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Introduction 

Following upon the release of Charles Darwin’s successful book On the Origin of Species

(Darwin 1859), Alfred Russel Wallace wrote The Geographical Distribution of Animals

(Wallace 1876). Both Darwin and Wallace had, through their extensive travelling and 

explorations, understood that the geographical distribution of species was determined by a 

number of factors. Not only were there climatic zones and particular ecosystems in which 

certain species would thrive, constraints on dispersal would also effectively limit species 

distribution. Much of this thinking was coupled with their even more famous work concerning

evolution and, in particular, natural selection. Wallace was among the first to put forward the 

hypothesis that species formation would occur more frequently in the presence of 

biogeographic barriers. Species distribution, the geographical confinements of species, has 

been a topic of great interest in biology ever since.

The emergence of plate tectonics theories and cladistics has been important for the 

development of biogeographical theory through the 20th century (Flessa 1980; Hallam 1981; 

Humphries 2005). The hypothesis that new lineages have appeared through history as a result 

of large-scale geological events separating environments with oceans, rivers or mountain 

ranges, is now widely accepted. It is popularly referred to as the vicariance theory, 

contrasting, but not excluding, the geodispersal theory, which relies on dispersal and gene 

flow (see e.g. Lieberman 2005 for further discussion). Traditional cladistics was based on 

geology and palaeontology as well as modern species morphology, often dealing with high 

level taxonomy. While most major findings using these methods persist as valid, modern 

methods involving molecular genetics have vastly increased the range of knowledge into 

biogeography. Exploiting the usually much higher resolution and precision of molecular 

genetics as opposed to morphology, studies of taxon distribution and phylogeny have been 

extended to deal with lower taxonomic levels as well (Hillis 1987; Avise 1989).

The inclusion of phylogeny and population genetics in biogeography brought about the term 

phylogeography. While the term first appeared in the 1970’s when the first molecular 

methods became available, it did not really draw much attention until the development of 

polymerase chain reaction (PCR) in 1984. Further method streamlining through the following 

decade (Bartlett & Stirling 2003) made molecular genetics laboratory work considerably more 

efficient. Investigations of individual and population relatedness have since then been 
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explored at an increasing pace, following the development of more sophisticated molecular 

markers.

With the ever growing sophistication of molecular genetics methods, they are increasingly 

used in an expanding number of biological fields. As a result, the volume of population 

genetics literature has exploded during the last couple of decades. Population genetics has 

been employed to better understand historical events such as ancient dispersals responsible for 

today’s biogeographical patterns, as exemplified in Paper III, recent translocations of 

individuals between populations (gene flow, discussed in Paper IV), as well as other 

evolutionary mechanisms, such as selection and genetic drift, the latter briefly dealt with in 

Paper V.

Conservation biology 

The diverse field of conservation biology can roughly be divided into two fields: The 

scientific field seeking to describe and understand causes of changes in the native species 

composition within a more or less defined geographical area, and the management field which 

aims at altering or conserving the species composition within such an area (Macdonald & 

Service 2007). For the scientific field, historical changes evident through findings of 

biological remnants, study of written material or population genetics alterations due to 

selection processes, migrations or simply population size variations, are often described. In

addition, conservation biologists also hypothesize about possible future changes in species 

compositions. Both descriptions of past and predictions of future events provide wildlife and 

nature management with tools for their work. A well-accepted view is that nature 

management should seek to conserve nature with its species composition as close as possible 

to what it was like before human interference (Hunter & Gibbs 2007). However, a certain 

degree of subjectivity is often unavoidable within this field, and it is repeatedly seen that 

species of high economical or emotional value are more likely to receive attention than less 

conspicuous species. This sometimes leads to management actions that may be beneficial to 

the species of human interest, while it can be detrimental to other species (Kjærstad & 

Arnekleiv 2011).

A rather new benefit of population genetics is its application in conservation biology 

(Macdonald & Service 2007). Species of particular conservation concern have typically low 

numbers of individuals within populations (Ellstrand & Elam 1993; Stephens & Sutherland 
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1999) and may often experience inbreeding depression (Crnokrak & Roff 1999). On the other 

hand, populations may have adapted to a particular local environment, making external gene 

flow less advantageous at the local scale (Champagnon et al. 2012; Mosca et al. 2012). These 

subjects can easily be monitored through genetic screening on a population level, 

substantiating the basis for sound management decisions.

Species invasions 

The definition of invasive species used by the European Commission (EC) is “Invasive Alien 

Species are animals and plants that are introduced accidently or deliberately into a natural 

environment where they are not normally found” (http://ec.europa.eu/). Furthermore, the EC 

emphasizes invasive species’ negative impacts on the economies of member countries.

Usually, invasive species are discriminated from species exhibiting range-shifts in that the 

latter encompass natural dispersal, in many cases facilitated by climate change (Phillips et al. 

2010; Sorte et al. 2010).

Biogeographical barriers are important limiters for species distribution, especially when

habitats separating populations are hostile. Dispersal of species across such biogeographical 

barriers may lead to large changes in the receiving ecosystem. This is because the native 

species have not evolved in the presence of the invading species, and thus may not be able to 

cope with the new levels of predation, competition or infection. Ever-increasing dispersal of 

species due to increased cargo and passenger transport around the globe leads to biotic 

homogenization in many areas of the world, many of the new species being reported to 

impose negative and sometimes detrimental effects on native species (Lodge 1993; Callaway 

& Aschehoug 2000; Rahel 2000). Some authors refer to fossil data and claim that temporal 

changes in species distribution is nothing new, but as Mooney & Cleland (2001) point out, the 

rate at which these changes have occurred in recent times has grown tremendously.

The most commonly listed criteria for a species to be termed invasive are a) the species is 

non-indigenous in the focal area, and b) the species have or will potentially induce negative 

effects on the indigenous species and/or impose negative effects on human health and welfare. 

Terms of invasive ecology are discussed further in Colautti & MacIsaac (2004). Newly

introduced species impose ecological effects on native species, ranging from positive to 

negative, the latter of which would put the tag invasive on the species (see e.g. Westman 
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2002; Wonham et al. 2005; Nakata et al. 2006; Borroto-Paez 2009; Ostermann-Kelm et al.

2009; Branch et al. 2010; Minden et al. 2010).

Freshwater biological communities are in many cases especially susceptible to negative 

effects from the introduction of invasive species. Due to water bodies’ inherent physical 

characteristics, they are, to limnic organisms, either totally separated by uninhabitable areas or 

interconnected by relatively narrow corridors that may impede migration or in fact render it 

impossible. Members of separated ecosystems often experience far less inter-specific 

competition and predation, and thus utilize a broader range of niches. In the case of a 

biological invasion, native species are more susceptible to experiencing negative impacts than 

the same species in a more complex ecosystem (Lodge 1993). Species-poor ecosystems 

usually occur in areas where limnic ecosystems have only existed for a phylogeographically

limited period, such as areas exposed after the last glacial period. However, topological 

features in many cases make human-mediated transportation of the invading species a 

requisite for an invasion. Time span since an area was transformed into a suitable habitat is 

then of less importance.

Knowledge of the historical biogeography of a species often provides important information 

for management authorities. If the species in question is a protected species or an invasive 

species, such information is often essential for making informed management decisions. In 

the case of an invasive species, such information is often crucial to prevent further dispersal. 

Estoup & Guillemaud (2010) argue that detailed knowledge of invasion routes is crucial to 

establish knowledge of the evolutionary and environmental factors required for the invasive 

species, thus providing management strategies for prevention or control of further invasions.

