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Abstract 

Methylmercury (MeHg) is a potent neurotoxicant that remains a global concern. 

Selenium (Se) is an important micronutrient which is able to decrease MeHg toxicity, 

although the underlying mechanisms for this protection remain unclear. One hypothesis 

is that Se-mediated protection against MeHg toxicity occurs due to the function of Se 

containing proteins, termed selenoproteins. Many selenoproteins play key roles in 

maintaining both cellular and extracellular redox balance, and it is believed that via 

these roles, selenoproteins reduce MeHg-induced oxidative stress. A second hypothesis 

is that MeHg toxicity reduces the availability of Se for selenoprotein synthesis. 

Additional Se can thus be beneficial as it increases the availability of Se for 

selenoprotein production, reducing MeHg-induced disruption of the selenoproteome. 

These two hypotheses are linked, as they share a common theme suggesting that 

functional selenoproteins are key factors in reducing MeHg toxicity.  

The aim of this thesis was to explore how dietary Se reduces MeHg toxicity. As Se 

status affects MeHg toxicity, an initial study aimed to identify the Se requirements of 

zebrafish (Paper I). Juvenile zebrafish were fed diets with increasing levels of Se. The 

Se requirements were then assessed primarily from the response of growth and the 

mRNA expression and activity of a key Se-dependent protein, glutathione peroxidase 

(GPX). The second step of this thesis was to assess how changes in Se status affect 

MeHg induced toxicity both at the whole organism level (Paper II) and then at the 

molecular level, with a focus on the mRNA expression of selenoprotein coding genes 

(Paper III). To do this, female zebrafish were exposed to requirement (from Paper I) 

or elevated levels of dietary Se alone or in combination with elevated levels of dietary 

MeHg in a 2×2 factorial experimental design. These diets were fed to fish (F0 

generation) for a five month period, during which the fish were crossed against 

untreated male fish to produce a maternal transfer exposed F1 generation. The effects 

of these diets on growth, survival, element composition and reproductive outcomes 

were explored in the adult generation (Paper II). The F1 generation were analysed 

during the embryonic stage to examine the underlying mechanisms of the Se×MeHg 

interactions on the expression of selenoprotein coding genes during development 
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(Paper III). The 30 selenoprotein coding genes analysed cover most of the 

selenoprotein families; including several members of the gpx, thioredoxin reductase, 

iodothyronine deiodinase and methionine sulfoxide reductase families, along with 

selenophosphate synthetase 2, selenoprotein h, j-p, t, w, 15, fep15 and fam213aa. As 

functional selenoprotein levels determine the Se-mediated antioxidant response, and 

the primary site of MeHg toxicity is the central nervous system, the total GPX activity 

and locomotor activity were also analysed in the F1 generation.  

The Se requirements of zebrafish were found to be 0.3 mg Se/kg DM based on growth, 

similar to other fish species. Meanwhile, maximum GPX activity did not correspond 

to zebrafish Se requirements, a controversial finding (Paper I). Elevated dietary Se 

reduced MeHg-induced decreases in growth and survival of adult fish, as found 

previously for vertebrates. However, elevated Se and MeHg had a synergistic negative 

affect on reproductive outcomes, such as embryo survival (Paper II), a novel finding 

in fish. Analyses of the mRNA expressions of selenoprotein coding genes 

demonstrated that only a subset of these genes were affected by MeHg. The affected 

genes coded for selenoproteins primarily from antioxidant pathways, and were 

downregulated by elevated MeHg. Meanwhile, MeHg also decreased GPX activity and 

induced larval hypoactivity. Elevated Se prevented the MeHg-induced downregulation 

for most of the affected genes. However, elevated Se only partially prevented the 

MeHg-induced decreases in GPX activity and larval locomotor activity (Paper III). 

As MeHg primarily affected antioxidant selenoproteins, which are also affected by Se 

deficiency, the response of selenoproteins to Se deficiency were then analysed in 

zebrafish embryos from parents fed diets deficient or replete in Se (Thesis Supp. 

Material). Considerable overlap was observed between the antioxidant selenoprotein 

genes downregulated by Se deficiency and those downregulated by MeHg toxicity. 

Overall mRNA downregulation of antioxidant selenoprotein genes by both MeHg 

toxicity and Se deficiency were prevented by elevating the Se status, suggesting that 

MeHg regulates the selenotranscriptome mainly via Se status, and that Se deficiency is 

a factor in MeHg toxicity.  
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Background 

1.1 Methylmercury is an environmental contaminant of 
global concern 

Inorganic mercury (Hg) occurs ubiquitously and naturally in the environment. 

However, anthropogenic activities have increased both background levels of Hg in the 

biosphere, and created localised areas that are heavily contaminated with Hg (Driscoll 

et al., 2013). In anaerobic environments, such as those found in marine and fresh water 

sediments, Hg is methylated to methylmercury (MeHg) by sulphate and iron reducing 

bacteria (Driscoll et al., 2013). From this microbial starting point, MeHg readily 

bioaccumulates up the food chain (Fig. 1), with increased levels found at each trophic 

level (Driscoll et al., 2013). As such, all seafood contains some MeHg, while apex 

predators; such as marine mammals, sharks and swordfish; generally have the highest 

(>0.5 mg Hg/kg DM) MeHg levels (Wagemann et al., 1998; Mahaffey, 2004). 

Concern over MeHg originated chiefly from a tragic MeHg poisoning epidemic that 

occurred in the 1950’s, referred to as Minamata disease. This localised epidemic 

occurred in the seafood consuming human populations around Minamata bay, Japan 

(McAlpine and Araki, 1958). The bay was industrially contaminated with Hg, which 

resulted in seafood containing MeHg levels up to 170 fold higher than in 

uncontaminated areas (Hachiya, 2012). More recently, MeHg toxicity in seafood eating 

human populations as a consequence of localised Hg anthropogenic contamination 

events have been identified in Brazil (Berzas Nevado et al., 2010; Lemire et al., 2011; 

Fillion et al., 2013) and Sicily (Ausili et al., 2008) among others. Additionally, MeHg 

toxicity cases have been identified in the Faroe Islands, from consumption of naturally 

MeHg-contaminated whale meat (Rice, 2000; Murata et al., 2004).  

However, seafood also contains elevated levels of important nutrients, such as long 

chain polyunsaturated fatty acids (e.g. DHA and EPA), elements (e.g. selenium and 

iodine) and vitamins (e.g. A and D) that can have positive effects on health (Berry and 

Ralston, 2008; EFSA, 2014). The human population of Seychelles has an elevated 
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MeHg status due to high seafood consumption, but the beneficial nutrients in the 

seafood appear to negate any MeHg-induced toxic effects (Wijngaarden et al., 2012). 

In contrast, other findings suggest that the negative effects of MeHg may actually be 

more widespread than currently determined and include numerous seafood consuming 

human populations with more moderate MeHg intakes (Karagas et al., 2012). The 

uncertainty surrounding the MeHg toxicity threshold level in seafood has led to 

conflicting views regarding seafood safety and on the benefits of seafood consumption, 

in both the scientific and public arena (Mahaffey, 2004). Currently, Hg remains listed 

by the World Health Organisation (WHO) as one of the 10 chemicals of major public 

health concern (WHO, 2010). Recently, the European Food Safety Authority (EFSA) 

decreased its recommended tolerable weekly intake (TWI) levels for MeHg from 1.6 

to 1.3 µg Hg/kg body weight (EFSA, 2014).  

Figure 1. Methylmercury bioaccumulates in the food chain. Mercury is released into the 
environment from both natural sources, such as volcanoes, and human activities, such as mines 
and coal combustion. Once mobilized, anaerobic bacteria can methylate inorganic Hg into 
methylmercury. Methylmercury then bioaccumulates at each trophic level, in both fresh and 
salt water ecosystems. High methylmercury concentrations can be found in top end predators, 
such as large fish and marine mammals. Figure modified from 
http://groundtruthtrekking.org/Graphics/MercuryFoodChain.html. 

http://groundtruthtrekking.org/Graphics/MercuryFoodChain.html
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1.2 Uptake and distribution of methylmercury in the body 

The majority (>90%) of Hg present in fish is present as MeHg (Amlund et al., 2007; 

Lemes and Wang, 2009). In turn, the MeHg in fish is largely bound in a 1:1 ratio to 

thiol groups (R-SH) of mainly protein incorporated cysteine (Cys) residues, in a 

complex termed methylmercury-L-cysteinate (MeHg-Cys) (Harris et al., 2003; Lemes 

and Wang, 2009). This MeHg-Cys is transported into cells and across membranes by 

the L-Type amino acid transporters, LAT1 and LAT2 (Simmons-Willis et al., 2002), 

found throughout the body (Prasad et al., 1999; Rossier et al., 1999). It is thought that 

MeHg-Cys transport by the LAT’s occurs as MeHg-Cys structurally mimics another 

LAT substrate, methionine, but this mimicry hypothesis is controversial (Hoffmeyer et 

al., 2006; Asaduzzaman and Schreckenbach, 2011). Irrespectively, MeHg-Cys is 

efficiently (>95%) absorbed (Smith and Farris, 1996; Nobuhiro et al., 2012) in the 

intestine (Clarkson et al., 2007) and transported throughout the body; including across 

the placental (Suzuki et al., 1984) and blood brain barriers (Kerper et al., 1992) in a 

concentration dependent manner (reviewed by Newland et al. (2008)). 

1.3 Methylmercury toxicity targets the developing nervous 
system.  

With maternal intake of MeHg, the foetal brain accumulates higher concentrations of 

Hg than the maternal brain (Watanabe et al., 1999). During the Minamata tragedy, it 

became evident that the developing foetal central nervous systems (CNS) was 

particularly vulnerable to MeHg-induced toxicity, as severe impairment of 

neurological function was observed in infants born to mothers without symptoms 

(Harada, 1995). Subsequently, motor skill deficits, such as ataxia and loss of balance, 

sensory deficits such as reduced visual sensitivity, and overall reductions in IQ, have 

been reported in human infants exposed to MeHg by maternal transfer (Mahaffey, 

2004; Farina et al., 2011; Sheehan et al., 2014). Many aspects of MeHg-induced 

neurological damage during foetal development are irreversible and thus persist into 

adulthood (Mahaffey, 2004; Johansson et al., 2007; Weber et al., 2008; Smith et al., 

2010). 
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Adult exposure to MeHg can also disrupt the CNS, but the primary target of chronic 

MeHg exposure appears to be the cardiovascular system (Karagas et al., 2012). Low 

level chronic exposure to MeHg has been associated with increased risk of myocardial 

infarction and mortality from cardiovascular disease (Karagas et al., 2012). 

