
UNIVERSITY OF OSLO
Department of Informatics

The New AQM
Kids on the Block:
Much Ado About
Nothing?

Technical Report 434

Naeem Khademi

David Ros

Michael Welzl

ISBN 82-7368-399-0
ISSN 0806-3036

23 October 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NORA - Norwegian Open Research Archives

https://core.ac.uk/display/30893144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The New AQM Kids on the Block:

Much Ado About Nothing?

Naeem Khademi, David Ros∗, and Michael Welzl

Networks and Distributed Systems Group
Technical Report 434

Department of Informatics
University of Oslo

{naeemk,michawe}@ifi.uio.no, david.ros@telecom-bretagne.eu

Abstract

Active Queue Management (AQM) design has again come into the
spotlight of network operators, vendors and OS developers. This re-
flects the growing concern and sensitivity about the end-to-end latency
perceived by today’s Internet users. Indeed, delays on the order of sec-
onds have become common due to the deployment of excessively-sized
FIFO/DropTail buffers at the edge of many networks. CoDel and PIE are
two AQM mechanisms that have recently been presented and discussed at
the IRTF and the IETF. However, to the best of our knowledge, they have
not yet been thoroughly evaluated or compared against each other except
by simulation. We set thus to perform an experimental evaluation us-
ing real-world implementations, in both wired and wireless testbeds. We
have in addition compared them with a decade-old variant of RED called
Adaptive RED, which shares with CoDel and PIE the goal of “knob-free”
operation. Surprisingly, in many instances results were much more favor-
able towards Adaptive RED. We do not call into question the need for
new AQMs, however, there are lessons yet to be learned from old designs.

1 Introduction

End-to-end latency is one of the most important problems of the Internet today.
Much awareness has been raised about this issue by the “Bufferbloat” project
[22, 1], highlighting how common it is to experience buffer-induced latencies
ranging from a few hundred milliseconds up to several seconds at the network’s
edge – e.g., in ADSL broadband modems, DOCSIS cable modems and 802.11
APs [16]. Ubiquitously deployed loss-based TCP congestion control mecha-
nisms (e.g., standard SACK and Linux’s CUBIC) tend to persistently fill any
buffer; over-buffered devices can therefore worsen the user-perceived Internet
performance, most specifically for latency-sensitive applications such as real-
time interactive multimedia, online gaming and even web browsing, especially
when they share the bottleneck queue with long-lived TCP connections.

∗David Ros is with Télécom Bretagne–Institut Mines-Télécom.

Table 1: Published evaluation results of new AQMs; peer-reviewed publications
are shown in bold face.

CoDel PIE FQ CoDel

Wired, sim
[32][23][41] [40] [40]

[40]

Wired, real-life [23] 3 3 3

Wireless (any) 3 3 -

Active Queue Management (AQM) is generally regarded as the best ap-
proach to solve this problem. The primary goals of any AQM mechanism are:
(a) to let the buffer absorb packet bursts while preventing it from sustaining long
standing queues; (b) to break any synchronization between flows. If possible,
AQM mechanisms (which we shorten to “AQMs” in this paper) should also be
able to protect flows from being starved by other more aggressive or misbehaving
flows, as well as to support Explicit Congestion Notification (ECN).

While the history of AQM design begins around two decades ago with Ran-
dom Early Detection (RED) by Floyd and Jacobson [20], it is only recently that
the necessity of widespread AQM adoption has been fully realized by vendors
and service providers. AQMs have occasionally been deployed in the Internet’s
core [2] or in ISPs’ infrastructures [16], but in general there has been no exten-
sive usage of AQMs in devices operating at the last hop of the access networks,
even when it has been long known that these devices often form the bottleneck
of an end-to-end path. The lack of deployment of AQMs has often been at-
tributed to the difficulty of correctly tuning the parameters of RED, the only
mechanism that was described in an IETF Request for Comments [13] and that
has been most implemented by vendors.

Recently, two new AQMs, CoDel [32] and PIE [36] have been proposed,
along with a combination of CoDel with stochastic fair queuing (FQ CoDel)
[21]. They promise to tackle the latency problem in lightly-to-moderately mul-
tiplexed environments. Thus, they are suitable candidates for implementation
by devices operating on access links where a handful of flows might be sharing
the bottleneck queue at any instant.

Despite claims of promising results achieved by these new AQMs, there is
little published work evaluating their performance. Exceptions are two (non
peer-reviewed) preliminary studies from CableLabs [41, 40] which assess AQM
performance on DOCSIS 3.0 modems and rely solely on ns-2 simulation results.
Also, [23] conducts a preliminary investigation on the interaction of different
AQMs and low-priority “scavenger” congestion control using real-life tests. In
addition, the initial CoDel paper [32] includes a simulation study comparing
CoDel with traditional RED. While [41, 23] study CoDel only, [40] also includes
PIE and FQ CoDel. Assertions about the performance of these AQM schemes
on access links have not yet been fully substantiated by exhaustive real-life ex-
periments. Moreover, no investigation is yet available in the literature regarding
the performance in Wi-Fi networks where latency is more prominent.

Table 1 gives an overview of the significant AQM evaluation coverage omis-
sions; as one can see, only [40] appears in all three columns, i.e. it is the only
work that compares the three mechanisms, albeit only using simulations in wired
scenarios, and the current paper fills almost all the holes in the table. We also

2

sought answers to a number of interesting questions: given that one of the major
contributions of the new mechanisms appears to be their parameterless oper-
ation, and given that an old “auto-tuning” variant of RED (“Adaptive RED
(ARED)” [19]) exists, how much better are CoDel, FQ CoDel and PIE with
respect to ARED? How do all these mechanisms operate with ECN? Are they
truly insensitive to the values of some “magic numbers”, or are these factors
actually just parameters in disguise?

Summarizing, to the best of our knowledge, this paper is the first to:

1. Thoroughly evaluate the design goals and compare the performance of
CoDel, PIE and ARED in a generic access link scenario using real-life
tests.

2. Investigate their performance in a variety of 802.11 wireless scenarios.

3. Investigate AQM’s interaction with SFQ in FQ CoDel.

4. Investigate their interaction with ECN.

This work is meant to be a step towards a better understanding of these
AQMs. Assuming that the design of the mechanisms under evaluation was
guided by TCP dynamics, we focus only on the basic operation of these schemes
with bulk TCP transfers. For this reason, we do not investigate traffic that is
more typical of multimedia applications, e.g. bursty TCP and/or unresponsive
UDP flows; this is left for future work.

The rest of this paper is organized as follows. Section 2 provides an overview
of the AQMs studied in this paper. Section 3 presents the experimental setup
used in the evaluations. An assessment of the chosen AQMs, in a variety of
wired and wireless (802.11) scenarios, is the subject of Sections 4 and 5, respec-
tively. Section 6 studies the interaction of CoDel with SFQ scheduling, and the
performance with ECN is investigated in Section 7. Finally, Section 8 concludes
the paper.