The minnow – a “native invader” 

In Norway, invasions of the small cyprinid fish the Eurasian minnow Phoxinus phoxinus

(hereafter minnow) have proven most negative to native fish populations where a single 

species constituted the complete native fish fauna. Often, the native species is brown trout

Salmo trutta, and the invaded water bodies consisted greatly of minnow-suitable habitat 

(Museth et al. 2007). Minnows rarely impose severe negative effects upon other fish species 

in multi-species communities (Rask et al. 2000; Taugbøl et al. 2002). This feature is common 

for most ecosystems (Lodge 1993; Mooney & Drake 1989).
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The minnow is a member of the most species-rich vertebrate family, Cyprinidae. Its total 

native distribution stretches from eastern Siberia to Spain and the British Isles, being common 

throughout large parts of the European and northern Asian continents (Borgstrøm et al. 1996;

Museth et al. 2007). The minnow is a native species to Norway. However, its original 

distribution was rather limited, confined to low altitudes in the eastern parts of the country, 

mainly in three different areas at the extremes of a continuous Fennoscandian distribution 

(Huifeldt-Kaas 1918; Museth et al. 2007; see Paper IV, Figure 1). While the exact 

boundaries of the native minnow distribution may be disputed in some areas, it shares its 

distribution with a number of other freshwater fish species. These species seem to have had a 

common post-glacial immigration wave through the Ancylus Sea and Swedish river systems

(Figure 1).

Due to significant topographic challenges, many freshwater systems in Norway could not be 

reached by any fish species. However, humans quickly started carrying live fish between 

water bodies to establish new harvestable populations. Salmonid fishes, in particular the 

brown trout, were abundant as well as being a nutritious and tasty food source, leading these

species to achieve a widespread distribution across the Scandinavian Peninsula. Such 

movement has a more than 1000-year history (Huitfeldt-Kaas 1918).

The widespread dispersal of the minnow is much more recent, and in many regions of 

Norway, the minnow is today considered an invasive species. Judging by its success in the 

newly invaded areas, the minnow’s native distribution is believed to be limited by the land 

elevation after the last glacial period rather than by its habitat requirements (Huifeldt-Kaas 

1918). Through the last half of the 20th century, stories of collapsed high mountain trout 

populations surfaced more frequently, triggering suspicions of the increasing distribution of 

the minnow into these regions to be an important factor. The minnow has expanded its 

Norwegian distribution at a rapid pace since the early 20th century and is now present in all 19

counties of Norway (Hesthagen & Sandlund 1997; Museth et al. 2007).

The minnow rarely forms dense populations within its native distribution areas where it lives 

in sympatry with a number of species, some of which often are efficient predators or 

competitors (Saltveit & Brabrand 1991). In these locations, the minnow never reach densities 

at which it imposes severe competition upon other fish species. In contrast, many of the 

introduced populations experience only limited predation since the brown trout, and 

sometimes arctic char Salvelinus alpinus, are the only species present. In addition, many 



9

mountain lakes of southern Norway are shallow, and they are typically oligotrophic, leaving 

little organic sediments to cover coarse rocky substrate. This makes a very suitable habitat for 

the minnow. Indeed, the minnow form very dense populations in many of these rather newly 

invaded lakes, making competition with existent indigenous species more likely (Museth et 

al. 2007).

Figure 1. Extent of the Ancylus Sea approximately 8-9000 BP and major immigration routes of freshwater 
organisms on the Scandinavian Peninsula. Figure modified after Økland & Økland (1999).

In 1997, Norwegian fisheries management authorities outlined a plan for the prevention of 

continued distribution of minnows (Skurdal et al. 1997), emphasizing the need for knowledge 

Saltwater

Freshwater

(Ancylus Sea)
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about dispersal history. It is widely recognized that most of the present day dispersal of the 

Norwegian minnow is exacerbated by man; however, rarely intentionally. Such man-induced 

dispersal is most probable to occur at small geographic scales – with movement from water 

body to water body at local or regional scales. However, based on available information, it

has not been possible to infer the mode of dispersal of minnow into the new areas. Due to 

incidents of European anglers being caught in the act of fishing with live minnow bait in 

Norway (Erik Garnås, freshwater fish administrator at the County Governor of Buskerud,

Norway, pers. comm.), there is a possibility that the source populations may come from 

mainland Europe. In order to investigate this, an understanding of the current phylogenetic 

relationship among European minnow populations and their post-glacial large-scale 

movements is needed. Hopefully, such information would reduce the chances of drawing false 

conclusions about the source populations for the various newly established populations.

A number of different hypotheses regarding means of dispersal have been put forward, most 

of them involving human activities. Live bait angling is efficient and has been popular among 

trout anglers in Norway (Borgstrøm 1973; Saltveit & Brabrand 1991; Taugbøl et al. 2002;

Hesthagen & Sandlund 2006). During the 20th century, travelling habits developed, making it 

easier for people to bring live bait fish from one watercourse to another. Release of live fish 

that were not used for angling could establish new populations. Hydropower development has 

been tremendous during the same period, often involving tunnel drilling between water bodies 

as well as stocking of trout as mitigation measures. Hitchhiking with stocked brown trout and 

migrations through water transfer tunnels have likely happened in quite a few locations, both 

potential sources for the establishment of new populations (Hesthagen & Sandlund 1997). A 

few cases of intentional establishment of minnow populations also exist, but they are rare

(Hesthagen & Sandlund 1997). Some also claim that dispersal by animals, e.g. waterfowl may 

play an additional role (NJFF 2012). Even though general means of dispersal for the minnow 

in Norway during the last century are well known, most often, there was no way to decipher

how and from where the minnow was introduced to a specific location.

Effects of minnow introductions 

Some studies show minnows to have a significant negative effect on other fish species, in 

particular brown trout (Brittain et al. 1988; Museth et al. 2007). Literature about the minnow 

as a competitor is scarce and, as far as can be retrieved, no studies on the subject have been 

conducted outside Fennoscandia. Particularly in locations of high fish species richness, 
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minnows seem to have little if any negative effect on trout growth and survival. While some

argue that the minnow is a serious competitor for brown trout (Borgstrøm et al. 1996;

Hesthagen & Sandlund 1997; Hesthagen & Sandlund 2004; Museth et al. 2007), others 

dispute this (Taugbøl et al. 2002).

The minnow is a small fish, rarely exceeding 10 cm in body length. It prefers cold, well-

oxygenated water and feeds mainly on benthic invertebrates. Spawning usually takes place in 

May or June, but may be delayed to July in parts of Norway. Competition for food is 

considered the main cause of trout recruitment decline in lakes where the minnow has been 

introduced, as shown in (Borgstrøm et al. 1996), especially in ecosystems originally 

consisting of one or only a few fish species (Museth et al. 2007). Considerable diet overlap 

between minnow and brown trout is found in a Norwegian mountain lake (Museth et al.

2010), but the authors discuss whether this results from forced diet overlap or abundance of 

resources, and are therefore cautious towards drawing conclusions about the degree of 

competition. Other findings from this lake, such as reduced recruitment and individual growth 

of brown trout (Borgstrøm et al. 2010), as well as density reductions of important benthic 

invertebrates, lead the authors to interpret the diet overlap as forced. Absence of alternative 

prey species and habitats means that the brown trout likely experience negative effects from 

competition with the minnow in this particular location.

In most cases involving fresh water systems, it will be difficult or impossible to eradicate 

invasive species after they have become established. Exceptions do exist, and in particular, 

the piscicide rotenone was used to eradicate invasive minnow populations inhabiting several 

small lakes on the Hardangervidda mountain plateau in South Norway around the turn of the 

millennium (Norwegian Ministry of the Environment 2007). Special focus was drawn towards 

these locations as the minnow potentially could disperse from them across the continental 

divide and invade large areas of western Norway. The minnow was absent for about ten years 

and the treatment was considered a success, but the minnow has once again invaded this area

(NJFF 2011). Eradications have typically larger success rates within small biotic 

confinements, and therefore, management measures concerning invasive species will most 

often involve actions to prevent further dispersal or to control population densities.
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Multiple introduction events 

High genetic diversity is expected to be an advantage for a pioneering species related to its 

larger potential for adaptation to new environments (Frankham 2005). However, a newly 

established population of a pioneering (or invading) species is often based on few individuals, 

highly restraining the population’s genetic diversity (Nei et al. 1975). In the case of multiple 

immigration events, especially if those events are sourced from geographically distant 

locations, the resulting genetic diversity is usually significantly increased (Dlugosch & Parker 

2008; Facon et al. 2008; Zalewski et al. 2010). The greater the genetic distance between the 

two or more source populations, the greater the resulting genetic diversity will become for the 

establishing populations. However, if local adaptations of the different source populations 

imply e.g. different timing of reproduction, the new species will either establish as two 

independent populations filling different niches, or one of them will go extinct. Such 

prezygotic reproductive barriers may lead to formation of new species and usually demand 

separation for a very long time (see e.g. Lowry et al. 2008). In most cases, prezygotic barriers 

will not exist, and multiple introductions will add to the new population’s genetic diversity.