Furthermore, a latency period can occur between the time of exposure until symptoms 

arise; termed late onset symptoms. For instance,  three decades of aging in Minamata 

disease patients after MeHg exposure resulted in additional CNS related symptoms 

(Kinjo et al., 1993).  

1.4 The biological interactions underlying methylmercury 
toxicity.  

1.4.1   Methylmercury-induced disruption of proteins and small 
molecular weight compounds. 

At the chemical level, the toxicity of MeHg occurs primarily because of its tendency 

to form covalent bonds with sulphur (S; MeHg-S) and Se (MeHg-Se), via the Hg atom 

(Nuttall, 1987; Dyrssen and Wedborg, 1991; Asaduzzaman and Schreckenbach, 2011). 

The biological ramifications of this are that both S and Se are critical components in 

biological systems. In particular, S is found in the thiol group of Cys, and Se in the 

selenol group of selenocysteine (Sec; amino acid symbol “U”), both of which are 

proteinogenic amino acids. With a single exception, protein incorporated Sec is always 

found at the active site of Se dependent proteins, termed selenoproteins (Papp et al., 

2007). Cysteine is also found at enzyme active sites, but additionally is critical in 

exposed side chains that undergo post translational modifications that affect protein 

activity or function (Barford, 2004; Papp et al., 2007). Furthermore, Cys is the 

functional component of all the major cellular redox couples; glutathione/glutathione 

disulphide (2GSH/GSSG), Cys/Cystine (2Cys/CySS) and reduced/oxidised 

thioredoxin (Trx(SH)2/TrxSS); and thus essential for the maintenance of redox balance 

in cells (Hussey et al., 2009). The subsequent binding of these critical Cys/Sec residues 

with MeHg can impair the functions of proteins and small molecular weight 

compounds ((Fig. 2A-B), reviewed by Farina et al. (2012)). Functionally critical 
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proteinogenic Cys (or Sec) residues are often the most exposed and reactive 

(Weerapana et al., 2010) which may further exaggerate their susceptibility to MeHg 

binding.  

Figure 2. Mechanisms of MeHg-induced protein disruption. MeHg (-HgCH3) can disrupt (red 
pathways) the cellular environment by (A) direct binding to thiol or selenol groups at the active site of 
proteins, herein depicted as MeHg preventing GPX1 from reducing a reactive oxygen species (ROS; 
coloured blue) H202 to water; (B) direct binding to thiol groups important for post translational 
modification of proteins, herein depicted as MeHg preventing a disulfide bond between two thiol groups 
critical for correct protein structure and function; or (C) indirectly via disruption of downstream 
pathways, herein depicted as MeHg-induced increases in ROS (via direct antioxidant enzyme inhibition) 
resulting in the oxidation of an enzyme active site thiol group sulfur to sulfinic acid, (an irreversible 
modification for certain enzymes (Rhee et al., 2005)). The examples provided serve to illustrate potential 
direct and indirect MeHg-induced disruption of protein function and are in no way exhaustive.  
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- SeHGPX1- Se-HgCH3GPX1
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In addition to direct binding to primary targets at thiol and selenol groups, or to their 

biological intermediates, MeHg may also induce secondary effects, whereby pathways 

relying on these primary targets are themselves disrupted (reviewed by Farina et al. 

(2012)). For instance, the function and activities of many proteins are regulated by the 

cellular redox balance (Barford, 2004). Reduced function of primary targets in 

antioxidant pathways by MeHg can increase cellular levels of reactive oxygen/nitrogen 

species (ROS/RNS) and shift cellular redox potentials, disrupting redox sensitive 

proteins and pathways that may not be affected directly by MeHg binding (Fig. 2C) 

(Farina et al., 2012). In neural cells, MeHg appears to induce a similar cascade effect 

which starts with MeHg binding and disrupting proteins involved in cellular calcium 

homeostasis, which then leads to disruption of calcium dependent pathways (Farina et 

al., 2012).    

The final consequence of MeHg-S or Se binding can be impaired cellular function and 

cell death. Consistent with the MeHg induced neurological symptoms, MeHg toxicity 

can result in brain lesions, and several types of neural cells appear particularly sensitive 

to MeHg-induced apoptosis (Chang, 1977; Kaur et al., 2012).      

1.4.2  Factors affecting the interactions between selenium, 
sulfur and methylmercury in biological systems.  

Mercury will form Hg-Se in preference to Hg-S bonds in simple chemical solutions 

(Dyrssen and Wedborg, 1991). Correspondingly, MeHg has a tendency to form MeHg-

Se-R in preference to MeHg-S-R bonds in biochemical solutions (Sugiura et al., 1978). 

Additionally, MeHg forms a promiscuous covalent bond that it will readily break to 

form a new bond with lower entropy, which favours S bound MeHg redistributing to 

Se (Sugiura et al., 1978; Asaduzzaman and Schreckenbach, 2011). The higher affinity 

of MeHg for Se than for S, coupled with the functional use of Se at enzyme active sites, 

are key reasons why selenoproteins appear particularly vulnerable to MeHg induced 

disruption (Farina et al., 2012). 
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However, despite the dominance of MeHg-Se bonds compared to MeHg-S bonds in 

chemical solutions, several other factors must be considered to explain the interactions 

between MeHg, S and Se in biological systems. For one, there is an equilibrium 

between the ratios of protonated thiol/selenol (R-SH or R-SeH) versus the deprotonated 

thiolate/selenoate (R-S- or R-Se-) forms in Cys or Sec, respectively. This equilibrium 

is dictated largely by the cellular pH, which increases the ratio of protonated to 

deprotonated Cys and Sec residues as it decreases. The pH at which half the S/Se atoms 

are protonated (pKa) is ≈ 8.3 for Cys and ≈ 5.2 for Sec (Huber and Criddle, 1967). Thus 

at physiological pH of around 7.0, the equilibrium favours the Se of Sec being in the 

exposed R-Se- form and susceptible to MeHg binding, while the S of Cys is more likely 

to be in the more protected protonated R-SH form.  

Interestingly, it appears that in biological systems the pKa of thiol/selenol groups is a 

larger factor determining the probability of their binding to MeHg than the presence of 

Se or S per se. For instance, even among two proteins containing exposed Cys residues, 

one can be preferentially targeted by MeHg (Farina et al., 2012). The pKa value of a 

protein incorporated amino acid residue side chain is affected by its neighbouring 

residues (Gilbert, 1990), and hence so is the exposure of the S/Se atom of Cys/Sec 

residue to MeHg. For instance, MeHg severely decreases the activity of the non-

selenoprotein creatine kinase (Glaser et al., 2010). This probably occurs as a result of 

the high affinity of MeHg for the Cys thiol group at the active site that has a pKa of 5.4 

(Wang et al., 2006). It is reasonable to assume that along with its physical accessibility 

to MeHg, the pKa’s of Se in Sec residues also differ between selenoproteins, affecting 

their susceptibility to MeHg binding. 

Another factor influencing MeHg bonding in the cellular environment is the 

overwhelming molar dominance of S over Se. For instance, fish tissue contains around 

7 g of S and 1 mg of Se/kg DM, a ratio of 7000:1 (Waagbø et al., 2001). More 

specifically, nutritionally replete mammals have around 0.25 µg Se/g in Sec (3.2 × 10-

6 molar Se) (Hill et al., 2012) and 260 µg S/g in Cys (8.3 × 10-3 molar S) (Wu et al., 

1999) on a wet weight basis, a 2500 fold S:Se ratio. This ratio is consistent with the 

small number of selenoproteins, for example 25 in humans (Kryukov et al., 2003), 
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versus the ubiquitous presence of Cys throughout much of the proteome. The S:Se ratio 

may explain why despite the higher affinity of the MeHg-Se bond, MeHg is largely 

found bound to Cys (for example as MeHg-Cys in fish tissue, discussed in Section 1.2) 

and MeHg-induced disruptions at the cellular level appear to largely originate from 

MeHg-S bonding (Yang et al., 2007; Cuello et al., 2012; Farina et al., 2012; Ho et al., 

2013; Zayas et al., 2014). 

The above discussion regarding MeHg binding to amino acid side groups is based 

primarily on evidence from studies on MeHg-Cys, and inferred for MeHg-Sec. While 

MeHg will directly inhibit selenoprotein function, and thus presumably directly bind 

Sec within proteins (Hirota et al., 1980), MeHg can also bind a biological intermediate 

of Se metabolism/Sec synthesis, H2Se (Iwata et al., 1982; Masukawa et al., 1982). It 

remains unknown what Se species, such as proteinogenic Sec residues, or biological 

intermediates such as H2Se, are the cellular Se species most susceptible to MeHg 

binding. Irrespective of this, once bound by MeHg, Se is presumed to have entered the 

biologically unavailable Se pool (Ralston et al., 2012).  

1.4.3  Selenium’s antagonism of methylmercury toxicity. 

Paradoxically, it is well documented that Se has a protective effect against MeHg 

toxicity. This effect was first reported in the early 1970’s when it was found that both 

inorganic Se and Se naturally present in food (Se found in tuna) protected against 

MeHg-induced decreased growth and increase mortality (Ganther et al., 1972). 

However, the underlying mechanism/s for the Se-mediated protection against MeHg 

toxicity still remain unclear. There are currently two main hypotheses. Hypothesis 1) 

is that selenoproteins help to prevent oxidative stress induced when MeHg directly 

disrupts many key proteins involved in cellular redox system pathways (Fig. 3A). For 

example, glutathione peroxidases (GPX) are key antioxidant selenoproteins, and 

overexpression of GPX1 in vitro provides protection against MeHg induced oxidative 

stress (Farina et al., 2009). Hypothesis 2) is that MeHg induces a cellular Se deficiency 

by binding Se, and this Se deficiency targets selenoproteins (Fig. 3B). As such MeHg 

toxicity pathologies have been suggested to actually be Se deficiency pathologies  
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Figure 3. The proposed mechanisms for the biological interactions of selenium (Se) and 
methylmercury (MeHg). Elevated Se status may help to prevent MeHg-induced toxicity via two 
main mechanisms. The first (A) is by the function of selenoproteins in antioxidant and/or redox 
pathways. These selenoproteins help to counteract the MeHg-induced increases in reactive oxygen 
species (ROS) and disruption to cellular redox balance, which can occur via direct binding of 
MeHg to redox proteins (solid red arrow) or indirectly via the disruption of pathways requiring 
MeHg bound proteins (segmented red arrow). Many selenoproteins are induced by oxidative 
stress, and additional Se enables an increased capacity for selenoprotein translation under 
oxidative conditions. The second (B) mechanism is that elevated Se status helps to maintain 
bioavailable levels of cellular Se, which in turn helps to maintain the functional selenoproteome, 
in the face of direct binding of Se in non-bioavailable complexes (either as intermediates of Se 
metabolism (R-Se-HgCH3), or direct binding to Se in selenoproteins) by MeHg. A specific 
example of the general concept of MeHg inhibiting the function of a selenoprotein (B) is found in 
Fig 2A. See Table 1 for full selenoprotein names.        
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(Ralston et al., 2008). In agreement, GPX activity is negatively affected by either Se 

deficiency or MeHg toxicity, and in both cases additional Se supplementation restores 

activity (Chang and Suber, 1982; Weiss et al., 1996). The two hypotheses are not 

conflicting, and also have a common theme, in that functional selenoproteins are 

required to result in the protective effect of Se against MeHg toxicity. 

