k + 1)αk+1(Du),

where αk is the canonical antisymmetrizing projector on k-linear forms.
One checks that:

Lemma 2.4 If F : U0 → U1 is a map:

dF ?u = F ?du.

– Proof: We have:

(F ?u)x(ξ1, · · · , ξk) = uF (x)(DF (x)ξ1, · · · ,DF (x)ξk).

Hence:

D(F ?u)x(ξ0, ξ1, · · · , ξk)
= (Du)F (x)(DF (x)ξ0,DF (x)ξ1, · · · ,DF (x)ξk) +Pk

i=1 uF (x)(DF (x)ξ1, · · · ,D2F (x)(ξ0, ξi), · · · ,DF (x)ξk)

The sum disappears upon anti-symmetrization, and the first term corre-
sponds to the pull-back of F ?du. �

From this it follows that the exterior derivative can be defined on
manifolds, yielding a map d : Ωk(M) → Ωk+1(M). It has the following
properties:
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Proposition 2.6 For any map F : M0 →M1, any u ∈ Ωk(M1) we have:

dF ?u = F ?du.

For any u ∈ Ωk(M) and v ∈ Ωl(M) (Leibniz formula):

d(u ∧ v) = (du) ∧ v + (−1)ku ∧ (dv). (34)

Moreover d2 = 0. In other words we have a complex:

· · · → Ωk(M) → Ωk+1(M) → · · · (35)

– Proof: The first property follows from Lemma 2.4. We likewise prove
the two others in a chart over U ⊆ V .

We have:

d(u ∧ v) = (k + l + 1)αk+l+1D(u ∧ v),

=
(k + l + 1)!

k! l!
αk+l+1D(u⊗ v),

=
(k + l + 1)!

k! l!
αk+l+1((Du)⊗ v + τ(u⊗Dv)),

where τ is the cyclic permutation of the variables represented by:

(0, · · · , k + l) → (1, · · · , k, 0, k + 1, · · · , k + l).

The sign of this permutation is (−1)k. This gives the second identity.
We have:

ddu = αk+2D(αk+1Du),

= αk+2D
2u.

Since D2u is symmetric in its first two arguments this gives the third
identity. �

Remark 2.8 The exterior derivative is uniquely determined by properties
(34) and (35) together with its action on Ω0(M). Indeed elements of the
form u0du1 ∧ · · · ∧ duk with ui ∈ Ω0(M) generate Ωk(M).

If u is a differential k-form and X a vectorfield, the contraction of u
by X is iXu defined by:

(iXu)x(ξ2, · · · , ξk) = ux(X(x), ξ2, · · · ξk).

We shall define integration of n-forms on n-dimensional oriented man-
ifolds with boundary. A non-degenerate smooth n-form is called a volume
form. The local model of such a manifold is:

Rn+ = {(x1, · · · , xn) ∈ Rh : x1 ≤ 0}

Let ω denote the canonical volume form on Rn. Let U0 and U1 be two
open subsets of Rn+ and F : U0 → U1 an orientation preserving diffeo-
morphism. The determinant of DF (x) in orthonormal oriented bases (the
Jacobian) is denoted JacF (x). For i = 0, 1 let ui = fiω be a differential
n-form on Ui, with fi a function on Ui. We suppose that u0 = F ?u1.
Then f0 = f1 ◦ F JacF hence f0 is integrable iff f1 is integrable and in
this case: Z

U1

f1 =

Z
U0

f0.
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An atlas is said to be orientation-preserving if all transition maps are
orientation-preserving. A manifold is orientable if it has an orientation-
preserving atlas. Two oriented atlases are orientation-equivalent if the
union is oriented. If a manifold withN connected components is orientable
this equivalence relation on oriented atlases has 2N equivalence classes.
An orientation of the manifold is the choice of such an equivalence class,
and an oriented atlas is an atlas in this equivalence class.

Let M be a compact manifold of dimension n which is oriented. Let
(Fi : Ui → M) be a countable oriented atlas, and (φi) be a subordinated
partition of unity. Let u ∈ Ωn(M). Put ui = F ?i u and let ui = fiω. We
say that u is integrable if the fi are measurable and:X

i

Z
Ui

(φi ◦ Fi)|fi| < +∞.

If u is integrable we put:Z
u =

X
i

Z
Ui

(φi ◦ Fi)fi.

One checks that the above notions of integrability and integral are inde-
pendent of the choice of (countable oriented) atlas and partition of unity.
We notice that for any chart F : U →M and any u ∈ Ωn(M) if we define
f by F ?u = fω, we have: Z

F (U)

u =

Z
U

f.

The charts Fi : Ui →M are such that:

∀x ∈ Ui Fi(x) ∈ ∂M ⇐⇒ x1 = 0.

The maps (Fi|x1=0) constitute an orientation-preserving atlas of ∂M . It
determines the induced orientation of ∂M .

Let M be manifold with boundary ∂M oriented outwardly by the
orientation of M . If ω is a positively oriented volume form on M , and X
is a field on ∂M of vectors in TM (a section of the injection ∂M → TM)
pointing out of M , then iXω is a positively oriented volume form on ∂M .

The following result is known as Stokes’ theorem.

Theorem 2.7 For any compact manifold M , any u ∈ Ωn−1(M) which is
continuous up to the boundary, and whose exterior derivative is integrable:Z

M

du =

Z
∂M

u.

The following result concerning the cohomology of contractible do-
mains is known as Poincaré’s lemma. Recall that a domain is contractible
is the identity map is homotopic to a constant map. Using Lie derivatives
and Cartan’s formula, one shows that a homotopy t 7→ ft between maps
f0 and f1 gives a homotopy operator (in the algebraic sense) between the
pullbacks f?0 and f?1 .

Lemma 2.5 If M is a contractible domain then Hk(M) = 0 for k ≥ 1
(and H0(M) consists of the constant functions).

Suppose M is a three dimensional manifold equipped with a Rieman-
nian metric g. Given a vectorfield u ∈ V(M) one can associate with it
the two forms Ψ1u = g(u, ·) ∈ Ω1(X) and Ψ2u = ω(u, · · · ) ∈ Ω2(X). A
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function u ∈ F(M) can be associated with itself considered as an element
Ψ0u = u ∈ Ω0(M) and with the form Ψ3u = uω ∈ Ω3(M). One then has
the commuting diagram:

F(M)
grad //

Ψ0

��

V(M)
curl //

Ψ1

��

V(M)
div //

Ψ2

��

F(M)

Ψ3

��
Ω0(M)

d // Ω1(M)
d // Ω2(M)

d // Ω3(M)

where the vertical arrows are isomorphisms. Through this correspondence
problems expressed in terms of vector fields can be translated into prob-
lems expressed with differential forms.

Discrete geometry A k-simplex is a set with k+1 elements (k ≥ 0);
its elements are called vertices. The standard simplex is [k] = {0, · · · , k}.
Its geometric realization is ∆k defined by:

∆k = {(x0, · · · , xk) ∈ Rk+1 : xi ≥ 0 and x0 + · · ·+ xk = 1}.

The vertices of ∆k are the standard basis vectors (eki )i∈[k] of Rk+1. If
σ : [k′] → [k] is a map, there is a unique affine map ∆k′ → ∆k sending

ek
′
i to ekσ(i).