2 AQMs For Low Latency

The most commonly mentioned reason for the lack of AQM deployment in
today’s Internet is the known difficulty in correctly setting the parameters of
RED. Other mechanisms, while being less dependent on parameter settings
(e.g., CHOKE [35]), did not have the support of the IETF behind them, and
this may be why they played a minor role (if any) in the adoption of AQMs in
the Internet. It is therefore essential that a newly standardized1 AQM requires
very little parameter tuning, or, better yet, none at all.

Despite their authors’ “no-knob” claim, both CoDel and PIE in fact main-
tain a set of parameters (with recommended default values) that do affect their
performance. On the other hand, ARED adaptively sets most of RED’s param-
eters based on a target average queue as an input parameter. We can identify
two key parameters that are common to all three mechanisms:

1The formation of a new IETF Working Group on AQM has been approved by the IESG
on 26 September 2013.

3

Target delay: CoDel and PIE both maintain a value called target delay.
However this parameter is used in different ways in these two AQMs.
While CoDel starts dropping packets when the queuing delay has been
above target delay for a certain amount of time, PIE continuously up-
dates its dropping probability based on the difference between the cur-
rent queuing delay and target delay. Although ARED does not explicitly
maintain a target delay value, when ARED is used in a fixed bandwidth
scenario, it is possible to derive its corresponding target queuing from a
given target delay.

Interval: Most AQMs require a certain time interval to update their drop-
ping/marking probability or decide whether to discard the incoming/outgoing
packet(s). The semantics of this interval differs from one AQM to an-
other. CoDel [32] uses the interval value to decide how long the queuing
latency can stay above target delay before switching to dropping mode
(Section 2.1). On the other hand, PIE and ARED use their interval to
update the dropping/marking probability (Section 2.2 and Section 2.3).

Next, we provide a brief overview of the AQMs that are investigated in the
rest of this paper. In addition to the two recent PIE and CoDel AQMs that
adaptively try to keep the latency low, we have also included ARED both as a
baseline for comparison and also because, to the best of our knowledge, ARED’s
performance has never been evaluated against the recent AQM mechanisms in
the context of bufferbloat on access links.

2.1 CoDel

CoDel [32, 33] tries to detect a standing queue by tracking, using timestamps,
the minimum queuing delay (or sojourn delay) packets experience in a fixed-
duration interval, set to 100 ms by default.

CoDel assumes that a small target standing queue delay is tolerable so as to
achieve good link utilization. When the minimum queuing delay has exceeded
the target delay value during at least one interval, a packet is dropped from
the tail of the queue and a control law is used to set the next dropping time.
Using the well-known relationship of dropping rate to TCP throughput [30],
this time interval is decreased in inverse proportion to the square root of the
number of drops since the dropping state was entered, to ensure that TCP does
not underutilize the link.

When the queuing delay goes below target delay, the controller stops drop-
ping packets and exits the dropping state. In addition, no drops are carried out if
the queue contains fewer than an MTU’s worth of bytes. Additional logic avoids
re-entering the dropping state too early after exiting it, and CoDel resumes the
dropping state at a recent control level, if one exists. CoDel only enters the
dropping state when the minimum queuing delay has exceeded target delay for
an interval long enough to absorb normal packet bursts. This ensures that a
burst of packets will not experience packet drops as long as the burst can be
cleared from the queue within a reasonable period.

A variant of CoDel with stochastic fair queuing (“FQ CoDel”) has been
available since Linux kernel version 3.5 to provide better fairness and flow iso-
lation. Flow isolation in FQ CoDel better protects flows from the impact of
non-responsive flows such as constant bit-rate (CBR) multimedia traffic.

4

Table 2: PIE parameters in [7].
PIE Parameter Default value

tupdate 30 ms

Ttarget 20 ms

α 2

β 20

2.2 PIE

The Proportional Integral controller Enhanced (PIE) AQM [36] randomly drops
a packet at the onset of congestion. Similar to CoDel, it uses queuing latency
instead of the more commonly used queue length. It uses the trend of latency
over time (increasing or decreasing) to determine the congestion level.

Different from CoDel that drops packets on departure (dequeue time) and re-
quires timestamping, PIE drops packets on arrival (enqueuing time) with prob-
ability p and does not require timestamping, making it a more lightweight mech-
anism. Every tupdate time units, PIE estimates the current queuing delay using
Little’s law in Eq. 1 and derives p based on Eq. 2:

E[T] = N/µ (1)

p = p+ α ∗ (E[T]− Ttarget) + β ∗ (E[T]− E[T]old) (2)

where N is the current queue length, µ is the draining rate of the queue, E[T]
represents the current estimated queuing delay, E[T]old represents the previous
iteration’s estimation of the queuing delay, and Ttarget is the target queuing
delay.

The drop probability calculation incorporates the direction in which the de-
lay is moving by employing a classic Proportional Integral (PI) controller design,
similar to the one used in [24]. The α factor determines how the deviation of
current latency from Ttarget affects the drop probability. The β factor makes
additional adjustments depending on whether the latency trend is positive or
negative. The default values of PIE parameters based on the Linux implemen-
tation in [7] are shown in Table 2.

2.3 ARED

One of the main historical challenges with the deployment of RED [20] by net-
work operators has been the tuning of its parameters, so that the average queue
length stays approximately around a desired target queuing value2 in the pres-
ence of different levels of congestion, when RED’s performance is hard to es-
timate in advance. This has been a discouraging factor for network operators
when considering to deploy RED on congested routers, where predictable queu-
ing latency is important. Adaptive RED (ARED) [19] solves this problem by
dynamically adjusting RED’s maximum drop probability (pmax). ARED ob-
serves the average queue length (N̄) to infer whether to make RED more or less
aggressive.

2Bear in mind that target queuing can correspond to a certain target delay in fixed band-
width scenarios.

5

Table 3: ARED parameters in [19].
ARED Parameter Default value

interval 500 ms

α min(0.01, pmax/4)

β 0.9

Similar to RED, ARED keeps two thresholds (th min and th max) which, to
correlate with a single target queuing value, are set to 0.5∗ target queuing and
1.5 * target queuing in accordance with the rules in [19]. If N̄ oscillates below
th min, early detection is too aggressive. On the other hand, if N̄ oscillates
above th max, early detection is too conservative. Using an Additive Increase /
Multiplicative Decrease (AIMD) policy (see Table 3), ARED adaptively changes
pmax so that the average queue length oscillates around (th max+ th min)/2.
ARED updates pmax periodically after every interval (500 ms by default).

Although ARED [19] was proposed almost a decade and half ago, along
with plenty of other RED variants [39, 17, 10, 29, 34] and even if it has been
available since Linux kernel version 3.3, its performance has not been thoroughly
investigated yet.