1.5 Selenium as an essential nutrient. 

Selenium was first reported as an essential trace element in the late 1950’s (Schwarz 

and Foltz, 1957), and as an essential component of what became the first known 

selenoprotein, GPX1, two decades later (Flohe et al., 1973; Rotruck et al., 1973). At 

the time, GPX activity was already known to be an important part of the cellular 

antioxidant system (Mills, 1957; Cohen and Hochstein, 1963), and the link between Se 

and the prevention of disease associated with oxidative stress became clear (Hafeman 

et al., 1974). Among others, the discovery of phospholipid hydroperoxidase (GPX4) 

(Ursini et al., 1985), iodothyronine deiodinase 1 (DIO1) (Berry et al., 1991a), 

selenoprotein W (SEPW) (Vendeland et al., 1993) and thioredoxin reductase 1 

(TXNRD1) (Gladyshev et al., 1996; Tamura and Stadtman, 1996) linked Se nutrition 

to such areas as male fertility (GPX4), thyroid hormone metabolism (DIO1), muscular 

pathology (SEPW) and cellular redox signalling (TXNRD1).  

In livestock, severe Se deficiency can result in necrotic liver damage, muscular 

dystrophy, exudative diathesis and increase mortality among others, and symptoms are 

often exaggerated in tandem with Vitamin E deficiency (Combs and Combs, 1986b). 

In humans, severe Se deficiency is rare. However, low Se status is common in Eastern 

Europe and areas of China among others, and is associated with increased risk of 

mortality, poor immune function and cognitive decline (Rayman, 2012). Clinical Se 

supplementation trials have demonstrated that the optimal Se status differs greatly 

depending on the outcomes measured. For instance the window for Se status that is 

associated with a decrease risk of some cancers is higher than that to fulfil maximum 

selenoprotein expression, but also extends into the window associated with an 

increased risk of type-II diabetes (Rayman, 2012). Added to this the overall window of 
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optimal Se status is small, and Se supplementation is only associated with benefits for 

the population with a Se status below this window. Ironically, individuals with an 

optimal Se status before supplementation can become  more at risk of certain diseases 

with supplementation (Rayman, 2012). Currently, the recommended dietary Se intakes 

differ between authority bodies, but range from 40 to 85 µg/day for men and 30 to 70 

µg/day for women, and are based around Se levels which result in maximum blood 

plasma GPX (GPX3) activity (Thomson, 2004).        

Total Se concentrations in plant derived foods are largely dictated by the levels of plant 

bioavailable Se found in the soil (Combs and Combs, 1986a). Typical plant based foods 

have between 0 and 0.8 mg Se/kg (Rayman, 2012). Animal based foods are generally 

higher in Se than plant based foods. Organ meats and seafood generally have the 

highest Se levels that typically range between 0.4 and 1.5 mg/kg (Combs and Combs, 

1986b; Rayman, 2012). Food Se is found in a multitude of chemical species (Dumont 

et al., 2006). Inorganic Se species, including selenite (SeO32-) and selenate (SeO42-), 

are commonly used in dietary supplements and experimental diets, and are the 

predominate Se species found in soil and water (Combs and Combs, 1986b). Organic 

Se species, such as the protein-incorporated amino acid selenomethionine (SeMet), 

predominate in the natural food chain (Dumont et al., 2006) and in commercially 

produced Se-enriched yeast (Se-yeast)(Polatajko et al., 2006). Both inorganic and 

organic Se sources can be utilised for de novo synthesis of Sec, and hence selenoprotein 

synthesis (Papp et al., 2007).  

The relatively high levels of Se in seafood has been suggested to play a major role in 

negating toxic effects from the MeHg also found in seafood. As such, it has been 

suggested that seafood MeHg concentrations should be considered in context with their 

ratio to Se levels. This is because lower seafood Se:MeHg ratios, such as those found 

in many apex predators such as sharks, may provide a better indicator of the increased 

likelihood of MeHg-induced toxic effects than MeHg levels alone (Berry and Ralston, 

2008). 
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1.6 Vertebrate selenogenomes 

As for terminology, selenogenes are genes coding for selenoproteins, while the 

selenoproteome/selenotranscriptome/selenogenome are the complete sets of 

selenoproteins/expressed selenogenes/selenogenes of an organism. With the rise of 

bioinformatics the first genome wide analyses for selenogenes were performed, 

whereby it was determined that humans contain 25 selenogenes, while rats and mice 

have 24 (Kryukov et al., 2003) and zebrafish 38 (Mariotti et al., 2012). The higher 

number of selenogenes found in zebrafish is mainly the result of a whole genome 

duplication event in a common ancestor of bony fish, after the split from the lineage 

that led to amphibians, reptiles, birds and mammals (Amores et al., 1998; Meyer and 

Schartl, 1999). Subsequently, the main difference between humans and zebrafish is that 

several genes found as single copies in humans (7 out of 25 selenogenes) are found as 

two copies (paralogs) in zebrafish (i.e. gpx1a and gpx1b; For complete list see 

selenoproteins marked with ** in Table 1). However, the majority (15 out of 25 

selenogenes; Table 1) of selenogenes in humans are also found as single copies in 

zebrafish (Mariotti et al., 2012).  

Currently, selenoproteins can be classified into six functional groups; antioxidant, 

redox signalling, thyroid hormone metabolism, Sec synthesis, Se transport/storage or 

protein folding (Papp et al., 2007). However, in silico knowledge of the 

selenotranscriptome far exceeds that of functional studies on the selenoproteome, and 

around half (11 out of 25) of the human selenoproteins remain largely uncharacterised 

(Table 1). Table 1 lists the primary, or putated, function of vertebrate selenoproteins.  

Table 1. Gene abbreviations, names and function of selenoproteins. Underlined selenoproteins 
were not investigated in this thesis. Modified from Paper III. 
Abbr.* Name  Primary function and cellular location*** Mutant/knockout*** 
DIO1 Iodothyronine 

deiodinase 
Thyroid hormone metabolism, located in 
plasma membrane 

DIO1-/- develop normally 
(Moghadaszadeh and Beggs, 
2006). 

DIO2 As above, located in ER membrane DIO2-/- are viable, but have 
disrupted energy metabolism 
(Marsili et al., 2011). 

DIO3** As above, located in plasma membrane 
(Moghadaszadeh and Beggs, 2006) 

ND 
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EPT1 Ethanolaminephospho-
transferase (aka SELI) 

Phospholipid synthesis (??), cytosolic 
(Horibata and Hirabayashi, 2007) 

ND 

FEP15 Fish sep15-like protein  Fish specific, unknown function. 
Localised in ER and Golgi (Novoselov et 
al., 2006) 

ND 

GPX1** Glutathione peroxidase Reduces H202, cytosolic. GPX1-/- develop normally 
(Moghadaszadeh and Beggs, 
2006)  

GPX2 As above, but highly expressed in 
gastrointestinal tract 

GPX2-/- develop normally 
(Moghadaszadeh and Beggs, 
2006) 

GPX3** As above, but localised to most 
extracellular fluids 

GPX3-/- develop normally in 
both mice and zebrafish 
(Olson et al., 2010; 
Kettleborough et al., 2013).  

GPX4** Reduces H202 and phospholipid 
hydroperoxides, associated with cell and 
organelle membranes, also cytosolic. 
Specific splice variant (Pfeifer et al., 
2001) essential structural component of 
sperm (Ursini et al., 1999) 

GPX4-/- is embryonic lethal 
(Moghadaszadeh and Beggs, 
2006) 

MSRB1** Methionine sulfoxide 
reductase B1 

Reduces oxidised methionine and may 
play a role in redox status. Localised in 
the cytosol and nucleus  

MSRB1-/- are viable, but have 
elevated oxidative stress 
(Fomenko et al., 2009) 

SPS2 Selenophosphate 
synthetase 2 

Catalyses step in Sec biosynthesis, 
cytosolic (Moghadaszadeh and Beggs, 
2006) 

ND 

SELH Selenoprotein H Antioxidant (??), localised to the nucleoli 
(Novoselov et al., 2007) 

SELH-/- is embryonic lethal 
in zebrafish (Amsterdam et 
al., 2004). 

SELJ J Fish specific, eye structural protein (??), 
localisation unknown (Castellano et al., 
2005) 

ND 

SELK K Chaperone like function in a pathway 
degrading misfolded proteins (??), and/or 
Ca2+ homeostasis in immune cells (??). 
Localised to ER (Shchedrina et al., 2011) 

SELK-/- are viable, but are 
immunocompromised  
(Saguna et al., 2011). 

SELL L Fish specific, antioxidant (??), cytosolic 
(Shchedrina et al., 2007)  

ND 

SELM M Unknown function, localised to the ER 
and Golgi. 

SELM-/- are viable, but have 
disrupted energy metabolism 
(Pitts et al., 2013) 

SEPN N Function unclear, but critical for muscle 
development. Localised to the ER 
membrane. 

SEPN-/- in humans is not 
embryonic lethal, but patients 
exhibit congenital muscular 
dystrophy (Petit et al., 2003) 

SELO O Kinase (??), unknown localisation 
(Dudkiewicz et al., 2012). 

ND 

SEPP1** P1 Primary Se transport protein, extra and 
intracellular. 

SEPP1-/- viable when fed a 
high Se diet (Moghadaszadeh 
and Beggs, 2006). 

SELT** T (fish; T1) Cellular Ca2+ homeostasis (??). Localised 
to the ER, Golgi and cytosol (Grumolato 
et al., 2008). 

ND 

SEPW W (fish; W1) Cytosolic antioxidant (Whanger, 2009) ND 
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SEP15 15 Protein folding (??). Localised in the ER. SEP15-/- are viable, but have 
elevated cataract levels 
(Kasaikina et al., 2011) 

TXNRD1 Thioredoxin reductase Reduces thioredoxin, cytosolic. TXNRD1-/- is embryonic 
lethal (Moghadaszadeh and 
Beggs, 2006) 

TXNRD2 As above, mitochondrial. Not found in 
fish 

TXNRD2-/- is embryonic 
lethal (Moghadaszadeh and 
Beggs, 2006) 

TXNRD3 As above, mainly expressed in testes 
(Arnér, 2009). 