A simplicial complex T is a set of finite non-empty sets (simplices),
such that for any T in T , any nonempty subset of T is also in T . Such
a subset of T is called a face. It is proper when it is different from T . A
k-simplex is said to be k-dimensional. For each k we let T k denote the
subset of T consisting of k-dimensional simplices.

A simplicial complex determines a topological space by gluing together
spaces ∆k using the connectivity of T . More precisely |T | denotes the set
of maps x : T 0 → [0, 1] such that x has support in a T ∈ T (i.e. there
exists a T ∈ T such that x is non-zero only on the vertices of T ) and
moreover: X

α

x(α) = 1.

For any simplex T ∈ T we denote by |T | the set of x ∈ |T | with support
in T . Notice that for any bijection α : [k] → T we have a bijection
|α| : ∆k → |T |. The topology of |T | is defined by the property that
F ⊆ |T | is closed iff F ∩ |T | is closed for each T , when |T | is equipped
with the topology inherited from some ∆k.

For simplices, orientation can be defined combinatorially. For a k-
simplex T , we consider the equivalence relation on bijections α : [k] → T
defined by α ∼ α′ iff α−1α′ is an even permutation of [k]. This equiv-
alence relation has two equivalence classes when k ≥ 1 and a combina-
torial orientation of T is a choice of one of the equivalence classes. The
standard simplex [k] has a canonical combinatorial orientation, namely
the equivalence class of the identity map, the set of even permutations.
We say that the elements of the combinatorial orientation of T are the
orientation preserving maps [k] → T . A combinatorial orientation of T
determines an orientation of the manifold |T | by requiring that the in-
duced map |α| : ∆k → |T | be orientation preserving for any orientation
preserving map α : [k] → T . The chosen orientation of ∆k is the one such
that dx1 ∧ · · · ∧ dxk is positive, or equivalently the one it obtains as the
boundary of the simplex:

{(x0, · · · , xk) : xi ≥ 0 and
X

xi ≤ 1}.
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equipped with the orientation of Rk+1.
Let T be a (k + 1)-simplex and T ′ a k-face, equipped with combina-

torial orientations. Choose an orientation preserving α : [k] → T ′. Then
ε(T, T ′) = 1 iff the bijection [k + 1] → T defined by:

0 7→ T \ T ′ and i+ 1 7→ αi,

is orientation preserving.

Example 2.4 Let M be a topological space and (Ui)i∈I be an open cover.
The nerve of this cover is the simplicial complex consisting of the following
subsets of I:

{α0, · · · , αk} ⊆ I : Uα0 ∩ · · · ∩ Uαk 6= ∅.

In what follows we shall frequently identify T with |T |.
Let M denote a compact metric space.
To us, a k-dimensional cell in M is a closed subset T of M which is

homeomorphic by a bi-Lipschitz map to the closed unit ball of Rk. If a cell
T is both k and l dimensional then k = l. We denote by ∂T its boundary,
the image of the unit sphere in Rk by the chosen homeomorphism. Dif-
ferent homeomorphisms to the ball give the same boundary. The interior
of T is by definition T \ ∂T (it is open in T but not necessarily in M).
A cellular complex on M is a finite set T of cells in M such that the
following conditions hold:

• The union of all cells in T is M .

• Distinct cells in T have disjoint interiors.

• The intersection of two cells in T is a union of cells in T .

• The boundary of any cell in T is a union of cells in T .

• The topology of M is such that a subset F of M is closed iff F ∩ T
is closed in T for any cell T in T .

A simplicial complex is a cellular complex in which the intersection
of any two cells is a cell (not just a union of cells) and such that the
boundary of any cell is split into subcells in the same way as the boundary
of a reference simplex is usually split into subsimplexes. The reference
simplex of dimension k is:

{(x0, · · · , xk) ∈ Rk+1 : xi ≥ 0 and
X
i

xi = 1},

and its subsimplexes are defined by equations xi = 0 for all i ∈ J , where
J ⊆ {0, · · · , k}.

We put for each k ∈ N:

T k = {T ∈ T : dimT = k}.

The boundary of any cell T of T can be naturally equipped with a cellular
complex, namely:

{T ′ ∈ T : T ′ ⊆ T, T ′ 6= T}.

A refinement of a cellular complex T on M is a cellular complex T ′
on M such that each element of T is the union of elements of T ′. We will
be particularly interested in simplicial refinements of a cellular complex.

A cellular subcomplex of a cellular complex T on M , is a cellular
complex T ′ on some closed part M ′ of M such that T ′ ⊆ T . For instance
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we have seen the the boundary of any cell T in T can be equipped with
a cellular complex which is a subcomplex of T .

Fix a cellular complex (M, T ). In the following we suppose that for
each T ∈ T of dimension ≥ 1, the manifold |T | has been oriented. Relative
orientations, also called incidence numbers, are defined as follows:

For any edge T its vertices are ordered by the orientation of T , call
them α0 and α1 in increasing order and define ε(T, {α1}) = 1 and ε(T, {α0}) =
−1. This definition is extended to higher dimensional cells as follows. Fix
k ≥ 1. Given T ∈ T k+1 and T ′ ∈ T k, if T ′ ⊆ T we define ε(T, T ′) = 1
if T ′ is outward oriented compared with T and ε(T, T ′) = −1 if it is in-
ward oriented. For all T, T ′ ∈ T not covered by this definition we put
ε(T, T ′) = 0.

For each k let Ck(T ) denote the set of maps c : T k → R. Such maps
are called k-cochains. The coboundary operator δ : Ck(T ) → Ck+1(T ) is
defined by:

(δc)T =
X
T ′

ε(T, T ′)cT ′ .

In other words it’s the operator whose canonical matrix is ε. We remark
that the coefficients in the sum can be non-zero only when T ′ ∈ ∂T ∩T k.

Lemma 2.6 We have that δδ = 0 as a map Ck(T ) → Ck+2(T ).

– Proof: Pick u ∈ Ck(T ). Pick T ∈ T k+2. Let T ′′ be a k-face of T ; it is
shared by two (k + 1)-faces of T denoted T ′0 and T ′1.

Suppose T ′0 and T ′1 have the same orientation compared with T . Then
T ′′ is oppositely oriented relative to T ′0 and T ′1. If T ′0 and T ′1 have opposite
orientations compared with T then T ′′ has the same orientation relative
to T ′0 and T ′1.

In both cases the contribution of uT ′′ to (δδu)T is 0. �
In other words the family C•(T ) is a complex, called the cochain

complex and represented by:

0 → C0(T ) → C1(T ) → C2(T ) → · · ·

Suppose T is a cellular complex equipped with an orientation (of the
cells) and T ′ is a cellular refinement also equipped with an orientation
(for instance the same complex but with different orientations). For each
cell T ∈ T k and each T ′ ∈ T ′k define ι(T, T ′) = ±1 if |T ′| ⊆ |T | and they
have the same/different orientation, and ι(T, T ′) = 0 in all other cases.

Proposition 2.8 The map ι : C•(T ′) → C•(T ) defined by:

(ιu)T =
X
T ′

ι(T, T ′)uT ′ ,

is a morphism of complexes.

– Proof: We view ιk as a matrix indexed by T k × T ′k. We also consider
the compositions δι and ιδ′ as matrices. Pick now T ∈ T k+1 and T ′ ∈ T ′k.