3 Performance Evaluation Setup

While the “older generation” of AQM mechanisms were designed with a general
Internet router in mind, the two new AQMs (CoDel and PIE) are designed
to overcome the bufferbloat problem on access links, by keeping queuing delay
low. It is vital to investigate the deployment of AQM mechanisms where they
belong. For instance, an AQM designed to perform on a 1000 Hz OS kernel
cannot achieve buffering latency requirements that are common in data centers.
The experimental network testbed setup that we used in this paper is therefore
based on the assumption of AQM deployment on access links.

3.1 Experimental Setup

Two types of topologies are used in our real-life experiments: A) wired and
B) wireless. A detailed summary of the hardware used in these experiments is
given in Table 4.

3.1.1 Wired Topology

Our wired testbed setup consists of a dumbbell network topology with two sets
of Dell OptiPlex GX620 machines acting as senders and receivers in a dumbbell
topology. The senders and receivers are connected via two routers; the first
router is acting as an AQM router implementing AQM on its bottleneck (egress)
interface. All senders are connected to the AQM router’s ingress interface using
a switched network with 100 Mbps Ethernet links. The second router is acting
as a delay node on both forward and reverse traffic, providing an RTTbase for
the traffic traversing it using the ipfw dummynet module [5]. This router is
connected to the receivers with switched 100 Mbps links.

6

The egress interface of the AQM router (bottleneck interface) and the ingress
interface of the second router are set to 10 Mbps advertised mode using ethtool
[3] with auto-negotiation being on to establish the bottleneck link.

3.1.2 Wireless Topology

Our wireless testbed setup, depicted in Figure 1, is similar to the dumbbell
topology in the wired setup with the difference that the AQM router acts as an
802.11 Access Point (AP) using hostapd [4], and either senders or receivers can
be associated with it as required. All nodes are equipped with 802.11 Atheros-
based AR5001X+ NIC chipsets. The AP’s Wi-Fi interface implements AQM,
and this interface and all other wireless nodes’ NICs are set to 802.11g mode
with the default Minstrel rate adaptation mechanism enabled [6]. All wireless
nodes are stacked clustered machines with close proximity and operate on a free
channel frequency where there is no (or minimal) interference from other SSIDs.
All Ethernet links on the topology are set to 100 Mbps.

3.1.3 Generic Setup

All nodes are synchronized using ntp. Unless otherwise noted, each experiment
consists of 60 sec (wired tests) or 180 sec (wireless tests) of iperf traffic be-
tween each sender/receiver pair. We have chosen a longer traffic period (180 sec)
for wireless tests to mitigate the effect of randomness in the wireless channel.
Each run is repeated 10 times and the presented results are the averages of
all runs. RTTbase is set to 100 ms by default unless otherwise noted. TCP-
Segmentation-Offload (TSO) engine is turned off by default on all nodes’ NICs.
The bottleneck’s maximum queue size (txqueuelen) is set to 1000 packets and
its Byte-Queue-Limit (BQL) value is set to 1514 bytes.

TCP’s appropriate-byte-counting (ABC) [9], SACK [12] and D-SACK op-
tions [11] are enabled. TCP’s transmit and receiver buffers are set large enough
to be able fully utilize bandwith×delay (C.RTTbase) on the bottleneck path
and the congestion control algorithm is set to SACK (named reno in Linux).
We used the Hierarchical Token Bucket (HTB) Linux queuing discipline to set
the AQM on the bottleneck interface. The AQM qdisc size is also set equal to
txqueuelen (1000 packets) for all experiment runs.

All traffic is dumped using tcpdump on all interfaces in the network. We use
the Synthetic Packet Pairs (SPP) tool [8] to precisely measure the actual per-
packet RTT perceived on the path. To measure the TCP throughput/goodput,
tcptrace is used. CoDel and ARED’s modules are available by default in Linux
3.10.4 kernel while we used the PIE module code available in [7] for our ex-
periments. All AQMs use their default values unless otherwise noted. In case
of ARED, the parameters are calculated based on the recommendations in [19]
except when target delay=1 ms where th min and th max are set to 1 MTU
and 2 MTUs accordingly.

4 Evaluating AQM Designs

To better understand the basic behavior of CoDel, PIE and ARED, we con-
ducted a first set of experiments using only a single TCP flow and observed
the trade-off between RTT and goodput in a given period. For target delays

7

Table 4: Experimental network testbed setup
Model Dell OptiPlex GX620

CPU Intel(R) Pentium(R) 4 CPU 3.00 GHz

RAM 1 GB PC2-4200 (533 MHz)

Ethernet
Broadcom NetXtreme BCM5751

RTL-8139 (AQM interface)
RTL8111/8168B (Dummynet router)

Ethernet driver
tg3

8139too (AQM interface)
r8168 (Dummynet router)

802.11 b/g D-Link DWL-G520 AR5001X+

802.11 driver ath5k

OS kernel
Linux 3.8.2 (FC14)

Linux 3.10.4 (AQM router) (FC16)

100 Mbps

100 Mbps

100 Mbps

100 Mbps

A Q M

100 Mbps

Dummynet router

Figure 1: 802.11 experimental network topology

in the range of 1 to 30 ms, CoDel and PIE’s total goodputs fall in the ranges
of 8.20∼8.94 Mbps and 8.20∼8.85 Mbps while ARED achieves 7.06∼8.71 Mbps
for a single TCP flow when RTTbase=100 ms. The total goodput does not re-
veal any information about the dynamics of an AQM; given that it is no longer
uncommon to use TCP for interactive real-time applications [14], and that non-
TCP real-time applications are affected by the dynamics of a competing TCP
[38], we report on the goodput distribution seen over 5-second intervals rather
than the total goodput in the remainder of this paper.

Figure 2(a) shows the per-packet RTT distribution of CoDel, PIE and Adap-
tive RED for a single TCP flow and for various target delay values in the range
from 1 to 30 ms. Bottom and top of whisker-box plots show 10th and 90th
percentiles, respectively. For target delay values above 1 ms, Figure 2(a) shows
that all AQMs can maintain a median queuing delay ≤ target delay. However,
CoDel and PIE produce higher maximum and longer distribution tail of queuing
delay than Adaptive RED.

Figure 2(b) shows the TCP goodput measured at the bottleneck link for the
same experiments. It shows that CoDel achieves the best goodput among the
three AQMs, while ARED suffers from low link utilization for lower target delay
values of≤10 ms when only a single TCP flow is present at the bottleneck. While
this is indicative to understand the basic behavior of AQMs, it is not a realistic
assumption that a single TCP flow will often be present on access links since
most common applications and web browsers use parallel connections (long-
lived or short-lived). This even more pronounced in multi-user environments

8

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

R
T

T
 (

m
s)

Target Delay (ms)

CoDel PIE ARED

(a) Per-packet RTT

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

G
oo

dp
ut

 (
M

bp
s)

Target Delay (ms)

CoDel PIE ARED

(b) Goodput at the bottleneck

Figure 2: Per-packet RTT and bottleneck’s per 5-sec TCP goodput for a single
TCP flow (RTTbase=100 ms). Bottom and top of whisker-box plots show 10th
and 90th percentiles accordingly.

such as public wired or Wi-Fi networks at hotels, airports, etc. Therefore it is
more realistic to consider the performance under different congestion levels and
traffic loads.