ND 

VIMP VCP- interacting 
membrane protein (aka 
SELS) 

Protein degradation pathway (??), located 
in the ER (Christensen et al., 2012) 

ND 

* Several largely uncharacterised selenoproteins are not present in the table. These are the
fish specific selenoproteins SELO2, SEPW2a, SEPW2b, FAM213aa (aka 
SELU1a), FAM213ab (aka SELU1c) and SELT2, and the placental mammal specific 
selenoproteins GPX6 and SELV. 
** These selenogenes are found as paralogs (a and b) in zebrafish (Mariotti et al., 2012). 
However the characterisation of the individual paralogs are largely unknown, and functions 
and cellular locations of the single mammalian ortholog are provided. 
*** For mice/rats unless otherwise stated. 
Abbr, abbreviation; ER, endoplasmic reticulum; ??, indicates function suggested by 
homology and/or in vitro experiments, but further characterisation is required to confirm.  

1.7 Zebrafish as a model for studying selenoproteins 

Overall, zebrafish have copies of all but three of the known non-piscine vertebrate 

selenogenes; txnrd2 (aka TG), gpx6 and selv (Mariotti et al., 2012). Combined with 

other features of zebrafish, such as the short generation time, genetic traceability and 

transparent embryos that allow the study of early vertebrate development (Kahn, 1994), 

the zebrafish is an exciting model for investigating selenoproteins at an organism level 

in vertebrates. 

Being fish, zebrafish have several major differences to mammals that are important to 

be aware of when they are used as a model to explore selenoproteins. The first is that 

unlike mammals, fish can obtain Se directly from water over their gills (Hodson and 

Hilton, 1983), and hence have multiple exposure routes to Se. The second is that 

maternal transfer of nutrients in fish occurs for a short period, development occurs after 

maternal nutrient transfer is complete and among others the major protein transferred 

to oocytes is vitellogenin (Bobe and Labbé, 2010), conditions of which all are absent 



25 

in non-monotreme mammals. The third is that unlike common rodent models, the 

nutrient requirements of zebrafish remain largely unknown. As such there is currently 

no standard diet for zebrafish, and unknown nutrient effects may confound results 

within the zebrafish research field (Penglase et al., 2012).        

1.8 Selenoprotein synthesis 

The mRNA of selenogenes have several distinct features, a) the presence of a UGA 

stop codon/s within the open reading frame, and b) a specific stem-loop structure in the 

3’ untranslated region termed the SECIS element (Sec insertion sequence)(Fig. 4). 

Normally, UGA codons within the open reading frame (premature stop codons) are 

detected and the mRNAs are rapidly degraded by nonsense-mediated decay (NMD), a 

pathway that minimises the translation of truncated proteins (Rebbapragada and 

Lykke-Andersen, 2009). However in the selenotranscriptome, NMD is utilised as a 

regulatory mechanism in response to Se availability. Under Se replete conditions, the 

premature stop codon/s of selenogenes are recoded to Sec during translation by means 

of a protein complex recruited to the SECIS element (Berry et al., 1991b; Papp et al., 

2007). Meanwhile, under Se deficient conditions, it is thought that the recruitment of 

this protein complex is disrupted, and the within frame UGA codon in the mRNA of a 

subset of selenogenes is identified as a stop codon and the mRNA enters the NMD 

pathway (Moriarty et al., 1998). As a result, Se status strongly affects the 

selenotranscriptome and ultimately the selenoproteome. Suboptimal dietary Se levels 

result in decreased mRNA and protein levels primarily of antioxidant selenoproteins 

(Sunde and Raines, 2011) and this targeted effect may be because of functional 

redundancy with non-Se dependent antioxidant proteins (Wirth et al., 2010). Overall 

this effect is referred to as the selenoprotein hierarchy (Brigelius-Flohé, 1999), and is 

thought to allow Se to be preferentially allocated to selenoproteins that are more critical 

for cell survival when Se supply is limited (Schweizer et al., 2004). 

Compared to the tight regulatory control of Sec during protein translation, SeMet is not 

distinguished from methionine by tRNA, and as such is substituted as methionine into 
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Figure 4. Unique features of selenogene mRNA’s. The mRNA of selenogenes have several unique 
features (coloured red in (A)) that are essential for the insertion of selenocysteine (Sec) residue/s during 
protein translation. The first is a premature stop codon (nucleotide sequence UGA) which is present 
within the translated region of the mRNA (open black box), and the second is a stem loop structure in the 
3’ untranslated region of the mRNA termed the Sec insertion sequence (SECIS element). Variations on 
this them exist, as for instance sepp1 mRNA contains two SECIS elements, and multiple premature stop 
codons. During translation (B), a protein complex containing Sec tRNA that is recruited to the SECIS 
element interacts with the ribosome allowing Sec to be incorporated into the nascent protein chain, 
effectively retranslating the premature stop codon as a Sec codon. Figure (B) is based on the mammalian 
model and adapted from (Papp et al., 2007), and additional components required for mRNA translation 
in general are omitted for simplicity. Abbreviations; SECISBP2, SECIS binding protein 2; RPL30, 
Ribosomal protein L30; EEFSEC, Eukaryotic elongation factor, Sec-tRNA-specific. 
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proteins in a concentration-dependent manner (Waschulewski and Sunde, 1988). Thus 

all proteins with methionine residues may contain Se, but only those where Sec is 

genetically coded for are classed as selenoproteins.   

Selenoprotein synthesis is metabolically costly, relatively slow and relies on a supply 

of an additional nutrient (Se) (Papp et al., 2007). Thus, the evolutionary retention of 

selenogenes implies that Sec, which is nearly always a functional residue at the active 

site of selenoproteins, confers a unique catalytic advantage. In agreement, compared to 

Cys, its closest analogue, Sec appears to increase protein stability (Nauser et al., 2014), 

and allow enzyme activity to occur over a wider range of physiological conditions, 

including changes in pH (Gromer et al., 2003) and at elevated levels of H2O2 (Rocher 

et al., 1992). Additionally, Sec can often, but not always, result in higher catalytic rates 

than Cys containing protein isoforms. For example GPXSec → GPXCys (GPX where the 

Sec is replaced by Cys) decreases activity by 1000 fold (Rocher et al., 1992), while 

TXNRD1Sec and TXNRD1Cys isoforms can have similar activity levels (Gromer et al., 

2003). Overall, the benefit of using Sec is probably different between selenoproteins 

(Nauser et al., 2014), and may include additional unidentified factors.  

1.9 Selenium toxicity targets the embryonic and larval 

stages in fish 

The toxicity of Se was known well before its essentiality. For example, in the early 20th 

century, Se-induced toxicity from elevated Se levels that accumulated in plants 

growing on selenifourous soils was found to be the cause of the disease “blind staggers” 

in livestock (Combs and Combs, 1986b). Selenium-induced toxicity appears to be 

mediated predominately by Se-induced oxidative stress (Spallholz, 1994). Metabolism 

of small Se containing compounds, including both inorganic (e.g. selenite) and organic 

species (e.g. SeMet) in the presence of GSH produces ROS such as superoxide (O2-) 

and/or hydrogen peroxide (H2O2) in a concentration dependent manner (Spallholz, 

1994). With elevated Se intake, the cellular antioxidant system is overwhelmed by Se-

metabolism induced increases in ROS, leading to oxidative stress. Oxidative stress 
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from the metabolism of Se species is proposed to account for the cell cycle arrest and 

apoptosis that accounts for both the toxicity and carcinostatic properties of Se 

(Spallholz, 1994; Spallholz et al., 2004). 

The embryonic and larval stages of oviparous species; which includes fish, amphibians, 

reptiles and birds; appear particularly vulnerable to Se toxicity (Janz et al., 2010). For 

instance, adult fish in Se contaminated water sources may be unaffected while at the 

same time larval fish can have Se-induced increased rates of deformities and mortality 

(Lemly, 1997). This difference appears to be because embryonic and larval stages in 

fish rely heavily on amino acids as an energy source compared to later stages (Kamler, 

2008; Conceição et al., 2011), which inevitably results in oxidative stress via SeMet 

catabolism (Fig. 5; (Palace et al., 2004)). Coupled with this, early life stages are more 

sensitive to disturbances in cellular redox balance (Ufer and Wang, 2011), and thus 

more sensitive to Se-mediated oxidative stress in general.  

Fig. 5. See figure caption on next page 
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Figure 5 (previous page). A proposed mechanism of reactive oxygen specie (ROS) generation 
when selenomethionine is catabolised by the methioninase enzyme in hepatocytes. Methioninase 
cleaves selenomethionine into several products including methylselenol. The subsequent redox 
cycling of methylselenol oxidises glutathione (GSH) to glutathione disulfide (GSSG), which can 
reduce the levels of GSH, an important molecule for maintaining cellular redox balance. At the same 
time oxygen (O2) is reduced to the superoxide free radical (O2•-). The combination of decreased 
protection against ROS (reduced GSH levels) and the concomitant increase in ROS generated (O2•-) 
is thought to be particularly harmful during a critical window in embryogenesis just after 
organogenesis of the liver. In this critical window the liver has methioninase, but not superoxide 
dismutase, activity. Henceforth, O2•- levels increase dramatically as they cannot enter the antioxidant 
chain and oxidative stress occurs. The critical period determined in trout (Oncorhynchus mykiss) was 
around 29 days post fertilisation at 8° C (Palace et al., 2004). A similar development stage occurs 
around 42 hours post fertilisation at 28.5° in zebrafish (Kimmel et al., 1995). Adapted from Palace 
et al. (2004) with permission. 
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Study aims 

The primary aim of this study was to explore how Se and MeHg interact at both the 

organism and molecular level using zebrafish as the model. Specifically we aimed to 

assess the interactive effects of Se and MeHg on reproduction, and then on selenogene 

mRNA expression during development. There were three steps to complete these aims; 

1. Identify key molecular responses to Se status and the Se requirements of

zebrafish (Paper I).

Selenium status affects many cellular process and is a factor in MeHg toxicity 

(Ralston et al., 2012).  Therefore, uncontrolled differences in Se status may 

affect outcomes when exploring MeHg toxicity, which is preventable by 

including Se as a controlled variable. We therefore had to determine the Se 

requirements of zebrafish before exploring Se×MeHg interactions in the 

following steps. 

2. Determine the interactive effects of Se and MeHg on vertebrate reproductive

outcomes (Paper II).

Reproduction is affected by either Se or MeHg toxicity, but little is known about 

how Se and MeHg interact to affect reproduction. The control diet level of Se 

in this step would be based on the Se requirements determined in Paper I, to 

prevent any tandem cellular effects of a deficient or toxic Se status. This 

experiment was also required to obtain a maternally exposed F1 generation for 

the next step. 

