
UNIVERSITY OF OSLO
Department of Informatics

A Parallel Front
Propagation
Method
Simulating geological
folds on parallel
architectures

Master thesis

Mohammed Sourouri

Spring 2012

A Parallel Front Propagation Method

Mohammed Sourouri

Spring 2012

ii

ABSTRACT

Static non-linear Hamilton-Jacobi equations are often used to describe a
propagating front. Advanced numerical algorithms are needed to effi-
ciently compute solutions to these non-linear equations. In geological
modelling, layers of rocks can be described as the position of a propa-
gating front at different times. A fast simulation of such layers is a key
component in exploration software developed by Kalkulo AS for Statoil
AS. Developing fast algorithms and solvers is essential in this application,
since faster solvers enables users to test more geological scenarios, leading
to a better understanding of the inner earth. Front propagation is also used
in other applications, such as reservoir simulation, seismic processing and
medical imaging, making a fast algorithm highly versatile.

The recent years rise of parallel architectures has made substantial
computational resources available. One way to originate faster solvers
is therefore to develop algorithms that are able to exploit the increasing
parallelism that these architectures offer. In this thesis, a novel three-
dimensional anisotropic front propagation algorithm for simulation of
geological folds on parallel architecture is presented. The algorithm’s
abundant parallelism is demonstrated on multi-core CPUs and GPU
architectures. Implementation on multi-core architectures is achieved by
using the OpenMP API, while the Mint programming model is used to
facilitate with the GPU programming.

We demonstrate 7x to 2x speedups running on the Nvidia GeForce GTX
590 GPU, compared with a multi-threaded implementation on a NUMA-
machine using two interconnected 12 core AMD Opteron processors.
These results point to enormous potential performance advances of our
algorithm on parallel architectures.

iii

iv

Contents

Glossary xv

1 INTRODUCTION 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Document organization . 3

2 BACKGROUND AND OVERVIEW 5
2.1 Differential Equations and Solution Approximation Methods 5
2.2 Partial Differential Equations 5
2.3 Solution methods . 6
2.4 The Finite Difference Method 6
2.5 The Finite Element Method 7
2.6 Wavefront Propagation . 7
2.7 The Eikonal Equation . 9
2.8 Summary . 10

3 PARALLEL COMPUTING 11
3.1 The Shift Towards Parallel Computing 11
3.2 Modern CPU Architecture . 12
3.3 Graphics Processing Unit . 13

3.3.1 Modern GPU Architecture 14
3.4 Nvidia CUDA Framework . 16
3.5 Open Computing Language 18
3.6 Open Multi-Processing . 18
3.7 An Automated C to CUDA C Translator and Optimizer . . . 20

3.7.1 The Mint Programming Model 20
3.7.2 Performance . 22

3.8 Summary . 23

4 NUMERICAL METHODS FOR THE EIKONAL EQUATION 25
4.1 Numerical Methods . 25
4.2 Fast Marching Method . 25

4.2.1 Algorithm Description 26
4.2.2 Implementation details 27

v

4.2.3 Similarities with Dijkstra’s algorithm 28
4.2.4 Performance . 28

4.3 Fast Sweeping Method . 29
4.3.1 Algorithm description 29
4.3.2 Implementation details 30

4.4 Partially Ordered Iterative Methods 31
4.5 Summary . 33

5 A PARALLEL FRONT PROPAGATION METHOD 35
5.1 Geological Fold Simulation 35
5.2 A Comparison of Different Algorithms 37
5.3 3D Parallel Marching Method 39
5.4 Multi-core Implementation 41
5.5 GPU Implementation . 42
5.6 Summary . 45

6 RESULTS AND DISCUSSION 47
6.1 Performance Measurements 47
6.2 System Information . 48
6.3 Compiler and Package Information 50
6.4 CPU Performance Results . 50
6.5 NUMA optimizations . 51
6.6 GPU Performance Results . 54
6.7 Mint Performance Analysis 55
6.8 Discussion . 58
6.9 Summary . 60

7 FUTURE WORK AND CONCLUSION 61
7.1 Future Work . 61
7.2 Algorithmic Extensions . 61
7.3 GPU Optimizations . 62
7.4 Targeting Future Platforms . 63
7.5 Conclusion . 64

A 65

B 75

vi

List of Figures

2.1 An expanding wave front with F > 0 in its normal direction. 8
2.2 A differential equation for the time of arrival is formulated

using the fact that distance = speed · rate. 9

3.1 Two multi-core CPUs from Intel and AMD respectively. (a)
has six cores (hex-core), while (b) has eight cores (octo-
core). Each Bulldozer-module consist of two cores. The
HyperTransport connections can also be seen in (b). Image
(a) courtesy of Intel Corporation. Image (b) courtesy of AMD. 12

3.2 A heterogeneous computing model: the GPU device is con-
nected to the host CPU through the PCI Express bus. Data
to be computed on the device must be explicitly transferred
from the host to the device. Once the computation is fin-
ished, data is transferred back to the host from the device. . 14

3.3 A simplified block diagram showing Nvidia’s latest GPU
architecture called Kepler. There are eight streaming
multiprocessors (SMX) on a Kepler die. Each SMX consists
of four warp schedulers and 192 stream cores. All cores
have access to 64KB L1 Cache/Shared memory. 15

3.4 The anatomy of a typical CUDA application. The CPU part
of the code is executed as normal, but as soon as a kernel is
invoked, the execution is performed on the device. Kernel
launches are associated with generation of a large number
of threads. Threads generated by the kernel are collected in
a grid. 17

3.5 The OpenMP fork-join model showing a process forking
and joining four threads. 19

3.6 A diagram showing the core building blocks of the Mint
translator. Pragmas are first handled by the Pragma
Handler. Once the pragmas has been verified to be correct,
queries from the Baseline Translator is done to translate a
region of code to the device. The last step constitutes of
optimizing translated code. Figure used with permission
from [50] . 21

vii

4.1 From left to right: in a sweeping method, the domain
is iterated in specific directions. The figure series shows
how the domain is gradually revealed after being swept
until convergence (rightmost figure), for the problem of
computing the distance field to a point in the middle of the
domain. 30

4.2 The Eikonal equation solved with FSM on a uniform grid
with 65 × 65 nodes. All domain borders were initialized
with the value 0, and the velocity is constant over the entire
domain. 32

5.1 The initial geological layer, Γ0, from which folded volumes
of rock was simulated in Figure 5.2. 35

5.2 (a) Shows a folded 3D volume with F = 1, ψa = 1
2(−1, 1, 1),

simulated from Γ0. (b) Shows the same initial 3D volume,
but when F = 1 and ψ = 0, resulting in an isotropic front
propagation and an Euclidean distance field. 36

5.3 (a) Traditional stencil shape used in FSM. Notice that the
stencils for updating node B depend on the value of node
A. (b) Alternative stencil used in PMM. The stencils for
updating node C is independent of the value of node D,
and therefore the nodes can be computed simultaneously. . . 38

5.4 The figure series shows how the domain is swept using
the PMM stencil, as opposed to FSM’s iteration shown in
Figure 4.1. 38

5.5 The shape of the update stencils. Each sub-sweep is in the
direction of the top of the pyramid. 40

5.6 Tile decomposition: the tiling clause breaks our 3D grid into
smaller tiles. A thread block is then assigned to compute the
decomposed tile. 44

5.7 Figure (a) shows 9 cuts of a solution simulated using
OpenMP, while (b) shows the same planar cuts when
simulated on a GPU. 45

6.1 The speedup factor for the different grid sizes. Results from
Table 6.3 is used as basis to create the plot. 51

6.2 The different NUMA topologies available on Hopper. The
difference between the horizontal and the vertical links is
accounted for by the extra 8x cHT3 port between hex-cores
co-located on the same package. 52

6.3 Performance scaling using diagonal and cube topology. . . . 54
6.4 Mint’s register usage is high and is holding back the

performance. Ideally the red triangle should align on the
blue horizontal line on the left hand side. 56

viii

6.5 In our Mint configuration we are using a thread block size
of 256. One limitation in Mint is that the block size can not
be larger than 512. This is a limiting factor for newer GPUs. 56

7.1 AMD’s APU platform integrates multiple CPU cores and
many SIMD cores (streaming multiprocessors) on the same
chip. 63

ix

x

List of Tables

5.1 A table comparing the different algorithms with each other. 39

6.1 System overview for one of the nodes on Hopper. 47
6.2 System overview for the GPU testbed. 48
6.3 Computational times for three grids with a total of N nodes

using single precision. ti is the CPU time for i cores. 50
6.4 Computational times for three grids with a total of N nodes

using double precision. ti is the CPU time for i cores. 51
6.5 Computational times for the different topologies. 53
6.6 Comparing the CPU execution times with GPU execution

times using single precision. 54
6.7 Comparing the CPU execution times with GPU execution

times using double precision. 55
6.8 Computational times for the different tile size using single

precision and aligned memory access (x-direction). 57
6.9 Execution times for different tile values using single pre-

cision. The multiplier is shifted one place to the right (y-
direction). 57

6.10 Execution times for different tile values using single preci-
sion. The multiplier is shifted to the outmost right position
(z-direction), resulting in unaligned memory access. 57

6.11 A table showing the single precision FLOPS per watt for
the CPU and the GPU used in our evaluation platforms.
To show future trend, specifications for Nvidia’s latest
architecture, Kepler is also included. 59

B.1 Computational times for three grids with a total of N nodes.
In the Unrolled parameter the number of branches are
reduced. 75

B.2 A comparison of computational times for three grids with a
total of N nodes with reduced branching. 76

xi

xii

List of Listings

4.1 Python code to check if a grid point is located within the
domain. 30

4.2 Python code to compute the Gudonov upwind difference
scheme. 30

4.3 Python code to perform ordered sweeps. 31
5.1 Source code showing how a parallel region is defined using

OpenMP. 41
5.2 Source code excerpt showing how OpenMP is used to

parallelize the two inner for loops of a sub-sweep. 41
5.3 Source code showing the programmer annotations required

by Mint to transfer data from the host to the device. 43
5.4 Source code segment showing Mint specific programmer

annotations used to parallelize a sub-sweep in the Sweep
function. 44

5.5 Source code showing the programmer annotations required
by Mint to transfer data from the device to the host. 44

6.1 A sample PBS script submitted to Torque queue system on
Hopper. 49

6.2 A code excerpt demonstrating the concept of first-touch
policy in the ImplicitInitialiser function. 53

xiii

xiv

List of Abbreviations

API Application Programming Interface

APU Accelerated Processor Unit

ccNUMA Cache-Coherent NUMA

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FDM Finite Difference Method

FEM Finite Element Method

FIM Fast Iterative Method

FLOP Floating-Point Operation

FMM Fast Marching Method

FSM Fast Sweeping Method

FVM Finite Volume Method

GCC GNU Compiler Collection

GPU Graphics Processing Unit

ICC Intel C/C++ Compiler

MIC Many-Integrated Cores

MPI Message Passing Interface

NUMA Non-Uniform Memory Access

nvcc Nvidia C/C++ Compiler

OpenCL Open Computing Language

xv

OpenMP Open Multi-Processing

PCIe PCI Express

PDE Partial Differential Equation

PGI The Portland Group, Inc

PMM Parallel Marching Method

Pthread POSIX thread

PTX Parallel Thread Execution

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SMX Next Generation SM

SOFI Semi-Ordered Fast Iterative Method

SPMD Single Program Multiple Data

xvi

ACKNOWLEDGMENTS

This thesis would never have materialised without my advisor Tor
Gillberg. Despite being very busy, Tor has been extremely generous
with his time and helped me whenever the chips were down. His
dedication and hard work have inspired me since the day we met. I
appreciate his leadership along with that of my mentor Professor Hans
Petter Langtangen. Many thanks also to Professor Xing Cai whom I
enjoyed working with on the ICCS 2012 paper. Discussions with Xing
have been a tremendous help in shaping my research.

I am very grateful for professor Are Magnus Bruaset at Simula School
of Research and Innovation AS for the generous funding of my stay at
University of California, San Diego (UCSD). Further thanks goes to Dr.
Stuart Clark and my fellow colleagues at the Computational Geoscience
group at Simula Research Laboratory.

I would also like to thank collaborators from other institutions.
Professor Scott Baden (UCSD) and Dr. Didem Unat (Lawrence Berkeley
National Laboratory). My sincere thanks goes to the following persons
who made my stay at UCSD a memorable one: Alden King, Nguyen
Thanh Nhat Tan, Yajaira Gonzalez, Pardis Miri and Alexander Breslow.

I would never have survived without the companionship of my dog,
Tussie. I am also truly indebted to my brother for his encouragement and
moral support. I owe sincere thankfulness to Karoline for caring about me
and keeping me with company. Many thanks for all the memories.

Finally, I would like to thank my parents whom I dedicate this thesis
to. Thanks for letting me travel halfway across the world to pursue my
dreams and of course, taking care of Tussie while I was away.

xvii

xviii

Chapter 1

INTRODUCTION

1.1 Motivation

Kalkulo AS, a subsidiary of Simula Research Laboratory, has been
developing a geological modelling application in collaboration with
Statoil for the past several years. An essential module of this application
is the simulation of folded geological structures of Earth’s crust. The
simulations are done repeatedly in large 2D and 3D models, and for the
application to be used in an interactive manner, the simulations must be
computed rapidly. Unfortunately, the computational load for simulating
a fold is high, and in 3D the lengthy computational times becomes an
issue for the user of the application. An impediment for both Kalkulo and
Statoil is that most available numerical algorithms for simulating folds are
serial.

About a decade ago, processor manufacturers realized that due to en-
ergy constraints, serial Central Processing Unit (CPU) architecture had
reached a dead end. Instead, processor manufacturers turned their atten-
tion to parallel architectures. By simply multiplying the number of proces-
sor cores, multi-core CPUs were born. Theoretically speaking, multi-core
CPUs can deliver number of cores times better performance of a single CPU
core. Running serial code on a parallel architecture will unfortunately
not automatically lead to increased application performance. Developers
must instead rewrite or write new programs that can take advantage of
the increased parallelism.

In addition to multi-core CPUss, another computing platform that has
gained a lot of traction lately are Graphics Processing Units (GPUs). It
is thought that due to their highly parallel architecture, GPUs are better
optimized for throughput computing. As we will show in section 6.8,
GPUs possess a higher performance per watt ratio than multi-core CPUs.
It is expected that this ratio will only increase as GPU manufacturers move
to improved chip lithography [27].

Today, GPUs live on cards that are connected to the CPU via the

1

PCI Express Bus (PCIe). Another distinctive GPU feature is that they
have limited memory. Depending on manufacturer and configuration, a
typical device has only a couple of Gigabytes of memory. Furthermore,
programming GPUs is associated with a low level of programming. For
instance, due to the limited memory size, programmers need to divide
data in smaller chunks and manually transfer the data from the CPU to
the GPU using the PCIe bus. Another characteristic feature of GPUs is
that they consist of many (usually hundreds to thousands) simpler and
slower cores than traditional CPUs. Hence, a GPU’s performance is tightly
coupled to the parallelism of the code they execute.

Taking the overall goal of creating an interactive simulator and parallel
architectures in account, it is clear that a parallel algorithm needs to be
developed. Due to the increasing popularity of heterogeneous computing,
an algorithm should not only target multi-core CPUs, but also GPUs.
Thanks to the generic nature of the problem, it is thought that other
applications such as reservoir simulation, seismic processing and medical
imaging, might also benefit from a new and more parallel algorithm,
adding further motivation for the research in focus of this thesis.

The main findings of this thesis have been published as a refereed
paper in Elsevier’s Procedia Computer Science. The paper will be
presented by me at the International Conference on Computational
Science 2012 in Omaha, Nebraska. The acceptance rate for ICCS is 30
percent [32].

1.2 Contributions

• We present a novel 3D front propagation algorithm for simulating
folds by solving a static Hamilton-Jacobi equation.

• We implement the algorithm for two of the most common parallel ar-
chitectures available today, multi-core CPUs and many-core GPUs.
The multi-core implementation is performed using the OpenMP
API, while the many-core implementation is done using an auto-
mated C-to-CUDA source code translator called Mint.

• We have demonstrated the effectiveness of our algorithm running
on a 24-core multi-core CPU and a Nvidia GeForce GTX 590 GPU.
Specific optimizations for NUMA-machines are also presented.

• Finally, we discuss the possibility of running the algorithm on future
parallel architectures. It is hypothesized that today’s heterogeneous
computing model will be further extended and increase in popular-
ity. Due to the embarrassingly parallel nature of the algorithm, we
believe the 3D PMM can be easily adapted to future parallel archi-
tectures.

2

1.3 Document organization

• Chapter 2 provides the mathematical framework which our algo-
rithm will later be based on. A short introduction to partial differ-
ential equations, wavefront propagation and the Eikonal equation is
given.

• Chapter 3 provides an overview of some of the latest trajectories
in parallel computer architecture today. The architectures of a
typical multi-core CPU and a GPU are discussed in detail. Some
of the challenges facing programmers who wish to develop parallel
applications are also discussed. The closing part of the chapter briefs
the reader about the multi-core programming interface OpenMP, and
the directives-based GPU programming model, Mint.

• Chapter 4 discusses two groups of numerical methods for anisotropic
propagation, namely front tracking methods and sweeping methods.
One method from each of the two groups is discussed in detail. Par-
allel possibilities of several algorithms are also discussed.

• Chapter 5 gives the reader an introduction to geological fold
modelling, and the role front propagation plays with respect to
fold modelling. For motivation purposes, various front propagation
algorithms are compared with each other, before the 3D PMM
algorithm is presented and discussed in more detail. The chapter
is rounded off with implementation details from OpenMP and Mint.

• Chapter 6 presents the results obtained by running the algorithm us-
ing OpenMP on two interconnected 12-core AMD Opteron proces-
sors, and on a Nvidia GeForce GTX 590 GPU using Mint. In ad-
dition, specific optimizations for NUMA-machines is presented and
discussed.

• Chapter 7 discusses some of the current limitations of the 3D PMM
algorithm and how they can possibly be addressed in the future. A
sneak peek into forthcoming parallel architectures is also presented
before the thesis is brought to a conclusion.

• Appendix A is a conference paper for the International Conference
on Computational Science, ICCS 2012 that I have co-authored with
Tor Gillberg and professor Xing Cai. Portions of this thesis is based
on this paper. This thesis contains new information not published
in the original paper. I will present the paper at the ICCS 2012
conference on June 6th 2012 in Omaha, Nebraska.

• Appendix B contains results from experiments conducted with
different parameters.

3

4

Chapter 2

BACKGROUND AND
OVERVIEW

2.1 Differential Equations and Solution Approx-
imation Methods

Calculus of infinitesimal changes was most likely independently devel-
oped by Newton and Leibniz in the late 17th century. Compared to ear-
lier mathematics, the notation of Leibniz allowed a much more compact
formulation of mathematically described observations. The calculus of in-
finitesimal changes is a mathematical framework for describing relations
of functions and their derivatives. One example is the relationship be-
tween position p and velocity v,

v =
d
dt

p, (2.1)

p(0) = 0. (2.2)

equation (2.1) is an ordinary differential equation, an expression relating
changes in time of one property to another. With a constant velocity and
the initial condition (2.2), the position at later times can be computed by
solving equation (2.1).

If the equation instead relates small changes in space, the equation is
simply called a differential equation. Mixed expression of both time and
space derivatives are known as Partial Differential Equations (PDEs).

2.2 Partial Differential Equations

PDEs are often used to track the evolution of a system such as the rate of
change of a wave in space and time. A typical example PDE is the wave

5

equation in 1D as shown in equation (2.3),

∂2u
∂t2 = c2 ∂2u

∂2x2 , x ∈ (0, 1), t > 0 (2.3)

where u describes the shape of the travelling wave, while c is the wave’s
velocity.

Depending on the problem to be solved, a PDE usually require
specification of both boundary conditions and initial conditions. A PDE
can usually have many solutions and it is not uncommon that a PDE has
infinitely many solutions. Moreover, most PDEs do not have analytical
solutions, hence, they need to be solved by numerical approximation
methods using computers.