4.1 Parameter Sensitivity

In this section, we assess how the mechanisms under consideration fare when
varying their parameter settings. Such AQMs have two key parameters, and
their tuning affects their performance under different network conditions (see
Section 2). We investigate how they behave in scenarios with different number
of flows (i.e., different congestion levels) and RTTbase values, and for different
parameter settings for target delay and the interval.

4.1.1 Target Delay

Figure 3 shows the per-packet RTT distributions of CoDel, PIE and Adaptive
RED for lightly, moderately and heavily congested link scenarios respectively,
and for various target delay values ranging from 1 to 30 ms (such range includes
PIE’s 20 ms and CoDel’s 5 ms defaults). We define lightly, moderately and heav-
ily congested link scenarios as when 4, 16 and 64 TCP flows associated with
4 sender/receiver pairs are sharing the bottleneck, respectively (i.e., 1, 4 or 16
flows per sender-receiver pair). Since RTTbase is set to 100 ms, the difference
between values on whisker-box plots and 100 ms correspond to queuing delay at
the bottleneck. We refer to this as “queuing delay” hereafter.

Here we can make several observations: CoDel and PIE’s median, 10th and
90th percentiles of queuing delay increase proportionally to the level of con-
gestion at the bottleneck, whereas Adaptive RED better controls the median
latency at closer levels to target delay for all extents of congestion. While Adap-
tive RED’s median and percentiles of queuing delay decrease proportionally to
the decrease of target delay, PIE and CoDel’s median and percentiles don’t
exhibit a close correlation with the choice of target delay more specifically for
higher congestion levels. It is also observable that in general, and more clearly
under high congestion, PIE and CoDel show longer queuing delay distribution

9

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

R
T

T
 (

m
s)

Target Delay (ms)

CoDel PIE ARED

(a) Light

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

R
T

T
 (

m
s)

Target Delay (ms)

CoDel PIE ARED

(b) Moderate

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

R
T

T
 (

m
s)

Target Delay (ms)

CoDel PIE ARED

(c) Heavy

Figure 3: Per-packet RTT. Light, moderate and heavy congestion scenarios (4
senders and RTTbase=100 ms); bottom and top of whisker-box plots show 10th
and 90th percentiles, respectively.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

G
oo

dp
ut

 (
M

bp
s)

Target Delay (ms)

CoDel PIE ARED

(a) Light

 8.5

 9

 9.5

 10

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

G
oo

dp
ut

 (
M

bp
s)

Target Delay (ms)

CoDel PIE ARED

(b) Moderate

 8.5

 9

 9.5

 10

1 1 1 5 5 5 10 10 10 20 20 20 30 30 30

G
oo

dp
ut

 (
M

bp
s)

Target Delay (ms)

CoDel PIE ARED

(c) Heavy

Figure 4: TCP goodput at the bottleneck link (per 5-sec intervals). Light, Mod-
erate and Heavy congestion scenarios (4 senders and RTTbase=100 ms); bottom
and top of whisker-box plots show 10th and 90th percentiles, respectively.

10

tails (the difference between 10th and 90th percentiles), meaning more fluctua-
tions in RTTs. CoDel’s distribution tail length stays roughly equal for different
target values within each congestion level scenario, while PIE’s distribution tail
tend to increase with decrease in target delay when the link becomes more con-
gested. PIE in particular yields very large fluctuations in delay under load,
for small values of target delay (≤ 10 ms) (see Figure 3(c)). Adaptive RED,
on the other hand, exhibits much shorter (and also decreases with decease in
target delay) distribution tails, meaning more controlled queuing delay.

Figure 4 shows the achieved goodput of AQMs for different congestion levels
and target delays related to the scenarios in Figures 3(a), 3(b) and 3(c).

In the lightly congested scenario, Adaptive RED’s median goodput drops
to 7.38 Mbps when target delay is set to the extremely low value of 1 ms, oth-
erwise it always stays between 9.26 and 9.73 Mbps for target delays from 5 to
30 ms. This is close to PIE and CoDel’s median goodput which are around
9.46∼9.72 Mbps and 9.57∼9.73 Mbps for all target delay values respectively.
Similarly, in the moderately congested scenario, Adaptive RED achieves almost
exactly the same goodput as PIE and CoDel for all values of target delay except
for the extreme low target of 1 ms. This similarity is even more obvious in the
highly congested scenario where all AQMs yield ≈9.7 Mbps as the maximum
achievable goodput on the bottleneck link.

4.1.2 Interval Time

CoDel and PIE use an update interval time that can be adjusted from user-
space. ARED however uses a static fixed interval time of 500 ms, and therefore
we only study CoDel and PIE in this part. As explained in Sections 2.1 and 2.2,
CoDel enters its dropping state if the minimum queuing delay exceeds target
delay for a duration of one interval while PIE uses an interval (tupdate) to
estimate the current queuing delay and update the drop probability. Again
we stress the basic difference between CoDel and PIE’s interval semantics; we
vary these parameters but do not consider them to have a similar meaning. We
consider three time-granularities at which AQMs might perform: fine (5 ms),
medium (30 ms) and coarse (100 ms) relative to the RTTbase of 100 ms. This
set of values incorporates CoDel’s (100 ms) and PIE’s (30 ms) default interval
values as well.

CoDel’s dropping-mode interval Figure 5 shows CoDel’s performance when
its dropping-mode interval is set to the above values and for different levels of
congestion. While this parameter obviously controls a trade-off between delay
and goodput, the figure indicates that a smaller value than the default one
could be recommendable: for RTTbase=100 ms, using a smaller interval than
the default 100 ms leads to significant improvement in median queuing delay
(37.5%∼54.8%) while compromising 3.56% of median goodput only when con-
gestion level is light (Figure 5(b)).

PIE’s tupdate interval Figure 6 shows PIE’s performance for different values
of tupdate. As expected, PIE achieves better queuing delays with fine-grained
intervals and better goodput with coarse-grained intervals. The queuing delay’s
trend is more obvious in the lightly congested scenario but becomes less pre-
dictable as the congestion level increases (Figure 6(a)). In the lightly congested

11

 100

 110

 120

 130

 140

 150

 160

 170

 180

5 5 5 30 30 30 100 100 100
R

T
T

 (
m

s)
Interval (ms)

Light Moderate Heavy

(a) Per-packet RTT

 8

 8.5

 9

 9.5

 10

5 5 5 30 30 30 100 100 100

G
oo

dp
ut

 (
M

bp
s)

Interval (ms)

Light Moderate Heavy

(b) Goodput at the bottleneck

Figure 5: Per-packet RTT and bottleneck’s per 5-sec TCP goodput.
Varying CoDel’s dropping-mode interval (4 senders, RTTbase=100 ms and
target delay=5 ms).

scenario, PIE’s median queuing latency can be improved by 28.6% by reducing
the default tupdate from 30 ms to 5 ms while compromising only 1.86% of median
goodput (Figure 6(b)).