3. Use the F1 generation generated at step (2) to identify selenogenes that are

affected by the interactive effects of Se and MeHg during development (Paper

III).

The main concern of MeHg-induced impacts in humans are those caused by 

maternal transfer of MeHg during foetal development, a scenario modelled in 

Paper III by using the maternally exposed F1 generation of zebrafish. Several 
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selenoproteins are molecular targets of MeHg, while Se can protect against 

MeHg toxicity. However, the effect of MeHg has only been investigated on a 

small number of selenoproteins. Thus, a more comprehensive overview of the 

Se×MeHg interactions on the selenotranscriptome is needed. Thus, in Paper III 

we investigated 30 out of the putative 38 selenogenes in zebrafish, which covers 

most vertebrate selenoprotein families and functional groups. 
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Results summary
2.1  Selenogene expression in response to selenium 
and/or methylmercury status 

In total, the mRNA expressions of 30 out of the 38 putative selenogenes were analysed 

in zebrafish embryos maternally exposed to elevated Se and/or MeHg (Paper III), 

while four selenogenes were analysed in juvenile zebrafish in response to Se status 

(Paper I). The 30 selenogenes (Paper III) cover most of the selenoprotein families; 

including members of the gpx, thioredoxin reductase, iodothyronine deiodinase and 

methionine sulfoxide reductase families, along with selenophosphate synthetase 2, 

selenoprotein h, j-p, t, w, 15, fep15 and fam213aa; and include members from all six 

known functional groups of selenoproteins; antioxidant, redox signalling, thyroid 

hormone metabolism, protein folding, Se transport/storage and Sec synthesis. The four 

selenogenes analysed in Paper I; gpx1a, gpx1b, sepp1a and sepp1b; were selenogenes 

whose single mammalian orthologs (Gpx1 and Sepp1) respond to Se status, and a 

subset of those analysed in Paper III.  

The results of the analyses in Paper III demonstrate that a) only around one in four (8 

out of 30, p<0.05) selenogenes respond to elevated MeHg status and these selenogenes 

mainly coded for antioxidant proteins, b) MeHg-induced regulation of selenogenes is 

exclusively via downregulation, and c) elevated Se status can prevent the MeHg-

induced downregulation for most (5 out of 8) selenogenes.  

Of particular note were gpx1a and gpx1b. In mammals, GPX1 is an antioxidant protein 

regulated by Se status, and the most common selenoprotein by quantity (Gross et al., 

1995; Hill et al., 2012). The mRNA of the zebrafish gpx1 paralogs responded to Se 

status in juvenile zebrafish (Paper I), and were downregulated by elevated MeHg in 

zebrafish embryos (Paper III). In juvenile fish, the lowest gpx1a and gpx1b expression 

coincided with low GPX activity, and occurred in groups that had the highest growth 

rates, suggesting a role of Se in regulating growth, perhaps via cellular redox status 

(Paper I). 
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Along with the gpx1 paralogs, several other selenogenes that were downregulated by 

MeHg; selh, gpx4a and two members of the sepw family; sepw1 and sepw2a; also code 

for selenoproteins from antioxidant families. Additionally, MeHg downregulated 

selenogenes from redox signalling (txnrd1, msrb1a and 1b), thyroid hormone 

metabolism (dio1) or incompletely classified (selt1b and fam213aa) families. 

However, the antioxidant coding selenogenes were downregulated to the greatest 

extent by MeHg. Overall, the response of zebrafish selenogenes to MeHg had 

similarities to their responses to their mammalian orthologs during Se deficiency. 

Further analyses specifically in zebrafish embryos demonstrate that the selenogenes 

most downregulated by MeHg (Paper III) were also downregulated by Se deficiency 

(unpublished data, Thesis Supp. Material), further supporting the MeHg-induced Se 

deficiency hypothesis.  

With the addition of the Thesis Supp. Material to data from the Papers I and III we 

could further conclude that a) low Se status regulates the expression of a small subset 

of selenogenes (6 out of 30, p<0.05) b), this subset overlaps considerably with those 

affected by MeHg (4 out of 6, p<0.05), and c) the expression of the majority of 

selenogenes (20 out of 30, p<0.05) were unaffected by Se and/or MeHg.  

2.2  The interactive effects of methylmercury and selenium 
are life stage dependent 

Elevated dietary Se prevented MeHg-induced decreases in growth and increases in 

mortality in adult zebrafish, as previously reported in vertebrates (Paper II). In 

contrast, reproductive outcomes; fecundity, embryo survival and the number of viable 

offspring produced (reproductive success); were reduced by elevated Se, and this effect 

was enhanced by elevated MeHg (Paper II), a novel finding in fish. Meanwhile, 

elevated Se protected against MeHg-induced decreases in selenogene mRNA 

expressions (see previous section) and GPX activity in zebrafish embryos (Paper III). 

The protection against MeHg-induced disruptions extended into the larval phase, 

whereby elevated Se was able to partially prevent MeHg-induced hypoactivity (Paper 

III). Thus, while the results show that Se can protect against MeHg-induced toxicity in 
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general, a critical window, hypothesised to be during embryogenesis, exists whereby 

elevated Se exerts toxic effects. The results suggests that the MeHg-induced synergism 

with Se toxicity in this critical period is due to a MeHg-induced increase in Se levels 

transferred to the oocytes (Paper II). 
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Discussion 

This thesis aimed to address some of the open questions in relation to the protective 

effects of Se against MeHg toxicity. As all papers in this thesis are published, many 

themes have already been discussed in detail. Thus along with an expansion on 

concepts put forward in the papers, several key concepts developed post publication 

will also be discussed. 

3.1 A comparison of glutathione peroxidase activity as a 
biomarker for selenium requirements in fish versus the 
rodent model. 

In the rodent model (rats/mice), GPX activity is a good biomarker for Se requirements. 

For instance, as Se status in rodents shifts from deficient to replete, total hepatic GPX 

activity first increases sigmoidally, and then shifts to a plateau like response at ≈0.1 mg 

Se/kg DM (Fig. 6). The shift to a plateau response indicates that the Se status is 

adequate to fulfil maximum GPX1 protein expression (Weiss et al., 1996; 1997; Barnes 

et al., 2009) the main contributor to total GPX activity in mammals (Brigelius-Flohe et 

al., 2002) and the dominant selenoprotein in the mammalian body (Hill et al., 2012). 

Furthermore, at the 0.1 mg Se/kg dietary level, signs of Se deficiency or toxicity are 

absent and animals are in general good health (NRC, 1995; Weiss et al., 1996; 1997; 

Barnes et al., 2009). As a result of these indicators, 0.1 mg/Se kg is defined as the 

rodent model Se requirement (Weiss et al., 1996). The success of defining Se 

requirements based on the minimum dietary Se level that results in maximum GPX 

activity in rodents has led to this methodology being utilised to determine the Se 

requirements in fish. 

However, there is now sufficient evidence that fish GPX activity does not respond to 

Se status in a similar manner to rodents, as discussed in Paper I. The re-analysed data 

(with models) from the five other published fish Se requirement studies helps to 

demonstrate this point (Fig. 7). As can be observed, an average of 6 or 4 fold higher 

levels of Se are required for maximum plasma (GPX3) or hepatic GPX activity, than 



 36 

for growth, in fish (Fig. 7). Unlike in rodents (Fig. 6), GPX activity increases over a 

broader range of dietary Se levels in fish (Fig. 7). In the extreme cases, GPX activity 

can continue to increase even when the dietary Se level has negative effects on growth, 

as observed for both zebrafish and the marine fish, grouper (Epinephelus malabaricus) 

(Fig. 7D, F and H). Thus in contrast to rodents, maximum GPX activity appears to be 

a poor biomarker for optimal Se status in fish. 

Why fish and rodents, and thus presumably fish and mammals, differ in respect to their 

GPX activity response to Se status is unclear. The upregulation of GPX in response to 

elevated Se status is unlikely to be the underlying cause for the decreased growth 

observed in grouper and zebrafish (Fig. 7), as GPX1 overexpression does not decrease 

growth in mice (Cheng et al., 1997). To speculate, fish may utilise GPX as a Se storage 

protein, an idea previously proposed as a secondary function of mammalian GPX1  

Figure 6. The rodent model response of hepatic GPX activity (●) and the mean 
normalised Gpx1 mRNA levels (○) to Se status. Male rats (21 days old) were fed diets with 
increasing levels (0.005 to 0.80 mg Se/kg DM) of inorganic Se (sodium selenite) for 28 days. 
Red lines indicate the Se requirement for Gpx1 mRNA (segmented) and GPX activity (solid) 
(one-way ANOVA, p<0.05). Adapted from Barnes et al. (2009) with permission.  
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Fig. 7 
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(Burk, 1991; Gross et al., 1995). As a consequence of seafood being a rich source of 

Se (Combs and Combs, 1986b; Rayman, 2012), fish diets are naturally relatively high 

in Se. This Se rich diet may require the presence of a greater capacity or additional 

mechanism to prevent Se toxicity. Incorporating Se into a selenoprotein, such as GPX, 

that can be rapidly upregulated in response to elevated Se would help to prevent Se 

toxicity due to oxidative stress from uncontrolled redox cycling of Se metabolites 

(Spallholz, 1994). If KO-/- of the dominant GPX types in fish decreases their  Se toxicity 

threshold remains to be tested, but it would support a role of GPX as a Se buffer in fish. 

The ability to test this hypothesis may be proximate as a result of the zebrafish mutation 

project (Kettleborough et al., 2013), which has made GPX3-/- mutants available 

recently, and expects to make several more (GPX4a-/- and GPX1b-/-) available this year 

(http://www.sanger.ac.uk/sanger/Zebrafish). 

As discussed in Paper I, zebrafish growth peaked when GPX activity/mRNA 

expressions were at their lowest (0.3 mg Se/kg diet, Fig. 7). It is unknown why this 

occurred. Perhaps in fish fed 0.3 mg Se/kg, GPX activity was at an optimal level. 