Outline of the thesis 

Application of cross-species microsatellite amplification 

Even with the vast and rapid evolution of molecular genetics, molecular marker development 

is still considered rather costly and labour consuming, involving cloning and sequencing. In 

many cases, the development stage surpasses the actual study with respect to financial and 

occupational effort. Therefore, starting in the 1990’s, several studies have shown that flanking 

sequences of microsatellite markers often are conserved such that existing primers produce 

amplified microsatellites in related species (Primmer et al. 1996; Tong et al. 2002; Papers I

and II). Given a reasonably high success rate, cross-species amplification procedures may 

come across as a cost- and labour-effective way of establishing a set of neutral molecular 

markers.

Phylogeography and post-glacial dispersal 

Quaternary geologists have taught us that large areas of the northern hemisphere were covered 

with ice during a period of about 110 000 years ago until about 10 000 years ago (Donner 

2005). This period, termed the Weichselian epoch in Northern Europe, left all of Scandinavia 
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and northern areas of the European continent uninhabitable for most living organisms. After 

glacier retraction during the following couple of thousands of years, species moved 

northwards to establish new populations in the ever-increasing open areas (see e.g.

Reinhammar & Hedren 1998; Painter et al. 2007). Succession rates as well as availability of 

nutrition were important determinants of the speed in which species would disperse and 

establish themselves, but for many species, constraints on suitable habitats in geographically 

intermediate habitats were equally important.

Freshwater organisms have in general restricted ability to expand their area of distribution. 

Bodies of freshwater are typically separated by terrestrial areas were most freshwater 

organisms do not survive. Migrations along water courses, i.e. along rivers from one lake to 

the next, are theoretically conductable, but waterfalls often render at least upstream 

migrations challenging or impossible. During the melt-off period after the last glacial period, 

lake and river systems in northern continental Europe as well as in Scandinavia were rapidly

changing. Through damming of large water bodies by glaciers actions and the increasing land 

elevation, water runoff directions were altered repeatedly in most drainages. Thus, during this 

period, freshwater organisms had a greater possibility for dispersal through freshwater 

systems than what is the case today.

The Scandinavian Peninsula was, except perhaps for a few Nunataks, entirely covered by an 

ice sheet during the Weichselian glaciation (Boulton et al. 2001; Paus et al. 2006). All 

freshwater species now present in this area resided in various refugia during this period – and 

recent studies have identified a number of potential refugia for freshwater fishes (Nesbø et al.

1999; Koskinen et al. 2000; Østbye et al. 2005). Paper III discusses some hypotheses of 

Weichselian freshwater refugia locations based on phylogeography studies. While different 

studies (and species) produce slightly different results, general conclusions agree on some 

common areas: One refugium was present in today’s Russia, near the Ural mountain range, 

and another on the plains of central Europe. For some species, more western refugia were 

probably also present. All likely refugia that were sources of present freshwater populations in 

Northern Europe were situated not far from the edge of the ice sheet at its maximum coverage 

during the Weichselian glaciation.

The patterns and speed of species re-establishment after glacier retraction have been discussed 

in a number of studies throughout the history of written biology. Attention has been drawn 

towards both pioneer primary production species inhabiting relatively recent local glacier 
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retractions (Viereck 1966; Matthews & Whittaker 1987; Whittaker 1993; Stöcklin & Bäumler 

1996), as well as on a larger regional or even continental scale. In particular, some studies 

highlight the northward expansion of species distribution areas in North America and Eurasia 

after the last glacial period (Blackburn 1952; Einarsson 1963; Davis 1969; Likens & Davis 

1975). One common method for the latter studies has been to date findings of biological 

remnants, e.g. pollen or bones, using the 14C method. Using such data, maps of historical 

species distribution can be drawn (Wright et al. 1963; Brubaker et al. 2005). However, in the 

last twenty years or so, modern molecular genetics techniques have made possible the 

investigation of phylogeography based on relationship among present populations. Initially, 

allozymes were the preferred molecular marker (Riffel et al. 1995; Roderick 1996; Toumi &

Lumaret 1998), but methods utilizing e.g. AFLP, RFLP, microsatellites, SNP or sequencing 

of mitochondrial or chloroplast DNA have gained popularity (Verspoor et al. 1999; Eggert et 

al. 2002; Brumfield et al. 2003; Cavers et al. 2003; Timmermans et al. 2005; Krystufek et al.

2009).

Allele frequency data, such as provided by single nuclear polymorphism (SNP) or 

microsatellites, are excellent genetic markers when comparing relatively closely related 

populations due to their high mutation rate (Nei & Kumar 2000). However, microsatellites 

may impose problems when comparing populations that have been isolated from each other 

for an extended number of generations. Microsatellite mutations are rarely unidirectional; thus 

a number of mutations within an allele may lead to the exact same allele length as the original 

one, a phenomenon termed homoplasy (see e.g. Jarne & Lagoda 1996; Estoup et al. 2002).

The probability increases with the number of mutations that has happened, and thus, also with 

time since populations split, the effect levelling out at an asymptote (Garza & Freimer 1996).

Running a clustering test on a set of such distantly related populations may thus result in 

erroneous results (Goldstein et al. 1995; Coates et al. 2009). For that reason, genetic markers 

exhibiting lower mutation rates are generally preferred if the most recent common ancestors 

of the investigated populations are believed to be ancient. In such situations, mtDNA 

sequences have proven valuable, especially the more variable regions, e.g. the D-loop, cytB, 

cytC, and others. Still, care has to be taken when using these markers for phylogeny, as some 

studies find less reliable results when they are employed for more distantly related species 

(Larizza et al. 2002; Yang & Speller 2006).
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Source population assignments

The Scandinavian distribution of the minnow is typical for the earliest post-glacial immigrants 

of obligate freshwater fish species. Westwards dispersal has effectively been limited by the 

Scandinavian mountain range, running along the length of the Scandinavian Peninsula. While 

the minnow’s distribution in Scandinavia has probably been relatively stable over several 

thousand years, the 20th century has seen a rapid expansion, and particularly many 

populations have become established in the mountains of southern Norway. Local topography 

renders self-dispersal impossible, and human-induced dispersal is important in most cases.

I wanted to assign newly established populations to specific source populations. Sampling of 

potential source populations was carried out in most major watercourses of Norway holding 

native populations, as well as in many continental European populations. Paper IV presents 

my findings, which in general shows strong correlations between genetic and geographical 

distances. A few exceptions were detected; most notable was a native minnow area between 

the lakes Mjøsa and Randsfjorden in south-east Norway that has likely been the source of 

many new minnow populations.

Population genetics of newly established populations 

Six of the introduced minnow populations had a D-loop haplotype that proved to be very rare 

among Norwegian native populations, suggesting a possible foreign origin. In two of these 

populations, the common Scandinavian haplotype occurred in parallel, leading me to believe 

they were founded by multiple introductions. I investigated the minnows’ genetic clustering 

within these two lakes and compared their genetic diversity with that of introduced minnow 

populations based on single introduction events (Paper V).

Main objectives 

The main goals of the study can be summarized in three sections:

1. Establish a better understanding of phylogeography and post-glacial dispersal routes 

of the minnow, including identification of potential refuges. Emphasis was to be put 

on the history of minnow populations of the Scandinavian Peninsula.

2. Identify source populations or regions of a number of non-native Norwegian minnow 

populations.
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3. Investigate genetic differentiation or mixing in non-native populations founded by 

multiple immigration events.

Selected as the appropriate tool for the investigations, modern molecular genetics methods 

were believed to produce data through a large resolution range, and thus be able to bring me

closer to my goals. At the time I began my work on the minnow, very few molecular markers 

had been developed for this species, and the ones that were available had quite limited 

resolution. The preferred method for my work involved microsatellite genotyping, thus a set 

of suitably variable microsatellites were developed (Papers I and II).