4.1.3 Sensitivity to Base RTT

RTTbase plays an important role for the TCP performance coupled with an AQM
mechanism. For instance, CoDel’s default dropping-mode interval allows it to
absorb a burst size of an interval worth of data, making it suitable for scenarios
when RTTbase is reasonably close to 100 ms (or lower). The authors of [32]
claim that excellent performance can be achieved for RTTbase in the range 10–
300 ms, but no evaluation results are provided to sustain this assertion. In this
part, we provide evaluation results for three common values of RTTs: 1) short
RTTs (5 ms) common for intra-city/state transfers; 2) medium RTTs (100 ms)
typical for continental and most inter-continental internet paths; 3) long RTTs
(500 ms) common for few inter-continental paths, some developing countries
and satellite links. We ran the experiments with 500 ms RTTbase for 300 sec to
capture the long-term TCP cwnd ’s sawtooth behavior while other experiments
were ran for 60 sec as explained in Section 3.1.3. We consider the queuing delay
as the difference between RTTbase and experienced per-packet RTT assuming
the processing delay is negligible.

Figure 7 shows per-packet queuing delay for different RTTbase values. It
can be observed that with most AQMs, better queuing delay can be achieved
when RTTbase is large while the goodput level deteriorates in such scenarios
(Figure 8). In these cases, the longer feedback loop causes a longer convergence
time to the available capacity and larger cwnd sawtooth for largeRTTbase, which
in turn leads to the longer periods of link under-utilization when packet drops

12

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240

5 5 5 30 30 30 100 100 100
R

T
T

 (
m

s)
Interval (ms)

Light Moderate Heavy

(a) Per-packet RTT

 8

 8.5

 9

 9.5

 10

5 5 5 30 30 30 100 100 100

G
oo

dp
ut

 (
M

bp
s)

Interval (ms)

Light Moderate Heavy

(b) Goodput at the bottleneck

Figure 6: Per-packet RTT and bottleneck’s per 5-sec TCP goodput. Varying
PIE’s tupdate interval (4 senders, RTTbase=100 ms and target delay=5 ms).

occur. It is also observable that for short RTTbase, ARED is able to achieve
significantly better queuing delay than CoDel and PIE with almost exactly the
same goodput level for all levels of congestion. For intermediate (100 ms) and
longer (500 ms) RTTbase ARED performs significantly better than CoDel and
PIE in terms of queuing delay while losing little goodput in light and moderate
congestion scenarios respectively.

5 802.11 WLANs

Today’s prevalent Wi-Fi networks remain a big challenge for controlling latency
on the Internet. This is largely due to the multi-rate behavior of 802.11 WLANs,
with bandwidth fluctuations that are caused by the rate adaptation mechanism
that reacts to noise and to some extent to contention [26, 27]. It is long known
– and confirmed by Figure 10 – that 802.11 rate adaptation can induce end-to-
end latencies in the order of hundreds of milliseconds to multiple seconds, in
particular in the presence of uplink traffic. Since much of the Wi-Fi network’s
latency is caused by channel access contention, it has – to the best of our
knowledge – not yet being investigated to what extent AQMs can play a role in
mitigating latency.

A bottleneck can emerge on an Access Point (AP)’s Wi-Fi interface, but it
can also move to the wired interface of modems/CPEs behind the AP, depending
on the traffic type and channel condition. While the location of a bottleneck
may often be hard to predict, the most interesting scenario for this evaluation
is a public Wi-Fi network common in airports, hotels and corporations where
the provided Internet bandwidth supersedes the maximum Wi-Fi bandwidth –
e.g. an 802.11g AP connected to a CPE subscribed for 100 Mbps.

In a public Wi-Fi scenario, the AP’s wireless interface can become a bottle-

13

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

5 5 5 100 100 100 500 500 500

Q
ue

ui
ng

 D
el

ay
 (

m
s)

Base RTT (ms)

CoDel PIE ARED

(a) Light

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

5 5 5 100 100 100 500 500 500

Q
ue

ui
ng

 D
el

ay
 (

m
s)

Base RTT (ms)

CoDel PIE ARED

(b) Moderate

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140
 150

5 5 5 100 100 100 500 500 500

Q
ue

ui
ng

 D
el

ay
 (

m
s)

Base RTT (ms)

CoDel PIE ARED

(c) Heavy

Figure 7: Per-packet queuing delay. Varying RTTbase at different congestion
levels (4 senders and target delay=5 ms).

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

5 5 5 100 100 100 500 500 500

G
oo

dp
ut

 (
M

bp
s)

Base RTT (ms)

CoDel PIE ARED

(a) Light

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

5 5 5 100 100 100 500 500 500

G
oo

dp
ut

 (
M

bp
s)

Base RTT (ms)

CoDel PIE ARED

(b) Moderate

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

5 5 5 100 100 100 500 500 500

G
oo

dp
ut

 (
M

bp
s)

Base RTT (ms)

CoDel PIE ARED

(c) Heavy

Figure 8: TCP goodput at the bottleneck link (per 5-sec intervals). Varying
RTTbase at different congestion levels (4 senders and target delay=5 ms).

14

neck for downlink traffic. We studied the effect of deploying AQM on an AP’s
wireless interface using real-life experiments. Figure 9 shows the per-packet
RTT and goodput of downlink traffic for different AQMs. Since the available
bandwidth varies in Wi-Fi networks, we used the maximum achievable TCP
throughput on an 802.11g in perfect transmission (27 Mbps) as a parameter to
calculate ARED’s target delay. Figure 9(a) shows that ARED achieves sig-
nificantly better latency than CoDel and PIE while it achieves less goodput
(median of 18.6 Mbps versus 20.4 Mbps and 21 Mbps for CoDel and PIE) when
the congestion level is light (Figure 9(b)). Goodput of ARED quickly improves
as the congestion level increases.

This shows that, almost similar to their performance in wired networks,
AQMs can control latency well on wireless interface when the dominant type
of traffic is downlink. This is because in downlink scenarios, few stations are
actively trying to access the channel while the AP is in charge of transmitting
all data packets, resulting in the rate adaptation to rarely trigger the use of
lower bit-rates when the channel condition is good and stable (the downlink
and uplink Wi-Fi performance has already been thoroughly investigated in our
previous works [27, 25]).