Meanwhile, in fish fed above 0.3 mg Se/kg, GPX activity may have responded 

positively to excessive Se levels to either store excess Se as discussed previously, or to 

counteract increased ROS generated by Se metabolism. Alternatively, low GPX 

Figure 7. (previous page). Dietary Se levels required for maximum growth (blue segmented 
lines) versus maximum GPX activity (red segmented lines) in fish. Growth and GPX activity 
data obtained from the five published studies were re-analysed with regression analysis, and 
included alongside results from Paper I. Several of these studies include two separate feeding 
experiments (Experiment 1 (E1) and 2 (E2)). Growth data were presented in a range of different 
units between studies; graph (A and H) as final weight/fish (g) (Hilton et al., 1980; Paper I), graphs 
(C- G) as % weight gain (Gatlin and Wilson, 1984; Lin and Shiau, 2005; Han et al., 2011) and graph 
(B) as specific growth rate/day (SGR %/d)(Liu et al., 2010). Broken blue or red lines and the 
associated numbers indicate Se requirement for maximum growth or GPX activity (h, hepatic; p, 
plasma; w, whole body GPX activity), respectively. The coefficient of determination (R2) along 
with the fitted model; first order polynomial (F), second order (S), substrate inhibition (SI) or 
Michaelis-Menten (M) are found within figures. Data were tested against the null hypothesis 
(horizontal line) versus alternative hypothesis (p<0.05). The Se requirements for data fitted with the 
Michaelis-Menten model were based on 95% of the theoretical maximum. One data point is absent 
from graph (A); final weight of fish fed 13 mg Se/kg was 14 g (Hilton et al., 1980).  
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activity may have resulted in elevated cellular H202 levels, an important intracellular 

signalling molecule that can influence cellular proliferation, and hence growth (Gough 

and Cotter, 2011). However, total and oxidised glutathione, redox potential and 

TBARS remained relatively stable with changing Se status (Paper I), suggesting that 

any changes in H202 were small, or did not occur throughout the entire body. 

The reason why the initial, but small, decrease in GPX activity (and mRNA expression) 

observed in Paper I was not observed in other fish studies may reflect methodology. 

In Paper I, whole zebrafish bodies were analysed, while other fish studies analysed 

specific organs such as the liver and plasma. As the requirement for a nutrient is 

determined by the entire organism, whole body analyses are a justifiable trade off 

against the increase in clarity of the underlying molecular mechanisms for such 

changes that are obtained by organ specific analyses. 

3.2 Fish selenium requirements change with age 

During embryogenesis the expressions of selenogenes/proteins are highly dynamic 

(Thisse et al., 2003; Ufer and Wang, 2011; Skjærven et al., 2013; Timme-Laragy et al., 

2013). This suggests that the underlying need for the Se present in these selenoproteins 

must also change with development. This concept is supported by this thesis, wherein 

the Se requirements for juvenile growth appear to be over two fold less than those 

required for both reproduction and the resulting F1 generation yolk sac larvae (Paper 

I). 

3.2.1   Selenium status and reproduction 

Aspects of F0 generation Se and/or MeHg status on reproduction and the subsequent 

F1 generation outcomes were explored in all three papers of this thesis. In Paper I we 

found that Se requirements for male mating success (≥0.65 mg Se/kg) were over two 

fold higher than the Se requirements of juvenile zebrafish based on growth (0.3 mg 

Se/kg). In mammals, testes are a major Se sink, where like the brain, Se is preferentially 

maintained under conditions of Se deficiency (Hill et al., 2012). This is likely because 
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sperm requires a splice variant of GPX4, termed sperm nuclei GPX (snGPX4) (Pfeifer 

et al., 2001), as a major structural component of the sperm mid piece (Ursini et al., 

1999). The increased mating success of male fish fed 0.65 mg Se/kg DM correlated 

with a larger gonad somatic index, and may indicate increased sperm levels or 

production capacity (Paper I). In contrast, elevated Se levels (30 mg Se/kg DM) 

decreased the gonad somatic index (Paper I), an effect likely due to Se-induced 

oxidative stress in an organ that already has high Se levels under normal physiological 

conditions (Hill et al., 2012). 

Female specific reproductive effects from elevated Se status, such as decreased 

fecundity and embryo survival were observed in one experiment (Paper II) but not the 

other (Paper I). The different diets and Se sources used in the two experiments may 

be a contributing factor to this; Paper I used a yeast/casein based diet supplemented 

with Se-yeast, while Paper II used a casein based diet supplemented with SeMet. 

However, the 3 fold higher dietary Se levels employed in Paper I than II suggests the 

weaker experimental design of Paper I lacked the statistical power to find differences. 

For example, the biggest differences in mean embryo survival relative to the high Se 

group were similar between the studies (≈2 fold; 44 versus 86% Paper I, 29 versus 

53% Paper II). However, the negative effect of elevated Se on embryo survival was 

statistically significant (main effect, p<0.05) in Paper II, where the experimental 

design allowed the analysis of data from 108 matings (all single pair-wise matings), 

but not in Paper I which only had data from 24 matings (from groups with highest and 

lowest embryo survivals). Thus, the high natural variation in reproductive outcomes of 

fish (Bobe and Labbé, 2010) dictates that high numbers of pair or group-wise matings 

are desirable to obtain meaningful reproductive data, even when the mean differences 

between treatments are high.  

3.2.2    Selenium status and larval locomotor activity. 

Larval locomotor activity was affected by Se status (Paper I and III). Little is known 

about larval fish locomotor activity in regard to maternal nutrient status. Nutrient 

requirements generally decrease as weight and age increase (Baker, 1986). Thus larval 
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zebrafish Se requirements (via maternal nutrition) are probably higher than the 0.3 mg 

Se/kg required by juvenile zebrafish. For this reason, the lower locomotor activity 

levels (hypoactivity) of yolk sac larvae from parents fed >0.3 mg/Se kg found in Paper 

I may reflect an optimal state of behaviour.  

But how could hypoactivity be a positive attribute? The answer possibly lies in energy 

conservation. Locomotor activity in Paper I and III were assessed in ≤5 dpf zebrafish, 

which utilise endogenous nutrients from the yolk as a sole source of energy (Jardine 

and Litvak, 2003). In terms of energy, yolk sac larvae are essentially closed systems, 

investing energy in either tissue formation (growth) or respiration, which is increased 

by activity (Kamler, 2008). The 40% lower activity levels of larvae from parents fed 

0.65 versus ≤0.3 mg Se/kg would thus theoretically increase the energy available for 

growth.  

However, in Paper III we describe how larvae from parents fed elevated dietary MeHg 

were also hypoactive. Alongside this, we also found that elevated Se (10 mg Se/kg) 

induced transient hypoactivity (at 3 dpf, but not present at later ages) (Paper III). 

Behavioural changes such as hypoactivity induced by MeHg are attributed to the 

negative effects of MeHg on neuron survival and patterning (Kidd and Batchelar, 2011; 

Hassan et al., 2012). This CNS disruption can impair the ability of fish larvae to capture 

prey (Fjeld et al., 1998; Alvarez et al., 2006), a vital behavioural transition that is 

required for survival when yolk sac nutrients are depleted. Overall, entirely different 

situations; one being the exposure to toxic levels of MeHg/Se, the second being small 

shifts in Se status within a nutritionally relevant range; can both lead to hypoactivity. 

This in itself rejects the notion that reduced activity per se can be defined either as a 

positive or negative attribute.  

In zebrafish the yolk sac is depleted by <6.9 dpf at 28.5 ˚C (Jardine and Litvak, 2003). 

When this occurs, the larvae are entirely dependent on capturing prey for nutrition, and 

hence growth and survival. Like observed with MeHg, if Se-induced hypoactivity 

found in the >0.30 mg Se/kg groups continues past the yolk sac stage, prey capture 

ability could be negatively affected. Thus, two missing elements in this thesis; the 
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underlying molecular mechanisms for the Se-induced hypoactivity observed in Paper 

I, along with later effects such as larval prey capture ability, would help to define 

whether the Se-induced yolk sac stage hypoactivity is beneficial or negative. 

3.3 Selenium and methylmercury have a synergistic 
negative effect on oviparous vertebrate reproduction. 

The synergistic negative effect of Se and MeHg on zebrafish reproduction (Paper II) 

mirror findings in mallard ducks (Anas platyrhynchos) (Heinz and Hoffman, 1998). 

Interestingly, this effect in both species was associated with MeHg-induced increases 

in eggs Se levels. In Paper II we suggest that this increase in Se led to a concentration 

dependent increase in Se-mediate oxidative stress, the primary mechanism of Se-

induced toxicity in developing embryos and fish larvae (Palace et al., 2004; Janz, 

2011). Embryo survival (Paper II) was measured at 24 hpf, but not fertilisation rate. 

However, similar to Se toxicity in fish (Crane et al., 1992), embryogenesis, but not egg 

fertilisation rate, is targeted by the Se and MeHg interaction in ducks (Heinz and 

Hoffman, 1998). Embryogenesis may be particularly sensitive to Se-induced oxidative 

stress, as it requires a finely balanced progression of cellular proliferation, 

differentiation and apoptosis, which in turn is  affected by cellular redox balance (Ufer 

and Wang, 2011). Furthermore, in fish it has been demonstrated that mismatches 

between enzymatic activities can lead to SeMet-induced oxidative stress during 

embryogenesis (See Fig. 5; (Palace et al., 2004; Spallholz et al., 2004))   

Whether Se and MeHg have synergistic negative effects on reproduction in non-

oviparous species is open to speculation. If MeHg-induced mediated increases in Se 

toxicity are the primary reason for the synergistic effect, then it is less likely to occur 

in mammals. This is because the Se-induced teratogenic affects observed in fish 

(Lemly, 1997) and birds (Heinz and Hoffman, 1998) are less prevalent in mammals, 

possibly because of protection provided by the placental barrier (Usami and Ohno, 

1996). 
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A positive effect of MeHg on zebrafish mating success, fecundity and overall 

reproductive success occurred when exposure periods occurred for >100 days (Paper 

II). Similarly, MeHg laden diets (4-9 mg Hg/kg DM) increased mating success when 

fed to adult fathead minnows (Pimephales promelas) during the mating, but not 

juvenile, period (Hammerschmidt et al., 2002). In ducks, low levels (0.5 mg Hg/kg 

DM) of dietary MeHg increases the percent of fertilised eggs that hatched and the 

overall reproductive success (Heinz et al., 2010). The reasons for this hormetic effect 

on reproduction after short or low level exposure to MeHg are unclear.  

3.4 Selenogene regulation 

3.4.1   Selenium does not completely prevent methylmercury 
induced disruption of the selenotranscriptome. 

The findings in Paper III provide evidence that the selenotranscriptome is regulated 

by MeHg induced Se deficiency, as many of the selenogenes downregulated by MeHg 

were rescued by elevated Se. This is in line with a recent mechanistic study 

demonstrating MeHg induces nonsense-mediated decay (NMD) of gpx1 mRNA 

probably via inducing Se deficiency (Usuki et al., 2011).  