In order to identify the potential sources for the newly established minnow populations it was 

necessary to have good background knowledge about native minnow phylogeography, 

especially at the more local Norwegian scale. This was done by sampling and genotyping 

minnows from Norway and other areas of Europe (Paper III). Based on this, the different 

hypotheses for recent minnow dispersal in Norway were investigated, by sampling and 

genotyping minnow from a large number of newly established populations (Paper IV). Local 

scale population structure of introduced minnows was studied in two lakes supporting 

populations likely based on multiple introductions from different source populations (Paper 

V). In these populations, I also looked into genetic diversity compared with that of 

populations likely based on a single introduction event.
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Summary of methods 

Population sampling 

To increase likelihood of locus polymorphism detection, samples for the cross-species studies 

were preferably chosen from sites situated far apart (Papers I and II), such as Northern and 

Southern Europe. However, for some of the species studied in Paper I, such samples were not 

obtainable.

For the post-glacial dispersal study in Paper III, tissue samples were obtained from large 

parts of the minnow’s total distribution area throughout Europe. Among the sample sites, 

central Europe, the Black Sea area, the Iberian Peninsula and the Moscow area were not 

covered by the ice sheet during the Weichselian period, and were thus potential refugia. 

Samples sites in Fennoscandia and the southern shores of the Baltic Sea, on the other hand, 

were all inhabited by freshwater fish after the Weichselian period.

To investigate more recent dispersal of the minnow in Norway, additional samples were 

obtained from water bodies in which minnow introduction had taken place during the 20th

century, i.e. non-native sites (Paper IV). Most of these sites were mountainous lakes and 

streams in southern Norway.

At an early stage in the study, two very different mtDNA D-loop haplotypes were sequenced 

among Norwegian minnows. While only one common haplotype was detected among native 

samples, both were found among non-native sites. However, only two sites, both being lakes 

located to the mountainous region of southern Norway, were found to have both sequences. 

These two lakes were sampled in detail at a later stage: Several sampling sites were identified 

in each lake, and for one of them, two upstream lakes known to contain minnows were also 

sampled (Paper V).

All populations were sampled from 1997 to 2003 using simple fish traps or backpack electric 

fishing equipment. Foreign samples were provided by fellow researchers doing field work in 

respective areas, while Norwegian samples were partly provided by other field workers, partly 

collected by myself and the co-authors of the present papers.
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Laboratory methods 

At an early stage, an approximate 250 bp sequence of the mitochondrial control region (D-

loop) was revealed to be conserved among all sampled Norwegian native minnow populations 

(constituting clade A in Paper III). This haplotype also prevailed among introduced 

populations, but a very different haplotype was sequenced from some introduced populations, 

suggesting them to originate from foreign source populations. Other haplotypes, up to twelve 

bp different from the common Norwegian one, were sampled from populations in France and 

Austria, but none of them resembled the rare haplotype. A second haplotype was later found 

in one of my sampled populations, but nevertheless, higher resolution was required to reveal 

Norwegian phylogeography.

The Cyprinidae family is the most species-rich vertebrate family, many of which are well-

studied. Different microsatellite loci reported in a number of species were tested for cross-

amplification in the minnow, as described in Papers I and II. Typically, a touchdown PCR 

procedure was employed in the testing phase, in which the annealing temperature began at the 

recommended temperature for the original species, and then reduced by 0.5 °C per cycle for 

twenty cycles. Fifteen additional cycles at this lower temperature were added, making a total 

of 35 cycles. The advantage of this method is two-sided: First, detection rate increases when 

lowering annealing temperature, making it possible to identify microsatellite loci that will 

anneal only at lower temperatures than in the source species. Repeated low annealing 

temperature may however lead to false amplification or too much noise to identify actual 

microsatellite amplification. Second, the nature of the touchdown procedure means that loci 

annealing at lower temperatures only have the potential of amplifying for a smaller number of 

cycles than those annealing at higher temperatures. Thus, among amplifications at lower 

annealing temperatures, only those that produce very clear bands will be detectable, 

decreasing both the chance of false detections as well as the risk of losing true amplifications 

to the noise floor of random segments.

In this study, further PCR optimization was required for most loci in order to produce reliable 

results and peaks of reasonably similar heights. In total, twelve loci out of 160 tested cross-

amplified and were polymorphic in the minnow. Polymorphism differed greatly among loci, 

and when amplified using minnow samples throughout Europe, they ranged from three to 60 

alleles.
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Genetic analyses 

Scoring of genotypes was performed with the software provided for the two sequencers 

involved, i.e. Genotyper 2.5 on results from the ABI377 (Applied Biosystems) and Genetic 

Profiler 1.5 on results from the MegaBACE 1000 (GE Healthcare). Mitochondrial DNA 

sequences were run on an ABI 3730 sequencer and visualised with Sequence Scanner 1.0 

(Applied Biosystems).

Alignment and phylogeny 

Due to the low resolution of the D-loop mtDNA within Norwegian populations, sequence data 

analyses were employed for the large scale phylogeography study only. Sequence alignment 

was a straightforward task, as sequences differed by no more than 24 mutational steps, i.e. 

less than 10 %. However, due to the absence of many intermediate sequences, phylogeny 

analyses were more demanding. Substitution model was selected on the basis of MrModel 

tests run on the bioportal web page (www.bioportal.no), phylogeny analyses were run on 

software packages available online, employing neighbour-joining, maximum likelihood and 

parsimony methods (www.phylogeny.fr). In addition, minimum spanning networks were 

created using TCS 1.21 (Clement et al. 2000).

Genotype data were treated in two different ways for phylogeny purposes. First, traditional 

FST-based methods comparing predefined geographical units were employed. Here I used 

FSTAT 2.9.3.2 (Goudet 1995) and GENEPOP 4.0 (Raymond & Rousset 1995a; Rousset 

2008) softwares. Second, I used a Bayesian method using Monte Carlo Markov Chain 

(MCMC) convergence. For this method, the individual is the starting point from which 

genetic clusters are constructed, possibly across sampling locations. Here, the softwares 

STRUCTURE 2.2 (Pritchard et al. 2000) and BAPS 4.0 (Corander et al. 2004) were both 

employed.

Assignment tests 

Assignment test were performed using WHICHRUN (Banks & Eichert 2000). Only 

populations from which I had a minimum of 17 individual tissue samples were included as 

potential sources. Average assignment likelihoods were calculated on a population level. Due 

to obvious bottleneck events and the loss of alleles during the establishment phase,

assignment likelihoods were in general low. For the introduced populations, I therefore chose 
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to compare relative assignment likelihoods among all potential source populations. 

Furthermore, for each introduced population, likelihood values were compared with self-

assignment likelihoods, potentially revealing the significance of the relative assignments.

Within population genetics 

Population-based genetic structure on lake/reservoir as well as watercourse level was studied 

by calculating pairwise FST values and genetic diversity (1-Qinter) with GENEPOP on the web 

and its derivatives (Raymond & Rousset 1995a; Raymond & Rousset 1995b; Rousset 2008). 

The software STRUCTURE (Pritchard et al. 2000) was employed to establish individual-

based genetic clustering.



21

Main results 

Cross-species amplification success 

Out of the 156 tested microsatellite loci in Papers I and II, 64 amplified in the minnow, 35 of 

them being polymorphic. Out of these, only twelve loci had sufficient enough quality and 

strength and unambiguous scoring to be used for population genetics analyses. Three of the

tested zebrafish loci had an overall observed heterozygosity (HO) in the range of 0.20-0.40,

while the fourth zebrafish locus’ HO was only 0.01. Among 17 tested central stoneroller 

Campostoma anomalum loci, five ended up being used after selection and optimization, their 

observed heterozygosities ranging from 0.47 to 0.88, most of them in the upper region. Two 

markers developed for the common carp Cyprinus carpio were also quite diverse with 

heterozygosities above 0.50, while the sole marker originally developed for goldfish C. 

auratus had very little diversity: HO = 0.05.