Suppose |T ′| is not a subset of |T |. Any (k + 1)-cell of T ′ containing
|T ′| is not included in |T | so (ιδ′)TT ′ = 0. Any k-cell of T containing |T ′|
is not included in |T | so (δι)TT ′ = 0.

Suppose |T ′| is a subset of |T |, but not of |∂T |. Then |T ′| is not
included in any k-cell of T so (δι)TT ′ = 0. On the other hand |T ′| is
included in exactly two (k + 1)-cells of T ′ inside |T |. If they have equal
orientations compared with |T |, they induce opposite orientations on |T ′|,
and vice-versa. Hence (ιδ′)TT ′ is the sum of two opposite terms.
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Suppose |T ′| is a subset of |∂T | and let T1 be the k-cell of T containing
|T ′| and T ′1 the (k + 1)-cell of T ′ included in |T | and containing |T ′|. We
have:

(ιδ′)TT ′ = ι(T, T ′1)ε
′(T ′1, T

′),

and:

(δι)TT ′ = ε(T, T1)ι(T1, T
′).

These terms are both equal to the relative orientation of |T ′| with respect
to |T |. This completes the proof. �

Relating continuous and discrete geometry Let M be a man-
ifold and T a cellular complex on M . The complex C•(T ) can be related
to Ω•(M) as follows. For each T ∈ T k let µT be the linear form on Ωk

defined by:

µT : u 7→
Z
T

u|T .

For each k we denote by µk : Ωk(M) → Ck(T ) the map defined by:

µk : u 7→ (µTu)(T∈T k).

In the setting of finite element computations, the linear forms µT are
called degrees of freedom.

Proposition 2.9 For each k the following diagram commutes:

Ωk(M)
d //

µk

��

Ωk+1(M)

µk+1

��
Ck(T )

δ // Ck+1(T )

– Proof: This is an application of Stokes theorem. �
It is easy to check that the maps µk : Ωk(M) → Ck(T ) are onto so

that the above diagram uniquely determines δ : Ck(T ) → Ck+1(T ).

Suppose T is a simplicial complex, with oriented simplices. We sup-
pose that (λα)α∈T 0 is a partition of unity such that the support of λα is
in the closed star of α (the union of the simplices containing the vertex
α). Thus if α /∈ T we have λα|T = 0.

If T ∈ T k, and α : [k] → T is orientation preserving, we define a
k-form λT attached to T by:

λT = k!

kX
i=0

(−1)iλαidλα0 ∧ · · · (dλαi)
∧ · · ·dλαk .

The following notation will be used. For any functions u0, · · · , uk we
put:

[u0, · · · , uk] =

kX
i=0

(−1)iuidu0 ∧ · · · (dui)∧ · · · ∧ duk,

=
1

k!

X
σ

ε(σ)uσ0duσ1 ∧ · · · ∧ duσk ,

where the sum extends over permutations of [k]. In particular the defini-
tion of λT does not depend on the choice of α as long as it is orientation
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preserving. Remark also that if two of the ui are equal one obtains 0.
Suppose that σ : [k] → [k] is a map. If σ is not bijective we have:

[uσ0 , · · · , uσk ] = 0.

If σ is bijective then:

[uσ0 , · · · , uσk ] = ε(σ)[u0, · · · , uk].

Remark furthermore that if α : [k] → T 0 is a map whose range is not a
simplex, then:

[λα0 , · · · , λαk ] = 0.

Proposition 2.10 For any T, T ′ ∈ T k we have µT ′λT = δTT ′ .

– Proof: If T ′ 6= T , there is α ∈ T \ T ′. Since λα|T ′ = 0 we have
λT |T ′ = 0, hence µT ′λT = 0.

To compute µTλT we choose an orientation preserving α : [k] → T
and notice that on T :

λT = k! dλα1 ∧ · · · ∧ λαk ,

= ε(T, T ′)dλT ′ ,

where T ′ = {α1, · · · , αk} is the face of T opposite to α0. The identity
then follows by an induction argument using Stokes theorem. �

We define:
Λk(T ) = span {λT : T ∈ T k}.

By the preceding proposition, (λT )T∈T k is a basis of Λk(T ).

Proposition 2.11 The exterior derivative d maps Λk(T ) into Λk+1(T )
and the matrix of d : Λk(T ) → Λk+1(T ) in the bases (λT ′)T ′∈T k →
(λT )T∈T k+1 has entry ε(T, T ′) at the indices (T, T ′) ∈ T k+1 × T k.

– Proof: Choose T ′ ∈ T k. Let α : [k] → T ′ be orientation preserving.
First we remark that:

dλT ′

= (k + 1)!dλα0 ∧ · · · ∧ dλαk ,

= (k + 1)!(
X
α 6∈T ′

λαdλα0 ∧ · · · ∧ dλαk +
X
i∈[k]

λαidλα0 ∧ · · · ∧ dλαk ).

The last sum can be replaced by:

−
X
i∈[k]

λαidλα0 ∧ · · · (d
X
α 6∈T ′

λα)at i · · · ∧ dλαk .

Moving dλα to the front we get:

dλT ′ = (k + 1)!
X
α 6∈T ′

(λαdλα0 ∧ · · · ∧ dλαk − dλα ∧ [λα0 , · · · , λαk ]),

= (k + 1)!
X
α 6∈T ′

[λα, λα0 , · · · , λαk ].

In this sum an α-term is nonzero only if {α, α0, · · · , αk} ∈ T k+1. By
definition of the incidence numbers we have:

dλT ′ =
X

T∈T k+1

ε(T, T ′)λT . (36)
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This completes the proof. � Thus Λ•(T ) is
a subcomplex of Ω•(M) which is isomorphic (not just in cohomology) to
the cochain complex of T .

We can define projections:

Ik : Ωk(M) → Λk(T ),

by requiring that µkIku = µku. These projections commute with the
exterior derivative.

Corollary 2.12 Let a compact manifold M be equipped with a simplicial
complex T . Then the De Rham map induces surjections in cohomology.

– Proof: We apply Remark 2.2 to the present situation. �

Corollary 2.13 Let M be a starshaped domain, triangulated by a sim-
plicial complex T . Then the simplicial cohomology is trivial in dimension
k > 0 and has dimension 1 for k = 0.

– Proof: We know that HkΩ•(M) is trivial for k > 0 by Poincaré’s
lemma. Combined with Corollary 2.12 this gives the result. �

A significant strengthening of Corollary 2.12 is the following theorem
of De Rham:

Theorem 2.14 Let a compact manifold M be equipped with a simplicial
complex. The the De Rham map induces isomorphisms in cohomology.

– Proof: See [61], [54] or [13]. �

2.3 Finite elements on cellular complexes

The notion of finite element system we shall consider here was introduced
in [23]. We develop it in particular in the direction of tensor products.

Finite element systems Let T be a cellular complex. For each k and
each T ∈ T we suppose we are given a space Ak(T ) of differential k-forms
on T such that the exterior derivative induces maps d : Ak(T ) → Ak+1(T )
and if T ′ ⊆ T the inclusion map i : |T ′| → |T | induces a map i? : Ak(T ) →
Ak(T ′). We call such a family of spaces a finite element system. For any
subcomplex T ′ of T we define Ak(T ′) to consist of families (uT )T∈T ′ such
that whenever T ′ ⊆ T and i : |T ′| → |T | is the inclusion map, we have
i?uT = uT ′ (equivalently uT |T ′ = uT ′).