2.3 Solution methods

Three popular numerical methods for approximating PDEs are the Finite
Difference Method (FDM), Finite Element Method (FEM) and the Finite
Volume Method (FVM). In all of these methods, the first step involves
a discretization of the equation to be approximated. How the actual
discretization is performed, depends on the method. In this thesis we will
look at how discretization is performed for the FDM and the FEM. The
discussions of the FVM discretization are outside the scope of this thesis,
and will therefore not be discussed further. A thorough introduction to
numerical methods can be found in [28].

2.4 The Finite Difference Method

Discretization in the FDM is done by introducing a grid with discrete
values on a set of nodes in space and time. The next step consists
of replacing the derivatives of the equation with a finite difference
approximation, often referred to as a numerical scheme. In short, the basic
idea behind FDM is to sample the sought entity at a set of points, and
approximate the mathematical equation at those points with the aid of
a numerical scheme. At some points values are given from the initial
condition, and values for all other unknown nodes are solved for through
the discretized equation.

One area where FDM is of practical interest is wave propagation
problems. Simulations of wave propagations are needed in a variety of
fields, including medical imaging and geophysics. The FDM can be used
to simulate how waves diffuse in space and time.

6

2.5 The Finite Element Method

The core idea of the Finite Element Method is to approximate the unknown
function u, as a linear combination of a set of predefined functions. That
is, u, is approximated as û such that

û =
M

∑
j=1

ujNj(x). (2.4)

Nj(x) are referred to as the basis functions, while uj are the unknown
coefficients, as shown in equation (2.4). As with almost every numerical
approach, the ultimate goal for FEM is to minimize the difference between
the exact solution and the numerical solution.

Before FEM can be applied to a PDE, the PDE must be restated into an
integral form, referred to as the weak form. A weak form of the problem
is obtained by multiplying the PDE with a test function, that is a function
with a set of assumed properties. After the multiplication, the resulting
equation is reformulated, most commonly by integrating by parts.

It is worth noticing that in the FDM domain, there is no need to break
the PDE into a weak form, because the equation is directly converted to
a set of discrete equations. Some might argue that the need for a weak
form accompanied with other subtle points such as the difference between
different boundary conditions, contributes to the overall complexity of the
FEM, making the method more challenging to understand and use.

The FEM might be a more complex method but once mastered, the
method can deal more readily with complicated geometric shapes. It is
especially this property that is much used in engineering design. There are
many applications that rely on the use of the FEM. Some typical fields are:
stress and thermal analysis of industrial parts, crash analysis of aircrafts
and cars, fluid flow and surgical procedures in medicine.

2.6 Wavefront Propagation

This section describes a methodology for modelling a high frequency
approximation of an expanding wave. That is, the wave that is modelled is
assumed to have a high frequency, and thus a small wavelength. Instead
of describing the full waveform, including amplitudes and frequencies,
only the first arrival of the wave is modelled, resulting in a simplified
mathematical problem.

A wave front Γ in two dimensions propagates with velocity F(x) at
point x. The front moves in a direction normal to itself, meaning the
direction is oriented with respect to an inside and an outside [41]. We
wish to track the motion of the wave front as it evolves. Let Γt denote
the position of the front at time t. Since F is assumed to be everywhere

7

Figure 2.1: An expanding wave front with F > 0 in its normal direction.

positive, F > 0, the front expands monotonically from Γ and in an outward
direction. The front’s velocity function F may depend on several factors
and can be written as:

F = F(L, G, I) (2.5)

where:

• L = Local factors (curvature, normal direction, geometric formation)

• G = Global properties of the front (integrals of the front, associated
differential equations)

• I = Independent properties (independent of the shape of the front,
for instance an underlying fluid velocity that passively transports
the front, gravity, magnetic fields.)

We wish to model the position of the front as it expands. The front
position can be characterized by its time of arrival, T(x, y), as it reaches
point (x, y). Due to the monotonic motion of the front, it reaches each
point only once, that is, we search for only the first time of arrival of the
front. This can be done by formulating an ordinary differential equation,
using the fact that distance = speed · rate. We then get equation (2.6),

F(x)
dT(x)

dx
= 1. (2.6)

This equation can be extended to higher dimensions [42], resulting in
a formulation of the following form,

|∇T|F = 1, T = 0 on Γ0 (2.7)

8

Figure 2.2: A differential equation for the time of arrival is formulated
using the fact that distance = speed · rate.

where Γ0 is the initial location of the interface. Thus, the first time of arrival
of the wave front is a solution to a boundary value problem. If we let the
velocity be a function solely of the location and a scalar unity, then the
equation is reduced to what is known as the Eikonal equation.

2.7 The Eikonal Equation

The Eikonal equation is a non-linear PDE, which is a special case of the
static Hamilton-Jacobi equations discussed in the previous section. The
Eikonal equation is given as

|∇T(x)| = 1
F(x) , x ∈ Ω

T(x) = g(x), x ∈ Γ,
(2.8)

where Ω is a domain in Rn and Γ a set of nodes with initially given
arrival times, given by g. F(x) is a scalar function representing the velocity,
and T(x) is the unknown first time of arrival of the front.

The equation in its simplest form is when the local velocity function
F(x) is set to be constant. When F = 1 and g(x) = 0, T(x) represents the
shortest Euclidean distance from x to the given starting position, Γ.

The Eikonal equation is a versatile equations it has applications in sev-
eral different fields such as seismology, path planning, multiphase flow,
and computational geometry (computer graphics). In seismic imaging the
Eikonal equation is considered to be a fundamental equation [31]. The
many applications in imaging might not come as a surprise to those who
speak Greek, given that the word ”Eikon” means image in Greek.

In seismology, a pressure wave is sent through the medium of
investigation, and the time of arrival of the reflected waves are analyzed.
In seismic forward modeling, a model of the medium is given, and the

9

Eikonal equation is solved to receive estimates of the first arrival of the
pressure wave in the medium.

Compared to other mathematical equations, the Eikonal equation may
look simple, but one must not be fooled by its looks. The Eikonal
equation is quite challenging to solve due to its non-linearity [22]. Another
challenge facing those who wish to solve the Eikonal equation is efficiency.
Many numerical schemes and algorithms have been proposed in order
to solve this equation as efficiently as possible. Over the next several
chapters we will look at some of the most common algorithms developed
for solving the Eikonal equation numerically.

2.8 Summary

In this chapter we have looked at how PDEs are used to track the evolution
of a system. We have presented two common solution methods for PDEs,
FEM and FDM. The former is regarded as a more complex method, but
that can readily handle complicated geometries. The latter on the other
hand, is regarded as a method with a simpler structure.

Wavefront propagation describes the motion of an expanding wave.
The wave front will expand monotonicity when it moves in its normal
direction from the initial front, given that the velocity function is larger
than zero.

The Eikonal equation is a non-linear PDE, which is a special case of
the static Hamilton-Jacobi equation that can be used to describe how
waves moves through a medium. Different numerical methods for solving
the Eikonal equation exists, but the challenge lies in creating an efficient
solver.

10

Chapter 3

PARALLEL COMPUTING

3.1 The Shift Towards Parallel Computing

For more than two decades, the performance of microprocessors based on
a single Central Processing Unit (CPU) has been increasing on average 50
percent per year [34]. Thanks to this unprecedented drive of performance,
software developers and users has been able to wait for architectural
advances to obtain increased speed for their applications.

In 2002, however, this drive took a dramatic turn. Since then, the
increase in single-CPU performance has slowed to 15-20 percent per
year [34]. Due to energy-consumption and heat-dissipation challenges,
processor manufacturers realized that they simply could not continue to
increase the clock frequency. A dramatic change in processor design was
needed, and by 2005, most of the largest manufacturers had decided that
this change was in the direction of parallelism.

Today, virtually all of the biggest processor manufacturers has adopted
a model of increasing the performance by placing multiple processors,
referred to as processor cores, in a single package. The processors that
employ this design principle are said to have a multi-core architecture.

This radical change in processor design has a tremendous impact on
software developers. Unfortunately, increasing the number of processor
cores will not automatically increase the performance of a serial applica-
tion, that is, an application that targets one single processor. For appli-
cations to take advantage of the increasing number of cores, software de-
velopers must specifically change their code to target this type of parallel
architecture, in other words, write parallel programs.

Although the parallel computing approach might appear new, both
parallel computers and parallel programs is by no means new. As a matter
of fact, modern parallel computing has a long history that can be traced
back to the late 1950s or early 1960s [33]. For decades, programmers
in the high-performance community has been writing parallel programs
to exploit the parallelism found in large-scale computers known as

11

supercomputers. Supercomputers has often been built and used for
demanding scientific applications such as climate modelling, protein
folding, energy research and data analysis.

3.2 Modern CPU Architecture

(a) Intel ”Sandy Bridge-E” architecture (b) AMD ”Bulldozer” architec-
ture

Figure 3.1: Two multi-core CPUs from Intel and AMD respectively. (a) has
six cores (hex-core), while (b) has eight cores (octo-core). Each Bulldozer-
module consist of two cores. The HyperTransport connections can also be
seen in (b). Image (a) courtesy of Intel Corporation. Image (b) courtesy of
AMD.

Currently, the latest trend among processor manufacturers is to
increase the number of processor cores. This trend however, comes
at a great cost. The increasing number of cores in today’s multi-core
processors is done at the expense of poorer memory bandwidth per core.
As a remedy, manufacturers have turned their attention to hierarchical
organizations of cores and memory, better known as NUMA (Non-
Uniform Memory Access).

The history of NUMA goes back to the 1960s when processor speed
was starting to outperform memory speed. A new direction was needed
in order to get memory speed on par with processor speed. Among many
suggestions was NUMA. The fundamental idea behind the technology is
to increase memory bandwidth per core by organizing processor cores and
memory hierarchically so that each core gets access to its own memory.
This hierarchical organization reduces possible contention when multiple
cores are trying to read or write to the same memory bank. This is
especially important nowadays as manufacturers continue to increase the
number of processor cores at the expense of memory bandwidth.

12

Although a technology from the 1960s, the first physical implementa-
tions of NUMA did not take place until the 1990s, when parallel supercom-
puters were starting to be limited by poor memory performance. NUMA
is implemented in hardware using a separate system bus to connect each
”isle” of cores to the memory. These small isles are referred to as NUMA-
domains or NUMA-nodes. Each core in a NUMA-node has a uniform mem-
ory access cost, meaning that accessing memory near a node is faster than
accessing the memory of other NUMA-nodes. This hit ratio is sometimes
referred to as the NUMA-factor [10]. Depending on the system configura-
tion and processor architecture, at least one or more NUMA-nodes exists
within one physical socket.

Two of today’s largest x86 processor manufacturers, AMD and In-
tel, are delivering cache-coherent NUMA (ccNUMA) interconnection with
their current generation CPUs. ccNUMA systems use non-shared cache
memory to maintain coherency across multiple NUMA-domains. AMD’s
technology is called HyperTransport, while Intel’s technology is called
QuickPath Interconnect (QPI). Previously, only high-end server proces-
sors incorporated NUMA interconnections, but today, even mainstream
systems are incorporating NUMA interconnections.

NUMA’s relevance is also present in today’s supercomputers. Super-
computers such as Jaguar and Hopper relies extensively on NUMA to de-
liver increased parallelism. A recent trend among supercomputers is an
increasing number of NUMA-domains within a node. Some leading ex-
perts [39] believe that this number will only continue to grow as we head
towards Exascale computing. The vision of a NUMA-based Exascale su-
percomputer and the increasing number of NUMA systems makes NUMA
a highly relevant topic among performance programmers.

From a programming point of view, NUMA impose new challenges
for the programmer. If the full computational power of current and
future NUMA-based parallel computers are to be exploited, a more careful
distribution of data and threads is required [6]. An issue that some of the
most popular parallel programming languages such as Cilk, OpenMP and
UPC fail to take into account. Different techniques for making applications
NUMA-aware exist [47], in section 6.5, we will examine some of them.

3.3 Graphics Processing Unit

Recent years demand for faster and greater visual experience in games,
has spurred the development of devices known as graphics processing
units (GPUs). Two of the largest manufacturers of GPUs today are AMD
and Nvidia. In terms of architectural design, both companies employ
a parallel architecture based on many simple vector cores, designed to
be particularly fast at performing floating-point operations (FLOPs). A
current exemplar is Nvidia’s latest generation of GPU, Kepler, which

13

Figure 3.2: A heterogeneous computing model: the GPU device is
connected to the host CPU through the PCI Express bus. Data to be
computed on the device must be explicitly transferred from the host to
the device. Once the computation is finished, data is transferred back to
the host from the device.

has more than 1500 stream cores. Not surprisingly, this high number
of parallel execution cores has given birth to the term massively parallel
architecture.

The approach of having many simple cores instead of a few powerful
cores is sometimes referred to as a many-core approach. The many-core
design is a stark contrast to traditional CPU design, where the goal
is to maximize the performance of single threaded applications. CPU
technologies such as out-of-order execution, complex instruction sets, and
hyperthreading, are all reminisces of this.

CPUs and GPUs also differ in terms of how memory is handled.
GPUs are designed to prioritize memory bandwidth over latency since
latency can be hidden by computation. CPUs however, are designed
around large cache coherent memories to increase (single threaded)
application performance. Last but not least, GPUs are not general-purpose
computational units. That is, they must be installed in a system with a
general-purpose CPU that can act as a host. In practice this entails that
GPUs can not directly access the system’s main memory and need to rely
on a host CPU to do this. As a consequence, data from the host (CPU)
must be explicitly transferred to the device (GPU) memory. This special
way of handling memory is often referred to as a heterogeneous memory
model and must be manually managed by the programmer.

3.3.1 Modern GPU Architecture

Figure 3.3 reveals the architecture behind Nvidia’s current GPU architec-
ture, Kepler [13]. The architecture is divided into small blocks of Stream-
ing Multiprocessors (SM), called SMX. SMX is short for Next Generation
Streaming Multiprocessors. Each SMX contains multiple stream cores.

14

Figure 3.3: A simplified block diagram showing Nvidia’s latest GPU
architecture called Kepler. There are eight streaming multiprocessors
(SMX) on a Kepler die. Each SMX consists of four warp schedulers and
192 stream cores. All cores have access to 64KB L1 Cache/Shared memory.

Stream cores are simple arithmetic logic units that execute the actual com-
putations. Depending on the device configuration, one SMX typically con-
tain many stream cores, and a device contain several blocks of SMXs. The
GeForce GTX 680 for example, has 8 SMXs with 192 cores each, bringing
the total tally of cores to 1536.

Communication among stream cores inside a SMX is performed
using low latency memory called shared memory/L1 cache, while
communication across SMXs are done using the slower global device
memory. Each Geforce GTX 680 device comes with 2 GB of GDDR5
memory.

Kepler’s shared memory/L1 cache size is 64 KB and is user config-
urable. The user can choose to partition this memory as 48 KB of shared
memory and 16 KB of L1 cache or vice versa. Certain types of applica-
tions experience a performance boost when shared memory is used, that
is, a larger shared memory partitioning scheme is beneficial. Other ap-
plications may not able to take advantage of shared memory at all. In
situations where this is the case, a larger L1 cache might be more benefi-
cial [11]. The idea of having a configurable on-chip memory is to let the
user determine what might be best suited for different applications.

In addition to the shared memory/L1 cache, Kepler comes with a
512KB L2 cache that is shared across the device. The idea of the L2 cache
is to provide additional low-latency storage to reduce the pressure on the

15

shared memory/L1 cache. Contrary to the shared memory/L1 cache, the
L2 cache is not user configurable and is fully managed by the device.

Data from the system memory to the device memory is transferred us-
ing the PCI Express bus. Kepler supports the latest PCI Express 3.0 stan-
dard which supports data transfer at a speed of 16 GB/s. The on-device
communication bandwidth is on the other hand 192.26 GB/s. If we com-
pare the on-device communication bandwidth with the communication
bandwidth, we realize that the communication bandwidth is slow and
therefore constitutes a bottleneck. Hence, communication between the
host and the device should be minimized whenever possible. One way
of reducing the impact of the slow communication link between the host
and the device, is to increase the computation load on the device in order
to hide memory latency [1].

3.4 Nvidia CUDA Framework

Since 2003, GPUs floating-point performance has been outperforming
CPUs [1]. High floating point performance is regarded as a vital property
in many fields of computer science, especially with respect to numerical
applications. Not surprisingly, the idea of using GPUs for general-purpose
processing has caught the attention of researchers and other developers
in the scientific community. However, one major stumbling block is the
difficulty of programming on GPUs. GPUs were originally designed to
run games, not to perform general-purpose computations. Users who
wanted to use GPUs for general purpose processing had to use graphics
APIs such as Microsoft Direct3D or OpenGL to access the device. Very few
could master the skills of using graphics API to perform general-purpose
processing, but those who were able to could see good performance yields.
Their results started to excite other researchers, and eventually lead to the
start of a new programming paradigm called GPGPU (General Purpose
Graphics Processing Unit) [14].

Shortly after the start of the GPGPU era, Nvidia launched their own
GPGPU programming API called Compute Unified Device Architecture
(CUDA). The main motivation behind the release of CUDA was to make it
easier to write parallel applications for GPU structures. Writing CUDA
applications requires a CUDA enabled device from Nvidia. These are
devices with a special dedicated silicon area that can interpret requests
from CUDA applications.

Due to their long history, programming languages such as C/C++ and
Fortran have a predominant position among scientific applications. Rather
than creating an entire new programming language, Nvidia invented new
programming constructs and extensions for C/C++ and Fortran.

A CUDA application consists of both code that runs on the host and
code that runs on the device. That is, CUDA applications interchange

16

between running on the host and the device. Code that runs on the device
have their own special constructs. CUDA is responsible for recognizing
and mapping these directly to the thread or memory hierarchy of the
device. Since each stream core is massively threaded, one or more threads
are mapped to a stream core.

Figure 3.4: The anatomy of a typical CUDA application. The CPU part
of the code is executed as normal, but as soon as a kernel is invoked, the
execution is performed on the device. Kernel launches are associated with
generation of a large number of threads. Threads generated by the kernel
are collected in a grid.

A typical workflow (depicted in Figure 3.4) for writing and executing
a CUDA application is to write special functions called kernels. Prior to a
kernel launch (the execution of a kernel function), the kernel’s associated
data must be transferred to the device. Kernel functions have the CUDA-
specific keyword global in front of the function declaration. Once
a kernel has been launched, it is executed on the device. During the
execution, the device will generate a large number of threads (typically
thousands to millions). This collection of threads is called a grid. In reality,
the kernel is executed as a grid of parallel threads. Threads in the grid
are organized in a two-dimensional array called blocks. Each block is
associated with a two-dimensional coordinate system. The coordinates
are determined by the CUDA specific keywords blockIdx.x and blockIdx.y.
Furthermore, each block is organized as a three-dimensional array of
threads. The total number of threads that can fit in a thread block is
device dependent, but for Kepler, a thread block can hold up to 2048
threads. A three-dimensional coordinate is also associated with a thread
block by the three reserved CUDA-keywords: threadIdx.x, threadIdx.y and
threadIdx.z. The dimension of the grid and the thread block is passed
as execution parameters to the kernel. The programmer determines the
execution parameters manually.

17

Since a massive number of threads is associated with GPU program-
ming, one might ask how threads are scheduled and how large the over-
head associated with this task is. In order to reduce the overhead and
increase efficiency, most of the tasks related to thread scheduling are im-
plemented on the hardware. Once a thread block is assigned to a SMX,
it is sliced into units of 32 threads called warps. SMXs executes only a
subset of scheduled warps. Although, warps are not part of the official
CUDA specifications, knowledge of warps is important. Warp schedul-
ing is used for tolerating long-latency operations such as global memory
access and branching. Therefore, knowledge of warp scheduling is espe-
cially important when it comes to performance optimization. Often warps
are being touted as one of the main reasons why GPUs do not need large
cache memories and branch prediction mechanisms.