The developed set of twelve microsatellite markers proved to be an ample tool for fine-scale 

population genetics analyses (Paper IV), and it was used with success even for studies of 

within-population genetic diversity in populations founded through multiple immigration 

events. On a larger scale, clustering analyses failed to resolve European phylogeny when all 

38 native populations were included. Here, Fennoscandian samples split to three clearly 

distinct clusters, while the rest of Europe clustered together. As the D-loop haplotypes 

revealed (see below), European samples from around the continent were distinctly different 

and far removed genetically, suggesting that microsatellites are not the correct tool for large 

scale phylogeny studies on the minnow. Interestingly though, when running clustering 

analyses on all but the Fennoscandian samples, clusters are more less the same as what is 

suggested by the D-loop analyses. One noticeable exception is the Spanish sample (no. 38 in 

Paper III), which has the identical D-loop sequence as those of the Rhine drainage and the 

upper reaches of the Danube drainage, but forms a distinct cluster using microsatellite data.

Clades and clusters on a European level 

Mitochondrial DNA sequencing revealed deep splitting of European minnow populations.

Among the sampled populations, four distinct clades stand out. In central Europe, one western 

(termed C in Paper III) and one eastern (B) clade is separated with a minimum of 10 

mutations. Within these clades, haplotypes differ with up to 8 mutations. Fennoscandian 
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populations, along with one population sampled near Moscow, all have the same common 

haplotype and constitute a separate clade (A). This clade is a minimum of seven mutation 

steps removed from either of the central European clades. A fourth clade (D) consists of two 

haplotypes sampled at the same location northeast of the Black Sea. This clade is a minimum 

of six mutation steps different from clade C, and at least 10 and 13 mutation steps different 

from clades A and B, respectively. The position of haplotype 6b, sampled in River 

Lysakerelva in Oslo, southeast Norway, is somewhat unclear, and it may belong to either of 

clades C or D. I have in Paper III chosen to include haplotype 6b in clade C, due to the 

greater probability of closer relatedness with western European populations than with 

populations from Caucasus.

Norwegian minnow phylogeography 

Within Norwegian native minnow populations, clustering analyses reveal four distinct groups. 

One is restricted to watersheds draining to the Oslofjord west of Oslo; the second consists of 

populations of the Trysil and Glomma watersheds, close to the Swedish border in south-

eastern Norway, the third is a single sampling site in mid-Norway; the fourth consists of 

native samples from far north in Norway. Samples 7 through 10 in Paper IV, collected north 

and east of Oslo, did not easily cluster.

Source population assignments 

Few individuals from the sampled non-native populations assigned unambiguously to specific 

source populations (Figures 4 and 5, Paper IV). However, quite a few non-native populations 

tended to assign to one or more of the closest situated native populations. Besides that, many 

South-Norwegian non-native populations displayed relatively high assignments to native 

populations 5, 6 and 8-10. Also, a couple of Mid- to North-Norway non-native populations 

(34 and 35) assigned strongly to source populations 13-16 from the Trysil drainage, which is 

situated a long ways south.

Genetic diversity and structure of multiply introduced populations 

Both D-loop haplotypes A and B were found at all but one of a total of nine sample sites in 

the two watercourses studied in Paper V. In the Lægreid/Ørteren system, introduced 

minnows seemed to have gone through complete genetic mixing. Here, no splitting of clusters 

was detected, and pairwise FST values between sampling sites were below 0.007. In the 
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Vinstra system, the three reservoirs mainly clustered to three separate groups. However, as 

shown in Figure 1 and 4 in Paper V, the sampling site v3 clustered more closely with the 

upstream reservoir v2 than to other sampling sites in its own reservoir. None of the nine 

sampling sites showed resemblance with the potential source populations in River 

Lysakerelva and River Sørkedalselva.

Genetic diversities as calculated 1-Qinter values were on average significantly larger in native 

minnow populations than in non-native populations. However, this was not the case for those 

non-native populations in which two different D-loop haplotypes were detected, suggesting 

multiple introduction events. Indeed, non-native populations with two haplotypes had on 

average significantly higher genetic diversity than non-native populations with only one 

haplotype.
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Discussion 

Main findings 

Glacial refugia of the minnow are believed to have been in a range of freshwater bodies south 

and east of the Weichselian glacial extent. My findings suggest refugia of Baltic populations 

were in the Danube watershed region, while the Scandinavian populations were mainly 

established by immigrants from the east. Post-glacial dispersal routes from these refugia, 

following glacier retraction, were probably partially parallel with those of other cold-water 

tolerant freshwater species, such as the bullhead Cottus gobio (Hänfling et al. 2002), the chub 

Squalius cephalus (Seifertová et al. 2012), the grayling Thymallus thymallus (Koskinen et al.

2000) and the perch Perca fluviatilis (Nesbø et al. 1999).

As expected, my results did suggest that quite a few non-native Norwegian populations were 

established by nearby native populations. However, native populations sampled from one 

region in south-eastern Norway, between the large lakes Mjøsa and Randsfjorden (native 

populations 8, 9 and 10, Figure 2 in Paper IV), seemed to have a disproportionately large

probability of being sources for many non-native populations. Dispersal events over larger 

distances have likely been facilitated by human activities, like live bait angling or stocking of

fish.

There are no signs of prezygotic reproductive barriers between distantly related clades of 

minnow inhabiting common water systems. Such coexistences are probably the result of 

multiple invasions, and while there are tendencies of clear genetic structuring in one out of 

five investigated lakes/reservoirs, this is maintained by continued gene flow from an upstream 

lake. Through what may be genetic mixing of different clades, the resulting populations have 

greater genetic diversity than populations based on single event invasions.

Cross-species PCR amplification 

Cross-species amplification tests have proved to be a valuable tool for obtaining useable 

microsatellite markers in a number of taxa. The concept involves running PCR on DNA from 

a different species than the microsatellite primers were designed for, and the amplification 

success has been reported to range widely, from above 60 % within genera to below 10 % 

within classes (see Barbará et al. 2007 for a review). In many cases however, cross-amplified 
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loci turned out to be monomorphic among the focal populations and are thus worthless as 

tools for phylogenetic studies. The success rate of a cross-species amplification study relies 

heavily on the relatedness between the species for which primers were developed and the 

focal species. It is expected that amplification success rates will be higher when species 

belong to a common low taxonomic level. Despite this, some taxa seem to preserve flanking 

regions better than others. A general review of cross-species amplification studies from 

several taxa is given in Barbará et al. (2007).

Cross-species amplification successes observed in Papers I and II were comparable to similar 

studies conducted on a number of taxa. However, in a specific study on cyprinids, Dubut et al.

(2010) reported mean cross-species success rates for 41 loci as high as 95.1 % on a wide 

range of cyprinids.

In Paper II, I briefly discuss the relevance of cross-species amplification studies for 

phylogenetic analyses. However, while I find tendencies for more closely related species to 

cross-amplify, results are not conclusive. My somewhat conflicting results in this matter 

emphasize the importance of employing a sufficiently large number of markers if cross-

species amplification is to be used for phylogeny studies.

Post-glacial history of the European minnow 

Large areas of relatively lowland topography south and east of the glacial maximum were 

likely refugia for the minnow during the glaciations. As suggested by a modern topographic 

map of Europe (Figure 2), high mountain ranges such as the Pyrenees, the Alps and the 

Carpathians, restricted northwards dispersal from the Iberian Peninsula, Italy and south-

eastern Europe. Today’s Baltic Sea drainage basin covers an area southwards to the 

Carpathians and coincides largely with Poland’s borders with Czech Republic, Slovakia, 

Ukraine and Belarus, as well as Finland’s and the Baltic countries’ borders with Russia and 

Belarus. While some watershed boundaries coincide with high mountain ranges, others are 

elevation maximas in otherwise relatively flat landscapes, and post-glacial migrations may 

very well have taken place across such boundaries.

Based on the theory of molecular clocks (Zuckerkandl & Pauling 1962), minnow populations 

in central Europe diverged before the Weichselian glaciation, but probably during the epoch 

of Pleistocene glaciations. Due to clear divergence among geographically closely situated
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populations, there are reasons to believe that divergence could be large also in other glacial 

refugia for the minnow. A much less hilly topography in Ukraine and Russia than in central 

Europe may however have allowed higher gene flow across larger areas, restricting genetic 

divergence. The main Fennoscandian minnow clade (clade A in Paper III) originated with 

high certainty from areas east of the glacial maximum, but due to only one sampled 

population in this potential source region, the exact refugium cannot be pinpointed. It remains 

uncertain if clade A distribution covers larger areas in Russia (and surrounding areas).