However, the presence of uplink traffic can lead to significantly high latencies
in public WLANs. Here, the channel access latency becomes the major source
of delay. Figure 10 shows the uplink performance in a mixed traffic scenario
with an equal number of uploading and downloading flows. It can be observed
that even in light congestion the median RTT increases to 440 ms∼530 ms for
all AQMs. This delay would be noticeable by the users of most interactive
multimedia applications that might compete with such TCP flows. The median
RTT increases to 1.15 sec and 1.18 sec for CoDel and ARED in the presence of
moderate congestion, and it increases further as the congestion level increases,
while PIE’s controls the median RTT to stay at an almost constant level.

A detailed investigation of the packet traces revealed the origin of this sig-
nificant increase of delay with CoDel and PIE: the downlink ACKs that are
caused by the uplink traffic share the bottleneck with the data packets at the
AQM queue (AP’s wireless interface). The AQM queue is then backlogged with
these data packets and ACKs, and frequent ACK drops by an AQM lead to
excessive end-to-end delays for the uplink traffic in addition to an already high
channel access delay that prolongs the ACK departures from the AQM queue.
This causes the AQM to react further to the accumulated ACKs in the buffer,
making TCP’s feedback loop exceedingly long.

The RTT that is measured by the TCP uplink sender gets prolonged when
ACKs at the head of the queue are dropped (CoDel). Until a timeout occurs
(which, by itself, is affected by the duration and variation of the measured RTT),
uplink data packets will be transmitted on the channel without the sender being
notified about congestion until the AP finally gets the chance to deliver one of
its ACKs (note that the AP has the same chance to access the channel as all
other stations). In this regards PIE works best, as it is the AQM that least
aggressively reacts to queue growth in our evaluations, as opposed to ARED
which drops rather aggressively.

15

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280

1 1 1 4 4 4 8 8 8 16 16 16

R
T

T
 (

m
s)

Flows per sender #

CoDel PIE ARED

(a) Per-packet RTT

 16.5

 17

 17.5

 18

 18.5

 19

 19.5

 20

 20.5

 21

 21.5

 22

1 1 1 4 4 4 8 8 8 16 16 16

G
oo

dp
ut

 (
M

bp
s)

Flows per sender #

CoDel PIE ARED

(b) Goodput

Figure 9: Per-packet RTT and TCP goodput at the bottleneck link (per 5-sec
intervals). 802.11 downlink traffic scenario for 4 senders, RTTbase=100 ms and
target delay=5 ms.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

1 1 1 4 4 4 8 8 8 16 16 16

R
T

T
 (

m
s)

Flows per sender #

CoDel PIE ARED

(a) Per-packet RTT

 24
 24.5

 25
 25.5

 26
 26.5

 27

1 1 1 4 4 4 8 8 8 16 16 16

G
oo

dp
ut

 (
M

bp
s)

Flows per sender #

CoDel PIE ARED

(b) Goodput

Figure 10: Uplink’s Per-packet RTT and TCP goodput at the bottle-
neck link (per 5-sec intervals). 802.11 mixed traffic scenario for 4 senders,
RTTbase=100 ms and target delay=5 ms.

16

6 FQ CoDel: Blending SFQ and AQM

A combination of CoDel and stochastic fair queuing has been proposed [21] and
implemented in Linux since kernel 3.5. In general, any AQM can be combined
with fair queuing mechanisms such as stochastic fair queuing (SFQ) [31]. SFQ
uses a hash function to classify the incoming packets into one of a set of flows,
and each set will be directed to a sub-queue. Each sub-queue will be shared thus
by one or more hashed TCP flows. To provide fair share of bandwidth between
each sub-queue, SFQ dequeues the packets from the sub-queues in round-robin
fashion while using FIFO/DropTail within each sub-queue.

SFQ improves performance by two means: 1) it provides fairness among sets
of flows and 2) it helps with isolating flows in the presence of non-responsive
traffic. In contrast to Fair Queuing (FQ) [15], the fairness provided by SFQ is
not always 100% and it depends on the number of TCP flows hashed to each sub-
queue. Nevertheless, SFQ is often favored over FQ because it can achieve a great
degree of fairness without requiring large amounts of memory and processing, by
keeping a limited-size hash table. In addition, SFQ ensures that the other flows
don’t get starved and improves their latency in the presence of flows that are
non-responsive to congestion. These conditions make SFQ a favorable candidate
in combination with any AQM at sub-queue level. FQ CoDel is an attempt to
mix the benefits of both SFQ and CoDel.

Figure 11 compares the per-packet RTT obtained by CoDel and FQ CoDel
when target delay is set to 5 ms and 20 ms respectively, for different numbers
of TCP flows. It can be noticed that with CoDel, median, 10th and 90th
percentiles of RTT increase proportionally as the number of TCP flows increases
(Figures 11(a) and 11(b)). On the other hand, FQ Codel manages to keep the
median and 10th percentiles of RTT significantly lower than CoDel (16%–66%
reduction in 10th percentile queuing delay and 25%–57% reduction in median
queuing delay, when target delay=5 ms).

However, it can also be noted that the upper part of the queuing delay distri-
bution tail (90th percentile) may sometimes slightly increase in some cases with
FQ CoDel (up to 13%–20% for target delay=5 ms and 6%–20% for target delay=
20 ms). This means lower queuing delay with FQ CoDel in general with occa-
sional higher delay spikes (i.e., higher jitter) compared to CoDel. We have
investigated this in further detail by observing delay changes in time. Figure 12
shows the per-packet RTT of a sample TCP flow when competing with other
flows in different congestion levels. It shows that FQ CoDel achieves a lower la-
tency than CoDel in general, at the expense of a larger jitter than with CoDel.
This trend intensifies as the congestion level increases. This can be justified
by the round-robin behavior of FQ CoDel’s dequeue function. Since FQ CoDel
serves every flow in round-robin order, packets belonging to the flow(s) that tem-
porarily have the largest sub-queue will be served the last in the system if not
being dropped, which leads to occasional higher spikes in per-packet latencies.

Overall, the use of stochastic fair queuing combined with an AQM should
improve the median latency on the access links, especially with traffic flows that
are non responsive to congestion (e.g., bursty TCP traffic, or CBR multimedia
traffic with no congestion control). Studying SFQ and AQM’s interaction with
these types of traffic is out of this paper’s scope. We aim to expand the set of
SFQ-AQM mechanisms as future work.

17

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

1 1 4 4 8 8 16 16

R
T

T
 (

m
s)

Flows per sender #

CoDel FQ-CoDel

(a) target delay=5 ms

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

1 1 4 4 8 8 16 16

R
T

T
 (

m
s)

Flows per sender #

CoDel FQ-CoDel

(b) target delay=20 ms

Figure 11: Per-packet RTT. Comparison between CoDel and FQ CoDel. 4
senders and RTTbase=100 ms.

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 20 25 30 35 40

R
T

T
 (

m
s)

Time (Sec)

fq-codel
codel

(a) Light Congestion

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 20 25 30 35 40

R
T

T
 (

m
s)

Time (Sec)

fq-codel
codel

(b) Moderate Congestion

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 20 25 30 35 40

R
T

T
 (

m
s)

Time (Sec)

fq-codel
codel

(c) Heavy Congestion

Figure 12: Per-packet RTT samples of a single flow. 4 senders,
target delay=5 ms and RTTbase=100 ms.