3.5 Open Computing Language

Open Computing Language (OpenCL) is a jointly developed GPGPU
programming model initiated by major industry partners such as AMD,
Apple, ARM, IBM, Intel and Nvidia. The project itself is managed by the
Khronos Group, the same group that manages the OpenGL API. The main
purpose of OpenCL is to create a standardized programming model that
targets a broad range of parallel architectures such as multi-core CPUs
and many-core GPUs. In many ways OpenCL is quite similar to CUDA.
Instead of being a completely new programming language, OpenCL offers
new constructs and extension to popular programming languages such as
C/C++ and Fortran. Another important feature of OpenCL is portability.
Applications written in OpenCL should be able to run on all devices that
support OpenCL without any modification.

Although the first version of OpenCL was released in 2009, the
programming model is still considered to be immature. According to
some, programming in OpenCL is regarded at a lower level than CUDA
and less terse [1]. From a performance point of view, several comparison
studies [17] has shown that CUDA outperforms OpenCL, but other
studies [16] has shown the opposite. The general consensus is that CUDA
is faster than OpenCL on Nvidia GPUs. This is not surprising as CUDA
is tightly coupled with GPUs from Nvidia and therefore might be able to
take better advantage of certain device optimizations.

3.6 Open Multi-Processing

Open Multi-Processing (OpenMP) [5] is a directives-based multi-platform
API for writing parallel applications with shared-memory architectures.
Like native operating system threads such as POSIX threads (Pthread),

18

OpenMP takes aim at using threads to achieve higher application
performance. Although Pthreads and OpenMP share many similarities,
their approach on shared-memory programming is somewhat different.
The OpenMP programming model offers different tools for automatically

Figure 3.5: The OpenMP fork-join model showing a process forking and
joining four threads.

controlling a thread’s behaviour, as opposed to Pthreads, where thread
behaviour must be controlled programmatically. Because of this, the
Pthread programming model is associated with low-level programming.
The tools that allows OpenMP programmers to manipulate thread
behaviour is called directives. These directives are special preprocessor
instructions that the compiler understands. Directives are better known
as pragmas to C and C++ programmers. If an OpenMP application is
compiled using a compiler that lacks OpenMP support, the compiler will
simply ignore the pragmas and the application will run serially.

The most commonly used pragma in OpenMP is parallel for, which is
placed before a for loop, signifying each iteration is independent and can
be run in parallel. However, one limitation is that only the outermost loop
can be parallelized [50].

This kind of pragma directed parallelization is a reminiscent of a fork-
join model of computation. Annotated sections of code are executed by
multiple threads and code outside of pragma statements is executed in
serial. When execution proceeds through a serial section, only the master
thread executes the statement, and the other threads remain asleep. In
a parallel section, these threads are reawakened and work is partitioned
among the active threads. Figure 3.5 shows the fork-join model in action.

One important motivation for using OpenMP is that it can be easily
applied to current serial applications with little effort. Another equally
important motivation is that OpenMP can take advantage of today’s
current and future generation of processors with continuously increasing
number of processor cores. However, recent studies has shown that
OpenMP does not scale well on a very large number of processor cores,
that is, on systems with tens to hundreds of cores [47]. It also does not
perform well on code with irregular control flow and memory access

19

patterns [8]. While this may be true for many applications, the problem
does not arise in stencil computations, which is the type of computation
we are concerned about. In stencil computations, computations consist
usually of a series of regularly structured loops with uniform strides when
accessing memory.

3.7 An Automated C to CUDA C Translator and
Optimizer

Thanks to architectural advancements, GPU performance has been
steadily growing every second year [1]. Unfortunately, the same advance-
ments has not been observed with respect to GPUs and their ease of pro-
grammability. Although, there has been some effort to make GPU pro-
gramming easier, the overall consensus is that GPUs are still hard to pro-
gram. The challenging task of programming a GPU has put the technology
out of many researchers reach. The Mint [51] programming model is an
effort to make GPU programming easier and thus make the computational
power that GPUs offer more accessible.

3.7.1 The Mint Programming Model

Developed at the University of California San Diego, Mint is a directives-
based programming model that makes use of programmer annotation
to reduce the complexity of programming a GPU. Since both models
make use of pragmas, persons familiar with OpenMP’s directive style of
programming will easily recognize the resemblance between OpenMP and
Mint. While OpenMP uses directives to tell the runtime system to execute
a structured block of code in parallel, Mint uses pragmas primarily to
offload computation to a GPU.

Mint is a source-to-source translator built on the ROSE compiler
framework that automatically translates annotated serial C code to CUDA
C. If we look closer at Mint’s translation workflow (shown in Figure 3.6),
we see that Mint constitutes of three main building blocks: a pragma
handler, a baseline translator, and an optimizer.

The task of the pragma handler is to parse Mint specific directives and
clauses. Currently, Mint comes with five different directives: parallel, for,
barrier, single and copy. Only the parallel, copy, and the for directive will be
covered in this thesis. The parallel directive is used to annotate a parallel
region, that is, the part of the code we want to run on the GPU. Prior to the
parallel region, the copy directive is used to transfer data associated with
the parallel region to the device. Likewise, the copy pragma is also used
to transfer data back from the device to the host.

Usually, a parallel region is succeeded by the for directive, which

20

Baseline Translator

 Mint Optimizer

Mint	
 Pragma	
 Handler	

Memory	
 Manager	

Thread	
 Scheduler	

Kernel	
 Config	

Argument	
 Handler	

Outliner	

Loop Transformer

Input	
 	
 code:	

C	
 +	
 Mint	

Output	
 file	

Cuda	
 src	

Mint

ROSE	
 Parser	

ROSE	

backend	

Figure 3.6: A diagram showing the core building blocks of the Mint
translator. Pragmas are first handled by the Pragma Handler. Once
the pragmas has been verified to be correct, queries from the Baseline
Translator is done to translate a region of code to the device. The last step
constitutes of optimizing translated code. Figure used with permission
from [50]

marks the for loop we want to run on the device. Nested for loops are also
supported, although no special optimizations are carried out for nested for
loops. For loops are parallelized simply by a strict logical thread to point
mapping, that is one logical thread on the device corresponds to one point
in the iteration space of the loop. In addition to the for loop directive, Mint
also comes with three special clauses: nest, tile and chunksize. Clauses are
primarily used to fine-tune a loop.

The nest clause is used to reveal the depth of parallelism of nested for
loops. Valid arguments are a constant integer or the all keyword. When
no nest clause is specified, only the outermost for loop is parallelized. The
tile clause is used to divide a for loop into tiles. Valid arguments are
three constants separated by a comma. Each tile argument specifies the
number of data points that is computed by a thread block. The chunksize
clause controls the workload size within a thread block. Valid input
parameters are three constants separated by a comma. Chunksize can
also be combined with the tile clause in order to determine the number

21

of threads needed to execute a tile.
Once the different pragmas has been parsed, the baseline translator can

carry out the task of translating serial C-code to CUDA C. Upon successful
translation, the translated code is passed to an optimizer for optimizations.

Mint’s optimizer can mainly carry out two types of optimizations:
architecture specific optimizations and domain-specific optimizations.
The former ensures that a handful set of optimizations is performed for the
device that the code will be run on. Only two Nvidia GPU architectures
are supported: the GeForce 200-series and Fermi-based GPUs. The latest
Kepler architecture is not supported, but due to its high resemblance to
its predecessor, Fermi, it is believed that Mint might work efficiently on
Kepler.

The domain-specific optimizer targets specifically stencil kernels that
appear in structured grid problems. A special stencil analyzer searches
for adjacent array references. These references are sorted based on
their distance to the center point. This information is then used to
perform optimizations with respect to the device’s shared memory and
registers. Frequently used array references are placed into registers, while
neighbouring points are put into the shared memory.

Regardless of whether optimizations has been carried out or not, the
final output from Mint is a CUDA source file (.cu) which must be manually
compiled using Nvidia’s C-compiler, nvcc.

A similar programming model to Mint, is the directive-based Ope-
nACC programming model jointly developed by CAPS, Cray, PGI, and
Nvidia. The primary influence of the OpenACC model is PGI’s accelerator
model. The similarities with Mint is striking. For example, the user can,
with the aid of pragmas, annotate regions of code to be transferred and
executed on the GPU. However, OpenACC is not able to perform domain-
specific optimizations for stencil computations.

3.7.2 Performance

Compared to aggressively hand-optimized GPU code, auto-generating
code will always involve a performance penalty. The optimizer will
not always perform the correct optimizations, or it may be unaware
of certain optimizations that is only mastered by an experienced GPU
programmer. However, studies [20, 51] prior to this thesis has shown
that Mint is able to achieve somewhere between 70 to 83 percent of
the performance of numerous hand-optimized stencil kernels. Mint’s
encouraging performance makes it tempting to use Mint under more
generic circumstances, for instance Matrix multiplication. This is however
not recommended, as studies [50] shows that Mint’s performance under
these circumstances is quite limited when compared to more auto-tuned
libraries that are distributed with the Nvidia CUDA SDK. Although the

22

performance is not that good, Mint can be used to auto-generate device
code that later can be hand-optimized.

3.8 Summary

In this chapter we have looked closer at some of the latest trends in
computer architecture. Due to energy-consumption and heat-dissipation
challenges, CPU manufacturers could not scale their current single CPU
architecture. As a result, CPU manufacturers have turned their attention
to multi-core architecture. A multi-core architecture is an architecture with
multiple conventional processors on a single chip.

One challenge with today’s current multi-core architecture is tightly
coupled to memory. The increase of cores is done at the expense of
poorer memory bandwidth per core, because when the number of cores
increases, contention for memory among the different cores also increases.
In order to increase memory bandwidth per core, processor manufacturers
have started the incorporation of a technology called NUMA. With the
help of NUMA, cores and memory are organized hierarchically so that
each core get access to its memory. This has great implication for
software developers who must take this in consideration when writing
applications.

The change of processor architecture has had a deep impact on serial
applications, because serial applications can not exploit the presence
of multiple cores. If the performance potential of multiple core is
to be exploited, software developers must convert their applications
into parallel applications. To facilitate this process, several parallel
programming models exists. We have discussed OpenMP, a programming
model for shared-memory systems. In the OpenMP programming model,
programmer annotations, called pragmas, are used to tell the compiler
which part of the code we want to run on multiple cores.

Another emerging parallel computing trajectory are GPUs. These
devices consists of many simple cores, rather than few, but more powerful
cores. The architecture of GPUs is sometimes referred to as a many-core
architecture. The availability of many cores, makes GPUs suitable for
high throughput computing. This property, along with high floating-point
operations per second performance, has made GPUs popular among users
in the scientific computing community.

Several programming models exists for programming GPUs. The
two most common models are CUDA and OpenCL. The former is a
model tailored specifically for GPUs manufactured by Nvidia, while the
latter is an open and a more generic model targeting multiple parallel
architectures, ranging from GPUs to multi-core CPUs.

Despite the latest advances in making GPU programming easier, using
GPUs for general-purpose computing is still considered to be somewhat a

23

hassle when compared to multi-core CPUs. Inspired by the directive based
programming model of OpenMP, Mint was developed to automatically
translate serial C-code to parallel CUDA C-code. Being still in its infancy,
Mint targets specifically computational stencils on a structured grid.
Studies has shown that Mint can achieve up to 80 percent of hand-coded
CUDA code for these types of kernels.

24

Chapter 4

NUMERICAL METHODS FOR
THE EIKONAL EQUATION

4.1 Numerical Methods

Numerical methods for simulating propagating fronts are often divided
in two categories, namely as front tracking methods or iterative methods.
Iterative methods try to compute the solution from a distance perspective.
Those methods create distance estimates, which are improved in an
iterative process. Tracking methods instead simulate the physical wave
as it expands over the grid. Since the wave only passes a node in the grid
one time, the need for revisiting nodes is smaller for tracking methods
than for iterative methods. Tracking methods are often referred to as one-
pass methods. In this section we discuss one tracking method and one
iterative method in detail.

There are a few methods that are partly in both categories. Those are
iterative methods that update nodes in a partially ordered manner. In
section 4.4 we mention a few of these methods.

4.2 Fast Marching Method

The Fast Marching Method (FMM) is a stable numerical scheme for
approximating solutions to the Eikonal equation. The method was
originally proposed by James A. Sethian in 1996 [40]. Coincidentally, a
similar method was proposed by Tsitsiklis [49] in 1995. Since its release,
FMM has been extended several times. The algorithm was first extended
to anisotropic front propagation by Valdimirsky in 2001 [52] and later by
Sethian and Valdimirsky in 2003 [46].

25

4.2.1 Algorithm Description

The main idea of the algorithm is to mimic the wave front as it expands
throughout the grid. For this reason, FMM is classified as a tracking
method. To illustrate how the algorithm works, Bornstein et al. [7] use
a ”prairie fire” as an example. The propagating front is thought of as fire
that spreads across the field, which is our domain. The front evolves with
a slowness field F towards directions where the fire has not yet spread.
At time step t = 0, the fire starts at the position Γ. The nodes on the
discretized domain are classified as either Trial, Unknown or Known. Trial
nodes are the nodes that are burning, the ”un-burnt” nodes are Unknown,
while nodes that are already burnt are classified as Known. Just as the fire
will not return to already burnt nodes, the FMM algorithm does not need
to compute solution values of Known nodes, that is, nodes that are already
passed by the front.

Consider a wave front Γ in a two dimensional grid that we want to
follow, as described earlier in section 2.6. The starting position of the front
in the grid is known, and specified in the boundary value formulation.
From the given initialised nodes defining the starting position of the
front, the algorithm first computes distance estimates to neighbouring grid
points, and marks those nodes as Trial nodes. All Trial nodes are stored
in a min-heap data structure. A min-heap is a binary heap, but where the
values are sorted in an ascending order. This allows the smallest value
to be popped off the heap first. At any time the heap consists of an
approximation of the wave front, or all nodes that are currently burning.

After the update, the algorithm starts marching, by passing one node
at the time. The causality principle of the Eikonal problem assures that
no point can be affected by grid points with larger values of T. Therefore,
the Trial point with the shortest distance (minimal value) is considered
correct and fixated by being classified as Known and removed from the
heap. When the Trial node with minimal value has been chosen and
transformed into a Known value, its adjacent neighbouring points are
adjusted (recomputed). If a neighbour is Unknown, it is changed to a
Trial node and added to the heap. If a neighbour already is on the heap,
its value is recomputed1. This readjustment makes revisiting a Known
node obsolete, since the value of a Known node will never be changed
in later computations. Pseudo code for the FMM algorithm is given in
section 4.2.2.

The following discretization of the Eikonal equation is used for
updating the adjacent points:

1To keep the min-heap structure, an updated Trial node will also affect the position of
the node in the heap.

26

(
max(D−x

ij T,−D+x
ij T, 0)2

+max(D−x
ij T,−D+x

ij T, 0)2

) 1
2

=
1
Fij

. (4.1)

In equation (4.1), D±x
ij is a first order upwind finite difference operator

of the derivative from below (+) or above (−) with respect to x at point
(i, j) in the grid. Only values that are classified as Known are used when
updating a node. The smaller solution of the resulting second order
system is directly discarded. This is because it corresponds to the distance
in the wrong direction. Implementation details on how to solve this
scheme is presented in Listing 4.2. A more thorough discussion behind
the choice of an upwind scheme can be found in [43]. Stencils of different
shapes can also be used. A more in-depth analysis of three stencil shapes
for the Eikonal equation in earth modelling is presented in [48].

4.2.2 Implementation details

Implementing FMM is regarded as a complicated process, for this reason,
a full implementation is discarded. Instead, we are showing the pseudo
code. The initialization step is shown in Algorithm 1.

Algorithm 1 Pseudo code for FMM’s initialization step

1. Initialize the source points with T(x) = g(x) and assign them with
the Known attribute.

2. Initialize the rest of the grid points with T = ∞ and assign them with
the Unknown attribute.

3. Compute solution estimates on all Unknown nodes that share edges
with one or more of the initialized nodes, mark the nodes as Trial
nodes, and add them to the heap.

After the initialization step, a possible way of implementing the
iteration steps is shown in Algorithm 2.

27

Algorithm 2 Pseudo code for FMM’s iteration steps

1. If the min-heap is empty, terminate the algorithm.

2. Else: take out the Trial node with minimal value from the min-heap,
x, and mark it as Known.

3. For all nodes, xn, sharing an edge with x do:

• If xn is Unknown, compute a new solution estimate to T(xn),
mark xn as a Trial node, and add xn to the heap

• If xn is a Trial node, compute a new solution estimate to T(xn)
and assure the heap is correctly sorted

4. Return to step 1

4.2.3 Similarities with Dijkstra’s algorithm

Scientists familiar with Dijkstra’s algorithm might find some similarities
between the Fast Marching Method and Dijkstra’s algorithm [44]. The
latter is regarded as a greedy algorithm. Greedy algorithms are algorithms
that ”tries to do what appears to be the best solution at each stage” [55].

Just like Dijkstra’s algorithm, the FMM algorithm starts by measuring
the shortest travel time to adjacent grid points. This results in an optimal
ordering of the grid points. No advancement is made until such ordering
is in place. The benefit of this type of ordering makes revisiting points
with a known value unnecessary.

4.2.4 Performance

Performance always plays a key role when dealing with algorithms.
In [45] it is said that updating a simple quadratic equation with a standard
iterative method with a total of N points corresponds to a complexity
of O(N). The complexity of FMM is on the other hand known to be
O(N log N). The log N factor comes from the need to update the min-heap
every time a node gets a new solution estimate.

The downside of FMM is that the heap must be updated in a serial
manner every time each grid point is replaced by a new solution value.
The use of a serial heap does not allow for a massively parallel solution.
Thus, the algorithm is considered to be a serial one [24].

28

4.3 Fast Sweeping Method

The Fast Sweeping Method (FSM) is an iterative numerical scheme for
approximating solutions for the Eikonal equation. The method was
originally proposed by Hongkai Zhao in 2004 [56] but has its roots in a
paper [15] published by Per-Erik Danielsson.

Danielsson observed that the characteristic directions of the Eikonal
equation falls into one of the four quadrants of a Cartesian grid. Moreover,
Danielsson realized that covering the entire grid was enough with only a
sequence of four ordered sweeps or scans. This observation was adopted
and later incorporated into FSM by Zhao. Solutions of the Eikonal
equation can be thought of as the minimal distance from an object (Γ0 in
equation (2.8)). Often, the minimal distance to an object is a straight line.
The FSM use this observation by updating nodes in computing distances
in one direction at the time, by updating nodes in a specific order.

4.3.1 Algorithm description

The key idea behind FSM is to update nodes with alternating Gauss-Seidel
iterations. On a 2D uniform grid, the Gudonov upwind scheme is given
by equation (4.2),(

(Ti,j−Tmx)+

dx

)2
+
(

(Ti,j−Tmy)+

dy

)2
=

1
F2

i,j
(4.2)

where Ti,j is the discrete approximation to T in equation (2.8) at x =
(i, j), Tmx = min(Ti−1,j, Ti+1,j), Tmy = min(Ti,j−1, Ti,j+1) and (x)+ =
max(x, 0). This discretization is simply a reformulation of the FMM
update, equation (4.1).

The algorithm sweeps over the nodes until convergence, which is when
no nodes get smaller values. A full sweep of the algorithm, includes four
sub-sweeps. In each sub-sweep, each point in the grid is updated in a
specific order, right-up, right-down, left-up and left-down. By iterating
through the grid in those directions, distances in the same directions are
computed in each of the four iterations. Figure 4.1 show the solution
after each of the sub-sweeps when computing the distance to a point in
the middle of the domain. In this simple example, only one full sweep
is needed for the solution to be correct. However, for more complicated
problems several full sweeps might be needed. This is the case when
objects are present, and the shortest distance is along curved paths. By
arguments of causality of an expanding front, the method converges in
a finite number of sweeps. This gives rise to a linear complexity, O(N),
where N is the total number of nodes.

Not surprisingly, parallel versions of the method has also been
proposed [57], utilizing the data independence property of the algorithm.