However, Se status is only one of many factors that regulate the expression of 

selenogenes. Response elements (RE) are regions of DNA found upstream of a gene in 

the promoter region (Atkinson and Halfon, 2014). The REs recruit proteins termed 

transcription factors (TFs); which in turn are regulated by the cellular environment; 

that can up or down regulate gene expression (Todeschini et al., 2014). In silico 

analyses of selenogene promoter regions has identified between 100 and 230 putative 

RE’s per human selenogene, with higher numbers found in selenogenes, such as Sepp1 

and Txnrd1, that are widely expressed (Stoytcheva and Berry, 2009). Common 

selenogene RE’s were those bound by nuclear factor-kB (NFkB), metal-regulatory 

transcription factor-1 (MTF-1) and homeobox (HOX) TF’s. Henceforth, the expression 

of selenogenes probably respond to the diverse range of factors that these latter TF’s 

respond to; such as ROS, oxidised low density lipoproteins, bacterial or viral antigens, 
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hypoxia, heavy metals, and developmental stage, among others (Stoytcheva and Berry, 

2009). Mammalian Txnrd1 provides an example of how these regulatory mechanisms 

compete to control gene expression. Both ROS and Se status can regulate mammalian 

Txnrd1 expression (Sunde and Raines, 2011). However MeHg induced ROS is a 

stronger regulator of Txnrd1 mRNA levels than Se status (Usuki et al., 2011). In Paper 

III, none of the selenogenes downregulated by MeHg and not rescued by elevated Se; 

gpx1b, txnrd1, selt1b, msrb1a (p=0.07), msrb1b (p=0.053) and dio1 (p=0.08); were 

regulated by Se status in zebrafish embryos (see Thesis Supp. Material). Thus it is 

likely that MeHg regulated these genes primarily via Se status independent pathways. 

3.4.2  Zebrafish selenogenes and nonsense-mediated decay 

Nonsense mediated decay (NMD) is discussed in both Paper I and III due to its 

importance as a regulatory mechanism for the selenotranscriptome and subsequently 

the selenoproteome. The characteristics of mRNAs that are susceptible to NMD are a) 

a premature stop codon located a minimum of 50 to 55 nt upstream of an exon junction 

(EJ), and b) a protein complex, termed the exon junction complex present 20-24 bp 

upstream of the exon-exon junction (EJ); which limits NMD to the first round of 

translation (Maquat, 2005). Figure 8 illustrates the mRNA features of zebrafish gpx1a 

compared to msrb1a and txnrd1 that make the former but not the latter two, susceptible 

to NMD.  

In the wider genome, NMD’s main role is likely to prevent translation of truncated 

proteins, which may have reduced or no function, or be cytotoxic (Cowan et al., 2003; 

Pan et al., 2006). To further explore zebrafish mRNA in regard to NMD, the selenogene 

database (SelenoDB 2.0) and ensembl were searched for the exon position of the Sec 

coding UGA codon (Table 2). 

As can be seen in Table 2, considerable overlap exists between those selenoproteins 

that were downregulated by low Se status, elevated MeHg, and that are theoretically 

susceptible to NMD based on the position of the UGA/Sec codon in the mRNA. Several 

selenogenes that were regulated by low Se status, but did not confirm to the rules of 
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NMD; gpx3, sepp1a and sepw1; are also susceptible to Se-deficiency induced 

downregulation in mammals, but the regulatory mechanisms for this remain unclear 

(Sunde and Raines, 2011).  

Figure 8. Selenogene mRNA susceptibility to Se-deficiency induced nonsense-mediated 
decay (NMD). Like mammalian Gpx1, zebrafish gpx1a mRNA contains the selenocysteine 
(Sec) codon 105 base pairs (bp) upstream of an exon/exon junction (EJ; dashed lines between 
exons), making it susceptible to NMD. In contrast, the Sec codon in msrb1a mRNA is <55 bp 
upstream of an EJ, and in txnrd1 has no downstream EJ, in both zebrafish and mammals. These 
mRNA´s should therefore not be susceptible to NMD. 
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Table 2. The exon positions of the Sec codons in zebrafish selenogenes, the subsequent 
predicted susceptibility of the selenogenes to NMD, and the effect of Se or MeHg status on 
the expression of selenogenes determined in vivo in this thesis. 

Gene No. of exons in 
gene 

Exon no. containing 
Sec codon 

Distance (nt) to 
downstream EJ

NMD1 Regulated 
by  ↓ Se 

Regulated 
by ↑ MeHg 

gpx1a 2 1 105 Y ↓J ↓ 
gpx1b 2 1 105 Y ↓J ↓ 
gpx3 5 2 22 N ↓ 
gpx4a 3 1 105 Y ↓ ↓ 
gpx4b 4 1 105 Y ↑ (0.09) 
txnrd1 16 16 - N ↓ 
txnrd3 12? 12 - N 
dio1 4 2 103 Y ↓ (0.08) 
dio2 2 2 - N 
Selh 1 1 - N ↓ (0.055) 
Selj 9? 7 1 N 
selk 4 4 5 N 
sell 9 6 42 and 33 N 
selm 5 2 21 N 
sepn 12 9 1 N 
Selo 9 9 - N 
sepp1a2 4 1, 42 26 N ↑↓J 
sepp1b 4 1 26 N 
selt1a 5 2 101 Y 
selt1b 5 2 101 Y ↓ 
selt2 5 2 101 Y 
sepw1 5 2 15 N ↓ ↓ 
sepw2a 4 2 88 or 92? Y ↓ (0.08) ↓ 
sepw2b 4 2 88 Y 
sep15 4 2 28 N 
fep15 4 2 56 Y 
msrb1a 4 3 34 N ↓ (0.07) 
msrb1b 4 3 34 N ↓ (0.053) 
sps2 8 1 151 Y 
fam213aa 6 3 15 N ↓ 

Abbreviations; nt, nucleotide; EJ, exon junction; J, regulation by Se status observed in 
juveniles but not in embryos; -, Sec codon in last exon; ?, gene annotation unclear. 
Numbers in parentheses are p values for data with a statistical trend  
1. Theoretically susceptible to nonsense-mediated decay based on position of Sec codon
2. Additional Sec residues are found in the last exon of sepp1a (mammalian Sepp1).

Most of the selenogenes which were downregulated by MeHg but not low Se status; 

txnrd1, dio1, selh, selt1b, msrb1a, msrb1b and fam213aa; were also among the group 

not rescued when elevated Se and MeHg were present together, and the majority are 

not theoretically susceptible to NMD. As pointed out in Paper III, most of these genes 

are not classified as antioxidants. Thus these genes appear to be a subset of genes that 

may be regulated by MeHg-induced effects other than MeHg-induced Se deficiency.  
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However the overall methodology in the table is not without exceptions. For one the 

selenogenes gpx1a, gpx1b and sepp1a were only found to be regulated by Se status in 

whole juvenile zebrafish (Paper I) and not in zebrafish embryos (Thesis Supp. 

Material). This may reflect temporal or spatial differences in gene regulation. For 

example, these genes may be regulated by developmental TF’s in the embryos, which 

may be stronger regulators than Se-mediated mechanisms at this stage.  

Zebrafish selenogene mRNAs provide an ideal model to further elucidate how small 

changes in the mRNA nucleotide sequence can affect NMD. For instance gpx4a and 

gpx4b share sequence identities of 85% (NCBI nblast) and both have the Sec encoding 

TGA codon 105 bp upstream of the EJ, but only gpx4a is downregulated by Se 

deficiency directly (Thesis Supp. Material), or as a consequence of MeHg (Paper 

III). 

3.4.3    The glutathione peroxidase system in fish 

This thesis found that zebrafish gpx4a was a highly inducible gene, unlike its 

mammalian ortholog Gpx4 which demonstrates minimal regulation by Se (Sunde and 

Raines, 2011) or MeHg (Kim et al., 2005) status. Alongside this, gpx4a also appears to 

be an abundant transcript. For example, Zheng et al. (2013) found that gpx4a was the 

most abundant selenogene transcript, and one of the most abundant transcripts overall 

in both female and male zebrafish livers. Compared to the gpx1 paralogs, both gpx4a 

and gpx4b are higher in abundance by around 10 fold during zebrafish development 

(0-50 dpf) (Timme-Laragy et al., 2013), and 3 fold in rainbow trout (Oncorhynchus 

mykiss) liver (Pacitti et al., 2013). This contrasts with mammals, where hepatic Gpx1 

mRNA abundance is around 7 fold higher than that of Gpx4 (Weiss Sachdev and 

Sunde, 2001). Thus, at the transcriptome level fish gpx4a appears to be a key 

selenogene, possibly reflecting the highly abundant Gpx1 transcript found in mammals. 

The same contrast appears true at the functional protein level. In fish, GPX4 activity 

can account for over a third of total GPX activity (Grim et al., 2011; Wang et al., 2012). 

However, in mammals GPX1 protein contains around 50% of hepatic selenoprotein 
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incorporated Se (Hill et al., 2012) and hepatic GPX activity is dominated by GPX1, 

while GPX4 may account for less than 2% of total GPX activity (Barnes et al., 2009).  

So why is the GPX system dominated by GPX1 in mammals, while in fish it appears 

to be shared between GPX1 and GPX4? The answer may lie in the broader substrate 

range of GPX4. Like GPX1, GPX4 can reduce hydrophilic hydroperoxides such as 

H2O2 and free lipid peroxides, but additionally can also reduce hydrophobic 

hydroperoxides such as phospholipid and cholesterol hydroperoxides incorporated in 

cell membranes and lipoproteins (Ufer and Wang, 2011). Compared to terrestrial 

vertebrates, fish are high in long chain polyunsaturated fatty acids, such as DHA and 

EPA (Douglas and Douglas, 1988; Mahaffey, 2004; Cladis et al., 2014), which in turn 

are sensitive to oxidation (Holman, 1954). All else being equal, this suggests a greater 

requirement for controlling oxidation in the hydrophobic cell membranes where PUFA 

are incorporated, which requires GPX4 activity. In line with this, a positive correlation 

is observed between GPX4 activity and the levels of unsaturated fatty acids across fish 

species (Grim et al., 2011). 