18

Table 5: Marking rate (with ECN) to dropping rate (without ECN) ratio (4
senders).

Flows per sender CoDel PIE Adaptive RED

1 1.256 1.156 6.621

4 1.356 1.106 3.465

8 1.719 1.591 4.303

16 6.117 6.569 3.873

7 ECN

Explicit Congestion Notification (ECN) [18] allows routers using AQM to mark
packets belonging to ECN-capable flows in case of congestion instead of dropping
them. Without ECN, a TCP sender relies on receiving three DupACKs to infer
that congestion has happened and a packet has supposedly been dropped. Since
these three DupACKs are caused by packets succeeding the dropped packet,
they must reach the receiver in the same RTT in order to avoid an extra RTT
of delay before the sender can react. Moreover, since ECN reduces packet loss,
it also reduces head-of-line (HOL) blocking delay that occurs in TCP when a
receiver misses a data chunk of an otherwise consecutive block of data, or the
significant delay that ensues when the dropped packet is a TCP SYN [28]. This
gives ECN the potential to improve the user-perceived performance of many
applications, e.g. by reducing page load times in web transfers.

Although ECN was proposed almost two decades ago and was perceived to
coexist with RED [20], it has not been deployed or turned on in most of the
Internet routers and therefore there has been little incentive for end-hosts to
use ECN. The lack of AQM deployment has also been a discouraging factor for
ECN deployment. Although most Linux implementations of the AQMs studied
in this paper provide basic ECN support, we are not aware of any investigations
of how ECN interacts with the AQMs that we consider in this paper.

The common way to implement ECN marking (as we could confirm for all the
AQMs investigated in this paper) conforms to this recommendation from RFC
3168 [37]: “For a router, the CE codepoint of an ECN-Capable packet SHOULD
only be set if the router would otherwise have dropped the packet as an indication
of congestion to the end nodes.” Marking a packet instead of dropping it lets
the packet stay in the queue until it is being served, which changes the metrics
that AQMs use to mark/drop packets – typically the queue size or queuing
delay. Hence, turning on ECN by simply marking packets that would otherwise
have been dropped without changing anything else in the AQM behavior affects
the AQM’s marking/dropping decision process, which could lead to a higher
marking/dropping probability for the same or other flows.

Figure 13 shows RTTs in a scenario with ECN-capable flows versus another
scenario without ECN. In accordance with the description above, it shows a
significant difference between the two scenarios. While ARED generally yields
a better RTT than CoDel and PIE, it is quite badly affected by ECN as the
congestion level increases. In a heavily congested scenario (16 flows per sender),
also PIE and CoDel see a more pronounced impact, as its queues are constantly
backlogged with CE-marked packets, leading to a very narrow RTT distribution
tail (Figure 13(b)).

19

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250

1 1 1 4 4 4 8 8 8 16 16 16

R
T

T
 (

m
s)

Flows per sender #

CoDel PIE ARED

(a) ECN disabled

 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250

1 1 1 4 4 4 8 8 8 16 16 16

R
T

T
 (

m
s)

Flows per sender #

CoDel PIE ARED

(b) ECN enabled

Figure 13: Per-packet RTT for ECN-capable and non-ECN flows. 4 senders,
target delay=5 ms and RTTbase=100 ms.

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

1 1 1 4 4 4 8 8 8 16 16 16

G
oo

dp
ut

 (
M

bp
s)

Flows per sender #

CoDel PIE ARED

(a) ECN disabled

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

1 1 1 4 4 4 8 8 8 16 16 16

G
oo

dp
ut

 (
M

bp
s)

Flows per sender #

CoDel PIE ARED

(b) ECN enabled

Figure 14: TCP goodput at the bottleneck link (per 5-sec intervals)
for ECN-capable and non-ECN flows. 4 senders, target delay=5 ms and
RTTbase=100 ms.

Another result of AQM’s interaction with ECN can be observed in Figure 14
where ARED’s goodput drops down significantly when the congestion level de-
creases. This is due to the aggressive dropping/marking behavior of ARED in
response to the increase in average queue size. ARED tends to CE-mark more
packets than other AQMs when average queue size grows because of enqueu-
ing already CE-marked packets. This leads to undershooting link-utilization
in light to moderate congestion levels. Table 5 provides the marking rate to
dropping rate ratio of all AQMs, showing that with ECN, ARED CE-marks
approximately 3.5∼6.6 times more packets than it drops without ECN, while
CoDel and PIE’s marking to dropping ratio stays around 1.1∼1.6 for low to
moderate congestion levels.

Based on the above observations we recommend that AQMs should modify
their dropping/marking decision process to incorporate the impact that CE-
marked packets on their measurements. This could perhaps be done by trying
to exclude CE-marked packets from all calculations – e.g. ARED could exclude
CE-marked packets from its average queue size calculation, and CoDel and PIE
could update their queuing delay measurement to exclude the delays caused by
CE-marked packets.

20

8 Concluding Remarks

Mark Twain must have thought of (A)RED when he said: “The reports of my
death have been greatly exaggerated”. Indeed, in our evaluations, ARED only
performed worse than CoDel or PIE in very few scenarios: when the number
of flows on the bottleneck link was very small; in the public 802.11 WLAN
scenario with both up- and downlink traffic, where the AP is connected to a
broadband service with bandwidths that are higher than the WLAN bandwidth;
with ECN, assuming a common implementation which only marks packets that
it would otherwise drop, but does not change anything else about the AQM
rules as ECN is turned on (which, as we have explained in Section 7, does not
seem to be a good way to use ECN).

ARED outperformed both CoDel and PIE in all other situations, and most
notably regarding the metric that these mechanisms strive to optimize: delay.
We therefore consider it a promising direction for future work to improve ARED
such that the issues above are solved, and, similar to FQ CoDel, combine it with
SFQ (SFQ RED has already been implemented in the Linux kernel).

As explained in the outset and shown in Table 1, there are only very few
published results on the performance of the AQMs discussed in this paper, and
we therefore consider our work as a first fundamental step towards a better
understanding of their performance. By its nature, such a first step has its
limitations, and so this paper only focused on bulk TCP transfers. Our plans
for future work therefore also includes more realistic traffic types, as well as
simulations to stretch environment parameters to conditions that cannot be
produced with our testbed.

9 Acknowledgement

This work was partly funded by the European Community under its 7th Frame-
work Programme through the Reducing Internet Transport Latency (RITE)
project (ICT-317700). The views expressed are solely those of the authors.

21

References

[1] Bufferbloat. http://www.bufferbloat.net/.

[2] Cisco WRED Guide. http://www.cisco.com/en/US/docs/ios/qos/

configuration/guide/config_wred.pdf.