29

Figure 4.1: From left to right: in a sweeping method, the domain is iterated
in specific directions. The figure series shows how the domain is gradually
revealed after being swept until convergence (rightmost figure), for the
problem of computing the distance field to a point in the middle of the
domain.

However, the Gauss-Seidel update makes the algorithm dependent on
a single memory location, making the algorithm inefficient or at worst
inaccessible for some of the most efficient parallel architectures [24].
Others argue that the advantage of regular memory access is beneficial
with respect to the caching mechanisms found in most modern processor
architectures today. By altering the algorithm slightly, FSM is easily
adjusted for parallel architectures. This work is presented in the following
chapter.

4.3.2 Implementation details

Let us look at the actual code for the serial version of FSM. We start by
generating a grid with the size of M × N, where the distances between
neighbouring nodes is dx and dy in the x and y directions respectively.
The grid is then populated by ∞ everywhere. The velocity F is set to
1 on the entire grid in this example. The boundary condition is set to
be zero at the top, bottom, left, and right, edges of the grid. With such
velocity function and initiation, the solution to the problem is the minimal
Euclidean distance to the domain border. In addition, a method is created
to check if the neighboring grid points are located within the domain:

def InRange(i, j):

return (0<=i<M and 0<=j<N)

Listing 4.1: Python code to check if a grid point is located within the
domain.

def UpdateGodunovScheme(i, j):

t_x = INFINITY

t_y = INFINITY

if InRange(i+1, j):

t_x = T[i+1][j]

if InRange(i-1, j):

t_x = min(t_x ,T[i-1][j])

30

if InRange(i, j+1):

t_y = T[i][j+1]

if InRange(i, j-1):

t_y = min(t_y ,T[i][j-1])

if (t_x + dx/F(i,j) < t_y):

t_new = t_x + dx/F(i,j)

elif (t_y + dy/F(i,j) < t_x):

t_new = t_y + dy/F(i,j)

else:

t_new = (t_x*dy**2 + t_y * dx**2) / (dx**2 + dy**2) \\

+ dx*dy*sqrt((dx**2+dy**2) \\

/F(i,j)**2 -((t_x -t_y)**2))/(dx**2+dy**2)

T[i,j] = min(T[i,j], t_new)

Listing 4.2: Python code to compute the Gudonov upwind difference
scheme.

With the algorithm for the Gudonov upwind scheme in place, we are
ready to outline the actual sweeping algorithm. This is shown in
Listing 4.3.
Number of sweeps

for sweeps in range (1):

for i in range(0, M):

#Right -up scan

for j in range(0, N):

UpdateGodunovScheme(i, j)

#Right -down scan

for j in range(N-1, -1, -1):

UpdateGodunovScheme(i, j)

for i in range(M-1, -1, -1):

#Left -up scan

for j in range(0, N):

UpdateGodunovScheme(i, j)

#Left -down scan

for j in range(N-1, -1, -1):

UpdateGodunovScheme(i, j)

Listing 4.3: Python code to perform ordered sweeps.

The final result can be plotted using a surface plot, as shown in Figure 4.2.

4.4 Partially Ordered Iterative Methods

On simple problems, iterative methods are faster than front tracking
methods. However, as the domain geometry or the velocity function
complexity gets more complicated, the performance of the iterative

31

 64
 0

 48

 32

 16

 4.95

 3.71

 2.47

 1.24

Eikonal Equation

 0 0

 16

 32

 48

 64

Figure 4.2: The Eikonal equation solved with FSM on a uniform grid with
65× 65 nodes. All domain borders were initialized with the value 0, and
the velocity is constant over the entire domain.

methods worsens. Instead, tracking methods are considered generally
more efficient. Recently, several new methods have been suggested, that
mix concepts of iterative and tracking methods. The Fast Iterative Method
(FIM) tries to expand the wave everywhere from the initial shape Γ0.
As a result, nodes may be passed several times and the method can be
implemented on parallel computers and GPUs [25].

By further enforcing a partial ordering of the updates, the Two Queue
method [3] and the Semi-Ordered Fast Iterative Method (SOFI) [18], try
to mimic the wave front with heuristic arguments [3, 18]. These two
methods are even more stable with respect to geometry and velocity
variations. The Two Queue method is applicable only on isotropic front
propagations, whereas the SOFI method is able to solve more general
anisotropic problems.

Finally, Chacon et al. [9] suggests a two scale approach. First, the
domain is divided into sub-domains, of which a coarser grid is created.
Using a front tracking method on the sub-domain grid, an order to
update the sub-domains is decided. Thereafter, each of the sub-domains
is updated using an iterative method.

32

4.5 Summary

Non-linear static Hamilton-Jacobi equations are often used to describe the
arrival time of a propagating front. The numerical algorithms needed
to compute solutions for these equations are usually divided into two
categories: front tracking methods and sweeping methods. In this chapter
we have looked briefly at two numerical algorithms, one from each
category.

The FMM is a front tracking method that mimics a front expanding
by updating node values in a strictly increasing order. The algorithm
is strictly sequential, and considered rather complex when it comes to
implementation. For this reason, an implementation was discarded.

The FSM is a sweeping method that computes the distance perspective
by iterating over specific directions. Compared to tracking methods,
the main advantages of sweeping methods is that they are easier to
implement. Sweeping methods are also known to be faster than tracking
methods on simple problems. The FSM has an optimal complexity, but
the performance is highly dependable on the complexity of the velocity
function, and the geometry of the domain. In cases with complex
geometries or strongly bending characteristics, many iterations are needed
before convergence.

As an exercise to understand the fundamentals of the FSM, the
algorithm was implementation in Python. The implementation was used
to solve the Eikonal equation. We observed that the iteration order was
predetermined, thus, laying foundations for a possible parallelization.

33

34

Chapter 5

A PARALLEL FRONT
PROPAGATION METHOD

5.1 Geological Fold Simulation

Figure 5.1: The initial geological layer, Γ0, from which folded volumes of
rock was simulated in Figure 5.2.

In this chapter we present a massively parallel front propagation
algorithm. A large portion of this chapter has been published in [20] (see
Appendix A), and earlier versions of the work in [19].

Kalkulo and Statoil collaborate in developing a new paradigm for
highly interactive modelling of complicated geological scenarios and
processes. The methodology now developed, is used to describe present-
day geology as the realization of a series of geological events and processes
along a geological timeline [36]. Many processes rely on the similar
surfaces and their corresponding metric properties such as distances,
gradients, curvature etc. [21]. Using the mathematical framework for

35

modelling folds developed by Hjelle et al. [21], we observe that the
distance maps can be described by the viscosity solution to the static
Hamilton-Jacobi equation as shown in equation (5.1).

F‖∇T(x)‖+ ψ (a · ∇T(x)) = 1,
given T = t0 on Γ0

(5.1)

In equation (5.1), Γ0 is the initial horizon and a the axial direction of the
fold. F is a propagation speed that is independent of direction of travel,
and ψ is the advection speed in the direction of a. The same equation can
be used to describe the first arrival of a wave in a media in motion [26].

This equation has earlier been solved for the application of simulating
folds in 2D using SOFI [18]. The SOFI method is a mix between a front
tracking and iterative method. In this chapter we present an iterative
method for simulating folds in 3D.

(a) Anisotropic propagation (b) Isotropic propagation

Figure 5.2: (a) Shows a folded 3D volume with F = 1, ψa = 1
2(−1, 1, 1),

simulated from Γ0. (b) Shows the same initial 3D volume, but when F = 1
and ψ = 0, resulting in an isotropic front propagation and an Euclidean
distance field.

Figure 5.1 shows an example of an initial layer, Γ0, from which a folded
volume of rock-layers can be simulated. Different parameter values,
results in different types of geological folded volumes. For example, if
ψ 6= 0, the front propagation is of the anisotropic type. Anisotropic means
that the velocity is dependent on the direction. Figure 5.2 (a) illustrates
a folded volume simulated using an anisotropic front propagation solver.
In the special case where ψ = 0, equation (5.1) is reduced to the isotropic
Eikonal equation as presented in section 2.7. When discussing front
propagation, the term isotropic means that the velocity is independent
of the direction. When F = 1 and ψ = 0, the viscosity solution to
the Eikonal equation is given as the minimal Euclidean distance from Γ0.

36

Characteristic curves, or ray-paths, play an important role in the concept
of front propagation. Imagine that particles are being transported with
the moving wave-front. The characteristic curves are the trajectories of
the particles. Another interpretation of the characteristic curves, are as the
fastest path to travel to Γ0.

Folds are often classified by analyzing the lines that connect points
with identical angles on the upper and lower boundaries of different
layers. For a folded structure, dip isogons are most often straight lines.
When folds are simulated with equation (5.1), the dip isogons coincides
with the characteristic curves [21] and therefore, the characteristic curves
are linear. For isotropic problems with linear characteristics, sweeping
algorithms converge quickly. We regard this property as a motivation
to investigate related algorithms for the simulation of geologically folded
structures.

Front propagation is also used in other applications such as reservoir
simulation [4], seismic processing [37, 38] and medical imaging [23, 30],
making a fast algorithm highly versatile. For instance, a faster solver
would allow more interactive applications. In connection with geological
modelling, an interactive application enables users to test more geological
scenarios, potentially leading to a better understanding of the inner earth.
With respect to medical imaging, a quick solver could potentially lead to
faster medical diagnoses. To compute arrival times of reflected seismic
waves, a new wave is simulated from the reflecting surface. In all
mentioned applications, computational speed is of high importance.

5.2 A Comparison of Different Algorithms

In chapter 4, we discussed two different categories of front propagation
algorithms. The first one, FMM, was a strictly serial algorithm, while the
second one, FSM, had potential for parallelization. Zhao [57] presents
a parallel version of FSM by performing sweeps in different directions
simultaneously. Each sweep is performed on different CPUs. Once the
first iteration has completed, the minimum value of the different solutions
is computed for each grid point. The result of this computation is then
used as a basis for the next iteration. These steps are continued until
convergence. However, as this study by Li et al. [30] shows, the parallelism
of traditional sweeping algorithms is rather limited. Possibly due to the
Single Program Multiple Data (SPMD) approach taken by the parallel
FSM implementation. Furthermore, as the result from Li et al. shows,
good scaling for parallel FSM is first observed when moving on large-scale
systems using Message Passing Interface (MPI). In contrary, FIM whose
target is Single Instruction Multiple Data (SIMD) architectures, performs
better on GPUs.

37

(a) Traditional Stencil (b) PMM Stencil

Figure 5.3: (a) Traditional stencil shape used in FSM. Notice that the
stencils for updating node B depend on the value of node A. (b)
Alternative stencil used in PMM. The stencils for updating node C is
independent of the value of node D, and therefore the nodes can be
computed simultaneously.

Another approach to parallelize sweeping algorithms can be achieved
by alternative formulation of the stencil and the iteration order. Weber
et. al. [54] has explored the idea of alternative stencil formulation,
resulting in a new parallel algorithm called the Parallel Marching Method
(PMM). Recall from section 4.3.1 that a bottleneck with the parallel FSM
algorithm is that the algorithm becomes dependent on a single memory
location. Also, as noted by Weber et. al., another disadvantage with the
parallel FSM algorithm is its limited parallelism. Because the number
of computation in each step is fluctuating, the real advantage of the
parallelization is acquired only on sufficiently long diagonals. These two
shortcomings are addressed by rotating the direction of each sweeps 45 ◦

as shown in Figure 5.3. Changing the stencil leads to a different iteration
of the domain, this is shown in Figure 5.4.

Figure 5.4: The figure series shows how the domain is swept using the
PMM stencil, as opposed to FSM’s iteration shown in Figure 4.1.

By rotating the direction of all sweeps, nodes on the grid can be
updated concurrently. Thus, increasing the level of parallelism offered
by the algorithm, as well as allowing coherent memory access. Coherent
memory access is an important condition to achieve good scaling on SIMD
architectures like GPUs.

38

Algorithm
Name

Independent of
Geometry

Parallel
Implementation

Anisotropy
Support

3D
Support

FMM No No No Yes
FSM No No Yes Yes

Parallel FSM No Yes Yes Yes
PMM No Yes Yes No
FIM No Yes Yes Yes

3D PMM No Yes Yes Yes

Table 5.1: A table comparing the different algorithms with each other.

One shortcoming of the PMM algorithm is that it was originally
created for computing geodesic distances on surfaces. Therefore, it is only
applicable in 2D. Table 5.1 summarises some properties of different front
propagation algorithms. To our knowledge, only the PMM and FIM have
been implemented on GPUs. Furthermore, only the FIM is applicable
in 3D, and to be implemented on a GPU detailed knowledge of CUDA
is needed. In the next section, we present a new 3D front propagation
algorithm that is well suited for parallel architectures, and easily ported to
GPUs.

5.3 3D Parallel Marching Method

Based on PMM, we present our algorithm called 3D PMM. Since our
algorithm is based on the idea of the alternative stencil formulation and
iteration order, similar to that of the PMM method [54], we have decided
to call it 3D PMM. The algorithm has a massively parallel structure, as
nodes on an entire surface (planar cut of the 3D volume) can be updated
in parallel.

Suppose we have a 3D domain with the nodal values Ti,j,k where
(1, 1, 1) ≤ (i, j, k) ≤ (nx, ny, nz), and with a spacing of (dx, dy, dz). For
simplicity, we assume that the values at the nodes closest to Γ0 are given.
Similar to our FSM implementation from section 4.3.1, we set the values
of all other nodes to ∞. Because we solve for the minimal distance,
that is, the first time of arrival, a smaller value for T is considered as
a better approximation. As in most algorithms, monotonic convergence
is an essential property for convergence towards the viscosity solution,
meaning, if the approximation value is too small, it will not be increased.
Hence, we must assure that this never occurs. One way to address this
issue is by computing the characteristic curve of the approximation, and
assert that the characteristic curve is embedded in the convex hull of
the nodes used in the computation. If it is not, the new approximation
is discarded. In the appendix of [20] we present details of such a
methodology and the conditional upwind discretizations of equation (5.1).

39

However, a caveat with this discretization is that it introduces a lot of
branching, which possibly might lead to reduced computation speed.

The algorithm iterates through the grid in axial directions. Based on
the nodal values along the iteration direction, new distance values are
computed. For instance, in x-direction, the 3D volume is first iterated in
the increasing order of the i index (increasing x value), and then in the
decreasing order of the same index. The same process is repeated in the y-
and z-directions. We refer to such a full iteration as a sweep. Each sweep
consists of 6 sub-sweeps in the 3D box. Pseudo-code for the sub-sweeps
in the x-direction is shown in Algorithm 3.

Algorithm 3 Algorithm for sub-sweeps in x-direction

for i = 2, . . . , nx do
for all j = 1, . . . , ny do

for all k = 1, . . . , nz do
Update Ti,j,k using values Ti−1,j±a,k±b, a ∈ {0, 1}, b ∈ {0, 1}

end for
end for

end for
for i = nx − 1, . . . , 1 do

for all j = 1, . . . , ny do
for all k = 1, . . . , nz do

Update Ti,j,k using values Ti+1,j±a,k±b, a ∈ {0, 1}, b ∈ {0, 1}
end for

end for
end for

The value Ti,j,k is computed using nine nodes located in the previously
updated plane. Figure 5.5 illustrates the nodes used when the generalized
distance is computed in an upwards direction. Each sub-sweep is in the
direction of the top of the pyramid.

Figure 5.5: The shape of the update stencils. Each sub-sweep is in the
direction of the top of the pyramid.

40

When designing parallel algorithms, it is important that the work
(computations) that needs to be done are independent of each other. An
algorithm is known to be embarrassingly parallel if the work can be divided
among processes/threads [34]. Since there are no internal dependencies
between nodes on the same plane, it is possible to compute all nodes in
the plane simultaneously. This corresponds to computing the two inner
loops in each sub-sweep as shown in Algorithm 3. Hence, the 3D PMM
algorithm is considered to be an embarrassingly parallel algorithm.

5.4 Multi-core Implementation

Thanks to the embarrassingly parallel structure, the algorithm is easily
parallelized for multi-core architectures. We have relied on the OpenMP
API to port our algorithm to such architectures. In addition to compiler
support, a prerequisite to get access to OpenMP’s prototypes and macros
is that the OpenMP header file, omp.h, must be included. In order to fork
of multiple threads, a region must be defined as a parallel region. Usually,
this is done to share data among threads to be forked. There are multiple
ways of defining a region as parallel, but an often used method is by using
the #pragma omp parallel directive as shown in Listing 5.1.

void Sweep(_DOUBLE_ *** T, int nbrSweeps)

{

#pragma omp parallel

{

int di , dj , dk;

int i, j, k;

// Nodal values for stencil computations

DOUBLE tnew , st, xt, yt;

DOUBLE txy , xnt , ynt , txm , tym , txnyn;

...

// Code for all 6 sub -sweeps

}

}

Listing 5.1: Source code showing how a parallel region is defined using
OpenMP.

Once a parallel region has been defined, special directives can be used
to tell OpenMP to fork new threads. This is typically done by placing
the #pragma omp for directive right above the for loops to be parallelized.
Listing 5.2 illustrates this.

for(i = 2; i < _nx+ 1; ++i)

{

#pragma omp for schedule(static , 1)

for(j = 1; j < _ny+1; ++j) {

41

#pragma ivdep

for(k = 1; k < _nz +1; ++k) {

...

}

}

}

Listing 5.2: Source code excerpt showing how OpenMP is used to
parallelize the two inner for loops of a sub-sweep.

In addition to the basic parallel for directive, a special type of schedule
clause, static, has been used. The clause is also followed by a chunksize
number, which in our case is 1. By choosing a static schedule type, we
tell the system to assign chunks of chunksize iteration to each thread in
a round-robin fashion. For instance, if we have 12 iterations and three
threads, using the schedule(static, 1) clause would lead to the following
iteration assignment:

• Thread 0: 0, 3, 6, 9

• Thread 1: 1, 4, 7, 10

• Thread 2: 2, 5, 8, 11

Usually, the static scheduling can be omitted, but we observed a small
increase (5-8 percent) in performance by using the clause.

As mentioned earlier, our algorithm is embarrassingly parallel, mean-
ing each computation is independent of each other. Sometimes compilers
do not detect this. To assist the compiler with more effective vectorization,
the #pragma ivdep directive has been used. This directive is independent
of OpenMP and instructs the compiler to ignore detected vector depen-
dencies. Most compilers such as GCC (GNU Compiler Collection), ICC
(Intel C/C++ Compiler) and PGI (The Portland Group, Inc), all support
this pragma.

The process of placing OpenMP directives over the loop inside the
Sweep function is repeated for all 6 sub-sweeps. An in-depth analysis
of the multi-threaded implementation is presented and discussed in
section 6.4.

5.5 GPU Implementation

As mentioned earlier in section 3.4, writing GPU-applications by hand
can be cumbersome and requires painstakingly attention to low-level
programming details. To avoid manual GPU programming, the Mint
programming model was used to annotate regions of code that we
wanted to offload to the GPU. Only one function, Sweep, was annotated.

42

Listing 5.3 shows the Mint pragma used to transfer the required data from
the host to the device.

The ghost cell pattern is a common programming pattern used in
shared memory systems to parallelize the computation of structured grid
problems. The idea with the pattern is to simply divide the grid into
smaller chunks among available threads or processors on the system. Each
thread/processor is then responsible for computing its chunk. However,
one challenge this pattern poses is that updating points at the periphery
(defined as the nodes except the center point), requires values from
neighbouring chunks. By creating extra regions around the peripheral
nodes, referred to as ghost regions, neighbouring values can be accessed
faster. As a consequence, more time is spent on computation and less
on communication between the different chunks. Mint’s stencil analyzer
uses this pattern to perform better shared memory optimizations [50]. To
aid the stencil analyzer with the optimizations, we have padded the grid
size in different axial directions with 2. The padding is in fact special
ghost regions that we have created to reduce communication and increase
computation. This explains the philosophy behind (nx+2), (ny+2) and
(nz+2).

void Sweep(_DOUBLE_ *** T, int nbrSweeps)

{

#pragma mint copy(T, toDevice , (_nx+2), (_ny+2), (_nz +2))

//*** Definitions of constants

//*** Code for all sub -sweeps

...