We say that the finite element system A is compatible when in addition
the following conditions hold:

• Cohomology. We require that the following sequence be exact:

0 → R → A0(T ) → A1(T ) → · · · → Adim(T )(T ) → 0.

• Restrictions. If we denote by ρ : |∂T | → |T | the inclusion map, we
require that the pullback ρ? : Ak(T ) → Ak(∂T ) (the restriction to
the boundary) be surjective. In other words compatible forms on
the boundary of a cell can be extended to the interior.

The following notation will be handy. For any cellular subcomplex T ′
of T we set:

A•(T ′) =
M
k

Ak(T ′),

and remark that it is indeed a complex when equipped with the exterior
derivative.
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We denote by Ak0(T ) the kernel of ρ? : Ak(T ) → Ak(∂T ). The follow-
ing result is about the dimension of Ak(T ) when the spaces Ak(T ) are
finite dimensional.

Proposition 2.15 Suppose a finite element system has the extension prop-
erty. Then:

dimAk(T ) =
X
T∈T

dimAk0(T ).

– Proof: For any l, recall that T l is the subset of T of l-dimensional
cells. We let T (l) denote the subset of cells of dimension at most l – the
so-called l-skeleton of T .

For l ≥ 1, let ρl denote the restriction Ak(T (l)) → Ak(T (l−1)). Then
ρl is a surjection and its kernel can be identified with:

ker ρl =
M
T∈T l

Ak0(T ).

Thus we get:

dimAk(T (l)) = dimAk(T (l−1)) +
X
T∈T l

dimAk0(T ).

Repeating this identity for l ranging from the maximal dimension of cells
of T down to 1 we get the claimed identity. �

Remark 2.9 We remark that if the maps Ak(T ) → Ak(∂T ) had not been
surjective (but nevertheless well defined) we would have gotten:

dimAk(T ) ≤
X
T∈T

dimAk0(T ).

Notice that we have not constructed any explicit isomorphism between
the spaces Ak(T ) and

L
T∈T A

k
0(T ), even though we proved that such an

isomorphism exists.

Example 2.5 Given a cellular complex T one can fix a simplicial refine-
ment T ′ and let Ak(T ) denote the Whitney k-forms on T with respect
to T ′. We proved that the spaces Ak(T ) have the right cohomology in
Corollary 2.13. The restriction property is trivial. Thus we have a com-
patible finite element system. It is clear that Λk(T ′) ⊆ Ak(T ). Comparing
dimensions one finds that the spaces are equal.

Theorem 2.16 When the finite element system is compatible the De
Rham map µ• : A•(T ) → C•(T ) induces isomorphisms in cohomology.

– Proof: We suppose that the theorem has been proved for cellular
complexes of dimension up to n. We let T ′ be a cellular complex of
dimension at most n + 1 for which the theorem is true, and adjoint an
(n+1) dimensional cell T with boundary in T ′. Let T denote the cellular
complex T ′ ∪ {T}.

We have short exact sequences:

0 → Ak(T ) → Ak(T ′)×Ak(T ) → Ak(∂T ) → 0,

where the second arrow is:

u 7→ (u|T ′ , u|T ),
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and the third arrow is:

(u, v) 7→ u|∂T − v|∂T .

It provides a long exact sequence. We have similar short exact se-
quences for C• and a corresponding long exact sequence. They are related
by the De Rham map providing a commuting diagram:

HkA•(T ′)×HkA•(T ) //

��

HkC•(T ′)×HkC•(T )

��
HkA•(∂T ) //

��

HkC•(∂T )

��
Hk+1A•(T ) //

��

Hk+1C•(T )

��
Hk+1A•(T ′)×Hk+1A•(T ) //

��

Hk+1C•(T ′)×Hk+1C•(T )

��
Hk+1A•(∂T ) // Hk+1C•(∂T )

The first, second fourth, and fifth horizontal arrows are isomorphisms
by the induction hypothesis (remark that ∂T is n-dimensional), hence also
the third.

�

Corollary 2.17 Let T be a cellular complex and T ′ a simplicial refine-
ment. Then the natural map C•(T ′) → C•(T ) induces isomorphisms in
cohomology.

– Proof: We use the finite element system of Example 2.5. By Theorem
2.16 the natural morphism Λ•(T ′) → C•(T ) induces isomorphisms in
cohomology. But Λ•(T ′) is naturally isomorphic to C•(T ′). �

Corollary 2.18 Let T be a cellular complex and T ′ a cellular refine-
ment. Then the natural map C•(T ′) → C•(T ) induces isomorphisms in
cohomology.

– Proof: Let T ′′ be a simplicial refinement of T ′. Proposition 2.8 provides
a commuting diagram of complexes:

C•(T ′) // C•(T )

C•(T ′′)

ddJJJJJJJJJ

::uuuuuuuuu

The two diagonal arrows induce isomorphisms in cohomology as noted in
the previous corollary. Hence the horizontal arrow also induces isomor-
phisms. �

Corollary 2.19 Let M be manifold and T a cellular complex. The De
Rham map Ω•(M) → C•(T ) induces isomorphisms in cohomology.
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– Proof: Let T ′ be a simplicial refinement of T . We have a commuting
diagram of complexes:

Ω•(M) //

$$JJJJJJJJJ
C•(T )

C•(T ′)

::uuuuuuuuu

The two diagonal arrows induce isomorphisms in cohomology by Theo-
rem 2.14 and Corollary 2.17. Hence the horizontal arrow also induces
isomorphisms. �

Harmonic extensions We now introduce a notion of harmonic exten-
sion. It has at least two applications. It yields an isomorphism

L
T∈T A

k
0(T ) →

Ak(T ) and also a subcomplex of A•(T ) such that the restriction of the
De Rham map to this subcomplex determines isomorphisms to C•(T )
(not just in cohomology). This subcomplex plays the role of lowest order
Whitney forms on general cellular complexes.

Let T be a cell of dimension p. Then Ck0 (T ) = 0 for k < p and
Cp0 (T ) ' R.

Proposition 2.20 The following sequence is exact:

0 → A0
0(T ) → A1

0(T ) → · · · → A
dim(T )
0 (T ) → R → 0.

– Proof: We have a diagram of short exact sequences:

0 // Ak0(T ) //

��

Ak(T ) //

��

Ak(∂T ) //

��

0

0 // Ck0 (T ) // Ck(T ) // Ck(∂T ) // 0

The two last vertical arrows induce isomorphisms in cohomology by The-
orem 2.16, hence, by applying the five lemma to the long exact sequences,
so does the first. But the cohomology of C•

0 (T ) is trivial to compute. �
From now on we suppose that a scalar product a is given on each

Ak(T ).

Lemma 2.7 For each k, T ∈ T k and α ∈ R there is a unique element u
of AdimT (T ) such that:Z

T

u = α and ∀v ∈ AdimT−1
0 (T ) a(u,dv) = 0.

– Proof: The orthogonal of imd : AdimT−1
0 (T ) → AdimT

0 (T ) with respect
to a is one-dimensional and contains an element with nonzero integral. �

With the above notations, the element with integral 1 will be denoted
ωT .