Figure 2. Topographic map of Europe. The map is collected from Wikimedia Commons, created using the 
Generic Mapping Tools (http://gmt.soest.hawaii.edu/). Dashed lines denote approximate Weichselian glacial 
maximum, a modification of the original map.

The rare Fennoscandian haplotype (6b in Paper III), is suspected to originate from land areas 

surrounding the English Channel, either in England or France. This assumption is based on 

the quite distant relatedness of at least six mutation steps from clade C, which inhabits the 

Rhine and upper Danube tributaries, and the lack of samples from Great Britain and western 

France. Furthermore, Nesbø et al. (1999) argue that perch, a species with a distribution very 
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similar to the minnow, may have immigrated from the south to the Scandinavian Peninsula

through freshwater drainages across a temporary post-glacial land bridge, an area now 

covered by the North Sea. Confusing enough, haplotype 6b is also six mutation steps removed 

from clade D, sampled in the north Caucasus region, within the Black Sea drainage. Post-

glacial dispersal to Fennoscandia from areas closer to the Black Sea was not highly unlikely 

due to the mostly flat topography of the continent between the Black Sea and the Baltic Sea, 

but as far as today’s literature on freshwater fish post-glacial dispersal is concerned, no other 

species have undergone dispersal along this route. Therefore, I believe that the glacial 

refugium of populations with the 6b haplotype was in an area not covered by my sampling 

scheme. In any case, more sampling of native populations, both in Norway and continental 

Europe is needed to pinpoint the origin of this unique haplotype.

Post-glacial history of the Norwegian minnow 

Post-glacial Fennoscandian immigration of freshwater species started soon after the first melt 

water rivers appeared along the coast, providing habitat for species tolerant of saltwater and 

low temperatures. In particular, species such as salmon Salmo salar, brown trout, arctic charr

Salvelinus alpinus and three-spined stickleback Gasterosteus aculeatus were among the 

pioneering species. While the minnow certainly is cold water tolerant, it does not survive 

particularly high salinities (Kottelat & Freyhof 2007), meaning that the species immigrated to 

the Scandinavian Peninsula from the east through the Ancylus Sea. The minnow was, along 

with grayling, pike Esox lucius, perch Perca fluviatilis, whitefish Coregonus lavaretus, nine-

spined stickleback Pungitius pungitius and burbot Lota lota among the first fish species to 

immigrate fresh waters in this region (Huitfeldt-Kaas 1918). The Scandinavian mountain 

range runs along almost the entire length of the Scandinavian Peninsula, making most rivers 

too steep for upstream fish migrations. While the highest and steepest mountains are situated 

in Norway, the mountain range includes the western parts of Sweden’s northernmost two 

thirds extent, stopping fish migrations before crossing the border. However, south-eastern and 

north-eastern parts of Norway have always been relatively smooth lowlands, and the first 

freshwater species that immigrated to the Scandinavian Peninsula through the Ancylus Sea 

were thus able to reach that far. Continued land elevation following glacier retraction 

prevented species of later immigration waves from reaching as far west or north.

Within Norway, a rare haplotype (6b in Paper III) have a distinctly different origin than the 

common clade A. While a specific Weichselian refugium for the 6b haplotype is not clear, it 
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is not unlikely that the only native 6b population sampled was founded by immigrants from 

the south, i.e. north-western continental Europe. The 6b haplotype is too different from any of 

my sampled potential source populations to pin-point a refugium, and the microsatellite data 

are generally too fine-scaled to resolve phylogeography on a European scale. Immigration 

from the continental North Sea coast or the English Channel region however, cannot be ruled 

out.

The minnow populations in Norway are structured into four main clusters, relating to post-

glacial immigration (Paper III). All Norwegian populations belonging to clade A have 

probably an eastern origin and immigrated through the Ancylus Sea and Swedish rivers after 

glacier retraction. Due to today’s genetic clustering into regions, each encompassing non-

connected watercourses, there is reason to believe that the minnow did not undergo complete 

mixis in the Ancylus Sea. Rather, the minnow dispersed in temporally and/or geographically 

non-overlapping waves through the Ancylus Sea from a number of glacial refugia, or the huge 

distances within the Ancylus Sea slowed down or prevented genetic mixing. Both scenarios 

would lead to regional clustering in Norway.

None of the four clusters seemed to share close ancestry with foreign samples, not even with 

the Moscow sample belonging to clade A. The three eastern clusters have probably 

immigrated from east, through the Ancylus Sea. These clusters are geographically distributed 

so that they correlate well with post-glacial topography and drainages. E.g. native samples 11-

16 cluster together, even if they consist of samples from two separate large drainages, Trysil 

and Glomma. Shortly after deglaciation, both rivers drained to a bay of the Ancylus Sea,

which today is Lake Vänern in Sweden, explaining this genetic cluster. River Glomma took 

later a different course to run into the ocean in south-eastern Norway. The sampled mid-

Norwegian population constituted a separate genetic cluster, as did native samples from 

Finnmark in northern Norway.

Fluctuating climate during the epoch of the Ancylus Sea, as well as differing glacial refugia 

and continued land elevation, limited the dispersal possibilities of later immigrants. It is 

generally believed that the native distribution of the eastern freshwater fish immigrants on the 

Scandinavian Peninsula correlates with timing of immigration. Earlier immigrants got further 

west and north and inhabited several areas along Norway’s north-south axis, while later 

immigrants reached no further than south-eastern Norway (Figure 1). Without speculating too 

much, the theory of parallel immigration of many freshwater fish species should not be ruled 
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out. The Ancylus Sea was a huge lake, and differing temperatures within its water body, 

especially between north and south, may have facilitated the immigration of different species 

of fish to the different parts of the peninsula.

Identifying source populations and current dispersal routes 

The last century or so, Norway has experienced a tremendous dispersal of the minnows to 

non-native waters. Most new populations have established in mountain lakes and slow-

running streams, far from the minnow’s native distribution areas. Given the distances and the 

elevation of the new habitats, human-induced dispersal is a probable explanation. There are 

several hypotheses of dispersal means, but live bait angling and fish stocking remain the most 

viable ones. To better understand dispersal mechanisms, I investigated relatedness among 

minnows from native and non-native populations, both on an individual and on a population 

level. In addition, specific assignment analyses were performed to pinpoint source populations 

or regions.

Assignment values suggest that genetic and geographic distances between non-native and 

native minnow populations are correlated, but nonetheless, an overwhelmingly large number 

of the sampled non-native populations assigned to a group of potential source populations 

sampled in an area between lakes Mjøsa and Randsfjorden (Figure 4, Paper IV). However, 

this figure presents relative assignment values among all sampled potential source 

populations, and the absolute values are in many cases very low. When compared with self-

assignment values, only a few non-native populations remain high and thus show clear signs 

of relatedness (Figure 5, Paper IV). Nonetheless, many non-native populations seem to 

originate from this particular region. In addition, introduced populations 34 and 35 assigned 

clearly to native populations of the Trysil drainage (14, 15 and 16), situated several hundred 

kilometres south, making another exception from the usual geographic and genetic 

correlation.

Genetic diversity – a competitive advantage? 

I hypothesized that no genetic structuring would be evident in the two investigated 

watercourses in Paper V, even if two very different D-loop haplotypes were detected. In one 

of the investigated reservoirs, however, there were tendencies of clear genetic structuring, 

probably maintained by continued immigration from an upstream lake. Here, pairwise FST
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values between the upstream lake and respective sampling sites in the downstream lake were 

strongly correlated with distance (Figure 3, Paper V). I conclude therefore that the observed 

structuring is not a consequence of reproductive barriers, but of the continued gene flow 

acting strongly on one part of the population. With time, the downstream population will 

likely homogenize as its genetic composition evolves and gets more similar to that of the 

upstream population.