}

Listing 5.3: Source code showing the programmer annotations required
by Mint to transfer data from the host to the device.

After the data transfer specific pragmas, annotations similar to that
of OpenMP is used to declare a parallel region. This is done by writing
#pragma mint parallel as shown in Listing 5.4. A parallel region is typically
succeeded by annotations for parallelizing for loops. This is done by
writing #pragma mint for pragma followed by a clause. We have used the
nest(all) and tile(16,16,1) clause. The nest(all) clause indicates that all
loops are independent an can be run in parallel on the device. The tile
clause is used to break our 3D grid into 3D tiles of 16× 16× 1 as shown
in Figure 5.6. A thread block is then assigned to compute the created tile.
A more in-depth analysis of the effect of the different tile size and chunk
size is discussed in section 6.7.

43

Figure 5.6: Tile decomposition: the tiling clause breaks our 3D grid into
smaller tiles. A thread block is then assigned to compute the decomposed
tile.

void Sweep(_DOUBLE_ *** T, int nbrSweeps)

{

...

#pragma mint parallel

{

...

for(i = 2; i < _nx+ 1; ++i)

{

#pragma mint for nest(all) tile (16,16,1)

for(j = 1; j < _ny+1; ++j) {

for(k = 1; k < _nz +1; ++k) {

...

}

Listing 5.4: Source code segment showing Mint specific programmer
annotations used to parallelize a sub-sweep in the Sweep function.

void Sweep(_DOUBLE_ *** T, int nbrSweeps)

{

...

} // End of all sweeps

} // End of Mint region

#pragma mint copy(T, fromDevice , (_nx+2), (_ny+2), (_nz +2))

}

Listing 5.5: Source code showing the programmer annotations required
by Mint to transfer data from the device to the host.

In order to transfer the data from the device to the host, a similar
pragma to the one used to transfer the data to the device is used.
Listing 5.5 shows the Mint pragma used to transfer data from the device
to the host. Usually, this pragma is the last pragma we need to write in a
Mint annotated program.

44

(a) (b)

Figure 5.7: Figure (a) shows 9 cuts of a solution simulated using OpenMP,
while (b) shows the same planar cuts when simulated on a GPU.

When dealing with computational simulations, the correctness of the
results plays an important role. The accuracy of our code is verified by
using a Python script that reads the output from the C-code and measures
the error in three norms, the L1, L2 and L∞-norms. The numerical
difference between CPU and GPU solutions is negligible. In addition, the
verification script also generates plots that let us determine the impact of
the error in a visual manner. These plots are a collection of 3 cuts of the
domain in each of the axial directions. Figure 5.7 shows two such plots
simulated on different platforms. Compared to the CPU implementation,
the accuracy difference on the GPU is minimal.

5.6 Summary

In the first part of this chapter we discussed a method to simulate layers
of rocks as the position of a propagating front at different times. Fast
simulation of these layers plays a vital role in the exploration software
developed for Statoil by Kalkulo. Since fast simulation depends on
fast solvers, developing fast algorithms is instrumental for more rapid
simulations. Faster solvers enable users to test more geological scenarios,
leading to a better understanding of the inner earth. Even though
it may appear that such a front propagation is tailored for geological
modelling, front propagation is widely used in other fields of science as
well. Applications such as reservoir simulation, seismic processing and
medical imaging can all benefit from a faster solver.

In the second part of this chapter, we presented a novel algorithm
for anisotropic front propagation in three-dimensions. The algorithm has
a simple structure and a high degree of parallelism. Due to its simple

45

structure, the algorithm is easily adopted to two of the leading parallel
architectures available today, multi-core CPUs and GPUs. The OpenMP
API was used to create a multi-threaded implementation for multi-core
architectures with little effort. Thanks to the Mint programming model,
the algorithm was easily offloaded to a GPU. Developing the GPU
implementation was almost as easy as using OpenMP, which proves to
be quite time saving.

46

Chapter 6

RESULTS AND DISCUSSION

6.1 Performance Measurements

Cray XE6 ”Hopper”
CPU model AMD Opteron 6172
CPU frequency 2.1 GHz
FLOPs/core 8.4 GFLOP/s
Private L1 per core 64 KB
Private L2 per core 512 KB
NUMA Domains 4
Cores per NUMA Domain 6
Shared L3 per NUMA domain 6 MB
Memory 32/64GB DDR3
Memory frequency 1333 MHz
Memory Channels per NUMA Domain 2

Table 6.1: System overview for one of the nodes on Hopper.

The goal of the experiments was to simulate a folded volume.
Figure 5.1 shows the surface the sweeps were performed on. All
experiments were conducted using eight sweeps. It is thought that eight
sweeps is enough for the solution to converge sufficiently. In these
experiments, ψa = (−0.35, 0.4, 0.7) and F = 1.1, while the domain length
was set to be 10 in x, y and z directions.

All experiments were run on a three-dimensional grid with a uniform
number of grid points. As a baseline, a grid size of 1603 was chosen.
The second grid has 3203 nodes, while the last size was set to be 4003.
One might ask why the last grid size was chosen to be 4003 and e.g. not
6403. The idea with the largest grid size was to find a problem size that
was big enough to not fit in the memory of the GPU or the cache of the
CPU. This was primarily done to avoid super-linear speedup, but also
to be able to measure a reasonable data transfer size. After a careful set

47

of experiments, 4003 was chosen as it balances execution time while still
fulfilling our requirements with respect to performance measurements.

Moreover, all experiments have been conducted using strong scaling. In
a strong scaling study, the problem size is untouched, while the number
of cores is increased after a successful run. This scaling scheme is usually
preferable when one is interested in uncovering how the execution time
varies with the number of cores. The main reasoning for choosing this
scheme was in other words to map the scalability of our application, as
the number of cores increases.

Unlike CPUs, GPUs have a greater performance gap between the
different precision modes. Therefore, all experiments were conducted
using both single and double precision. The main motivation for
conducting experiments with both set of precision modes is to unearth
any potential performance issues related to precision. For our test device,
the peak double precision performance is 1

8 of the peak single precision
performance. However, this difference is only 1

2 on the more expensive
Nvidia Tesla cards.

The time to transfer data to and from the GPU is included in the
reported GPU execution times. Moreover, only the computational times
for the actual sweeps are measured. A high-resolution timer is placed right
before and after the Sweep function is called.

6.2 System Information

GeForce GTX 590
CUDA cores per GPU 512
Stream Processor frequency 1260 MHz
Single Prec. FLOPs/GPU 1288 GFLOP/s
Double Prec. FLOPs/GPU 161 GFLOP/s
L1/Shared Memory per SM 64 KB
L2 per GPU 768 KB
Memory interface GDDR5
Memory clock 1728 MHz
Memory 1536 MB per GPU
Memory bandwidth per GPU 163.9 GB/s
Bus Support PCI Express 2.0 x16

Table 6.2: System overview for the GPU testbed.

For result evaluation, two different machines were used. All OpenMP
results were run on one of the nodes on the NERSC Cray XE6 ”Hopper”
supercomputer. Each compute node contains two separate chips, each
sporting a twelve core AMD ”Magny-Cours” multiprocessor. Within each

48

AMD ”Magny-Cours” chip, there are two hex-core multiprocessors. These
hex-cores are connected via two cache coherent HyperTransport 3 (cHT3)
ports, one at 16x and another at 8x. Each hex-core also has an additional
16x cHT3 port that can be used to connect to an adjoining chip. There
is also a non-cache coherent port, but this is not utilized in Hopper for
connecting multiple CMPs together. Full system specifications for Hopper
is presented in Table 6.1.

Several actions was taken to ensure that the results were as accurate
as possible. To avoid being interrupted by other system processes, the
experiments on Hopper were run in a non-interactively fashion. Special
PBS scripts was therefore written and later submitted to the Torque batch
system. In order to maximize application performance, all jobs were
submitted to the regular queue and not the debug queue. A sample PBS
script is shown in Listing 6.1.

#!/bin/bash

#PBS -q regular

#PBS -l mppwidth =24

#PBS -l walltime =01:30:00

#PBS -N 3dpmm_cube

#PBS -e 3dpmm_cube.$PBS_JOBID.err
#PBS -o 3dpmm_cube.$PBS_JOBID.out
#PBS -V

cd $PBS_O_WORKDIR/pgi

for app in ./3dpmm -160d; do

echo "*** APP is $app ***"

for i in 0; do

export OMP_NUM_THREADS =1

export MP_BIND=yes

export MP_BLIST =5

$app >> n160d_pgi_cube_1

done

done

Listing 6.1: A sample PBS script submitted to Torque queue system on
Hopper.

GPU experiments were conducted on a system with two Nvidia
GeForce GTX 590 cards. Although these cards are dual-GPU cards,
meaning each physical card holds two GPUs, only one device was utilized.
The cards were connected to the host using the PCI Express 2.0 bus. Full
GPU specifications is shown in Table 6.2. The core host specifications for
the GPU testbed consists of a quad-core Intel Xeon E5620 ”Westmere-EP”
CPU running at 2.4 GHz.

49

6.3 Compiler and Package Information

In our set of experiments with OpenMP, we used gcc version 4.3.4, while
experiments on the GPU were conducted using nvcc 4.0. For our study
of different thread to core mappings, we used the PGI compiler version
11.9.0. We determined that the performance of the libGOMP affinity
specifier and numactl was quite poor on Hopper. Using an Intel compiler
was also not an alternative because Intel compilers do not support thread
affinity specification on AMD CPUs. For compiler optimizations, we used
the -O3 flag for all set of compilers. Finally, Mint version 1.0.1 was used,
built on the Rose compiler framework version 0.9.5a.

In addition to the compilers, several profiling tools were also used. For
CPU profiling, valgrind v3.7.0 with the cachegrind option was utilized,
while Nvidia’s default CUDA profiling tool was used for GPU profiling.

6.4 CPU Performance Results

N t1 t2 t4 t8 t12 t16 t24
1603 194.17 100.66 52.62 27.20 19.12 14.07 10.22
3203 1795.86 822.48 423.87 219.39 145.80 112.57 81.40
4003 3142.23 1628.12 853.50 430.59 286.83 223.55 177.86

Table 6.3: Computational times for three grids with a total of N nodes
using single precision. ti is the CPU time for i cores.

Table 6.3 displays the computational times for experiments using
OpenMP with single precision. Independent of the grid size, the speedup
is near-linear (1.9x) up to 12 cores. However, the speedup drops to 1.3x
when the number of cores is increased beyond 12 cores. We believe this
performance decrease is not necessarily connected to the algorithm itself,
but rather to the implementation that fails to take the NUMA architecture
on Hopper in account. Issues related to NUMA is discussed in section 6.5.

A visual representation of the speedup factor can be seen in Figure 6.1.
From the figure, we can see a near-linear speedup up to 12 cores. After
that, the scaling flattens out. As mentioned earlier, we believe that data
locality plays a big role when we scale past 12 cores.

OpenMP results using double precision are displayed in Table 6.4.
As we can see, the performance difference between single and double
precision on the CPU is quite small (10-12 percent). More interestingly,
the speedup factor trend is the same as for single precision. A near-linear
scaling up to 12 cores, but as soon as data is transferred across different
sockets, the performance gets a hit and the scaling drops to 1.2-1.3x.

50

Figure 6.1: The speedup factor for the different grid sizes. Results from
Table 6.3 is used as basis to create the plot.

N t1 t2 t4 t8 t12 t16 t24
1603 217.54 112.85 58.93 30.44 21.64 15.73 11.40
3203 2016.50 911.12 472.84 245.08 170.76 125.08 90.07
4003 3886.31 1799.22 928.89 481.99 339.72 246.80 240.05

Table 6.4: Computational times for three grids with a total of N nodes
using double precision. ti is the CPU time for i cores.

6.5 NUMA optimizations

Recall that Hopper consists of two AMD Magny-Cours CPUs with 12
core each connected in a multi-socket configuration. Figure 6.2 shows
the different possible NUMA topologies available on Hopper: diagonal
(6.4 GB/s), vertical (19.2 GB/s) and horizontal (12 GB/s). A fourth
configuration is possible by spreading the core across each domain e.g.
core 5, core 16, core 7 and core 18. This configurations is sometimes
referred to as a cube or spread.

Choosing the optimal topology is strongly linked to configurations that
maximize the bi-directional memory bandwidth. The worst configuration

51

Figure 6.2: The different NUMA topologies available on Hopper. The
difference between the horizontal and the vertical links is accounted for by
the extra 8x cHT3 port between hex-cores co-located on the same package.

is therefore the diagonal configuration where the memory bandwidth
is only 6.4 GB/s. The best configuration is regarded to be a vertical
configuration where the memory bandwidth is 19.2 GB/s. If we are not
careful, we might experience that a diagonal topology is chosen and as a
consequence, our application is limited by poor memory bandwidth.

The OpenMP results from Table 6.3 and Table 6.4 showed that the
near-linear scaling stopped at around 12 cores. After that, we suspected
that the performance was hurt due to the implications of having non-
uniform memory access. In such configuration, an non-optimal thread
to core mapping will hurt the performance. Additionally, a volatile thread
configuration, might also cause unexpected effects on the performance.
Threads migrations across NUMA-domains are extremely costly, and
threads that access proximal data should be clustered within the same
NUMA-node. Performing NUMA optimizations is in other words
about preserving data locality. There are several ways of improving
the data locality: through implementation and through environmental
configurations.

The OpenMP programming model gives indirect access to improve
data locality. Usually, this is done by performing a parallel data
initialization, better known as the first-touch policy [47]. Performing such
initialization on Hopper, ensures that each thread accesses memory pages
on the same die as the computation part of the code is performed. In our
implementation, this is done in the ImplicitInitialiser function. An excerpt
from this function is shown in Listing 6.2.

52

void ImplicitInitialiser(_DOUBLE_ *** T, ...)

{

#pragma omp parallel

{

#pragma omp for schedule(static ,1)

for(i=eb;i<nx -1+eb;i++) {

for(j=eb;j<ny -1+eb;j++) {

for(k=eb;k<nz -1+eb;k++) {

Listing 6.2: A code excerpt demonstrating the concept of first-touch policy
in the ImplicitInitialiser function.

Parallel data initialization is only one way of reducing NUMA-
penalties. Another alternative is manually specifying the thread to core
mapping, better known as the thread affinity. Specifying the thread affinity
is considered challenging as it requires the programmer to acquire low-
level details about the system that the code will be run on. Since thread-
affinity is tightly coupled to machine configuration and the compiler used,
it also reduces the code portability.

We have relied on the compiler to bind threads and specify the thread
affinity. For the PGI compiler, specifying the environmental variable
MP BIND=yes, enables thread binding, while thread affinity can be
specified through the MP BLIST environmental variable.

In addition to extending our code with parallel initialization, experi-
ments have also been carried out to map the application performance un-
der the different NUMA topologies. Conducting experiments with differ-
ent topologies often leads to generation of many performance results. For
simplicity reasons, only the results from the smallest grid size using single
precision is presented in Table 6.5.

Top. N t1 t2 t4 t8 t12 t16 t24
Cube 1603 189.59 97.71 50.22 25.62 17.72 13.01 8.95
Vert. 1603 190.02 97.83 50.36 25.72 17.81 13.76 9.66

Horiz. 1603 189.90 97.67 50.30 25.68 17.82 13.08 9.10
Diag. 1603 378.61 205.88 111.13 57.25 40.99 33.79 105.74

Table 6.5: Computational times for the different topologies.

Looking at the results from Table 6.5, it is quite clear that using a diag-
onal topology has a dramatic effect on the performance, especially when
using 24 cores. Due to the highly ordered affinity, the communication is
restricted to the diagonal link where the memory bandwidth is at its low-
est. Comparing the performance from the other topologies reveal that the
application might not be limited by memory, as there are very small dif-
ference between horizontal, vertical and cube. Figure 6.3 mirrors this ob-
servation as well.

53

Figure 6.3: Performance scaling using diagonal and cube topology.

Although the different optimizations has increased the performance,
the overall speedup has not had increased as much as we had hoped. This
leads us to believe that the poor scaling has its root in the large stride of
the memory accesses. On a 1603 grid, this amounts to accessing distant
locations in memory. With this grid size, a stride length is defined to be
160 x 160 x 4 bytes, meaning much of the benefit of having a series of
hierarchical caches is lost.

6.6 GPU Performance Results

N Serial OpenMP24 Mint Speedup1 Speedup24
1603 194.17 10.22 2.43 79.9x 4.2x
3203 1795.86 81.40 14.84 121.0x 5.4x
4003 3142.23 177.86 25.28 140.1x 7.0x

Table 6.6: Comparing the CPU execution times with GPU execution times
using single precision.

Table 6.6 shows a modified version of Table 6.3, but where GPU results
are included. For the baseline grid size, the difference in speedup between
a single core and the GPU is approximately 80x. When comparing with 24
cores, the speedup is 4.2x. The difference in speedup continues to increase
with the size of the domain. Recall from section 3.3 that latency (data

54

transfer) can be hidden by increasing the computation on GPUs. When
the grid size increases, the computational complexity also increases, and
hence the cost connected with transferring data from the host to the device
is amortized.

N Serial OpenMP24 Mint Speedup1 Speedup24
1603 217.54 11.40 4.77 89.5x 2.4x
3203 2016.50 90.07 31.09 64.8x 2.9x
4003 3886.31 240.05 57.42 67.6x 4.1x

Table 6.7: Comparing the CPU execution times with GPU execution times
using double precision.

The double precision results for the GPU is presented in Table 6.7. If we
compare these results with the results from Table 6.6, it is clearly visible
that the difference between double and single precision on the GPU is
indeed poor. While the difference between the different precision modes
are around 10-12 percent on the CPU, the difference is approximately 40-43
percent on the GPU. The poor double precision performance also explains
the sudden drop in speedup factor for the GPU results (140x vs 67.6x). It
is quite possible that the double precision results could have been better
if the experiments were run on a Nvidia Tesla card, where the double
precision performance is more close to the single precision performance.

6.7 Mint Performance Analysis

Analyzing the performance of Mint is possible, even though we do not
have a hand-coded version. For the analysis, we have used the Nvidia
Occupancy Calculator. A greater occupancy results usually in better
memory saturation and thus, higher performance. This is not universally
true as this study [53] shows. In some cases where optimization with
respect to shared memory is used, a lower occupancy might reduce the
shared memory traffic, leading to higher performance.

Parallel Thread Execution (PTX) is a virtual machine and instruction
set architecture [12] provided by Nvidia with the CUDA software
development environment. When a CUDA application is compiled, the
code is in reality translated to PTX. According to [12], a ”PTX-to-GPU
translator and driver enable NVIDIA GPUs to be used as programmable
parallel computers”. The PTX functionality is built into the default
CUDA compiler, nvcc, and as a consequence, nvcc can generate PTX
instructions upon compilation. By using the nvcc compiler setting, –
ptxas-options=-v, we were able to read the reported number of registers
used. For our implementation this number was reported to be 61. When
we inserted this number into the occupancy calculator, along with our

55

Figure 6.4: Mint’s register usage is high and is holding back the
performance. Ideally the red triangle should align on the blue horizontal
line on the left hand side.

Figure 6.5: In our Mint configuration we are using a thread block size of
256. One limitation in Mint is that the block size can not be larger than 512.
This is a limiting factor for newer GPUs.

device specifications, we discovered that the register usage was rather
high. Figure 6.4 illustrates Mint’s register usage. The high register usage
is limiting the performance of the Streaming Multiprocessors. Our device
has 48 warps per Streaming Multiprocessor, but as Figure 6.5 shows, due

56

to the high register usage, only 16 is currently in use.
It is possible to limit the register usage by using the maxregcount

compiler flag. However, when this option was used, the Mint translated
code would not run. Mint also comes with an optimization flag,
useSameIndex, that can reduce the register usage. Turning this option on,
caused the application to not run.