Lemma 2.8 Pick a k. For each T ∈ T such that dimT > k if u ∈
Ak(∂T ) there is a unique extension u ∈ Ak(T ) such that:

∀v ∈ Ak0(T ) a(du,dv) = 0 and ∀v ∈ Ak−1
0 (T ) a(u,dv) = 0.
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– Proof: Put K = imd : Ak−1
0 (T ) → Ak0(T ). Then on K, a is of course

a scalar product but more importantly on its orthogonal K⊥ in Ak0(T )
with respect to a, a(d·,d·) is also a scalar product since dimT > k and
therefore K = ker d : Ak0(T ) → Ak+1

0 (T ). Pick now u0 ∈ Ak(T ), an
arbitrary extension of u. If u1 and u2 are in K⊥ and K respectively then
u = u0 + u1 + u2 solves our problem if and only if:

∀v ∈ K⊥ a(du1,dv) = −a(du0,dv) and ∀v ∈ K a(u2, v) = −a(u0, v).

This gives existence and uniqueness. �
A differential form u ∈ Ak(T ) such that:

∀v ∈ Ak0(T ) a(du,dv) = 0 and ∀v ∈ Ak−1
0 (T ) a(u,dv) = 0.

will be called harmonic. We say that a differential form u ∈ Ak(T ) is
locally harmonic if for each T ∈ T , u|T is harmonic.

The construction we propose is the following: Fix a k and a T ∈ T k.
We will construct a λT ∈ Ωk attached to T .

• First (using Lemma 2.7) put λT |T = ωT and for each T ′ ∈ T k such
that T ′ 6= T we put λT |T ′ = 0. Of course λT is set to zero also on
cells of dimension i < k.

• Second (using Lemma 2.8), supposing λT has been defined on all cells
of dimension up to some i ≥ k we define λT |T ′ on a cell T ′ ∈ T i+1

to be the unique element u ∈ Ak(T ′) with u|∂T ′ given by λT |∂T ′ and
such that u is harmonic.

We now put:

Λk(T ) = span{λT : T ∈ T k}.

We have:

Proposition 2.21 Λk(T ) is the set of locally harmonic elements of Ak(T ).
The family (λT ) indexed by T ∈ T k is a basis of Λk(T ), and the induced
map µk : Λk(T ) → Ck(T ) is an isomorphism. The exterior derivative
induces maps d : Λk(T ) → Λk+1(T ).

– Proof: Since, for any T of dimension k, ωT is harmonic (on T ), any
element of Λk(T ) is locally harmonic. Since, for any T of dimension k
any element of Ak(T ) which is harmonic is proportional to ωT , locally
harmonic forms are in Λk(T ).

We notice that for T, T ′ ∈ T k we have µT ′λT = δTT ′ where the last
symbol is the Kronecker delta, hence (λT ) is linearly independent. It is
therefore a basis of Λk(T ). The De Rham map sends this basis to the
canonical basis of Ck(T ).

We now prove that dΛk(T ) ⊆ Λk+1. But it is trivial to check that if
u is locally harmonic, so is du, so the result follows. �

Remark 2.10 The maps µk can be used to define interpolation operators
Ik : Ωk → Λk(T ) by requiring, for any u ∈ Ωk that µkIku = µku. They
commute with the exterior derivative.

Proposition 2.22 We have: X
i∈T 0

λi = 1.
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– Proof: Define u ∈ Λ0 by:

u =
X
i∈T 0

λi.

We prove that u = 1 by induction on the dimension of the cells. For a
0-dimensional cell T it is of course true that u|T = 1. Suppose now it has
been proved that u|T = 1 for all cells T of dimension ≤ k and consider
a (k + 1)-dimensional cell T . The constant function on T equal to 1 is
an element of A0(T ) whose boundary values are 1 and whose exterior
derivative is 0. By the uniqueness proved Lemma 2.8, we therefore have
u|T = 1. �

It is therefore tempting to believe that the family (λi)i∈T 0 is a parti-
tion of unity. However, in general, the functions λi might take negative
values. For instance one can use finite element functions on a refinement
of T to construct the spaces A0(T ) and use L2 products for a. Then the
constructed functions are so-called discrete harmonic on each cell, but it
is known that the (refined) mesh needs to satisfy additional requirements
for discrete maximum principles to hold.

When M is a domain in a vectorspace V it makes sense to speak
about constant forms on M . One might then ask that Λk(T ) contains all
compatible differential forms which are constant on each top-dimensional
cell. However in general this is too much to ask. Indeed the pullbacks
to a k-dimensional cell T of elements of Λk(T ) form a one-dimensional
space (generated by ωT ), whereas the pullbacks to T of constant k-forms
on V might form a space of higher dimension. Notice that this is not
a problem of choice of auxiliary spaces and scalar products but comes
from our requirement that for k-forms we have one degree of freedom
per k-dimensional cell, whereas more would be required to represent the
pullbacks of constant k-forms.

We say that a k-dimensional cell is flat if it is included in a k-dimensional
affine space. The next proposition shows that when the cells are all flat
the previous problem does not occur.

Proposition 2.23 Suppose we have a scalar product on V and that we
use for scalar product a on a cell the L2 product on forms associated with
the induced Riemannian metric. Suppose that each cell is flat and that for
each k and T , Ak(T ) contains the pullbacks of constant forms on V . Then
Λk(T ) contains all compatible differential forms on M which are constant
on each top-dimensional cell.

– Proof: Indeed for any constant differential form on V , the exterior
derivative of its pullback to any cell is 0 (by commutation of the exterior
derivative with pullbacks). Moreover if u is the pullback to a cell T of a
constant differential form d?u = 0 by the flatness of T .

Therefore compatible differential forms on M which are constant on
each top-dimensional cell are piecewise harmonic. �

When the hypothesis of Proposition 2.23 is satisfied, the canonical
interpolation operator defined by Remark 2.10 can be used to obtain the
basic error estimates. The only problem is that the canonical interpolation
operator is not defined on rough forms, say with mere L2 regularity, but
this can be corrected for using the techniques of [29] or [56].

One application of this construction is the following. Suppose a simpli-
cial mesh T is given for an n-dimensional oriented manifold. One equips
it with the Whitney forms Λ•(T ) and wishes to construct finite element
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spaces of k-forms Γk forming a complex such that the bilinear forms:
Λk(T )× Γn−k → R,

(u, v) 7→
R
u ∧ v. (37)

are non-degenerate. One can perform the barycentric refinement of T . It
yields a simplicial refinement T ′ of T whose vertices are all the barycenters
of all cells of T . Then one can reassemble the elements of T ′ into a
new cellular complex U called the dual complex of T , whose k-cells are
transverse to the (n − k)-cells of T . The locally harmonic forms on U
constructed from Whitney forms on T ′ provide a good candidate for Γ•.
We proved that the bilinear forms (37) are non-degenerate in dimension
n = 2 in [18], but the case of general dimension remains open. Such dual
Whitney forms are useful for preconditioning integral operators discretized
on (primal) Whitney forms [2].