There is considerable theoretical as well as empirical evidence of the benefits of phenotypic 

plasticity or genetic diversity of a population when facing an unstable or unpredictable 

environment (see e.g. Gibbs & Dyck 2009, Jacobs & Latimer 2012, Tan & Gore 2012 for 

discussions). After immigrating to a new environment, the founding population usually go 

through a considerable genetic bottleneck, removing much of the genetic diversity of the 

source population (Allendorf & Lundquist 2003). It used to be general consensus that this loss 

of genetic diversity may prevent or at least slow down the adaptation of an invasive (or 

pioneering) species (Nei et al. 1975). However, more recent studies have taken into account 

the effects of multiple (or repeated) invasions of a species into a new habitat. Through 

multiple invasions from a common source, a larger selection of the available alleles will 

persist in the new population, hence reducing bottleneck effects. More importantly, when an 

introduced population originate from different sources, the resulting mixed population may 

display an even larger genetic diversity than either of its source populations (See e.g. Kelly et 

al. 2006 for a discussion), possibly leading to heterosis, the competitive advantage of hybrids 

(Birchler et al. 2010). On the other hand, some authors argue that such genetic mixing may 

lead to outbreeding depression (Tymchuk 2007; Jourdan-Pineau 2012).

While I have no actual fitness measurements to correlate with genetic divergence estimates, I

found that those non-native populations that had both haplotypes A and B (Paper V)

displayed significantly higher genetic diversity than those that had only one haplotype. In fact, 

genetic diversities of the former were on par with those of native populations. Bottleneck tests 

and estimates of effective population sizes did not provide much basis to estimate the number 

of settlers that first arrived. However, many of the non-native populations are found in quite 

remote mountainous areas of Norway, implying that whatever the means of dispersal, the 

initial number of individuals were small. Therefore, the genetic diversities observed in the 

multiply introduced populations is rather interesting, and I conclude in Paper V that while it 

is important to prevent further dispersal of an invasive species, management authorities 
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should also implement measures to avoid continued gene flow into populations of invasive 

species. By denying continued gene flow into the system, the bottlenecked population of the 

invasive species may impose a lesser threat to the existing biota.
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Epilogue

Hundreds of runs through the STRUCTURE software (Pritchard et al. 2000) reveal the 

importance of including a sufficient number of iterations. In a recent paper, Gilbert et al.

(2012) present suggestions for guidelines using the software as well as for the interpretation 

method in Evanno et al. (2005). It is stressed that the number of burnin iterations and MCMC 

repetitions are high enough, and that repeated runs for a dataset will increase the likelihood of 

obtaining the correct number of clusters (K). Depending on the complexity of genetic 

structuring of the included individuals, a premature abortion of a STRUCTURE run may give 

a completely different result than a longer run due to the likelihood of a specific value of K

fluctuating erratically during a run’s first phase (Figure 3). In any case, such situations often 

reflect complex genetic patterns adding to the picture, rather than opposing results. Typically, 

obtaining a lower likelihood value of a particular K when more iterations are run, favouring a 

higher value of K, is likely due to a further subdivision of existing clusters. While conclusions 

of differing phylogenetic division depths can be deciphered from this, it can never serve as a 

substitute for adequate sampling and genetic marker choice.

Figure 3. Hypothetical development of loglikelihoods for four different a priori values of K through the 
iterations of a STRUCTURE run.
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In the case of the Norwegian minnow, phylogeographic relationships between native and 

introduced populations seem to be obscured by a combined action of multiple introductions 

and bottleneck events. Most introduced populations reveal probable regions for their origins, 

but precise dispersal patterns remain unclear. More thorough population sampling and 

development of additional markers can perhaps produce more tangible conclusions, but for 

most introduced populations, pinpointing of specific source populations will remain 

challenging.

Invasion biology is a rapidly growing field, being fuelled by ever increasing international 

travelling and goods trade. The importance of genetic diversity and evolution for a species’ 

survival success in its native or new habitat has earned increased attention, and many modern 

ecological studies involve such considerations. In this thesis, such effects are only 

superficially treated, but it is of my belief that species- and population-specific knowledge of 

these subjects will play an important role in future management of invasive species.
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Abstract
Background: To conduct phylogeographic or population genetic studies, an adequate number of
DNA markers for the focal species are required. Due to severe unavailability of genotype markers
of any kind for the species Eurasian minnow (Phoxinus phoxinus L.) and rudd (Scardinius
erythrophthalmus L.), we set out to attempt cross-amplification of a set of microsatellite loci from
related species.

Findings: We tested 36 cyprinid microsatellite loci for cross-species amplification in minnow and
rudd. Fifteen species-locus combinations produced amplifications in minnow, seven being
polymorphic, while 18 combinations amplified in rudd, nine of these being polymorphic.

Conclusions: The positive cross-species amplifications present potential contributions to the
establishment of genetic marker sets for population genetics studies of the two focal species.

Findings
Microsatellites are widely used for population genetics
purposes, especially when the scope of the study involves
comparing closely related individuals. This is mainly due
to their high mutation rates and to the potential of acquir-
ing large amounts of data through relatively labour-thrifty
multi-marker panel runs on capillary electrophoresis
sequencers. However, utilization of microsatellites
demands knowledge about their flanking sequences gen-
erated through library construction and/or PCR cloning
approaches [1] to construct adequately sized annealing
primer pairs. The flanking regions of microsatellites usu-
ally mutate at a much slower rate than the microsatellites
themselves and will in many cases be identical across a

species' range of distribution. They may even be conserved
well enough through evolution to serve as primer tem-
plates for closely related species (see e.g. [2-4]).

The diverse family Cyprinidae, the most species-rich fam-
ily of all vertebrates, has been paid only limited attention
in population genetics studies. In the few studies availa-
ble, the primary focus has been on a few species that have
shared the status of being either commercially important
or popular game fish; exemplified by studies on common
carp (Cyprinus carpio L.) [5-7], goldfish (Carassius auratus
L.) [8], European chub (Leuciscus cephalus L.) [9] and the
genetic model species zebrafish (Danio rerio Hamilton)
[10]. Therefore, for the great majority of cyprinids genetic
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markers are unavailable. In an earlier study, Holmen et al.
[4] established a platform for optimization of microsatel-
lite markers for six different cyprinids based on cross-spe-
cies amplification of markers that initially were developed
for D. rerio and central stoneroller (Campostoma anomalum
Rafinesque). In this subsequent study, the platform was
extended for two of the six species; Eurasian minnow
(Phoxinus phoxinus L.) and rudd (Scardinius erythrophthal-
mus L.). We tested 36 microsatellite loci developed for the
five cyprinid species fathead minnow (Pimephales promelas
Rafinesque) [11], silver barb (Barbonymus gonionotus
Bleeker) [12,13], common carp (Cyprinus carpio carpio L.)
[14], Anaecypris hispanica (Steindachner) [15], and gold-
fish (Carassius auratus auratus L.) [16] for amplification of
minnow and rudd DNA. Primer design incorporated the
original primers with the addition of GTTT to the 5' end
of one primer of each pair facilitating reasonably consist-
ent adenylation of the 3' end of the forward primer [17]
(see Additional file 1). We tested two samples of each
focal species, yielding a total of 144 PCR reactions. To
ascertain the polymorphism of a potential microsatellite
locus, it is advisable to include more than only two sam-
ples of the focal species; however, we selected samples
from populations situated far apart to increase the proba-
bility of polymorphism detection; minnow samples were
from Norway and Spain, rudd from Norway and Italy.

We extracted genomic DNA from ethanol preserved fin
tissue using a salt extraction protocol outlined by Aljanabi
& Martinez [18]. Further, we performed PCR reactions on
MJ Research PTC-100/PTC-200, Techne or Biometra ther-
mal cyclers. In the total volume of 10 �l, PCR reactions
contained 20-100 ng genomic DNA, 20 �M dNTP, plus 1
�M fluorescently labelled dUTPs (R110, R6G or TAMRA
FdUTP; Applied Biosystems), 0.5 �M of each primer, 1×
BioTaq buffer (160 mM (NH4)2SO4, 670 mM Tris-HCl,
0.1% Tween-20; all buffer concentrations), 1.5 mM
MgCl2, and 0.1 units of BioTaq DNA polymerase (Bio-
line). PCR protocols were constructed with annealing
temperatures and durations of incubations from pub-
lished recommendations for the source species in mind.
However, all PCR reactions were transformed to 'touch-
down' procedures; starting with a relatively high anneal-
ing temperature, gradually decreasing it for each cycle and
eventually keeping a fixed annealing temperature for a
number of cycles towards the end. Details of the PCR pro-
tocols for all markers are given in Additional file 1.