Block size Tile size N Mint
64 16x4x1 2403 5.96

128 16x8x1 2403 6.19
256 16x16x1 2403 6.20
512 16x32x1 2403 7.06

Table 6.8: Computational times for the different tile size using single
precision and aligned memory access (x-direction).

Block size Tile size N Mint
64 1x16x4 2403 16.59

128 1x16x8 2403 29.48
256 1x16x16 2403 58.65
512 1x16x32 2403 118.29

Table 6.9: Execution times for different tile values using single precision.
The multiplier is shifted one place to the right (y-direction).

Block size Tile size N Mint
64 4x1x16 2403 48.26
128 8x1x16 2403 53.75
256 16x1x16 2403 60.07
512 32x1x16 2403 77.57

Table 6.10: Execution times for different tile values using single precision.
The multiplier is shifted to the outmost right position (z-direction),
resulting in unaligned memory access.

In section 3.7.1 we discussed the different clauses that Mint is bundled
with. According to [50], a tile size with a multiple of 16 in x-direction is
recommended, as this will ensure an aligned memory access. By carefully
shifting direction of the multiplier to the right, that is, moving it from x-
direction to y-direction, then from y-direction to z-direction, we can see
how the performance varies with respect to both block size, tile size and
memory alignment. The results for the unaligned memory accesses are
presented in Table 6.10 and Table 6.9. As we can see from the tables,
the performance worsens as the multiplier is shifted from y-direction to

57

z-direction. As expected, best performance is observed when the memory
access is completely aligned (Table 6.8). The performance gap between x-
direction and z-direction is quite noticeable. As a side note, we can observe
that largest performance variation occurs when the tile size increases in z-
direction.

Chunksize is another clause that can be modified by the user. The
idea of the chunk size is to choose the number of threads needed to
execute a tile. In [50], no real recommendation is given, instead the
programmer is encouraged to ”experiment with different configurations”.
We experimented with different values for the chunksize clause. However,
no real performance improvement could be observed. Instead, a small
decrease in performance could be tracked for the larger grids. This might
be due to the fact that there is a small overhead associated with chunking
as reported in [50].

Currently, there is a high number of branching in the update step.
As discussed in section 3.4, branching is expensive on a GPU and leads
to reduced computational speed. Experiments were carried out with
reformulated code to reduce branching. To our surprise, reducing the
number of branching increases the execution times for our code. Further
investigation is needed to find the most efficient balance. For a more
detailed comparison, full result comparison from the version of the code
with reduced branching is disclosed in Appendix B.

6.8 Discussion

A performance improvement of 2.5x to 7x when using a GPU may appear
to be modest, especially nowadays when certain studies claiming GPUs
to deliver speedups between 10x to 1000x. In the work by Lee et al. [29],
14 of the most used computing kernels is benchmarked using a CPU and
a GPU, with the purpose of uncovering performance differences between
CPUs and GPUs. According to Lee et al., in cases where substantial GPU
speedups is reported, it is possibly because the GPU performance is being
compared with a serial CPU implementation or running on a single CPU
core. However, when the GPU performance is compared with a parallel
CPU implementation, the difference in performance is vastly less. Lee et
al. concludes that real performance difference between CPUs and GPUs
are in reality much closer, claiming that GPUs are on average 2.5x faster in
their study.

An astute reader might argue that Lee and the other fellow authors
of the article are all employed by Intel and that their work was indeed
sponsored by Intel. Erroneous performance reporting in the high-
performance computing community is nothing new. Over the years, there
have been several studies claiming that erroneous reporting is hurting
the credibility of the high-performance community [2, 29]. More recently,

58

a new article was published supporting the work by Lee et al. In [35],
the ten most dubious performance reporting techniques are shown. Both
in connection with this thesis and [20], a large effort has gone into in
making fair performance comparison. For example, both double and
single precision performance has been tested, a large enough grid sizes
has been chosen so it does not fit directly in the GPU memory etc. As
far as we can tell, our performance measurements complies with the ten
points enlisted in [35].

Core
Architecture

AMD
Magny-Cours

Nvidia
Fermi

Nvidia
Kepler

SP GFLOP/s 100.8 1228 3090
Maximum Load Power (W) 115 W 365 W 195 W

Minimum System Power (W) 750 W 700 W 550 W
GFLOPs/Watt (CPU/GPU-only) 0.87 3.36 15.84

GFLOPs/Watt (System) 0.87 1.75 5.61
Price (USD) $1039 $449 $499

Table 6.11: A table showing the single precision FLOPS per watt for the
CPU and the GPU used in our evaluation platforms. To show future trend,
specifications for Nvidia’s latest architecture, Kepler is also included.

When comparing the performance of GPUs with CPUs, another in-
teresting area of comparison is FLOPS per watt, referred to as perfor-
mance per watt. Krueger et al. [27], has compared the energy efficiency
of three different parallel architectures: multi-core CPUs, GPUs and a cus-
tom many-core FPGA architecture called ”Green Wave”. The study was
performed in connection with seismic modelling, where PDEs using sten-
cils with an order of eight or twelve is computed. Although the Green
Wave was the better performer, Krueger et al. observed that the Fermi-
based Tesla C2050 GPU had a higher performance per watt ratio than the
Nehalem-based Intel Xeon Xeon E5530 CPU. This observation is applica-
ble to our evaluation platform as well. Table 6.11 shows the single preci-
sion GFLOPS/W rates for the CPU and the GPU used in our experiments.
The GPU from our evaluation platform can deliver approximately 3.36
GFLOPs per watt, while the CPU can only deliver 0.87 GFLOPs per watt.
However, because GPUs are not general-purpose, they need a CPU to op-
erate, meaning that power consumption of the host should be included in
the final calculations. Even if we include the hosts’ power requirements in
our calculations, GPUs still deliver more performance per watt. Looking
ahead, Nvidia’s latest GPU architecture, Kepler, can deliver approximately
15.84 GFLOPs per watt, maintaining GPUs lead in this area.

Another interesting area of comparison is price. At the moment of
writing, each CPU used in Hopper costs around $1000 USD, while the
GeForce GTX 590 card we have used costs around $450 USD. If we

59

take the performance in account, our GPU results deliver 2.5x to 7x the
performance, while costing approximately 4.5x more than the 24-core CPU
node.

6.9 Summary

In this chapter we have presented the results of the 3D PMM algorithm
running on two multi-core CPUs using OpenMP, and on a GPU using
Mint. The results shows that the algorithm scales well on both archi-
tectures. The near-linear scaling on the multi-core CPU is hampered by
the underlying NUMA architecture of our CPU testbed. Several NUMA-
specific optimizations such as incorporation of a first-touch policy, thread
binding and specifying a thread affinity was performed to reduce possible
NUMA-effects. The optimizations showed a mild performance increase.
Further investigation is needed to better understand the possible NUMA-
effect on the performance.

Depending on grid size and precision, the overall GPU performance
is approximately 2.5x-7x faster than the multi-threaded CPU version.
When compared to the CPU results, the speedup factor of the GPU
implementation looks quite modest. For fair performance comparison, we
have chosen to compare our GPU results with the maximum number of
available CPU cores. This explains the modest speedup factor. In addition
to comparing pure performance, other factors come at play. For instance,
if we look at the bigger picture, the CPU testbed costs several times more
than the GPU testbed, has a higher power usage, as well as a lower
performance per watt rating. If these factors are taken in consideration,
the GPU performance is impressive.

Moreover, for consumer grade GPUs there is a stark difference between
single and double precision performance. If high precision is crucial,
server grade GPUs should be considered as they come with a higher
double precision performance.

There is a high number of branching in the update step. Branching is
expensive on a GPU, and often reduces the computational speed. How-
ever, experiments with reformulated code to reduce branching appears to
increase computational times for our code. Further investigation is needed
to find the most efficient balance.

Due to the lack of a hand-coded CUDA version, it is difficult to
determine the performance of Mint. Hence, any future work should focus
on implementing a hand-coded CUDA version of the code. Nevertheless,
profiling shows that there are still room for improvement. For example,
Mint has an extensive register usage and does not choose the optimal
device occupancy. Mint is not optimized for our Fermi-based GPU, and
lacks support for both our dual-GPU and multi-GPU setup. In the future,
we would like to extend Mint with support for these features.

60

Chapter 7

FUTURE WORK AND
CONCLUSION

7.1 Future Work

There are two approaches that can be explored from this point. One
approach is to improve the algorithm, the other is to optimize the
current implementation with respect to multi-core CPUs, GPUs and other
upcoming parallel architectures. Below, both approaches are discussed.

7.2 Algorithmic Extensions

Although the complexity of the algorithm is O(N), 3D PMM requires
more sweeps than the traditional FSM to converge [56]. This makes the
algorithm unsuitable for applications with strongly curved characteristics
such as seismic data processing. If seismic data processing applications
are to be targeted, the 3D PMM algorithm needs many sweeps to create
a correct solution. Instead, methods with stricter ordering of the updates
are more efficient.

Several ordered algorithms exists, but to our knowledge, the existing
methods have either not been extended to apply for problems in three-
dimensions, or they have not been optimized for parallel architectures.
One method that addresses both of these problems to some extent is FIM.
Unfortunately, the ordering of this method is considered to be too weak
for complicated problems [25].

A more recent approach is the two-scale method [9], which aims to
create a hybrid method by combining the best features of FMM and
FSM. Contrary to FIM, the ordering of the two-scale method is more
sophisticated, because the domain is divided into smaller sub-domains.
Each sub-domain is then swept in a specific order, making the method
more suitable for applications on domains with bending characteristics.
The two-scale method works only on problems in two-dimensions, but

61

the underlying idea might be extended to three-dimensions. In three
dimensions each subdomain can be updated using the 3D PMM method.
On a GPU each sub-domain can be updated in parallel. Furthermore, by
changing the sorting method for the sub-domains to methods used in [18],
several sub-domains can be updated in parallel using several SMXs. Such
a method will have parallel features on both a small and large scale, but
will also be more challenging to implement.

Finally, another interesting extension to the algorithm would be to
implement task-parallelism by taking a SPMD approach. The idea of
a SPMD approach is to divide the problem among threads/processes,
before the final answer is synchronized and merged together. SPMD
is a commonly used technique in distributed memory systems. One
such approach has already been suggested [57] and consists of sweeping
the domain in different directions simultaneously, before each individual
part is merged together. If successful, this approach would make it
possible to use MPI, opening the algorithm for computation on large-scale
systems. Moreover, a SPMD extension would also make it possible to take
advantage of a multiple GPU setup. The workload can then be divided
among multiple GPUs using OpenMP or Pthread.

7.3 GPU Optimizations

One current shortcoming is the lack of a hand-coded CUDA-version of
the algorithm. Due to the lack of a hand-coded version, it is difficult
to conduct a complete performance analysis of the Mint translated code.
Hence, all conclusions with respect to performance are currently based on
comparison with a parallel CPU implementation.

Performance wise, the translated code appears to be performing well
when compared to the CPU version of the code. Even though the
generated code might be performing well, there are room for further
optimizations. Profiling from section 6.7 shows that the GPU performance
could be better with a better register usage. Device occupancy is another
area that needs further attention. The current implementation does not
saturate the memory bandwidth and the occupancy is not as high as it
could be.

Moreover, Mint is neither fully optimized for Fermi or Kepler-based
GPUs, but comes with several optimization flags that specifically targets
Fermi based GPUs. Additionally, it would be interesting to compare the
performance of the algorithm using OpenACC. By analyzing the PTX
code, a performance comparison between Mint and OpenACC could
reveal possible performance bottlenecks.

62

7.4 Targeting Future Platforms

Figure 7.1: AMD’s APU platform integrates multiple CPU cores and many
SIMD cores (streaming multiprocessors) on the same chip.

GPUs appear to be the only alternative architecture to multi-core CPUs.
However, this is about to change as new parallel architectures are under
development. A particular interesting architecture is the Intel Many
Integrated Core (MIC). The Intel MIC chip consists of more than 50 simple
Pentium cores with 512-bit wide registers and private L1 and L2 cache,
and Intel’s main aim with the new architecture is to compete with GPUs.
In contrary to GPUs that can run several thousands to millions of threads,
each MIC core can run up to four threads. Cards based on MIC will
slot into a PCIe slot and communicate with a host CPU through the PCIe
bus. As a consequence, programmers must manually transfer data from
the host to the device and vice versa, similarly to GPU programming.
Intel has positioned OpenMP, OpenCL, OpenMPI and Cilk as the main
programming models for MIC.

More importantly, MIC will employ a NUMA architecture. From
a programming point of view, NUMA impose new challenges for the
programmer. If the full computational power of MIC is to be exploited,
a more careful distribution of data and threads is required. This is an
issue that MIC’s programming models fail to take into account. Hence,
optimizing the 3D PMM algorithm for the MIC will require changes to the
current algorithm and implementation, especially with respect to memory
access. Customizing, 3D PMM for MIC will require a careful revision of
the algorithm’s memory access pattern in order to avoid any potential
NUMA-penalties. Alternatively, work can be carried out to extend Mint
with support for MIC.

AMD’s Accelerated Processor Unit (APU) takes aim at integrating a
GPU and a CPU on a single chip. The main advantage of such integration
is that it will eliminate the need of transferring data from the host to

63

the device. AMD is positioning OpenCL as the main programming
language for programming APUs. Any future work related to APUs needs
extensions with respect to OpenCL, either by manually hand-coding a
version or by extending Mint with support for OpenCL.

7.5 Conclusion

We have presented a novel and an effective front propagation algorithm
that works in three dimensions. The main findings of this thesis have been
published as a refereed paper in Elsevier’s Procedia Computer Science
(acceptance rate: 30 percent). In addition to work in three dimensions,
the proposed algorithm targets parallel architectures. Performance results
show near-linear scaling on multi-core CPUs using OpenMP.

By using an automated C-to-CUDA source code translator called Mint,
the method was also offloaded to a GPU. The performance on GPUs looks
promising. Depending on the size of the grid, the GPU implementation is
somewhere between 2.5 to 7 times faster than the fastest multi-threaded
CPU version using 24 cores. For smaller grid sizes, the performance is
considered good enough to be used interactively.

The algorithm needs to be extended for seismic processing applica-
tions, but plans for such extension is already in place. Finally, we plan to
further enhance our GPU performance by reducing register spillage whilst
increasing device occupancy.

64

Appendix A

65

Procedia Computer Science 00 (2012) 1–9

Procedia Computer
Science

International Conference on Computational Science, ICCS 2012

A new parallel 3D front propagation algorithm for fast simulation
of geological folds

Tor Gillberga,c,∗, Mohammed Sourouria,b, Xing Caia,b,

aComputational Geoscience, CBC, Simula Research Laboratory, P.O. Box 134, 1325 Lysaker, Norway
bDepartment of Informatics, University of Oslo, P.O. Box 1080 Blindern, 0316 Oslo, Norway

cKalkulo AS, P.O. Box 134, 1325 Lysaker, Norway

Abstract

We present a novel method for 3D anisotropic front propagation and apply it to the simulation of geological
folding. The new iterative algorithm has a simple structure and abundant parallelism, and is easily adapted to mul-
tithreaded architectures using OpenMP. Moreover, we have used the automated C-to-CUDA source code translator,
Mint, to achieve greatly enhanced computing speed on GPUs. Both OpenMP and CUDA implementations have been
tested and benchmarked on several examples of 3D geological folding.

Keywords: Static Hamilton-Jacobi equations, front propagation, automated C-to-CUDA code translation

1. Introduction

The arrival time of a propagating front is often described by non-linear static Hamilton-Jacobi equations. Ad-
vanced numerical algorithms are needed to efficiently compute solutions to those equations. It is therefore a challenge
to implement fast solvers, especially for large 3D simulations. Solution algorithms are often divided into two groups,
Front Tracking methods and Sweeping methods. Front Tracking methods [1, 2, 3] update node values in a strictly
increasing order, and thus mimic a front expanding from the initial object Γ0. These algorithms are sequential by con-
struction, since the front passes only one node at a time. Front tracking methods for anisotropic propagation are known
as Ordered Upwind Methods. These methods are complicated, and some must be simplified for implementation.
Moreover, they often assume prior knowledge of the degree of anisotropy in the problem, see for instance [4, 5, 6].
Sweeping methods [7] compute the solution from a distance perspective by iterating over directions. This makes them
faster than Front Tracking methods on simple problems [8]. In the cases with complex geometries or velocities that
force the characteristics to be curved, the Sweeping methods are slow because many iterations are needed before con-
vergence [9]. Since the iteration order is predetermined, Sweeping methods [10] are readily parallelized. However,
the parallelism of the traditional Sweeping algorithms is limited, and the parallel speedup is therefore modest [11].
By an alternative formulation of the stencil and iteration order, abundant parallelism can be obtained as shown with

∗Corresponding author, torgi@simula.no.

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 2

the Parallel Marching Method (PMM) [12]. Early iterative algorithms trace the front in specific patterns such as ex-
panding boxes [13], or by updating all nodes until convergence [14]. These can be made parallel as described in [15].
There are also a few algorithms that use concepts from both Front Tracking and Sweeping methods [16, 17, 18, 9].

To our knowledge, only two methods for front propagation have been successfully implemented on graphics
processing units (GPUs), namely the Fast Iterative Method [17] and the PMM [12]. Of these two methods only the
Fast Iterative Method is applicable in 3D, since the PMM was created for computing geodesic distances on surfaces.
In this article, we present a new 3D algorithm with abundant parallelism, making the algorithm suitable for both
multicore CPU and GPU architectures. Since we use the idea of an alternative stencil formulation from the PMM, we
refer to our new algorithm as the 3D PMM. The 3D PMM has a highly parallel structure as nodes on an entire surface
(planar cut of the 3D volume) can be updated in parallel. Moreover, thanks to the automated C-to-CUDA translator
Mint [19], we can maintain an annotated serial C code for our 3D PMM method, without having to do low-level
CUDA programming by hand. In comparison, the more general Fast Iterative method has a more intricate algorithmic
structure, making CUDA programming much more involved.

1.1. Simulation of Folds and other Applications

Over the past several years, Statoil and Kalkulo have developed a novel paradigm for highly interactive modelling
of complicated geological scenarios and processes. This methodology describes present-day geology as the realization
of a series of geological events and processes along a geological timeline [20, 21]. Many processes rely on relevant
surfaces and their corresponding metric property fields or maps like distances, gradients etc. [22]. These distance
maps are described by the viscosity solution to the static Hamilton-Jacobi equation:

F‖∇T (x)‖ + ψ (a · ∇T (x)) = 1, (1)
given T = t0 on Γ0. (2)

Here, Γ0 is an initial horizon, and a marks the axial direction of the fold. Other folded layers are implicitly given as
iso-surfaces of T , that is, the position of a front propagating from Γ0 at different times. This equation can replicate
all traditional folding classes, as defined by [23], by altering the size and sign of F, ψ and direction of a. For details
and derivation of this system we refer to [22]. The same equation also describes the first arrival of a wave in a media
in motion [24]. Figure 1(a) shows an example of an initial surface Γ0. From this surface Figures 1(b) and (c) show
two simulations of folds, created with different parameter choices. When ψ , 0, the front propagation is of the
anisotropic type. In the special case where ψ = 0, (1) reduces to the isotropic eikonal equation, which is solved in
many applications [1] and is isotropic in the sense that the velocity is independent of direction. When F = 1, the
viscosity solution to the eikonal equation is the minimal Euclidean distance from Γ0. The concept of characteristic
curves or ray-paths is important in front propagations [22, 25]. These are curves along which a particle on the front is
transported, and can also be interpreted as curves defining the shortest distance (fastest path) to Γ0.