Remark that on simplicial complexes we now have two definitions of
λT , as (lowest order) Whitney forms and as locally harmonic ones con-
structed from some finite element system. We proceed to show that Whit-
ney forms are locally harmonic with respect to any piecewise constant
metric, so that in fact there is hardly any ambiguity. Denote by λi the
barycentric coordinate map associated with any vertex i ∈ T 0. Recall
that for k ≥ 1, if T ∈ T k and we label (a bit abusively) its vertexes
0, 1, · · · , k in a manner consistent with the orientation of T the Whitney-
form associated with T is:

λT =
X
σ

ε(σ)λσ(0)dλσ(1) ∧ · · · ∧ dλσ(k),

where the sum extends over all permutations of {0, 1, · · · , k}, and ε is the
signature morphism (see [61]). All we have to check is that, on any cell
T ′, d?dλT = 0 and d?λT = 0. But we have:

dλT = (k + 1)!dλ0 ∧ dλ1 ∧ · · · ∧ dλk,

which is constant on any simplex, so the first condition is true. Concerning
the second condition, we remark that for k = 0 it is trivial. For k ≥ 1 we
use the Hodge star operator. When g is a metric on some n-dimensional
oriented space E and ω is the corresponding volume form, the Hodge star
maps k-forms to (n − k)-forms and is characterized by the property, for
all k-forms u and v:

u ∧ Fv = g(u, v)ω.

One then checks that d? = ±FdF. We have, since g is constant on T ′:

dFλT =
X
σ

ε(σ)dλσ(0) ∧ F(dλσ(1) ∧ · · · ∧ dλσ(k)),

This is a certain constant (n − k + 1)-form on T ′ and we wish to show
that it is zero. This is the object of the following lemma.

Lemma 2.9 Let V be an oriented Euclidean space, k ≥ 1 an integer and
v0, v1, · · · , vk a family of linear forms on V . Then:X

σ

ε(σ)vσ(0) ∧ F(vσ(1) ∧ · · · ∧ vσ(k)) = 0.

– Proof: Let (·|·) denote the scalar product and ω be the volume form.
If k = 1 we have:

v0 ∧ Fv1 − v1 ∧ Fv0 = (v0|v1)ω − (v1|v0)ω = 0,
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which is the identity we wanted to prove.
Suppose now k ≥ 2. If u ∈ Lk−1

a (V ) we have:

u∧
X
σ

ε(σ)vσ(0)∧F(vσ(1)∧· · ·∧vσ(k)) =
X
σ

ε(σ)(u∧vσ(0)|vσ(1)∧· · ·∧vσ(k))ω.

Denote by S the scalar coefficient in front of ω. We have:

S =
X
σ

ε(σ)(u ∧ vσ(0)|vσ(1) ⊗ · · · ⊗ vσ(k)).

Now if u is decomposable, i.e. of the form u = u1 ∧ · · · ∧ uk−1, with
ui ∈ V ?, we have:

u ∧ vσ(0) = (1/k!)

kX
i=1

X
τ

(−1)iε(τ)uτ(1) ⊗ · · · ⊗ uτ(i−1)⊗

vσ(0) ⊗ uτ(i) ⊗ · · · ⊗ uτ(k−1),

where the second sum is over all permutations τ of the set {1, · · · , k− 1}.
Inserting this into the expression for S we get:

S = (1/k!)
X
i,τ,σ

(−1)iε(τ)ε(σ)(uτ(1) ⊗ · · · ⊗ uτ(i−1)⊗

vσ(0) ⊗ uτ(i) ⊗ · · · ⊗ uτ(k−1)|vσ(1) ⊗ · · · ⊗ vσ(k))

We now fix i and τ and remark that an uneven permutation of {0, · · · , k}
can be uniquely written σπ where π is the permutation exchanging 0 and
i. Thus in the above sum we can sum over all even permutations τ , two
terms - one like above and one where vσ(0) and vσ(i) are switched places:

(uτ(1) ⊗ · · · ⊗ uτ(i−1) ⊗ vσ(0) ⊗ uτ(i) ⊗ · · · ⊗ uτ(k−1)|vσ(1) ⊗ · · · ⊗ vσ(k))

−(uτ(1) ⊗ · · · ⊗ uτ(i−1) ⊗ vσ(i) ⊗ uτ(i) ⊗ · · · ⊗ uτ(k−1)|
vσ(1) ⊗ · · · ⊗ vσ(i−1) ⊗ vσ(0) ⊗ vσ(i+1) ⊗ · · · ⊗ vσ(k))

Here the sign reflects that σπ is an uneven permutation. The above sum is
0 by symmetry of the scalar product. Since this holds for all decomposable
u it is true for all u ∈ Lk−1

a (V ). This proves the lemma. �
Finally notice that an element of Ak0(T ) can be extended by 0 to an

element of Al(T (l)) where l = dimT and T (l) is the l-skeleton of T . It can
thereafter be extended recursively to cells of higher and higher dimension
in a unique way requiring harmonicity at each stage. This yields linear
maps E : Ak0(T ) → Ak(T ) which can be thought of as a global map:

E :
M
T

A•
0(T ) → A•(T ),

respecting the degree of differential forms. Notice that for k < dimT if
u ∈ Ak0(T ) then dEu = Edu. When k = dimT , if u ∈ Ak0(T ) then its
harmonic extension will have non-zero exterior derivative if u has non-zero
integral.

Proposition 2.24 The map E : ⊕TA•
0(T ) → A•(T ) is an isomorphism.

– Proof: The extension operator E : Ak0(T ) → Ak(T ) has the property
that for any u ∈ Ak0(T ) and any T ′ such that T 6⊆ T ′, (Eu)|T ′ = 0.

If now u ∈
L

T A
•
0(T ) is such that Eu = 0 one deduces that u|T = 0

starting from cells T of dimension k and inductively increasing dimension.
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Injectivity yields bijectivity by equality of dimension. �
Another extension operator defined for smooth differential forms was

used in the preprint of [22] to prove that compatible piecewise smooth
differential forms can be extended from the boundary of a simplex to its
interior, showing that the spaces of “all” compatible piecewise smooth dif-
ferential forms constitute a finite element system. An axiomatic treatment
of extension operators is given in [6]. It covers two notable other cases:
extension using the degrees of freedom of finite elements and extension
using Bernstein polynomials.

Such extension operators reduce the problem of constructing a basis
for the global space Ak(T ) to that of constructing bases for the local
spaces Ak0(T ). See for instance [57].

Notice furthermore that the construction of locally harmonic forms can
be applied recursively. Given a (fine) cellular complex T0 for which one
has a compatible finite element system (e.g. a simplicial complex), one
can assemble the cells into a coarser complex T1, whose cells can again be
assembled into a coarser complex T2 etc. At each stage one can construct
the space of locally harmonic forms on Tk+1 from the finite element system
provided by Tk. This provides nested spaces:

Λ•(Tk+1) ⊆ Λ•(Tk) ⊆ · · · ⊆ Λ•(T0),

which can be used for instance for preconditioning. See [51].

Constructions with finite element systems We now show that
the notion of finite element system we introduced behaves naturally with
respect to tensor products, that degrees of freedom can be readily defined
and that it can also be used to describe hp- finite elements.

Suppose we have two manifolds M and N , equipped with cellular
complexes T and U , and auxiliary spaces Ak(T ) for T ∈ T and Bk(U) for
U ∈ U subject to the above conditions on cohomology and restrictions.

Let T × U denote the product cellular complex, whose cells are of the
form T ×U for T ∈ T and U ∈ U . We equip T ×U with auxiliary spaces:

Z•(T × U) = A•(T )⊗B•(U).