[3] Ethtool. http://linux.die.net/man/8/ethtool.

[4] Hostapd. http://hostap.epitest.fi/hostapd/.

[5] IPFW. http://info.iet.unipi.it/~luigi/dummynet/.

[6] Minstrel. http://madwifi-project.org/browser/madwifi/trunk/ath_

rate/minstrel/minstrel.txt.

[7] PIE Linux code (Cisco). ftp://ftpeng.cisco.com/pie/linux_code/.

[8] Synthetic Packet Pairs. http://caia.swin.edu.au/tools/spp/.

[9] M. Allman. TCP Congestion Control with Appropriate Byte Counting
(ABC). RFC 3465 (Experimental), Feb. 2003.

[10] S. Athuraliya, S. Low, V. Li, and Q. Yin. REM: Active Queue Management.
Network, IEEE, 15(3):48–53, 2001.

[11] E. Blanton and M. Allman. Using TCP Duplicate Selective Acknowledge-
ment (DSACKs) and Stream Control Transmission Protocol (SCTP) Du-
plicate Transmission Sequence Numbers (TSNs) to Detect Spurious Re-
transmissions. RFC 3708 (Experimental), Feb. 2004.

[12] E. Blanton, M. Allman, L. Wang, I. Jarvinen, M. Kojo, and Y. Nishida. A
Conservative Loss Recovery Algorithm Based on Selective Acknowledgment
(SACK) for TCP. RFC 6675 (Proposed Standard), Aug. 2012.

[13] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on Queue
Management and Congestion Avoidance in the Internet. RFC 2309 (Infor-
mational), Apr. 1998.

[14] E. Brosh, S. Baset, V. Misra, D. Rubenstein, and H. Schulzrinne. The delay-
friendliness of tcp for real-time traffic. Networking, IEEE/ACM Transac-
tions on, 18(5):1478–1491, 2010.

[15] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. In Symposium Proceedings on Communications Ar-
chitectures & Protocols, SIGCOMM ’89, pages 1–12, New York, NY, USA,
1989. ACM.

[16] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Charac-
terizing Residential Broadband Networks. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC ’07, pages 43–56,
New York, NY, USA, 2007. ACM.

22

[17] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha. The BLUE Active
Queue Management Algorithms. IEEE/ACM Trans. Netw., 10(4):513–528,
Aug. 2002.

[18] S. Floyd. TCP and Explicit Congestion Notification. SIGCOMM Comput.
Commun. Rev., 24(5):8–23, Oct. 1994.

[19] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An Algorithm for
Increasing the Robustness of RED’s Active Queue Management. Technical
report, 2001.

[20] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-
tion Avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, Aug. 1993.

[21] J. Gettys. fq codel status. Presentation at the 87th IETF meeting.

[22] J. Gettys. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Com-
puting, 15(3):96, 2011.

[23] Y. Gong, D. Rossi, C. Testa, S. Valenti, and D. Taht. Fighting the
Bufferbloat: On the Coexistence of AQM and Low Priority Congestion
Control. 2013.

[24] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On Designing Improved
Controllers for AQM Routers Supporting TCP Flows. In INFOCOM 2001.
Twentieth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Proceedings. IEEE, volume 3, pages 1726–1734 vol.3,
2001.

[25] N. Khademi and M. Othman. Size-based and direction-based tcp fair-
ness issues in ieee 802.11 wlans. EURASIP J. Wirel. Commun. Netw.,
2010:49:1–49:13, Apr. 2010.

[26] N. Khademi, M. Welzl, and R. L. Cigno. On the Uplink Performance
of TCP in Multi-rate 802.11 WLANs. In Proceedings of the 10th interna-
tional IFIP TC 6 conference on Networking - Volume Part II, NETWORK-
ING’11, pages 368–378, Berlin, Heidelberg, 2011. Springer-Verlag.

[27] N. Khademi, M. Welzl, and S. Gjessing. Experimental Evaluation of TCP
Performance in Multi-rate 802.11 WLANs. In World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2012 IEEE International Sympo-
sium on a, pages 1–9, 2012.

[28] A. Kuzmanovic. The power of explicit congestion notification. SIGCOMM
Comput. Commun. Rev., 35(4):61–72, Aug. 2005.

[29] S. Liu, T. Basar, and R. Srikant. Exponential-RED: A Stabilizing AQM
Scheme for Low- and High-speed TCP Protocols. Networking, IEEE/ACM
Transactions on, 13(5):1068–1081, 2005.

[30] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of
the TCP Congestion Avoidance Algorithm. SIGCOMM Comput. Commun.
Rev., 27(3):67–82, July 1997.

23

[31] P. McKenney. Stochastic Fairness Queueing. In INFOCOM ’90, Ninth
Annual Joint Conference of the IEEE Computer and Communication Soci-
eties. The Multiple Facets of Integration. Proceedings, IEEE, pages 733–740
vol.2, 1990.

[32] K. Nichols and V. Jacobson. Controlling Queue Delay. Queue, 10(5):20:20–
20:34, May 2012.

[33] K. Nichols and V. Jacobson. Controlled Delay Active Queue Manage-
ment. Internet-Draft draft-nichols-tsvwg-codel-01.txt, IETF Secretariat,
Feb. 2013.

[34] T. Ott, T. V. Lakshman, and L. Wong. Sred: stabilized red. In INFO-
COM ’99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1346–1355
vol.3, 1999.

[35] R. Pan, B. Prabhakar, and K. Psounis. Choke - A Stateless Active Queue
Management Scheme for Approximating Fair Bandwidth Allocation. In
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings. IEEE, volume 2, pages
942–951 vol.2, 2000.

[36] R. Pang. PIE: A Lightweight Control Scheme to Address the Bufferbloat
Problem. Internet-Draft draft-pan-tsvwg-pie.txt, IETF Secretariat, June
2013.

[37] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Con-
gestion Notification (ECN) to IP. RFC 3168 (Proposed Standard), Sept.
2001. Updated by RFCs 4301, 6040.

[38] L. Stewart, G. Armitage, and A. Huebner. Collateral damage: The impact
of optimised tcp variants on real-time traffic latency in consumer broadband
environments. In L. Fratta, H. Schulzrinne, Y. Takahashi, and O. Spaniol,
editors, NETWORKING 2009, volume 5550 of Lecture Notes in Computer
Science, pages 392–403. Springer Berlin Heidelberg, 2009.

[39] J. Sun, K.-T. Ko, G. Chen, S. Chan, and M. Zukerman. PD-RED: to Im-
prove the Performance of RED. Communications Letters, IEEE, 7(8):406–
408, 2003.

[40] G. White. A Simulation Study of CoDel, SFQ-CoDel and PIE in DOCSIS
3.0 Networks. Technical Report, CableLabs, Apr. 2013.

[41] G. White and J. Padden. Preliminary Study of CoDel AQM in a DOCSIS
Network. Technical Report, CableLabs, Nov. 2012.

24