PCR products were pooled with a loading buffer and size
standard mix (MegaBACE 10× Running buffer and Mega-
BACE ET400-R Size Standard, GE Healthcare, formerly
Amersham Biosciences) and electrophoresed using a Meg-
aBACE 1000 sequencer (GE Healthcare). Genotypes were
scored using Genetic Profiler 1.5 (GE Healthcare). Scoring
results were classified according to their amplification
quality level, as outlined in Primmer & Merilä [19]: 1: 1 or

2 alleles observed in a single individual, with little stutter-
ing observed; 2: 1 or 2 alleles, moderate stutter; 3: 1 or 2
alleles, considerable stutter; 4: multiple bands and/or
smear; 5: no amplification. Due to the possible confusion
between true microsatellite alleles and other amplifica-
tions, bands having no trace of a weaker band one repeat
below were included in category 4, even when only one or
two bands were observed. Note that no positive controls
were used in these runs.

Thirty-three out of the total of 72 heterologous locus-spe-
cies combinations resulted in products of amplification
quality 3 or better (Table 1). Of these successful combina-
tions, 15 (seven polymorphic) were recorded for minnow
and 18 (nine polymorphic) for rudd. Interestingly, all
eight successful amplifications with C. carpio loci were
polymorphic for both target species, while only 24% of
the remaining amplifying loci were polymorphic. Average
amplification successes in Holmen et al. [4] were 40% in
rudd and 49% in minnow, while the corresponding fig-
ures in the current study were 50% and 42%, respectively.
Some of the amplified loci were later optimized for popu-
lation genetics studies in minnow (Holmen et al., in
prep.), the selection being based on the number of alleles
revealed in this study, amplification quality, and, in order
to fit into an already half completed panel, the size range
in which alleles appeared. Thus, only MFW1, MFW17,
and GF11 have been further optimized and amplified in
1660 minnows from 72 sampling sites across Europe
(Table 2). These three loci produced reasonably strong,
unambiguous peaks after some optimization, and were
included in the population studies. However, GF11
proved to exhibit very little variation; in fact it was mono-
morphic in 55 sampling sites, and thus the amount of
genetic information from this locus was very limited.
Within-population deviations from Hardy-Weinberg
equilibrium were tested for using Genepop [20,21]. For
these tests, only those 44 sampling sites that consisted of
at least 17 individuals were included. MFW1 was poly-
morphic for all of these sampling sites, while MFW17 was
polymorphic in all but one. For these two loci, none and
one, respectively, of the samples deviated from Hardy-
Weinberg equilibrium at the Bonferroni-adjusted 0.05 sig-
nificance level. For GF11, only eleven samples were poly-
morphic, and out of those one was in Hardy-Weinberg
disequilibrium. To specifically test for the presence of null
alleles, ML-NullFreq [22] was employed. Using the Bon-
ferroni-adjusted 0.05 significance level, one and four out
of the 44 samples indicated the presence of null alleles in
MFW1 and MFW17, respectively. For GF11, six out of the
eleven polymorphic sampling sites indicated the presence
of null alleles, further emphasizing the limited value of
this locus in population genetics studies. Unfortunately,
further information of the tested loci is presently unavail-
able for S. erythrophthalmus.
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The likelihood that primer pairs developed for one species
should amplify in a second species is higher the more
closely related the two species are. On that general basis,
one can assume the relative success rate among a number
of cross-species amplification attempts. Cyprinidae taxon-
omy is rather complex. Although the family has tradition-
ally been organized into several subfamilies, each
comprising one or more lineages which in turn include a
number of genera, and most lineages and genera are gen-

erally accepted as being monophyletic, there is contro-
versy regarding the monophyly of some subfamilies [23].
Thus, we had few obvious expectations regarding amplifi-
cation successes in the present cross-species study. S. eryth-
rophthalmus, P. phoxinus, P. promelas, and A. hispanica all
belong to the subfamily Leuciscinae, but Hänfling &
Brandl [24] considered the genus Phoxinus to be a sister
taxon to a Leuciscinae-Alburninae lineage. C. carpio, C.
auratus, and B. gonionotus all belong to the Cyprininae

Table 1: Details of cross-species amplification of 36 cyprinid microsatellites in P. phoxinus and S. erythrophthalmus

Focal species

Source species Locus Repeat motif P. phoxinus S. erythrophthalmus

A Size (bp) Q A Size (bp) Q

Ppr101 AC 0 - 5 1 395 1
Ppr102 AC 0 - 5 0 - 5
Ppr103 AC 0 - 5 0 - 5

P. promelas Ppr104 AC 1 122 2 0 - 5
Ppr105 AC 0 - 4 1 222 1
Ppr106 AC 0 - 4 0 - 5
Ppr107 ACAG 1 200 2 1 266 1

Bgon8 AC 0 - 5 2 138-178 2
Bgon13 GT 0 - 4 0 - 5
Bgon17 AC 1 149 3 0 - 5

B. gonionotus Bgon22 TCC 0 - 5 4 103-151 3
Bgon69 TG 0 - 5 1 260 2
Bgon75 AC 1 78 3 0 - 5
Bgon79 CA 0 - 4 3 154-208 2

MFW1 CA 4 166-226 2 3 172-178 2
MFW5 CA 0 - 5 2 103-107 2
MFW17 CA 2 191-195 1 2 183-187 2

C. carpio MFW18 CA 0 - 5 0 - 5
MFW19 CA 2 222-226 2 4 191-203 2
MFW24 CA 2 137-161 2 0 - 5
MFW28 CA 0 - 5 0 - 5

II04 GT 0 - 5 0 - 5
IV04 CA* 0 - 5 1 168 3
IV34 CA* 1 108 1 1 109 1
IV46 TG* 0 - 5 0 - 5

A. hispanica X44 CA* 1 148 2 1 148 2
XII02 CA* 1 88 2 0 - 5
XIII40 GT* 0 - 4 0 - 4
XIV13 GT/GA* 0 - 5 0 - 4
XIV31 CA* 2 93-149 2 2 93-147 2
XV28 CA* 0 - 5 2 160-172 3

GF1 TG 2 90-226 1 0 - 4
GF11 TG* 3 149-161 2 1 161 3

C. auratus GF17 TG 1 114 1 0 - 5
GF20 TG 0 - 5 0 - 5
GF29 TG* 0 - 5 1 109 1

Number of alleles recorded (A), size (bp), and quality of the amplified product (Q: 1, little stutter; 2, moderate stutter; 3, considerable stutter; 4, 
multiple bands or smear; 5, no amplification) are given. Asterisks denote non-continuous repeat motif sequences.
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subfamily. P. promelas and A. hispanica loci were thus
expected to amplify with a reasonably high rate in S. eryth-
rophthalmus and slightly lower in P. phoxinus, and indeed,
the success rates, defined as the proportions that produced
peaks with amplification quality 3 or better, were 43%
versus 29% and 50% versus 40% in favour of S. erythroph-
thalmus for the two source species, respectively. Loci from
the Cyprininae subfamily were expected to produce a
lower success rate in both target species. This was not the
case, however, as amplification success ranged from 29%
to 57%. Notably, the number of loci examined is too low
for any differences observed to be statistically significant.
The results should therefore not be regarded as a contribu-
tion to the lineage discussion within Cyprinidae.

The present and our previous study [4] points out the use-
fulness of cross-species amplification of microsatellites in
Cyprinidae to establish markers for population genetics
studies. More specifically, the findings in these two papers
have provided the authors with a useful set of markers for
phylogeography and population genetics studies of the
minnow and will hopefully contribute to fellow research-
ers' related work as well.
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