Explicitly we put:

Zk(T × U) =
M
l

Al(T )⊗Bk−l(U),

where the tensorproduct is that of differential forms.

Proposition 2.25 Z• has the right cohomological properties on any prod-
uct cell.

– Proof: This follows from Theorem 2.5. �
We now prove in several steps that the restrictions to boundaries in

Z• is surjective, so that Z• fulfils the requirements to be a finite element
system.

Lemma 2.10 We have:

Z•
0 (T × U) = A•

0(T )⊗B•
0(U).
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– Proof: Let (ui)0≤i<m denote a basis of A•
0(T ) and extend it to a basis

(ui)0≤i<m′ of A•(T ). Similarly let (vj)0≤j<n denote a basis of B•
0(U) and

extend it to a basis (vj)0≤j<n′ of B•(U).
Now pick z ∈ Z•(T × U) and write it in the form:

z =
X

0≤i<m′

0≤j<n′

λij ui ⊗ vj ,

and suppose that z restricted to the boundary of T × U is 0.
Restricting z to ∂T × ∂U we get:X

m≤i<m′

n≤j<n′

λij ui|∂T ⊗ vj |∂U = 0.

But we remark that (ui|∂T )m≤i<m′ is linearly independent, as well as
(vj |∂U )n≤j<n′ . It follows that λij = 0 for m ≤ i < m′ and n ≤ j < n′.

Next one restricts z to ∂T × U and T × ∂U (both included in the
boundary of T ×U) and get by the same remark that λij = 0 for m ≤ i <
m′ and 0 ≤ j < n as well as for 0 ≤ i < m and n ≤ j < n′.

Thus we get:

z =
X

0≤i<m
0≤j<n

λij ui ⊗ vj ,

and we are done. �

Proposition 2.26 We have:

Z•(T × U) = A•(T )⊗B•(U).

– Proof: It is clear that:

A•(T )⊗B•(U) ⊆ Z•(T × U).

We prove that the spaces have the same dimension. By Remark 2.9 we
have:

dimZ•(T × U) ≤
P
TU dimZ•

0 (T × U),

≤
P
TU dim(A•

0(T )⊗B•
0(U)),

≤
P
TU dimA•

0(T ) dimB•
0(U),

≤
P
T dimA•

0(T )
P
U dimB•

0(U),

≤ dimA•(T ) dimB•(U).

Thus we get:

dimZ•(T × U) ≤ dim(A•(T )⊗B•(U)).

This completes the proof. �

Proposition 2.27 For any cell T ∈ T , U ∈ U , the restriction Z•(T ×
U) → Z•(∂(T × U)) is onto.

– Proof: Pick z ∈ Z•(∂(T × U)).
We have:

z|∂T×∂U ∈ Z•(∂T × ∂U) = A•(∂T )⊗B•(∂U).
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Such a form may therefore be extended from ∂T×∂U to T×U (by extend-
ing each component in the sum of tensorproducts it can be represented
by on ∂T × ∂U).

We are therefore left with the problem of extending a z ∈ Z•(∂(T×U))
such that z|∂T×∂U = 0.

We remark that we have a short exact sequence:

0 → A•
0(T ) → A•(T ) → A•(∂T ) → 0.

Taking the tensor products with B•(∂U) and using Proposition 2.26, we
get a short exact sequence:

0 → A•
0(T )⊗B•(∂U) → Z•(T × ∂U) → Z•(∂T × ∂U) → 0.

Similarly we have a short exact sequence:

0 → A•(∂T )⊗B•
0(U) → Z•(∂T × U) → Z•(∂T × ∂U) → 0.

Pick now z ∈ Z•(∂(T × U)) such that z|∂T×∂U = 0.
We have:

z|T×∂U ∈ A•
0(T )⊗B•(∂U).

Thus we can find z′ ∈ A•
0(T )⊗B•(U) such that z′|T×∂U = z|T×∂U .

Similarly we have:

z|∂T×U ∈ A•(∂T )⊗B•
0(U).

Hence we can find z′′ ∈ A•(T )⊗B•
0(U) such that z′′|∂T×U = z|∂T×U .

We then have:

(z′ + z′′)|T×∂U = z′|T×∂U = z|T×∂U ,

and similarly :

(z′ + z′′)|∂T×U = z′′|∂T×U = z|∂T×U ,

Since:
(T × ∂U) ∪ (∂T × U) = ∂(T × U),

the form z′ + z′′ is a suitable extension of z. �
Thus when A and B are compatible finite element systems, Z also.

There are now two ways of constructing a complex of spaces isomorphic
to C•(T × U): either construct first the spaces of locally harmonic forms
on M and N from A and B and then take the tensor product, or construct
the locally harmonic forms on M×N from Z. If the scalar product chosen
for each product cell T×U is the product of the scalar product of T and the
scalar product of U , then these two constructions yield the same spaces.
It suffices to check that the tensor product of two locally harmonic forms
is locally harmonic.

So far the only example of a finite element system we have considered
on a simplicial complex is the one provided by Whitney forms. One can
also construct high order Whitney forms by taking products with poly-
nomials [49] [38] [5]. Specifically, for a simplex T and integer p ≥ 1 let
Ak,p(T ) denote the space spanned by k-forms of the form uλT ′ where u
is a polynomial of degree at most p − 1, T ′ is a k-face of T and λT ′ the
associated Whitney form. As we noted in the preprint of [22] the wedge

product provides a map Ak,p(T ) × Ak
′,p′(T ) → Ak+k

′,p+p′(T ) (one says
that the wedge product respects the filtration) which is the reason for
letting the lowest order Whitney forms be indexed by p = 1 rather than
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p = 0 which was usual before. We also denote by Bk,p(T ) the space of
polynomial differential k-forms of degree at most p.

Suppose a simplicial complex is given as well as a polynomial degree
p. Each simplex is supposed to be oriented. That the system A•,p(·) for
given p constitutes a compatible finite element system follows immediately
from results proved for instance in [5]. Exactness is a theorem whereas
the extension property follows from the existence of degrees of freedom.
We will also use that the bilinear forms:

Ak,p0 (T )×Bn−k,p+k−n−1(T ) → R,
(u, v) 7→

R
u ∧ v.

are non-degenerate.
Consider p to be fixed and denote by Ak(T ) = Ak,p(T ) and Bl(T ) =

Bl,p−l−1(T ). Consider the map Φk which to a compatible differential
form u associates with each T ∈ T the linear form v 7→

R
T
u|T ∧ v on

BdimT−k(T ).

Proposition 2.28 Φk induces an isomorphism Ak(T ) →
L

T∈T B
dimT−k(T )?

– Proof: If Φku = 0 then u is zero on k-dimensional cells, therefore also
on (k+ 1)-dimensional cells, etc. using the above non-degeneracy at each
level. This gives injectivity. Moreover we have equality of dimension. �
The map Φk is said to associate with u its degrees of freedom. One also
says that Φk is unisolvent on Ak(T ).

To any compatible k-form u we can associate the unique v ∈ Ak(T )
such that Φkv = Φku. We define an interpolation operator Ik by Iku = v.

Proposition 2.29 Interpolation thus defined commutes with the exterior
derivative.