However, like fish, birds also appear to have a shared GPX system. In turkey 

(Meleagris gallopavo) for instance, GPX4 accounts for half of the total GPX activity 

in liver, and around a third in muscle, testes and heart (Sunde and Hadley, 2010). The 

gpx4 gene is the ancestor of all other gpx genes (Mariotti et al., 2012). Perhaps factor/s 

linked to terrestrial environments relaxed the requirements for GPX4 specifically in 

mammals or a mammalian ancestor after the split from the lineage leading to birds, 

allowing the dominance of the GPX1 in the GPX system, as observed in extant 

mammals today. Overall, the importance of GPX4 to the GPX system of fish was not 

evident when Paper I was published. In relation to the GPX system, future fish (and 

bird) studies should increase focus on the response of gpx4a (Gpx4 in birds) mRNA 

expression, and GPX4 activity, in addition or in priority to the GPX1’s. 
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 Figure 9. A comparison of the proposed mammalian versus fish GPX systems under both 
selenium replete (top half) and deficient (bottom half) conditions using hepatocytes. 
Compared to mammalian cells, fish cells have elevated long chain polyunsaturated (LCPUFA; 
red) versus shorter chain PUFA, monounsaturated and saturated (blue) fatty acid levels. 
Among others, fatty acids can be membrane incorporated as phospholipids, or found in free 
form in the cytosol. LCPUFA are sensitive to oxidation, which if left uncontrolled will lead to 
a chain reaction of oxidation, disrupting the cell membrane which leads to cell death. GPX4, 
but not GPX1 can prevent this by reducing oxidised fatty acids in cell membranes. Both GPX1 
and GPX4 isoforms can reduce hydrophilic peroxides, such as hydrogen peroxide (H2O2) and 
free fatty acid hydroperoxides found in the cytosol. The presence of a more diverse range of 
peroxides in fish cells compared to the hydrophilic peroxide dominated environment in 
mammalian cells favours a fish GPX system shared between GPX1 and the multifunctional 
GPX4 paralogs. Under selenium deficient conditions, selenium supplies are diverted to 
maintaining GPX4 (GPX4b in fish) levels in both cell types. This helps to maintain cell 
membrane integrity and prevent cell death, at the expense of the GPX1’s, (and GPX4a in fish), 
which may lead to elevation of hydrophilic ROS species in the cytosol. Note; the a and b 
paralogs of GPX1 in fish are not differentiated between due to their similar response to 
selenium status, in contrast to the a and b paralogs of fish GPX4. 
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Conclusions 

1. Paper I. In contrast to rodents, maximum GPX activity was found to be an

inadequate biomarker for Se requirements in zebrafish, and as discussed, for fish

in general. The Se requirements of juvenile zebrafish were found to be 0.3 mg

Se/kg based on growth. The Se requirements were found to be higher for

reproducing male adult fish (≥0.65 mg Se/kg), as indicated by the tandem

increase in mating success and gonad somatic index. Although further

investigation is required, yolk sac larvae, and thus indirectly the reproducing

female fish, may also require dietary Se levels of ≥0.65 mg/kg.

2. Paper II. As reported with other vertebrates, Se had a protective effect against

MeHg-induced toxicity in adult fish. However, Se and MeHg had a synergistic

negative effect on fish reproduction. This was hypothesised to be because of an

elevation in Se toxicity due to the MeHg-induced increases in egg Se levels.

3. Paper III. Selenoproteins are overrepresented as cellular targets for MeHg

induced disruption at the mRNA level, and this appears to be chiefly because of

a MeHg-induced Se deficiency. A molar excess of Se to MeHg was unable to

fully prevent MeHg-induced disruptions, which supports a significant role of

non-selenoprotein cellular components, such as Cys containing proteins, in

MeHg toxicity.
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Future perspectives  

As with all science, more questions were raised than answered in thesis. Several areas  

of research that may further understanding in the field of Se nutrition and the effect of  

Se status on MeHg toxicity are;   

1. This thesis supports a significant role of non-selenoprotein cellular components  

in MeHg toxicity, as a molar excess of Se to MeHg was unable to fully prevent  

MeHg-induced disruptions. This is probably because Cys containing proteins  

are also molecular targets for MeHg (Farina et al., 2012). Several species of  

insects which lack selenoproteins (Chapple and Guigó, 2008; Lobanov et al.,  

2008) provide interesting animal models to analyse the molecular mechanisms  

of MeHg-toxicity in the absence of Se.  

2. While MeHg-induced Se deficiency appears to be a major factor regulating the  

selenotranscriptome, many selenoproteins are not regulated by Se status.  

However, if MeHg does induced a Se deficiency, or bind selenoproteins  

directly, then the functional levels of selenoproteins may be reduced regardless  

of effects at the selenotranscriptome level. Thus, future studies should assess the  

effects of MeHg on the functional selenoproteome, in particular for those critical  

in the developing CNS, a major target of MeHg toxicity.  

3. The synergistic negative effect of Se and MeHg on fish reproduction warrants  

further investigation. Previous to this thesis, Se has been thought of mainly as  

an antagonist of MeHg. Human activities are increasing Se (Lemly, 2004) and  

Hg (Driscoll et al., 2013) levels in the biosphere on a global scale. The existence  

of synergistic effects of Se and MeHg on aquatic associated animals will require  

changes to environmental policy and management, such as considering the  

localised levels of both elements simultaneously. Furthermore, the interactive  

effect of Se and MeHg on mammalian reproduction are poorly investigated. A  

large percentage of the human population rely heavily on seafood as a protein  

source, and hence are at risk of simultaneous intakes of high Se and MeHg  
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levels. This in itself warrants further investigation into Se×MeHg interactions  

during mammalian reproduction.           

4. Overall the difference in GPX systems between fish and mammals calls into  

question the use of total GPX activity, or the mRNA expression of the gpx1  

paralogs, to predict fish Se requirements; the methodology used in Paper I.  

Future Se status related studies in fish should consider evaluating the response  

of the GPX4’s alongside the GPX1’s, due to their apparent importance in fish.  

In particular GPX4a appears to be a dominant selenoprotein in fish, and perhaps  

should be utilised in preference to the GPX1 paralogs in studies investigating  

stress response to environmental factors in fish.  
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 Supplementary material  

1.1 Supplementary material background  

In Paper III, we hypothesised that selenogenes downregulated by MeHg were done so as a secondary  
effect of a MeHg-induced Se deficiency. To test this hypothesis, the response of selenogenes to changes  
in Se status were analysed in zebrafish embryos. These embryos were obtained from parents fed diets  
ranging from deficient to replete from the experiment described in Paper I. Briefly, adult zebrafish  
(Wild type AB strain) were fed yeast/casein based semi-purified diets. The four diets had graded levels  
of Se containing yeast (Se-yeast, Sel-Plex® 2000, 2000 mg Se/kg, Alltech, Lexington, KY, USA), and  
contained 0.09, 0.30, 0.50 or 0.65 mg Se/kg DM, and resulted in embryos with 0.34 ± 0.04, 0.61 ±  
0.10, 0.97 ± 0.37 and 1.13 ± 0.13 mg Se/kg DM, respectively (Paper I, Supp. Table 8). These dietary  
Se levels were deemed in Paper I to range from deficient to adequate for zebrafish. The Hg levels in  
these diets were below the limit of quantification (<0.005 mg Hg/kg DM). These embryos were  
maintained until ≈ 48 hpf in petri dishes at 28.5 °C as described in Paper I, under identical conditions  
to those utilised in Paper III. These embryos were analysed at the same stage (48 hpf), with an identical  
method (RT-qPCR with identical primers), and for the same 30 selenogenes and two non-selenogenes,  
as described in Paper III. The data were analysed with multiple regression in Graphpad  
Prism (GraphPad Software, San Diego, CA, USA, V. 6.02). Data were first normalised with Box-Cox  
(Osborne, 2010) and then tested against the null hypothesis that parental dietary Se concentrations had  
no effect on outcome (horizontal line), or if first or second order polymomial curves explained the  
response more adequately. Data are presented as mean ± SEM, n=2-3. Each replicate consisted of  
embryos obtained from a single pairwise cross, with the 0.09 and 0.3 mg Se/kg groups having 2n, and  
the other groups 3n, equalling a total of 10 observations. Differences among regression models were  
considered significant at p<0.05.  

1.2 Supplementary results and discussion  

The majority of the selenogenes (25 out of 30), and the two non selenogenes (trnau1apa and  
trnau1apb) did not respond to changes in Se status (Supp. Fig. 2). Three selenogenes had positive  
linear responses (p<0.05) to Se status; gpx3, gpx4a and sepw1; while a fourth; sepw2a; demonstrated  
a similar response but only as a statistical trend (p=0.08, Supp. Fig 1). One selenogene; gpx4b; had a  
negative linear response to Se status as a statistical trend (p=0.09, Supp. Fig 1). The mammalian  
orthologs for selenogenes regulated by Se status in zebrafish embryos are all from antioxidant families  
(Papp et al., 2007). Mammalian Gpx3 and Sepw1, but not Gpx4 mRNA are downregulated by sub  
optimal Se status (Sunde and Raines, 2011), while sepw2a is relatively uncharacterised and not found  
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in mammals (Mariotti et al., 2012). Three of the four selenogenes downregulated by Se deficiency;  
gpx4a, sepw1 and sepw2a; were also downregulated by MeHg (Paper III). These genes were also  
rescued from MeHg-induced downregulation by elevated Se (Paper III). Thus, the effect of Se  
deficiency on the selenotranscriptome had similiarities with the effect of MeHg on the  
selenotranscriptome. However, overall a greater number of selenogenes were affected by MeHg. It  
may be that MeHg induced a greater Se deficiency (Paper III) than the low Se group (0.09 mg Se/kg)  
in this experiment. For instance there was a seven to one molar excess of Hg to Se in the embryos from  
the (-)Se/(+)Hg group (Paper III), which may have resulted in large amounts of Se being bound in  
non-bioavailable MeHg:Se complexes (as discussed in Paper III), and overall less bioavailable Se  
than in the 0.09 mg Se/kg group in the current experiment. It is also unknown why several selenogenes  
that responded to Se status in juvenile fish; gpx1a, gpx1b and sepp1a, Paper I; did not respond to Se  
status in zebrafish embryos. It is possible that other factors were stronger regulators, such as  
developmental transcription factors, than Se status in zebrafish embryos. In line with the discussion in  
this thesis (section 3.44), gpx4a was the most responsive selenogene to Se status.      



 64 

  

Supp. Figure 1. Expression of selenoprotein genes that responded to Se status. Mean normalised  
mRNA expressions of selenogenes; gpx3 (A), gpx4a (B), gpx4b (C), sepw1 (D) and sepw2a (E); that  
were up or down-regulated in 48 hpf zebrafish embryos as parental dietary Se levels increased. Data  
are mean ± SEM (n=2-3) where each replicate is a pool of embryos spawned from a single pairwise  
mating. Lines represent best fit models of data after Box Cox transformation (Linear regression, R2;  
graph A = 0.42; B = 0.62; D = 0.61, p<0.05; C = 0.32; E = 0.34; p=0.05 - 0.10; equations shown in  
figures).   
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Supp. Fig. 2 Continued next page  
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Supp. Figure 2. Expression of selenoprotein (and trnaup1ap) genes that did not respond to Se  
status. Mean normalised mRNA expressions of selenogenes (and the trnaup1ap paralogs) in 48 hpf  
zebrafish embryos that did not respond as parental dietary Se levels increased. Data are mean ± SEM  
(n=2-3) where each replicate is a pool of embryos spawned from a single pairwise mating. Data were  
tested with regression analysis using the data mean, lines represent best fit models of data (Horizontal  
line; Se status had no effect on gene expression).   
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