When modelling folds, the dip isogons, and thus the characteristic curves [22], are in general linear. For isotropic
problems with linear characteristics Sweeping algorithms converge quickly [9], which motivates us to investigate
related algorithms for the simulation of geologically folded structures. A powerful laptop is sufficient for an interactive
geological modelling application in 2D, but the computational requirement is vastly higher in 3D. Other geological
applications where the simulation of a propagating front is central include reservoir simulations [26] and simulation of
seismic traveltimes [25, 27]. In seismic applications, front propagation solvers are used to simulate entire first arrival
traveltime fields. By repeating the simulation from reflecting surfaces, multiple reflected traveltimes can be computed
with front propagation solvers [25, 28]. Front propagation is also heavily used in medical imaging [11, 29, 30]. In
these applications, the computational speed remains often a challenge. A faster solver would allow for more interactive
applications, potentially leading to faster medical diagnoses and faster seismic processing. An interactive geological
modelling application allows users to test many geological scenarios faster, leading to a better understanding of the
inner earth. One method to achieve faster solvers is by making use of the powerful computational resources available
in GPUs.

In this paper, we present a novel 3D front propagation algorithm, as well as a numerical stencil for solving (1).
We also show how to parallelize the algorithm for both multicore CPU and GPU architectures. The parallelized codes
are tested on several examples of geological folding, for which the parallelized codes scale well.

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 3

(a) Initial surface Γ0 (b) Anisotropic propagation (c) Isotropic propagation

Figure 1: (a) An initially given surface Γ0. (b) A folded 3D volume with F = 1, ψa = 1
2 (−1, 1, 1), simulated from Γ0. (c) A folded 3D volume from

the same initial surface, but this time with F = 1, ψ = 0, resulting in isotropic front propagation and an Euclidean distance field.

2. The 3D Parallel Marching Method

Consider a 3D box grid with nodal values Ti, j,k where (1, 1, 1) ≤ (i, j, k) ≤ (nx, ny, nz), and with a spacing of
(dx, dy, dz). In this paper we assume that values at the nodes closest to Γ0 are given, and all the other nodes are
initially set to an infinite value. (Efficient methods for initializing such values are outside the scope of this paper.) In
every iteration, a smaller T value is a better approximation, since we solve for the minimal distance (the first time of
arrival). It is of great importance that a new approximation is not too small, since such values are never corrected.
A methodology for assuring such a discretization of (1) is presented in Appendix A. The PMM iterates through the
grid in axial directions, and computes new distance values based on nodal values along the iteration direction. In the
x-direction, the 3D volume is first iterated in the increasing order of the i index, and then in the decreasing order of
the i index. The same sub-sweeps are also repeated in the y- and z-directions. We refer to such a full iteration as a
sweep, which consists of 6 sub-sweeps of the 3D domain. Pseudocode for the sub-sweeps for the x-direction is given
below.

for i = 2, . . . , nx do
for all j = 1, . . . , ny do

for all k = 1, . . . , nz do
Update Ti, j,k using values Ti−1, j±a,k±b, a ∈ {0, 1}, b ∈ {0, 1}

end for
end for

end for
for i = nx − 1, . . . , 1 do

for all j = 1, . . . , ny do
for all k = 1, . . . , nz do

Update Ti, j,k using values Ti+1, j±a,k±b, a ∈ {0, 1}, b ∈ {0, 1}
end for

end for
end for
We remark that Ti, j,k is computed using nine nodes in the previously updated plane. The form of the update stencils

are illustrated in Figure 2(a), where the sub-sweep is in the direction of the pyramid top. Every approximation’s update
step includes a significant amount of computations, as shown in Appendix A.

Since there are no internal dependencies between nodes on the same update plane, all nodes in the plane can be
computed simultaneously. Figure 2(b) shows a plane of stencil shapes that can be solved in parallel. In the pseudocode
this corresponds to computing the two inner loops in each sub-sweep entirely in parallel. Because of the simplicity
of this parallelism, the algorithm is easily parallelized using OpenMP. For the OpenMP parallelization, the parallel

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 4

(a) One stencil shape (b) Independent updates

Figure 2: (a) Nodes used when computing the generalized distance in the upward direction. (b) Illustration of the fine-grained parallel feature of
the algorithm. All nodes in one plane can be computed simultaneously since they have no internal dependencies, making the algorithm suitable for
parallel architectures.

region which encapsulates all the sweeps, is declared using #pragma omp parallel. Inside each of the six sub-sweeps,
the two innermost nested loops are parallelized by adding #pragma omp for.

As shown in the next section, such a straightforward OpenMP parallelization achieves good speedup on multicore
CPUs. Still, the OpenMP implementation is not sufficient for the application to be interactive for large grid sizes.
This can be remedied by porting the algorithm to a GPU. To avoid manual GPU programming, we have made use of
the automated C-to-CUDA source code translator Mint, freely available at https://sites.google.com/site/mintmodel/.
Mint takes as input annotated serial C code and generates (optimized) CUDA code. The needed Mint pragmas are
very similar to the OpenMP pragmas, except for two additional pragmas: #pragma mint copy(T,toDevice,nx,ny,nz)
and #pragma mint copy(T,fromDevice,nx,ny,nz), for transferring data between the host CPU and the device GPU.
In Listings 1 and 2, we show two CUDA code segments that are automatically generated by Mint.

1 for (int SweepNbr = 0; SweepNbr < nbrSweeps; SweepNbr ++) {
2
3 // x- direction : sweep from bottom to top
4 for (i = 1; i < 400; ++i) {
5 int num2blockDim_6_1527 = (400) % 16 == 0?(400) / 16 : (400) / 16 + 1;
6 int num1blockDim_6_1527 = (400) % 16 == 0?(400) / 16 : (400) / 16 + 1;
7 dim3 blockDim_6_1527 (16,16 ,1);
8 dim3 gridDim_6_1527(num1blockDim_6_1527 ,num2blockDim_6_1527);
9

10 mint_6_1527 <<<gridDim_6_1527 ,blockDim_6_1527 >>>(DXYP ,DXZP ,DYZP ,dev_1_T ,i,tnew ,st ,xt,yt,txy ,xnt ,
ynt ,txm ,tym ,txnyn ,F,ax,ay ,az,dzz ,dxx ,dyy);

11 cudaThreadSynchronize ();
12 }
13
14 // x- direction : sweep from top to bottom
15 // ...
16
17 // y- direction : sweep from bottom to top
18 // ...
19 // y- direction : sweep from top to bottom
20 // ...
21
22 // z- direction : sweep from bottom to top
23 // ...
24 // z- direction : sweep from top to bottom
25 // ...
26 }

Listing 1: The main computational body of the Sweep function after automated Mint translation from C to CUDA; The number of nodes in each
spatial direction is 400.

1 __global__ void mint_6_1527(double DXYP ,double DXZP ,double DYZP ,cudaPitchedPtr dev_1_T ,int i,double
tnew ,double st ,double xt,double yt ,double txy ,double xnt ,double ynt ,double txm ,double tym ,double
txnyn ,double F,double ax,double ay ,double az,double dzz ,double dxx ,double dyy)

2 {
3 double *T = (double *) dev_1_T.ptr;
4 int _width = dev_1_T.pitch / sizeof(double);
5 int _slice = dev_1_T.ysize * _width;
6 int _p_j;

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 5

7 int _p_k;
8 {
9 int _upperb_y = 400;

10 int _upperb_x = 400;
11 int _idx = threadIdx.x + 1;
12 int _gidx = _idx + blockDim.x * blockIdx.x;
13 int _idy = threadIdx.y + 1;
14 int _gidy = _idy + blockDim.y * 1 * blockIdx.y;
15 {
16 if (_gidy >= 1 && _gidy <= 400) {
17 if (_gidx >= 1 && _gidx <= 400) {
18 // the same computations as in the original C code
19 }
20 }
21 }
22 }
23 }

Listing 2: The CUDA kernel function mint 6 1527 that is automatically generated by Mint; for the purpose of sweeping one yz-plane.

3. Results

In this section we present numerical results from an example of simulating a folded volume. From the same
initially given surface as in Figure 1, we ran 8 sweeps on the three uniform grids with a total of 1603, 3203 and 4003

nodes. After 8 sweeps the solution has converged sufficiently. In these computations ψa = (−0.34, 0.4, 0.7), F = 1.1,
and the domain has length 10 in x, y and z directions. We have measured the computational time for the OpenMP
code using one node on the NERSC Cray XE6 ”Hopper” supercomputer. Each node is equipped with two twelve-core
AMD ’Magny-Cours’ 2.1 GHz processors. The Mint-translated CUDA code for the same problem was executed using
a Nvidia GeForce GTX 590 card. Table 1 shows elapsed times for the three grids on 1, 2, 4, 8, 16 and 24 CPU cores, as
well as for the GPU. The time to transfer data to and from the GPU are included in the reported times. Both the CPU
and GPU executables were compiled with the -O3 flag, using nvcc 4.0, V0.2.1221 and gcc v4.3.4 respectively.

In Appendix A we present conditions that reduce the number of unnecessary computations in the update step.
If all conditions are used, the number of branches increases. The update scheme already has many branches, as is
indicated of profiling of the code. The profiling also indicate that the registers are under high pressure. Therefore, we
have tried to formulate the update step to reduce unnecessary branching and register use. Several experiments was
run with different update conditions, showing that the computational time is reduced the most when all conditions in
Appendix A are used. This result holds for both the multicore and GPU versions of our code. Both the CPU and
GPU codes was tested with both single and double precision. The difference between the single and double precision
solutions is very small. Therefore, when modelling folds the gain in accuracy might not be worth the associated cost
in computational time. Further investigation is needed before making any conclusion in this matter. In the geological
modelling software, the derivative of the computed solution is used in post processes. This puts extra demand for
high accuracy of the computed distance field. Thus, future research will be focused on extending the discretization to
higher order schemes.

The code scales well on the multicore CPU, with near-linear speedup (1.9x) measured when conducting a strong
scaling study up to 16 cores. Beyond 16 cores, the speedup drops to 1.3x. This drop in speedup is possibly due to the
underlying NUMA (Non Uniform Memory Architecture) architecture on Hopper. With a more careful distribution of
threads and data, we might be able to reduce the challenges NUMA imposes on the performance.

For the largest grid of 4003 nodes, the GPU needs 25.28 seconds to perform 8 sweeps using single precision. As
comparison, 24 CPU cores need 177.86 seconds to perform the 8 sweeps. When double precision is used on the GPU,
the time usage is 57.42 seconds, more than 4 times faster than using 24 CPU cores (240.05 seconds). It can also be
seen in Table 1 that the speed advantage of GPU computations increases with the grid size.

At the moment of writing, a GeForce GTX 590 GPU costs around $500 USD, while one AMD ’Magny-Cours’
2.1 GHz costs more than $1000 USD. Depending on the grid size and precision, using a GPU will deliver 2-7x the
performance, while costing1 four times less than a 24-core CPU node. This makes the results even more impressive.

1Other system parts such as memory, motherboard etc., are not taken into account.

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 6

Table 1: Computational times for three grids with a total of N nodes using single (top table) and double precision. ti is the CPU time for i cores.
The speedup factors S 1 and S 24 are calculated using the running time from 1 core and 24 cores (the highest number of CPU cores available). The
speedup factor increases as N increases, possibly due increased computational complexity that amortises the data transfer cost from the CPU to the
GPU. The data in Tabular (a) are single precision results while data in Tabular (b) are double precision results.

N t1 t2 t4 t8 t16 t24 tGPU S 1 S 24

1603 194.17 100.66 52.62 27.20 14.07 10.22 2.43 79.9x 4.2x
3203 1795.86 822.48 423.87 219.39 112.57 81.40 14.84 121.0x 5.4x
4003 3543.14 1628.12 853.50 430.59 223.55 177.86 25.28 140.1x 7.0x

(a) Computational times (t) and GPU speedup (S) for single precision

N t1 t2 t4 t8 t16 t24 tGPU S 1 S 24

1603 217.54 112.85 58.93 30.44 15.73 11.40 2.43 89.5x 2.4x
3203 2016.50 911.12 472.84 245.08 125.08 90.07 31.09 64.8x 2.9x
4003 3886.31 1799.22 928.89 481.99 246.80 240.05 57.42 67.6x 4.1x

(b) Computational times (t) and GPU speedup (S) for double precision

4. Discussions

Mint has been shown to deliver good performance on 3D finite difference codes [19]. Our algorithm is a 3D
finite difference solver, but a non-traditional one. The grid is iterated in specific orders and a non-traditional stencil is
used. Mint has delivered a surprisingly good GPU performance for our 3D PMM. A detailed comparison of the Mint-
translated code with a hand-coded CUDA version would be an interesting investigation. We have experimented with
the formulation of the update step, to search for an efficient formulation. Those optimization investigations indicate
that the high number of branches introduced from conditioning the update computations, reduces the computational
speed. Nevertheless, profiling has indicated some further optimization possibilities, for both CPU and GPU imple-
mentations. For instance, the current register use is very extensive. A better use of the registers might improve both
implementations.

An interesting algorithmic extension is to try ideas from [10], in which approaches for parallelization of the
otherwise sequential Fast Sweeping Method are presented. One of the suggested ideas there is to sweep the domain
in different directions at the same time on copies of the data structure, and then synchronize the results. Sub-sweeps
in different directions can for instance be computed on several GPUs simultaneously. The approach of performing
full sweeps of subdomains from the same paper may increase the convergence rate of the algorithm. Weber et al. [12]
present a variant of the 2D PMM method to make it run faster on a GPU. Similar extensions in 3D are possible, and
might assure good reuse of transferred data.

Although an O(N) method [12], the PMM method often needs more Sweeps than the Fast Sweeping method to
converge. Therefore, the algorithm is not suitable for applications with strongly curved characteristics, such as seismic
data processing. For such applications the updates need to be ordered somehow. The Fast Iterative Method is one
approach to this, but the ordering is too weak for complicated problems [17]. A related method exists for sequential
2D code on isotropic examples [9], in which subdomains are swept in a specified order. This idea can be extended to
3D and parallelized for GPUs by sweeping a list of subdomains simultaneously, using one streaming multiprocessor
each, on which the streaming vector processors make use of the parallelism of the 3D PMM method. Furthermore, the
subdomains can be ordered using an approach similar to that of [16] to ensure a stronger ordering, and convergence
also on anisotropic problems. Such an algorithm will be efficient also on problems with bending characteristics.

5. Conclusion

Simulating a propagating front is a computationally challenging problem, especially in 3D applications. Simu-
lations are needed in several applications, where the solution is needed within a few seconds for the software to be
used in an interactive manner. In 3D, sequential algorithms are only applicable on small grid sizes. We have pre-
sented a simple 3D Parallel Marching Method and applied it to the simulation of geological folding. The algorithm
can be easily implemented on parallel architectures. Numerical experiments using OpenMP show near-linear scaling

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 7

on multicore CPUs. Using the automated C-to-CUDA code translator Mint, we obtained a CUDA implementation
without manual GPU programming. The GPU implementation runs approximately 2.4-7 times faster than the fastest
multi-threaded version on 24 CPU cores, giving hope to compute large 3D grids interactively in the future.

6. Acknowledgments

The presented work was funded by Statoil through its Academia Program, and the Research Council of Norway
under grant 202101/I40. The work has been conducted at Kalkulo AS, a subsidiary of Simula Research Laboratory.

Appendix A. Conditional Upwind Approximations

As in most front propagation methods, it is of great importance that approximations are computed from upwind
values. Upwind values are values that are passed by the front. Monotonic convergence is a fundamental property
for convergence toward the viscosity solution for most algorithms [17, 1, 14]. A too small approximation will not be
increased, since that would contradict the monotonicity assumption. Therefore, one must assure that the computed
value uses solution values that are upwind from the updated node. We assert this by computing the characteristic curve
of the approximation, and make sure that it is embedded in the convex hull of the nodes used in the computations. If
it is not, the new approximation is rejected. A similar approach for isotropic problems are presented in [31], where
the entrance point is used to find the rays in a seismic processing setting. From [22] we have the characteristics x(s)
to (1)

∂x
∂s

= F∇T + ψa|∇T |. (A.1)

Consider the stencil shape as given in Figure 2(a), where a new solution is sought for the pyramid-top node value Ti, j,k,
and the nine nodes in the lower plane all have the third coordinate as k − 1. The nodes on the lower plane are divided
in eight groups of three nodes that form trirectangular tetrahedras with Ti, j,k as apex. Similarly, 16 groups of two
nodes forming right-angled triangles are created (dotted lines on the lower plane) as well as nine groups of one node
each. From each of these groups solution estimates are created. If Ti, j,k is bigger than the smallest acceptable of
these approximations, we update the value at (i, j, k) with the new estimate. With estimates of the gradient of T and
equation (A.1), the entrance point in the lower plane is given as

xe = −dz
F ∂T
∂x + ψax|∇T |

F ∂T
∂z + ψaz|∇T | , and ye = −dz

F ∂T
∂y + ψay|∇T |

F ∂T
∂z + ψaz|∇T | . (A.2)

Assume the nodes Ti, j,k−1,Ti+1, j,k−1 and Ti+1, j+1,k−1 are three nodes in a trirectangular shape. With these nodes we
estimate the partial derivatives in x and y direction with

∂T
∂x

=
Ti+1, j,k−1 − Ti, j,k−1

dx
, and

∂T
∂y

=
Ti+1, j+1,k−1 − Ti+1, j,k−1

dy
. (A.3)

Using these two estimates, we directly discretize (1) and get ∂T
∂z as the solution of a second degree polynomial.

From (A.2) we get the entrance coordinates xe, ye, and the solution estimate T new
i, j,k = Ti, j,k−1 + dz ∂T

∂z is accepted if

0 < min xe, ye, yedx < xedy, and xe < dxx. (A.4)

That is to assure the entrance point is within the convex hull of the nodes used in the stencil. The remaining stencils
using three values, are identical up to a rotation and reflection.

For the two node group using Ti, j,k−1 and Ti+1, j,k−1 we estimate ∂T
∂x with Ti+1, j,k−1−Ti, j,k−1

dx . That the characteristic curve
to Ti, j,k cut the line segment between (i, j, k − 1) and (i + 1, j, k) is to say that ye = 0 of (A.2), that is

∂T
∂y

=
−ψay|∇T |

F
. (A.5)

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 8

Together with (1) we get ∂T
∂z as the solution to a second degree polynomial. If the entrance point xe from (A.2) satisfies

0 < xe < dx, we accept the new approximation. The remaining 15 stencils using two values are identical up to a
rotation and reflection.

When only the value at Ti, j,k−1 is used, the characteristic curve must go from (i, j, k − 1) through (i, j, k). That is
xe = 0, ye = 0 in (A.2), resulting in

F
∂T
∂x

+ ψax|∇T | = 0, and F
∂T
∂y

+ ψay|∇T | = 0. (A.6)

The traveltime solution for this system is easiest found using the group velocity vG, that is the velocity in the direction

of motion [7, 3]. In our case we have the the group velocity in the z-direction as vG = F
∂T
∂z
|∇T | + az, and the arrival

time to Ti, j,k = Ti, j,k−1 + dz
vG

. For a general point with value Tl,m,n at the distance x = (x, y, z) from index (i, j, k) the
corresponding solution is

Ti, j,k = Tl,m,n +
x · x

a · x + F
√

(1 − |a|2) |x|
2

F2 +
(a·x)2

F2

. (A.7)

In 2D this result is the same as the analytical solution of a point source as shown in [24].

Reducing the number of redundant computations
In isotropic front propagations, only strictly smaller nodes should be used for creating solution estimates with

upwind stencils [1]. For a general anisotropic problem the same principle does not hold. However, at least one of the
used nodes must be smaller than the old estimate for there to be a possibility of an acceptable solution estimate [16].
In the above stencil formulation this correspond to T old

i, j,k > min(a,b)∈{(0,0),(1,0),(1,1)} Ti+a, j+b,k−1 in the three node case,
T old

i, j,k > mina∈{0,1} Ti+a, j,k−1 for the two node case, and T old
i, j,k > Ti, j,k−1 for the one node case.

Moreover, we can derive the following condition for the characteristics entrance point xe and ye to be grater than 0

nx =

∂T
∂x

|∇T | <
ax

F
, and ny =

ty
|∇T | <

ay

F
. (A.8)

If ax < 0 then we must have ∂T
∂x < 0, otherwise the solution will not be accepted, and hence we need not to create the

estimate. The corresponding argument holds for the ye entrance point.