– Proof: Let u be a compatible k-form. Let T be an n-dimensional
simplex and v ∈ Bn−k−1(T ):Z

T

dIku ∧ v =

Z
∂T

Iku ∧ v ±
Z
T

Iku ∧ dv,

=

Z
∂T

u ∧ v ±
Z
T

u ∧ dv,

=

Z
T

du ∧ v,

=

Z
T

Ik+1du ∧ v.

The important properties are that dBn−k−1(T ) ⊆ Bn−k(T ) (notice that
polynomial degree decreases), and that Bn−k−1 is stable upon taking
traces. �

We see that the construction of an interpolator carries over whenever
we have a cellular complex equipped with a compatible finite element
system Ak(T ) together with spaces Bl(T ) forming a finite element system
such that:

• The form
R
· ∧ · is non degenerate on Ak0(T )×BdimT−k(T ).

Thus, in a mirror system, instead on focusing on cohomology and exten-
sion, we focus on duality. We call such a system of spaces a mirror system.
We also say that BdimT−k(T ) is a mirror for Ak0(T ).

Supposing we now have two manifolds M and M ′ and correspond-
ing cellular complexes T and T ′, suppose that for both we have a finite
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element system A and a mirror system B. Let A denote also the ten-
sor product finite element system and B the tensorproduct of the mirror
systems. That is for each product cell T × T ′:

B•(T × T ′) = B•(T )⊗B•(T ′)

Proposition 2.30 The tensor product of two mirror systems is a mirror
system.

– Proof: Let dimT = n and dimT ′ = n′. We have:

Ak0(T × T ′) =
M
l

Al0(T )⊗Ak−l0 (T ′).

On the other hand:

Bn+n′−k(T × T ′) =
M
l

Bn−l(T )⊗Bn
′−k+l(T ′).

Duality then follows from the formula:

(u⊗ u′) ∧ (v ⊗ v′) = ±(u ∧ v)⊗ (u′ ∧ v′),

where u and v are forms on T and u′ and v′ are forms on T ′, pulled back
to T × T ′. �

This provides degrees of freedom for high order Whitney forms on
products such as prisms and cubes, of possibly different degree in each
direction. Remark that the construction can be used for cellular complexes
whose cells are each a product of simplexes; the product need not be
global.

Finally we want to consider finite element systems corresponding to
the hp setting, where polynomial degree is allowed to vary throughout the
domain. We will require the following result:

Proposition 2.31 Suppose we have a cellular complex equipped with a
finite element system A having the extension property and the following
property on cohomology. For each T the following sequence is exact:

0 → A0
0(T ) → A1

0(A) → · · · → AdimT
0 (T ) → R → 0.

The second last arrow is integration. Then the finite element system is
compatible.

– Proof: Suppose the required cohomology property (that is, without
homogeneous boundary conditions) holds for all cells of dimension up
to l. Then, following the proof of Theorem 2.16, one checks that the
cohomology of A•(T ′) for subcomplexes T ′ of T of dimension at most l
is given by the corresponding cochain complex. Letting T be an (l + 1)
dimensional cell we remark that ∂T is such a subcomplex and we just do
a variant of the proof of Proposition 2.20. �

Suppose T is a cellular complex and that for each integer p in some
range, a compatible finite element system Ak,p(T ) has been chosen. We
suppose that Ak,p(T ) ⊆ Ak,p+1(T ). Choose now some function p : T → N
with the property that if T ′ ⊆ T then p(T ′) ≤ p(T ). Define:

Ak(T ) = {u ∈ Ak,p(T )(T ) : ∀T ′ ⊆ T u|T ′ ∈ Ak,p(T
′)(T ′).

Proposition 2.32 These spaces constitute a compatible finite element
system.
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– Proof: The surjectivity of restriction follows from the monotonicity
of p, whereas the cohomological requirement follows from the preceding
proposition using Ak0(T ) = A

k,p(T )
0 (T ). �

Now even if we have mirror-systems for each A•,p(·) this does not
give a mirror-system for the constructed A•(·). Choosing the mirror
BdimT−k(T ) for each Ak0(T ) given by p(T ) does not guarantee that the
restrictions map Bk(T ) to Bk(T ′) when T ′ ⊆ T , so the corresponding
interpolator does not commute with the exterior derivative. Instead we
shall introduce a generalization to any compatible finite element system
of the projection based interpolation described for instance in [34].

We suppose a scalar product a has been chosen for each Ωk(T ). This
is similar to the choice of scalar products on Ak(T ) we required for the
notion of local harmonicity. Let Ψk be the map which to any compatible
differential k-form u associates with each T ∈ T the two linear forms
a(u, ·) on dAk−1

0 (T ) and a(du, ·) on dAk0(T ) when k < dimT , and when
k = dimT , the linear form a(u, ·) on dAk−1

0 (T ) and the number
R
u (which

can be considered as a linear form on R). We let Bk(T ) be the space
dAk−1

0 (T )⊕dAk0(T ) in the first case and dAk−1
0 (T )⊕R in the second. For

k > dimT put Bk(T ) = 0. Thus, with the help of the scalar products, in
each case an element of Ωk(T ) gives a linear form on Bk(T ).

Proposition 2.33 Ψk induces an isomorphism Ak(T ) →
L

T∈T B
k(T )?.

– Proof: Injectivity follows from the uniqueness of Lemmas 2.7 and 2.8
applied in a recursive manner from cells of dimension k and upwards.
Then remark that we have equality of dimension by Propositions 2.15
and 2.20. �

As before we can deduce an interpolation operator Ik which to a k-
form u associates the unique v ∈ Ak(T ) such that Ψkv = Ψku.

Proposition 2.34 Interpolation thus defined commutes with the exterior
derivative.

– Proof: Remark that for any compatible k-form u, if Ψku = 0 then
Ψk+1du = 0. This is nothing but the property already used that locally
harmonic forms have locally harmonic exterior derivative, in addition to
Stokes theorem. From this remark the proposition follows. �

We remark furthermore that there is an obvious isomorphism⊕T∈T Ak0(T ) →
⊕T∈T Bk(T )? determined on each cell by the chosen scalar products. Com-
posing with the inverse of Ψk gives an isomorphism⊕T∈T Ak0(T ) → Ak(T ).
It is the map E of Proposition 2.24.

As scalar products one can use for instance the L2 product associated
with some Riemannian structure. In [35] fractional order Sobolev spaces
are also used. Working with arbitrary scalar products a allows also for
scalar products obtained by transport from reference cells.

Conclusion

We indicate some directions in which to pursue the present work.
We reviewed homological algebra and tensor products for real vec-

tor spaces rather than modules over an arbitrary ring, since this leads
to significant simplifications. However module theory might play a role
in future investigations on finite elements, letting the rings be those of
multivariate polynomials. This could shed light for instance on linear de-
pendence relations in the natural spanning sets for high order Whitney
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forms. This is of consequence to the choice of bases, for which there are
several suggestions [60] [39] [1] [37] [52] [6] .

Another interesting line of investigation is finite elements for elastic-
ity. Symmetric tensor fields have algebraic properties not covered by the
present study. The linear elasticity complex [4] is related to but different
from the De Rham complex.

Finally some non-linear wave equations such as the Yang-Mills and
Einstein equations also have a rich algebraic structure that should be
reflected in discretizations [28] [25] [26] [27] [23].
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