Remark; Signed Distance
When simulating folds, one must distinguish between the inside and outside of the structure. In order for the

fold to be consistent, the axial direction a is negative on the inside, and positive on the outside. The same holds for
the solution T . Accordingly, the 3D PMM adjusts the initialisation step slightly. The initialised data is set to −∞
on the inside, and +∞ on the outside. The sign of Ti, j,k during the update step is saved locally, and the update is
performed with absolute values of the nodes. If a new solution is found, it is saved with the same sign as the previous
approximation was.

References

[1] J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.
[2] F. Qin, Y. Luo, K. B. Olsen, W. Cai, G. T. Schuster, Finite-difference solution of the eikonal equation along expanding wavefronts, Geophysics

57 (3) (1992) 478–487.
[3] Y. Wang, T. Nemeth, R. Langan, An expanding-wavefront method for solving the eikonal equations in general anisotropic media, Geophysics

71 (5) (2006) T129.
[4] E. Cristiani, A fast marching method for Hamilton-Jacobi equations modeling monotone front propagations, Journal of Scientific Computing

39 (2) (2009) 189–205.
[5] J. Sethian, A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms, SIAM Journal on Numer-

ical Analysis 41 (1) (2004) 325–363.
[6] K. Alton, Dijkstra-like ordered upwind methods for solving static Hamilton-Jacobi equations, Ph.D. thesis (2010).

T. Gillberg et al. / Procedia Computer Science 00 (2012) 1–9 9

[7] J. Qian, Y.-T. Zhang, H.-K. Zhao, A fast sweeping method for static convex hamilton-jacobi equations, J. Sci. Comput. 31 (1-2) (2007)
237–271.

[8] P. A. Gremaud, C. M. Kuster, Computational study of fast methods for the eikonal equation, SIAM Journal on Scientific Computing 27 (6)
(2006) 1803–1816.

[9] A. Chacon, A. Vladimirsky, Fast two-scale methods for eikonal equations, SIAM Journal on Scientific Computing 34 (2) (2012) A547–A578.
[10] H.K.Zhao, Parallel implementations of the fast sweeping method, Journal of Computational Mathematics 25 (4) (2007) 421 – 429.
[11] S. Li, K. Mueller, M. Jackowski, D. Dione, L. Staib, Physical-space refraction-corrected transmission ultrasound computed tomography made

computationally practical, in: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2008, Vol. 5242 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 280–288.

[12] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, R. Kimmel, Parallel algorithms for approximation of distance maps on parametric
surfaces, ACM Transactions on Graphics 27 (4) (2008) 1–16.

[13] J. Vidale, Finite-difference calculation of travel times, Bulletin of the Seismological Society of America 78 (6) (1988) 2062–2076.
[14] E. Rouy, A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J. Numer. Anal. 29 (3) (1992) 867 – 884.
[15] P. Podvin, I. Lecomte, Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its

associated tools, Geophysical Journal International 105 (1991) 271–284.
[16] T. Gillberg, A Semi-Ordered Fast Iterative Method (SOFI) for Monotone Front Propagation in Simulations of Geological Folding, in: MOD-

SIM2011, 19th International Congress on Modelling and Simulation, 2011, pp. 631–647.
[17] W.-K. Jeong, R. T. Whitaker, A fast iterative method for eikonal equations, SIAM Journal on Scientific Computing 30 (5) (2008) 2512–2534.
[18] S. Bak, J. McLaughlin, D. Renzi, Some Improvements for the Fast Sweeping Method, SIAM Journal on Scientific Computing 32 (2010)

2853–2874.
[19] D. Unat, X. Cai, S. Baden, Mint: Realizing CUDA performance in 3D stencil methods with annotated C, in: Proceedings of the 25th

International Conference on Supercomputing (ICS’11), ACM Press, 2011, pp. 214–224.
[20] S. A. Petersen, Ø. Hjelle, Earth recursion, an important component in shared earth model builders, EAGE 70th Conference & Exhibition,

Extended Abstracts.
[21] A. Tveito, A. M. Bruaset, O. Lysne (Eds.), Simula Research Laboratory – by thinking constantly about it, Springer, 2010, Ch. Turning Rocks

into Knowledge.
[22] Ø. Hjelle, S. A. Petersen, A Hamilton-Jacobi framework for modeling folds in structural geology, Mathematical Geosciences 43 (7) (2011)

741–761.
[23] J. G. Ramsay, Folding and fracturing of rocks, McGraw-Hill, New York and London, 1967.
[24] E. Kornhauser, Ray Theory for Moving Fluids, The Journal of the Acoustical Society of America 25 (5) (1953) 945–949.
[25] N. Rawlinson, M. Sambridge, Multiple reflection and transmission phases in complex layered media using a multistage fast marching method,

Geophysics 69 (5) (2004) 1338–1350.
[26] I. Berre, K. H. Karlsen, K.-A. Lie, J. R. Natvig, Fast computation of arrival times in heterogeneous media, Computational Geosciences 9 (4)

(2005) 179–201.
[27] A. M. Popovici, J. A. Sethian, 3-D imaging using higher order fast marching traveltimes, Geophysics 67 (604, Issue 2).
[28] J.-W. Huang, G. Bellefleur, Joint transmission and reflection traveltime tomography using the fast sweeping method and the adjoint-state

technique, Geophysical Journal International 188 (2) (2012) 570–582.
[29] W.-K. Jeong, P. T. Fletcher, R. Tao, R. Whitaker, Interactive visualization of volumetric white matter connectivity in DT-MRI using a parallel-

hardware Hamilton-Jacobi solver, IEEE Transactions on Visualization and Computer Graphics 13 (2007) 1480–1487.
[30] Q. Lin, Enhancement, extraction, and visualization of 3d volume data [elektronisk resurs], Ph.D. thesis, Linköping University, Institute of

Technology (2003).
[31] J. Zhang, Y. Huang, L.-P. Song, Q.-H. Liu, Fast and accurate 3-D ray tracing using bilinear traveltime interpolation and the wave front group

marching, Geophysical Journal International 184 (3) (2011) 1327–1340.

Appendix B

N Precision Parameter Mint
1603 Single Unrolled 3.071949
3203 Single Unrolled 17.105794
4003 Single Unrolled 28.852771
1603 Single Optimal 2.432136
3203 Single Optimal 14.84756
4003 Single Optimal 25.284259
1603 Double Unrolled 6.021
3203 Double Unrolled 35.899724
4003 Double Unrolled 65.26106
1603 Double Optimal 4.776959
3203 Double Optimal 31.097744
4003 Double Optimal 57.420805

Table B.1: Computational times for three grids with a total of N nodes. In
the Unrolled parameter the number of branches are reduced.

75

Th
e

sa
m

e
ex

pe
ri

m
en

ts
w

he
re

al
so

ca
rr

ie
d

ou
tu

si
ng

O
pe

nM
P.

Th
e

re
su

lt
s

ar
e

sh
ow

n
in

Ta
bl

e
B.

2.
O

nl
y

th
e

re
su

lt
s

fo
r

th
e

tw
o

fir
st

gr
id

si
ze

s
an

d
si

ng
le

pr
ec

is
io

n
ar

e
sh

ow
n.

Th
e

re
su

lt
di

ff
er

en
ce

fo
r

th
e

la
rg

es
t

gr
id

w
er

e
in

se
pa

ra
bl

e.
Fo

r
vi

su
al

cl
ar

it
y,

th
e

re
su

lt
s

w
er

e
di

sc
ar

de
d.

N
Pa

ra
m

et
er

t 1
t 2

t 4
t 8

t 1
6

t 2
4

16
03

U
nr

ol
le

d
21

7.
64

76
78

11
2.

56
67

75
58

.7
02

85
0

30
.2

86
85

1
15

.6
60

03
2

11
.3

26
85

7
32

03
U

nr
ol

le
d

17
92

.4
45

17
0

90
8.

95
30

14
47

1.
88

25
46

24
3.

36
80

88
12

4.
79

26
70

88
.8

59
84

7
16

03
O

pt
im

al
19

4.
17

49
03

10
0.

66
25

50
52

.6
23

39
1

27
.2

00
56

2
14

.0
73

82
9

10
.2

26
93

7
32

03
O

pt
im

al
17

95
.8

63
08

8
82

2.
48

87
35

42
3.

87
14

37
21

9.
39

95
92

11
2.

57
97

93
81

.4
00

11
1

Ta
bl

e
B

.2
:A

co
m

pa
ri

so
n

of
co

m
pu

ta
ti

on
al

ti
m

es
fo

r
th

re
e

gr
id

s
w

it
h

a
to

ta
lo

f
N

no
de

s
w

it
h

re
du

ce
d

br
an

ch
in

g.

Th
e

di
ff

er
en

ce
be

tw
ee

n
th

e
ve

rs
io

n
w

it
h

re
du

ce
d

br
an

ch
in

g
an

d
th

e
re

gu
la

r
ve

rs
io

n
of

th
e

co
de

fo
llo

w
s

th
e

sa
m

e
tr

en
d

as
fo

r
th

e
re

su
lt

s
fr

om
th

e
G

PU
.T

hi
s

is
su

rp
ri

si
ng

as
C

PU
s

of
te

n
co

m
e

w
it

h
m

ec
ha

ni
sm

s
as

br
an

ch
pr

ed
ic

ti
on

to
im

pr
ov

e
br

an
ch

in
g

pe
rf

or
m

an
ce

.

76

References

[1] David B. Kirk abd Wen-mei W. Hwu. Programming Massively Parallel
Processors, A Hands-on Approach. Morgan Kaufmann, 2011.

[2] David H. Bailey. Highly parallel perspective: Twelve ways to fool
the masses when giving performance results on parallel computers.
Supercomputing Review, 4(8):54–55, 1991.

[3] Stanley Bak, Joyce McLaughlin, and Daniel Renzi. Some improve-
ments for the fast sweeping method. SIAM J. Sci. Comput., 32(5):2853–
2874, September 2010.

[4] Inga Berre, Kenneth Hvistendal Karlsen, Knut-Andreas Lie, and
Jostein R. Natvig. Fast computation of arrival times in heterogeneous
media. Computational Geosciences, 9(4):179–201, November 2005.

[5] The OpenMP Architecture Review Board. Openmp.org. Web Page.
http://www.openmp.org/.

[6] Timothy Brecht. On the importance of parallel application placement
in numa multiprocessors. In Proceedings for the Fourth Symposium on
Experiences with Distributed and Multiprocessor Systems (SEDMS IV),
San Diego, CA, USA, 1993.

[7] Alexander M. Bronstein, Michael M. Bronstein, and Ron Kim-
mel. Weighted distance maps computation on parametric three-
dimensional manifolds. J. Comput. Phys., 225(1):771–784, July 2007.

[8] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-André
Wacrenier, and Raymond Namyst. Forestgomp: An efficient openmp
environment for numa architectures. International Journal of Parallel
Programming, 38:418–439, 2010. 10.1007/s10766-010-0136-3.

[9] Adam Chacon and Alexander Vladimirsky. Fast two-scale meth-
ods for eikonal equations. SIAM Journal on Scientific Computing,
34(2):A547–A578, 2012.

[10] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes. Cache hierarchy and memory subsystem of the amd
opteron processor. Micro, IEEE, 30(2):16 –29, march-april 2010.

77

[11] Nvidia Corporation. NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi, 2009. http://goo.gl/ooikw.

[12] Nvidia Corporation. Ptx: Parallel thread execution isa version 2.3.
Web, March 2011.

[13] Nvidia Corporation. Whitepaper: NVIDIA GeForce GTX 680, 2012.
http://goo.gl/hEHtZ.

[14] W.J. Dally, F. Labonte, A. Das, P. Hanrahan, Jung-Ho Ahn, J. Gum-
maraju, M. Erez, N. Jayasena, I. Buck, T.J. Knight, and U.J. Kapasi.
Merrimac: Supercomputing with streams. In Supercomputing, 2003
ACM/IEEE Conference, page 35, nov. 2003.

[15] P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and
Image Processing, 14:227–248, 1980.

[16] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory
Peterson, and Jack Dongarra. From cuda to opencl: Towards a
performance-portable solution for multi-platform gpu programming.
Parallel Computing, 2011.

[17] Jianbin Fang, A.L. Varbanescu, and H. Sips. A comprehensive
performance comparison of cuda and opencl. In Parallel Processing
(ICPP), 2011 International Conference on, pages 216 –225, sept. 2011.

[18] Tor Gillberg. A semi-ordered fast iterative method (sofi) for
monotone front propagation in simulations of geological folding. In
F. Chan, D. Marinova, and B. Anderssen, editors, MODSIM2011,
19th International Congress on Modelling and Simulation, pages 631–647.
Modelling and Simulation Society of Australia and New Zealand,
Modelling and Simulation Society of Australia and New Zealand Inc.
(MSSANZ), 2011.

[19] Tor Gillberg, Øyvind Hjelle, and Are Magnus Bruaset. A parallel 3d
front propagation algorithm for simulation of geological folding on
gpus. In EAGE 74th Conference & Exhibition, Extended Abstracts. EAGE,
EarthDoc, 2012.

[20] Tor Gillberg, Mohammed Sourouri, and Xing Cai. A new parallel 3d
front propagation algorithm for fast simulation of geological folds.
In Proceedings of the International Conference on Computational Science,
ICCS 2012, Procedia Computer Science. Elsevier, 2012.

[21] Øyvind Hjelle and Steen Agerlin Petersen. A hamilton-jacobi
framework for modeling folds in structural geology. Mathematical
Geosciences, 43(7):741–761, 2011.

78

[22] Shu-Ren Hysing and Stefan Turek. The eikonal equation: Numerical
efficiency vs. algorithmic complexity on quadrilateral grids. In
Proceedings of Algoritmy, pages 22–31, Podbanské, March 2005.

[23] Won-Ki Jeong, P.T. Fletcher, Ran Tao, and R.T. Whitaker. Interactive
visualization of volumetric white matter connectivity in dt-mri using
a parallel-hardware hamilton-jacobi solver. Visualization and Computer
Graphics, IEEE Transactions on, 13(6):1480 –1487, nov.-dec. 2007.

[24] Won ki Jeong. Interactive Three-Dimensional Image Analysis and
Visualization Using Graphics Hardware. PhD thesis, University of Utah,
USA, December 2008.

[25] Won ki Jeong and Ross T. Whitaker. A fast iterative method for
eikonal equations. SIAM journal on scientific computing, 30:2512–2534,
2008.

[26] ET Kornhauser. Ray theory for moving fluids. The Journal of the
Acoustical Society of America, 25(5):945–949, 1953.

[27] Jens Krueger, David Donofrio, John Shalf, Marghoob Mohiyuddin,
Samuel Williams, Leonid Oliker, and Franz-Josef Pfreund. Hard-
ware/software co-design for energy-efficient seismic modeling. In
Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’11, pages 73:1–73:12,
New York, NY, USA, 2011. ACM.

[28] Hans Petter Langtangen. Computational Partial Differential Equations,
Numerical Methods and Diffpack Programming. Springer-Verlag, Berlin,
2nd edition, 2003.

[29] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyan-
skiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and
Pradeep Dubey. Debunking the 100x gpu vs. cpu myth: an evalu-
ation of throughput computing on cpu and gpu. SIGARCH Comput.
Archit. News, 38(3):451–460, jun 2010.

[30] Shengying Li, Klaus Mueller, Marcel Jackowski, Donald Dione, and
Lawrence Staib. Physical-space refraction-corrected transmission
ultrasound computed tomography made computationally practical.
In Proceedings of the 11th International Conference on Medical Image
Computing and Computer-Assisted Intervention, Part II, MICCAI ’08,
pages 280–288, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] Sophie Michelet. 12.510 introduction to seismology. Web page,
February 2005.

79

[32] International Conference on Computational Science. Iccs 2012
empowering science through computing. Web, April 2012.

[33] Stan Openshaw and Ian Turton. High Performance Computing and the
Art of Parallel Programming. Routledge, 1st edition, Nov 1999.

[34] Peter S. Pacheco. An Introduction to Parallel Programming. Morgan
Kaufmann, 2011.

[35] Scott Pakin. Ten ways to fool the masses when giving performance
results on gpus. Web, December 2011.

[36] S. A. Petersen and Øyvind Hjelle. Earth recursion, an important
component in shared earth model builders. EAGE 70th Conference
& Exhibition, Extended Abstracts, 2008.

[37] Alexander Mihai Popovici and James A. Sethian. 3-d imaging using
higher order fast marching traveltimes. Geophysics, 67(2):604–609,
2002.

[38] N. Rawlinson and M. Sambridge. Multiple reflection and transmis-
sion phases in complex layered media using a multistage fast march-
ing method. Geophysics, 69(5):1338–1350, 2004.

[39] Mary Hall Saman Amarasinghe. Programming challenges for
exascale computing, July 2011.

[40] J. A. Sethian. A fast marching level set method for monotonically
advancing fronts. Proc. Nat. Acad. Sci. USA, 93:1591–1595, February
1996.

[41] J. A. Sethian. Level Set Methods and Fast Marching Methods, page 4.
Cambridge University Press, New York, 2nd edition, 1999.

[42] J. A. Sethian. Level Set Methods and Fast Marching Methods, page 5.
Cambridge University Press, New York, 2nd edition, 1999.

[43] J. A. Sethian. Level Set Methods and Fast Marching Methods, page 47.
Cambridge University Press, New York, 2nd edition, 1999.

[44] J. A. Sethian. Level Set Methods and Fast Marching Methods, page 93.
Cambridge University Press, New York, 2nd edition, 1999.

[45] J. A. Sethian. Level Set Methods and Fast Marching Methods, page 87.
Cambridge University Press, New York, 2nd edition, 1999.

[46] James A. Sethian and Alexander Vladimirsky. Ordered upwind meth-
ods for static hamilton–jacobi equations: Theory and algorithms.
SIAM J. Numer. Anal., 41(1):325–363, January 2003.

80

[47] Christian Terboven, Dieter an Mey, Dirk Schmidl, Henry Jin, and
Thomas Reichstein. Data and thread affinity in openmp programs. In
Proceedings of the 2008 workshop on Memory access on future processors: a
solved problem?, MAW ’08, pages 377–384, New York, NY, USA, 2008.
ACM.

[48] Øyvind Hjelle Tor Gillberg and Are Magnus Bruaset. Accuracy and
efficiency of stencils for the eikonal equation in earth modelling.
Computational Geosciences, 2012. Accepeted for publishing.

[49] J.N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
Automatic Control, IEEE Transactions on, 40(9):1528 –1538, sep 1995.

[50] Didem Unat. Domain-Specific Translator and Optimizer for Massive On-
Chip Parallelism. PhD thesis, University of California San Diego,
March 2012.

[51] Didem Unat, Xing Cai, and Scott Baden. Mint: Realizing cuda
performance in 3d stencil methods with annotated c. In David K.
Lowenthal, Bronis R. de Supinski, and Sally A. McKee, editors,
Proceedings of the 25th International Conference on Supercomputing
(ICS’11), pages 214–224. ACM Press, 2011.

[52] Alexander Boris Vladimirsky. Fast methods for static Hamilton-Jacobi
Partial Differential Equations. PhD thesis, University of California,
Berkeley, 2001.

[53] Vasily Volkov. Better performance at lower occupancy,. Web,
September 2010. http://www.cs.berkeley.edu/∼volkov/volkov10-GTC.
pdf.

[54] Ofir Weber, Yohai S. Devir, Alexander M. Bronstein, Michael M.
Bronstein, and Ron Kimmel. Parallel algorithms for approximation
of distance maps on parametric surfaces. ACM Trans. Graph.,
27(4):104:1–104:16, November 2008.

[55] M. A. Weiss. Data Structures and Algorithm Analysis in Java, page 304.
Addison Wesley, Reading, MA, 2nd edition, 1999.

[56] Hongkai Zhao. A fast sweeping method for eikonal equations.
Mathematics of Computation 74A, pages 603–627, 2004.

[57] Hongkai Zhao. Parallel implementations of the fast sweeping
method. Journal of Computational Mathematics 25, 4:421–429, 2007.

81

